
SBASIC/SuperBASIC Reference
Manual Online Documentation

Release 4.0.2

Rich Mellor

Feb 09, 2024

CONTENTS

1 Original Foreword 3
1.1 2015 Foreword . 4
1.2 Online Edition Foreword . 4

2 Introduction 5
2.1 Contributing Authors . 7
2.2 Installing Toolkits . 7

3 Credits 9
3.1 Other Notices . 10

4 Structure of this Book 11
4.1 Syntax . 11
4.2 Description . 14
4.3 Examples . 14
4.4 Notes . 14
4.5 [Implementation] Notes . 14
4.6 Warning . 15
4.7 Cross-Reference . 15

5 Writing Programs 17
5.1 Compiling SuperBASIC Programs . 17
5.2 Writing Programs to Run Under the Pointer Environment 19
5.3 Multitasking Programs . 20

6 Keywords Introduction 21

7 Toolkits 23
7.1 Ähnlichkeiten . 23
7.2 ARRAY . 23
7.3 ATARI Emulators . 24
7.4 ATARIDOS . 24
7.5 ATARI_REXT . 25
7.6 Amiga QDOS - v3.20 . 27
7.7 BGI . 27
7.8 BIT . 27
7.9 BTool . 28
7.10 BeuleTools . 31
7.11 COMPICT . 32
7.12 CONCAT . 32

i

7.13 CONVERT . 32
7.14 CRYPTAGE . 33
7.15 DESPR . 33
7.16 DEV device . 33
7.17 DIY Toolkit . 33
7.18 Djtoolkit v1.16 . 38
7.19 Disk Interfaces . 40
7.20 ETAT . 40
7.21 Ecran Manager . 40
7.22 Environment Variables . 41
7.23 FACT . 41
7.24 FKEY . 41
7.25 FN . 41
7.26 FONTS . 42
7.27 FRACT . 42
7.28 Fast PLOT/DRAW Toolkit . 42
7.29 GETSTUFF . 42
7.30 Gold Card . 42
7.31 GPOINT . 44
7.32 HCO . 44
7.33 HOTKEY II . 44
7.34 Hard Disk Driver . 45
7.35 History Device . 45
7.36 Hyper . 46
7.37 Hyperbola . 46
7.38 KEYMAN . 46
7.39 KILL . 46
7.40 LWCUPC . 46
7.41 Level-2 Device Drivers . 47
7.42 MINMAX2 . 47
7.43 MULTI . 47
7.44 Math Package . 47
7.45 Minerva . 49
7.46 Minerva - Trace Toolkit . 49
7.47 Minerva Extensions Toolkit . 49
7.48 NDIM . 49
7.49 PAR/SER Interfaces . 49
7.50 PEX . 49
7.51 PICEXT . 50
7.52 PIE . 50
7.53 PRIO . 51
7.54 PTRRTP . 51
7.55 Path device . 51
7.56 Pointer Interface - v1.23 Onwards . 51
7.57 QL ROM . 51
7.58 QPC / QXL . 56
7.59 QSOUND . 57
7.60 QView Tiny Toolkit . 57
7.61 QVME - Level E-19 Drivers onwards . 58
7.62 QXL . 58
7.63 Qjump RAMPRT . 58

ii

7.64 RES . 58
7.65 REV . 59
7.66 SDUMP_REXT . 59
7.67 SERMouse . 59
7.68 SMS . 59
7.69 SMSQ . 61
7.70 SMSQ/E . 61
7.71 ST/QL . 69
7.72 STAMP . 71
7.73 SWAP . 71
7.74 SYSBASE . 72
7.75 Shape Toolkit . 72
7.76 Super Gold Card . 72
7.77 SuperQBoard . 72
7.78 SuperWindow Toolkit . 72
7.79 THOR . 72
7.80 TRIM . 75
7.81 TRIPRODRO . 76
7.82 TRUFA . 76
7.83 TinyToolkit . 76
7.84 Toolfin . 78
7.85 Toolkit II . 78
7.86 Trump Card . 82
7.87 Turbo Toolkit . 82
7.88 UNJOB . 84
7.89 WIPE . 84
7.90 WM . 84
7.91 XKBD . 84

8 Keywords A 85
8.1 ABS . 85
8.2 ABS_POSITION . 86
8.3 ACCEL_OFF . 87
8.4 ACCEL_ON . 87
8.5 ACCEL_SET . 87
8.6 ACCEL_STATE . 88
8.7 ACOPY . 88
8.8 ACOS . 89
8.9 ACOT . 89
8.10 ADATE . 90
8.11 ADDREG . 91
8.12 ADELETE . 92
8.13 ADIR . 92
8.14 AFORMAT . 92
8.15 AJOB . 93
8.16 ALARM . 93
8.17 ALCHP . 94
8.18 ALIAS . 95
8.19 ALINE . 97
8.20 ALLOCATION . 98
8.21 ALPHA_BLEND . 98

iii

8.22 ALT . 99
8.23 ALTER . 99
8.24 ALTKEY . 100
8.25 AND . 101
8.26 APOINT . 102
8.27 APPEND . 102
8.28 AQCONVERT . 103
8.29 ARC . 103
8.30 ARC_R . 105
8.31 ARCOSH . 105
8.32 ARCOTH . 106
8.33 ARSINH . 106
8.34 ARTANH . 107
8.35 ASIN . 107
8.36 ASK . 108
8.37 ASTAT . 109
8.38 AT . 109
8.39 ATAN . 110
8.40 ATARI . 111
8.41 ATARI_EXT . 112
8.42 ATN . 112
8.43 ATN2 . 112
8.44 AUTO . 113
8.45 AUTO_DIS . 114
8.46 AUTO_TK2F1 . 115
8.47 AUTO_TK2F2 . 115
8.48 A_BLANK . 116
8.49 A_EMULATOR . 116
8.50 A_MACHINE . 117
8.51 A_OLDSCR . 117
8.52 A_PROCESSOR . 118
8.53 A_RDATE . 118
8.54 A_SDATE . 118
8.55 A_SPEED . 119

9 Keywords B 121
9.1 BASIC . 121
9.2 BASICP . 121
9.3 BASIC_B . 122
9.4 BASIC_W . 122
9.5 BASIC_L . 122
9.6 BASIC_B% . 123
9.7 BASIC_W% . 123
9.8 BASIC_F . 123
9.9 BASIC_INDEX% . 124
9.10 BASIC_NAME$. 124
9.11 BASIC_POINTER . 124
9.12 BASIC_TYPE% . 125
9.13 BAT . 125
9.14 BAT$. 126
9.15 BAT_USE . 126

iv

9.16 BAUD . 126
9.17 BAUDRATE . 130
9.18 BCLEAR . 130
9.19 BEEP . 131
9.20 BEEPING . 133
9.21 BELL . 133
9.22 Beule_EXT . 134
9.23 BGCOLOUR_QL . 134
9.24 BGCOLOUR_24 . 135
9.25 BGET . 135
9.26 BGIMAGE . 136
9.27 BICOP . 137
9.28 BIN . 137
9.29 BIN$. 138
9.30 BINOM . 139
9.31 BIT% . 140
9.32 BLD . 141
9.33 BLOCK . 141
9.34 BLOOK . 142
9.35 BLS . 142
9.36 BMOVE . 143
9.37 BORDER . 143
9.38 BPEEK% . 145
9.39 BPEEK_W% . 145
9.40 BPEEK_L . 145
9.41 BPOKE . 145
9.42 BPOKE_W . 145
9.43 BPOKE_L . 145
9.44 BPUT . 146
9.45 BREAK_ON . 147
9.46 BREAK_OFF . 147
9.47 BREAK . 148
9.48 BREAK% . 148
9.49 BTool_EXT . 149
9.50 BTool_RMV . 149
9.51 BTRAP . 149
9.52 BUTTON% . 150
9.53 BVER$. 151
9.54 BYTES_FREE . 151

10 Keywords C 153
10.1 CACHE_ON . 153
10.2 CACHE_OFF . 153
10.3 CALL . 154
10.4 CAPS . 156
10.5 CATNAP . 156
10.6 CBASE . 157
10.7 CCHR$. 157
10.8 CDEC$. 157
10.9 CD_ALLTIME . 158
10.10 CD_CLOSE . 159

v

10.11 CD_EJECT . 159
10.12 CD_FIRSTTRACK . 159
10.13 CD_HOUR . 160
10.14 CD_HSG2RED . 160
10.15 CD_INIT . 160
10.16 CD_ISCLOSED . 161
10.17 CD_ISINSERTED . 161
10.18 CD_ISPAUSED . 162
10.19 CD_ISPLAYING . 162
10.20 CD_LASTTRACK . 162
10.21 CD_LENGTH . 163
10.22 CD_MINUTE . 163
10.23 CD_PLAY . 163
10.24 CD_RED2HSG . 164
10.25 CD_RESUME . 165
10.26 CD_SECOND . 165
10.27 CD_STOP . 165
10.28 CD_TRACK . 166
10.29 CD_TRACKLENGTH . 166
10.30 CD_TRACKSTART . 167
10.31 CD_TRACKTIME . 167
10.32 CEIL . 167
10.33 CHANGE . 168
10.34 CHANID . 169
10.35 CHANNELS . 169
10.36 CHANNEL_ID . 170
10.37 CHAN_B% . 170
10.38 CHAN_W% . 170
10.39 CHAN_L% . 170
10.40 CHARGE . 171
10.41 CHAR_DEF . 172
10.42 CHAR_INC . 172
10.43 CHAR_USE . 173
10.44 CHBASE . 174
10.45 CHECK . 175
10.46 CHECK% . 175
10.47 CHECKF . 176
10.48 CHK_HEAP . 176
10.49 CHR$. 177
10.50 CIRCLE . 177
10.51 CIRCLE_R . 178
10.52 CKEYOFF . 179
10.53 CKEYON . 179
10.54 CLCHP . 180
10.55 CLEAR . 180
10.56 CLEAR_HOT . 181
10.57 CLIP% . 182
10.58 CLIP$. 183
10.59 CLOCK . 183
10.60 CLOSE . 184
10.61 CLOSE% . 186

vi

10.62 CLRMDV . 186
10.63 CLS . 187
10.64 CLS_A . 188
10.65 CMD$. 188
10.66 CODE . 189
10.67 CODEVEC . 190
10.68 COL . 190
10.69 COLOUR_NATIVE . 191
10.70 COLOUR_PAL . 191
10.71 COLOUR_QL . 193
10.72 COLOUR_24 . 193
10.73 COMMAND_LINE . 194
10.74 COMPILED . 194
10.75 COMPRESS . 195
10.76 CONCAT . 195
10.77 CONNECT . 196
10.78 CONTINUE . 196
10.79 ConvCASE$. 197
10.80 CONVERT . 197
10.81 COPY . 198
10.82 COPY_B . 200
10.83 COPY_H . 201
10.84 COPY_L . 201
10.85 COPY_N . 201
10.86 COPY_O . 202
10.87 COPY_W . 202
10.88 COS . 203
10.89 COSH . 204
10.90 COT . 204
10.91 COTH . 206
10.92 CSIZE . 206
10.93 CTAB$. 207
10.94 CUR . 207
10.95 CURDIS . 208
10.96 CURSEN . 208
10.97 CURSOR . 209
10.98 CURSOR% . 210
10.99 CURSOR_OFF . 211
10.100CURSOR_ON . 211
10.101CVF . 211
10.102CVI% . 212
10.103CVS$. 212
10.104CVL . 213

11 Keywords D 215
11.1 DATA . 215
11.2 DATAD$. 216
11.3 DATAREG . 217
11.4 DATASPACE . 217
11.5 DATA_AREA . 218
11.6 DATA_USE . 219

vii

11.7 DATE . 220
11.8 DATE$. 221
11.9 DAY$. 223
11.10 DAY% . 224
11.11 DBL . 224
11.12 DDOWN . 224
11.13 DEALLOCATE . 225
11.14 DEBUG . 226
11.15 DEBUG_LEVEL . 226
11.16 DEFAULT . 226
11.17 DEFAULT% . 227
11.18 DEFAULT$. 227
11.19 DEFAULT_DEVICE . 227
11.20 DEFAULT_SCR . 228
11.21 DEFine xxx . 229
11.22 DEFine FuNction . 229
11.23 DEFine PROCedure . 234
11.24 DEFINED . 236
11.25 DEG . 237
11.26 DELETE . 237
11.27 DEL_DEFB . 238
11.28 DESPR . 239
11.29 DESTD$. 239
11.30 DEST_USE . 240
11.31 DEMO . 240
11.32 DET . 241
11.33 DEV_NAME . 242
11.34 DEVICE_SPACE . 243
11.35 DEVICE_STATUS . 244
11.36 DEVLIST . 245
11.37 DEVTYPE . 245
11.38 DEV_LIST . 246
11.39 DEV_NEXT . 246
11.40 DEV_USE . 247
11.41 DEV_USEN . 250
11.42 DEV_USE$. 250
11.43 DIM . 251
11.44 DIMN . 260
11.45 DIR . 261
11.46 DISCARD . 264
11.47 DISP_BLANK . 264
11.48 DISP_INVERSE . 265
11.49 DISP_RATE . 266
11.50 DISP_SIZE . 267
11.51 DISP_TYPE . 268
11.52 DISP_UPDATE . 268
11.53 DISPLAY_WIDTH . 269
11.54 DIV . 269
11.55 DIV . 270
11.56 DJ_OPEN . 271
11.57 DJ_OPEN_IN . 271

viii

11.58 DJ_OPEN_NEW . 271
11.59 DJ_OPEN_OVER . 271
11.60 DJ_OPEN_DIR . 272
11.61 DJTK_VER$. 273
11.62 DLINE . 273
11.63 DLIST . 274
11.64 DMEDIUM_DENSITY . 275
11.65 DMEDIUM_DRIVE$. 275
11.66 DMEDIUM_FORMAT . 276
11.67 DMEDIUM_FREE . 277
11.68 DMEDIUM_NAME$. 277
11.69 DMEDIUM_RDONLY . 278
11.70 DMEDIUM_REMOVE . 279
11.71 DMEDIUM_TOTAL . 279
11.72 DMEDIUM_TYPE . 279
11.73 DNEXT . 280
11.74 DO . 281
11.75 DOS_USE . 282
11.76 DOS_DRIVE . 282
11.77 DOS_DRIVE$. 283
11.78 DOTLIN . 283
11.79 DRAW . 284
11.80 DRAW . 285
11.81 DROUND . 285
11.82 DUP . 286

12 Keywords E 287
12.1 EASTER . 287
12.2 ED . 288
12.3 EDIT . 291
12.4 EDITF . 293
12.5 EDIT% . 293
12.6 EDIT$. 293
12.7 EDLINE$. 294
12.8 EL . 294
12.9 ELIS . 295
12.10 ELLIPSE . 295
12.11 ELLIPSE_R . 296
12.12 ELSE . 297
12.13 END . 297
12.14 END DEFine . 297
12.15 END FOR . 299
12.16 END IF . 299
12.17 END REPeat . 300
12.18 END SELect . 301
12.19 END WHEN . 302
12.20 END_CMD . 302
12.21 END_WHEN . 303
12.22 ENV_DEL . 303
12.23 ENV_LIST . 303
12.24 ENL . 304

ix

12.25 EOF . 304
12.26 EOFW . 305
12.27 EPROM_LOAD . 305
12.28 EPS . 306
12.29 EQ$. 307
12.30 ERLIN . 307
12.31 ERLIN% . 308
12.32 ERNUM . 308
12.33 ERNUM% . 310
12.34 ERR_XX . 311
12.35 ERRor . 312
12.36 ERT . 312
12.37 ESC . 314
12.38 ET . 314
12.39 ETAB$. 314
12.40 ETAT . 315
12.41 EW . 316
12.42 EX . 319
12.43 EXCHG . 321
12.44 EXEC . 322
12.45 EXEC_W . 322
12.46 EXEP . 323
12.47 EXIT . 325
12.48 EXP . 327
12.49 EXPAND . 327
12.50 EXPLODE . 328
12.51 EXTRAS . 328
12.52 EXTRAS_W . 329

13 Keywords F 331
13.1 FACT . 331
13.2 FALSE% . 331
13.3 FASTEXPAND . 332
13.4 FBKDT . 332
13.5 FDAT . 334
13.6 FDEC$. 335
13.7 FETCH_BYTES . 335
13.8 FEXP$. 336
13.9 FET . 336
13.10 FEW . 337
13.11 FEX . 337
13.12 FEX_M . 338
13.13 FF . 338
13.14 FGET% . 338
13.15 FGET$. 339
13.16 FGETB . 339
13.17 FGETL . 340
13.18 FGETF . 340
13.19 FGETH$. 341
13.20 FILE_BACKUP . 342
13.21 FILE_DAT . 343

x

13.22 FILE_DATASPACE . 343
13.23 FILE_LEN . 343
13.24 FILE_LENGTH . 344
13.25 FILE_OPEN . 345
13.26 FILE_POS . 346
13.27 FILE_POSITION . 346
13.28 FILE_PTRA . 347
13.29 FILE_PTRR . 347
13.30 FILE_TYPE . 348
13.31 FILE_UPDATE . 349
13.32 FILL . 349
13.33 FILL$. 351
13.34 FILLMEM_B . 352
13.35 FILLMEM_W . 352
13.36 FILLMEM_L . 352
13.37 FIND . 353
13.38 FLASH . 353
13.39 FLEN . 354
13.40 FLIS . 355
13.41 FLP_DENSITY . 355
13.42 FLP_DRIVE . 357
13.43 FLP_DRIVE$. 357
13.44 FLP_EXT . 358
13.45 FLP_JIGGLE . 358
13.46 FLP_SEC . 359
13.47 FLP_START . 360
13.48 FLP_STEP . 360
13.49 FLP_TRACK . 361
13.50 FLP_USE . 361
13.51 FLUSH . 362
13.52 FLUSH_CHANNEL . 362
13.53 FMAKE_DIR . 363
13.54 FNAME$. 363
13.55 FOPEN . 364
13.56 FOP_DIR . 365
13.57 FOP_IN . 365
13.58 FOP_NEW . 365
13.59 FOP_OVER . 366
13.60 FOR . 366
13.61 FORCE_TYPE . 370
13.62 FORMAT . 371
13.63 FPOS . 377
13.64 FPOS_A . 377
13.65 FPOS_R . 377
13.66 FPUT$. 378
13.67 FPUT% . 378
13.68 FPUTB . 378
13.69 FPUTF . 379
13.70 FPUTL . 379
13.71 FRACT . 379
13.72 FREAD . 380

xi

13.73 FREAD$. 381
13.74 FREE . 381
13.75 FREE_FAST . 382
13.76 FREE_MEM . 382
13.77 FREEZE . 382
13.78 FREEZE% . 383
13.79 FSERVE . 383
13.80 FSETH$. 385
13.81 FTEST . 385
13.82 FTYP . 386
13.83 FuNction . 387
13.84 FUPDT . 387
13.85 FVERS . 389
13.86 FWRITE . 390
13.87 FWRITE$. 391
13.88 FXTRA . 391

14 Keywords G 393
14.1 GCD . 393
14.2 GER_MSG . 393
14.3 GER_TRA . 394
14.4 GET . 394
14.5 GET_BYTE$. 395
14.6 GET_BYTE . 397
14.7 GET_FLOAT . 397
14.8 GET_LONG . 397
14.9 GET_STRING . 398
14.10 GET_STUFF$. 398
14.11 GetHEAD . 399
14.12 GET_WORD . 400
14.13 GETXY . 400
14.14 GO SUB . 401
14.15 GO TO . 402
14.16 GPOINT . 403
14.17 GRAB . 403
14.18 GREGOR . 403
14.19 GT$. 405

15 Keywords H 407
15.1 HEADR . 407
15.2 HEADS . 407
15.3 HEX . 407
15.4 HEX$. 408
15.5 HGET . 409
15.6 HIS_SET . 410
15.7 HIS_SIZE . 411
15.8 HIS_UNSET . 411
15.9 HIS_USE . 412
15.10 HIS_USE$. 412
15.11 HOT . 412
15.12 HOT_CHP . 413
15.13 HOT_CHP1 . 414

xii

15.14 HOT_CMD . 415
15.15 HOT_DO . 416
15.16 HOT_GETSTUFF$. 416
15.17 HOT_GO . 417
15.18 HOT_KEY . 417
15.19 HOT_LIST . 418
15.20 HOT_LOAD . 418
15.21 HOT_LOAD1 . 419
15.22 HOT_NAME$. 419
15.23 HOT_OFF . 420
15.24 HOT_PICK . 420
15.25 HOT_REMV . 421
15.26 HOT_RES . 421
15.27 HOT_RES1 . 422
15.28 HOT_SET . 422
15.29 HOT_STOP . 423
15.30 HOT_STUFF . 423
15.31 HOT_THING . 424
15.32 HOT_THING1 . 425
15.33 HOT_TYPE . 425
15.34 HOT_WAKE . 426
15.35 HPUT . 427

16 Keywords I 429
16.1 I2C_IO . 429
16.2 IDEC$. 431
16.3 IF . 431
16.4 IFORMAT . 434
16.5 INARRAY% . 435
16.6 INF . 436
16.7 INK . 436
16.8 INKEY$. 439
16.9 INPUT . 440
16.10 INPUT$. 446
16.11 INSTR . 446
16.12 INSTR_CASE . 447
16.13 INT . 447
16.14 INTMAX . 448
16.15 INVERSE . 449
16.16 INVXY . 449
16.17 IO_PEND% . 449
16.18 IO_PRIORITY . 450
16.19 IO_TRAP . 450
16.20 IQCONVERT . 451
16.21 IS_BASIC . 451
16.22 IS_PEON . 452
16.23 IS_PTRAP . 452

17 Keywords J 455
17.1 JBASE . 455
17.2 JobCBS . 457
17.3 JOBID . 457

xiii

17.4 JOBS . 457
17.5 JOB$. 458
17.6 JOB_NAME . 459

18 Keywords K 461
18.1 KBD_RESET . 461
18.2 KBD_TABLE . 461
18.3 KBD_USE . 462
18.4 KBYTES_FREE . 462
18.5 KEY . 463
18.6 KEYROW . 465
18.7 KEYW . 468
18.8 KEY_ADD . 469
18.9 KEY_RMV . 470
18.10 KILL . 470
18.11 KILLN . 471
18.12 KILL_A . 471
18.13 KJOB . 471
18.14 KJOBS . 472

19 Keywords L 473
19.1 LANG_USE . 473
19.2 LANGUAGE . 473
19.3 LANGUAGE$. 474
19.4 LAR . 474
19.5 LBYTES . 474
19.6 LCM . 475
19.7 LDRAW . 476
19.8 LEFT . 478
19.9 LEN . 478
19.10 LET . 479
19.11 LEVEL2 . 481
19.12 LGET . 481
19.13 LINE . 482
19.14 LINE_R . 483
19.15 LINKUP . 483
19.16 LINT2 . 483
19.17 LIST . 484
19.18 LIST_TASKS . 485
19.19 LMAR . 485
19.20 LN . 485
19.21 LOAD . 486
19.22 LOADPIC . 488
19.23 LOCal . 489
19.24 LOCK . 491
19.25 LOG2 . 491
19.26 LOG10 . 491
19.27 LOOKUP% . 492
19.28 LOWER$. 493
19.29 LPOLL . 493
19.30 LPR_USE . 493
19.31 LPUT . 494

xiv

19.32 LRESFAST . 494
19.33 LRESPR . 495
19.34 LRUN . 496
19.35 LSCHD . 496
19.36 LWC$. 497

20 Keywords M 499
20.1 MACHINE . 499
20.2 MAKE_DIR . 502
20.3 MATADD . 504
20.4 MATCOUNT . 505
20.5 MATCOUNT1 . 505
20.6 MATEQU . 506
20.7 MATDEV . 506
20.8 MATIDN . 507
20.9 MATINPUT . 507
20.10 MATINV . 508
20.11 MATMAX . 509
20.12 MATMEAN . 510
20.13 MATMIN . 510
20.14 MATMULT . 510
20.15 MATPLOT . 513
20.16 MATPLOT_R . 514
20.17 MATPROD . 514
20.18 MATREAD . 515
20.19 MATRND . 516
20.20 MATSEQ . 516
20.21 MATSUB . 517
20.22 MATSUM . 517
20.23 MATTRN . 519
20.24 MAX . 519
20.25 MAX_CON . 520
20.26 MAX_DEVS . 521
20.27 MAXIMUM . 521
20.28 MAXIMUM% . 522
20.29 MB . 523
20.30 MD . 523
20.31 MERGE . 523
20.32 MIDINET . 525
20.33 MIN . 526
20.34 MINIMUM . 526
20.35 MINIMUM% . 527
20.36 MISTake . 527
20.37 MKF$. 528
20.38 MKI$. 528
20.39 MKL$. 528
20.40 MKS$. 529
20.41 MNET . 529
20.42 MNET% . 529
20.43 MNET_OFF . 530
20.44 MNET_ON . 530

xv

20.45 MNET_S% . 530
20.46 MNET_USE . 530
20.47 MOD . 531
20.48 MOD . 532
20.49 MODE . 532
20.50 MONTH% . 537
20.51 MORE . 538
20.52 MOUSE_SPEED . 539
20.53 MOUSE_STUFF . 539
20.54 MOVE . 540
20.55 MOVE_MEM . 541
20.56 MOVE_POSITION . 541
20.57 MRUN . 542
20.58 MSEARCH . 542
20.59 MT . 542
20.60 MTRAP . 543

21 Keywords N 545
21.1 NDIM . 545
21.2 NDIM% . 545
21.3 NET . 546
21.4 NETBEEP . 546
21.5 NETPOLL . 547
21.6 NETRATE . 547
21.7 NETREAD . 549
21.8 NETSEND . 550
21.9 NETVAR% . 550
21.10 NET_ID . 550
21.11 NEW . 551
21.12 NEWCHAN% . 551
21.13 NEW_NAME . 552
21.14 NEXT . 553
21.15 NFS_USE . 553
21.16 NIX . 555
21.17 NO_CLOCK . 555
21.18 NOCAPS . 555
21.19 NOKEY . 556
21.20 NORM . 556
21.21 NOR_MSG . 556
21.22 NOR_TRA . 557
21.23 NOT . 557
21.24 NRM . 559
21.25 NXJOB . 559

22 Keywords O 561
22.1 ODD . 561
22.2 OFF . 561
22.3 OJOB . 562
22.4 ON . 562
22.5 ON. . .GO TO . 562
22.6 ON. . .GO SUB . 562
22.7 OPEN . 563

xvi

22.8 OPEN_DIR . 567
22.9 OPEN_IN . 570
22.10 OPEN_NEW . 571
22.11 OPEN_OVER . 572
22.12 OR . 572
22.13 OUTL . 573
22.14 OUTLN . 574
22.15 OVER . 577

23 Keywords P 579
23.1 PAGDIS . 579
23.2 PAGLEN . 579
23.3 PAGLIN . 580
23.4 PAINT . 580
23.5 PALETTE_QL . 581
23.6 PALETTE_8 . 582
23.7 PAN . 583
23.8 PAPER . 584
23.9 PARHASH . 585
23.10 PARNAM$. 586
23.11 PARNAME$. 587
23.12 PARSEPA . 587
23.13 PARSTR$. 587
23.14 PARTYP . 589
23.15 PARTYPE . 590
23.16 PARUSE . 591
23.17 PAR_ABORT . 591
23.18 PAR_BUFF . 592
23.19 PAR_CLEAR . 592
23.20 PAR_DEFAULTPRINTER$. 593
23.21 PAR_GETFILTER . 593
23.22 PAR_GETPRINTER$. 593
23.23 PAR_PRINTERCOUNT . 593
23.24 PAR_PRINTERNAME$. 594
23.25 PAR_PULSE . 594
23.26 PAR_SETFILTER . 594
23.27 PAR_SETPRINTER . 594
23.28 PAR_USE . 595
23.29 PAUSE . 595
23.30 PE_BGOFF . 596
23.31 PE_BGON . 596
23.32 PEEK . 597
23.33 PEEK_FLOAT . 597
23.34 PEEK_STRING . 598
23.35 PEEK_W . 599
23.36 PEEK_L . 599
23.37 PEEKS . 600
23.38 PEEKS_W . 600
23.39 PEEKS_L . 600
23.40 PEEK$. 601
23.41 PEEK_F . 602

xvii

23.42 PEND . 602
23.43 PENDOWN . 604
23.44 PENUP . 604
23.45 PEOFF . 604
23.46 PEON . 605
23.47 PEX$. 606
23.48 PEX_INI . 606
23.49 PEX_SAVE . 606
23.50 PEX_XTD . 607
23.51 PHONEM . 607
23.52 PI . 608
23.53 PICK$. 608
23.54 PICK% . 609
23.55 PIE_EX_OFF . 610
23.56 PIE_EX_ON . 611
23.57 PIE_OFF . 611
23.58 PIE_ON . 611
23.59 PIF$. 612
23.60 PINF$. 612
23.61 PIXEL% . 612
23.62 PJOB . 612
23.63 PLAY . 613
23.64 PLOT . 613
23.65 PLOT . 614
23.66 POINT . 615
23.67 POINT_R . 615
23.68 POKE . 616
23.69 POKE_FLOAT . 616
23.70 POKE_STRING . 616
23.71 POKE_W . 617
23.72 POKE_L . 617
23.73 POKES . 621
23.74 POKES_W . 621
23.75 POKES_L . 621
23.76 POKE$. 622
23.77 POKE_F . 622
23.78 PRINT . 623
23.79 PRINT_USING . 625
23.80 PRIO . 627
23.81 PRIORITISE . 628
23.82 PRO . 628
23.83 PROCESSOR . 628
23.84 PROCedure . 629
23.85 PROGD$. 630
23.86 PROG_USE . 630
23.87 PROT_DATE . 630
23.88 PROT_MEM . 631
23.89 PROUND . 632
23.90 PRT_ABORT . 633
23.91 PRT_ABT . 633
23.92 PRT_BUFF . 633

xviii

23.93 PRT_CLEAR . 634
23.94 PRT_USE . 634
23.95 PRT_USE . 635
23.96 PRT_USE$. 636
23.97 PTH_ADD . 636
23.98 PTH_LIST . 638
23.99 PTH_RMV . 639
23.100PTH_USE . 639
23.101PTH_USE$. 640
23.102PTH$. 640
23.103PTR_FN% . 641
23.104PTR_INC . 642
23.105PTR_KEY . 642
23.106PTR_LIMITS . 643
23.107PTR_MAX . 643
23.108PTR_OFF . 643
23.109PTR_ON . 644
23.110PTR_POS . 644
23.111PTR_X . 644
23.112PTR_Y . 645
23.113PURGE . 645
23.114PUT . 645
23.115PUT_BYTE . 646
23.116PUT_FLOAT . 647
23.117PUT_LONG . 647
23.118PUT_STRING . 647
23.119PUT_WORD . 648
23.120PXOFF . 648
23.121PXON . 648
23.122PX1ST . 649
23.123P_ENV . 649

24 Keywords Q 651
24.1 QACONVERT . 651
24.2 QCOPY . 651
24.3 QCOUNT% . 652
24.4 QDOS$. 652
24.5 QFLIM . 653
24.6 QICONVERT . 654
24.7 QLINK . 655
24.8 QLOAD . 655
24.9 QLRUN . 655
24.10 QL_PEX . 656
24.11 QMERGE . 656
24.12 QMRUN . 656
24.13 QPC_CMDLINE$. 656
24.14 QPC_EXEC . 657
24.15 QPC_EXIT . 657
24.16 QPC_HOSTOS . 657
24.17 QPC_MAXIMIZE . 658
24.18 QPC_MINIMIZE . 658

xix

24.19 QPC_MSPEED . 658
24.20 QPC_NETNAME$. 658
24.21 QPC_QLSCREMU . 658
24.22 QPC_RESTORE . 659
24.23 QPC_SYNCSCRAP . 659
24.24 QPC_VER$. 660
24.25 QPC_WINDOWSIZE . 660
24.26 QPC_WINDOWTITLE . 660
24.27 QPTR . 661
24.28 QRAM$. 661
24.29 QSAVE . 661
24.30 QSAVE_O . 662
24.31 QSIZE% . 663
24.32 QSPACE% . 664
24.33 QTRAP . 664
24.34 QuATARI . 665
24.35 QUEUE% . 665
24.36 QUIT . 665

25 Keywords R 667
25.1 RAD . 667
25.2 RAE . 667
25.3 RAFE . 668
25.4 RAMTOP . 668
25.5 RAM_USE . 668
25.6 RAND . 669
25.7 RANDOMISE . 669
25.8 READ . 670
25.9 READ_HEADER . 672
25.10 RECHP . 673
25.11 RECOL . 674
25.12 REFRESH . 675
25.13 RELEASE . 675
25.14 RELEASE . 676
25.15 RELEASE_HEAP . 676
25.16 RELEASE_TASK . 677
25.17 RELJOB . 677
25.18 RELOAD . 677
25.19 REL_JOB . 678
25.20 REMAINDER . 678
25.21 REMark . 678
25.22 REMOVE . 679
25.23 REMOVE_TASK . 679
25.24 RENAME . 679
25.25 RENUM . 680
25.26 REPeat . 684
25.27 REPLACE . 686
25.28 REPLY . 687
25.29 REPORT . 688
25.30 RESAVE . 689
25.31 RESERVE . 689

xx

25.32 RESERVE_HEAP . 689
25.33 RESET . 690
25.34 RESFAST . 690
25.35 RESPR . 691
25.36 RESTORE . 692
25.37 RES_SIZE . 692
25.38 RES_128 . 693
25.39 RETRY . 694
25.40 RETurn . 694
25.41 REV$. 695
25.42 RJOB . 695
25.43 RMAR . 696
25.44 RMODE . 696
25.45 RND . 697
25.46 ROM . 698
25.47 ROM_EXT . 699
25.48 ROM_LOAD . 699
25.49 ROMs . 699
25.50 RTP_R . 700
25.51 RTP_T . 701
25.52 RUN . 701

26 Keywords S 703
26.1 SAR . 703
26.2 SARO . 704
26.3 SAUTO . 704
26.4 SAVE . 704
26.5 SAVE_O . 706
26.6 SAVEPIC . 706
26.7 SB_THING . 706
26.8 SBASIC . 707
26.9 SBYTES . 708
26.10 SBYTES_O . 710
26.11 SCALE . 711
26.12 SCLR . 713
26.13 SCRBASE . 714
26.14 SCREEN . 715
26.15 SCREEN_BASE . 716
26.16 SCREEN_MODE . 716
26.17 SCRINC . 717
26.18 SCROLL . 717
26.19 SCROF . 719
26.20 SCRON . 719
26.21 SCR2DIS . 720
26.22 SCR2EN . 720
26.23 SCR_BASE . 721
26.24 SCR_LLEN . 721
26.25 SCR_REFRESH . 722
26.26 SCR_SAVE . 722
26.27 SCR_SIZE . 723
26.28 SCR_STORE . 723

xxi

26.29 SCR_XLIM . 724
26.30 SCR_YLIM . 725
26.31 SDATE . 725
26.32 SDP_DEV . 726
26.33 SDP_KEY . 727
26.34 SDP_SET . 727
26.35 SDUMP . 734
26.36 SEARCH . 735
26.37 SEARCH . 736
26.38 SEARCH_C . 737
26.39 SEARCH_I . 737
26.40 SEARCH_MEM . 738
26.41 SELect . 738
26.42 SELect ON . 739
26.43 SEND_EVENT . 742
26.44 SERMAWS . 743
26.45 SERMCUR . 743
26.46 SERMOFF . 744
26.47 SERMON . 744
26.48 SERMPTR . 744
26.49 SERMRESET . 745
26.50 SERMSPEED . 745
26.51 SERMWAIT . 746
26.52 SERNET . 746
26.53 SER_ABORT . 746
26.54 SER_BUFF . 747
26.55 SER_CDEOF . 748
26.56 SER_CLEAR . 748
26.57 SER_FLOW . 749
26.58 SER_GETPORT$. 749
26.59 SER_PAUSE . 749
26.60 SER_ROOM . 750
26.61 SER_SETPORT . 750
26.62 SER_USE . 751
26.63 SET . 751
26.64 SET . 752
26.65 SetHEAD . 753
26.66 SET_HEADER . 753
26.67 SET_CLOCK . 753
26.68 SET_FBKDT . 754
26.69 SET_FUPDT . 754
26.70 SET_FVERS . 755
26.71 SET_GREEN . 755
26.72 SET_RED . 756
26.73 SET_LANGUAGE . 756
26.74 SET_XINC . 757
26.75 SET_YINC . 757
26.76 SEXEC . 758
26.77 SEXEC_O . 759
26.78 SGN . 760
26.79 SGN% . 760

xxii

26.80 SHOOT . 760
26.81 SI . 760
26.82 SIGN . 761
26.83 SIN . 761
26.84 SINH . 762
26.85 SINT . 762
26.86 SIZE . 763
26.87 SJOB . 765
26.88 SLOAD . 766
26.89 SLUG . 767
26.90 SMOVE . 767
26.91 SND_EXT . 768
26.92 SNET . 768
26.93 SNET% . 768
26.94 SNET_ROPEN . 769
26.95 SNET_S% . 769
26.96 SNET_USE . 769
26.97 SORT . 770
26.98 SOUNDEX . 771
26.99 SPJOB . 772
26.100SPL . 773
26.101SPLF . 773
26.102SPL_USE . 774
26.103SP_JOB . 774
26.104SQR . 775
26.105SQRT . 775
26.106SSAVE . 775
26.107SSHOW . 776
26.108SSTAT . 776
26.109SSTEP . 777
26.110STAMP . 777
26.111STAT . 777
26.112STEP . 778
26.113STOP . 778
26.114STRIP . 779
26.115SUB . 780
26.116SUSJOB . 780
26.117SWAP . 780
26.118SXTRAS . 781
26.119SYNCH% . 781
26.120SYSBASE . 782
26.121SYS_BASE . 782
26.122SYS_VARS . 782
26.123S_FONT . 783
26.124S_LOAD . 783
26.125S_SAVE . 784
26.126S_SHOW . 784
26.127SYSTEM_VARIABLES . 785

27 Keywords T 787
27.1 TAN . 787

xxiii

27.2 TANH . 788
27.3 TCA . 788
27.4 TCONNECT . 788
27.5 TEE . 790
27.6 THEN . 790
27.7 THING . 790
27.8 TH_FIX . 791
27.9 TH_VER$. 791
27.10 TINY_EXT . 792
27.11 TINY_RMV . 792
27.12 TK2_EXT . 793
27.13 TK_VER$. 793
27.14 TNC . 793
27.15 TO . 794
27.16 TOP_WINDOW . 794
27.17 TPFree . 795
27.18 TRA . 795
27.19 TRIM$. 802
27.20 TRINT . 803
27.21 TROFF . 803
27.22 TRON . 804
27.23 TRUE% . 804
27.24 TRUNCATE . 804
27.25 TTALL . 805
27.26 TTEDELETE . 805
27.27 TTEFP . 806
27.28 TTEOPEN . 806
27.29 TTET3 . 807
27.30 TTEX . 808
27.31 TTEX_W . 809
27.32 TTFINDM . 809
27.33 TTINC . 810
27.34 TTME% . 810
27.35 TTMODE% . 811
27.36 TTPEEK$. 811
27.37 TTPOKEM . 811
27.38 TTPOKE$. 812
27.39 TTREL . 812
27.40 TTRENAME . 812
27.41 TTSUS . 812
27.42 TTV . 813
27.43 TT$. 814
27.44 TURBO_diags . 814
27.45 TURBO_F . 815
27.46 TURBO_locstr . 815
27.47 TURBO_model . 816
27.48 TURBO_objdat . 816
27.49 TURBO_objfil . 817
27.50 TURBO_optim . 817
27.51 TURBO_P . 818
27.52 TURBO_repfil . 818

xxiv

27.53 TURBO_struct . 819
27.54 TURBO_taskn . 819
27.55 TURBO_window . 820
27.56 TURN . 821
27.57 TURNTO . 821
27.58 TXTRAS . 821
27.59 TYPE . 822
27.60 TYPE_IN . 823
27.61 T_COUNT . 823
27.62 T_OFF . 823
27.63 T_ON . 824
27.64 T_RESTART . 824
27.65 T_START . 824
27.66 T_STOP . 825

28 Keywords U 827
28.1 UINT . 827
28.2 UNDER . 827
28.3 UNJOB . 828
28.4 UNL . 829
28.5 UNLOAD . 829
28.6 UNLOCK . 831
28.7 UNSET . 831
28.8 UPC$. 831
28.9 UPPER$. 831
28.10 UPUT . 832
28.11 USE . 832
28.12 USE_FONT . 833

29 Keywords V 835
29.1 VA . 835
29.2 VAR . 835
29.3 VER$. 836
29.4 VFR . 838
29.5 VG_HOCH . 839
29.6 VG_LOAD . 839
29.7 VG_PARA . 840
29.8 VG_PRINT . 841
29.9 VG_RESO . 842
29.10 VG_WIND . 842
29.11 VIEW . 843
29.12 VOCAB . 844

30 Keywords W 845
30.1 WAIT_EVENT . 845
30.2 WBASE . 845
30.3 WCOPY . 846
30.4 WCOPY_F . 849
30.5 WCOPY_O . 850
30.6 WDEL . 850
30.7 WDEL_F . 851
30.8 WDIR . 851

xxv

30.9 WEEKDAY% . 852
30.10 WGET . 852
30.11 WHEN condition . 852
30.12 WHEN ERRor . 855
30.13 WHERE_FONTS . 857
30.14 WIDTH . 857
30.15 WINDOW . 858
30.16 WINF$. 860
30.17 WIN2 . 860
30.18 WIN_BASE . 860
30.19 WIN_DRIVE . 861
30.20 WIN_DRIVE$. 863
30.21 WIN_FORMAT . 863
30.22 WIN_REMV . 864
30.23 WIN_SLUG . 865
30.24 WIN_START . 865
30.25 WIN_STOP . 866
30.26 WIN_USE . 866
30.27 WIN_WP . 867
30.28 WIPE . 867
30.29 WLD . 868
30.30 WM . 869
30.31 WM_BLOCK . 869
30.32 WM_BORDER . 870
30.33 WM_INK . 870
30.34 WM_MOVEMODE . 872
30.35 WM_PAPER . 873
30.36 WM_STRIP . 873
30.37 WMAN$. 874
30.38 WMON . 875
30.39 WMOV . 876
30.40 WPUT . 877
30.41 WREN . 877
30.42 WSET . 878
30.43 WSET_DEF . 878
30.44 WSTAT . 879
30.45 WTV . 879
30.46 W_CRUNCH . 880
30.47 W_SHOW . 881
30.48 W_STORE . 882
30.49 W_SWAP . 882
30.50 W_SWOP . 883

31 Keywords X 885
31.1 XCHANGE . 885
31.2 XDRAW . 886
31.3 XLIM . 886
31.4 XOR . 887
31.5 X_PTR% . 887

32 Keywords Y 889
32.1 YEAR% . 889

xxvi

32.2 YLIM . 889
32.3 Y_PTR% . 890

33 Keywords Z 891
33.1 ZAP . 891

34 Keywords Other 893
34.1 _DEF% . 893
34.2 _DEF$. 893
34.3 _NAME$. 894

35 Appendices Introduction 895

36 A1. Minerva 897
36.1 A1.1 INTRODUCTION . 897
36.2 A1.2 Windows and Closing Windows . 897
36.3 A1.3 Dual Screen Mode . 898
36.4 A1.4 Border . 899
36.5 A1.5 Empty Brackets . 899
36.6 A1.7 MultiBASICs . 900
36.7 A1.8 Strings . 900

37 A2 SMSQ/E 901
37.1 A2.1 Introduction . 901
37.2 A2.2 The EOF Function . 902
37.3 A2.3 Empty Brackets . 903
37.4 A2.4 Multiple Sbasics . 903
37.5 A2.5 Improved Interpreter . 903
37.6 A2.6 Numbers in Programs . 904
37.7 A2.7 Inbuilt Pointer Environment . 904
37.8 A2.8 Undefined Variables . 904
37.9 A2.9 Extended Display . 904
37.10 A2.10 Problems . 905

38 A3 Emulators 907
38.1 A3.1 Introduction . 907
38.2 A3.2 Apple Macintosh . 908
38.3 A3.3 IBM Compatible PCs . 908
38.4 A3.4 Atari Computers . 912
38.5 A3.4.1 The ST/QL Emulator . 912
38.6 A3.4.2 SMSQ/E . 915
38.7 A3.4.3 SMS2 . 916
38.8 A3.5 Commodore Amigas . 916
38.9 A3.6 Unix Systems . 918

39 A4 Thor Computers 919
39.1 A4.1 Introduction . 919
39.2 A4.2 KEYROW . 919
39.3 A4.3 MODE . 920
39.4 A4.4 The Thor Windowing System . 920
39.5 A4.5 BEEP . 920

40 A5 Expansion Boards 921

xxvii

40.1 A5.1 GOLD CARD . 921
40.2 A5.2 SUPER GOLD CARD . 922
40.3 A5.3 AURORA . 922
40.4 A5.4 Q40 . 923
40.5 A5.5 HERMES / SuperHERMES . 923
40.6 A5.6 QuBIDE . 924

41 A6 Compatibility 925
41.1 A6.1 Addressing . 925
41.2 A6.2 Speed . 926
41.3 A6.3 The Operating System . 926
41.4 A6.4 Memory . 926
41.5 A6.5 The Stack Pointer . 926
41.6 A6.6 Compilers . 926
41.7 A6.7 High Resolution Displays . 927
41.8 A6.8 String Lengths . 927
41.9 A6.9 Later Processors & Gold Cards . 928
41.10 A6.10 Finally . 928

42 A7 Multiple Basics 929
42.1 A7.1 MINERVA MultiBASICS . 929
42.2 A7.2 SMS Multiple SBASICs . 931

43 A8 Error Messages 935
43.1 A8.1 Standard English Error Messages . 935
43.2 A8.2 Foreign Error Messages . 938
43.3 A8.3 Dates . 940
43.4 A8.4 SMS Messages . 941

44 A9 Character Set, Keyboard 957
44.1 A9.1 The Character Set . 957
44.2 A9.2 Keyboard Layouts . 964

45 A10 Designing New Character Sets (Fonts) 967
45.1 A10.1 Fonts on the QL . 967
45.2 A10.2 Changing Fonts in Programs . 967

46 A11 Mathematics 971
46.1 A11.1 Degrees and Radians . 971
46.2 A11.2 Triangles and Trigonometrics . 972
46.3 A11.3 Boolean Logic . 973
46.4 A11.4 Operators . 974
46.5 A11.5 Hexadecimal and Binary Numbers . 976
46.6 A11.6 Integers . 976
46.7 A11.7 Faster Mathematics . 977
46.8 A11.8 Precision . 977

47 A12 Device Drivers 979
47.1 A12.1 Devices in General . 979
47.2 A12.2 Directory Device Drivers . 980
47.3 A12.3 Window Device Drivers . 983
47.4 A12.4 Other Device Drivers . 985
47.5 A12.5 DIRECT SECTOR ACCESS . 1004

xxviii

47.6 A12.6 Level-1 Device Drivers . 1005
47.7 A12.7 Level-2 Device Drivers . 1005
47.8 A12.8 Level-3 Device Drivers . 1006
47.9 A12.9 Using Alien Format Disks . 1007

48 A13 Extended Pointer Environment 1009

49 A14 Coercion 1011

50 A15 Mouse Drivers 1013
50.1 A15.1 A Mouse for the Standard QL . 1013
50.2 A15.2 A Mouse for QPC / QXL . 1015
50.3 A15.3 A Mouse for ATARIs . 1015
50.4 A15.4 A Mouse for Unix and Macintoshes . 1016
50.5 A15.5 A Mouse for the Amiga . 1016

51 A16 The QL Display 1017
51.1 A16.1 The Screen Address . 1017
51.2 A16.2 The Screen Size . 1018
51.3 A16.3 On-Screen Colours . 1018
51.4 A16.4 USING HIGH RESOLUTION DISPLAYS . 1054

52 A17 Networks 1055
52.1 A17.1 QNet . 1056
52.2 A17.2 Flexynet (DIY Toolkit - VOL X) . 1059
52.3 A17.3 Midinet . 1060
52.4 A17.4 Sernet . 1061
52.5 A17.5 Amadeus Interlink . 1061
52.6 A17.6 QL - PC Fileserver . 1062

53 18 Configuring Programs 1063
53.1 CONFIG Level 1 & Level 2 . 1063
53.2 Passing Parameter with EXEC . 1063
53.3 Making the configuration part of the program. 1064
53.4 Using a separate configuration file. 1064
53.5 Using Environment Variables . 1064
53.6 DATA_USE etc . 1064

xxix

xxx

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Contents:

CONTENTS 1

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

2 CONTENTS

CHAPTER

ONE

ORIGINAL FOREWORD

We first met Rich Mellor at the QL Club International meeting in the Midlands in 1995. I had read a lot
of the articles and reviews that he had published in the, now defunct, QL World and, as is usual when
you know someone through the written word alone, I was unprepared for the man that I met.

It was not until I took down his name and address when he bought some software from us that I found out
who this young and enthusiastic QLer was. During the course of the day he sat down with and discussed
the Flashback database system which Steve Hall had been running under SMSQ/E. We were trying to get
this program adapted to run properly under SMSQ/E and Rich offered to help do that. He proved to be
a formidable associate. Having once set a target in his sights he nagged away at it until he achieved his
purpose and in the course of doing that uncovered a numbers of bugs and inconsistencies in the behaviour
of SMSQ/E.

Since we received very little co-operation from the Flashback side of things we have, sadly been unable
to bring the product back onto the market place. In the meantime, Rich has managed to vastly improve
the program and now sells this new version as an upgrade to the original Flashback SE program.

About twelve months after meeting Rich, we were offered a route finding program written in Atari Basic.
We passed the project to Rich who attacked it with his usual vigour and soon was assaulting us with
disks of Beta versions. Q-Route was born in 1997 and has proved a very popular program, with the latest
version making use of the Extended Colour Drivers available under the latest versions of SMSQ/E.

It was at this point that he first mentioned this book. The bulk of the work here is his, although there have
been contributions in the past from Franz Hermann and Peter Jaeger (both of whom have given their kind
permission for the work to be published). It became obvious as I was printing this that we could not do
it all in one volume and also that we had to provide it in loose leaf form, instead of as a bound book, so
that we could easily provide updates as they become necessary.

The book arrived at the QBranch Headquarters on floppy disks and my EPSON printer worked overtime
printing the final version. It was produced entirely using QL Software and Hardware. The copy was
generated in Text 87 plus4 on a Minerva QL / Super Gold Card running under SMSQ/E. The final copy
here was printed on an Aurora / Super Gold Card / SuperHermes / RomDisq machine to either an EPSON
Stylus 200 Inkjet or an EPSON Stylus 850 Inkjet printer and the result passed to a local printers to produce
the copy that you now hold. I hope that you will find this useful and informative and that it will inspire
you to produce some elegant programming for the QDOS / SMSQ community.

Since producing the original version of this Manual, Rich has released Q-Help together with a broad
range of other software under the guise of RWAP Services. Q-Help provides the basic detail of all of the
keywords covered in this book, together with their syntax in an easy to use program. This can be linked
with the Q-Index program which is supplied with this book to form the ultimate cross-reference guide to
the QL’s BASIC. Q-Help forms a welcome companion to this manual and is especially useful if you are
travelling. The Sinclair Spectrum is now enjoying something of a revival, following the re-release of its
games for use with the Amstrad E-m@iler phone. The future of the QL is also looking increasingly rosy

3

mailto:E-m@iler

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(well at least colour-wise), since the release of SMSQ/E v2.98+ which supports up to 16 million colours
on the Q40, QXL and QPC2 systems. The day when the QL can access the internet and email is also
now at hand. We hope that this will keep people more interested in the QL and its software.

We shall attempt to keep the manual up to date as much as possible with current developments in the QL
world, as new emulators and QL compatibles are released. If you have any further information which
you feel should appear in this Manual, then please let us have full details in order that it may be of benefit
to the whole QL community.

I am sure we will hear more of Rich Mellor in the future.

Roy Wood, Q Branch HQ, Portslade, Sussex 2002.

1.1 2015 Foreword

Since the above Foreword was written, the SBASIC/SuperBASIC Reference Manual has been enhanced
through 4 different update releases, and proved a best seller despite the 2 large A4 volumes with over
1000 pages of information on the QL and its SuperBASIC.

Since then, the Manual was re-released in PDF format and has now, in recognition of the 30th Anniversary
of the launch of the Sinclair QL, been converted to HTML and put onto the internet to be updated as a
QL Community Project.

I still continue to support the Sinclair QL, its emulators and clones, ensuring a constant supply of parts
and second hand items through my own website www.rwapsoftware.co.uk1 and through my own retro
and vintage computer trading website www.sellmyretro.com2

The manual appears here in all its glory, with the bulk of the conversion having been automated, but
awaiting community input to improve the layout and add new entries to the Manual.

Rich Mellor, RWAP Software, Stoke-on-Trent, 2015

1.2 Online Edition Foreword

When Rich put the HTML version online and asked for volunteers to tidy it up, maintain it etc, lots of
people didn’t step forward! I was one of the ones who did and spent many a happy lunch hour down-
loading pages, stripping out the invalid HTML, adding paragraph tags, converting listings to the correct
format etc etc. The results were uploaded by Rich and a nicer, or at least, tidier, version began to take
place.

This colourful version is the result of some playing with a product called Sphinx-doc on my Linux box.
It takes files in the format of Restructured Text - basically, a plain text file containg your data and markup
commands - and from those, builds all sorts of output such as epub, pdf and the HTML you are reading
right now.

I hope you like it. It takes a long time to get it just right.

You can see the original source for each page by clicking the link ‘View page source’ at the top right of
each page.

Norman Dunbar, Dunbar IT Consultants Ltd, Leeds, West Yorkshire, 2015/2016

1 http://www.rwapsoftware.co.uk
2 http://www.sellmyretro.com

4 Chapter 1. Original Foreword

http://www.rwapsoftware.co.uk
http://www.sellmyretro.com

CHAPTER

TWO

INTRODUCTION

The Sinclair QL was officially released during 1984, and since that date, has gone through several changes
to both the hardware and the operating system. Unfortunately, when the rights to the QL were sold to
Amstrad it looked as if the end of the QL was near in view of the fact that Alan Sugar, Managing Director
of Amstrad decided that the QL should be withdrawn from the market.

Since that fateful day, several types of QL replacement have emerged, including new Hardware platforms
such as the THOR range of computers, the AURORA replacement motherboard, the ST/QL hardware
emulators (including QVME and the Mode 4 Emulator), the Q40 and the QXL, a hardware emulator that
can be plugged into a PC. Several software emulators have also been developed, allowing QL software
to run on PCs, Amigas, Apple MacIntosh and Unix based computers.

Some of these emulators are much faster than the original QL computer, which itself can be speeded up
by the use of new operating systems (SMSQ/E and Minerva) and new, faster expansion boards (Gold
Card and Super Gold Card).

The QL has also been further expanded by the ability of the emulators and the new AURORA and Q40
motherboards to handle much higher resolutions (and more colours in the case of AURORA and Q40).

The QL is different from several other more popular computers in that it has a built-in programming
language (SuperBASIC) which has survived (mainly unchanged) since the QL was first released. Various
assertions were made concerning the abilities of SuperBASIC when the QL was first launched many of
which did not exist at the time. Most of those promises have now been fulfilled by third party toolkits.
There are now even two multitasking versions of SuperBASIC, called MultiBASIC which is built into
Minerva and SBASIC which forms part of the SMSQ/E operating system.

We, the authors of this book, think that SuperBASIC is a superb programming language for several
reasons:

• SuperBASIC is part of the QL, whose multitasking operating system QDOS (and now also
SMSQ/E) is extremely powerful even when compared with more popular (and expensive) ones.

• SuperBASIC was originally implemented as an interpreter. This makes program development very
fast. Several compilers are available which allow you to produce programs which can run easily
and quickly on all versions the QL.

• The version of SuperBASIC provided with the SMSQ/E operating system is extremely quick; in
many cases, faster than when compiled with Qliberator.

• SuperBASIC is designed to be extendible from SuperBASIC itself through user-defined PROCe-
dures and FuNctions as well as from machine code via resident toolkits.

The latter point was indeed the motivation to write this book. There are a lot of really useful toolkits
available in the public domain which can be used by a programmer in his or her programs and freely
distributed as part of it.

5

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Not only is there a vast range of toolkits available to the SuperBASIC programmer, but the QL’s Operating
System has also undergone various changes, and with new QL compatible computers and emulators being
released, as well as the Minerva replacement ROM and SMSQ/E replacement operating system, it is
important that any programmer should know where problems may occur in the use of each SuperBASIC
command.

We have therefore attempted to cover each command in sufficient detail, with useful examples, and a
commentary on bugs and incompatibilities. No doubt as each new implementation of SuperBASIC comes
to light, so will further problems and we will try to keep abreast of these. We would refer you in general
to the Appendix on compatibility, which contains various guidelines for ensuring that programs should
remain compatible with future operating systems. More specific detail is contained in the description for
each command where problems are known to exist.

We have covered the commands contained in the following sources:

• The standard QL ROM © Sinclair Research Limited / Amstrad plc.

• The THOR ARGOS Operating System © CST and DANSOFT

• The Minerva ROM © Minerva and TF Services

• Super Gold Card, Gold Card, QXL and Trump Card © Miracle Systems Ltd.

• SMSQ/E, SMSQ Operating Systems © Tony Tebby

• Toolkit II and Hotkey System II © Tony Tebby

• SERMouse © Albin Hessler Software

• DIY Toolkit (sold as Cardware) © Simon Goodwin

• AtariDOS and ATARI_REXT © Jochen Merz Software

• Turbo Toolkit (freeware) © The Turbo Team, David Gilham & Mark Knight

• DJToolkit 1.16 (freeware) © Norman Dunbar & Dilwyn Jones

• QPC version 4.04 specific commands © Marcel Kilgus.

• As many Public Domain Toolkits as we can find and understand.

We have covered the Toolkit II and Hotkey System II because it is a standard addition to a QL operating
system and included on several add-on expansion boards.

As you look at the range of toolkits already available, you will notice that several commands appear in
more than one toolkit. Unfortunately, a command with the same name in two toolkits, may in fact have
a different syntax or even a different function! It is therefore our hope that with the aid of this book, any
future toolkits will remain compatible with earlier ones, and existing toolkits will be amended to resolve
these incompatibilities.

If you do come across further incompatibilities, operating system commands or public domain toolkits
which are not noted in the manual, then please do contact us as soon as possible so that we may investigate
the situation and incorporate them in the book. We may even find ways of correcting the errors!

In the meantime enjoy SuperBASIC !

6 Chapter 2. Introduction

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

2.1 Contributing Authors

• Franz Herrmann

• Peter Jager

• Rich Mellor

• Norman Dunbar - DJToolkit 1.16 additions.

• Norman Dunbar - QPC 4.04 additions.

• (Norman Dunbar - HTML conversion, tidyup etc.)

2.2 Installing Toolkits

Most toolkits can be loaded and linked into the QL’s operating system as an addition to the existing
SuperBASIC (or SBASIC) keywords simply by using a command similar to one of the following three
examples:

LRESPR flp1_Toolkit_bin

A=RESPR(x): LBYTES flp1_Toolkit_bin, A: CALL A

B=ALCHP(x): LBYTES flp1_Toolkit_bin, B: CALL B

(where x is the length of the toolkit code).

Some toolkits include additional device drivers and must be loaded into the resident procedure area of
memory and therefore the third example above must not be used, and the toolkit must be linked in before
any jobs are EXECuted (or else the toolkit can crash your system). We have tried to include a reference
in this book where this is the case.

The normal sequence of events for loading toolkits and other extensions to the operating system is set
out below:

1. Link in any speed enhancements (such as Lightning or Speedscreen) <— not needed on SMSQ/E

2. Load any additional device drivers (such as Mem or History) <— check which ones are already
included in SMSQ/E

3. Link in all required toolkits (those which contain device drivers should be linked in first).

4. Load the Pointer Environment (if required) <— not needed on SMSQ/E

5. Load a secondary program to carry on setting up the system - this is because on pre-JS ROMs, any
keywords added by toolkits are not available for use in the same program which linked them in.

6. Start up any required Jobs (such as ALTKEY, FSERVE or the Buttons provided by the Pointer
Environment).

7. Use HOT_GO if you use the Hotkey System II.

However, some toolkits insist that you enter a command before you can actually use any of the other
keywords provided by that toolkit. The following toolkits need this:

2.1. Contributing Authors 7

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• Toolkit II- You will need to enter the command TK2_EXT, unless Toolkit II is built into your oper-
ating system (such as SMSQ/E) or you have used the commands AUTO_TK2F1 or AUTO_TK2F2

• BeuleTools- You need to enter the command Beule_EXT

• BTools- You need to enter the command BTOOL_EXT

• Tiny Toolkit- You need to enter the command TINY_EXT

• ATARI_REXT- You need to enter the command ATARI_EXT

• Hotkey System- You need to enter the command HOT_GO for any of the ALTKEY (or other
HOT_xxx) keywords to work.

(See the individual commands listed above for further details).

8 Chapter 2. Introduction

CHAPTER

THREE

CREDITS

A lot of the information contained in this manual has been based on the original documentation provided
with the toolkits, some authors having written extensive manuals. The QL User Guide (an excellent
introduction to programming in general and SuperBASIC), the Toolkit II, SMSQ/E and Minerva manuals
and the documentation of the Public Domain Math Package must also be explicitly mentioned for their
quality. You will seldomly - we dare say almost never - find a good program with poor documentation.

Great respect must be paid to Roy Atherton, Stephen Berry, Tony Tebby, Laurence Reeves and Helmut
Aigner.

Simon Goodwin has developed, with the help of readers, many extensions to SuperBASIC in his popular
DIY Toolkit column in the Sinclair QL World magazine. The bundled extensions are now available from
Public Domain libraries as cardware (please send Simon a postcard if you find the routines useful). We
would like to thank Richard Alexander (formerly of C.G.H. Services) for providing us with a copy of DIY
Toolkit and his encouraging support. Over the years, the DIY Toolkit series has inspired many people to
write their own public domain toolkits. Simon Goodwin has also revealed many bugs in the original QL
keywords in QL World articles.

Details on selected items have been received from (in alphabetical order)

• Tiago Leal,

• Thomas Menschel,

• Mike Panagiotopoulas,

• Peter Recktenwald,

• Laurence Reeves,

• Andreas Rudolf,

• Bernhard Scheffold,

• Peter Sulzer,

• Kees van der Wal,

• Dave Walker

• and more.

Thanks to Boris Jakubith who allowed the inclusion of his ingenious History Device.

Special mention must also be made of Q Branch and Jochen Merz for their support in resurrecting this
project.

This manual deals with the current versions of SuperBASIC, if you want to use machine code to extend
SuperBASIC further, we highly recommend the ‘QDOS / SMS Reference Manual’ available from Jochen

9

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Merz software and Q Branch. The technical details of SuperBASIC are contained in ‘QL SuperBASIC
The Definitive Handbook’ by Jan Jones, available from Quanta.

3.1 Other Notices

• Minerva and Hermes are products from QView and T.F. Services. Minerva MKII and related
interfaces are also products from this source.

• Sinclair, QL, QDOS, QNet, ZX81 and ZX Spectrum are trademarks of Sinclair Research Ltd.

• Supercharge, Turbo, Toolkit 3, Conqueror and Solution are products from Digital Precision Ltd.

• QLiberator is a product of Liberation Software.

• QL World magazine was published by Arcwind Ltd.

• QXL, Super Gold Card, Gold Card and Trump Card are products from Miracle Systems Ltd (now
available from Q Branch).

• Extended Pointer Environment, Toolkit II, QPAC2 and Config are products from Qjump (Tony
Tebby) and Jochen Merz Software.

• Atari QL-Emulators (ST/QL) and the SMSQ/E operating system are products from Jochen Merz
Software.

• THOR computers were a product of Dansoft.

• The word processors Perfection and Text87Plus4 have been used to write this book.

• The QED public domain editor from Jan Bredenbeek and the named pipes driver from Hans Lub
(and built into SMSQ/E) have also proved to be very helpful.

• DEAssembler and MasterBasic from Ergon Software were also used in the production of this book.

• QLs (and compatibles) were of course entirely used.

For the online version, Linux played a big part. It was responsible for:

• Downloading the original HTML files;

• Cleaning them up, as much as possible, using HTMLTidy;

• More automated cleaning using the wonderful sed utility;

• Conversion from (clean) HTML to Restructured Text using pandoc;

• Conversion of the Restructured Text files into any output format you could possibly desire, using
Sphinx-doc.

10 Chapter 3. Credits

CHAPTER

FOUR

STRUCTURE OF THIS BOOK

This book consists basically of three parts.

The first part forms those obligatory sections, from Introduction to Writing Programs.

The second part is the main part which is explained below.

Finally the Appendices make up the third part. These appendices have been added to prevent repeated
explanations in the main section, they are not a full-blown concepts section.

The main part of this book is the Keywords section. This section is sorted alphabetically and for each
keyword there will appear (at least) a description of the keyword’s syntax, where it can be found and a
short description. In most cases, you will also find examples and cross-references to other keywords, and
from time to time some notes on using the commands. You may even come across warnings.

The alphabetical list is arranged in the following order (it is not case sensitive):

ABCDEFGHIJKLMNOPQRSTUVWXYZ 0123456789 % $ _

This means for example that the keywords such as S_LOAD appear at the end of all other keywords
beginning with S.

4.1 Syntax

Compressing all possible variations of a keyword’s syntax in usually one abstract line can be difficult for
those readers who are not familiar with syntax schemes. That’s why we want to explain our notation in
detail.

Throughout the book, almost everything that can be typed into the computer or returned by it, is written
in a different typeface (italics) so that you can always easily distinguish those parts of the text which can
be entered into the computer. We have tried to be as consistent as possible in this respect.

The syntax scheme itself contains symbols which are not to be typed in and thus appear in the normal
typeface:-

11

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

4.1.1 Square Brackets ([])

These indicate that the enclosed parts are optional. Optional parameters (ie. parameters which can be
omitted without producing an error) are always in square brackets.

Example:

DLIST [#ch]

Both DLIST and DLIST #2 are valid.

4.1.2 Square Brackets With Superscript Asterisks (*[]*)

These suggest that the number of optional parameters is not limited, ie. there can be any number of such
parameters. Another symbol for the same meaning are nested square brackets with three dots inside.

Example:

POINT x,y [,x2,y2 [,x3,y3, . . .]]

or

POINT x,y *[,xi,yi]*

Any non-zero number of co-ordinate pairs are allowed. Note that the indices are also symbols, used to
make reading easier. Of course you cannot type POINT x1,y1 but just POINT x1,y1 without any subscript
characters will work.

4.1.3 Curly Brackets ({ })

These mean that the parameter can be chosen from a limited variety of types which are given in the
brackets. The options are mutually exclusive and separated by a vertical line (|).

Example:

KEYWORD {test$ | test%}

Either KEYWORD test$ or KEYWORD test% is valid.

The vertical line (|) can also appear in square brackets. In this case, the parameter is optional and has to
be selected from one of the types listed in the brackets.

Example:

SIZE test[%|$]

SIZE test%

SIZE test$

SIZE test

are all valid.

We generally assume that you have some basic idea of SuperBASIC syntax because this book is not a
SuperBASIC tutorial but a reference book for toolkit keywords.

12 Chapter 4. Structure of this Book

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

4.1.4 Channels (#ch)

Many Syntax definitions refer to a channel parameter, which is normally shown as #ch or #channel.

These channels can have two main types, a channel connected to a Device (or File) and a channel con-
nected to a Window (a scr_ or con_ device). The type of a channel is specified when that channel is
OPENed - see the description of OPEN for further details.

Normally the description for each keyword will specify if the channel used by that keyword has to be of a
specific type. If no mention is made, then presume that the keyword can be used on any type of channel.

4.1.5 Location

This is just the name of the toolkit(s) where you will find the keyword.

Some locations are not separately available toolkits, eg. QL ROM, Super Gold Card, Gold Card, Trump
Card, ST/QL and more.

Where the Location is given as QL ROM, this means that the keyword is available on all versions of the
QL, QL compatible computers and Emulators (unless specified).

Where the Location is given as Gold Cards, this covers the whole of the Gold Card range of expansion
boards, namely Super Gold Card and Gold Card. However, note that commands given by these boards
will not be available under SMSQ/E unless specifically stated.

Some keywords are available as part of the Level-2 or Level-3 device drivers.

Level-2 device drivers are built into Gold Card, Super Gold Card and the QUBIDE disk interface, as well
as forming part of SMSQ on the QXL and the ST emulators. Level-2 device drivers are also available
separately for the Trump Card.

Level-3 device drivers are provided with SMSQ/E and incorporate all of the features of Level-2 device
drivers and more. Therefore if the location is said to be Level-2 Device Drivers, these commands will
also work on Level-3 Drivers.

SMSQ/E is a new operating system which is compatible with QDOS and incorporates all of the original
QL ROM keywords, Toolkit II, the Pointer Interface, Window Manager, Hotkey System II and Level-3
device drivers. Therefore if a keyword is listed as appearing in any of these, then it will be available to
the SuperBASIC programmer under SMSQ/E.

SMSQ is the operating system built into QXL which can be replaced by SMSQ/E. Both operating systems
are very similar in how they treat SuperBASIC keywords and we have therefore used to SMS to indicate
that a comment may apply to both SMSQ/E and SMSQ. Their individual names have been used if there
is a difference.

ST/QL refers to the full range of QL Hardware Emulators for the Atari ST (Extended Mode-4 Emulator,
QVME and the original ST-QL Emulator). Any comments which refer specifically to one of the boards
are covered separately.

Refer to the Emulators Appendix for more details on the various emulators available.

4.1. Syntax 13

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

4.2 Description

The description of the function of a keyword is usually abstract and relatively short. You may have to read
it carefully to understand it fully. Technical details are limited to the needs of a SuperBASIC programmer,
but we document the current standards in QL programming and environments.

4.3 Examples

The examples demonstrate the different syntax variations of a keyword and explain concrete usages. We
have tried to write some short example programs which make sense outside pure computer applications,
meaning that a brief explanation is seldom necessary.

All listings have been directly imported from the SuperBASIC interpreter into the word-processor via an
intermediate file or pipe. The exceptional multitasking capabilities of the QL with Tony Tebby’s Pointer
Environment allowed us to write text, try out toolkits and develop examples, all at the same time. Due to
the direct import of the latter, mistakes in the examples have been minimised. However, we are all only
human.

It is not our intention to praise a particular style of programming. Book space, layout, typefaces and
didactic considerations posed various limits. For this reason, examples or parts of examples which are
designed as modules (procedures or functions), will usually not check the supplied arguments for wrong
parameters.

All example listings are freely distributable subject to restrictions. You are allowed to develop applica-
tions from examples or make use of examples in other programs under the condition that this book and
its authors are given credit accordingly.

4.4 Notes

These (sometimes extensive) comments vary from strange side-effects of keywords to off-topic remarks.
They have been added for completeness. Very often the original documentation did not recognise all
possible implementations for practical reasons: a certain configuration did not exist at the time of writing,
the author did not expect users to exploit parameter ranges to the full, etc.

It is not necessary to know the notes but when struggling against odd phenomena, reading the notes could
clarify seeming mysteries.

4.5 [Implementation] Notes

When bringing out new implementations of the QL ROM, the authors are limited by the amount of
memory into which they have to squeeze all additions, modifications and corrections. They therefore
tend to extend the syntax instead of adding new keywords. That is why the Implementation Notes are
usually a further description of syntax and usages, possibly including examples. POKE is a good example.

The more common Implementation Notes are for Minerva, THOR and SMS. Please note that throughout
references to SMS refer to both the SMSQ and SMSQ/E operating systems (see above).

Implementation Notes may also appear for each of the different Emulators and Expansion Boards which
can be used with the QL.

14 Chapter 4. Structure of this Book

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

4.6 Warning

An absolutely obligatory section! Some commands and functions crash the machine under certain cir-
cumstances: the warnings are intended to help you avoid frustration and disappointment. Please do not
blame the authors of the toolkits for the bugs, writing a fool-proof program is very time consuming and
nobody is perfect (neither the toolkits’ authors nor the writers of this book). If we forget to mention a
dangerous situation, this is because we were not aware of it.

4.7 Cross-Reference

Keywords can be connected by a couple of links. They can do almost the same or perform similar func-
tions, in these cases we did not make use of the word-processor’s block copying facilities to artificially
enlarge the book but simply referred to another text passage. If the relationship between keywords is
emphasised by their name, cross-references may be extremely short or missing; due to the alphabetical
order of the keywords, the reference is not too far away in most cases anyway.

Cross-references may also give notice of other keywords where the relation is rather indirect, this has
been done to encourage liberally skipping through the pages.

4.6. Warning 15

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

16 Chapter 4. Structure of this Book

CHAPTER

FIVE

WRITING PROGRAMS

There have been many books and magazine articles written about how to write SuperBASIC programs,
so we do not intend to cover the basic principles here. The main section detailing the various keywords
available to the SuperBASIC programmer contains many useful examples and we suggest that you work
through those examples, making sure that you understand how they work and trying to improve them if
possible.

In this section, we look at some of the major problems which can face the SuperBASIC programmer and
hope to provide some guidance as to how you can overcome those problems and ensure that the programs
which you write can be used successfully on all implementations of the QL’s operating system.

5.1 Compiling SuperBASIC Programs

Digital Precision’s Supercharge and Turbo compilers are not able to compile some keywords` (eg. those
which allow arrays as parameters) while Liberation Software’s QLiberator can compile every additional
keyword which makes sense in a compiled program. Although programs compiled with Qliberator will
be slower than those compiled with Turbo, the fact that Turbo has not been updated for a number of years
(and still contains certain bugs) means that Qliberator may be a better option. This is a matter of fact
which we consider worth mentioning for the benefit of Supercharge and Turbo users, it is not intended as
a hidden advertisement for QLiberator.

Note: While the above was certainly true when the first paper version of this manual was printed,
progress has been made, as the following correction from George Gwilt explains:

For versions of TURBO earlier than 4.21 machine procedures or functions that modify their parameter
values, process arrays (other than single strings), manipulate the stored program text, or rely on other
interpreter data structures (such as the name table and name list) will not work when compiled. The
majority of add-on commands do not do this, and consequently work perfectly.

For TURBO v4.21 and later none of these restrictions apply except for the reliance on the name list.

On the other hand, if you are a Minerva freak, use the Pointer Environment in your programs or want
to ensure that your programs will run on SMSQ/E, then you might just find that QLiberator is the better
compiler.

As you look through the book, you will find that many keywords act differently on the various imple-
mentations of SuperBASIC. To overcome this problem, we suggest that programs which are designed
to run on various implementations of the QL, should be compiled, as subject to the comment below,
Compilers ensure that programs will run on any system (provided that all keywords used by the program
are available on that implementation).

17

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

If you want to write programs which use built-in functions only if they are available, you will need to
use Qliberator which does not report an error until you try to use an undefined keyword (Turbo and
SuperCharge both refuse to load the program in this instance).

Together with the use of the VER$ function, you can easily write programs which work on all implemen-
tations of the QL making use of extra facilities which may be available on some versions of the operating
system.

One thing of which you must be careful when compiling programs to run on other implementations is
the various notes and warnings given for some keywords. Some keywords cannot be compiled and others
may have bugs on various implementations which are not fixed by the compiler (refer to the compiler’s
manual to see if they rectify the bugs). One of the main culprits of this is the CURSOR command which
will reject the use of five parameters on pre-MG ROMs.

Turbo does tend to include its own code to overcome any incompatibility problems with standard QL
ROM keywords, whereas Qliberator tends to use the native routines on the operating system on which it
is running.

Another thing to bear in mind when writing programs for use with a compiler is that you should really
ensure that the program opens all of its own windows and does not assume that any channels are already
open. You will also need to remember to DIMension any strings used by the program to ensure that the
program works the same way as it does under the Interpreter when compiled (see DIM for an explanation
of the way in which strings are treated in various circumstances).

It is also useful to include your own error trapping routines in a compiled program (such as WHEN
ERRor) - most compiler error messages are very unhelpful when seen by a user of a program and in
particular, there is a problem with programs compiled with Turbo and Supercharge in that they do not
wait for the user to press a key after reporting an error before stopping the compiled program. This is
fine on a standard QL, as the final display of the program is left on screen - however, under the Pointer
Environment, unless the program is started with the command EXEP flp1_test_obj,u (or similar), then
the Pointer Environment removes every last trace of the program from the screen when it stops. Also, if
any machine code Procedures or Functions report an error, then the error may not be reported and the
program may just ‘hang’ if #0 is not open.

One of the main problems with compiled programs is the Cache provided with 68020 processors (and
faster). Caches cause problems with machine code which modifies itself (normally to enhance speed).
Whereas programs compiled with Qliberator should be okay (depending on the toolkits used within
them), TURBO compiled programs are normally self- modifying. However, provided that a program is
compiled under TURBO with the BRIEF directive then it will run provided that the cache is switched off
for the first 0.3 seconds after EXECing the program - for example, if a program causes problems, use:

10 CACHE_OFF
20 EX flp1_PROGRAM_exe
30 PAUSE 15
40 CACHE_ON

Refer to CACHE_ON and CACHE_OFF for further details.

One of the other differences between TURBO compiled programs and Qliberator compiled programs is
that the former all make assumptions about the start of the screen and system variables. However, there
is a public domain program by Davide Santachiara called Turbostart which resolves these problems by
altering compiled programs.

18 Chapter 5. Writing Programs

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

5.2 Writing Programs to Run Under the Pointer Environment

It is not as difficult as it first may seem to write programs to run under the Pointer Environment, unless
you intend your program to use the Pointer and Menu facilities provided by the Pointer Environment.

Basically, any program which has been written with the intention of multitasking will work under the
Pointer Environment. However, the program should not attempt to tie up the QL’s resources unless it is
using them (for example, do not open a printer channel until you need to send output to it) and then close
the channel once all output has been sent. It is also useful to allow the user to add their own facilities
such as a mouse through amending the boot program.

A SuperBASIC program will of course only multitask if it is compiled (see Section 4.1) or if the user has
Minerva or SMSQ/E which provide multitasking SuperBASIC interpreters.

5.2.1 Using the Pointer and Menu Facilities

If you intend to use the Pointer and Menu facilities provided by the Pointer Environment, then you will
need to use either QPTR (from Jochen Merz Software) or EasyPTR (also from Jochen Merz Software).
The latter is easier to get to grips with and use from SuperBASIC, but is less flexible than QPTR. You may
also want to use QMenu (also from Jochen Merz Software) which provides various ready made menus
which can be easily added to BASIC programs in order to provide standard facilities such as getting the
user to select an existing filename.

Your program will need to set itself an Outline (see OUTLN) and also check on the screen display size
(see SCR_XLIM and SCR_YLIM). You may also want to check that the Pointer Environment is available
(see P_ENV).

If a program does not define an OUTLN properly, then you may notice that some parts of the program’s
display disappears - the reason for this is that when the program is first loaded, the Pointer Environment
uses the OUTLN of the calling Job to define the maximum size of the windows which the program may
use - this may be too small and your own program should therefore define its own OUTLN.

If the OUTLN setting is too small, you may notice that some EasyPTR menus will not appear on screen
- this is because if you try to OPEN a window which appears partly outside the OUTLN setting, then
that window will be OPENed to be the same size and position as the OUTLN setting. If you try to use
WINDOW to position an existing window so that any part of it would fall outside of the OUTLN setting,
then an error will be reported.

Other problems will occur if you CLOSE the window which has the OUTLN defined - the OUTLN will
become the smallest area possible which encompasses all currently OPEN windows - and will become
attached to the smallest existing channel number - this unfortunately means that the contents of any
windows which have been CLOSEd where those windows (or part of them) fall outside the new OUTLN,
will disappear!! This can result in some programs losing parts of their display.

An example of this can be seen with the program:

5 OPEN #0,con
10 OUTLN #0,448,200,32,16:PAPER #0,0:CLS#0:INK #0,4:PRINT #0,'This is #0'
20 OPEN #1,con_400x160a40x40:PAPER 2:CLS:INK 7:PRINT 'This is #1'
30 OPEN #2,con_300x100a80x70:PAPER#2,7:CLS#2:INK#2,2:PRINT #2,'This is #2'
40 PAUSE #0
50 CLOSE #0

(continues on next page)

5.2. Writing Programs to Run Under the Pointer Environment 19

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

55 PAUSE #1
60 OPEN #0,con_448x200a32x16:PRINT #0,'This is #0'

Try compiling this program as flp1_test_obj and then enter the command EX flp1_test_obj - see what
happens when #0 is CLOSEd?

Compare the result if you changed line 50 to CLOSE #2.

One of the solutions to this problem is to use the G option on the EXEP command to define a Guardian
Window - try the command: EXEP flp1_test_obj,g,512,256,0,0. The other answer is to OPEN another
channel (for example #3) to be the OUTLN channel before any windows are OPENed - change line 5 and
10 thus:

5 OPEN #3,con_:OUTLN #3,448,200,32,16
10 OPEN #0,con_448x200a32x16:PAPER #0,0:CLS#0:INK #0,4:PRINT #0,'This is #0'

These problems with defining OUTLN’s will become apparent if you test programs under an SBASIC
interpreter and then after the program has been compiled - if you use the SBASIC command to start up
a Multiple BASIC (or similar on Minerva) and then LRUN your BASIC program, the OUTLN is always
set to OUTLN 512,256,0,0 whereas if you EXECute a compiled program (or even if you use a command
such as EX flp1_program_bas to start up a BASIC program under SMSQ/E), the OUTLN will be that
set in the calling program (unless defined in the program itself).

5.3 Multitasking Programs

If you write a program which is to run under the Pointer Environment, it is useful to remember some
rules:

• There is no need to activate the cursor on the program - when the program is PICKed by the user,
then any open con_ channel is automatically activated. You may however, still wish to do this if
the program is to be able to run without the Pointer Environment.

• If any part of the job’s OUTLN is overlapped by other programs, then the job will not be able to
access and scr_ or con_ channels (it will wait until the program is activated). This can be overcome
with PIE_ON / PEON or by starting the program with EXEP (using the U parameter). You can
check if a program can write to a screen channel with PEND.

• As soon as the program ends (with STOP or RJOB) then all of its windows will be removed from
the screen, again unless you have used EXEP with the U parameter.

20 Chapter 5. Writing Programs

CHAPTER

SIX

KEYWORDS INTRODUCTION

The following is a general description of the various commands available to the SuperBASIC program-
mer, as provided by Public Domain toolkits, QL Emulators and SuperBASIC itself.

We have indicated which of the commands are functions (and therefore must appear in a program in the
form):

x = FUNCTION (parameter)

or:

IF FUNCTION (parameter) = value

and those which are procedures (also known as commands) which must therefore appear in a program in
the form:

PROCEDURE parameter

NOTE

Many toolkits insist that you initialise the toolkit before you can use the various keywords contained in
those toolkits. Refer to Section 1.1 for details.

21

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

22 Chapter 6. Keywords Introduction

CHAPTER

SEVEN

TOOLKITS

This manual covers a lot of toolkits, and there are probably many more to be added as time passes. This
page of the manual lists the known toolkits in the manual at present (so will obviously need to be updated
as times goes on) and shows simple links to the pages holding details of the commands provided by those
toolkits.

If more than one toolkit provides a command with the same name, the link will be to the first known
entry in the manual. The page linked to should contain all versions of the particular command.

7.1 Ähnlichkeiten

The commands in this toolkit are:

• PHONEM

• SOUNDEX

• WLD

7.2 ARRAY

The commands in this toolkit are:

• LAR

• SAR

• SARO

• SEARCH

• SORT

23

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.3 ATARI Emulators

The commands in this toolkit are:

• MIDINET

• MNET

• MNET_OFF

• MNET_ON

• MNET%

• MNET_S%

• MNET_USE

• SERNET

• SNET

• SNET%

• SNET_ROPEN

• SNET_S%

• SNET_USE

7.4 ATARIDOS

The commands in this toolkit are:

• ACOPY

• ADELETE

• ADIR

• AFORMAT

• AQCONVERT

• ASTAT

• IQCONVERT

• QACONVERT

• QCOPY

• QICONVERT

24 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.5 ATARI_REXT

The commands in this toolkit are:

• A_SDATE

• A_SPEED

• EXCHG

• EXTRAS_W

• KBD_RESET

• ROM_EXT

• WSET_DEF

• WSET

• PEEK$

• POKE$

7.5.1 ATARI_REXT - Pre v1.21

This version of the toolkit provides the following, additional, commands:

• ROM_LOAD

7.5.2 ATARI_REXT - v1.21

This version of the toolkit provides the following, additional, commands:

• EPROM_LOAD

7.5.3 ATARI_REXT - v1.24 to v2.15

This version of the toolkit provides the following, additional, commands:

• SND_EXT

7.5.4 ATARI_REXT - v1.29

This version of the toolkit provides the following, additional, commands:

• XLIM

• YLIM

7.5. ATARI_REXT 25

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.5.5 ATARI_REXT - v2.10

This version of the toolkit provides the following, additional, commands:

• A_RDATE

7.5.6 ATARI_REXT - v2.12

This version of the toolkit provides the following, additional, commands:

• OUTLN

7.5.7 ATARI_REXT - v2.15

This version of the toolkit provides the following, additional, commands:

• ATARI_EXT

7.5.8 ATARI_REXT - v2.17

This version of the toolkit provides the following, additional, commands:

• PEEKS_L

7.5.9 ATARI_REXT - v2.22

This version of the toolkit provides the following, additional, commands:

• A_EMULATOR

• A_MACHINE

• A_PROCESSOR

7.5.10 ATARI_REXT - v2.25

This version of the toolkit provides the following, additional, commands:

• SCR_BASE

• SCR_LLEN

7.5.11 ATARI_REXT - v2.27

This version of the toolkit provides the following, additional, commands:

• A_OLDSCR

26 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.5.12 ATARI_REXT for QVME - v2.31

The commands in this toolkit are:

• FREE_FAST

• LRESFAST

• RESFAST

7.6 Amiga QDOS - v3.20

The commands in this toolkit are:

• BUTTON%

• PTR_LIMITS

• PTR_MAX

• PTR_OFF

• PTR_ON

• PTR_POS

• X_PTR%

• Y_PTR%

7.7 BGI

The commands in this toolkit are:

• VG_HOCH

• VG_LOAD

• VG_PARA

• VG_PRINT

• VG_RESO

• VG_WIND

7.8 BIT

The command in this toolkit is:

• BIT%

7.6. Amiga QDOS - v3.20 27

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.9 BTool

The commands in this toolkist are:

• ALCHP

• ASK

• BASIC

• BASIC_F

• BASIC_L

• BCLEAR

• BREAK

• BREAK%

• BTool_EXT

• BTool_RMV

• CBASE

• CCHR$

• CHANID

• CHANNELS

• CLCHP

• CLOSE

• CLOSE%

• CLRMDV

• ConvCASE$

• COPY_B

• COPY_L

• COPY_W

• CTAB$

• CURSOR

• CURSOR%

• CVF

• CVI%

• CVL

• CVS$

• DEFAULT

• DEFAULT$

• DEFAULT%

28 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• DEFINED

• EQ$

• ETAB$

• EXTRAS

• FDAT

• FGETB

• FGET$

• FGETF

• FGETH$

• FGETL

• FGET%

• FILE_OPEN

• FIND

• FLEN

• FNAME$

• FPOS

• FPOS_A

• FPOS_R

• FPUTB

• FPUT$

• FPUTF

• FPUTL

• FPUT%

• FREAD$

• FREE

• FREEZE

• FREEZE%

• FSETH$

• FTYP

• FUPDT

• FWRITE$

• FXTRA

• GT$

• INPUT$

7.9. BTool 29

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• IO_PEND%

• JobCBS

• KJOB

• KJOBS

• MKF$

• MKI$

• MKL$

• MKS$

• ODD

• OFF

• ON

• PEEK$

• PEEK_F

• POKE$

• POKE_F

• QDOS$

• QRAM$

• RECHP

• RELJOB

• REPLY

• REPORT

• RESET

• RJOB

• SEARCH

• SIGN

• SINT

• SPJOB

• SUSJOB

• TPFree

• TYPE

• TYPE_IN

• UINT

• WMAN$

• XCHANGE

30 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.10 BeuleTools

The commands in this toolkit are:

• ALT

• ATARI

• BAT

• BAT$

• BAT_USE

• BCLEAR

• Beule_EXT

• BLD

• BVER$

• CAPS

• CLS_A

• DBL

• EL

• ENL

• ESC

• FF

• KEY_ADD

• KEY_RMV

• KILL

• KILL_A

• KILLN

• LINT2

• LMAR

• LPOLL

• LPR_USE

• LSCHD

• MD

• NIX

• NOCAPS

• NORM

• NRM

• PAGDIS

7.10. BeuleTools 31

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• PAGLEN

• PAGLIN

• PRO

• QuATARI

• RAMTOP

• RESET

• RMAR

• ROMs

• SCREEN

• SI

• UNL

• WIPE

7.11 COMPICT

The commands in this toolkit are:

• COMPRESS

• EXPAND

• FASTEXPAND

7.12 CONCAT

The command in this toolkit is:

• CONCAT

7.13 CONVERT

The command in this toolkit is:

• CONVERT

32 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.14 CRYPTAGE

The commands in this toolkit are:

• LOCK

• UNLOCK

7.15 DESPR

The command in this toolkit is:

• DESPR

7.16 DEV device

The commands in this toolkit are:

• DEV_LIST

• DEV_NEXT

• DEV_USE

• DEV_USE$

7.17 DIY Toolkit

DIY Toolkit is supplied in a number of volumes, each dealing with a different area of the QL and QDOS.
The volumes known to this manual are as follows:

7.17.1 Volume A - Alias

The commands in this volume are:

• _DEF$

• _DEF%

• _NAME$

• ALIAS

• CODEVEC

• INVERSE

7.14. CRYPTAGE 33

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.17.2 Volume B - Basic Tools

The commands in this volume are:

• BPEEK_L

• BPOKE_L

7.17.3 Volume C - Channels

The commands in this volume are:

• CHAN_L%

• USE

7.17.4 Volume E - Error Control

The commands in this volume are:

• CHECKF

• CHECK%

• EDLINE$

• PICK$

• PURGE

7.17.5 Volume F - File Tools

The commands in this volume are:

• GetHEAD

• SetHEAD

7.17.6 Volume G - Graphics

The commands in this volume are:

• DRAW

• PIXEL%

• PLOT

34 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.17.7 Volume H - Heap and Horology

The commands in this volume are:

• DISCARD

• LINKUP

• RESERVE

• T_COUNT

• T_OFF

• T_ON

• T_RESTART

• T_START

• T_STOP

7.17.8 Volume I - Serial Mouse

The commands in this volume are:

• SYNCH%

• X_PTR%

• Y_PTR%

• BUTTON%

• PTR_FN%

• PTR_INC

• PTR_KEY

• PTR_LIMITS

• PTR_MAX

• PTR_OFF

• PTR_ON

• PTR_POS

7.17.9 Volume J - Jobs

The commands in this volume are:

• LIST_TASKS

• PRIORITISE

• RELEASE_TASK

• REMOVE_TASK

7.17. DIY Toolkit 35

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.17.10 Volume M - MultiBASIC

The commands in this volume are:

• RELOAD

• REMOVE

• RESAVE

• SCR_SAVE

• UNLOAD

7.17.11 Volume P - Pipes and Parameters

The commands in this volume are:

• PARHASH

• PARNAME$

• PARSEPA

• PARTYPE

• QCOUNT%

• QLINK

• QSIZE%

• QSPACE%

• UNSET

7.17.12 Volume Q - Queues and QDOS

The commands in this volume are:

• CHBASE

• QUEUE%

• SYSBASE

7.17.13 Volume R - Replace

The commands in this volume are:

• LOOKUP%

• LOWER$

• NEWCHAN%

• REPLACE

• UPPER$

36 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.17.14 Volume S - Qlipboard

The commands in this volume are:

• CLIP$

• CLIP%

7.17.15 Volume T - Traps

The commands in this volume are:

• ADDREG

• BTRAP

• DATAREG

• MTRAP

• QTRAP

7.17.16 Volume U - Environment Variables

The commands in this volume are:

• ALTER

• SET

7.17.17 Volume V - More

The command in this volume is:

• MORE

7.17.18 Volume W - Windows

The commands in this volume are:

• SET_GREEN

• SET_RED

• W_CRUNCH

• W_SHOW

• W_STORE

• W_SWAP

• W_SWOP

7.17. DIY Toolkit 37

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.17.19 Volume X - MSearch and Vocab

The commands in this volume are:

• SEARCH_MEM

• MSEARCH

• VOCAB

7.17.20 Volume Y - FlexyNet

The commands in this volume are:

• NETBEEP

• NETPOLL

• NETRATE

• NETREAD

• NETSEND

• NETVAR%

7.17.21 Volume Z - Array Search

The commands in this volume are:

• INARRAY%

• MAXIMUM

• MAXIMUM%

• MINIMUM

• MINIMUM%

7.18 Djtoolkit v1.16

The commands in this toolkit are:

• ABS_POSITION

• BYTES_FREE

• CHECK

• DEV_NAME

• DISPLAY_WIDTH

• DJ_OPEN

• DJ_OPEN_DIR

• DJ_OPEN_IN

38 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• DJ_OPEN_NEW

• DJ_OPEN_OVER

• DJTK_VER$

• FETCH_BYTES

• FILE_BACKUP

• FILE_DATASPACE

• FILE_LENGTH

• FILE_POSITION

• FILE_TYPE

• FILE_UPDATE

• FILLMEM_B

• FILLMEM_L

• FILLMEM_W

• FLUSH_CHANNEL

• GET_BYTE

• GET_FLOAT

• GET_LONG

• GET_STRING

• GET_WORD

• KBYTES_FREE

• LEVEL2

• MAX_CON

• MAX_DEVS

• MOVE_MEM

• MOVE_POSITION

• PEEK_FLOAT

• PEEK_STRING

• POKE_FLOAT

• POKE_STRING

• PUT_BYTE

• PUT_FLOAT

• PUT_LONG

• PUT_STRING

• PUT_WORD

7.18. Djtoolkit v1.16 39

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• QPTR

• READ_HEADER

• RELEASE_HEAP

• RESERVE_HEAP

• SCREEN_BASE

• SCREEN_MODE

• SEARCH_C

• SEARCH_I

• SET_HEADER

• SET_XINC

• SET_YINC

• SYSTEM_VARIABLES

• USE_FONT

• WHERE_FONTS

7.19 Disk Interfaces

The command in this toolkit is:

• FLP_STEP

7.20 ETAT

The command in this toolkit is:

• ETAT

7.21 Ecran Manager

The commands in this toolkit are:

• SAUTO

• SCROF

• SCRON

• SLOAD

• SMOVE

• SSAVE

• SSHOW

• SSTAT

40 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.22 Environment Variables

The commands in this toolkit are:

• ENV_DEL

• ENV_LIST

7.23 FACT

The command in this toolkit is:

• FACT

7.24 FKEY

The command in this toolkit is:

• KEY

7.25 FN

The commands in this toolkit are:

• FNAME$

• KEYW

• PINF$

• QDOS$

• QFLIM

• QuATARI

• RMODE

• SCREEN

• SCRINC

• SYS_BASE

• THING

• TH_VER$

• WIN_BASE

• WINF$

7.22. Environment Variables 41

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.25.1 FN v1.02 Onwards

This toolkit adds one extra command to then list in the FN toolkit above. This is:

• DEFAULT_SCR

7.26 FONTS

The command in this toolkit is:

• S_FONT

7.27 FRACT

The command in this toolkit is:

• FRACT

7.28 Fast PLOT/DRAW Toolkit

The commands in this toolkit are:

• DRAW

• PLOT

• REFRESH

• SCLR

• SCRBASE

7.29 GETSTUFF

The command in this toolkit is:

• GET_STUFF$

7.30 Gold Card

The commands provided by the Gold Card ROM are:

• CACHE_OFF

• CACHE_ON

• DEV_LIST

• DEV_NEXT

• DEV_USE

42 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• DEV_USE$

• FLP_DENSITY

• FLP_EXT

• FLP_JIGGLE

• FLP_SEC

• FLP_START

• FLP_STEP

• FLP_TRACK

• FLP_USE

• PAR_USE

• PROT_DATE

• PRT_ABT

• PRT_USE

• RAM_USE

• RES_128

• RES_SIZE

• SCR2DIS

• SCR2EN

• SDP_DEV

• SDP_KEY

• SDP_SET

• SDUMP

• SER_PAUSE

• WIN2

7.30.1 Gold Card - v2.24

The additional commands provided by this ROM are:

• SLUG

7.30. Gold Card 43

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.30.2 Gold Card - v2.67

The additional commands provided by this ROM are:

• AUTO_DIS

• AUTO_TK2F1

• AUTO_TK2F2

7.31 GPOINT

The commands in this toolkit are:

• GPOINT

• POINT

7.32 HCO

The commands in this toolkit are:

• BICOP

• BLOOK

• BMOVE

• COL

• DOTLIN

• GETXY

• INVXY

• LDRAW

• PAINT

• SET

• XDRAW

7.33 HOTKEY II

The commands in this toolkit are:

• ERT

• EXEP

• HOT_CHP1

• HOT_CHP

• HOT_CMD

44 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• HOT_DO

• HOT_GO

• HOT_KEY

• HOT_LIST

• HOT_LOAD1

• HOT_LOAD

• HOT_NAME$

• HOT_OFF

• HOT_PICK

• HOT_REMV

• HOT_RES1

• HOT_RES

• HOT_SET

• HOT_STOP

• HOT_STUFF

• HOT_THING

• HOT_TYPE

• HOT_WAKE

7.34 Hard Disk Driver

The command provided in the hard disk driver is:

• WIN_USE

7.35 History Device

The commands in this toolkit are:

• HIS_SET

• HIS_SIZE

• HIS_UNSET

• HIS_USE$

• HIS_USE

7.34. Hard Disk Driver 45

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.36 Hyper

The commands in this toolkit are:

• ARCOSH

• ARCOTH

• ARSINH

• ARTANH

• COSH

• COTH

• SINH

• TANH

7.37 Hyperbola

The commands in this toolkit are:

• COSH

• SINH

• TANH

7.38 KEYMAN

The commands in this toolkit are:

• KEY

• NOKEY

7.39 KILL

The command in this toolkit is:

• KILL

7.40 LWCUPC

The commands in this toolkit are:

• LWC$

• UPC$

46 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.41 Level-2 Device Drivers

The commands in the Level 2 and/or Level 3 drivers are:

• FBKDT

• FMAKE_DIR

• FVERS

• MAKE_DIR

• SET_FBKDT

• SET_FUPDT

• SET_FVERS

7.42 MINMAX2

The commands in this toolkit are:

• MAX

• MIN

7.43 MULTI

The commands in this toolkit are:

• IS_BASIC

• P_ENV

7.44 Math Package

The commands in this toolkit are:

• ATN

• ATN2

• BINOM

• CEIL

• DET

• DIV

• EASTER

• EPS

• FACT

• GCD

7.41. Level-2 Device Drivers 47

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• GREGOR

• INF

• INTMAX

• LCM

• LOG2

• MATADD

• MATCOUNT

• MATCOUNT1

• MATDEV

• MATEQU

• MATIDN

• MATINPUT

• MATINV

• MATMAX

• MATMEAN

• MATMIN

• MATMULT

• MATPLOT

• MATPLOT_R

• MATPROD

• MATREAD

• MATRND

• MATSEQ

• MATSUB

• MATSUM

• MATTRN

• MAX

• MIN

• MOD

• NDIM

• SGN

• SIZE

• SQR

• SWAP

48 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.45 Minerva

The commands in the Minerva ROM, over and above the standard QL ROM are:

• CMD$

• MB

• WINDOW

7.46 Minerva - Trace Toolkit

The commands in this toolkit are:

• SSTEP

• TROFF

• TRON

7.47 Minerva Extensions Toolkit

The command in this toolkit is:

• I2C_IO

7.48 NDIM

The command in this toolkit is:

• NDIM%

7.49 PAR/SER Interfaces

The command in the PAR/SER Interface ROM is:

• PAR_USE

7.50 PEX

The commands in this toolkit are:

• IS_PEON

• IS_PTRAP

• MODE |

• OUTL

• PEOFF

7.45. Minerva 49

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• PEON

• PEX$

• PEX_INI

• PEX_SAVE

• PEX_XTD

• PICK%

• PIF$

• PX1ST

• PXOFF

• PXON

• QL_PEX

7.50.1 PEX - v20

This version of the PEX toolkit provides an additional command which is:

• WMOV

7.51 PICEXT

The commands in this toolkit are:

• LOADPIC

• SAVEPIC

7.52 PIE

The commands in this toolkit are:

• PIE_EX_OFF

• PIE_EX_ON

• PIE_OFF

• PIE_ON

50 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.53 PRIO

The command in this toolkit is:

• PRIO

7.54 PTRRTP

The commands in this toolkit are:

• PTR_X

• PTR_Y

• RTP_R

• RTP_T

7.55 Path device

The commands provided by the Path device are:

• PTH_ADD

• PTH$

• PTH_LIST

• PTH_RMV

• PTH_USE

• PTH_USE$

7.56 Pointer Interface - v1.23 Onwards

The commands in this toolkit are:

• CKEYOFF

• CKEYON

7.57 QL ROM

The commands in QL ROMs prior to version JM are:

• ABS

• ACOS

• ACOT

• ADATE

• AND

7.53. PRIO 51

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• ARC

• ARC_R

• ASIN

• AT

• ATAN

• BAUD

• BEEP

• BEEPING

• BLOCK

• BORDER

• CALL

• CHR$

• CIRCLE

• CIRCLE_R

• CLEAR

• CLOSE

• CLS

• CODE

• CONTINUE

• COPY

• COPY_N

• COS

• COT

• CSIZE

• CURSOR

• DATA

• DATE

• DATE$

• DAY$

• DEFine FuNction

• DEFine PROCedure

• DEFine xxx

• DEG

• DELETE

52 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• DIM

• DIMN

• DIR

• DIV

• DLINE

• EDIT

• ELLIPSE

• ELLIPSE_R

• ELSE

• END

• END DEFine

• END FOR

• END IF

• END REPeat

• END SELect

• EOF

• ERR_XX

• EXEC

• EXEC_W

• EXIT

• EXP

• FILL

• FILL$

• FLASH

• FOR

• FORMAT

• FuNction

• GO SUB

• GO TO

• IF

• INK

• INKEY$

• INPUT

• INSTR

7.57. QL ROM 53

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• INT

• KEYROW

• LBYTES

• LEN

• LET

• LINE

• LINE_R

• LIST

• LN

• LOAD

• LOCal

• LOG10

• LRUN

• MERGE

• MISTake

• MOD

• MODE

• MOVE

• MRUN

• NET

• NEW

• NEXT

• NOT

• ON. . .GO SUB

• OPEN

• OPEN_IN

• OPEN_NEW

• OR

• OVER

• PAN

• PAPER

• PAUSE

• PEEK_L

• PENDOWN

54 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• PENUP

• PI

• POINT

• POINT_R

• POKE_L

• PRINT

• PROCedure

• RAD

• RANDOMISE

• READ

• RECOL

• REMAINDER

• REMark

• RENUM

• REPeat

• RESPR

• RESTORE

• RETRY

• RETurn

• RND

• RUN

• SAVE

• SBYTES

• SCALE

• SCROLL

• SDATE

• SELect

• SELect ON

• SEXEC

• SIN

• SQRT

• STEP

• STOP

• STRIP

7.57. QL ROM 55

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• SUB

• TAN

• THEN

• TO

• TURN

• TURNTO

• UNDER

• VER$

• WIDTH

• WINDOW

• XOR

7.57.1 QL ROM JM Onwards

The JM ROM provided the following additional commands:

• END WHEN

• ERLIN

• ERNUM

• ERRor

• REPORT

• TRA

• WHEN condition

• WHEN ERRor

7.58 QPC / QXL

The commands in the QXL ROM and QPC are:

• WIN_DRIVE

• WIN_DRIVE$

• WIN_FORMAT

• WIN_REMV

• WIN_START

• WIN_STOP

• WIN_USE

• WIN_WP

56 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.59 QSOUND

The commands in this toolkit are:

• BELL

• CHANNELS

• CURDIS

• CURSEN

• EXPLODE

• EXTRAS

• LEFT

• PLAY

• RELEASE

• SHOOT

7.60 QView Tiny Toolkit

The Qview Tiny Toolkit, not to be confused with TinyToolkit, provides the following commands:

• TTALL

• TT$

• TTEDELETE

• TTEFP

• TTEOPEN

• TTET3

• TTEX

• TTEX_W

• TTFINDM

• TTINC

• TTME%

• TTMODE%

• TTPEEK$

• TTPOKE$

• TTPOKEM

• TTREL

• TTRENAME

• TTSUS

7.59. QSOUND 57

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• TTV

7.61 QVME - Level E-19 Drivers onwards

The commands in this toolkit are:

• DISP_BLANK

• DISP_RATE

• DISP_SIZE

7.62 QXL

The commands supplied in the QXL ROM are:

• DISP_UPDATE

• PRT_ABT

• PRT_USE

• WIN_DRIVE

• WIN_DRIVE$

• WIN_FORMAT

• WIN_REMV

• WIN_START

• WIN_STOP

• WIN_USE

• WIN_WP

7.63 Qjump RAMPRT

The command in this toolkit is:

• PRT_USE

7.64 RES

The command in this toolkit is:

• RESET

58 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.65 REV

The command in this toolkit is:

• REV$

7.66 SDUMP_REXT

7.67 SERMouse

The commands in this toolkit are:

• BAUDRATE

• BLS

• SERMAWS

• SERMCUR

• SERMOFF

• SERMON

• SERMPTR

• SERMRESET

• SERMSPEED

• SERMWAIT

7.68 SMS

The commands provided by SMS are:

• CACHE_OFF

• CACHE_ON

• CMD$

• DEV_LIST

• DEV_NEXT

• DEVTYPE

• DEV_USE

• DEV_USE$

• EOFW

• EPROM_LOAD

• FBKDT

• FLP_DENSITY

7.65. REV 59

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• FLP_SEC

• FLP_START

• FLP_STEP

• FLP_TRACK

• FLP_USE

• FSERVE

• IO_PRIORITY

• JOB_NAME

• LANGUAGE

• LANGUAGE$

• LANG_USE

• PEEK$

• POKE$

• PROT_DATE

• QLOAD

• QLRUN

• QMERGE

• QMRUN

• QSAVE

• QSAVE_O

• QUIT

• RAM_USE

• SBASIC

• SLUG

7.68.1 SMS - v2.31

The additional command in this version of SMS is:

• KBD_TABLE

60 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.69 SMSQ

The commands in this manual for SMSQ are:

• SB_THING

7.69.1 SMSQ - 3.26

An additional command in SMSQ 3.26 onwards is:

• ALLOCATION

7.70 SMSQ/E

SMSQ/E provides the following commands:

• CD_ALLTIME

• CD_CLOSE

• CD_EJECT

• CD_FIRSTTRACK

• CD_HOUR

• CD_HSG2RED

• CD_INIT

• CD_ISCLOSED

• CD_ISINSERTED

• CD_ISPAUSED

• CD_ISPLAYING

• CD_LASTTRACK

• CD_LENGTH

• CD_MINUTE

• CD_PLAY

• CD_RED2HSG

• CD_RESUME

• CD_SECOND

• CD_STOP

• CD_TRACK

• CD_TRACKLENGTH

• CD_TRACKSTART

• CD_TRACKTIME

7.69. SMSQ 61

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• CHK_HEAP

• DAY%

• DEV_USEN

• DISP_INVERSE

• DISP_SIZE

• DISP_TYPE

• DISP_UPDATE

• DOS_DRIVE

• DOS_DRIVE$

• DOS_USE

• FET

• FEW

• FEX

• FEX_M

• FLP_DENSITY

• FLP_DRIVE

• FLP_DRIVE$

• FLP_SEC

• FLP_STEP

• FLP_USE

• HGET

• HOT_GETSTUFF$

• HPUT

• JOBID

• LGET

• LPUT

• MACHINE

• MIDINET

• MONTH%

• MNET

• MNET_OFF

• MNET_ON

• MNET%

• MNET_S%

62 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• MNET_USE

• MOUSE_SPEED

• MOUSE_STUFF

• OUTLN

• PAR_ABORT

• PAR_BUFF

• PAR_CLEAR

• PAR_DEFAULTPRINTER$

• PAR_GETFILTER

• PAR_GETPRINTER$

• PAR_PRINTERCOUNT

• PAR_PRINTERNAME$

• PAR_PULSE

• PAR_SETFILTER

• PAR_SETPRINTER

• PAR_USE

• PEEKS_L

• POKES_L

• PROCESSOR

• PROT_MEM

• PRT_ABORT

• PRT_BUFF

• PRT_CLEAR

• PRT_USE

• PRT_USE$

• QPC_CMDLINE$

• QPC_EXEC

• QPC_EXIT

• QPC_HOSTOS

• QPC_MAXIMIZE

• QPC_MINIMIZE

• QPC_MSPEED

• QPC_NETNAME$

• QPC_QLSCREMU

7.70. SMSQ/E 63

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• QPC_RESTORE

• QPC_SYNCSCRAP

• QPC_VER$

• QPC_WINDOWSIZE

• QPC_WINDOWTITLE

• RESET

• SB_THING

• SCR_BASE

• SCR_LLEN

• SCR_XLIM

• SCR_YLIM

• SER_ABORT

• SER_BUFF

• SER_CDEOF

• SER_CLEAR

• SER_FLOW

• SER_GETPORT$

• SERNET

• SER_PAUSE

• SER_ROOM

• SER_SETPORT

• SER_USE

• SNET

• SNET%

• SNET_ROPEN

• SNET_S%

• SNET_USE

• TH_FIX

• WEEKDAY%

• WGET

• WHEN condition

• WIN_DRIVE

• WIN_DRIVE$

• WIN_REMV

64 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• WIN_SLUG

• WIN_START

• WIN_STOP

• WIN_USE

• WIN_WP

• WPUT

• YEAR%

7.70.1 SMSQ/E - v2.50 Onwards

This version provided the following additional command(s):

• HOT_THING1

7.70.2 SMSQ/E - v2.55 Onwards

This version provided the following additional command(s):

• UPUT

7.70.3 SMSQ/E - v2.58 Onwards

This version provided the following additional command(s):

• INSTR_CASE

7.70.4 SMSQ/E - v2.71 Onwards

This version provided the following additional command(s):

• SEND_EVENT

• WAIT_EVENT

7.70.5 SMSQ/E - v2.73 Onwards

This version provided the following additional command(s):

• DMEDIUM_DENSITY

• DMEDIUM_DRIVE$

• DMEDIUM_FORMAT

• DMEDIUM_FREE

• DMEDIUM_NAME$

• DMEDIUM_RDONLY

• DMEDIUM_REMOVE

7.70. SMSQ/E 65

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• DMEDIUM_TOTAL

• DMEDIUM_TYPE

7.70.6 SMSQ/E - v2.98 Onwards

This version provided the following additional command(s):

• BGCOLOUR_24

• BGCOLOUR_QL

• BGIMAGE

• COLOUR_24

• COLOUR_NATIVE

• COLOUR_PAL

• COLOUR_QL

• PALETTE_8

• PALETTE_QL

7.70.7 SMSQ/E - v3.00 Onwards

This version provided the following additional command(s):

• WM_BLOCK

• WM_BORDER

• WM_INK

• WM_PAPER

• WM_STRIP

7.70.8 SMSQ/E - v3.01 Onwards

This version provided the following additional command(s):

• WM_MOVEMODE

7.70.9 SMSQ/E - v3.12 Onwards

This version provided the following additional command(s):

• PE_BGOFF

• PE_BGON

66 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.70.10 SMSQ/E - v2.73 for Atari

Additional command(s) in this version of SMSQ/E are:

• WIN_FORMAT

SMSQ/E for Atari Additional command(s) in this version of SMSQ/E are:

• PAR_PULSE

• WIN_DRIVE

• WIN_DRIVE$

• WIN_REMV

• WIN_SLUG

• WIN_START

• WIN_STOP

• WIN_USE

• WIN_WP

SMSQ/E for Atari ST & TT Additional command(s) in this version of SMSQ/E are:

• DISP_INVERSE

7.70.11 SMSQ/E for QPC

The commands in this toolkit are:

• CD_ALLTIME

• CD_CLOSE

• CD_EJECT

• CD_FIRSTTRACK

• CD_HOUR

• CD_HSG2RED

• CD_INIT

• CD_ISCLOSED

• CD_ISINSERTED

• CD_ISPAUSED

• CD_ISPLAYING

• CD_LASTTRACK

• CD_LENGTH

• CD_MINUTE

• CD_PLAY

• CD_RED2HSG

7.70. SMSQ/E 67

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• CD_RESUME

• CD_SECOND

• CD_STOP

• CD_TRACK

• CD_TRACKLENGTH

• CD_TRACKSTART

• CD_TRACKTIME

• DOS_DRIVE

• DOS_DRIVE$

• DOS_USE

• FLP_DENSITY

• FLP_DRIVE

• FLP_DRIVE$

• FLP_SEC

• FLP_STEP

• FLP_USE

• MACHINE

• MOUSE_SPEED

• MOUSE_STUFF

• PAR_DEFAULTPRINTER$

• PAR_GETFILTER

• PAR_GETPRINTER$

• PAR_PRINTERCOUNT

• PAR_PRINTERNAME$

• PAR_SETFILTER

• PAR_SETPRINTER

• QPC_CMDLINE$

• QPC_EXEC

• QPC_EXIT

• QPC_HOSTOS

• QPC_MAXIMIZE

• QPC_MINIMIZE

• QPC_MSPEED

• QPC_NETNAME$

68 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• QPC_QLSCREMU

• QPC_RESTORE

• QPC_SYNCSCRAP

• QPC_VER$

• QPC_WINDOWSIZE

• QPC_WINDOWTITLE

• SER_GETPORT$

• SER_SETPORT

7.71 ST/QL

The commands in this toolkit are:

• ACCEL_OFF

• ACCEL_ON

• ACCEL_SET

• ACCEL_STATE

• APPEND

• BELL

• DEV_LIST

• DEV_NEXT

• DEV_USE

• DEV_USE$

• EXPLODE

• FLP_TRACK

• FLP_USE

• GER_MSG

• GER_TRA

• NOR_MSG

• NOR_TRA

• PAR_ABORT

• PAR_BUFF

• PAR_CLEAR

• PAR_PULSE

• PAR_USE

• PLAY

7.71. ST/QL 69

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• PRT_ABORT

• PRT_BUFF

• PRT_CLEAR

• PRT_USE

• PRT_USE$

• RAM_USE

• RELEASE

• SDP_DEV

• SDP_KEY

• SDP_SET

• SDUMP

• SER_ABORT

• SER_BUFF

• SER_CLEAR

• SER_FLOW

• SER_ROOM

• SER_USE

• SHOOT

• WIN_DRIVE

• WIN_SLUG

• WIN_START

• WIN_STOP

• WIN_USE

7.71.1 ST/QL - Pre v2.24

This toolkit provides the following, additional, command:

• A_BLANK

7.71.2 ST/QL - Level B-11 Onwards

This toolkit provides the following, additional, command:

• TH_FIX

70 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.71.3 ST/QL - Level C-17 Onwards

This toolkit provides the following, additional, command:

• KBD_TABLE

7.71.4 ST/QL - Level C-19 Onwards

This toolkit provides the following, additional, command:

• WIN2

7.71.5 ST/QL - Level C-20 Onwards

This toolkit provides the following, additional, command:

• WIN_REMV

7.71.6 ST/QL - Level D00 Onwards

This toolkit provides the following, additional, command:

• SER_CDEOF

7.71.7 ST/QL - level D.02 Onwards

This toolkit provides the following, additional, command:

• FLP_START

7.72 STAMP

The command in this toolkit is:

• STAMP

7.73 SWAP

The commands in this toolkit are:

• SWAP

• W_SWAP

7.72. STAMP 71

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.74 SYSBASE

The command in this toolkit is:

• SYS_BASE

7.75 Shape Toolkit

The commands in this toolkit are:

• ALINE

• APOINT

• DEMO

7.76 Super Gold Card

The command in the SGC ROM is:

• SLUG

7.77 SuperQBoard

The command in this toolkit is:

• PAR_USE

7.78 SuperWindow Toolkit

The commands in this toolkit are:

• SCR_REFRESH

• SCR_SIZE

• SCR_STORE

7.79 THOR

Commands provided on THOR machines are:

• CLOSE

• FLP_SEC

• FLP_START

• FLP_TRACK

• FLP_USE

72 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• LANGUAGE$

• SET_CLOCK

• SET_LANGUAGE

• TOP_WINDOW

• WCOPY

• WCOPY_F

• WCOPY_O

• WDEL

• WDEL_F

• WDIR

• WSTAT

7.79.1 THOR 8

The THOR 8 added an additional command:

• WMON

7.79.2 THOR 8 - v4.20 Onwards

The additional command(s) in the version are:

• WTV

7.79.3 THOR XVI

Commands provided on THOR XVI machines are:

• ALCHP

• BGET

• BIN

• BIN$

• BPUT

• CDEC$

• CHAR_INC

• CHAR_USE

• CLCHP

• CLOCK

• COPY

• COPY_N

7.79. THOR 73

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• COPY_O

• CURDIS

• CURSEN

• DATA_USE

• EW

• EX

• EXTRAS

• FDAT

• FDEC$

• FLEN

• FOP_DIR

• FOPEN

• FOP_IN

• FOP_NEW

• FOP_OVER

• FPOS

• FREE_MEM

• FSERVE

• FTYP

• GET

• HEX

• HEX$

• IDEC$

• IO_TRAP

• JOBS

• LRESPR

• MAKE_DIR

• NET_ID

• NFS_USE

• NO_CLOCK

• OPEN_DIR

• OPEN_OVER

• PARTYP

• PARUSE

74 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• PROG_USE

• PUT

• RECHP

• RENAME

• REPORT

• RJOB

• SAVE_O

• SBYTES_O

• SEXEC_O

• SPJOB

• SPL

• SPLF

• SPL_USE

• STAT

• SYS_VARS

• TRUNCATE

• VIEW

• WHEN condition

• WHEN ERRor

• WIN2

• WINDOW

• WIN_USE

• WMON

• WTV

7.80 TRIM

The command in this toolkit is:

• TRIM$

7.80. TRIM 75

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.81 TRIPRODRO

The commands in this toolkit are:

• DROUND

• PROUND

• TRINT

7.82 TRUFA

The commands in this toolkit are:

• FALSE%

• TRUE%

7.83 TinyToolkit

TinyToolkit, not to be confused with QView Tiny Toolkit, provides the following commands:

• BASIC_L

• BASICP

• BCLEAR

• BREAK_OFF

• CBASE

• CHANGE

• CHANID

• CHANNELS

• CLEAR_HOT

• CLOSE%

• CLRMDV

• CUR

• DEVLIST

• ELIS

• FILE_DAT

• FILE_LEN

• FILE_POS

• FILE_PTRA

• FILE_PTRR

• FLIS

76 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• FORCE_TYPE

• FREAD

• FWRITE

• GET_BYTE$

• GRAB

• HEADR

• HEADS

• HOT

• JBASE

• KJOB

• KJOBS

• NEW_NAME

• ODD

• PEEK$

• PEND

• POKE$

• QDOS$

• QRAM$

• RAND

• RELEASE

• REL_JOB

• REPORT

• RESET

• ROM

• SEARCH

• SJOB

• S_LOAD

• S_SAVE

• S_SHOW

• SXTRAS

• TCONNECT

• TINY_EXT

• TINY_RMV

• TXTRAS

7.83. TinyToolkit 77

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• TYPE

• UPPER$

• WBASE

• WMAN$

• ZAP

7.83.1 TinyToolkit - Pre v1.10

The commands in versions of TinyToolkit prior to 1.10 is:

• SPJOB

7.83.2 TinyToolkit - v1.10 Onwards

The additional command provided in these versions is:

• SP_JOB

7.84 Toolfin

The commands in this toolkit are:

• MT

• RAE

• RAFE

• TCA

• TEE

• TNC

• VAR

• VAR

• VFR

7.85 Toolkit II

The commands in this toolkit are:

• AJOB

• ALARM

• ALCHP

• ALTKEY

• BGET

78 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• BIN

• BIN$

• BPUT

• CDEC$

• CHAR_INC

• CHAR_USE

• CLCHP

• CLOCK

• CLOSE

• CONTINUE

• COPY

• COPY_H

• COPY_N

• COPY_O

• CURDIS

• CURSEN

• DATAD$

• DATA_USE

• DDOWN

• DEL_DEFB

• DELETE

• DESTD$

• DEST_USE

• DIR

• DLIST

• DNEXT

• DO

• DUP

• ED

• ET

• EW

• EX

• EXEC

• EXEC_W

7.85. Toolkit II 79

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• EXTRAS

• FDAT

• FDEC$

• FEXP$

• FLEN

• FLUSH

• FNAME$

• FOP_DIR

• FOPEN

• FOP_IN

• FOP_NEW

• FOP_OVER

• FPOS

• FREE_MEM

• FTEST

• FTYP

• FUPDT

• FXTRA

• GET

• HEX

• HEX$

• IDEC$

• JOB$

• JOBS

• LBYTES

• LOAD

• LRESPR

• LRUN

• MERGE

• MRUN

• NEW

• NFS_USE

• NXJOB

• OJOB

80 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• OPEN

• OPEN_DIR

• OPEN_IN

• OPEN_NEW

• OPEN_OVER

• PARNAM$

• PARSTR$

• PARTYP

• PARUSE

• PJOB

• PRINT_USING

• PROGD$

• PROG_USE

• PUT

• RECHP

• RENAME

• REPORT

• RETRY

• RJOB

• SAVE

• SAVE_O

• SBYTES

• SBYTES_O

• SEXEC

• SEXEC_O

• SPJOB

• SPL

• SPLF

• SPL_USE

• STAT

• STOP

• TK2_EXT

• TRUNCATE

• VIEW

7.85. Toolkit II 81

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• WCOPY

• WDEL

• WDIR

• WMON

• WREN

• WSTAT

• WTV

7.85.1 Toolkit II - Hardware Version Only or SMS

The hardware (ROM, Disc INterface etc) and SMS versions of Toolkit II provide the following command:

• FSERVE

7.86 Trump Card

The commands supplied in the Trump Card ROM are:

• FLP_SEC

• FLP_START

• FLP_TRACK

• FLP_USE

• PRT_ABT

• PRT_USE

• RAM_USE

• RES_128

• SDP_DEV

• SDP_KEY

• SDP_SET

• SDUMP

7.87 Turbo Toolkit

The commands in this toolkit are:

• ALLOCATION

• BASIC_F

• BASIC_INDEX%

• BASIC_L

82 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• BASIC_NAME$

• BASIC_POINTER

• BASIC_TYPE%

• CATNAP

• CHANNEL_ID

• CHARGE

• COMMAND_LINE

• COMPILED

• CONNECT

• CURSOR_OFF

• CURSOR_ON

• DATA_AREA

• DATASPACE

• DEALLOCATE

• DEFAULT_DEVICE

• DEVICE_SPACE

• DEVICE_STATUS

• EDIT$

• EDITF

• EDIT%

• END_CMD

• END_WHEN

• ERLIN%

• ERNUM%

• TK_VER$

7.87.1 Turbo Toolkit - v3.00

This version of the toolkit added the following commands:

• TURBO_diags

• TURBO_F

• TURBO_locstr

• TURBO_model

• TURBO_objdat

• TURBO_objfil

7.87. Turbo Toolkit 83

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• TURBO_optim

• TURBO_P

• TURBO_repfil

• TURBO_struct

• TURBO_taskn

• TURBO_window

7.87.2 Turbo Toolkit - v3.20

This version of the toolkit added the following commands:

• DEBUG

• DEBUG_LEVEL

7.88 UNJOB

The command in this toolkit is:

• UNJOB

7.89 WIPE

The command in this toolkit is:

• WIPE

7.90 WM

The command in this toolkit is:

• WM

7.91 XKBD

The command in this toolkit is:

• KBD_USE

84 Chapter 7. Toolkits

CHAPTER

EIGHT

KEYWORDS A

8.1 ABS

Syntax ABS (number) or
ABS (number1 *[,numberx]*) (Minerva only)

Location QL ROM

This function returns the absolute value of a number - ie. the positive difference (or distance) between
zero and the number. The absolute value of a positive number (including zero) therefore, is the number
itself - negative numbers are converted to positive. This function will happily handle 32-bit integer
numbers (-INTMAX..INTMAX, roughly -1E9..1E9).

Example 1

The SIGN% function returns 1 if the supplied parameter is positive, -1 if negative, or 0 if it is zero, for
example,

PRINT SIGN%(-10) will print -1 on screen.

This version rounds values which are very close to zero (use = in line 110 instead of == if you want to
avoid this).

Note that line 110 is needed to avoid an error when line 120 tries to divide by zero.

100 DEFine FuNction SIGN% (number)
110 IF number==0 THEN RETurn 0
120 RETurn number/ABS(number)
130 END DEFine

Example 2

Here is a simple implementation of the cosine function. Of course, it cannot compete with the speed of
a machine code function, but it allows you to specify the precision of the result. You can optimise the
function by exploiting the symmetries of the cosine function.

100 DEFine FuNction MYCOS (x, prec)
110 LOCal fct, result, xpower, i, lagrange, sqrx
120 fct = 1: result = 1
130 xpower = 1: sqrx = x*x
140 i = 2
150 REPeat taylor

(continues on next page)

85

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

160 fct = fct * (i-1) * i
170 xpower = - xpower * sqrx
180 result = result + xpower/fct
190 lagrange = ABS(xpower*x / fct / (i+1))
200 IF lagrange < prec THEN EXIT taylor
210 i = i + 2
220 END REPeat taylor
230 RETurn result
240 END DEFine MYCOS

MINERVA NOTE

ABS can accept more than one parameter. This version of ABS will square each parameter, and return
the square root of the total of those squares, eg. ABS(x,y)=SQRT(x2+y2). This is therefore useful to
calculate the distance between two points (using pythagoras’ method).

For example, to calculate the distance between the points on screen at (10,20) and (100,75), simply type
in: PRINT ABS(100-10,75-20)

Three parameters can be used to find the distance between two points in three dimensional space. Any
more parameters take you into the realm of theoretical mathematics (we always thought that time was the
fourth dimension!).

For example, to calculate the length of a diagonal in a standard cube (length of sides = 1), use: PRINT
ABS(1,1,1)

CROSS-REFERENCE

See SGN and SGN% for similar machine code versions of our example function SIGN% demonstrated
above.

8.2 ABS_POSITION

Syntax ABS_POSITION #channel, position
Location DJToolkit 1.16

This procedure will set the file pointer to the position given for the file attached to the given channel
number. If you attempt to set the position for a screen or some other non-directory device channel, you
will get a bad parameter error, as you will if position is negative.

If the position given is 0, the file will be positioned to the start, if the position is a large number which is
greater than the current file size, the position will be set to the end of file and no error will occur.

After an ABS_POSITION command, all file accesses will take place at the new position.

EXAMPLE

1500 REMark Set position to very end, for appending data
1510 ABS_POSITION #3, 6e6
1520 ...

86 Chapter 8. Keywords A

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE

MOVE_POSITION .

8.3 ACCEL_OFF

Syntax ACCEL_OFF
Location ST/QL

See ACCEL_ON below!

8.4 ACCEL_ON

Syntax ACCEL_ON
Location ST/QL

The ST/QL Emulator supports several of the accelerator boards which can be plugged into the Atari ST
computer, thus allowing much greater operational speed. This command both enables the 16MHz mode
on the Atari ST and tells the attached accelerator board to use its memory cache (if built in).

NOTE

This and the other ACCEL_. . . commands will be ignored unless you have previously used ACCEL_SET
to define the type of accelerator board attached to the Atari ST.

CROSS-REFERENCE

ACCEL_OFF turns off the 16MHz mode (if possible) and also tells the accelerator board that it should
no longer use its memory cache. Also see ACCEL_SET .

8.5 ACCEL_SET

Syntax ACCEL_SET type,option
Location ST/QL

Before the ST/QL Emulator can use an accelerator board plugged into the Atari ST, it is necessary to use
the command ACCEL_SET to tell the Emulator about the board and to activate the board.

There are currently five accelerator boards which are recognised by the Emulator. Use the following
values for type to tell the Emulator which one is attached:

• H - HyperCache (ProVME)

• A - AdSpeed (ICD)

• M - MegaSTE (ATARI)

• P - HyperCache 030 (ProVME), 68030 Board

8.3. ACCEL_OFF 87

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• T - TT (ATARI)

If you have a 68030 board attached, the ST/QL Emulator can only use external caches with this board.

The option parameter currently only has any effect when HyperCache is attached. This can have the
value 6 or 7 (default is 6). This is used to specify which bit of the Atari’s sound chip is used to switch
HyperCache. If you have the HyperCache 030 attached, you can pass the parameter 0 (default) to enable
external caches only, 1 to enable the internal caches only or 2 to enable both external and internal caches.

NOTE

Unfortunately, due to the higher speed of the Atari ST with an accelerator board enabled, you may en-
counter problems with the parallel printer board - use the command PAR_PULSE.

CROSS-REFERENCE

See also ACCEL_ON , ACCEL_OFF and ACCEL_STATE.

8.6 ACCEL_STATE

Syntax ACCEL_STATE
Location ST/QL

This function returns the value 1 if the ST/QL Emulator has been told that an accelerator board is enabled.
Otherwise, it returns the value 0.

CROSS-REFERENCE

ACCEL_SET tells the Emulator that an accelerator board is enabled.

8.7 ACOPY

Syntax ACOPY filename1,filename2
Location ATARIDOS

This command is similar to COPY except that it copies a file from a QL Format disk to an Atari Format
disk. No conversion takes place.

NOTE

You will need to pass the Atari filename in quote marks if it includes a three letter extension preceded by
a dot eg:

ACOPY flp1_PROGRAM_BAS, “flp2_PROGRAM.BAS”

CROSS-REFERENCE

QCOPY copies a file from an Atari disk to a QL disk.

See AFORMAT and QACONVERT .

88 Chapter 8. Keywords A

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

8.8 ACOS

Syntax ACOS (x)
Location QL ROM

The function ACOS, is the arc-cosine function, that is to say the opposite to the cosine function (COS in
SuperBASIC). However, x must always be in the range -1. . . 1 as the cosine of an angle can only ever be
in this range. Anything outside of this range will produce an Overflow Error.

The angle returned will be in the range 0. . .PI with ACOS(1)=0 and ACOS(-1)=PI. This means that the
maximum angle which can be found with the ACOS function is 180 degrees. It is up to you to check
whether this angle appears above or below the base line of the triangle (check the co-ordinates of the
corners).

Note that if a negative value of x is provided, the angle returned will be the obtuse angle (ie. greater than
90 degrees).

Example

To calculate the angle at which a projectile was fired which has travelled a horizontal distance of 250
metres after 10 minutes and is travelling at 3 kilometres per hour (ignoring the effects of gravity):

100 Speed=3:Distan=250/1000
110 Time_elapsed=10
120 Actual_distance=(Speed/60)*Time_elapsed
130 PRINT 'Projectile fired at an angle of ';
140 PRINT DEG(ACOS(Distan/Actual_distance))&' degrees'

NOTE

The angle returned will be in radians - if you wish to convert this angle to degrees, use DEG (ACOS (x)
).

CROSS-REFERENCE

COS, ASIN , SIN , RAD.

Compare ARCOSH.

Also please see the Mathematics section in the Appendix.

8.9 ACOT

Syntax ACOT (x) or
ACOT (y,x) (Minerva v1.90+ only)

Location QL ROM

The function ACOT, is the arc-cotangent function, that is to say the inverse of the cotangent function
(COT in SuperBASIC): COT(ACOT(x))=x for all values of x, but due to the periodic nature of COT,
ACOT(COT(x))=x is only true for where: 0<x<PI.

8.8. ACOS 89

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Note that if a negative value of x is provided, the angle returned will be the obtuse angle (ie. greater than
90 degrees).

MINERVA NOTE

ACOT can accept two parameters. If you specify two parameters then ACOT(y,x) will give the angle
from the origin to the point (x,y). This is actually the same as ACOT(x/y) although it does also cater for
when y=0 which would otherwise give an overflow error.

CROSS-REFERENCE

COT , ATAN , TAN .

Please see the Mathematics section in the Appendix.

See also ARCOTH.

8.10 ADATE

Syntax ADATE seconds
Location QL ROM

ADATE adjusts the current system clock by the given number of seconds, so ADATE 60 would advance
the internal clock by a minute and ADATE -86400 sets it back by one day.

Example

Apart from adjusting the clock relatively, ADATE can also be used to set the time and date absolutely.
This is because the function DATE contains the system time in seconds after a fictional ‘Birth Date’
(Midnight on 1 January 1961 on all ROM implementations):-

ADATE -DATE will set the clock to that Birth Date (when DATE=0)

ADATE 1E9 advances the clock by roughly 31 years and nine months.

ADATEs can then be combined by adding values:

ADATE 1E9-DATE sets the clock to DATE$=”1992 Sep 09 01:46:40”

NOTE 1

ADATE generally needs one second to execute because some ROMs (notably the THOR XVI, MG ROM
and Minerva) will wait for the next full second before amending the time (therefore do not use ADATE
1 to wind the clock on!).

NOTE 2

Any attempts to wind the system clock back to earlier than 1st Jan 1961 will actually deduct the difference
from 6th Feb 2097. However, the system clock (on implementations other than Minerva and SMS) runs
into trouble here because any date later than 3.14:07 on 19th Jan 2029 should produce a negative number
(!) whenever the function DATE is used. However, on non-Minerva ROMs and non-SMS systems, a
positive number is produced, preventing DATE from recognising later dates.

The system clock itself, does however appear able to support dates and times between 0.0:00 on 1st Jan
1961 and 6.28:15 on 6th Feb 2097.

NOTE 3

90 Chapter 8. Keywords A

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

On Minerva v1.63 and Minerva v1.98, the ADATE command did not work properly - use SDATE
DATE+seconds instead!

WARNING

ADATE will affect the time on battery backed clocks unless they are protected in some way (see
PROT_DATE).

CROSS-REFERENCE

DATE$ returns the current system date and time as a string, DATE does the same but in a less readable
form - in seconds after the initial date.

SDATE sets the clock to an absolute date and time.

Battery backed clocks generally have their own methods of altering their date and time.

8.11 ADDREG

Syntax ADDREG
Location TRAPS (DIY Toolkit Vol T)

This function returns the value of the following Machine code address register following the completion
of a MTRAP, QTRAP or BTRAP command.

Command Machine Code Register Value Returned.
MTRAP A0
QTRAP A1
BTRAP A1 (relative to A6) - can be used by BPEEK%.

Example

You could replace the ALCHP function with:

100 bytes=100 : REMark Number of bytes required
110 MTRAP 24,bytes,-1
120 IF DATAREG < 0 : REPORT DATAREG : REMark an error has occurred
130 IF DATAREG (1) < bytes : PRINT 'Requested area not allocated':STOP
140 base=ADDREG

CROSS-REFERENCE

DATAREG allows you to read machine code data registers.

See MTRAP, QTRAP and BTRAP.

8.11. ADDREG 91

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

8.12 ADELETE

Syntax ADELETE filename
Location ATARIDOS

This command is the same as the standard DELETE command, except that it works on Atari and IBM
PS/2 format disks.

NOTE

You will need to pass the filename in quote marks if it includes a three letter extension preceded by a dot
eg:

ADELETE “flp1_TEST.BAS”

CROSS-REFERENCE

See DELETE!

See ADIR, AFORMAT , QACONVERT .

8.13 ADIR

Syntax ADIR [#channel,] device
Location ATARIDOS

This command is the same as DIR except that it works on ATARI disks or IBM PS/2 Disks.

CROSS-REFERENCE

See DIR.

Other commands added are ASTAT , ADELETE, ACOPY and AFORMAT .

8.14 AFORMAT

Syntax AFORMAT device_[name]
Location ATARIDOS

This command formats the specified device in Atari disk format, giving it the specified name (if any).

As with FORMAT, this will normally format a disk to the highest possible density - however, you can
force it to format a disk as single-sided by making the last character of the filename an asterisk (*).

CROSS-REFERENCE

See FORMAT and IFORMAT .

Other commands added are ASTAT , ADELETE, ADIR and ACOPY .

92 Chapter 8. Keywords A

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

8.15 AJOB

Syntax AJOB jobname,priority or
AJOB jobnr,tag,priority or
AJOB job_id,priority

Location Toolkit II

This command forces the specified job (described by either its jobname, its job number and tag, or its
job identification number) to be re-started at the given priority (which should be in the range 0. . . 127 to
maintain Minerva compatability - see SPJOB).

This will only work if the current priority of the given job is set to zero, in any other case, a ‘Not Complete’
(-1) error will be reported.

NOTE

It is possible that on early versions of Toolkit II, only the second syntax works.

CROSS-REFERENCE

SJOB suspends a job.

REL_JOB releases a job.

SPJOB sets the priority of a job without restarting it.

8.16 ALARM

Syntax ALARM hour,minutes
Location Toolkit II

This command creates a Job at low priority which makes the QL sound several beeps when the alarm
time is reached and then removes itself. Naturally, this facility only works if the system clock is correct.

The hour is based on the 24-hour clock and must therefore be specified in the range 0. . . 23 and the minutes
in the range 0. . . 59.

Example

How about a hourly alarm to remind you to switch off the cassette player and listen to the news on the
radio?

100 FOR hour=8 to 18
110 ALARM hour-1,59
120 END FOR hour

CROSS-REFERENCE

Set the system clock with SDATE, adjust it with ADATE.

Alarm jobs can be killed by using RJOB for example.

8.15. AJOB 93

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

8.17 ALCHP

Syntax ALCHP (space) or
ALCHP (space [,[jobID]]) (BTool only)

Location Toolkit II, THOR XVI, BTool

The function ALCHP allocates space bytes in the common heap and returns the start address of the
memory set aside to be altered freely. This, unlike RESPR, works even if there is a task running in
memory.

If ALCHP fails due to lack of available memory, then it will return 0 instead of breaking with error -3
(Out of Memory).

The BTool version of ALCHP allows an extended syntax. If space is followed by a comma ‘,’ then the
allocated memory can only be removed with RECHP or CLCHP (unlike the other versions where this is
done automatically with NEW and CLEAR). If the jobID is specified then not only will this be done, but
the memory will also be linked to the Job identified by jobID.

Example 1

The following program loads two uncompressed screens from

disk into memory and shows them alternately:

100 adr=ALCHP(2*32768)
110 LBYTES flp1_Screen1_scr,adr
120 LBYTES flp1_Screen2_scr,adr+32768
130 REPeat Picture_Show
140 SCRBASE adr : REFRESH : PAUSE 150
150 SCRBASE adr+32768 : REFRESH : PAUSE 150
160 END REPeat Picture_Show

Example 2

This is an alternative to the LRESPR command (although see Note 2 below):

100 DEFine PROCedure LALCHP (mc_file$)
110 LOCal length,adress
120 length=FLEN(\mc_file$)
130 adress=ALCHP(length)
140 LBYTES mc_file$,adress
150 CALL adress
160 END DEFine LALCHP

NOTE 1

ALCHP reserves memory in 512 byte chunks.

NOTE 2

Memory reserved by ALCHP is indirectly cleared by NEW, CLEAR, LOAD and LRUN (this does not
apply to the Btool extended variant - see above).

WARNING 1

94 Chapter 8. Keywords A

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Never run device drivers in the common heap - this memory can be easily cleared, causing a spectacular
crash if a device driver was stored there. This is true for other machine code, too.

WARNING 2

There is no checking on the parameter for ALCHP - accordingly negative values can be supplied. These
are likely to lead to unexpected results and will probably crash the computer - for example, x=ALCHP(-
100) crashes a JM ROM. On a Minerva ROM, values below -5 will return 0. On SMS although only
values below -20 return 0, any attempt to reclaim the areas set aside with CLCHP or RECHP will crash
the system.

WARNING 3

Since ALCHP returns 0 if there is not enough memory, you should always check the value returned by
ALCHP for this before writing to the address. Otherwise, it is possible that you will be over-writing the
operating system. . . crash!

CROSS-REFERENCE

The reserved parts of memory can be given back to QDOS’ memory management by RECHP
base_address or CLCHP.

RESPR, TTALL, ALLOCATION and especially GRAB and RESERVE work similar to ALCHP.

See DEL_DEFB concerning heap fragmentation.

8.18 ALIAS

Syn-
tax

ALIAS old_keyword$ TO new_keyword(ALIAS_CODE) or
ALIAS new_keyword TO old_keyword$(SAILA_CODE)

Loca-
tion

ALIAS (DIY Toolkit - Vol A)

This command is similar to NEW_NAME and REPLACE.

It allows you to assign another name to machine code Procedures and Functions which are currently
resident in memory. Both versions of the command are the same, except that the second variant expects
you to pass the two parameters in the opposite order.

We shall deal with the first variant.

The first parameter (old_keyword$) must appear as a string and is the original name of the Procedure or
Function which is to be renamed. The second parameter (new_keyword) is the new name to be used -
this must not appear as a string, but simply as the actual keyword to use.

The original definition is not lost and therefore you can still use the original name to call the machine
code procedure or function (as well as the new name).

If old_keyword$ does not contain the name of a machine code Procedure or Function, then either a ‘Not
Found’ or ‘Bad Name’ error will be reported.

Example

Try the following short program:

8.18. ALIAS 95

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10 INPUT 'Enter Your Name: '; a$
20 PRINT a$
30 ALIAS 'INPUT' TO XINPUT
40 XINPUT 'Enter My Name with XINPUT: '; s$
50 INPUT 'You can still use INPUT to Enter your Name: ';t$
60 PRINT s$ / t$

NOTE 1

Because the original definition is not lost, you can go on to assign further ‘aliases’ to the original name,
but any attempt to assign an alias to the new name (XINPUT in the above example will give a Not Found
error).

NOTE 2

You should not use ALIAS from within programs compiled with TURBO and SuperCharge.

NOTE 3

If a program compiled with TURBO or SuperCharge reports an error when you try to EXECute the
program, such as ‘SYS_VARS is Not Defined’, you could use ALIAS from SuperBASIC to circumvent
this problem, for example by using:

ALIAS ‘SYSBASE’,’SYS_VARS’

NOTE 4

The new alias is not converted by this command to uppercase - that is up to you (not all keywords are in
uppercase after all).

NOTE 5

You should not use all of the new names set with ALIAS in programs which are to be compiled with
TURBO or SuperCharge if you want to make the most of those compilers. In particular, ALIASes of the
following keywords will cause problems:

RESPR (unless it has been redefined to work in the common heap before you used ALIAS).

RUN, INPUT, READ, EOF, CLEAR, DIMN, STOP, NEW and various TURBO toolkit commands.

You will also lose out on optimisations on the following:

PRINT, BLOCK, CODE, CHR$, LEN, PI, PEEK, PEEK_W, PEEK_L, POKE, POKE_W and POKE_L.

NOTE 6

If you wish to use ALIAS for MODE and use Speedscreen, ensure Speedscreen is loaded and enabled
before you use ALIAS (Speedscreen redefines MODE).

If you wish to use ALIAS for mathematical functions and use the Lightning fast maths routines, again,
ensure that Lighning maths is loaded before you use ALIAS if you want the faster routines implemented
by Lightning.

NOTE 7

If you want to use this command from within a Multiple SBASIC on SMS or a MultiBASIC on Minerva,
you will need to use the variant of the command implemented in the file SAILA_CODE.

CROSS-REFERENCE

See also REPLACE and NEW_NAME.

96 Chapter 8. Keywords A

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

_NAME$ allows you to look at the name table.

8.19 ALINE

Syntax ALINE x1,y1 TO x2,y2, Colour
Location Shape Toolkit

This command quickly draws a line between the specified absolute, window independent co-ordinates,
(x1,y1) and (x2,y2), on the screen. ALINE uses XOR mode, which means that the line can be removed
without destroying the contents of the screen by drawing exactly the same line again. - This does however
mean that the colour of the line as it appears on screen may not be the same as the specified parameter
(see OVER -1).

Example

The procedure HAIRCROSS x,y allows you to move a cross wire around the screen with the cursor keys,
to alter the values of x and y. Press <SPACE> to make x and y equal the new values, or press <ESC> to
keep the old values.

100 DEFine PROCedure HAIRCROSS (px,py)
110 LOCal Size,Key,Stepp,old_px,old_py
120 Size=31 : old_px=px : old_py=py
140 REPeat Move_it
150 CROSS px,py
160 REPeat Wait_for_key
170 Key=KEYROW(1): Stepp=4*(KEYROW(7))+1
180 IF Key THEN EXIT Wait_for_key
190 END REPeat Wait_for_key
200 CROSS px,py
210 IF Key&&2 THEN px=px-Stepp
220 IF Key&&16 THEN px=px+Stepp
230 IF Key&&4 THEN py=py-Stepp
240 IF Key&&128 THEN py=py+Stepp
250 IF px<Size THEN px=Size
260 IF px>511-Size THEN px=511-Size
270 IF py<Size THEN py=Size
280 IF py>255-Size THEN py=Size
290 SELect ON Key
300 =64: EXIT Move_it
310 =8: px=old_px: py=old_py
320 EXIT Move_it
330 END SELect
340 END REPeat Move_it
350 END DEFine HAIRCROSS
360 :
370 DEFine PROCedure CROSS (ax,ay)
380 ALINE ax-Size,ay-Size TO ax+Size,ay+Size ,7
390 ALINE ax+Size,ay-Size TO ax-Size,ay+Size ,7
400 END DEFine CROSS

8.19. ALINE 97

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE 1

ALINE assumes that the screen starts at $20000 and will therefore not work on Minerva’s / Amiga
QDOS’s / QDOS Classic’s second screen or on higher resolution displays.

NOTE 2

ALINE also assumes that the screen measures 512x256 pixels and cannot therefore work on higher res-
olution screens.

NOTE 3

ALINE only works in MODE 4.

CROSS-REFERENCE

DRAW has the same syntax as ALINE but does not work in XOR mode.DRAW is also able to draw lines
on screens stored in memory.

LINE and LINE_R are much more flexible.

8.20 ALLOCATION

Syntax ALLOCATION (bytes [,taskno%,tasktag%])
Location Turbo Toolkit

This function is very similar to RESERVE. It allocates an area in the common heap which may be asso-
ciated with a specified job. If taskno% and tasktag% are not specified, then the area is linked with the
current job and removed when the current job is removed.

CROSS-REFERENCE

DEALLOCATE should be used to remove the allocated area.

The taskno% and tasktag% can be found using JOBS or LIST_TASKS.

8.21 ALPHA_BLEND

Syntax ALPHA_BLEND opacity%
Location SMSQ version 3.26

Alpha-blending is a method of drawing graphics whereby the resultant output is partly transparent –
overlapping shapes and text created with BLOCK, LINE, CIRCLE, PRINT etc. will be see-through to
a degree, set by a new command ALPHA_BLEND. This takes a value from 0 (fully transparent) to 255
(opaque), ALPHA_BLEND 128 will make all output half-transparent, for example.

In the past, we have only had the variations offered by the OVER command, now we can achieve some
pretty exciting graphical effects for use in games, for example. Here’s an example which draws three
overlapping circles which are half-transparent:

98 Chapter 8. Keywords A

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

1000 PAPER 0: CLS
1010 ALPHA_BLEND 128
1020 FILL 1: INK 2: CIRCLE 40, 50, 20
1030 FILL 1: INK 4: CIRCLE 65, 50, 20
1040 FILL 1: INK 1: CIRCLE 50, 75, 20
1050 CSIZE 2,0: AT 10,4: INK 7: PRINT "Alpha blending!"
1060 STOP

In addition to the ALPHA_BLEND command, A new trap #3 with D0=$62, d1=alpha weight 0-255,
d3.w=timeout and a0=channel ID allows the alpha-blend value to be set from assembler and other lan-
guages.

8.22 ALT

Syntax ALT
Location Beuletools

This function returns the control codes needed to switch to the alternative font (normally italics) on an
EPSON compatible printer:

PRINT #ch,ALT

is therefore equivalent to:

PRINT #ch,CHR$(27)&"6"

CROSS-REFERENCE

NORM, BLD, EL, DBL, ENL, PRO, SI , NRM, UNL, ESC, FF, LMAR, RMAR, PAGDIS, PAGLEN .

8.23 ALTER

Syntax ALTER ‘variable’ TO value
Location ALTER (DIY Toolkit - Vol U)

This command works alongside SET from the same toolkit and allows you to re-define the universal
constants created with SET.

Unlike SET, the constant to be re-defined must appear in quotes as the first parameter (otherwise the
value of the constant is passed to be altered by the command!!). As with SET, the constant and the value
must be of the same type, otherwise an ‘error in expression’ will be reported.

If the constant has not previously been defined with SET, then if it is recognised for some other reason
an ‘In Use’ error will be reported. If it is not recognised at all, then ‘Not Found’ will be reported.

Unlike SET, you can use ALTER from any program which is being used on the QL and therefore you can
use this to update constants or possibly device names (or anything else you can invent).

8.22. ALT 99

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Example

Set the following from SuperBASIC:

10 SET DEF_DRIVE$ TO ‘flp1_’

If whilst using another program, the user re-defines the default device, that program can use a line such
as: ALTER ‘DEF_DRIVE$’ TO ‘win1_prog_’ which will then alter the default device for all programs
which read this constant.

NOTE

ALTER does not work on SMS.

CROSS-REFERENCE

See SET .

8.24 ALTKEY

Syntax ALTKEY character$,string$ [,string2$ [,string2$. . .]] or
ALTKEY character$ or
ALTKEY

Loca-
tion

Toolkit II

This command defines a key macro which will be typed into the computer when you press the <ALT>
key at the same time as the <character$> key. If more than one string follows the definition, then an
<ENTER> (line feed) character is inserted between each string.

ALTKEY without any parameters deletes all previously defined ALTKEYs, whereas ALTKEY charac-
ter$ will just kill the specified definition (whether there was one or not).

A line feed will not be appended to the final string unless you add a nul string to the definition.

Example 1

ALTKEY “ “,”RUN”,”” types in RUN <ENTER> if <ALT><SPACE> is pressed.

ALTKEY”a”,”flp1_” types in flp1_ when <ALT><A> is pressed.

ALTKEY removes all ALTKEY definitions.

ALTKEY “a” remove definition for <ALT><A>.

ALTKEY 1,”1000” same as ALTKEY “1”,”1000”

Example 2

There are many programs which do not support the Toolkit II default device names and sub-directories.

To avoid having to enter FLP1_Archive_Adresses_ in front of every file name, one could compile the
following line, then EXECute the resultant program (using EX or EXEC) with the priority set to 1.

100 PRIO 1
110 REPeat Always
120 ALTKEY "p",DATAD$

(continues on next page)

100 Chapter 8. Keywords A

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

130 ALTKEY "P",PROGD$
140 END REPeat Always

You can replace PRIO by QP QMYJOB,1 with QLiberator or PRIORITY 1 with Turbo, or SPJOB -1,1
with Toolkit II

NOTE 1

If character$ is an upper case letter, then you will need to press <ALT><SHIFT> and the <key> (or
<ALT><key> in CAPSLOCK) to call the macro.

NOTE 2

The combination <ALT><ENTER> is always set aside for the last line recall (ie. when these two keys are
pressed all characters typed inbetween the last two <ENTER>s are put into the keyboard buffer again).

NOTE 3

The Hotkey System is usually configured to type in the Hotkey Stuffer contents if <ALT><SPACE> is
pressed.

<ALT> <SHIFT> <SPACE> gets previous Stuffers.

WARNING

If you have Hotkey System II loaded, then ALTKEY will not have any effect until you use the HOT_GO
command.

CROSS-REFERENCE

FORCE_TYPE and STAMP allow programs to access the keyboard, KEY defines macros on function
keys.

8.25 AND

Syntax condition1 AND condition2
Location QL ROM

This combination operator combines two condition tests together and will have the value 1 if both con-
dition1 and condition2 are true or 0 if either condition1 or condition2 are false.

A value is said to be false if it is equal to zero, anything else will cause that value to be true.

Please note the difference between this and the bitwise and operator: x&&y, which compares x and y bit
by bit.

Examples

PRINT 1 AND 0 Returns 0

PRINT 12 AND 10 Returns 1

(compare PRINT 12&&10 which returns 8).

8.25. AND 101

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10 FOR x=1 TO 5
20 FOR y=1 TO 5
30 IF x=3 AND y>3 THEN PRINT x;' => ';y,
40 END FOR y
50 END FOR x

produces the following output:

3=>4 3=>5

CROSS-REFERENCE

OR, NOT and XOR are the other combination operators.

8.26 APOINT

Syntax APPOINT x,y,colour
Location Shape Toolkit

This command is similar to POINT, except that it uses absolute co-ordinates and plots the point in XOR
mode (as with ALINE).

NOTE

APOINT suffers from the same problems and limitations as ALINE.

CROSS-REFERENCE

Use POINT instead!!

8.27 APPEND

Syntax APPEND file1,file2
Location ST/QL

This command allows you to merge two files together by appending file2 to the end of file1.

NOTE

Both file1 and file2 must include the device name.

CROSS-REFERENCE

The THOR XVI has a special form of COPY which is similar to this.

102 Chapter 8. Keywords A

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

8.28 AQCONVERT

Syntax AQCONVERT filename
Location ATARIDOS

This command takes a file which is stored on a QL Format disk and presumes that it was originally an
Atari format file. It will then convert special characters in that file to QL compatible characters as well
as converting any occurence of a Carriage Return character (CR) followed by a Line Feed character (LF)
to a single Line Feed character LF.

CROSS-REFERENCE

Compare IQCONVERT and QACONVERT .

See also ACOPY and QCOPY .

8.29 ARC

Syntax ARC [#ch][,x1,y1] TO x2,y2,angle *[[;xi,yi] TO xj,yj,anglej]*

Location QL ROM

ARC causes the two points at the co-ordinates (x1,y1) and (x2,y2) to be connected with an arc. The arc is
defined as the sector of the circle formed by drawing two straight lines from the two given co-ordinates to
the centre of the circle, where angle is the angle (in radians) between those two lines. Therefore, angle=0
is a straight line and angle=PI, half a circle.

It therefore follows that the greater ABS(angle), the more pronounced is the curve on the arc.

Multiple arcs can be draw with the same command by adding extra sets of parameters for each additional
arc. For example:

ARC 100,10 TO 120,40,3 TO 80,70,3

will actually draw two arcs, one between the points (100,10) and (120,40) with angle=3 and the second
between the points (120,40) and (80,70), also with angle=3.

When drawing multiple arcs, there is actually no need for the next arc in the series to begin at the end of
the previous arc, provided that a semicolon ‘;’ is inserted between each set of parameters. For example:

ARC 100,10 TO 120,40,3;30,40 TO 50,60,3

Whether the arc is drawn clockwise or anti-clockwise depends upon two factors: If y1>y2 and angle>0,
then the arc will be drawn anti-clockwise. Swapping the two co-ordinates or making the angle negative
will force the arc to be drawn clockwise.

Co-ordinates refer to the window relative graphic co-ordinate system, which is relative to the graphic
origin. The size and position of the arc also depend upon the SCALE of the window. If no first point is
given then the current position of the graphic cursor is used. The graphic cursor is set to the last point of
the arc on completion of the command.

Example 1

8.28. AQCONVERT 103

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

100 WINDOW 448,200,32,16: CLS: SCALE 4,-2,-2
110 FOR t=PI/16 TO 2*PI STEP PI/16
120 ARC SIN(t),COS(t) TO COS(t),SIN(t),PI*SIN(t/2)
130 END FOR t

Example 2

100 WINDOW 448,200,32,16: CLS: SCALE 100,0,0
110 FOR x=10 TO 90 STEP 10
120 FOR y=10 TO 90 STEP 10
130 ARC x,y TO y,x,PI/2
140 END FOR y
150 END FOR x

Example 3

100 POINT #2,150,50
110 FOR x=50 TO 150 STEP 20
120 ARC #2 TO x,50,PI/2
130 END FOR x

NOTE 1

On non Minerva v1.89+ ROMs, ARC does not work properly - small angles produce rubbish, wrong
co-ordinates are used and the last pixel of the arc is not always drawn. Even SMS does not cure these
problems.

NOTE 2

An angle of 2*PI would form a complete circle and cannot be drawn, therefore the maximum value for
ABS(angle) is a value just less than 2*PI.

NOTE 3

On some ROM versions, the command does not check that the TO separator is present - however, SMSQ/E
(at least) does and therefore some programs may fail if used under SMSQ/E and they have used a comma
instead of TO.

WARNING

Some QDOS implementations of this command can corrupt the hard disk drive in some obscure circum-
stances. Get Minerva or SMSQ/E to be safe!!

CROSS-REFERENCE

ARC_R works in exactly the same way as ARC but uses a relative co-ordinate system, where the origin
is the current position of the graphic cursor.

SCALE sets the graphic origin and also the size of the window.

104 Chapter 8. Keywords A

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

8.30 ARC_R

Syntax ARC_R [#ch][,x1,y1] TO x2,y2,angle *[[;xi,yi] TO xj,yj,anglej]*

Location QL ROM

This command draws an arc relative to the current graphic cursor. This means that rather than the co-
ordinates (x,y) being relative to the graphic origin, they are relative to the current graphic cursor. Arcs
are however still affected by the current SCALE.

Each set of co-ordinates used in the ARC_R command moves the graphic cursor, which means for exam-
ple that (x1,y1) is relative to the graphic cursor when ARC_R is first called, whereas (x2,y2) is relative to
(x1,y1).

Example 1

A short program to draw several equi-distant arcs using ARC_R:

100 WINDOW 448,200,32,16:SCALE 100,0,0
110 PAPER 0:INK 4:CLS
120 ARC 20,20 TO 90,20,PI/4
130 FOR i=1 TO 4
140 ARC_R 0,10 TO -70,0,-PI/4
150 ARC_R 0,10 TO 70,0,PI/4
160 END FOR i

Example 2

The same routine, but altered to use ARC:

100 WINDOW 448,200,32,16:SCALE 100,0,0
110 PAPER 0:INK 4:CLS
120 ARC 20,20 TO 90,20,PI/4
130 FOR i=30 TO 100 STEP 10
140 ARC 20,i TO 90,i,PI/4
150 END FOR i

CROSS-REFERENCE

The graphic cursor is moved with commands such as POINT , ARC, CIRCLE and LINE.

Please also see ARC.

8.31 ARCOSH

Syntax ARCOSH (x)
Location Hyper

This function returns the arc hyperbolic cosine of the specified value, that is to say it will return the value
which must be passed to the hyperbolic cosine to return the given result, so:

8.30. ARC_R 105

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

COSH (ARCOSH (x)) = x

The ARCOSH function can be expressed as a combination of SuperBASIC keywords: it’s the same as:

LN(x + SQRT(x*x-1)).

CROSS-REFERENCE

See ACOS, ASIN , ACOT , ATAN , COSH, ARCOTH, ARSINH and ARTANH.

8.32 ARCOTH

Syntax ARCOTH (x)
Location Hyper

This function returns the arc hyperbolic cotangent of the specified value ie.

ARCOTH (COTH (x)) = x

Or to keep it simple, it can be returned with the equivalent expression LN((x+1) / (x-1)) / 2

CROSS-REFERENCE

See ACOT , ARCOSH, and ARTANH.

8.33 ARSINH

Syntax ARSINH (x)
Location Hyper

This function is the arc hyperbolic sine (ie. the complementary function to SINH).

The SuperBASIC expression:

LN(x + SQRT(x*x-1))

gives the same value.

CROSS-REFERENCE

See ASIN , ARCOSH, and ARCOTH.

106 Chapter 8. Keywords A

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

8.34 ARTANH

Syntax ARTANH (x)
Location Hyper

The function ARTANH returns the value which must be passed to TANH to give the specified result, so:

TANH (ARTANH (x)) = ARTANH (TANH (x)) = x

ARTANH(x) could be replaced by: LN((1+x) / (1-x)) / 2

CROSS-REFERENCE

See ATAN , ARCOTH, and ARSINH.

8.35 ASIN

Syntax ASIN (x)
Location QL ROM

This function calculates the arc-sine (in radians) which is the opposite of the sine function, ie:

x = SIN (ASIN (x)) = ASIN (SIN (x))

The only valid values of x are in the range -1. . . 1. This means that the range of angles supported by
this command are -PI/2. . . PI/2. A negative angle means that the hypotenuse appears below the base line
of the triangle (you must therefore always bear the orientation of the screen in mind when using this
command).

Example

Given that there are two points on the screen at (10,20) and (100,75), find the angle of the line between
those two points (from the horizontal):

100 PRINT CALC_ANGLE(10,20 TO 100,75)
110 STOP
120 :
200 DEFine FuNction CALC_ANGLE(x1,y1,x2,y2)
210 LOCal Distan, Radian_angle
220 Distan = SQRT((x2-x1)^2 + (y2-y1)^2)
230 Radian_angle = ASIN((y2-y1) / Distan)
240 RETurn DEG(Radian_angle)
250 END DEFine

MINERVA NOTE

On a Minerva you can replace line 220 with: 220 Distan = ABS(x2-x1,y2-y1)

CROSS-REFERENCE

ACOS, ATAN , ACOT are other arc functions, SIN , COS, TAN and COT their relatives.

Please also see the Mathematics section of the Appendix.

8.34. ARTANH 107

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Compare ARSINH.

8.36 ASK

Syntax ASK ([#wind,] question$)
Location BTool

ASK is a function which prints the question$ (plus a question mark (?) if this was not found at the end
of the string), enables the text cursor and reads the keyboard. If the next key pressed is <Y> (for Yes),
<J> (for Ja) or <N> (for No or Nein) then ASK will disable the cursor, echo the key next to the prompt
and return 1 if either <Y> or <J> was pressed, or 0 if <N> was pressed. If any other key is pressed, ASK
will BEEP and try again.

Example

In early computer days, this was a classical game which needed a hundred lines on a (modern at the time)
programmable pocket calculator:

100 CLS: x1 = 0: x2 = 100
110 PRINT "I am going to find out a number"
120 PRINT "from"!x1!"to"!x2!"which only you know."\\
130 REPeat find_out
140 PRINT x1;"..";x2
150 x = (x2+x1) DIV 2
160 ok = ASK("Is it "&x)
170 IF ok THEN EXIT find_out
180 IF x1 = x2 THEN PRINT "You are cheating.": STOP
190 large = ASK(x&" too large")
200 IF large THEN x2 = x-1: ELSE x1 = x+1
210 END REPeat find_out
220 PRINT "Yippee, I found it."

NOTE

ASK is set up for ‘yes’ and ‘no’ in English and ‘ja’ and ‘nein’ in German. For other languages where
‘yes’ is not usually connected with <Y>, eg. ‘oui’ in French or ‘si’ in Spanish, you will need to write
your own routine.

CROSS-REFERENCE

CUR, REPLY .

108 Chapter 8. Keywords A

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

8.37 ASTAT

Syntax ASTAT [#channel,]
Location ATARIDOS

This command is similar to ADIR except that it also provides extra information, such as the length of
each file, the update time and any marks folder.

CROSS-REFERENCE

See ADIR. WSTAT is similar on QL Format disks.

Other commands added are ADELETE, ACOPY and AFORMAT .

8.38 AT

Syntax AT [#ch,] row, column or
AT [#ch,] column,row (pre AH ROMs only)

Location QL ROM

This command sets the current print position in the given window (default #1) to the given row and
column number. The top left hand corner of any window is always the position (0,0), however, the
maximum values of the row and column numbers depends on both the size of the window and the current
character size. Anything outside of this will give the error ‘Out of Range’ (-4).

Unlike the PRINT parameter TO, this command does not print any spaces on screen, thus allowing you
to place text precisely on screen without deleting any other parts of the screen.

Unfortunately for users who learnt to program on early versions of Sinclair BASIC (on the ZX81 or
Spectrum), this command is implemented differently.

Some implementations of BASIC allow you to set the print position from within the PRINT command,
for example:

PRINT AT 3,5;’Hello’

On the QL, you would need the line:

AT 3,5: PRINT ‘Hello’

Example

A program which uses the AT command to create an interesting effect on screen. This will not work on
pre JS ROMs as it relies upon the WHEN ERRor command:

1000 WHEN ERRor
1010 IF ERR_OR THEN dir1=-dir1: y=y-2: RETRY 1070
1020 END WHEN
1025 :
1030 MODE 4:WINDOW 448,200,32,16:CSIZE 0,0
1040 x=0: dir1=1
1050 FOR y=0 TO 63

(continues on next page)

8.37. ASTAT 109

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

1060 AT x,y:PRINT 'Sinclair QL'
1070 x=x+dir1
1080 END FOR y

NOTE

On early QL ROMs (pre AH), the parameters were mixed up meaning that the syntax was AT column,row.
This can of course create many problems in uncompiled SuperBASIC, however, there should not be many
of these machines left.

If you do have one of these early machines, it is recommended that you do update the ROM.

CROSS-REFERENCE

CSIZE sets the current character size for the given window

WINDOW alters the physical size of a given window.

CURSOR allows you to set the print position more exactly.

PRINT actually prints things on screen at the current print position.

VER$ allows you to check the ROM version.

Also see LEFT .

8.39 ATAN

Syntax ATAN (x) or
ATAN (x,y) (Minerva and SMS only)

Location QL ROM

The function ATAN, is the arc-tangent function, that is to say the inverse of the tangent function (TAN
in SuperBASIC).

TAN (ATAN (x)) = x

for all values of x, but due to the fact that TAN works on periods; ATAN (TAN (x)) = x

is only true for where: -PI/2 < x < PI/2.

A negative angle indicates that the hypotenuse appears below the base line of the triangle, and it is
therefore important to bear in mind the orientation of the screen when using this command.

NOTE 1

Because trigonometrical functions are calculated using polynomial approximations, large parameters can
produce small errors.

For example, on all implementations:

PRINT TAN (ATAN (123456))

gives 123461.2 instead of 123456.

The maximum error rises in direct proportion to the parameter for the above example.

110 Chapter 8. Keywords A

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE 2

There is a very obscure bug contained in the code for ATAN which means that the command may crash
on non-Minerva ROMs if used in a program which is longer than 32K.

MINERVA NOTE

ATAN can accept two parameters. If you specify two parameters then ATAN(x,y) will give the angle
from the origin to the point (x,y). This is actually the same as ATAN(y/x), although it does also cater for
when x=0 which would otherwise give an overflow error.

This variant also supports a full circle, for example the following can be used to calculate the bearing
travelled (with 0 degrees being north), given that you have moved x miles east (or west if x<0) and y
miles north (or south if y<0):

100 DEFine PROCedure BEARING (x,y)
110 direction=DEG (ATAN (y,x))
120 IF x>=0: RETurn direction: ELSE RETurn 360+direction
130 END DEFine

The need for line 120 is because the value returned by ATAN is in the range -PI . . . PI (which converts
to -180 . . . +180 degrees) - the value returned needs to be in the range 0 . . . 360. Note that x and y are
swapped around in line 110 - this is to circumvent the problem that a bearing of 0 is north, whereas in
the mathematical functions, a zero is taken to be horizontal.

SMS NOTE

The ATAN function has been extended to be the same as on Minerva, although the range of values it
returns have been made into four quadrant results (as with ATN2), so that for ATAN(x,y) if x>0, the
result is now in the range -PI/2. . . PI/2 instead of the usual 0. . . PI.

CROSS-REFERENCE

TAN , ATN , ATN2 and ARTANH. Also please refer to the Mathematics section in the Appendix.

8.40 ATARI

Syntax ATARI
Location Beuletools

On the Atari QL-Emulator, this command switches to Atari mode. Naturally, on other machines, it has
no effect. It will also fail if a QL ROM was found at the start address of the ROM-TOS ($FC0000) - it is
possible to load QDOS to that address.

NOTE

The FN Toolkit (pre v1.04) contained a function of the same name which had a different effect - this has
now been renamed QuATARI (see below).

WARNING

This command will most probably fail on the latest ST/QL drivers.

CROSS-REFERENCE

See QuATARI .

8.40. ATARI 111

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

8.41 ATARI_EXT

Syntax ATARI_EXT
Location ATARI_REXT (v2.15+)

The Atari QL-Emulators come with the additional toolkits, ATARI_REXT and ATARIDOS.

This command is used to enable various commands in the ATARI_REXT toolkit as well as the sound
extensions (such as BELL).

It therefore replaced the original SND_EXT command.

WARNING

ATARI_REXT pre v2.37 may crash SMS.

CROSS-REFERENCE

See TK2_EXT and Beule_EXT .

See also SND_EXT .

8.42 ATN

Syntax ATN (x)
Location Math Package

This function is the same as the original QL ROM variant of ATAN.

NOTE

ATN has been implemented to make porting programs written in other BASIC dialects easier.

CROSS-REFERENCE

See ATAN .

8.43 ATN2

Syntax ATN2 (x,y)
Location Math Package

ATN2 calculates ATAN(x/y) but expands the result from 0. . .PI to -PI. . . PI which allows you to convert
cartesian and polar co-ordinates in both directions without loss of information.

Example

Run this graphics demonstration and you will understand the advantage of ATN2 and the difference from
ATAN:

112 Chapter 8. Keywords A

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

100 WTV 4: SCALE 4,-3,-2: INK 7
110 PAPER 0: OVER -1: CLS
120 radius=1.5: reso=128
130 FOR angle0=PI/reso TO 2*PI STEP PI/reso
140 x0=radius*COS(angle0): y0=radius*SIN(angle0)
150 angle1 = ATAN(y0/x0)
160 x1=radius*COS(angle1): y1=radius*SIN(angle1)
170 angle2 = ATN2(x0,y0)
180 x2=radius*COS(angle2): y2=radius*SIN(angle2)
190 ARRAYS: PAUSE 2: ARRAYS
200 END FOR angle0
210 :
220 DEFine PROCedure ARRAYS
230 INK 3
240 FILL 1: CIRCLE 1.25*x0,1.25*y0,5E-2: FILL 0
250 IF x1==x2 AND y1==y2 THEN
260 INK 7: LINE x1/5,y1/5 TO x1,y1: INK 5
270 CURSOR x1,y1,0,0: PRINT "ATAN/ATN2"
280 ELSE
290 INK 7: LINE x1/5,y1/5 TO x1,y1: INK 5
300 CURSOR x1,y1,0,0: PRINT "ATAN"
310 INK 7: LINE x2/5,y2/5 TO x2,y2: INK 5
320 CURSOR x2,y2,0,0: PRINT "ATN2"
330 END IF
340 angle=INT(DEG(angle0))
350 CURSOR 0,0,-3*LEN(angle),-5: PRINT angle
360 END DEFine ARRAYS

CROSS-REFERENCE

ATAN which is the same on Minerva and SMS.

8.44 AUTO

Syntax AUTO [start_number][,step]
Location QL ROM

This command automatically creates line numbers in the command line (#0) to assist in entering Super-
BASIC programs. It would normally only be entered as a direct command (although you can include it
in a program line, the line numbers will not be generated until the program has finished its work).

Once entered, you will be presented with the first line start_number (default 100) - if this line already
exists in the program, then the existing line will be presented. Otherwise, you will only see the current
line number. Pressing the up and down arrow keys will move you to the previous line or the next line
(respectively) in the program, although if there is no previous (or next) line, then you will exit the AUTO
mode. However, if you press the Enter key, the next line number will be generated by adding step (default
10) to the current line number.

If you wish to escape this sequence, press the Break key <CTRL><SPACE>.

8.44. AUTO 113

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Example 1

Generating program lines: AUTO 1000,10

generates lines 1000,1010,1020,1030,. . . AUTO 10

generates lines 10,20,30,40,. . . . AUTO ,5

generates lines 100,105,110,115,. . .

Example 2

Adding line numbers to a numberless boot program: AUTO 100,10: MERGE flp1_boot

NOTE 1

A step value of zero returns ‘Bad Parameter’ (-15). You can however achieve this by using EDIT
start_number instead.

NOTE 2

Did you realise that AUTO 200,10 is the same as EDIT 200,10 ?

NOTE 3

On non-Minerva ROMs AUTO uses the same routine as RENUM to check its parameters, which means
that you can specify a start_line and an end_line, although they do nothing. For example:

AUTO 100 TO 1000;1000,20

would create lines 1000,1020,1040,. . .

NOTE 4

The maximum line number is 32767 - trying to use a higher line number will cause an overflow error.

NOTE 5

If start_number and step are not integer numbers, they will be rounded either up or down to the nearest
integer (compare INT).

SMS NOTE

On current versions of SMS AUTO has been re-coded to be the same as ED, therefore it will not allow a
second parameter, and merely places you in ED mode with the cursor at the specified start line number.

CROSS-REFERENCE

Please refer to EDIT which is very similar.

DLINE allows you to delete SuperBASIC lines.

8.45 AUTO_DIS

Syntax AUTO_DIS
Location Super Gold Card, Gold Card v2.67+

The Super Gold Card allows you to automatically start-up the QL (overcoming the need to press F1 or
F2 on the title screen), and also automatically start up Toolkit II.

This command switches off these features.

114 Chapter 8. Keywords A

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE 1

On Minerva these commands only dictate whether Toolkit II should automatically be started up, as Min-
erva contains its own auto-boot code.

NOTE 2

These commands have no effect under SMSQ/E which already includes Toolkit II and does not show a
start-up screen.

CROSS-REFERENCE

SeeAUTO_TK2F1 and AUTO_TK2F2 also.

8.46 AUTO_TK2F1

Syntax AUTO_TK2F1
Location Super Gold Card, Gold Card v2.67+

The Super Gold Card allows you to automatically boot up the machine whenever it is switched on or
reset.

This command enables this auto-booting (starting the machine up in Monitor mode) and also ensures
that Toolkit II is initialised as soon as the machine is switched on. The status set by this command is
remembered by the Super Gold Card even when the power is disconnected.

CROSS-REFERENCE

See also AUTO_DIS and AUTO_TK2F2.

TK2_EXT is needed to initialise Toolkit II if this command has not been used.

8.47 AUTO_TK2F2

Syntax AUTO_TK2F2
Location Super Gold Card, Gold Card v2.67+

This command is the same as AUTO_TK2F1 except that the machine is started up in F2 TV mode.

CROSS-REFERENCE

See AUTO_TK2F1.

8.46. AUTO_TK2F1 115

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

8.48 A_BLANK

Syntax A_BLANK [minutes]
Location ST/QL (Pre v2.24)

This command creates a small job which blanks out the screen if a key has not been pressed for a specified
number of minutes (default 5).

This command is useful, because if a very bright picture is drawn on screen (eg. a white line on black
paper), and the screen does not alter, this can lead to what is known as ‘burn in’ when the monitor screen
becomes permanently marked with the ‘ghost’ of the picture. This does not tend to happen very often
nowadays, but in the past, monitors tended to become unuseable as more and more of their screen became
covered with these ‘ghosts’.

NOTE

This command will only work within the Pointer Environment.

CROSS-REFERENCE

BLS is a similar function under SERMouse.

8.49 A_EMULATOR

Syntax A_EMULATOR
Location ATARI_REXT v2.22+

This function returns a number to signify the type of ST/QL EMulator which is being used with the Atari
computer. The value returned may be one of the following:

• 0 - QL Emulator (the original QL Emulator)

• 1 - Extended-Mode4 Emulator

• 2 - QVME Emulator

NOTE 1

This will only work with Level E-20 of the Drivers or later.

NOTE 2

It is impossible to tell whether the original QL Emulator supports MODE 8 or not.

NOTE 3

You can also use DISP_TYPE to find out the Emulator type.

CROSS-REFERENCE

See also PROCESSOR and MACHINE.

116 Chapter 8. Keywords A

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

8.50 A_MACHINE

Syntax A_MACHINE
Location ATARI_REXT v2.22+

This function is the same as MACHINE.

CROSS-REFERENCE

SeeMACHINE and also A_EMULATOR.

8.51 A_OLDSCR

Syntax A_OLDSCR
Location ATARI_REXT (v2.27+)

A lot of software (mainly non-pointer driver programs), and some of the toolkits covered by this book,
written for the Sinclair QL in the past always assumed that the QL screen would appear at the memory
location 131072 ($20000 in hexadecimal).

These programs and toolkits will not work properly (if at all) on the QVME board or some higher res-
olution screens. One of the solutions to this is to use the command A_OLDSCR which forces ST/QL
Emulators to set up a Job copying the QL’s screen as stored at 131072 (onwards) to the real display screen
20 times a second. This obviously slows down the operation of the computer and thus if possible, a new
version of the software should be produced / obtained.

As from v2.30, this command will not affect the display speed as much on a machine fitted with a blitter
chip.

NOTE 1

This command cannot fix the problem with programs and toolkits which assume that the QL’s display is
512x256 pixels.

NOTE 2

This command reports ‘Not Implemented’ on other ST-QL Emulators.

NOTE 3

SuperBasic (Job 0) must be the only Job running on the machine when this command is issued, otherwise
the error ‘Not Complete’ is reported.

NOTE 4

If you try to use this command after it has already been issued, the errror ‘Already Exists’ is reported.

CROSS-REFERENCE

SCREEN can be used to find the screen address.

SCR_SIZE can be used to set the resolution of the display - much software will insist that this is set to
512x256 pixels also.

8.50. A_MACHINE 117

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

8.52 A_PROCESSOR

Syntax A_PROCESSOR
Location ATARI_REXT v2.22+

This function is the same as PROCESSOR.

CROSS-REFERENCE

See PROCESSOR!

8.53 A_RDATE

Syntax A_RDATE
Location ATARI_REXT (v2.10+)

This command sets the QL’s internal clock to the date and time contained in the battery-backed clock on
the ST (if available).

NOTE

Before v2.28, this command did not support the TT’s battery backed clock.

CROSS-REFERENCE

See A_SDATE.

8.54 A_SDATE

Syntax A_SDATE year, month, day, hour, minute, second
Location ATARI_REXT

The Atari ST has a built in battery-backed clock which maintains the time whilst the machine is switched
off. This time is automatically copied across to the Emulator’s own internal clock when the Atari ST is
started up. However, it can be necessary to alter the Atari’s battery backed clock.

This is achieved by using the command A_SDATE in exactly the same way as you would use SDATE to
set the internal clock.

NOTE 1

Before v2.19 of Atari_rext (and in v2.23), this command will not alter the Emulator’s internal clock until
the Atari is reset.

NOTE 2

Before v2.29, this command did not support the TT’s battery backed clock.

CROSS-REFERENCE

See SDATE.

118 Chapter 8. Keywords A

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

A_RDATE will set the internal clock to the same date and time as the battery backed clock.

8.55 A_SPEED

Syntax A_SPEED value
Location ATARI_REXT

Due to the enhanced hardware on which the ST/QL Emulator is running, you may find that as with the
QXL, Super Gold Card and Gold Card, some programs run too quickly. The command A_SPEED allows
you to slow the Emulator down so that you can use these programs. value must be in the range 0..7.

0 allows the Emulator to run at full speed, whereas 7 makes it run very slowly.

CROSS-REFERENCE

SLUG is very similar.

8.55. A_SPEED 119

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

120 Chapter 8. Keywords A

CHAPTER

NINE

KEYWORDS B

9.1 BASIC

Syntax BASIC [(offset)]
Location BTool

The function BASIC is identical to BASICP except that if no parameter is supplied, the function BASIC
will return the base address of the SuperBASIC program area.

NOTE

Although this function is written in such a way that it can be used from within compiled programs to
access SuperBASIC variables, it cannot access MultiBASIC variables on Minerva nor SBASIC variables
on SMS and will always return a value representing the location of the equivalent SuperBASIC variable.

WARNING

You should use commands such as the extended PEEK or POKE provided by Minerva and SMS to read
or set the tables pointed to by the values returned by this function, as the SuperBASIC tables can move
when tasks are started up or removed from memory.

CROSS-REFERENCE

See BASICP and BASIC_W .

9.2 BASICP

Syntax BASICP (offset)
Location TinyToolkit

This function returns an internal pointer (address) used by the SuperBASIC interpreter. offset must be
non-negative and a multiple of 2 (up to a maximum of HEX(‘64’).

Refer to system documentation for more information.

Example

PRINT BASICP(16)

returns the start address of the current SuperBASIC program in memory.

121

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

PRINT BASICP(32)

returns the start address of the SuperBASIC name list.

NOTE

This suffers from the same problem as BASIC.

CROSS-REFERENCE

BASIC_B, BASIC_L, BASIC_W . See NEW_NAME for a useful example!

BASIC_POINTER is the same as this function.

_NAME$ and BASIC_NAME$ allow you to access the SuperBASIC name list safely.

9.3 BASIC_B

See BASIC_L below.

9.4 BASIC_W

See BASIC_L below.

9.5 BASIC_L

Syntax BASIC_B (offset) and
BASIC_W (offset)
BASIC_L (offset)

Location TinyToolkit, BTool, Turbo Toolkit (BASIC_L only)

These three functions are modified version of PEEK which return values at memory locations in the
SuperBASIC system variables, which are used for storage by the SuperBASIC interpreter.

BASIC_B returns bytes, BASIC_W words and BASIC_L long words.

Example

Although additional information about internal machine structures is necessary to make full use of these
functions, some simple tasks can be performed without this knowledge, for example:

PRINT BASIC_W (1076)

gives the first line number of a program in memory - this enables a machine code program to check if a
program is actually loaded in the machine. The value returned by this example will always be zero from
the interpreter.

100 IF NOT BASIC_W (1076) THEN
110 PRINT "No SuperBASIC program loaded"
120 END IF

122 Chapter 9. Keywords B

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE

These functions generally suffer the same problem as BASIC.

A file called TurboFix_bin can be used to allow BASIC_L to access Minerva MultiBASIC and SMS
SBASIC variables. Some early versions of TurboFix_bin have bugs in it. Beware that not all versions of
this file supports SMS SBASICs.

CROSS-REFERENCE

PEEK , PEEK_W , PEEK_L, BASICP.

BASIC_B%, BASIC_W%, BPEEK%, BPEEK_W% and BPEEK_L are similar.

See also BASIC_F and PEEK_F.

The SuperBASIC variables appear in the QDOS/SMS Reference Manual (Section 18.3)

9.6 BASIC_B%

See BASIC_F below.

9.7 BASIC_W%

See BASIC_F below.

9.8 BASIC_F

Syntax BASIC_B% (offset) and
BASIC_W% (offset) and
BASIC_F (offset)

Location Turbo Toolkit, BTool, Turbo Toolkit (BASIC_L only)

The functions BASIC_B% and BASIC_W% are similar to BASIC_B and BASIC_W. BASIC_F is a
further function which can be used to return a floating point number stored as six bytes starting at the
specified offset within the SuperBASIC system variables.

NOTE

A file called TurboFix_bin can be used to allow these functions to access Minerva MultiBASIC / SBASIC
variables. Some early versions of TurboFix_bin have bugs in it. Beware that not all versions of this file
supports SMS SBASICs.

CROSS-REFERENCE

Refer to BASIC_B and BASIC_W . PEEK_F is similar to BASIC_F.

9.6. BASIC_B% 123

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

9.9 BASIC_INDEX%

Syntax BASIC_INDEX% (name$)
Location Turbo Toolkit

This function is similar to LOOKUP%, except it does not suffer with any problems under SMS.

If the specified name$ does not exist, -12 is returned. -7 is returned if there is some mismatch between
table entries.

NOTE

A file called TurboFix_bin can be used to allow BASIC_INDEX% to access the Minerva MultiBASIC
and SMS SBASIC name tables. Some early versions of TurboFix_bin have bugs in it. Beware that not
all versions of this file supports SMS SBASICs.

CROSS-REFERENCE

Refer to LOOKUP% and BASIC_NAME$.

9.10 BASIC_NAME$

Syntax BASIC_NAME$ (index)
Location Turbo Toolkit

This function is exactly the same as _NAME$.

If the specified index is greater than the maximum name table entry, a bad parameter error is returned.
If it is smaller than 0, an error may be generated, or junk may be returned.

NOTE

A file called TurboFix_bin can be used to allow BASIC_NAME$ to access the Minerva MultiBASIC and
SMS SBASIC name tables. Some early versions of TurboFix_bin have bugs in it. Beware that not all
versions of this file supports SMS SBASICs.

CROSS-REFERENCE

Refer to _NAME$ and BASIC_INDEX%.

9.11 BASIC_POINTER

Syntax BASIC_POINTER (offset)
Location Turbo Toolkit

This function is exactly the same as BASICP.

NOTE

124 Chapter 9. Keywords B

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

A file called TurboFix_bin can be used to allow BASIC_POINTER to access the Minerva MultiBASIC
and SMS SBASIC name tables. Some early versions of TurboFix_bin have bugs in it. Beware that not
all versions of this file supports SMS SBASICs.

CROSS-REFERENCE

Refer to BASICP.

9.12 BASIC_TYPE%

Syntax BASIC_TYPE% (offset)
Location Turbo Toolkit

This function looks at the entry in the SuperBASIC name table for Job 0 at the specified offset and returns
its type in accordance with the following values:

• 0 no type

• 1 string

• 2 floating point

• 4 integer

If the specified offset is greater than the maximum name table entry, a bad parameter error is returned.
If it is smaller than 0, an error may be generated, or junk may be returned.

NOTE

A file called TurboFix_bin can be used to allow BASIC_TYPE% to access the Minerva MultiBASIC and
SMS SBASIC name tables. Some early versions of TurboFix_bin have bugs in it. Beware that not all
versions of this file supports SMS SBASICs.

CROSS-REFERENCE

TYPE is similar.

See also BASIC_NAME$.

9.13 BAT

Syntax BAT
Location Beuletools

This command forces the command string defined with BAT_USE to be typed into the command line
(#0). No parameters are allowed. BAT will work okay in Minerva’s MultiBASICs, SMS’s SBASICs and
even if #0 has been redefined.

CROSS-REFERENCE

See BAT_USE for an example.

Refer to TYPE_IN also.

9.12. BASIC_TYPE% 125

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

9.14 BAT$

Syntax BAT$
Location Beuletools

This function returns the current string (if any) which has been set up with the BAT_USE command.

CROSS-REFERENCE

See BAT_USE and BAT for more details.

9.15 BAT_USE

Syntax BAT_USE batch$
Location Beuletools

This command is used to specify a command string containing SuperBASIC keywords which will be
typed into the command line (#0) when the command BAT is issued. The string may be up to 128
characters long. You may add CHR$(10) to the end of the string in order to emulate an <ENTER>
keypress (as in the example below).

Example

BAT_USE “PAPER 3: INK 7: PAPER#2,3: PAPER#2,3: INK#2,7: WMON 4: BORDER 1,0: BOR-
DER#2,0” & CHR$(10)

The command BAT will now reset the standard start-up windows.

CROSS-REFERENCE

BAT executes the batch string set with BAT_USE.

See FORCE_TYPE,STAMP and TYPE_IN also.

DO allows batch files of any size to be executed.

9.16 BAUD

Syntax BAUD bps or
BAUD [port,] bps(SMS and ST/QL only)

Location QL ROM

The serial port(s) use a certain speed to communicate with printers, modems, other computers, interfaces
etc. This speed is set with BAUD. The only values allowed are set out below, any other value for bps will
produce an error. The unit of the parameter is bits per second.

BAUD will set the same output and input baud rate for both serial ports.

126 Chapter 9. Keywords B

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Bits/Sec Bytes/Sec Time/32Kb
75 9.375 58 min, 15 sec
300 37.5 14 min, 34 sec
600 75 7 min, 17 sec
1200 150 3 min, 38 sec
2400 300 1 min, 49 sec
4800 600 55 sec
9600 1200 27 sec
19200 2400 14 sec

NOTE 1

The effect of BAUD 19200 depends on the hardware. On standard QLs the serial port can only send data
at that baud rate and tends to be affected by the QL’s sound chip.

NOTE 2

On a standard QL without Minerva the actual baudrate is slightly lower than that stated above.

NOTE 3

In practice, data is compressed and transmitted with transfer protocols (to reduce transmission errors),
so the above transmission times refer to the actual speed of the hardware, not the amount of data.

NOTE 4

The standard QL cannot safely handle the input of data at baud rates greater than 1200.

NOTE 5

A modified co-processor Hermes which replaces the 8049 chip by a 8749 is available, which allows in-
dependent input baud rates and (if Minerva v1.95+ is present) independent output baud rates as well
as fixing all mentioned problems for QLs and AURORA boards. The more expensive version of Her-
mes (SuperHermes) also provides three additional low speed RS232 input ports (supporting 30 to 1200
bps) and a high speed RS232 two way serial port (supporting up to 57,600 bps, which equates to 4800
characters per second).

NOTE 6

On a QXL board without SMS v2.57+, a BAUD command would not have immediate effect if a serial
channel was open - it waited until you closed the channel.

NOTE 7

It is possible to connect a mouse to a QL through the standard serial port. Although the mouse operates
at 1200 baud, you can use the mouse alongside a printer (or modem) either with the assistance of Hermes
or by configuring the mouse software to de-activate whilst the higher baud rate is in use.

THOR XVI NOTES

The THOR XVI allows the following additional baud rates:

9.16. BAUD 127

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Bits/Sec Bytes/Sec Time/32Kb
110 13.75 39 min, 43 sec
134.5 16.8125 32 min, 29 sec
150 18.75 29 min, 08 sec
1800 225 2 min, 26 sec

Independent baud rates may also be used on output and input channels when the channel is opened by
using an extended device name.

MINERVA NOTES

Minerva v1.93+ now enables you to set different output baudrates for ser1 and ser2 - if you want different
input baudrates for the two ports, you will need Hermes (see above). Unfortunately, this enhancement
will only work on QLs without Hermes if both ports are output only.

If you want to disable the ability to handle different output baud rates, do so with the command: POKE
!124 !49,2

In order to set the two baudrates independently, BAUD will now accept additional values in the range -1
to -128. This is calculated by looking at the following table, working out which features you will need
and adding the values accordingly to -128:

Value to Add Effect
64 Alters ser2 baudrate (ser1 is default)
16 Prevents standard BAUD command from altering baudrate on this port
7 Selects BAUD 75 on this port
6 Selects BAUD 300 on this port
5 Selects BAUD 600 on this port
4 Selects BAUD 1200 on this port
3 Selects BAUD 2400 on this port
2 Selects BAUD 4800 on this port
1 Selects BAUD 9600 on this port
0 Selects BAUD 19200 on this port

Please only try to add one baud rate value!!

Minerva Examples

BAUD -128

sets the baud rate for ser1 output at 19200. ser2 is unaffected.

BAUD -47

fixes the baud rate for ser2 output at 9600. ser1 is unaffected (-47 = -128+64+16+1).

SMSQ AND ST/QL NOTES

If BAUD is only followed by one parameter, then it sets the baud rates for both SER1 and SER2 on
the QL, AURORA and QXL boards. However, if SMSQ/E is running on an ATARI computer, or the
command is used on an ST/QL Emulator then it only sets the baud rate on SER1.

You can however supply two parameters to the command to set independent baud rates (note that on a
standard QL or Aurora, Hermes is needed for independent baud rates on each serial port). In this case,

128 Chapter 9. Keywords B

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

the first parameter is the number of the serial port to be set and the second number is the new baud rate,
for example:

BAUD 1,19200

sets the baud rate on SER1 to 19200 - any other serial ports are left unaffected. If the rate (bps) is specified
as zero, this selects the highest possible BAUD rate on that port.

Please also note that if a translate has been set up with the TRA command, changing the BAUD rate will
make that translate apply to all channels opened to the serial ports, whether or not they are already open.
See TRA for more details.

The following additional BAUD rates are also supported on the specified SMSQ/E version:

GOLD CARD & SUPER GOLD CARD

• 1275(1200 receive and 75 transmit - only works with HERMES)

• 75(75 receive and 1200 transmit - only works with HERMES)

(The standard 1200 and 75 Baud rates are not supported)

ATARI ST and TT

On these computers, the different serial ports support different baud rates. An ST/STE only has one serial
port (SER1), a Mega STE has three (SER1, SER2 and SER4), and a TT has four (SER1, SER2, SER3
and SER4).

Support for SER2, SER3 and SER4 was only added to the ST/QL Emulators in version E-37 of the
Drivers. It has always existed in SMSQ/E.

SER1

• supports all the standard baud rates from 300 to 19200, except 7200.

SER2

• supports all the standard baud rates from 300 to 19200 (including 7200) as well as 38,400, 76,800,
83,333 and 125,000 baud (1x and 2x MIDI speeds).

– If the rate specified is 0, the rate used is 153,600.

• Note that 38,400 on the TT was implemented in v2.69. 38,400, 76,800, 83,333, 125,000 and
153,600 BAUD were implemented for the STE and TT in v2.73.

SER3

• supports the same rates as SER1.

• Hardware handshaking is not available on this port.

SER4

• supports all the standard baud rates from 300 to 38,400 plus 57,600.

• If the rate specified is 0, the rate used is 230,000.

QXL

All of the standard baud rates available to the normal QL are supported except for 75 Baud.

QPC

All of the same baud rates as the QXL implementation are supported plus 38,400 and 57,600 baud.

9.16. BAUD 129

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

QXL AND QPC NOTES

If one of the PC’s serial ports is already linked to a mouse (in DOS) then the BAUD command will not
affect that port.

CROSS-REFERENCE

The Devices Appendix supplies details about the serial device ser and parallel device par. The ser_. . .
and par_. . . commands allow you to set various other parameters for serial and parallel ports.

You can check the current baud rate setting with BAUDRATE.

9.17 BAUDRATE

Syntax BAUDRATE
Location SERMouse

This function returns the actual baud rate of the system which will be used on any newly opened serial
port channel.

CROSS-REFERENCE

The system’s baud rate is set with BAUD.

9.18 BCLEAR

Syntax BCLEAR
Location BeuleTools, TinyToolkit, BTool

Each console channel has what is known as an input queue, a small area of memory where key presses
are stored before they are read by INPUT, INKEY$ etc. The command BCLEAR clears the buffer of
the current input queue so that any key presses which have not yet been processed are not seen by the
program. This is useful to prevent overrun on keys.

Examples

(1) Type this line as a direct command into the interpreter, press <ENTER> and then type some keys.
REPeat a: REMark

Now press break and all of those key presses which you performed after entering the line will be shown.
Replace REMark by BCLEAR and try the same.

Normally it is okay for all key presses to be stored in a buffer - if a program cannot cope with the typist’s
speed, no key presses will be lost. But sometimes this feature may not be welcome.

(2) Even on very good keyboards the phenomenon of key-bounce appears, where the user has pressed a
key once but the program thinks that the same key has been pressed a few times. This generally happens
with poor quality keyboards or if the user is not used to either the keyboard or program speed.

This is a queue clearing version of the GETCHAR% function shown at CUR. Dangerous inputs should
always clear the keyboard queue, for example where the program is asking the question: “Do you really
want to format that disk (y/n) ?”

130 Chapter 9. Keywords B

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

100 DEFine FuNction GETCHAR% (channel,timeout)
110 LOCal char$,dummy
120 dummy=PEND(#channel): BCLEAR
130 CUR #channel,1
140 char$=INKEY$(#channel,timeout)
150 CUR #channel,0
160 RETurn CODE(char$)
170 END DEFine GETCHAR%

CROSS-REFERENCE

The current keyboard queue can be selected by a dummy INKEY$ or PEND.

9.19 BEEP

Syntax BEEP length, pitch [,pitch_2, grd_x, grd_y [,wrap [,fuzz [,rndom]]]] or
BEEP

Location QL ROM

This command allows you to access the QL’s rather poor sound generation chip. It can be extremely
difficult to use this command, and a lot of trial and error will generally be needed before you can find
anything similar to the sound you are after.

BEEP without any parameters will turn off the sound altogether. You must also be aware of the fact that
as soon as a BEEP command is encountered, the QL will cancel the current sound and emit the new one
(whether or not the earlier sound had finished).

Each of the various parameters have different ranges and different effects on the sound produced:

• length This specifies the duration of the sound in 72 microsecond units (there are one million
microseconds in a second). A length of zero means emit the sound until another BEEP command
is encountered. The range is 0. . . 32767 (a value of 32767 lasts for approximately 2.36 seconds).

• pitch This affects the tone of the sound produced. The allowable range is 0. . . 255. A pitch of 0
is the highest which can be produced, ranging to 255 which is the deepest tone. The purity of the
sound will be affected if any other parameters are specified.

• pitch_2 This represents a second pitch level, which will have no effect if the tone is the same
(or higher) than pitch. If however, the value of this parameter is higher (the tone is lower) than
that of pitch, this specifies a range between which the sound can ‘bounce’ by use of the next two
parameters, creating a sequence of notes (the length of the sequence will depend on the length
parameter).

• grd_x Assuming that the BEEP command is now being used to produce a sequence of notes, this
parameter specifies the time interval (in 72 microsecond units) of each note in the sequence. The
permitted range is again 0. . . 32767. Larger time intervals make each note in the sequence more
distinct (low values tend to produce just buzzing).

• grd_y This parameter specifies the step between each note in the sequence. This must be in the
range 0. . . 15. However, this may make more sense if the correct range was said to be -7..8.

A value of zero produces no step - you are returned to a single note again.

9.19. BEEP 131

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

A value between 1 and 7 means that each note will be that many pitches below the last one (unless
that would bring the pitch below pitch_2).

A value of 8 makes the BEEP command fit as many notes into the sequence (in the range) as
possible.

Values of 9 to 15 (or -7 to -1) mean that each note will be that many pitches above the last one
(these correspond to the values 7 to 1 respectively), unless this would bring the pitch above pitch.
When the top or bottom of the range pitch to pitch_2 is reached, the step direction is reversed to
cause the sound to ‘bounce’.

• wrap If this parameter is specified, the range of notes between the two pitch parameters will be
repeated the specified number of times before the step direction is altered. The range for this
parameter is 0..15.

The last note in the range will not be sounded, but will appear as the first note in the opposite
direction.

• fuzz This affects the purity of each note, by blurring its sound. The effective range is 8. . . 15, with
a value of 15 producing an awful buzz.

• rndom This parameter allows you to specify a certain amount of ‘randomness’ which is to be added
to each note.

The effective range is once again 8. . . 15, with the given value being used to alter from how far
away from the original sequence the QL can pick a note. The higher the value, the more random
notes appear in the sequence.

Examples

BEEP 0,20,40,10070,2

will keep sounding every other note between 20 and 40 moving down and then up the scale.

BEEP 0,20,30,10070,2,1

will sound the notes in the following sequence 20, 22, 24, 26, 28, 20, 22, 24, 26, 28, 30, 28, 26, 24, 22,
30, 28, 26,. . . .

NOTE 1

On all ROMs if you set a very high pitch value, the QL finds it very difficult to read the keyboard. BEEP
0,0 and BEEP 0,1 will make typing rather difficult.

NOTE 2

Unless used on a THOR XVI, BEEP does not enter the QL into supervisor mode and therefore if BASIC
is trying to use BEEP whilst a task is loaded or unloaded, then the system is likely to crash!

NOTE 3

BEEP does not do anything on ST/QLs or the Amiga-QDOS Emulator (pre v3.23).

NOTE 4

The pitch of the sound is actually shifted on QLs by different values of length, fuzz and rndom. The
length of the sound is also somewhat dependent on the pitch! Both of these problems are however fixed
by the replacement co-processor Hermes.

CROSS-REFERENCE

BEEPING allows you to check if a sound is currently being emitted.

132 Chapter 9. Keywords B

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

PAUSE allows you to specify a time interval during which the computer will wait (allowing you to play
much longer notes).

9.20 BEEPING

Syntax BEEPING
Location QL ROM

This is a simple function which returns either 1 (true) if any sound output from BEEP is still running or
0 (false) if not.

Example

BEEPING is rather useless in a formulation like: IF BEEPING THEN BEEP

because this is less efficient than BEEP on its own which has the same effect. However, where you want
to ensure that your program generates the chosen sound, because of the QL’s multi-tasking abilities, it
may be useful to use this function in case another program is executing a BEEP command when you want
to - you could then either wait or simply override that sound by using BEEP followed by your own sound
generating BEEP command. For example:

10 REPeat check_beep: IF NOT BEEPING THEN EXIT check_beep
20 BEEP 100,20

NOTE

This function did not work correctly on Minerva before v1.98.

CROSS-REFERENCE

BEEP activates the speaker.

9.21 BELL

Syntax BELL
Location ST/QL, QSound

This command produces the sound of a ringing phone.

CROSS-REFERENCE

SND_EXT , SHOOT , EXPLODE.

9.20. BEEPING 133

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

9.22 Beule_EXT

Syntax Beule_EXT
Location Beuletools

This command is used to update all of the keywords which are added by the Beuletools Toolkit. The new
keywords were automatically added when the Toolkit was loaded but keywords can be overwritten by
other Toolkits, renamed or ZAPped.

Beule_EXT undoes these changes and restores the default status.

WARNING

Do not load the Beuletools toolkit into anything other than resident procedure memory (ie. do not have
any Jobs running other than Job 0 when the toolkit is loaded). This may crash the system.

CROSS-REFERENCE

TK2_EXT and TINY_EXT do the same for Toolkit II and TinyToolkit keywords.

See also ATARI_EXT .

9.23 BGCOLOUR_QL

Syntax BGCOLOUR_QL [#ch,] colour
Location SMSQ/E v2.98+

It is possible under the latest version of SMSQ/E to set a ‘wallpaper’ - this is an image which covers the
whole of the available screen (in any resolution) and which forms a background for any programs which
may be running. Normally, this would appear as a black area of the screen.

A valid window channel must be open, default #1 (or #0 on a SBASIC with only #0 open), although
one may also be supplied as #ch. BGCOLOUR_QL allows you to specify any standard QL colour -
the parameters allowed are the same as for the INK command (in either Standard QL Colour Mode or
COLOUR_QL mode), which thus allows for you to specify composite colours as well as palette mapped
colours with PALETTE_QL.

Example

BGCOLOUR_QL 2,7 - sets a red and white checkerboard pattern.

CROSS-REFERENCE

Refer to Appendix 16 and INK for more details on colours.

BGCOLOUR_24 is similar.

BGIMAGE may be used to set a screen image as the wallpaper.

134 Chapter 9. Keywords B

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

9.24 BGCOLOUR_24

Syntax BGCOLOUR_24 [#ch,] colour
Location SMSQ/E v2.98+

This is similar to BGCOLOUR_QL in that it allows you to set a wallpaper to cover the whole of the
available screen (in any resolution).

A valid window channel must be open, default #1 (or #0 on a SBASIC with only #0 open), although one
may also be supplied as #ch.

BGCOLOUR_24 allows you to specify any 24 Bit Colour - the parameters allowed are the same as for
the INK command (in COLOUR_24 mode), which thus allows for you to specify composite colours.

Example

BGCOLOUR_24 $920000,$ff0092,3 -sets a checkerboard pattern of Dark Red and Shocking Pink.

CROSS-REFERENCE

Refer to Appendix 16 and INK for more details on colours.

BGCOLOUR_QL gives more detail.

BGIMAGE may be used to set a screen image as the wallpaper.

9.25 BGET

Syntax BGET [#ch\position,] [item *[,itemi]* ..] or
BGET [#ch,] [item

Location Toolkit II, THOR XVI

This command is very similar to GET, although this only fetches one byte at a time (in the range 0..255)
from the given channel (default #3).

Each item to be fetched must therefore be either an integer or a floating point variable, for example:
BGET #3\100,byte1%,keying

If the channel specified is not a file, then the command will wait for a key to be pressed for each item,
and then set the value of each item to the character code of the key pressed.

As with GET, the items will be fetched from the current (or specified) file position, which is taken to be
an absolute distance from the start of the file. If no item is specified, then the first variant can be used
to set the current file position. position will be updated (unless it is an expression!) with the current file
position at the end of the command.

Examples

BGET #3\100 Set file pointer on #3 to position 100.

BGET a% Read the byte at the current file pointer in channel #3.

NOTE 1

9.24. BGCOLOUR_24 135

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Current versions of the Turbo and Supercharge compilers are not able to compile programs which use
BGET.

NOTE 2

Characters which are read from a channel using BGET are affected by TRA.

SMS NOTE

BGET will accept a parameter which is a sub-string of a string array to read in several bytes at once. For
example:

DIM a$(10):a$=FILL$(’ ‘,10):BGET #3,a$(4 to 7)

This will read 4 bytes from channel #3 into the middle of a$.

Please note that a$ cannot be an empty string if this is to work since the sub-string would not be valid!!

CROSS-REFERENCE

See BPUT , PUT , GET . FPOS allows you to find out the current file position. TRUNCATE allows you
to truncate a file to the current file position. PEEK fetches one byte from memory.

OPEN_DIR contains an example of the use of BGET .

9.26 BGIMAGE

Syntax BGIMAGE [#ch,] filename
Location SMSQ/E v2.98+

This command allows you to load a screen image as a wallpaper to cover the whole of the available screen
(in any resolution).

A valid window channel must be open, default #1 (or #0 on a SBASIC with only #0 open), although one
may also be supplied as #ch.

The file will need to be a screen snapshot - the Photon JPEG viewer can be used to convert JPEG files to
screen snapshots.

Example

BGIMAGE win1_wallpapers_cats - load a wallpaper.

NOTE

The command expects the screen to have been saved in the current resolution and colour depth, therefore
any attempt to load a screen image in a different resolution or colour depth to the one in existence when
the screen was saved will result in a corrupt image.

CROSS-REFERENCE

SBYTES gives details on how to store a screen on disk.

In many ways, this command is similar to LOADPIC, except that it caters for non-standard QL resolutions
and colour depths.

BGCOLOUR_QL and BGCOLOUR_24 can be used to set a single colour wallpaper.

136 Chapter 9. Keywords B

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

9.27 BICOP

Syntax BICOP
Location HCO

This procedure will send a screen dump to the port ser1hr - it is aimed at Epson compatible dot-matrix
printers and uses grey scales to represent the different colours. It is up to you to set the BAUD rate.

NOTE

It will only work on a standard 512x256 screen stored at $20000.

CROSS-REFERENCE

SDUMP is more flexible.

See also HCO and FCO.

9.28 BIN

Syntax BIN (binary$) or
BIN (binary) where binary=0..111111

Location Toolkit II, THOR XVI

This function returns the decimal value of a binary number (given as a string). For small numbers, a
floating point number can be used but will cause problems if this is not a valid binary number.

Examples

(1) PRINT BIN (‘1001’)

will print the value 9

(2) As it stands, the function BIN cannot handle binary dots

(eg. 1001.101=9.625), therefore a BASIC function to provide this facility is:

100 DEFine FuNction BINN(a$)
110 LOCal i,dot,dota,value_a,loop
120 IF a$='' THEN RETurn 0
130 FOR i=1 TO LEN(a$): IF a$(i) INSTR '10.'=0: REPORT -17: STOP
140 dot='.' INSTR a$: IF dot=0 THEN RETurn BIN(a$)
150 value_a=0:dota=0
160 IF dot>1 THEN value_a=value_a+BIN(a$(1 TO dot-1))
170 IF '.' INSTR a$(dot+1 TO): REPORT -17: STOP
180 REPeat loop
190 IF dot>=LEN(a$):EXIT loop
200 a$=a$(dot+1 TO)
210 dot='1' INSTR a$: IF NOT dot THEN EXIT loop
220 value_a=value_a+1/(2^(dot+dota)):dota=dota+dot
230 END REPeat loop

(continues on next page)

9.27. BICOP 137

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

240 RETurn value_a
250 END DEFine BINN

NOTE

Any digit other than 0 or 1 will produce odd results.

CROSS-REFERENCE

BIN$ works the other way around, converting decimal numbers into their binary equivalent. See HEX
and HEX$ for the hexadecimal versions. BIT% is also useful.

SMS users can achieve the same thing by using, for example PRINT%1001 instead of
PRINTBIN(‘1001’).

9.29 BIN$

Syntax BIN$ (decimal,digits) or
BIN$ (decimal [,digits]) (THOR only)

Location Toolkit II, THOR XVI

This function converts a signed integer decimal number to the equivalent binary number (to a specified
number of binary digits ranging from 1 to 32). Negative values are also handled correctly.

Examples

(1) BIN (BIN$ (x,4)) = x

if x is any number between 0 and 15.

(2) A short function to compare two numbers using the mathematical ‘OR’ function. Do note however
that the same function already exists on the QL, and the commands

PRINT 100||10 and PRINT _or(100,10) have exactly the same effect, although the BASIC version below
does enable you to see what the function actually does:

100 DEFine FuNction _or(x,y)
110 a$=BIN$(x,32): b$=BIN$(y,32)
115 PRINT a$,b$
120 c$=FILL$('0',32)
130 FOR i=1 TO 32
140 IF a$(i)=1 OR b$(i)=1: c$(i)=1
150 END FOR i
155 PRINT c$
160 RETurn BIN(c$)
170 END DEFine _or

THOR XVI NOTE

The THOR XVI version of BIN$ will accept a value of zero for digits {or even the command in the
form BIN$(decimal)}. In both of these cases the result is returned in the least number of Binary digits
necessary to store the number, for example: PRINT BIN$(10)gives the result 1010.

138 Chapter 9. Keywords B

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

THOR XVI WARNING

A second parameter of zero may crash some versions of this command other than on v6.41 of the THOR
XVI.

CROSS-REFERENCE

See BIN and HEX, HEX$. Also refer to BIT%.

9.30 BINOM

Syntax BINOM (n,k)
Location Math Package

The function BINOM returns the value of the binomial coefficient which is defined as the following
(where n >= k):

n * (n - 1) * (n - 2) * . . . * (n - k + 1)) / (1 * 2 * . . . * k) or, FACT(n) / (FACT(k) * FACT(n-k))

The binomial coefficient gives the kth coefficient of the variables in an expanded binomial series, this is
called the binomial theorem:

(a+b)^n = BINOM(n,0) * a^n + BINOM(n,1) * a^(n-1) * b + BINOM(n,2) * a^(n-2) * b^2 + . . . +
BINOM(n,n-1) * a * b^(n-1) + BINOM(n,n) * b^n

The binomial coefficient can also be used to calculate combinations and probabilities. As the example
shows, it is important to know the mathematical theory behind this function to make full use of it.

Example

The following program calculates 2n:

100 n=10: s=0
110 FOR k=0 TO n: s=s+BINOM(n,k)
120 PRINT s,2^n

It can be optimised by exploiting the fact that:

BINOM (n,k) = BINOM (n,n-k) which saves half of the loops:

100 n=10
110 IF NOT n MOD 2 THEN s=BINOM(n,n DIV 2): ELSE s=0
120 FOR k=0 TO n DIV 2 - NOT n MOD 2
130 s=s+2*BINOM(n,k)
140 END FOR k
150 PRINT s,2^n

CROSS-REFERENCE

FACT .

9.30. BINOM 139

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

9.31 BIT%

Syntax BIT% (number%,bitnr) with bitnr=0..15
Location BIT

All numbers are internally stored as a series of values, each of which can either be 1 or 0 (or, if you prefer,
true or false). This is known as the binary system. The set of digits which make up a binary number are
known as a stream of bits.

The function BIT% returns the status of a specified bit of an integer number%, a value of either 0 or 1.
Bit 0 means the rightmost bit, whereas bit 15 would be the leftmost.

Example 1

Here is a function which converts a number to the binary system. It allows a greater range than BIN$ and
needs just one parameter. The first version needs the REV$ and LOG2 extensions, the second does not.

Version 1:

100 DEFine FuNction BIT$ (x%)
110 LOCal b$,i: b$=""
120 FOR i=0 TO LOG2(ABS(x%)):b$=b$ & BIT%(x%,i)
130 RETurn REV$(b$)
140 END DEFine BIT$

Version 2:

100 DEFine FuNction BIT$ (x%)
110 LOCal b$,i: b$=""
120 FOR i=0 TO LN(ABS(x%))/LN(2): b$=BIT%(x%,i) & b$
130 RETurn b$
140 END DEFine BIT$

Example 2

The following logical function returns 1 (true) if the given parameter was an upper case character, or 0
(false) if it was lower case. This function will work with all international character sets supported on the
original QL.

100 DEFine FuNction UPPER% (c$)
110 RETurn NOT BIT%(CODE(c$),5) ^^ BIT%(CODE(c$),7)
120 END DEFine UPPER%

In any given character, bit 5 indicates the case and bit 7 the character set.

CROSS-REFERENCE

BIN$ also converts a decimal number to a binary and BIN back again. UPPER$ returns a string in upper
characters.

The length of a number x in binary form is INT (LOG2 (ABS (x))+1) .

140 Chapter 9. Keywords B

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

9.32 BLD

Syntax BLD
Location Beuletools

This function returns the control codes needed to switch on double strike (‘bold’) on an EPSON com-
patible printer:

PRINT BLD is the same as PRINT CHR$(27)&”G”

Example

LPRINT “I “ & BLD&”hate”&NRM & “ these functions.”

CROSS-REFERENCE

NORM, EL, DBL, ENL, PRO, SI , NRM, UNL, ALT , ESC, FF, LMAR, RMAR, PAGDIS, PAGLEN .

9.33 BLOCK

Syntax BLOCK [#channel,] width, height, x, y, colour
Location QL ROM

This command draws a block of size width x height at position x,y of the given colour in the specified
window (default #1). Both the position and the block size are given in absolute pixel co-ordinates, with
the maximum ranges specified by the physical size of the window.

This means that for example, in a window which is defined as 448x200a32x16, the maximum block
which can be drawn is a block of size 448 x 200 in position (0,0). You can also use OVER to produce
other effects with BLOCK.

As with other graphics commands, the colour can be made up of up to three parameters, giving the
background, contrast and stipple pattern (composite colours).

Example

A program printing out the set of numbers 1 to 100 and then quickly recolouring the two halves of the
window:

100 WINDOW 300,60,102,56
110 PAPER 0: CLS
120 FOR i=1 TO 100: PRINT !i!
130 OVER -1
140 BLOCK 150,60,0,0,7
150 BLOCK 150,60,150,0,2
160 OVER 0

NOTE 1

Some ROMs (not SMS) will allow you to specify blocks which lie partly outside of a window without
reporting the error ‘Out of Range’. However, this can also crash some ROMs!

9.32. BLD 141

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE 2

Odd values for width and x are always rounded down to an even number (eg. 23 pixels wide becomes 22
pixels). This is to ensure compatibility between MODE 4 and MODE 8. The only problem is that you
cannot specify a block one pixel wide, or even have a gap of one pixel between two blocks.

NOTE 3

Unless you have a Minerva ROM or SMS, you cannot draw a block 512 pixels wide - you need to use
two adjacent blocks instead!

NOTE 4

BLOCK provides an extremely quick way of drawing horizontal or vertical lines on screen.

MINERVA NOTE

Early versions of Minerva (pre v1.83) contained code to ensure that the given block would appear wholly
within the specified window. However, later versions had to be altered to ensure compatibility with certain
programs. These later versions allow width, height, x and y to be within the range -32768. . . 32767 - only
that part of the block (if any) which appears in the given window will be drawn!

For example:

BLOCK 200,10,-20,255,7 has the same effect as:

BLOCK 180,1,0,255,7

CROSS-REFERENCE

INK contains information concerning composite colours.

9.34 BLOOK

Syntax BLOOK (tofind$, adr1 TO adr2)
Location HCO

See SEARCH but note the different syntax. The string being looked for by BLOOK is not case-sensitive.

9.35 BLS

Syntax BLS time%
Location SERMouse

This command sets up a job which will blank the screen after a certain amount of time if a key is not
pressed or the mouse not moved. The delay depends on the value of time% (1-20 = seconds), (21-59 =
minutes).

To turn off this function, use time%=0.

Pressing a key or moving the mouse will reactivate the screen.

CROSS-REFERENCE

142 Chapter 9. Keywords B

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

See A_BLANK .

9.36 BMOVE

Syntax BMOVE adr1a, adr1b, adr2
Location HCO

BMOVE is a procedure which copies the whole of the memory stored between the two addresses adr1a
and adr1b to the new address pointed to by adr2, so the number of bytes moved is adr1b-adr1a.

Example

Dump some memory to screen (note that this only works with the screen at 131072 and at 512 x 256
resolution):

100 FOR a = 0 TO 10240 STEP 128
110 BMOVE a, a+HEX("8000") TO HEX("20000")
120 END FOR a

WARNING

Always ensure that there is sufficient available free memory at adr2 to hold the data from adr1a to adr1b,
otherwise your machine is most likely to crash.

CROSS-REFERENCE

It is a good idea to check with VER$ if Minerva is present and use its extremely fast MM.MOVE machine
code trap via CALL as an alternative to BMOVE; this is demonstrated by the example at LDRAW .

COPY_B, TTPOKEM, COPY_W and COPY_L also allow you to move memory.

9.37 BORDER

Syntax BORDER [#channel,] size [,colour] or
BORDER [#channel]

Location QL ROM

This command allows you to add a coloured border around the inside of the edge of the specified window
(default #1). If the second syntax is used, this will turn off the border on the specified window - this is
the same as:

BORDER [#channel,] 0

If a border is present around the window, the physical size of the window is altered, so that PRINT and
LINE commands (for instance) will not overwrite the border. Please note however, that the window is
reset to its original size prior to a BORDER command and therefore two successive border commands
only have the same effect as the second BORDER command on its own.

If the specified size is too large to fit in the given window, the error ‘Out of Range’ will be reported.

9.36. BMOVE 143

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

As with other graphics commands, colour can actually be up to three parameters forming a composite
colour.

For example: BORDER #2,2,4

has the same effect as BORDER #2,2,4,4,3

or even BORDER #2,2,4,4

If no value is given for colour a transparent border will be added to the given window. This means that a
border will be created, but anything which already appears in that border will not be affected.

Once the border has been re-drawn the cursor is automatically placed at the top left hand position (0,0)
just inside the border.

Examples

To produce a screen with a title, allowing you to scroll

text and do all sorts on the screen without affecting the title:

100 MODE 4
110 WINDOW 448,200,32,16
120 PAPER 0: BORDER 0 : CLS
130 AT 0,30: PRINT "THE TITLE PAGE"
140 BORDER 9
150 PAPER 2:CLS

To produce a ‘take-off’ effect:

100 MODE 8
110 WINDOW 448,200,32,16
120 FOR i=1 TO 99
130 BORDER i,2
140 END FOR i

NOTE 1

If a border appears in a window, there is always a width of at least two pixels down the sides to ensure
that the border will appear in MODE 8. Take the width value and if it is odd, add one for the width down
the sides of the window.

NOTE 2

The second syntax will not work on Minerva (pre v1.79) and the THOR XVI - you will need to specify
a width of zero instead.

CROSS-REFERENCE

INK describes composite colours.

Also see WINDOW .

144 Chapter 9. Keywords B

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

9.38 BPEEK%

See BPEEK_L below.

9.39 BPEEK_W%

See BPEEK_L below.

9.40 BPEEK_L

Syntax BPEEK% (offset) and
BPEEK_W% (offset) and
BPEEK_L (offset)

Location BPEEKS, BPOKE (DIY Toolkit - Vol B)

These three functions are exactly the same as BASIC_B, BASIC_W and BASIC_W, and suffer with the
same problem that they always access the SuperBASIC variables of Job 0 (SuperBASIC) and cannot
therefore be used on a Multiple BASIC interpreter.

CROSS-REFERENCE

See BASIC_W and BASIC.

BPOKE and related commands allow you to alter the values of the SuperBASIC variables.

9.41 BPOKE

See BPOKE_L below.

9.42 BPOKE_W

See BPOKE_L below.

9.43 BPOKE_L

Syntax BPOKE offset, value and
BPOKE_W offset, value
BPOKE_L offset, value

Location BPOKE (DIY Toolkit - Vol B)

These three commands allow you to alter the value of SuperBASIC variables in much the same was as
the extended POKE commands do on Minerva and SMS.

9.38. BPEEK% 145

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

BPOKE_W and BPOKE_L were added in v0.7 of the toolkit.

They unfortunately always access the SuperBASIC variables of Job 0 (SuperBASIC) and cannot therefore
be used on a Multiple BASIC interpreter.

CROSS-REFERENCE

See POKE.

BPEEK% and related commands allow you to read the values of the SuperBASIC variables.

9.44 BPUT

Syntax BPUT [#ch\position,] [item *[,itemi]* ..] or
BPUT [#ch,] [item

Location Toolkit II, THOR XVI

This command is the complement to BGET, in that it places the byte value for each item into the specified
channel (default #3) at the current file position (or the specified position if the first variant is used).

If the value of item is outside the range 0. . . 255, an overflow error will result, whereas if item is not an
integer or floating point number, then an error in expression will result. On the other hand, if a non-
integer floating point is given as an item, then the value will be rounded to the nearest integer and this
placed into the given channel.

Provided that the second variant of this command is used, the specified channel need not be open to a
file, in which case each item is taken as being a character, for example: BPUT #2,72,101,108,108,111

will print the word Hello in channel #2. This can of course be used to send control codes to a printer
much more easily than the PRINT command.

For example:

BPUT #3,27,70

is a lot easier to understand than:

PRINT #3,CHR$(27)&’F’

to switch off emphasised mode.

As with BGET, if no item is specified, then the first variant can be used to set the current file position.
position will also be updated at the end of the command to contain the current file pointer.

Example

BPUT #ch,4.5,’100’,52,a+1

places the values 5,100,52 and (a+1) at the current file position.

NOTE

The codes sent by BPUT are affected by any translate that is active (see TRA).

SMS NOTE

BPUT will now accept string parameters to allow you to pass several bytes at a time, for example:
a$=’Hello’:BPUT #3,a$

146 Chapter 9. Keywords B

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

is equivalent to: BPUT #2,72,101,108,108,111

CROSS-REFERENCE

See FGETB, BPUT , PUT , GET , LPUT , UPUT and WPUT .

FPOS allows you to find the current file position.

TRUNCATE allows you to truncate a file to the current file position.

PEEK fetches one byte from memory.

UPUT allows you to send bytes without them being translated.

9.45 BREAK_ON

See BREAK_OFF below.

9.46 BREAK_OFF

Syntax BREAK_ON
BREAK_OFF

Location TinyToolkit

The command BREAK_OFF de-activates the functioning of both <CTRL><SPACE> (the Break Key)
and <CTRL><F5> (the Pause Screen key) during the running of interpreted SuperBASIC programs so
that they cannot be stopped by the user unless they stop either due to an error or a STOP command.

The command BREAK_ON reactivates both keys.

The function BREAK returns the current status:

IF BREAK=1 means the Break Key is active, while

IF BREAK=0 means that it is inactive.

NOTE 1

BREAK_OFF may not work on Minerva ROMs unless you have v1.10 or later of the Toolkit, which uses
the new Minerva System Xtensions to overcome any problem.

NOTE 2

BREAK_OFF does not currently work with SMS.

CROSS-REFERENCE

STOP terminates interpreted programs even if the Break Key is disabled. Do not confuse with the com-
mand BREAK .

9.45. BREAK_ON 147

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

9.47 BREAK

Syntax BREAK switch
Location BTool

The command BREAK takes the parameter of either ON (=1) or OFF (=0) and enables or disables the
ability to stop a program with the Break key <CTRL><SPACE> (and <ESC> on Minerva) accordingly.

Example

100 WINDOW 136,100,100,40: INK 7
110 BORDER 1,4,3: PAPER 3,0: CLS
120 SCALE 100,-50,-50: POINT 0,0
130 fast=ASK("Fast (y/n)"): CLS
140 BREAK fast
150 FOR n=0 TO 4000
160 IF BREAK% THEN AT 0,0: PRINT n
170 x=RND(-50 TO 50): y=RND(-50 TO 50)
180 z=SIN(PI*SQRT(x*x+y*y)/10)+1
190 IF z > 2*RND THEN POINT x,y
200 END FOR n
210 BREAK ON

NOTE 1

After the Break key has been disabled and re-enabled, if you try to Break from the interpreter’s com-
mand window #0 it might be disturbed. Instead of printing ‘not complete’ (error -1) in #0 when
<CTRL><SPACE> is pressed, that message may appear in #2 and Break will work only once, the in-
terpreter will not accept any further Breaks. . . A single <ENTER> after you initially press the Break key
cures this.

NOTE 2

This command does not work under SMS.

CROSS-REFERENCE

See also BREAK%, FREEZE and FREEZE%.

Do not confuse BTool’s command BREAK with TinyToolkit’s function BREAK (although you can use
both in the same program!)

9.48 BREAK%

Syntax BREAK%
Location BTool

The function BREAK% returns the current state as to whether the Break key is enabled, either ON or
OFF.

CROSS-REFERENCE

148 Chapter 9. Keywords B

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

See BREAK!!

9.49 BTool_EXT

Syntax BTool_EXT
Location BTool

This command is similar to TK2_EXT and TINY_EXT, in that it installs BTool so that keyword defini-
tions with the same name as those provided in other Toolkits are overwritten with the Btool definition.

WARNING

BTool_EXT will hang SuperBASIC if the BTool Toolkit has been loaded into the common heap - this is
most likely to happen on later versions of Toolkit II where LRESPR uses the common heap if jobs are
running. Try LINKUP instead.

See also KILL which removes all current jobs.

9.50 BTool_RMV

Syntax BTool_RMV
Location BTool

All keywords implemented by BTool (except BTool_EXT) are removed from the SuperBASIC name list.
The Toolkit itself remains in memory and can be re-activated with BTool_EXT.

9.51 BTRAP

Syntax BTRAP #ch,key [,d1 [,d2 [,d3 [,a1 [,a2]]]]]
Location TRAPS (DIY Toolkit Vol T)

This command is identical to QTRAP, except that the address parameters (a1 and a2) are taken to be
relative to A6, therefore allowing you to access system calls which need to access the SuperBASIC
variables, so that you can for example save and load arrays direct!!

WARNING

Several TRAP #3 calls can crash the computer - make certain that you know what you are doing!

CROSS-REFERENCE

See IO_TRAP, MTRAP and QTRAP.

Any return parameters can be read with DATAREG and ADDREG.

CLS, PAN and SCROLL can also be used to call TRAP #3.

Refer to the QDOS/SMS Reference Manual (Section 15) for details of the various system TRAP #3 calls.

9.49. BTool_EXT 149

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Also refer to the DIY Toolkit documentation for this command.

9.52 BUTTON%

Syntax BUTTON% (flag)
Location KMOUSE, MOUSE (DIY Toolkit - Vol I), Amiga QDOS v3.20+

This function can be used to find out if any mouse buttons have been pressed and if so which ones.
Unfortunately, you cannot use this to find out if a button has been pressed twice quickly in succession
(known as double-clicking).

The value of flag is used to tell the function which buttons you wish to interrogate:

• 0 - Has any key been pressed ? If so, the value returned will be 0 plus the following numbers if the
relevant key(s) has been pressed:

– +1 - Button One Pressed

– +2 - Button Two Pressed

– +4 - Button Three Pressed

• 1 - Has Button One been pressed (this is the left hand mouse button)? If so 1 is returned, otherwise
0.

• 2 - Has Button Two been pressed (this is the right hand mouse button)? If so, 1 is returned, other-
wise 0.

• 3 - Has Button Three been pressed (this is the middle mouse button)? If so, 1 is returned, otherwise
0.

Example

A routine to wait for the user to press the right and left mouse button at the same time:

100 DEFine PROCedure WAIT_MOUSE
110 REPeat mloop
120 IF BUTTON%(0)=1+2:RETurn
130 END REPeat mloop
140 END DEFine

CROSS-REFERENCE

X_PTR%, Y_PTR% and PTR_FN% can also be used to interrogate the mouse.

150 Chapter 9. Keywords B

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

9.53 BVER$

Syntax BVER$
Location BeuleTools

This function returns the version number of the Beule Toolkit. This may be useful if a program makes
use of commands or functions which were not supported by older versions.

9.54 BYTES_FREE

Syntax memory = BYTESFREE
Location DJToolkit 1.16

This simple function returns the amount of memory known by the system to be free. The answer is
returned in bytes, see also KBYTES_FREE. For the technically minded, the free memory is considered
to be that between the addresses held in the system variables SV_FREE and SV_BASIC.

EXAMPLE

...
2500 freeMemory = BYTES_FREE
2510 IF freeMemory < 32 * 1024 THEN
2520 REMark Do something here if not enough memory left...
2530 END IF
...

CROSS-REFERENCE

KBYTES_FREE.

9.53. BVER$ 151

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

152 Chapter 9. Keywords B

CHAPTER

TEN

KEYWORDS C

10.1 CACHE_ON

Syntax CACHE_ON
Location SMS, Super Gold Card

This command enables any internal caches which may be available on your operating system. This is in
fact the default.

Caches are a means of storing computer instructions in fast memory and cutting down on the time taken
by a computer to execute those instructions.

Normally a computer chip works is fed a program in a series of numbers representing commands, a format
which is known as machine code. This machine code operates at a very low level - the SuperBASIC
command PRINT a$ would need several hundred machine code commands to have any effect on screen).
The later Motorola chips (not 68000 or 68008) used by QLs and Amigas (and also the newer chips on
PCs and ATARIs) all have on-board caches which can hold a certain number of these machine code
instructions. If, while the program is running, it accesses those instructions again within a short time (ie.
before the cache becomes full), then the chip can execute that series of commands again very quickly.

Although caches can therefore speed up many programs, some computer programs were written in the
days before caches were available for the QL and compatibles, and therefore will not work if the cache
is switched on. This is particularly true of some of the commands used by the Turbo compiler which
contain self-modifying code, thus meaning that storage of a chunk of instructions is self-defeating.

CROSS-REFERENCE

CACHE_OFF allows you to disable the caches.

10.2 CACHE_OFF

Syntax CACHE_OFF
Location SMS, Super Gold Card

This command disables the internal caches used to speed up the operating system. This can help some
of the older software to work on newer systems.

In particular, this command is needed if Flexynet is to work (see NETSEND).

153

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE

See CACHE_ON .

10.3 CALL

Syntax CALL address [,d1[,d2[,d3[,d4[,d5[,d6[,d7 [,a0[,a1[,a2[,a3[,a4[,a5]]]]]]]]]]]]]
Location QL ROM

This command allows you to call a machine code routine loaded at the memory location address from
SuperBASIC. At the same time, you can set the initial 68008 registers by supplying more than one pa-
rameter. Each additional parameter should be an integer value and is placed into the appropriate machine
code register.

You cannot return values to SuperBASIC using this command, although you can return errors by setting
D0 from the machine code on return.

If the machine code register D0 contains a number other than an error code (or 0) on return, the program
will stop with the error ‘At line ‘.

Various useful routines can be CALLed on a Minerva ROM - these are discussed on the next few pages.

NOTE 1

This command could crash the computer if used from within a program longer than 32K on pre JS ROMs.
This is fixed by Toolkit II, the THOR XVI and Minerva.

NOTE 2

It can be dangerous to CALL addresses in memory unless you know that you have loaded a specified
machine code routine into that location.

MINERVA NOTES:

MINERVA NOTES

Minerva adds various routines which can be CALLed from within a SuperBASIC program to perform
various tasks quickly and efficiently. The routines are as follows:

(1) Reset machine

CALL 390,param

This routine resets the QL and allows you to set various parameters according to the value of param,
which allows you, for example, to cut the amount of memory available to the machine. >/p>

To calculate the value of param, look at the following table and decide what effects you want the reset to
have.

Next, look up the value of that effect and add it to param.

EffectValue to add

• Skip memory test = 1

• Skip ROM scanning (ignore extras) = 2

• Alter maximum memory = 4

154 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• Default to TV mode = 8

• Ignore F1..F4 (no wait) = 16

• Leave n*256 bytes between screen and System Variables = n*256

• Set ramtop to nKB = (n+128)*1024

Examples

(a) reset machine and force dual screen TV mode (no memory test):

CALL 390,8+16+128+1

(b) reset machine to 640K:

CALL 390,(640+128)*1024+4

MINERVA WARNINGS

CALL 390 can crash the machine - always set the new ramtop to a multiple of 64K and do not try to
allocate more memory than is in the system.

If you leave space between the screen and System Variables, this will reduce the amount of memory
available accordingly!!

If your system uses a keyboard linked to SuperHermes, do not use CALL to reset the system unless
you include a line such as PAUSE 40 prior to the CALL command to clear all pending input, otherwise
SuperHermes becomes confused!

(2) Move memory quickly:

CALL PEEK_W(344)+16384,length,2,3,4,5,6,7,dest,source

This command allows you to move length bytes from the source address to the destination address (dest)
extremely quickly.

Either source or dest may be odd addresses, and the code will even cope with overlapping areas.

Minerva Example:

Minerva Example

To copy the whole of the main screen to a screen storage area pointed to by the variable scr_store

10 scr_size=SCR_LLEN*SCR_YLIM
20 scr_store=ALCHP(scr_size)
30 CALL PEEK_W(344)+16384,scr_size,2,3,4,5,6,7,scr_store,SCR_BASE

(3) Clear memory quickly

CALL PEEK_W(360)+16384,length,2,3,4,5,6,7,address

This command allows you to clear length bytes from the given start address onwards extremely quickly.
It could for example, be used to clear storage buffers.

Please note that address may be odd.

CROSS-REFERENCE

LBYTES, SBYTES can be used to load and save areas of memory (and machine code routines).

ALCHP and RESPR can be used to set aside areas of memory for user routines.

10.3. CALL 155

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

BMOVE and similar commands allow you to move areas of memory on other ROM implementations.

10.4 CAPS

Syntax CAPS
Location BeuleTools

After the command CAPS has been issued, any input from the keyboard via INPUT, INKEY$ etc. is
translated into capital letters. CAPS simulates the use of the capslock key.

Example

To ask the user for any keyboard input, for example a

password where this should be entered in capital letters:

100 CAPS
110 INPUT "Please enter password:"!pass$
120 NOCAPS

NOTE

Some old replacement keyboards use dirty tricks to engage capslock. If you are fed up with the original
QL keyboard then ensure you get the latest release of a modern keyboard interface and an IBM-style
keyboard. If you do not do this, then you may have to change to capslock mode with CAPS. . .

CROSS-REFERENCE

NOCAPS is self-explanatory.

10.5 CATNAP

Syntax CATNAP
Location Turbo Toolkit

The Turbo compiler allows PROCedure and FuNction definitions within a compiled program to be defined
as GLOBAL and then called by other tasks. This is similar to making a modular machine code program
which is then linked together when the assembly language modules are assembled. Under Turbo, the
various program modules can be compiled separately, but then loaded together with LINK_LOAD_A
and similar commands.

The CATNAP command will force a compiled program to wait at this statement indefinitely. The com-
piled program is only allowed to carry on execution from the next statement if another module calls one
of the GLOBAL definitions contained in the current program and the GLOBAL PROCedure or FuNction
has completed.

If CATNAP is used within a SuperBASIC program, then the program is simply suspended until the Break
key is pressed.

CROSS-REFERENCE

156 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

SNOOZE is similar. See also GLOBAL, EXTERNAL and LINK_LOAD_A.

10.6 CBASE

Syntax CBASE [(#ch)](Btool) and
CBASE (#ch)(TinyToolkit)

Location BTool, TinyToolkit

The function CBASE finds the start address of the channel definition block which belongs to #ch. This is
an area in memory where QDOS stores a lot of information about the channel, for example, which kind
of device is connected to the channel.

The Btool variant returns the base of channel #1 if #ch is not specified.

CROSS-REFERENCE

The Pointer Interface modifies the structure of channel definition blocks for windows.

If you want to access these, preferably use WINCTRL instead of CBASE. See also CHBASE.

You can also use the CHAN_ <KeywordsC.clean.html#chan_>xx functions to look at the channel defi-
nition block.

10.7 CCHR$

Syntax CCHR$ (x)
Location BTool

The function CCHR$ takes a word value (max 32767) and returns two characters represented by that
word. This is therefore the same as:

X=PEEK_W(10000)

PRINT CHR$(X DIV 256);CHR$(X MOD 256)

CROSS-REFERENCE

CHR$ can be used to print each character separately.

10.8 CDEC$

Syntax CDEC$ (value,length,ndp)
Location Toolkit II, THOR XVI

The function CDEC$ allows you to convert a given value into a string in a specified format. This function
will always take the integer part of the given value (which must be in the range -2^31. . . 2^31, and will
be rounded to the nearest integer if it is a floating point) and then assumes that the last ndp digits are to
the right of the decimal point.

10.6. CBASE 157

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

If there are enough characters to the left of the decimal point, a comma (‘,’) will be placed between each
set of three characters. The length is the length of the string which is to be returned, which must always
be greater than or equal to the length of the value plus each comma and the decimal point. If length is
not large enough, then the string returned will be full of asterisks (’*’).

This function is particularly useful for formatting columns of figures, especially in view of the fact that
it sidesteps the QL’s habit of converting large numbers to exponential form. The commas ensure that it
is ideal for use in formatting output of currencies.

Examples

PRINT CDEC$(123,4,0)

will print ‘ 123’

PRINT CDEC$(123,4,1)

will print ‘12.3’

PRINT CDEC$(1234567,9,2)

will print ‘12,345.67’

CROSS-REFERENCE

PRINT_USING is a general means of formatting output.

IDEC$ and FDEC$ are complementary functions.

10.9 CD_ALLTIME

Syntax CD_ALLTIME
Location SMSQ/E for QPC

This function returns the actual elapsed time in REDBOOK format from the start of the CD which is
being played at present.

Example

A procedure to give the currently elapsed time:

100 DEFine PROCedure SHOW_TIME
110 elapse%=CD_ALLTIME
120 PRINT 'TOTAL ELAPSED TIME: ';CD_HOUR (elapse%);' HRS ';CD_MINUTE (elapse
→˓%);' MINS ';:
130 PRINT CD_SECOND (elapse%);' SECS'
130 END DEFine

CROSS-REFERENCE

CD_PLAY plays specified tracks.

CD_TRACK allows you to find out which track is being played.

CD_TRACKTIME allows you to find out the total elapsed time on the current track.

CD_RED2HSG allows you to convert REDBOOK format to HSG Format.

158 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CD_HOUR, CD_MINUTE, CD_SECOND allow you to convert REDBOOK format into a more under-
standable form.

10.10 CD_CLOSE

Syntax CD_CLOSE
Location SMSQ/E for QPC

This command closes the CD drive drawer, loading a CD if you have placed one in the drawer.

CROSS-REFERENCE

CD_EJECT opens the drawer.

CD_PLAY allows you to play a CD.

See CD_INIT .

10.11 CD_EJECT

Syntax CD_EJECT
Location SMSQ/E for QPC

This command opens the CD drive drawer and allows you to either place a new CD in the drive or to
remove one.

You need to close the drawer before attempting to play the CD!

CROSS-REFERENCE

CD_CLOSE closes the CD drive drawer.

CD_PLAY allows you to play an Audio CD.

10.12 CD_FIRSTTRACK

Syntax CD_FIRSTTRACK
Location SMSQ/E for QPC

This function will return the track number of the first track on the CD currently in the player (this should
always be 1).

CROSS-REFERENCE

CD_LASTTRACK allows you to find out the last track number.

10.10. CD_CLOSE 159

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.13 CD_HOUR

Syntax CD_HOUR (address)
Location SMSQ/E for QPC

This function takes an address in REDBOOK format and tells you the number of hours (0..23) contained
in that address.

CROSS-REFERENCE

CD_MINUTE and CD_SECOND allow you to find the number of minutes and seconds in a REDBOOK
address respectively.

10.14 CD_HSG2RED

Syntax CD_HSG2RED (address)
Location SMSQ/E for QPC

There are two common formats used to address sectors on a CD directly. The standard format is RED-
BOOK format, which uses a time index to calculate the sector to address.

This time index is in the form $00MMSSFF where MM is the minute, SS the second and FF the frame.

There are 75 frames in one second.

The other format is HSG FORMAT where the sector is calculated by reference to the formula:

HSG=(minute*60+second)*75+frame

This function takes the address in HSG format and converts this to REDBOOK format.

CROSS-REFERENCE

CD_RED2HSG allows you to convert REDBOOK format addresses to HSG format.

CD_HOUR, CD_MINUTE and CD_SECOND allow you to find out the hours, minutes and seconds
referred to by a REDBOOK address.

10.15 CD_INIT

Syntax CD_INIT [name$]
Location SMSQ/E for QPC

QPC is able to use a CD player linked to a PC in order to play Audio CDs at present.

You first of all need to initialise the CD drive by using this command. CD_INIT causes QPC to seach
for a CD-ROM drive and initialise the driver.

160 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

You can either pass the name of the drive as a parameter or, if you do not use name$, then QPC will use the
PC program MSCDEX (if present) to locate the CD-ROM Drive. MSCDEX can be loaded in the PC file
AUTOEXEC.BAT if you wish, otherwise the CD drive name must appear in the PC file CONFIG.SYS.

Example

CD_INIT ‘mscd001’

NOTE 1

This command will only be recognised once.

NOTE 2

The CD player commands and functions will not work if you have not loaded the PC’s CD-ROM driver
in config.sys, for example with the line:

DEVICE=C:\CD\CDROMDRV.SYS /D:MSCD001

CROSS-REFERENCE

CD_PLAY allows you to play CD Audio tracks.

CD_EJECT ejects a disk from the drive, or allows you to insert a new disk.

10.16 CD_ISCLOSED

Syntax CD_ISCLOSED
Location SMSQ/E for QPC

This function will return 1 (True) if the CD drawer is closed, otherwise it will return 0.

Example

100 IF NOT CD_ISPLAYING
110 IF NOT CD_ISCLOSED : CD_CLOSE
120 IF CD_ISINSERTED : CD_PLAY
130 END IF

CROSS-REFERENCE

CD_CLOSE closes the CD drawer.

10.17 CD_ISINSERTED

Syntax CD_ISINSERTED
Location SMSQ/E for QPC

This function will return 1 (True) if there is a CD in the CD-ROM drive and the drawer is closed, otherwise
it will return 0.

CROSS-REFERENCE

10.16. CD_ISCLOSED 161

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

See CD_ISCLOSED.

10.18 CD_ISPAUSED

Syntax CD_ISPAUSED
Location SMSQ/E for QPC

This function will return 1 (True) if the CD is paused (as opposed to stopped), otherwise it will return 0.

CROSS-REFERENCE

CD_STOP can be used to pause the CD.

CD_RESUME resumes playing a CD.

10.19 CD_ISPLAYING

Syntax CD_ISPLAYING
Location SMSQ/E for QPC

This function will return 1 (True) if an Audio CD is currently playing, otherwise it will return 0.

CROSS-REFERENCE

CD_PLAY allows you to play an Audio CD.

10.20 CD_LASTTRACK

Syntax CD_LASTTRACK
Location SMSQ/E for QPC

This function will return the track number of the last track on the CD currently in the player.

CROSS-REFERENCE

CD_FIRSTTRACK allows you to find out the first track number.

CD_TRACK tells you the track number currently playing.

162 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.21 CD_LENGTH

Syntax CD_LENGTH
Location SMSQ/E for QPC

This function will return the length of the Audio CD currently in the player in REDBOOK format.

CROSS-REFERENCE

CD_LASTTRACK allows you to find out the last track number.

CD_HOUR, CD_MINUTE, CD_SECOND convert REDBOOK format into a time.

10.22 CD_MINUTE

Syntax CD_MINUTE (address)
Location SMSQ/E for QPC

This function takes an address in REDBOOK format and tells you the number of minutes (0..59) con-
tained in that address.

CROSS-REFERENCE

CD_HOUR and CD_SECOND allow you to find the number of hours and seconds in a REDBOOK
address respectively.

10.23 CD_PLAY

Syntax CD_PLAY [start [,end]]
Location SMSQ/E for QPC

This command allows you to play the tracks on an audio CD once it has been initialised. If no parameters
are specified, QPC will play the whole of the CD in the CD-ROM drive.

This command will not slow the operation of SMSQ/E and returns immediately that the CD starts playing.

The parameters allow you to specify the start and end tracks to be played. These parameters are given
either as track numbers or as sectors in REDBOOK format (if bit 31 of the parameter is set). A sector on
an Audio CD is 2352 bytes.

To set bit 31, add the value $80000000 or 2^31

Examples

CD_PLAY

plays the whole disk

CD_PLAY 10

play track 10 to the end of the disk

10.21. CD_LENGTH 163

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CD_PLAY 5,CD_TRACKSTART(5)+$80000000

play track 5 only.

A program which will play all of the tracks on an Audio CD in a random order:

100 INPUT 'Has the CD-ROM Drive already been initialised ? [y] ';an$
110 IF an$=='n': CD_INIT
120 IF NOT CD_ISINSERTED
130 IF CD_ISCLOSED : CD_EJECT
140 INPUT 'Place a CD in the drive and press <ENTER> ';an$
150 CD_CLOSE
160 IF NOT CD_ISINSERTED
170 PRINT 'NO CD LOADED ':PAUSE :STOP
180 END IF
190 END IF
200 tracks=CD_LASTTRACK-CD_FIRSTTRACK
210 DIM played% (tracks)
220 FOR i=1 to tracks
230 REPeat Floop
240 play=RND(1 TO tracks)
250 IF played%(play)=0: played%(play)=1: EXIT Floop
260 END REPeat Floop
270 CD_PLAY play,play
280 REPeat Ploop: IF NOT CD_ISPLAYING: EXIT Ploop
290 END FOR i

CROSS-REFERENCE

CD_INIT allows SMSQ/E to recognise a CD drive.

CD_STOP pauses playing

CD_EJECT opens the disk drawer to allow you to insert a new CD.

CD_CLOSE closes the disk drawer.

CD_ISINSERTED allows you to check if a CD is in the drive.

10.24 CD_RED2HSG

Syntax CD_RED2HSG (address)
Location SMSQ/E for QPC

This function converts a specified address in HSG format into REDBOOK format.

CROSS-REFERENCE

See CD_HSG2RED !

164 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.25 CD_RESUME

Syntax CD_RESUME
Location SMSQ/E for QPC

This command restarts the CD-ROM drive playing from the last track on which it was paused.

NOTE

If you had not previously paused the CD, then an error is reported.

CROSS-REFERENCE

CD_STOP allows you to pause a CD which is currently playing.

CD_ISPAUSED allows you to check if the CD has been paused.

10.26 CD_SECOND

Syntax CD_SECOND (address)
Location SMSQ/E for QPC

This function takes an address in REDBOOK format and tells you the number of seconds (0..59) con-
tained in that address.

CROSS-REFERENCE

CD_HOUR and CD_MINUTE allow you to find the number of hours and minutes in a REDBOOK ad-
dress respectively.

10.27 CD_STOP

Syntax CD_STOP
Location SMSQ/E for QPC

This command has one of two effects.

If an Audio CD is already playing, then the disk is paused.

If you have already paused the Audio CD, then a complete stop is performed.

Example

The following procedure brings the CD to a complete stop -

you cannot resume playing.

10.25. CD_RESUME 165

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

1000 DEFine PROCedure STOP_CD
1010 CD_STOP
1020 IF CD_ISPAUSED : CD_STOP
1030 END DEFine

WARNING

On some laptop PCs, it has been noted that if you are playing an Audio CD and close the case without
issuing CD_STOP, when you re-open the case QPC will have crashed.

CROSS-REFERENCE

CD_RESUME allows you to resume playing an Audio CD that has been paused.

CD_PLAY allows you to play an Audio CD that is at a complete stop.

CD_EJECT opens the drive drawer.

CD_CLOSE closes the drive drawer.

10.28 CD_TRACK

Syntax CD_TRACK
Location SMSQ/E for QPC

This function returns the track number of which track on a CD is actually being played at present.

CROSS-REFERENCE

CD_PLAY plays specified tracks.

10.29 CD_TRACKLENGTH

Syntax CD_TRACKLENGTH (track)
Location SMSQ/E for QPC

This function returns the length of a specified track in HSG format.

CROSS-REFERENCE

CD_TRACKTIME allows you to find out the elapsed time on a track being played.

CD_HSG2RED converts the HSG format to REDBOOK format.

166 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.30 CD_TRACKSTART

Syntax CD_TRACKSTART (track)
Location SMSQ/E for QPC

This function returns the start address for a specified track in REDBOOK format.

CROSS-REFERENCE

CD_TRACKLENGTH allows you to find out the length of a track.

CD_PLAY allows you to play specified tracks

CD_RED2HSG converts the REDBOOK format to HSG format.

10.31 CD_TRACKTIME

Syntax CD_TRACKTIME
Location SMSQ/E for QPC

This function returns the actual elapsed time in REDBOOK format within the current CD track that is
being played at present.

CROSS-REFERENCE

CD_PLAY plays specified tracks.

CD_TRACK allows you to find out which track is being played.

CD_ALLTIME allows you to find out the total elapsed time on the CD disk as a whole.

10.32 CEIL

Syntax CEIL (x)
Location Math Package

The function CEIL returns the closest integer to x which is greater than or equal to x (the ‘ceiling’ of x).
Compare INT which returns the next integer which is less than or equal:

CEIL(12.75)=13 INT(12.75)=12 CEIL(-2.3)=-2 INT(-2.3)=-3

CEIL can handle numbers in the range -32768<x<=32768.

Example

A mechanic needs one and a half hours to replace the rusty exhaust of a car. If his rate of pay is £13 per
hour, he will charge CEIL(13*1.5)=£20 for the job (excluding parts).

NOTE

10.30. CD_TRACKSTART 167

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

The simplest way to get a true INTEGER function, where x is rounded up or down to the nearest integer
is with INT(x+.5) which ensures that INT(12.75)=13 and INT(-2.3)=-2.

CROSS-REFERENCE

INT

10.33 CHANGE

Syntax CHANGE old_drv1$ TO new_drv2$
Location TinyToolkit

This command allows you to rename directory devices. All directory device names are in the form xxxn_,
where xxx identifies the drive type (eg. FLP) and n the drive number (1..8).

The most common drive types are:

• RAM - temporary internal ramdisk

• FLP - floppy disk drive (sometimes called FDK)

• MDV - microdrive

• MOS - permanent external ramdisk

• WIN - hard disk drive (sometimes HDK)

• NUL - null device, a dummy device

• DEV - universal devices (also PTH)

(Please see the Devices Appendix.)

CHANGE replaces the xxx part of a device name by a user defined name. This new name can already
exist but both parameters must consist of three letters; the use of characters other than letters is possible
but not recommended, eg:

CHANGE “flp” TO “<*>”.

Example

CHANGE “ram” TO “mdv” makes the system believe that a ramdisk is a microdrive.

DIR mdv1_ will provide a directory of ramdisk 1, but the device ram1_ (or ram2_, etc.) is no longer
recognised. The microdrives themselves cannot be accessed any more until you use: CHANGE “mdv”
TO “ram” to restore the normal condition.

NOTE

If a device name is in ROM (eg. possibly mdv on QLs without floppy disk drives), the error -20 (read
only) will be reported.

CROSS-REFERENCE

FLP_USE and RAM_USE work similarly.

168 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.34 CHANID

Syntax CHANID [(#ch)]Btool only or
CHANID (#ch)TinyToolkit

Location BTool, TinyToolkit

QDOS uses a different sort of channel number internally to those used by SuperBASIC. These so-called
channel IDs have the advantage that two channels will never have the same channel ID, even if some
channels have been closed for a long time.

The function CHANID expects an open SuperBASIC channel #ch (a default channel of #1 is allowed by
Btool) and returns its current internal channel ID.

Example

100 OPEN#3,con_2x1
110 PRINT CHANID(#3)
120 CLOSE#3: OPEN#3,con_2x1
130 PRINT CHANID(#3)
140 CLOSE#3

CROSS-REFERENCE

CHANID is intended for use with FILE_OPEN .

CHANNEL_ID is the same as the Btool variant.

See SET_CHANNEL also.

10.35 CHANNELS

Syntax CHANNELS [#ch]
Location BTool, Qsound, TinyToolkit

The command CHANNELS list all channels which are currently open (including channels from any other
job) to the given channel (default #1).

Each channel is listed with a channel number which can be used with CLOSE% and provides details of
its size and position. Unfortunately, the name of the Job which owns the channel is not listed.

NOTE

The Tiny Toolkit and Qsound version of this command do not currently work with the Pointer Environ-
ment. The BTool version works to some extent.

CROSS-REFERENCE

CLOSE%, JOBS and CHANID

10.34. CHANID 169

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.36 CHANNEL_ID

Syntax CHANNEL_ID [(#ch)]
Location Turbo Toolkit

This function is exactly the same as CHANID.

CROSS-REFERENCE

SeeCHANID and SET_CHANNEL.

10.37 CHAN_B%

10.38 CHAN_W%

10.39 CHAN_L%

Syntax CHAN_B% (#ch, offset) and
CHAN_W% (#ch, offset) and
CHAN_L

Location CHANS (DIY Toolkit - Vol C)

These three functions can be used to look at values within the channel definition block relating to the
specified channel (#ch). You will need a good book on the QL’s operating system to understand the
various offsets, such as the QDOS/SMS Reference Manual (See section 18.7 to 18.9.3 in that book).

They allow you to read single bytes, words and longwords from the channel definition block (what is
required depends upon the offset).

Extra offsets (negative numbers) are added by the Pointer Environment which can also be looked at by
using these functions.

Examples

Instead of using SCR_BASE, you can use:

PRINT CHAN_L (#1,50)

to find the base address of the screen.

100 PRINT 'Window #1's size is';
110 PRINT CHAN_W% (#1,28);'x'; CHAN_W% (#1,30);'a'; CHAN_W% (#1,24);'x'; CHAN_W% (
→˓#1,26)

CROSS-REFERENCE

CHBASE can be used to find out similar information.

170 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.40 CHARGE

Syntax CHARGE [task_file$]
Location Turbo Toolkit

This command starts up the Turbo Compiler and attempts to compile the program currently loaded in
SuperBASIC Job 0.

It is similar to issuing the commands:

EXEC_W flp1_PARSER_TASK
EXEC flp1_CODEGEN_TASK

The default device which contains the Turbo compiler (PARSER_TASK and CODEGEN_TASK) can be
configured with a special toolkit configuration program.

If you do not specify a task_file$, then the one which is configured is assumed to be the name of the new
compiled file to be generated. This and several other defaults may be altered from the front panel which
is generated by PARSER_TASK. The default settings on the front panel may also be configured and set
using various directives such as TURBO_obfil.

The maximum length of the task_file$ is 12 characters. If a longer string is supplied, only the first 12
characters are used.

Example

CHARGE ‘GENEALOGY’

NOTE 1

This command will not work on Minerva and SMS.

NOTE 2

The filename for the new task has never really worked correctly when passed as a parameter, if you specify
a device as part of the filename. The filename becomes corrupted if this is the case.

NOTE 3

When you compile a program using TURBO, it is imperative that all of the machine code procedures and
functions which are used by that program are linked into the machine. If you fail to do this, then an error
will be reported when you try to run your compiled program using EXEC or EXEC_W for example.

This is different to QLiberator, which only checks whether each machine code function or procedure is
linked in when (and if) it tries to use them whilst the compiled program is being run.

CROSS-REFERENCE

DATA_AREA and various TURBO_xxx directives exist, starting with TURBO_diags to allow you to
specify various compilation options from within your program’s source code.

Please also refer to COMPILED.

10.40. CHARGE 171

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.41 CHAR_DEF

Syntax CHAR_DEF font1,font2
Location SMSQ/E v2.57+

This command is very similar to the CHAR_USE command, except that instead of altering the fonts
attached to a specified window, it sets the default fonts which are used for every new window channel
that is opened after this command (unless they in turn define their own fonts).

The two parameters should point to an address in memory where a font in the QL font format is stored. If
either parameter is 0, then that fount is reset to the standard system fount. If either parameter is -1, then
CHAR_DEF will not affect that font.

Minerva users can achieve the same effect with the following:

110 Font0=PEEK_L (!124 !40)
120 Font1=PEEK_L (!124 !44)
130 POKE_L !124 !40, NewFont0, NewFont1

Note that you will need to store the addresses of the original QL ROM fonts (as in lines 110 and 120).

NOTE 1

The screen windows which are already open will not be affected.

NOTE 2

This command cannot affect a screen window which has been OPENed over the Network, unless issued
on the Slave computer (on whose screen the window appears), before the window was OPENed over the
Network.

CROSS-REFERENCE

CHAR_USE, CHAR_INC.

Please also refer to the Fonts Appendix.

10.42 CHAR_INC

Syntax CHAR_INC [#channel,] x_step,y_step
Location Toolkit II, THOR XVI

This command sets the horizontal (x_step) and vertical (y_step) distance between characters printed on
a window (default #1). The standard values are the width and height of a character and are automatically
set by CSIZE.

CSIZE#2,0,0 performs an internal CHAR_INC#2,6,10.

Characters are generally based on a grid which measures 8x10 pixels, although the leftmost column was
not available for fonts on pre-JS ROMs. Also, if you own a JSU ROM (an American QL), this grid size
is reduced to 8x8, although programs would appear to run okay on the JSU ROM without modification
(see MODE for further details).

172 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Example

Would you like to print more characters to the screen than normal? You can either do this by defining
smaller fonts or by writing characters on the screen closer together:

100 WINDOW 512,40,0,0:CLS
110 CSIZE 0,0: CHAR_INC 5,8:OVER 1
120 PRINT FILL$('.',102)

Window #1 now offers 5 rows and 102 columns instead of 4 rows and 85 columns, but text can only be
read in overwrite mode (OVER 1). CHAR_INC 6,8 is the highest possible value which will allow text to
be read without the need for OVER 1.

WARNING

Unless you have Minerva or Lightning installed (with _lngASLNG enabled), if you specify a character
height less than the standard 10 pixels (for CSIZE x,0) for example, the strip printed will remain at ten
pixels, and although the screen driver might detect that it is not necessary to scroll a window to fit the
text on, it does not take account of the height of the strip, which could therefore fall out of the window
(or into the system variables if your window is near the bottom of the screen).

CROSS-REFERENCE

CSIZE, OVER.

See also TTINC.

10.43 CHAR_USE

Syntax CHAR_USE [#ch,] font1,font2
Location Toolkit II, THOR XVI

This command allows you to attach substitute fonts in QDOS format to the specified window channel
(default #1).

CHAR_USE will attach the two fonts at addresses font1 and font2 to the window in place of the current
system fonts.

When a character is printed, if it cannot be found at either font1 or font2, then the first character of the
second font will be used.

To return to the current system fonts on the specified window, use font1=0 or font2=0 as appropriate.

If you use the value of -1 as one of the parameters, then that font attached to the specified channel will
not be altered by this command.

Example

CHAR_USE #3,font_address,0

resets the first font in #3 to the font stored at font_address in memory.

NOTE

This command will have no effect on a window OPENed over the Network.

CROSS-REFERENCE

10.43. CHAR_USE 173

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Please refer to the Fonts Appendix concerning QL fonts.

CHAR_INC allows you to alter the spacing between characters.

CHAR_DEF allows you to alter the default system fonts.

S_FONT performs the same function as CHAR_USE.

10.44 CHBASE

Syntax CHBASE [(#ch)] or
CHBASE (chidx%, chtag%)

Location QBASE (DIY Toolkit Vol Q)

CHBASE is a function which returns the start address of a window definition block. This block contains
a wide range of information about a window, such as the size and colour settings. Refer to the QDOS
Reference manual Section 18.7 and 18.9.1 (or similar) for further details.

The window can be either specified by its SuperBASIC channel number, eg: CHBASE(#2), where the
default is #1, or the internal channel ID; which must be split into index (chidx%) and tag (chtag%) before
being passed to CHBASE.

The latter syntax allows you to access the windows of jobs other than the current job.

Inside knowledge about the operating system is necessary to access these tables. Please refer to QDOS
system documentation. The structure of the window definition block is different under Thors, original
QLs and the Pointer Environment.

CHBASE returns small negative integers if an error occurs, representing the QDOS error code:

• -1 = Window is currently in use, eg. awaiting input.

• -6 = No such channel exists.

• -15 = It’s a channel but not a window.

Example 1

The current INK colour is found at offset $46, so: INK 7: PRINT PEEK(CHBASE+ HEX(‘46’)) will
print 7, because of the INK 7 command.

Example 2

It is usually not recommended to close and re-open SuperBASIC channel #0. The following lines check
if this has happened, although they will only work under the SuperBASIC interpreter(!). You will find
the condition in line 100 is always true for Minerva’s MultiBASIC interpreters and SMS’s SBASIC
interpreters: this does no harm - the example is more or less just an example of the syntax of CHBASE. . .

100 IF CHBASE(0,0) <> CHBASE(#0) THEN
110 UNDER 1: PRINT "Warning": UNDER 0
120 PRINT "Channel #0 is not in it's original state."
130 END IF

CROSS-REFERENCE

CBASE.

174 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

See also CHAN_B% and related functions.

10.45 CHECK

Syntax oops = CHECK(‘name’)
Location DJToolkit 1.16

If name is a currently loaded machine code procedure or function, then the variable oops will be set
to 1 otherwise it will be set to 0. This is a handy way to check that an extension command has been
loaded before calling it. In a Turbo’d or Supercharged program, the EXEC will fail and a list of missing
extensions will be displayed, a QLiberated program will only fail if the extension is actually called.

EXAMPLE

1000 DEFine FuNction CheckTK2
1010 REMark Is TK2 present?
1020 RETurn CHECK('WTV')
2030 END DEFine

10.46 CHECK%

Syntax CHECK% (integer$)
Location CONTROL (DIY Toolkit Vol E)

Coercion is the process of converting a string which holds a number into the actual number. It is a
powerful in-built feature of SuperBASIC. This allows you to create input routines such as:

100 dage% = RND(10 TO 110)
110 INPUT "Your age [" & dage% & "]?" ! age$;
120 IF age$ = "" THEN
130 age% = dage%: PRINT age%
140 ELSE
150 age% = age$: PRINT
160 END IF

Although SuperBASIC coercion is very powerful, it does have its limits when non-numeric strings are
entered. If age$ was “44”, age%=age$ will assign 44 to age%. Even if the string was not really a number,
eg. “44x5”, SuperBASIC will simply ignore everything behind legal characters (ie. age%=age$ would
assign 44 to age% still). However, if age$ contained something like “no thanks” it cannot be coerced and
the program will fail with an ‘error in expression’ (-17).

The function CHECK% exploits the fact that SuperBASIC is obviously able to see the difference between
a valid number or what comes close to that and nonsense. CHECK% carries out an explicit coercion for
integer numbers: it will try to make a number from the supplied parameter in the same way as Super-
BASIC would. However, CHECK% will not stop with an error for unusable strings, instead it returns
-32768.

10.45. CHECK 175

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Although “-32768” is converted correctly to -32768, this value must be reserved because the program
cannot know whether the input was illegal or -32768.

Example

Let’s rewrite the above example for coercion with CHECK%. We have to replace the implicit coercion
age%=age$ with age%=CHECK%(age$) and put INPUT into a loop:

100 dage% = RND(10 TO 110)
110 REPeat asking
120 INPUT "Your age [" & dage% & "]?" ! age$;
130 IF age$ = "" THEN
140 age% = dage%: PRINT age%
150 ELSE
160 age% = CHECK%(age$): PRINT
170 IF age% > -32768 THEN EXIT asking
180 END IF
190 END REPeat asking

CROSS-REFERENCE

CHECKF does the same as CHECK% but converts strings containing floating point numbers.

WHEN ERRor can trap the coercion failure.

See the Coercion Appendix also.

10.47 CHECKF

Syntax CHECKF (float$)
Location CONTROL (DIY Toolkit Vol E)

Just like CHECK%, the function CHECKF takes the specified string and coerces it to a number. This time,
however, the number returned will be a floating point rather than an integer as returned by CHECK%.

CHECKF works just like CHECK% except that a return value of -1E600 signifies unacceptable strings.

CROSS-REFERENCE

CHECK% and TTEFP are worth a look.

10.48 CHK_HEAP

Syntax CHK_HEAP
Location SMSQ/E

This command is used to check whether the heap has become corrupted - we have no real details over its
working as it is undocumented.

176 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.49 CHR$

Syntax CHR$ (code)
Location QL ROM

This function returns the character associated with the given code.

The QL ROM character set is actually only in the range 0. . . 255, although code can be anything in the
range -32768. . . 32767. The least significant byte of the supplied parameter is used, ie. code && 255.

Examples

PRINT CHR$(100) and PRINT CHR$(1636)

both return ‘d’.

A short function to convert any lower case letters in a given string to upper case:

100 DEFine FuNction UP$(a$)
110 LOCal U$
115 U$=a$
117 IF a$='':RETurn ''
120 FOR i=1 TO LEN(a$)
130 IF CODE(a$(i))>96:IF CODE(a$(i))<123:U$(i)=CHR$(CODE(a$(i))-32)
140 END FOR i
150 RETurn U$
160 END DEFine UP$

NOTE

The THOR XVI limits code to the range 0. . . 255.

CROSS-REFERENCE

See CODE and also please refer to the Characters section of the Appendix.

10.50 CIRCLE

Syntax CIRCLE [#ch,] x,y,radius [,ratio,ecc] *[;xi,yi,radiusi [,ratioi,ecci]]*

Location QL ROM

This command allows you to draw a circle of the given radius with its centre point at the point (x,y).

The positioning and size of the circle will actually depend upon the scale and shape of the specified
window (default #1).

The co-ordinates are calculated by reference to the graphics origin, and the graphics pointer will be set
to the centre point of the last circle to be drawn on completion of the command.

If any parts of the circle lie outside of the specified window, they will not be drawn (there will not be an
Overflow Error).

If the parameters ratio and ecc are specified, this command has exactly the same effect as ELLIPSE.

10.49. CHR$ 177

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

This command will actually allow you to draw multiple circles by including more sets of parameters.
Each additional set must be preceded by a semicolon (unless the preceding circle uses five parameters).
This means that these commands are all the same:

CIRCLE 100,100,20,1,0,50,50,20
CIRCLE 100,100,20;50,50,20
CIRCLE 100,100,20:CIRCLE 50,50,20

Although the FILL command will allow you to draw filled circles on screen (in the current ink colour),
you will need to include a FILL 1 statement prior to each circle if they are to appear independently on
screen (this cannot be achieved when using this command to draw multiple circles!). If this rule is not
followed, then any points which lie on the same horizontal line (even though they may be in different
circles) will be joined.

Example

Try the following for an interesting effect:

100 WINDOW 448,200,32,16: MODE 8
110 PAPER 0: CLS
120 SCALE 200,-100,-100
130 INK 4:CIRCLE -50,-50,5
140 FOR i=1 TO 350
150 INK RND(7): FILL 1
160 CIRCLE_R 5-(i MOD 10),15-(i MOD 30),20
170 END FOR i

CROSS-REFERENCE

Please refer to ELLIPSE for further information on the ratio and ecc details.

10.51 CIRCLE_R

Syntax CIRCLE_R [#ch,] x,y,radius [,ratio,ecc] *[;xi,yi,radiusi [,ratioi,ecci]]*

Location QL ROM

This command draws a circle relative to the current graphics cursor. See CIRCLE.

CROSS-REFERENCE

Please refer to ARC_R. ELLIPSE_R is exactly the same as this command.

178 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.52 CKEYOFF

Syntax CKEYOFF
Location Pointer Interface (v1.23 or later)

Normally, the Pointer Interface will recognise the cursor keys in the same way as it recognises the mouse,
thus allowing you to move the pointer around the screen using the keyboard.

You may however prefer that the cursor keys had no effect on the pointer - the solution is simple - just
use the command CKEYOFF.

NOTE

There were problems with this command prior to v1.56.

Note 2

At some point CKEYOFF required a channel number parameter, ie CKEYOFF #channel. If you don’t
specify a channel number the command falls back on the current S*BASIC’s channel #0.

Unfortunately, if there isn’t already a channel #0 open, for example, a program might have opened its first
channel using:

1500 main = FOPEN(“con_”)

In this case, the the CKEYOFF command will open a new console channel and then try to set the window
size of that channel to the default size of 256x62. If, however, the program had already OUTLN’ed #main
to a smaller size, in any dimension, than 256x62, then this call will fail.

And here’s the bug: Instead of closing the failed console channel, the command simply returns without
error. This leaves a “dangling” console channel open without an S*BASIC handle. And each repeated
call to CKEYOFF/CKEYON opens another such channel!

As of ptr_gen 2.07 and SMSQ/E 3.39, this bug should be fixed, in that an “Out of Range” error will be
returned should the situation described above arise.

The workaround for earlier versions is: Always use this command with a channel number unless there is
definitely an available console channel #0!

The bug fix is that, if the circumstances described pertain, the call will return with an “Out of Range”
error.

CROSS-REFERENCE

CKEYON tells the Pointer Interface to recognise the cursor keys again.

10.53 CKEYON

Syntax CKEYON [#channel]
Location Pointer Interface (v1.23 or later)

See CKEYOFF.

NOTE

10.52. CKEYOFF 179

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

There were problems with this command prior to v1.56.

Note 2

At some point CKEYON started to have to take a channel number, ie CKEYON #channel.

If you dont give a channel number the commands try to open their own channel - that hybrid number
0/1, as do a number of IO commands (at least in SMSQ/E). All well and good. But if you, say, open
your first channel as number 3, as happens automatically if your first channel in a daughter SBASIC or
Qlib compiled job, and you open it with ch = FOPEN(“con_”) then, if that channel is OUTLiNed to be
smaller than the default channel, the call fails and returns to the routine - which gives up. But doesnt say
anything! However, now there is dangling, open channel in the main channel table that SBASIC doesnt
know about. So next time you use this command yet another channel is opened in the main channel table!
And so it goes on ad finitum until the job is killed - or the system chokes.

This is a rare circumstance, admittedly, but it is still a bug.

The bug fix is that if the circumstances described pertain, the call will return with an Out of Range error.

10.54 CLCHP

Syntax CLCHP
Location Toolkit II, THOR XVI, Btool

A BASIC program can reserve space in the common heap with ALCHP. The command CLCHP removes
all space which has been grabbed using ALCHP and returns it to the common heap so that it can be used
for other purposes.

CROSS-REFERENCE

ALCHP reserves areas of the common heap, and RECHP releases a specified part of the common heap.

Compare RESERVE and the Btool variant of ALCHP.

NEW and LOAD also release areas of the common heap.

10.55 CLEAR

Syntax CLEAR
Location QL ROM

This command forces all variables to be cleared meaning that the computer will no longer remember
their values.

This does not affect SuperBASIC functions or resident keywords, for example, PRINT PI will always
return 3.141593.

On non-SMS machines, if a variable is PRINTed, which has not yet been assigned a value, an asterisk
appears on screen. If you try to use a variable which has not yet been assigned a value, then an error will
occur (normally error in expression (-17)).

180 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

If Toolkit II is present (or you are using Minerva or a THOR XVI), any valid WHEN structures are also
suspended by the CLEAR command.

Adding CLEAR before a program is run ensures that all variables used in a program will be defined
properly. While developing a large program in BASIC it may sometimes be helpful to set an essential
variable directly in the command line and not as a static statement in the listing.

Example

The following lines will produce a different output depending on whether they have been run before or
not:

100 PRINT a
110 a=5
120 PRINT a

The first run shows. . . * 5 This is because the contents of a were not defined until line 110 was reached.

The second time, a was still set and so the output is slightly different. . . 5 5

NOTE

CLEAR may cause some problems on pre Minerva ROMs if it is issued after having deleted a PROCedure
or a FuNction in a SuperBASIC program which appeared as the last thing in a program. This is fixed by
Toolkit II.

SMS NOTE

Variables which have not been assigned a value on SMS will return 0 (zero) if a numeric variable or
otherwise an empty string - an error will therefore not occur if you try to use such a variable.

On a machine fitted with SMS the example would therefore have printed 0 5 on the first run, and 5 5 on
the second.

CROSS-REFERENCE

CLOSE, CLEAR_HOT , CLCHP, CLRMDV , RUN .

10.56 CLEAR_HOT

Syntax CLEAR_HOT key
Location TinyToolkit

This command deletes a hotkey defined with the HOT command and releases the memory used to set up
the hotkey back to QDOS’ memory management.

NOTE

CLEAR_HOT works okay, but in most cases the memory released by this command is not recognised
by the system as being free memory and therefore cannot be re-used without resetting the system.

CROSS-REFERENCE

See HOT on how to define a hotkey.

Use FREE, FREE_MEM to check the actual available memory.

10.56. CLEAR_HOT 181

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.57 CLIP%

Syntax CLIP% (#channel)
Location CLIP (DIY Toolkit - Vol S)

This function can be used to read characters from the QL’s screen.

In order for the function to work, you will need to OPEN a window over that part of the QL’s screen which
you wish to read and ensure that it is in the correct MODE and has UNDER, CSIZE and CHAR_INC
set to the same values as were used to create that part of the screen. You will also need to ensure that the
same font is being used by the window which you have OPENed. The window should be defined so that
any text written to that window would precisely match the text on screen (except for colour).

Due to the way in which QL’s work, this means that CLIP% can be used to read user-defined characters
from the screen, for example, where in games some of the font has been redefined to represent symbols
in the game.

The function will then try to read a character from the current cursor position and return its character
CODE. It can be used to read any character in the range 0. . . 255 (except CHR$(10) which does not appear
on screen).

The DIY Toolkit includes an example of a program which uses this function to create a clip board for
reading text from a program running on the QL. It uses CHAN_W% and similar functions to read the
existing settings of the window of a target program.

However, this function is really of most use when used within your own programs, possibly to detect
collisions in a game between objects.

Example

The following short routine could be used to read the name of a disk in flp1_ (provided that the directory
was not longer than one page):

10 DIR flp1_
20 FOR i=0 TO 20
25 AT #1,1,i
30 PRINT #2,CLIP$(#1);
40 END FOR i

NOTE 1

Although this works on all QL implementations, the code will not currently work with resolutions bigger
than 512x256 pixels.

NOTE 2

If you want to read characters from a window of a program whilst the THOR XVI’s windowing envi-
ronment, or the Pointer Environment is running, you will have to switch off the windowing environ-
ment before the program in question is loaded, using POKE SYS_VARS+133,1 on the THOR or EXEP
flp1_program,u under the Pointer Environment.

NOTE 3

The main problem with these functions is that some programs do not use standard fonts (or attach fonts
to a window using non-standard techniques). Some additional fonts are supplied with DIY Toolkit which
may help in this respect.

182 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE

See the Fonts Appendix about changing QL fonts.

CHAR_USE and S_FONT allows you to set the font used by a window.

See also CLIP$.

10.58 CLIP$

Syntax CLIP$ (#channel)
Location CLIP (DIY Toolkit - Vol S)

This function is very similar to CLIP% except that it returns the actual character which appears on screen
rather than the character code.

NOTE

The same notes apply to this function as to CLIP%.

CROSS-REFERENCE

See CLIP%.

10.59 CLOCK

Syntax CLOCK [#channel] [,format$]
Location Toolkit II, THOR XVI

The command CLOCK creates a multitasking digital clock job named Clock. If no channel parameter
is stated, CLOCK will open its own window (con_60x20a448x206), which is intended for F1-monitor
mode (see WMON), otherwise the given channel will be used.

Format$ is optional and is used to define how the clock will appear on screen. It can contain any text you
desire (except for the characters % or $), but there are certain special characters (see below) which allow
you to alter the way in which the clock is presented; so CLOCK “TEA AT 4” might remind you when
tea time is, but will have no effect on the display of the clock.

The format is defined by using certain set series of strings. The following special characters will affect
the way in which the clock is displayed (the default format string is “$d %d $m %h:%m:%s” which is
ideal) :

• %d Day of month - 2 digits

• $d Day of week - 3 characters

• %h Hour (24h) - 2 digits

• $m Month - 3 characters

• %m Minute - 2 digits

• %s Seconds - 2 digits

10.58. CLIP$ 183

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• %y Year - 2 digits (last two digits)

• %c Century - 2 digits (see note 4 below)

A newline can be inserted by either padding out the string with spaces or by adding CHR$(10) inside the
string.

Example

CLOCK #2,’Date: %d $m %y’ & chr$(10) & ‘Time: $d %h:%m’

NOTE 1

There is no difference between upper case and lower case letters, so %d has the same effect as %D.
However, do watch the difference between $m and %m!

NOTE 2

Any attempt to open a clock in channel #0 will be ignored and the default window opened.

NOTE 3

Unfortunately for Pointer Environment users, there is no way of ‘unlocking’ the clock so that it can
operate alongside other Jobs. On the THOR XVI this is alleviated by ensuring that the Job is always
owned by Job 0.

NOTE 4

v2.25+ of Toolkit II introduced a further special character for use in the format string. This is %c, which
returns the first two digits of the year, for example %c%y will print the current year as four digits.

NOTE 5

On v6.41 of the THOR XVI, if CLOCK has to open its own window, this window is in fact owned by
SuperBASIC rather than the CLOCK task. This means that if CLOCK is removed other than by using
NO_CLOCK, (eg. with RJOB) the channel can be left open.

CROSS-REFERENCE

Use SDATE or ADATE to set the system date and time.

DATE$ and DATE return the current time.

NO_CLOCK removes the CLOCK on the THOR.

10.60 CLOSE

Syn-
tax

CLOSE #channel or
CLOSE #channel1 [, #channel2 . . .] (Toolkit II, Btool & Minerva v1.81+) or
CLOSE (Toolkit II, THOR & Minerva v1.81+, BTool)

Lo-
ca-
tion

QL ROM, Toolkit II, BTool,. THOR

CLOSE is a procedure which closes a specified channel, (or even several channels if the second or third
variant is used). The contents of that channel will however remain unchanged.

184 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

The second variant allows any number of specified channels to be closed at the same time and the third
closes all channels with channel numbers of #3 or above.

Every CLOSE command will first flush the contents of internal buffers to ensure that all information has
been passed to the channel before it is closed.

Examples

CLOSE#3
CLOSE#n
CLOSE #1
CLOSE#8,#3,#6
CLOSE

NOTE 1

On Minerva pre v1.81 and other ROMs, unless Toolkit II is installed, CLOSE will report ‘channel not
open’ if the channel is not open. Toolkit II and later versions of Minerva stop this from happening.

NOTE 2

There is a harmless bug in Toolkit II’s CLOSE. This will report error -15 (bad parameter) if channel
#32767 was opened and CLOSE issued without parameters, or even if you use the explicit command
CLOSE #32767 (unless you have SMS). Although #32767 will still be closed successfully, any further
attempt to use CLOSE without parameters will continue to report error -15 until the program is cleared
out with NEW, LOAD or LRUN.

NOTE 3

On Minerva, if you have Lightning installed, then unless you CLOSE channels in the opposite order to
that in which they were OPENed, you may end up with several CLOSEd windows which are still visible
on screen. This will only disappear when another channel with the same channel number is opened. The
Pointer Interface and SMS cure this.

NOTE 4

Unless you have a THOR XVI or Minerva (without SMS), do not CLOSE a network out (eg. NETO_1)
channel unless you have written something to it. The machine will lock up if you do so be warned! On
a THOR, the system will lock up for 30 seconds and then report an ‘Xmit Error’. On Minerva, you will
need to press <CTRL><SPACE>.

NOTE 5

QL ROMs (pre MG) had problems in closing ser2 - they tended to close one serial channel for output
and the other for input instead!

NOTE 6:

NOTE 6

If you are writing to a file (especially on a microdrive cartridge), ensure that the drive has finished turning
after issuing the CLOSE command, before trying to access the file (otherwise you may find that all of
the changes are not present!). The other solution is to FLUSH the file before CLOSEing it.

MINERVA NOTE

CLOSE #1 will also remove a MultiBasic job in certain instances - see appendix on Multiple Basics.

WARNING

10.60. CLOSE 185

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Although under the interpreter, channel #0 (the command window) and channels #1 and #2 can be closed,
this will lock up the SuperBASIC interpreter. It does no harm at all in compiled programs.

Minerva and SMS prevents this from being disastrous, but some programs may behave a little strangely
on the newly opened #0. If you use CLOSE #0 from within a MultiBASIC or one of SMS’s SBASICs,
this will remove the MultiBASIC (or SBASIC) Job.

CROSS-REFERENCE

OPEN , CHANNELS, CLOSE% SCR_STORE and related commands can be used to provide the QL with
a windowing environment whereby the contents of the screen are restored when a window is CLOSEd.

10.61 CLOSE%

Syntax CLOSE% n
Location BTool, TinyToolkit

The command CLOSE% allows you to close a channel which is specified using the channel number listed
when you use the CHANNELS command. This thus allows you to close channels owned by other Jobs.

WARNING

If you close the channel of a job, this can lock up that job. Ensure that you know the consequences of
your actions!

CROSS-REFERENCE

CHANNELS, CLOSE

10.62 CLRMDV

Syntax CLRMDV n
Location TinyToolkit, Btool

This command forces the QL to forget that it had already read a cartridge in the given microdrive mdvn_.
This could be necessary if cartridges are exchanged between QLs, otherwise one of the QLs may not find
a file written by another QL on a cartridge. Such problems do not exist with floppies or any other media.

Example

CLRMDV 2

CROSS-REFERENCE

For RAND, CLRMDV is very useful.

See also DEL_DEFB which performs a similar task.

186 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.63 CLS

Syntax CLS [#chan,] [cls_type]
Location QL ROM

This command is normally used to clear all or part of the specified window (default #1) to the current
paper colour for that channel (this is not affected by OVER). CLS does not affect a border attached to a
window.

The cls_type can be used to specify which area of the window is to be cleared (the default is 0). This can
have the following standard values, which have different effects depending upon the current position of
the text cursor:

• 0 Clear the whole window

• 1 Clear the window above the cursor line

• 2 Clear the window below the cursor line

• 3 Clear the whole cursor line

• 4 Clear the window from the cursor position to the right-hand end of the cursor line

After using this command, the text cursor is placed at the top left-hand corner of the window (if
cls_type=0) or at the start of the next line below the cursor position for other values.

Except under SMS and on the THOR XVI, most systems allow you to use other values for cls_type to
access various TRAP #3 system utilities. The way in which the appropriate value of cls_type is calculated
is by taking the value of D0 which would be used in machine code and subtracting 32 from this. If this
gives a negative result, then add this negative result to 128.

For example, to move the cursor back one space, in machine code you would use the call IOW.PCOL
(D0=19). 19-32=-13, therefore:

CLS #3,128-13 moves the cursor back one space in #3.

You must however be aware of using CLS 98 (IO.FLINE) on pre JS ROMs, since this tended to leave the
cursor switched on!

NOTE 1

On pre MG ROMs CLS is likely to fail if the window is smaller than the cursor.

NOTE 2

The THOR XVI only allows cls_type to be in the range 0..4.

Under SMS, if cls_type is more than 4, then CLS uses cls_type MOD 4.

NOTE 3

Some of the additional values of cls_type can actually cause the computer to crash, whilst others will
merely report an error.

CROSS-REFERENCE

AT and PRINT position the text cursor.

PAPER alters the current paper colour.

10.63. CLS 187

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

SCROLL and PAN also allow you to access various system utilities.

A much safer way to access system utilities is to use IO_TRAP, MTRAP, QTRAP and BTRAP.

For details of the various TRAP #3 system utilities refer to the QDOS/SMS Reference Manual (Section
15) or similar.

10.64 CLS_A

Syntax CLS_A
Location BeuleTools

This command forces all windows currently OPENed by SuperBASIC or belonging to the current job to
be cleared and given a border (width 1, colour 255). This works on channels opened on Minerva’s dual
screens.

CROSS-REFERENCE

CLS clears a single window without changing window attributes, the border in this case.

10.65 CMD$

Syntax CMD$
Location SMS, Minerva

This function can be used from within SMS SBASICs, Minerva MultiBASICs and compiled programs
(not SuperBASIC Job 0) to read a string passed to the program when it was initiated, with the command
EX (or similar).

The string appears after the EX command, preceded with a semicolon.

Example

Create a program to load in Xchange and set its default drives and memory, something akin to:

10 xch_data$=DATAD$:xch$=PROGD$
20 data_space=300
30 x$=CMD$
40 IF x$<>''
45 datpos='\' INSTR x$
50 IF datpos:data_space=x$(datpos+1 TO)
55 IF datpos>5:x$=x$(1 TO datpos-1)
74 dr1=',' INSTR x$
75 IF dr1<6
80 IF dr1=0:PROG_USE x$(1 TO):ELSE IF dr1<LEN(x$-4):DATA_USE x$(dr1+1 TO)
90 ELSE
100 PROG_USE x$(1 TO dr1-1)
110 IF dr1<LEN(x$)-4:DATA_USE x$(dr1+1 TO)
120 END IF

(continues on next page)

188 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

140 END IF
150 EX xchange;data_space
160 DATA_USE xch_data$
170 PROG_USE xch$

Save this as FLP1_XCHANGE_BAS (or similar).

Now, to pass the relevant parameters all you need do under SMS is enter the line:

EXEC flp1_XCHANGE_BAS;’win1_XCHANGE_,flp2_\200’

Minerva treats the string slightly differently - see EX for an explanation of the following command which
achieves the same:

EXEC pipep;’flp1_XCHANGE_BAS>win1_XCHANGE,flp2_\200’

This will execute win1_XCHANGE_xchange with the help file to be loaded from win1_XCHANGE_ ,
the data files being loaded from flp2_ and a dataspace of 200K.

NOTE 1

In SMS pre v2.60, you could not directly slice CMD$ - copy it to another string variable first, as in the
example.

NOTE 2

You cannot use this command in TURBO compiled jobs - use OPTION_CMD$ instead.

CROSS-REFERENCE

See EXEC and EXEC_W .

10.66 CODE

Syntax CODE (character$)
Location QL ROM

This function returns the internal code used to represent the given character$ (this will be a value between
0 and 255).

If the supplied parameter is more than one character in length, the code of the first character will be
returned. The result 255 represents the ALT key, although this will only be produced with the statement
PRINT CODE(INKEY$) if the <ALT> key is being pressed together with a second key, in which case
the code of the second key quickly follows. If character$ is a nul string, CODE will return 0.

Example 1

PRINT CHR$(CODE(‘Alpha’))

will print ‘A’.

Example 2

A short program to reveal the code of the current key being pressed (with special code to trap the instance
of the ALT key being pressed):

10.66. CODE 189

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

100 REPeat loop
110 AT 0,0: a$ = INKEY$(#1, -1)
120 IF CODE(a$) = 255
130 PRINT 'ALT+' & CODE(INKEY$) & ' '

140 ELSE PRINT CODE(a$);' '

150 END IF
160 END REPeat loop

Try replacing lines 110 to 150 with: 110 AT 0,0: PRINT CODE(INKEY$(-1))

CROSS-REFERENCE

Please refer to the Characters section of the Appendix for a full list of the characters and their internal
codes.

10.67 CODEVEC

Syntax CODEVEC (name$)
Location ALIAS (DIY Toolkit - Vol A)

This function is very similar to KEY_ADD in that it returns the address in memory where the machine
code for a machine code Procedure or Function is stored (useful for debugging programs with Qmon or
similar machine code monitor).

If the Machine Code Procedure or Function with the given name$ does not exist, then a ‘Not Found’
error is reported.

CROSS-REFERENCE

See KEY_ADD and ELIS.

10.68 COL

Syntax COL(x, y)
Location HCO

COL is a function which returns the colour of a given screen pixel (specified in absolute co-ordinates).
The colour is however not coded in the usual way - the return value of COL is either 0, 1, 2 or 3 (repre-
senting the four true colours which can displayed in MODE 4, ie. black, red, green and white).

Example

100 WMON: LIST#2
110 xmin% = 0: xmax% = 100
120 ymin% = 0: ymax% = 100
130 FOR x% = xmin% TO xmax%
140 FOR y% = ymin% TO ymax%
150 c% = 2 * COL(x%,y%) + 1

(continues on next page)

190 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

160 BLOCK 1, 1, x%-xmin%, y%-ymin%, c%
170 END FOR y%
180 END FOR x%

Unless you are using Minerva or SMS, replace x% and y% by x and y.

NOTE

COL will return meaningless data unless the screen is located at address 131072, is in MODE 4, and
uses a 512 x 256 resolution.

CROSS-REFERENCE

SET draws a screen pixel.

10.69 COLOUR_NATIVE

Syntax COLOUR_NATIVE [#ch]
Location SMSQ/E v2.98+

COLOUR_NATIVE is a command used to select the colour palette to be used from within the Extended
Colour Drivers provided with SMSQ/E v2.98+ on the Q40/Q60, QXL, QPC and Aurora.

A valid window channel must be open, default #1 (or #0 on a SBASIC with only #0 open), although one
may also be supplied as #ch.

This command is similar to COLOUR_PAL, but allows you to use 256 colours on Aurora, or 65536
colours on QXL, QPC and the Q40/Q60, by selecting the native colour mode of the hardware.

Colour parameters supplied to commands such as INK are defined in native colours and therefore their
effect will depend upon the hardware itself (Appendix 16 contains details of the first 256 colours and their
Native Colour Values in decimal, hexadecimal and binary for use with the INK command or similar).

NOTE

MODE commands have no effect under the Extended Colour Drivers.

CROSS-REFERENCE

Refer to COLOUR_PAL for more details.

10.70 COLOUR_PAL

Syntax COLOUR_PAL [#ch]
Location SMSQ/E v2.98+

COLOUR_PAL is a command used to select the colour palette to be used from within the Extended
Colour Drivers provided with SMSQ/E v2.98+ on the Q40/Q60, QXL, QPC and Aurora.

10.69. COLOUR_NATIVE 191

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

This command requires the Extended Colour Drivers to have been loaded when SMSQ/E started (set
by configuration or chosen from the start-up menu on QPC). It will not have any effect upon programs
already loaded into the system.

A valid window channel must be open, default #1 (or #0 on a SBASIC with only #0 open), although one
may also be supplied as #ch.

COLOUR_PAL selects the PAL colour mode, allowing 256 colours to be used. After using this com-
mand, the effect of the colour parameters supplied to commands such as INK will depend upon the table
which appears in Appendix 16 - use the PAL colour value given for each colour (this is hardware inde-
pendent).

As a result, code such as that given in the example below is required to check on the colour scheme
currently in use and adapt the program accordingly.

Example

100 REMark Make sure the program is in the right mode for Standard QL/
→˓Extended Colours
110 col_sys%=0:h$=VER$
120 IF RMODE=8:MODE 4
130 IF RMODE=16:col_sys%=1:REMark Aurora - Extended Colour Drivers
140 IF RMODE=32:col_sys%=3:REMark QXL/QPC - Extended Colour Drivers
150 IF RMODE=33:col_sys%=2:REMark Q40 - Extended Colour Drivers
160 :
170 REMark Select Appropriate colour scheme
180 IF h$='HBA':IF col_sys%<>0:COLOUR_PAL
190 SELect ON col_sys%
200 =0:BLACK=0:WHITE=7:RED=2:GREEN=4: REMark Four colours available
210 =REMAINDER :BLACK=0:WHITE=1:RED=2:GREEN=3:REMark 256 colours available
220 END SELect
230 PAPER BLACK:INK GREEN

NOTE 1

The 256 colours produced under COLOUR_PAL on non-Aurora machines may be changed to allow
any 24-bit colour using the command PALETTE_8. This will not work on Aurora, which has display
hardware limited to 256 colours.

NOTE 2

MODE commands have no effect under the Extended Colour Drivers. RMODE will always report 16 on
Aurora, 32 on QXL/QPC and 33 on the Q40/Q60 if the Extended Colour Drivers are in use.

CROSS-REFERENCE

Refer to Appendix 16 and INK for more details.

COLOUR_QL, COLOUR_NATIVE and COLOUR_24 are all similar.

PALETTE_QL and PALETTE_8 affect colour palettes.

BGCOLOUR_QL and BGCOLOUR_24 can be used to alter the desktop colour of the main screen.

DISP_COLOUR can be used to switch between Extended Colour Drivers and the Standard Colour
Drivers.

192 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.71 COLOUR_QL

Syntax COLOUR_QL [#ch]
Location SMSQ/E v2.98+

COLOUR_QL is a command used to select the colour palette to be used from within the Extended Colour
Drivers provided with SMSQ/E v2.98+ on the Q40/Q60, QXL, QPC and Aurora.

A valid window channel must be open, default #1 (or #0 on a SBASIC with only #0 open), although one
may also be supplied as #ch.

This command is similar to COLOUR_PAL, but selects an 8 colour mode, with colours from 0. . . 7 as per
the original QL MODE 8 (although all 8 colours remain available for programs which presume MODE
4).

This can cause some slight incompatibility problems, due to programs which presume that under MODE
4, INK 3 would produce Red (for example) - under COLOUR_QL it will now produce Magenta.

NOTE 1

The eight colours produced under COLOUR_QL may be changed to allow any colour supported by the
hardware using the command PALETTE_QL.

NOTE 2

MODE commands have no effect under the Extended Colour Drivers.

CROSS-REFERENCE

Refer to COLOUR_PAL for more details.

PALETTE_QL includes a way of overcoming the incompatibility problems with old MODE.. 4 programs.

10.72 COLOUR_24

Syntax COLOUR_24 [#ch]
Location SMSQ/E v2.98+

COLOUR_24 is a command used to select the colour palette to be used from within the Extended Colour
Drivers provided with SMSQ/E v2.98+ on the QXL and QPC, providing a good graphics card is installed.

A valid window channel must be open, default #1 (or #0 on a SBASIC with only #0 open), although one
may also be supplied as #ch.

This command is similar to COLOUR_PAL, but allows you to specify colours directly using the 24 bit
colour mode, thus allowing 16777216 (2^24) colours on screen at the same time.

Although the command does work on hardware which does not support a 24 bit graphics mode, the spec-
ified colours have to be adapted to fit into the memory available for each pixel (eg 8 or 16 bits). This can
cause inaccuracies and unpredictable results - COLOUR_NATIVE is preferable in such circumstances.

CROSS-REFERENCE

Refer to COLOUR_PAL and COLOUR_NATIVE for more details.

10.71. COLOUR_QL 193

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

PALETTE_QL, PALETTE_8 and BGCOLOUR_24 all use the 24 bit table to describe colours.

10.73 COMMAND_LINE

Syntax COMMAND_LINE
Location Turbo Toolkit

This command is really only of any use with the TYPE_IN command. It selects the SuperBASIC com-
mand line (#0) so that anything passed with TYPE_IN is automatically entered into that channel (as if it
were typed).

Note that COMMAND_LINE cannot have any effect if SuperBASIC is doing something or if the job
which uses the command was started with EXEC_W or similar.

NOTE 1

COMMAND_LINE pre v3c27 does not seem to work correctly on all versions of the QL ROM.

NOTE 2

Two files called TurboFix_bin and MiniCommdLin_bin can be used to allow COMMAND_LINE to
select the command line of a Minerva MultiBASIC - this relies on the MultiBASIC being the job which
uses the COMMAND_LINE command. Some early versions of TurboFix_bin have bugs in it.

A similar version is available called SMSQCommdLin_BIN which works in the same way, except for
SMS SBASIC interpreters. Some versions of TurboFix_BIN also support SBASIC but it is currently
recommended that this file is used instead.

CROSS-REFERENCE

See TYPE_IN for an example.

10.74 COMPILED

Syntax COMPILED
Location Turbo Toolkit

This function simply returns a value of 0 if the current program is interpreted or 1 if it has been compiled.

NOTE 1

Although primarily for use with programs compiled with Turbo, versions of this function after v3c27
will work even from within a program compiled under QLiberator.

NOTE 2

Prior to v3c27, this function did not always return the correct value on Minerva and SMS (particularly
from within a MultiBASIC or SBASIC daughter job).

CROSS-REFERENCE

See JOB_NAME for an example.

194 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.75 COMPRESS

Syntax COMPRESS filename
Location COMPICT

This command takes the current screen contents and compresses them, saving the picture in its com-
pressed form in the stated file - the full filename (eg. ram1_test_scr) has to be used.

This compressed form does not represent that great a saving over the original 32768 bytes required to
hold the details of the screen before compression - the amount of space required for a compressed screen
depends upon the amount of adjacent pixels on the screen which have the same colour.

Whilst the screen is compressed, a pattern is drawn over the screen, which although annoying, is harmless.

Example

COMPRESS flp2_TITLE_scr

NOTE 1

COMPRESS temporarily needs 64K of working space and will report an error if this is not available.
Unfortunately the file stays open if this happens and cannot be accessed until is is closed with CLOSE%
or a desktop program such as QPAC 2 (channels menu).

NOTE 2

COMPRESS does not work in supervisor mode, ie. it multitasks, thus if you were doing something else
whilst the screen was being compressed, the saved picture may look pretty strange when expanded.

NOTE 3

COMPRESS assumes that the screen starts at $20000 and cannot therefore be used with Minerva’s second
screen or some emulator display modes.

NOTE 4

COMPRESS assumes a screen resolution of 512x256 and cannot work on higher resolution screens.

CROSS-REFERENCE

Screens which have been saved with COMPRESS can be loaded with EXPAND or re-loaded from memory
with FASTEXPAND.

See also SCR_STORE.

10.76 CONCAT

Syntax CONCAT file1,file2 TO file3
Location CONCAT

This command merges the first two files together to form a new file with the third specified filename, so
that file2 is appended to file1. The length of file3 is exactly the sum of the lengths of the merged files.

Example

10.75. COMPRESS 195

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Most SuperBASIC programmers use their own standard set of

procedures and functions. If two of them need to be added

to a program, CONCAT helps a lot: CONCAT flp1_PROG_bas,flp1_SUB_1 TO ram1_PROG_tmp
DELETE flp1_PROG_bas CONCAT ram1_PROG_tmp,flp1_SUB_2 TO flp1_PROG_bas DELETE
ram1_PROG_tmp

You must ensure that line numbers do not conflict.

NOTE

Each filename must include the device.

CROSS-REFERENCE

COPY , RENAME, DELETE.

See FWRITE for the more flexible APPEND procedure.

10.77 CONNECT

Syntax CONNECT [#]pipe_in% TO [#]pipe_out%
Location Turbo Toolkit

This command is exactly the same as TCONNECT, except that the two channels do not have to have a
hash sign in front of them.

CROSS-REFERENCE

TCONNECT andQLINK

10.78 CONTINUE

Syntax CONTINUE or
CONTINUE [line_no](Toolkit II & Minerva only)

Location QL ROM, Toolkit II

This command allows the user to try and recover from an error (normally after STOP or pressing the
Break key), by telling the interpreter to carry on running the program from the next statement. This will
however not work if the message ‘PROC/FN Cleared’.

If you have Toolkit II, Minerva installed, you will be able to use the second variant of this command
which allows you to re-start processing at a specified line number to help with error trapping.

NOTE 1

CONTINUE cannot carry on processing where the line which was stopped was a direct command (ie.
typed in at #0).

NOTE 2

196 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Unless you are using the Toolkit II or Minerva variants of this command, do not try to use CONTINUE
after RENUMbering the program, as the continuation table is not updated by the RENUM routine and
may therefore try to jump to the old line number.

NOTE 3

Beware that RENUM does not renumber line_no if you have used this command as part of a program.

NOTE 4

CONTINUE can only re-start processing if no new lines have been added; no new variables have been
added to the program; no lines have been altered; and the PROC/FN Cleared message has not appeared.

CROSS-REFERENCE

See RETRY and also WHEN ERRor.

10.79 ConvCASE$

Syntax ConvCASE$ (string$ [,lower])
Location BTool

ConvCASE$ returns the given string with all upper case letters converted to lower case if lower=1, or all
lower case letters to upper case if lower=0. Default of lower is 1

NOTE

Unlike similar functions ConvCASE$ will recognise all non- ASCII letters, namely umlauts and accents.

CROSS-REFERENCE

UPPER$, LOWER$, BIT%, CHR$, UPC$, LWC$

10.80 CONVERT

Syntax CONVERT src_file,dst_file,original$,replacement$
Location CONVERT

This command is used to copy src_file to dest_file and replace all occurrences of original$ by replace-
ment$.

Both strings must have the same length.

The search is case-independent.

No default devices are supported.

Example 1

Take a QUILL-document and export it using the ‘Print to file’ option without a printer driver in the main
drive.

Next VIEW it or look at it with an editor or by: COPY flp1_example_lis TO scr.

10.79. ConvCASE$ 197

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

You will see the character CHR$(13) (the carriage return <CR> character) at the end of each line. This
is not needed by QDOS to perform a carriage return on screen. Remove these excess characters with:
CONVERT flp1_example_lis, flp1_example_txt, CHR$(13), “ “.

<CR> at the end of lines may also appear when downloading messages from a bulletin board or converting
MS/DOS text files to QDOS.

Example 2

Badly written or simple programs generally lack the feature to change device names for file operations.
Using commands like FLP_USE may have a negative effect on any jobs which are running simultane-
ously, so it is better to make the program use flp1_ instead of mdv2_.

This can be achieved quite simply with the command: CONVERT prog1_exe, prog2_exe, “mdv2_”,
“flp1_”.

NOTE

The character CHR$(0) cannot be replaced.

CROSS-REFERENCE

EXCHG is similar to CONVERT .

10.81 COPY

Syn-
tax

COPY file1 TO file2 or
COPY [file] [TO file2] (Toolkit II) or
COPY file1 [,file2 [,file3. . .]] {TO | !} fileb (THOR XVI)

Loca-
tion

QL ROM, Toolkit II, THOR XVI

The command COPY duplicates file1, so that file2 is an exact copy. The parameters can also be a device
(eg. ser1, con, scr, scr_400x20) or, if you have Toolkit II installed, a channel (eg. #3) can be used for the
second parameter.

If Toolkit II is present, COPY supports the default devices and sub-directories. COPY will look for the
file to be copied on the default data device if necessary (see DATAD$).

The rules for determining the destination parameter can be somewhat complex under Toolkit II:

(1) If no device is given, but a filename is specified, then Toolkit II looks at the first parameter. The
destination device is then assumed to be the same as the source device (ie. the device name specified as
part of the first parameter, or the default data device - see DATAD$).

Under SMS, it will use the default data device whether or not the first parameter contains a device.

(2) If the second parameter is omitted, then again Toolkit II looks at the first parameter. The same filename
as for the first parameter will be used. If a device is given in the first parameter, then this is used as the
destination device (unfortunately meaning that Toolkit II tries to copy the file onto itself!). On the other
hand, if no device was specified, then the default destination device will be used (see DESTD$).

Under SMS, if a device is specified in the first parameter, SMSQ/E (v2.85 at least) tries to copy the file
to the default destination device without a filename! Normally unless the default destination device is
either PAR or SER, this will report an error ‘is in use’.

198 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(3) If a second parameter is given which includes a device name, then this is used!

If the destination is an existing file, unlike the normal ROM COPY command, Toolkit II will not break
COPY with the error -8 (already exists), but instead it will print: >file<exists, OK to overwrite..Y or N?
in channel #0 and wait for the user to press either <Y> or <N> - <ESC> and <CTRL><SPACE> mean
<N> here.

Examples

Assuming that the default data device is flp1_ and the default destination device is ram2_ (using Toolkit
II or SMS implementation):

Command Effect
COPY mdv1_quill TO flp1_quill Copies mdv1_quill to flp1_quill
COPY ram1_prog_bas, ram2_tmp Copies ram1_prog_bas to ram2_tmp
COPY ram1_prog_bas,
scr_200x100

Copies ram1_prog_bas to a window

COPY prog_bas, ser1 Copies flp1_prog_bas to ser1
COPY ser2 TO ram1_prog_bas Copies data from ser2 to a file
COPY con TO ser Copies everything typed to ser1
COPY ram1_prog_bas Tries to copy ram1_prog_bas to itself unless on SMS
COPY ram1_prog_bas Tries to copy ram1_prog_bas to ram2_ and will report an error
COPY prog_bas Copies flp1_prog_bas to ram2_prog_bas
COPY ram1_prog_bas TO #2 Copies ram1_prog_bas to a channel

NOTE 1

The TO separator can be replaced by a comma ‘,’ (although note the THOR XVI variant!).

NOTE 2

Each file includes a file header of 64 bytes to store supple-mentary information such as the time of the
last update, file type, length and much more. Without Toolkit II, COPY will always copy the header if a
file is copied. The Toolkit II COPY command does not copy the header to serial devices (eg. ser) if this
is specified as the destination.

NOTE 3

COPY without any parameters is allowed with Toolkit II, but it can cause problems (at least in versions
up to v2.28 Toolkit II and v2.85 SMS)

As an exception to rule 2, when first used it would appear to try to copy the file “” on DATAD$ onto
itself. On systems without level-2 drivers, such files can exist, but have no special function, whereas on
level-2 drivers, these files contain the sub-directories. Thus, with the standard combination of Toolkit II
and level-2 drivers installed, a pure COPY normally breaks with error -9 (in use) (see FMAKE_DIR for
the reason).

However, due to a bug in current versions of Toolkit II, when first used it may report error -15 (bad
parameter), in which case it will have left the file flp1_ open and prevent most of any further access to
that device (unless you can close the channel with CLOSE% or a desktop).

NOTE 4

On SMS pre v2.58, if you used COPY and were asked if you wanted to overwrite the file, and answered
N, an error code was returned.

10.81. COPY 199

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

THOR XVI NOTES

The THOR XVI (v6.41 and later) supports the third variant of COPY. This allows you to merge several
files:

COPY flp1_texta,flp1_textb TO flp2_Book will create a new file flp2_Book made up of the merged files
flp1_texta and flp1_textb. The headers will (of course) not be copied.

If you alter the TO delimiter to !, ie: COPY flp1_texta,flp1_textb ! flp2_Book

then it is assumed that fileb already exists and file1, file2 and file3 are all appended to it.

CROSS-REFERENCE

SPL_USE and DEST_USE set the destination device.

See COPY_N and COPY_H for copying file headers and COPY_O on how to force overwriting.

SPL performs a background copy (ie. it multitasks).

See APPEND which is similar to the THOR variant.

10.82 COPY_B

Syntax COPY_B adr1, adr2, n or
COPY_B adr1, n TO adr2

Location BTool

The command COPY_B copies n bytes from the memory address adr1 to adr2 without any restrictions.
The programmer has to ensure that there is sufficient room at the specified destination memory location
(which must be free useable memory).

Example

100 RANDOMISE: n=10
110 a1=ALCHP(6*n): a2=ALCHP(6*n)
120 FOR i=0 TO 6*(n-1) STEP 6: POKE_F a1+i,RND
130 COPY_B a1,6*n TO a2
140 FOR i=0 TO 6*(n-1) STEP 6: PRINT PEEK_F(a2+i)
150 RECHP a1: RECHP a2

CROSS-REFERENCE

COPY_W , COPY_L, TTPOKEM and XCHANGE

200 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.83 COPY_H

Syntax COPY_H [file1] [TO file2]
Location Toolkit II

See COPY_N .

CROSS-REFERENCE

FGETH$

10.84 COPY_L

Syntax
COPY_L adr1, adr2, n or

COPY_L adr1, n TO adr2
Location BTool

The command COPY_L copies n longwords (each being 4 bytes) from address adr1 to adr2. The two
memory locations can overlap (this is also true for COPY_B and COPY_W).

If you are using Minerva, you will probably find it quicker to use it’s specialised CALL routines.

Example

100 a=ALCHP(48*1024)
110 COPY_L 0,12*1024 TO a

NOTE

Both adr1 and adr2 must be even addresses.

CROSS-REFERENCE

COPY_W , COPY_B, ODD.

10.85 COPY_N

Syn-
tax

COPY_N file1 TO file2 or
COPY_N [file1] [TO file2] (Tooolkit II) or
COPY_N file1 [,file2 [,file3. . .]] {TO | !} fileb (THOR XVI)

Loca-
tion

QL ROM, Toolkit II, THOR XVI

This command is basically the same as COPY, but the file header is explicitly removed. This is important
for example if you wish to copy a file direct to a printer attached to ser2.

If the file header was also printed, this would include some non-printable characters {eg. CHR$(0)},
which might be interpreted by the printer as control characters and therefore produce rubbish as output.

10.83. COPY_H 201

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Toolkit II’s COPY examines the type of the destination device before it proceeds. It will not then copy
the file header if this is a serial device or a parallel port. The standard COPY command contained in the
QL ROM does not make this differentiation and so COPY_N must be used instead if the file header is
not to be copied.

CROSS-REFERENCE

COPY_H forces the file header to be copied to the given destination (whether it is a serial port, a parallel
port or not), and the syntax is identical to COPY , COPY_N and COPY_O.

10.86 COPY_O

Syntax COPY_O [file1] [TO file2] or
COPY_O file1 [,file2 [,file3. . .]] {TO | !} fileb (THOR XVI)

Loca-
tion

Toolkit II, THOR XVI

The command COPY_O is identical to Toolkit II’s COPY command, but if the file already exists, it will
automatically be over-written without asking the user for confirmation.

This command is also supported on the THOR XVI, although both the input and destination channels
must be specified in full.

CROSS-REFERENCE

FTEST and ETAT check the status of a file, thus enabling you to check if a file already exists.

10.87 COPY_W

Syntax COPY_W adr1, adr2, n or
COPY_W adr1, n TO adr2

Location BTool

The command COPY_W copies n words (two bytes each) from address adr1 to adr2.

NOTE

Both addresses must be even.

CROSS-REFERENCE

COPY_W is always faster than COPY_B, but COPY_L is even faster than COPY_W .

See also XCHANGE.

Minerva has its own fast copy routines (see CALL).

202 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.88 COS

Syntax COS (radians)
Location QL ROM

This function allows you to find the cosine of the specified angle (given in radians).

In a right angled triangle the cosine is the ratio of the length of the side adjoining the given angle, to the
length of the hypotenuse (or the sine of the complement of that angle). Thus, sine and cosine can actually
substitute each other:

Mathematical formula In SuperBASIC
cos x = sin (PI/2-x) COS(x)=SIN(PI/2-x)
sin x = cos (PI/2-x) SIN(x)=COS(PI/2-x)

Example

An analogue clock:

100 wx = 50: wy = INT(wx / 1.25): px = 50: py = 40
110 OPEN#3,"scr_" & wx & "x" & wy & "a" & px & "x" & py
120 PAPER#3,3: CLS#3: BORDER#3,1,0: SCALE#3,100,-45,-50
130 INK#3,0: FILL#3,1: CIRCLE#3,0,0,40:FILL#3,0: INK#3,4
135 Hs = PI/6
140 FOR t = 1 TO 12
150 LINE#3,40 * SIN(Hs * t), 40 * COS(Hs * t) TO 45 * SIN(Hs * t), 45 *␣
→˓COS(Hs * t)
160 END FOR t
170 INK #3, 7
180 d$ = DATE$: min = d$(16 TO 17)
190 hour = d$(13 TO 14) MOD 12 + min / 60
200 LINE#3,0,0 TO 30 * SIN(Hs * hour), 30 * COS(Hs * hour)
210 LINE#3,0,0 TO 40 * SIN(PI / 30 * min), 40 * COS(PI / 30 * min)
220 PAUSE 100: CLOSE #3

NOTE 1

COS with very large values for the angle produces either very odd results or an overflow error (except on
Minerva v1.96+ where it returns 0). The correct range for radians is -PI. . . PI, because anything outside
this range is actually merely a repeat of the series. This is because an angle of PI*2 radians forms a
complete circle, therefore an angle of PI*3 is actually the same as an angle of PI (ie. PI*3-PI*2). If you
insist on using these silly angles, try SIN (X+PI/2) instead of COS(X).

NOTE 2

The THOR XVI (v6.41) fixes a slight inaccuracy in this command to ensure that COS(PI/2)=0. On other
ROMs COS(PI/2)==0.

The Lightning package and SMS also fix this bug.

CROSS-REFERENCE

10.88. COS 203

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

See SIN , ACOS.

Compare COSH.

Please also see the Mathematics section of the Appendix.

10.89 COSH

Syntax COSH (x)
Location Hyper, Hyperbola

This function is defined very similarly to SINH. It can be expressed as:

(EXP(x) + EXP(-x)) / 2

Example

The COSH function can be used to describe a rope, chain or similar object which has two ends tied at
the same height to a ceiling (for instance). Line 110 draws the ceiling, lines 120 to 160 the chain.

100 a = .8: SCALE 10, -5, 0: CLS
110 LINE -2,CHAIN(-2) TO 2,CHAIN(2)
120 FOR x = -2 TO 2 STEP .1
130 y = CHAIN(x)
140 IF x > -2 THEN LINE _x, _y TO x, y
150 _x = x: _y = y
160 END FOR x
170 :
180 DEFine FuNction CHAIN(x)
190 RETurn a * COSH(x/a)
200 END DEFine CHAIN

CROSS-REFERENCE

See SINH for an example.

ARCOSH is the inverse function of COSH.

10.90 COT

Syntax COT (angle)
Location QL ROM

This function returns the cotangent of a given angle (specified in radians).

In a right angled triangle the cotangent of an angle is defined as the ratio of the side adjoining the given
angle to the side opposite to the given angle (forming a right angle with the other line). Due to the
periodic nature of the function, it is best to work with angle in the range: 0 < angle < PI.

COT(angle) can also be calculated as COS(angle)/SIN(angle).

204 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Example

A program to create a graph showing the range of the function COT:

100 MODE 4: OPEN#1,con_448x200a32x16
110 SCALE 100,-75,-50
120 INK 4: LINE -75,0 TO 125,0: LINE 0,-50 TO 0,50
130 CURSOR 0,0,0,0: PRINT '0'
140 CURSOR 0,0,-100,0: PRINT '-ã'
150 CURSOR 0,0,100,0: PRINT 'ã'
160 CURSOR 0,0,-200,0: PRINT '-ã * 2'
170 CURSOR 0,0,200,0: PRINT '2ã'
180 CURSOR 0,0,0,-100: PRINT '1'
190 CURSOR 0,0,0,90: PRINT '-1'
200 INK 7
210 FOR ang=-(PI*2)+1E-2 TO PI*2 STEP 1E-2
220 POINT ang*75/(PI*2),50*COT(ang)
230 END FOR ang

NOTE 1

Although COT(PI) and COT(PI*x) should be undefined (values of angle very close to PI tend to infinity),
on most QDOS implementations, it gives a very large positive or negative number.

Currently, only the Lightning maths package and SMS produce an overflow error (the correct result).

NOTE 2

On Minerva v1.96+ very large values of angle will return the value 0. On other implementations produce
an overflow error.

NOTE 3

COT(0) on most ROMs gives 1 - this is fixed on Minerva, SMS, Lightning, QXL, and ST/QL which give
an overflow error.

NOTE 4

COT(PI/2) should equal zero - on all implementations of this command, this returns a number near to
zero (except under SMS).

CROSS-REFERENCE

Please refer toACOT , ATAN , TAN .

Compare COTH.

Also refer to the Mathematics section of the Appendix.

10.90. COT 205

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.91 COTH

Syntax COTH (x)
Location Hyper

This function returns the hyperbolic co-tangent.

This is defined as one divided by the hyperbolic tangent, so COTH(x) = 1/TANH(x).

CROSS-REFERENCE

ARCOTH is the inverse function of COTH.

10.92 CSIZE

Syntax CSIZE [#channel,] width, height
Location QL ROM

This command sets the size and spacing of characters in the given channel (default #1).

Width ranges from 0 to 3 and there are two possible heights, 0 and 1. Each width and height corresponds
to a certain pixel size:

Width Spacing Size Height Spacing Size
0 6 5 0 10 9
1 8 5 1 20 18
2 12 10
3 16 10

In low resolution mode width 0 and 1 have no effect: in that mode, the smallest character size allowable
is 12 pixels wide; CSIZE 2,0.

NOTE 1

On pre-JS ROMs, characters which use all eight pixels available for the definition of characters will not be
printed correctly on screen. Even on JS and MG ROMs, problems exist in some character sizes. Minerva,
SMS and the ST/QL drivers (Level E-23 onwards) prevent any such problems.

NOTE 2

The THOR XVI allows you to use any value for the vertical size - odd values give double height characters
and even values give normal height.

CROSS-REFERENCE

CHAR_INC allows you to change spacing independently of character size.

MODE will reset the character size to the default (ie. 2,0 in MODE 8 and 0,0 in MODE 4).

The command AT is also affected by the current character spacing.

206 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.93 CTAB$

Syntax CTAB$ (string$ [,tabdist]) tabdist=1..255
Location BTool

CTAB$ is a function which will look for spaces in the supplied string$ and if there is at least a tabdist
number of spaces, they will be replaced by the TAB character, CHR$(9), so that ETAB$ or editors /
word-processors can re-expand them to the original string.

CTAB$ does not alter the actual string$ but will return it in its compressed form.

The default value of tabdist is 8, and the length of string$ is limited to 255 characters (so tabdist>255
does not make much sense).

WARNING

tabdist=0 will produce rubbish output and it is also possible that CTAB$ will crash the system. Negative
values lead to nonsense results but do not harm the system.

CROSS-REFERENCE

ETAB$ expands the TAB marks.

10.94 CUR

Syntax CUR [#channel,] boolean
Location TinyToolkit

Every Window channel has a cursor which flashes when it is switched on and appears solid when it is
inactive.

The command CUR with boolean=1 activates the cursor of a window, and it is de-activated with
boolean=0. The default channel is #1.

Example

Multitasking programs should use INKEY$ to read keystrokes from the keyboard if no other job is
to be similarly affected by the keys pressed. KEYROW could be used, but this does not care which
job/channel/window was active when a key was pressed (this could be used to give a background job a
command without leaving the current job).

The following function imitates the getchar() function of the C language, and is used for non-interactive
keyboard input. Arcade games should not engage the cursor!

100 DEFine FuNction GETCHAR% (channel,timeout)
110 LOCal char$
120 CUR#channel,1
130 char$=INKEY$(#channel,timeout)
140 CUR#channel,0
150 RETurn CODE(char$)
160 END DEFine GETCHAR%

10.93. CTAB$ 207

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE

Although the cursor was activated, it will not flash until the channel is made into the current key-
board input queue (ie. when it can use PEND, EOF, INKEY$). This may therefore mean that the keys
<CTRL><C> will need to be pressed to make this program the active (current) task.

Non-console windows (scr_) cannot be used for input operations (ie. INPUT and INKEY$ cannot be
used), nevertheless, the cursor may still be enabled.

INPUT will activate and de-activate the cursor itself.

CROSS-REFERENCE

See FORCE_TYPE concerning current input queue activation, INKEY$, INPUT and KEYROW for gen-
eral information.

CURSEN and CURDIS are both combined by the CUR command. CURSOR%.

10.95 CURDIS

Syntax CURDIS [#ch]
Location Toolkit II, THOR XVI, QSOUND

This command disables the cursor in the given channel. See CURSEN!

The default window for this command is #1.

If a cursor is disabled in a given window (or does not exist), task switching with <CTRL><C> to the job
which owns that window will not work unless the Pointer Environment is present.

WARNING

Do not use CURDIS #0 as this may prevent further input.

CROSS-REFERENCE

See CURSEN for more details.

CURSOR_OFF is similar.

10.96 CURSEN

Syntax CURSEN [#ch]
Location Toolkit II, THOR XVI, QSOUND

If a program is to multitask without the assistance of the Pointer Interface, it is necessary to give that
program an active cursor so that the user can switch to the program using the key <CTRL><C>, which
alters the active keyboard queue.

Unless a program has an active cursor, it cannot accept input from the keyboard by the use of commands
such as PAUSE, INKEY$ and INPUT.

208 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

The command CURSEN enables the cursor in the given channel, which must be either a scr or con
channel. If no channel is specified, the default is #1.

Once the cursor is enabled, a red block will appear at the current text cursor position in the given channel.
This block will begin to flash when the cursor is ‘active’ (ie. expecting input).

MINERVA NOTE

Minerva’s System Xtensions allow you to alter the attributes of the text cursor, by using the command
POKE !124!51,x where x is in the format of: RRRRSCCC, where the top 4 bits of x (RRRR) determine
the cursor flash rate, the bottom three bits (CCC) determine the colour of the cursor and the fourth bit
(S) determines whether the cursor appears as a solid block or an underline.

You can actually get an invisible cursor by using the command POKE !124!51,0. Unfortunately though,
this sets the cursor attributes for all cursors which are enabled, rather than just for the current Job.

CROSS-REFERENCE

KEYROW reads keys without an active cursor. See CURDIS also.

10.97 CURSOR

Syntax CURSOR [#channel,] [grx, gry,] x,y or
CURSOR [#channel,] flag (Btool only)

Location QL ROM, Btool

The CURSOR command allows you to set the text cursor to a specific position in the given window
(default #1). Any text which is then printed will appear with the given position at its top left corner.

The values x and y specify the position in pixel co-ordinates relative to the origin of the specified window
(eg. if the window #1 was defined as scr_448x200a32x16, the command CURSOR 224,100 will set the
text position to the exact centre of the window).

However, for the more adventurous, CURSOR can take an additional two parameters which allow you to
mix text and graphics on a given window more easily. This sets the text cursor to the graphics co-ordinate
(grx,gry) and then uses the x and y parameters to specify a relative pixel offset from this graphics co-
ordinate (a positive value of x moves the text cursor to the right, a negative value to the left; whereas a
positive value of y moves the text cursor down, a negative value up).

The second variant only works with the Btool Toolkit. This allows you to enable or disable the cursor in
the specified window (default #1), by specifying a flag of 1 to enable the cursor or 0 to disable the cursor.

Example

This program shows all the 45 degree angles in a circle:

100 MODE 4:WINDOW 448,200,32,16
110 PAPER 0:INK 7:CLS
120 SCALE 200,-150,-100
130 FOR i=0 TO 315 STEP 45
140 INK 7:LINE 0,0 TO SIN(RAD(i))*50,COS(RAD(i))*50
150 xoff=0:yoff=0
160 SELect ON i

(continues on next page)

10.97. CURSOR 209

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

170 =0:xoff=-4:yoff=-9
180 =45:yoff=-9
190 =90:yoff=-4
200 =180:xoff=-10
210 =225:xoff=-20
220 =270:xoff=-20:yoff=-4
230 =315:xoff=-20:yoff=-9
240 END SELect
250 INK 4:CURSOR SIN(RAD(i))*50,COS(RAD(i))*50,xoff,yoff
260 PRINT i
270 END FOR i

NOTE 1

On pre MG ROMs, the CURSOR command only allows a maximum of four parameters, which means
that you can only use grx, gry, x and y on the default channel. You can however use commands such as
CURSOR #3,200,40,3 - although this is not supported on Minerva (pre v1.98) and SMSQ/E and should
be avoided! If you specify a fifth parameter, a ‘Bad Parameter’ error will be reported. The Btool variant
fixes this as does SMS, MG ROMs and Minerva. Compiling with Q-Liberator does not prevent this error.

NOTE 2

The graphics positioning did not work on ST/QL Emulators with Drivers prior to Level D-15 (or E-15).

NOTE 3

Compilers will not accept the second syntax.

NOTE 4

As from SMS v2.74 CURSOR limits grx to even positions to make in compatible with MODE 8 and
MODE 4 automatically.

CROSS-REFERENCE

Please refer to PRINT , LEFT and AT .

CURSEN is a more compatible means of enabling a cursor.

10.98 CURSOR%

Syntax CURSOR% [#window]
Location BTool

This function returns the current status of the text cursor in the specified window (default #1). Results
are:

• 0 for disabled,

• 1 for enabled and visible,

• -1 for enabled but invisible.

210 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

An active cursor flashes, and therefore alternates between visible and invisible status when enabled.
Otherwise, it will appear as a solid block on screen (unless there is no cursor attached to the specified
channel).

On Minerva it is possible to alter the shape and colour of the cursor.

CROSS-REFERENCE

CURSEN , CURDIS, CURSOR and CUR enable or disable the cursor.

Also refer to CURSOR_OFF and CURSOR_ON .

10.99 CURSOR_OFF

Syntax CURSOR_OFF [#ch]
Location Turbo Toolkit

This command is exactly the same as CURDIS.

10.100 CURSOR_ON

Syntax CURSOR_ON [#ch [!]]
Location Turbo Toolkit

This command is very similar to CURSEN , with the default window being #1.

However, you can add an exclamation mark after the channel number. If this is omitted, then upon
execution of this command the chosen window is automatically selected as the active window (where
key input is directed). Add the exclamation mark to prevent this.

CROSS-REFERENCE

See CURSOR_OFF, CURSEN and CURSOR% for more details.

10.101 CVF

Syntax CVF (mkf_$)
Location BTool

This function takes any six character long string, (the internal format of a floating point number), and
returns the value as a floating point number.

WARNING

CVF locks SuperBASIC if the supplied parameter is six bytes long but not a valid representation of a
floating point number, eg. CVF(“BlaBla”).

MKF$ always returns a valid parameter for CVF which will not crash it.

10.99. CURSOR_OFF 211

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE

PEEK_F, MKF$, CVI%, CVL, CVS$.

FPUTF and FGETF enable you to read and write floating point numbers in internal format to or from
files.

10.102 CVI%

Syntax CVI% (mki_$)
Location BTool

CVI% is the inverse function of MKI$ and expects a two character long string, being the internal repre-
sentation of an integer, and then converts this into the actual integer number.

Example

MKI$(20812)=”QL”

CVI%(“QL”)=20812

CROSS-REFERENCE

MKI$, CVL, CVF, CVS$.

FGET% and FPUT% provide similar facilities for writing and reading integers in their internal format
from files.

10.103 CVS$

Syntax CVS$ (mks_$)
Location BTool

This function takes the internal representation of a string and returns the string concerned.

A string is represented internally as a word containing the length of the string followed by the string itself.

Example

CVS$(CHR$(0) & CHR$(2) & “Test”) = “Test”(1 TO 2) = “Te”

CROSS-REFERENCE

MKS$, CVI%, CVL, CVF. FPUT$ and FGET$ enable you to write strings to and read strings from files
in their internal formats.

212 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.104 CVL

Syntax CVL (mkl_$)
Location BTool

This function converts the internal representation of a long integer number (a four character long string)
to the actual value and returns that. CVL is the inverse of MKL$.

Example

CVL(MKL$(10010) = “10010”

CROSS-REFERENCE

MKL$, CVI%, CVF, CVS$.

FPUTL and FGETL provide similar facilities to enable you to write and read long integers from files in
their internal format.

10.104. CVL 213

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

214 Chapter 10. Keywords C

CHAPTER

ELEVEN

KEYWORDS D

11.1 DATA

Syntax DATA expression *[,expression]*

Location QL ROM

The QL allows a SuperBASIC program to store a set of data in the program itself, which can then be
assigned to a given variable by the READ command. The DATA statement marks these areas for use by
READ. The information which can be stored at a DATA statement is basically anything which can be
stored in a variable, including strings, variables, constants and expressions.

Expressions will be calculated at the time that the item in question is READ. Whilst a program is running,
unless a READ command is found, DATA statements are ignored.

Example

1000 DATA "QL User",100,x*1000+10

NOTE 1

On Pre MG ROMs, if any values in a DATA statement start with a bracket, then the other items on the
line may be ignored. If you must specify items starting with brackets, use for example: DATA 0+(. . .
This is fixed by MG ROMs, Minerva and SMS.

NOTE 2

Unless you have a Minerva ROM (v1.77 or later) or SMS, when you enter the DATA statement, you will
always need to type a space after the word DATA as the parser will not automatically insert one. On
later implementations a space is automatically inserted where the first DATA expression is a string, eg.
DATA’Hello’.

NOTE 3

Entering a DATA statement as a direct command from #0 has no effect. Under SMS an error is reported
‘DATA in command line has no meaning’.

NOTE 4

Due to the way in which the interpreter works, it is always more efficient to place DATA statements at
the start of a program (the search function always starts at the first line of the program).

NOTE 5

Various SuperBASIC compilers (such as Turbo) do not support expressions in DATA statements.

215

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE 6

There appears to be no real check on the parameters given for DATA, so the following line can be entered,
but will in fact cause an error when you try to READ it:

10 DATA 1000,PRINT,10

SMS’s improved interpreter does do more checks than earlier implementations and will prevent you from
entering the line:

10 DATA 1,1,2a,3

which other implementations allow (but give an error when they try to READ the line).

NOTE 7

SMS may complain if you create numerous DATA statements inside a DEFine PROCedure or DEFine
FuNction struture.

CROSS-REFERENCE

RESTORE allows you to set the current DATA pointer. READ will assign the value at the current DATA
pointer to the given variable. EOF will return the value one if there are no more DATA statements in the
current program.

11.2 DATAD$

Syntax DATAD$
Location Toolkit II

This function always contains the current default data device, which is an unofficial QDOS standard and
supported by all Toolkit II extensions, original SuperBASIC commands and most good software.

The default device means that if no other device is stated, if appropriate, this device will be used. The
default data device will also be consulted if a device name is supplied but the given file cannot be found
on that device. For example, assuming that DATAD$=’flp2_’, if you enter VIEW ram1_example_txt and
the file example_txt is not present on ram1_, the command will then try flp2_ram1_example_txt.

This idea can be extended to use prefixes as sub-directories. Sub-directories are separated by underscores,
DATAD$ always ends with an underscore.

Example

TK2DIR reads all files from the current default data device via a pipe, strips off any network sub-directory
prefix and then writes the remainder of the filenames into the string array passed by parameter.

100 DEFine PROCedure TK2DIR (Verz$)
110 LOCal e,n,sd$,sd,us
120 sd$=DATAD$: us="_" INSTR sd$
130 IF us=3 AND LEN(sd$)>3 and sd$(1)="n" THEN
140 IF sd$(2) INSTR "12345678":sd$=sd$(4 TO):us="_" INSTR sd$
160 END IF
170 OPEN#4,pipe_10000: STAT#4: WDIR#4

(continues on next page)

216 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

180 e=FILE_OPEN(#3,pipe_,CHANID(#4)): CLOSE#4
200 INPUT#3,Verz$(0)
210 FOR n=1 TO DIMN(Verz$)
220 IF EOF(#3) THEN EXIT n
230 INPUT#3,Verz$(n)
240 Verz$(n)=Verz$(n)(us+1 TO)
250 END FOR n
260 CLOSE#3
270 END DEFine TK2DIR

DIM file$(20,30)
TK2DIR file$
CLS: PRINT file$

Here only the first 20 files will be read into file$. NB. This would require substantial amendment to make
it search sub-directories also.

CROSS-REFERENCE

DATA_USE defines the default device; DUP, DDOWN and DNEXT allow you to move around the sub-
directory tree. PROGD$ returns the default program device. DLIST prints all default devices.

11.3 DATAREG

Syntax DATAREG [number]number=0. . . 3
Location TRAPS (DIY Toolkit Vol T)

This function returns the value of the Machine code data register number (default 0) following the com-
pletion of a MTRAP, QTRAP or BTRAP command.

Because the default data register number is 0: PRINT DATAREG will be 0 if no error occured during
the TRAP call or else the relevant error code.

Number will let you read the value of the relevant data register D0, D1, D2 or D3.

CROSS-REFERENCE

ADDREG allows you to read machine code address registers - see this for an example of DATAREG. See
MTRAP, QTRAP and BTRAP.

11.4 DATASPACE

Syntax DATASPACE (file$)
Location Turbo Toolkit

This function returns the amount of dataspace which has been set aside for the given file$. It is therefore
similar to FDAT and FILE_DAT.

11.3. DATAREG 217

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Default devices are not supported, however errors are not reported. The following error values may also
be returned by the function:

• -2: The file is not executable

• -3 or -6: Insufficient memory to open file

• -7: File does not exist

• -9: Device or file is being written to by something else.

• -12: The device is valid, but the filename is not

• -16: Bad or changed medium error

Example

PRINT DATASPACE('win1_start_QD_exe')

CROSS-REFERENCE

DATA_AREA allows you to set the dataspace for a compiled program. See also FDAT .

11.5 DATA_AREA

Syntax DATA_AREA size size=0. . . 850
Location Turbo Toolkit

This command is only used by the Turbo compiler and should be located at the start of your program
before any active program lines.

The command specifies how much dataspace (size kilobytes) should be specified for the compiled pro-
gram.

This dataspace is used by a task for stack space and a temporary store whilst it is running.

Example

10 DATA_AREA 32

NOTE

This setting will override a previous TURBO_objdat directive in the same program. It will also be
overridden by a later TURBO_objdat directive in the same program.

CROSS-REFERENCE

DATASPACE allows you to find out how much dataspace has been set aside for a program. See COM-
PILED and TURBO_objfil for other compiler directives. TURBO_objdat is exactly the same.

218 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.6 DATA_USE

Syntax DATA_USE default_device
Location Toolkit II, THOR XVI

If you have Toolkit II installed, all of the additional extensions connected with file or device handling and
all original SuperBASIC commands use the default device if no other device name is specified.

On a THOR XVI, some of the commands support default devices without Toolkit II.

The effect of the default devices would make LOAD proggy_bas work as LOAD flp1_proggy_bas (as-
suming that flp1_ is the default data device). The actual effect depends on the command being executed,
but generally the file will be looked for in three steps:

• Does the given file include a valid device? proggy_bas does not, ram1_proggy_bas does (ram1_).
If not, the parameter is assumed to be a filename and Toolkit II looks for a device on which it can
find it; so:

• Add the default data device to the filename. If that does not work, then:

• Add the default program device (PROGD$) and try again.

The default program device is defined by PROG_USE, DATA_USE defines the default data device. See
PROG_USE as to the difference between the two defaults. The last two steps add the default devices to
the filename. These defaults can be interpreted as sub-directories.

Here, a sub-directory means that where a prefix is separated by underscores, this means that the file
concerned is held in the sub-directory specified by that prefix. Thus, win1_QUILL_readme_doc could
be readme_doc on a hard disk in the sub-directory QUILL or doc in the sub-subdirectory readme of
QUILL.

Sub-directories can be nested but the complete filename, including prefix must not be longer than 41
characters (note that if you are using a network device, for example n1_win1_proggy_bas, the maximum
permitted filename length is reduced to 39 in current versions of the QL device drivers).

Examples

DATA_USE flp1_QUILL (or flp1_QUILL_)
DATA_USE MDV2_
DATA_USE win1_Psion_ARCHIVE
DATA_USE n2_ram1_
DATA_USE mdv3_games_arcade_invaders_

NOTE 1

If there is no underscore at the end of DATA_USE’s parameter, it will be added automatically.

NOTE 2

A few programs do work with these sub-directories (if Toolkit II is present), but most do not. To make any
program work with them, you can fool them so that they believe that for instance FLP1_games_BOOT
is FLP1_BOOT or BOOT (default device FLP1_games): See the PTH_. . . and DEV_. . . commands.

NOTE 3

11.6. DATA_USE 219

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Toolkit II sub-directories should not be mixed up with wild cards. DATA_USE flp1__bas makes WDIR
list all BASIC programs on floppy 1, but after PROG_USE flp1__bas, SAVE test will not save the current
program as flp1_test_bas but as flp1__bas_test.

NOTE 4

The default device is the current sub-directory on level-2 drivers.

NOTE 5

If you wish to turn off this feature, you can assign a null string (“”) to DATA_USE.

NOTE 6

The default devices cannot exceed 32 characters (plus a final underscore) - any attempt to assign a longer
string will result in the error ‘Bad Parameter’ (error -15).

CROSS-REFERENCE

DATAD$ contains the default data device, DLIST lists all default devices. DDOWN , DUP and DNEXT
allow you to skip from sub-directory to sub-directory, climb up the tree and much more. PROG_USE
changes the default program device, and SPL_USE /DEST_USE the default destination device. See also
DEV_USE and PTH_ADD for path search.

11.7 DATE

Syn-
tax

DATE or
DATE (year,month,day,hour,minute,second)(Minerva & NewDate) or
DATE (year,month,day,hour,minute [,second])(SMS v2.57+)

Loca-
tion

QL ROM

The function DATE returns the current date and time as the number of seconds since midnight on 1st
January 1961. For example, PRINT DATE$(DATE) is exactly the same as PRINT DATE$. The NewDate
version of this command is exactly the same as Minerva’s implementation.

NOTE

Due to the way in which the system clock is implemented on the QL (it is stored as a 32-bit unsigned
number), early versions of this function have problems with dates after 3.14:07 on 19th January 2029
(this would result in a number of seconds which needs to be stored in all 32 bits).

Although the SDATE and DATE$ functions treat the number correctly, the DATE function ignores the
most significant bit, meaning that it returns the wrong value for dates later than this.

The NewDate version of this function, as well as Minerva ROMs and under SMS, DATE treats the figure
as a 32-bit signed number. Although this allows the line PRINT DATE$(DATE) to work correctly for
all dates between 0.0:00 on 1st Jan 1961 and 6.28:15 on 6th Feb 2097, note that any dates after 3.14:07
on 19th January 2029 are returned as negative numbers, with earlier dates giving the largest negative
number.

MINERVA NOTE

DATE can accept the same six parameters accepted by SDATE. This enables you (for instance) to find
out the day on a given date without having to alter the QL clock: PRINT DAY$(DATE(1968,6,25,1,1,0))

220 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

This does also enable you to easily set the update date on a given file without altering the QL clock:

SET_FUPDT \flp2_test_file, DATE(1990,11,1,0,0,0)

SMS NOTE

As from v2.57, DATE has been brought up to the same standard as on Minerva. However, the seconds
do not have to be specified and will default to zero if omitted.

CROSS-REFERENCE

SDATE will alter the QL clock. DAY$ returns the day on the given date, DATE$ will return the current
date. T_ON and T_START can be used for accurate stop-watches for timing programs.

11.8 DATE$

Syntax DATE$ [(date)] or
DATE$ (year,month,day,hour,minute [,second])(SMS v2.57+ only)

Location QL ROM

DATE$ holds the current system date and time as a string in the following format: yyyy mmm dd
hh:mm:ss.

1991 May 06 18:18:44 (example)
| | | | || || || ||
| | | | || || || ++---- 19 TO 21 (seconds)
| | | | || || ++------- 16 TO 17 (minutes)
| | | | || ++---------- 13 TO 14 (hour, 24h)
| | | | ++------------- 10 TO 12 (day)
| | +-+----------------- 6 TO 8 (month as string)
+--+--------------------- 1 TO 4 (year)

If a parameter is used then DATE$ should return the date and time the given number of seconds af-
ter 1/1/1961, DATE$(DATE) is identical to DATE$ for any date before 3.14:07 on 19th Jan 2029 (see
ADATE). However, for times after this date, the number of seconds since 1/1/1961 is represented by a
negative number, calculated by number of seconds - 2147483648.

This means that to calculate a specified date after 3.14:06 on 19th Jan 2029, the following short function
is required (for non-Minerva ROMs and non-SMS machines only):

100 DEFine FuNction DATE20$(seconds)
110 offset='2147483648'
120 RETurn DATE$(seconds-offset)
130 END DEFine

This function is not needed on Minerva ROMs, with the NewDate version of DATE or under SMS - see
DATE for a full explanation.

Example 1

It may be useful to read the different parts of the date from DATE$ and reformat them for use in letters.

11.8. DATE$ 221

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

100 D$=DATE$
110 year=D$(1 TO 4): day=D$(10 TO 12): D$=D$(6 TO 8)
120 month=(D$ INSTR "..JanFebMarAprMayJunJulAugSepOctNovDec")/3
130 DIM month$(12,9): RESTORE 150
140 FOR m=1 TO 12: READ month$(m)
150 DATA "January","February","March","April","May","June","July"
160 DATA "August","September","October","November","December"
170 ALTKEY "d", month$(month) & " " & day & ", " & year

Example 2

How to find the number of days between two dates:

100 date1=DATE(2032,3,30,10,0,0)
110 date2=DATE(2000,3,30,10,0,0)
120 PRINT DAYS_DIFF(date2,date1)
130 :
140 DEFine FuNction DAYS_DIFF(dy1,dy2)
150 LOCal offset,base_date,diff
160 offset='2147483648'
170 base_date=DATE(2029,1,19,3,14,7)
180 IF (date1>=0 AND date2>=0) OR (date1<0 AND date2<0)
190 IF date1>=date2:diff=date1-date2:ELSE diff=date2-date1
240 ELSE
250 IF date1<0
260 diff=(base_date-date2)+(date1+offset
270 ELSE
280 diff=(base_date-date1)+(date2+offset)
290 END IF
300 END IF
310 seconds_per_day=24*60*60
320 RETurn INT(diff/seconds_per_day)
330 END DEFine

NOTE 1

Parts of string functions cannot be obtained by slicing them directly. Expressions such as
DATE$(DATE)(1 TO 4) are only valid on Minerva ROMs or under SMS. On other ROMs, the value
of the function has to be copied to a variable before being sliced (as demonstrated in example 1).

NOTE 2

The QL’s system clock is limited in the range of dates it can cover - see ADATE.

MINERVA NOTE

Although on Minerva (v1.77 and later), DATE$ can now be directly sliced to extract the year for instance.
It is however, necessary to tell the operating system that you are not actually providing a parameter to be
converted into a date. This is achieved by using the following format to slice DATE$: DATE$ [([seconds])
[([start] TO [end])]] The following are therefore all valid on Minerva:

PRINT DATE$
PRINT DATE$(DATE+86400)

(continues on next page)

222 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

TIMER$ = DATE$()(13 TO)
YEAR$ = (DATE$)(1 TO 4)
YEAR$ = DATE$(1E9)(TO 4)

Only the first two examples will work on other ROMs.

SMS NOTE

DATE$ works mainly as per Minerva, however from v2.57+, you can also supply five or six parameters
to DATE$ in common with DATE and SDATE.

CROSS-REFERENCE

Use SDATE and ADATE to set and alter the system time and date. DATE holds the current date as a
floating point number, DAY$ holds the weekday as a short string.

11.9 DAY$

Syntax DAY$ [(date)] or
DAY$ (year,month,day,hour,minute [,second]) (SMS v2.57+ only)

Location QL ROM

DAY$ holds the current day as a three character string:

Sun Sunday
Mon Monday
Tue Tuesday
Wed Wednesday
Thu Thursday
Fri Sat Friday Saturday

If you provide a parameter, DAY$ will return the day of the given date (which is stated in seconds after
1/1/1961). DAY$(DATE) = DAY$.

NOTE

As with DATE$, you cannot slice DAY$ unless you have a Minerva ROM (version 1.77 or later) or SMS
- see DATE$ for further details.

SMS NOTE

In common with DATE$, from v2.57, DAY$ will now accept five or six parameters as with SDATE and
DATE. You can also slice DAY$ (like on Minerva) - see DATE$.

CROSS-REFERENCE

TRA and SET_LANGUAGE allow you to re-define the abbreviations used for the different days. DATE
holds the current system date (in seconds after 1/1/1961) as a floating point number, DATE$ as a string.

11.9. DAY$ 223

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.10 DAY%

Syntax DAY% [datestamp]
Location SMSQ/E

This function complements the DATE and DATE$ functions, by returning the day number corresponding
to the given datestamp, or current date, if no datestamp was given.

Examples

PRINT DAY% (0)

will print the day part of the QL’s epoch, 1 for 1st of January

PRINT DAY%

will print the current day number.

CROSS-REFERENCE

See DATE, YEAR%, MONTH%.

11.11 DBL

Syntax DBL
Location Beuletools

This function returns the control codes needed to switch on emphasised mode on an EPSON compatible
printer: DBL=CHR$(27)&”E”.

CROSS-REFERENCE

NORM, BLD, EL, ENL, PRO, SI , NRM, UNL, ALT , ESC, FF, LMAR, RMAR, PAGDIS, PAGLEN .

11.12 DDOWN

Syntax DDOWN subdirectory
Location Toolkit II

This command adds the specified subdirectory to the default data device as a suffix.

If the default program device is the same as the default data device, then this will also be altered by
DDOWN.

If the default destination device is a directory device (ie. if it ends with an underscore), DDOWN also
alters this (whether or not it points to another drive).

224 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

win1_
win1_C_
win1_C_include_
win1_C_objects_
win1_BASIC_
win1_QUILL_
win1_QUILL_letters_
win1_QUILL_translations
win1_secret_

The above could be a directory tree on a hard disk.

DATA_USE win1_ defines win1_ as the default directory device, so WDIR will list all of the files on
win1_.

DDOWN C will move into the C sub-directory, ie. DATAD$ is now win1_C_.

DDOWN include will make WDIR list all of the files on the hard disk which are prefixed by C_include_
(eg. win1_C_include_math_h).

NOTE 1

DDOWN does not check if there are any files with the given prefix which exist.

NOTE 2

DDOWN breaks with error -17 (error in expression) if the parameter is a resident keyword. So append an
underscore to the directory name, eg. DDOWN NEW_, or specify the parameter between quote marks
(eg. DDOWN ‘NEW’).

NOTE 3

The default devices cannot exceed 32 characters (plus a final underscore) - any attempt to extend them
beyond this will result in the error ‘Bad Parameter’ (error -15).

CROSS-REFERENCE

DUP moves up the tree, DNEXT skips from branch to branch. DATAD$ and DLIST can be used to find
out about the current sub-directory and default devices respectively.

11.13 DEALLOCATE

Syntax DEALLOCATE address
Location Turbo Toolkit

This procedure is very similar to RECHP in that it cancels a reservation of common heap memory.
However, the specified address must be an area of memory which had previously been set aside with
ALLOCATION.

WARNING

Prior to v3d27 this command could crash the system if the specified address had already been deallocated,
was an odd address, or had not been set aside with ALLOCATION.

CROSS-REFERENCE

11.13. DEALLOCATE 225

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

See ALLOCATION and RECHP.

11.14 DEBUG

Syntax DEBUG
Location Turbo Toolkit (v3.20+)

This is a compiler directive intended to precede a DEFine PROCedure or DEFine FuNction routine which
is used for debugging a program. The routine can be included or excluded from the program during
compilation using the DEBUG_LEVEL directive. Current versions of the TURBO parser do not support
this.

CROSS-REFERENCE

See DEBUG_LEVEL.

11.15 DEBUG_LEVEL

Syntax DEBUG_LEVEL level
Location Turbo Toolkit (v3.20+)

It is currently uncertain how this directive is used within TURBO compiled programs.

CROSS-REFERENCE

See DEBUG and the various TURBO_XXX commands starting with TURBO_diags.

11.16 DEFAULT

Syntax DEFAULT (expression, default_value)
Location BTool

The function DEFAULT usually simply returns the result of the given expression, unless the expression
contains undefined variables or does not produce a floating point number. In either of these latter cases
DEFAULT will return the given default_value.

Example

WRITE simply PRINTs a text to a given channel. If the channel ch was not a valid number for any reason
then #1 is used:

100 DEFine PROCedure WRITE (ch, text$)
110 ch = DEFAULT(ch, 1)
120 PRINT#ch,text$
130 END DEFine WRITE

226 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERECE

TYPE. DEFAULT$ and DEFAULT% work exactly like DEFAULT for string and integer expressions.

11.17 DEFAULT%

Syntax DEFAULT% (expression%, default_value%)
Location BTool

CROSS-REFERENCE

See DEFAULT !

11.18 DEFAULT$

Syntax DEFAULT$ (expression$, default_value$)
Location BTool

CROSS-REFERENCE

See DEFAULT !

11.19 DEFAULT_DEVICE

Syntax DEFAULT_DEVICE devicename$
Location Turbo Toolkit

This command can be used in a similar way to PROG_USE and DATA_USE. It sets the default device
(up to 31 characters), for the following Turbo Toolkit commands:

• CHARGE,

• EXECUTE,

• EXECUTE_A,

• EXECUTE_W

• LINK_LOAD,

• LINK_LOAD_A,

• LINK_LOAD_W.

It has no effect on any other commands.

Example

For a series of linked programs, you may want to use the following in a boot file:

11.17. DEFAULT% 227

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

DEFAULT_DEVICE win1_PROGS_

Each program could call another by using:

EXECUTE_W program2_task

NOTE 1

Prior to v3d27, this command only supported 5 characters (although prior to v2.00 no error was reported
if more than 5 characters were used - the command simply ignored the additional characters).

NOTE 2

As from v1.26, you do not need to pass the device name as a string, for example:

DEFAULT_DEVICE flp1_

CROSS-REFERENCE

PROG_USE.

11.20 DEFAULT_SCR

Syntax DEFAULT_SCR
Location Fn (v1.02 or later)

This function is really only useful on a Minerva ROM (although it will work quite happily on any other
ROM). It is sometimes useful when writing programs which are to run in Minerva’s dual screen mode to
discover which is the default screen. This is made necessary because all new windows which are opened,
and all MODE commands operate on the current default screen.

This therefore means that if a program is badly written, it is possible that whilst the program is running
the default screen is switched, giving the result that some of its windows are opened on scr0 and some
on scr1. PRINT DEFAULT_SCR will return 0 or 1 depending whether the default screen is scr0 or scr1.
If Minerva is not in dual screen mode, or if Minerva is not present, 0 will be returned.

Example

A program to change the MODE of the current program safely (ie. it will only alter the MODE of the
screen in which the program is running):

100 This_JOB=DEFAULT_SCR
110 SET_MODE 8
120 :
200 DEFine PROCedure SET_MODE (alp)
210 IF RMODE(This_JOB)=alp:RETurn
220 IF This_JOB=DEFAULT_SCR:MODE alp:RETurn
230 MODE 64+32,-1:MODE alp:MODE 64+32,-1
240 END DEFine

CROSS-REFERENCE

228 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

MODE alters the mode of the current screen and job and can be used to alter the current default screen,
RMODE returns the mode of the given screen.

11.21 DEFine xxx

Syntax DEFine
Location QL ROM

This keyword forms part of the structures:

• DEFine PROCedure,

• DEFine FuNction,

• END DEFine.

As such, it cannot be used on its own within a program - this will cause a ‘bad line’ error, except under
SMS where it causes an error ‘Incorrect Procedure or Function Definition’.

CROSS-REFERENCE

Please refer to the individual structure descriptions for more details: DEFine FuNction, DEFine PRO-
Cedure and END DEFine.

11.22 DEFine FuNction

Syntax DEFine FuNction name[$ | %] [(item *[,itemi]*)]
Location QL ROM

This command marks the beginning of the SuperBASIC structure which is used to surround lines of
SuperBASIC code which forms an equivalent to a machine code function, which can be called from
within SuperBASIC and will return a value dependent upon the code contained within the structure. The
syntax of the SuperBASIC structure can take two forms:

DEFine FuNction name[$ | %] [(item*[,itemi]*)]: statement *[:statement]*:RETurn value

or

DEFine FuNction name[$ | %] [(item *[,itemi]*)] *[LOCal var *[,vari]*]* *[statements]* RETurn value
END DEFine [name]

When the specified function name is called, the interpreter will search the SuperBASIC program for the
related DEFine FuNction statement.

If a related DEFine FuNction cannot be found, then the interpreter will search for a machine code function
of that name.

If the definition of name cannot be found, then the error ‘Not Found’ will be reported if name was defined
in the past, but the definition line has since been deleted.

11.21. DEFine xxx 229

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

If name has never been defined in the current SuperBASIC program, then it will be treated as a normal
variable and relevant error messages reported.

Under SMS in both instances the value 0 will be returned (name is treated as an undefined variable).

The method of searching for a FuNction means that if a SuperBASIC FuNction is defined with the same
name as a machine code one, the machine code one will no longer be available, and when the SuperBASIC
FuNction is removed (for example with NEW), that keyword will no longer have any effect. If entered as
a direct command, even the in-line structure will not have any effect unless it is also called on the same
line, as the interpreter must jump to the relevant DEFine FuNction statement when the function is called.

If a DEFine FuNction statement appears in a program, if the code is not called, program flow will continue
from the statement following the next END DEFine - it is however good practice to keep all definition
structures towards the end of a program, and not to place the structure blocks in the middle of program
code, as this makes it very difficult to follow the flow of programs.

It is also good programming practice to make FuNctions self-contained and not to jump out of them using
GO TOs or GO SUBs (they can of course call other FuNctions and PROCedures).

To call the DEFine FuNction, you merely need to include its name in an expression. If however any
parameters are listed in the definition, you will need to pass the same number of parameters in brackets
after the name of the FuNction, separated by any valid SuperBASIC separator {ie. comma (,), semicolon
(;), backslash (\), exclamation mark (!) or TO }. You can also place a hash (#) before the parameters if
you so wish to indicate that it is a channel number.

If not enough parameters are supplied, the program will report ‘Error in Expression’ when the missing
parameter is used, except under SMS where the missing parameters are treated as unset variables and will
therefore have the value 0 (if a numeric variable) or else contain an empty string (if a string variable).

If however, too many parameters are passed, the extra parameters are ignored. Parameters are passed
by reference which means that the list of items in the DEFine FuNction statement are deemed LOCal to
that definition - this means that any previous values of the items are stored whilst the definition block is
active. What is more, the type of each item does not actually matter - they assume the type of the passed
parameter. For example, the following short program will work without any problems:

10 a$=QUERY$('What is your name')
20 DEFine FuNction QUERY$(x)
30 INPUT (x)!b$
40 RETurn b$
50 END DEFine

Note though that the name of the FuNction must end with the correct variable type, ie. $ if a string is to
be returned, or % if an integer is to be returned (although see note 7 below).

One of the results of passing variables by reference is that if the item is altered within the definition block,
if a variable is passed as a parameter, the variable itself will also be altered (although see note 4). This
can be shown with the following short program:

100 x=10
110 y=Square(x)
120 PRINT x;'^2=';y
130 DEFine FuNction Square(za)
140 za=za*za
150 RETurn za
160 END DEFine

230 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

This can be avoided by either assigning the item to a temporary variable and then using the temporary
variable instead (see the example below), or by passing the variable as an expression, by placing it inside
brackets; for example by replacing line 110 with the following:

110 y=Square((x))

Having passed the necessary parameters to the Function, you can then use each item inside the definition
block as normal.

Example

A short program to calculate the length of the hypotenuse in a triangle, given the length of its two other
sides:

100 MODE 4: WINDOW 448,200,32,16: SCALE 100,0,0: PAPER 0 105 CLS: INK 7
110 AT 2,25: UNDER 1: PRINT'Pythagoras calculator': UNDER 0
120 INPUT \\'Enter length of base of triangle:'!base
130 INPUT \\'Enter height of triangle:'!height
140 hypotenuse=Pythag(base,height)
150 INK 4: LINE 50,20 TO 100,20 TO 100,70 TO 50,20
160 INK 7: AT 16,35-LEN(base): PRINT base
170 AT 11,46: PRINT height
180 AT 11,31-LEN(hypotenuse): PRINT hypotenuse
190 :
1000 DEFine FuNction Pythag(x,y)
1010 LOCal x1,y1
1020 x1=x*x:y1=y*y
1030 RETurn SQRT(x1+y1)
1040 END DEFine

See what happens if you replace lines 1000 to 1040 with the following:

1000 DEFine FuNction Pythag(x,y)
1010 x=x*x:y=y*y
1020 RETurn SQRT(x*y)
1030 END DEFine

NOTE 1

A FuNction must return a value under all circumstances. If the END DEFine is reached without a value
having been returned then SuperBASIC will report an ‘error in expression’ (-17), specifying the error as
having occured at the line containing the END DEFine.

Under SMS the error ‘RETurn not in PROCedure or FuNction’ will be reported instead.

NOTE 2

On pre JS ROMs, you could not define new FuNctions with names which had already been used in the
same program.

NOTE 3

On pre MG ROMs, any more than nine parameters may upset the program, corrupting it by replacing
names with PRINT towards the end of a program. This can however be circumvented by increasing the
size of the Name Table by 8 bytes for each name (plus a little more for luck), using the line:

11.22. DEFine FuNction 231

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CALL PEEK_W(282)+36,N

NOTE 4

Although a sub-set of a simple string is an expression and therefore will not be altered within a function,
a sub-set of a DIMensioned string is not treated as an expression and will therefore be altered!!

NOTE 5

Recursive FuNctions (ie. FuNctions which call themselves, or call another PROCedure or FuNction
which in turn calls the original FuNction) are allowed (up to 32767 recursions under Minerva). They do
however gobble up memory at an amazing rate and can cause problems in compiled SuperBASIC due
to the fact that they need an ever-increasing amount of stack space. They should be avoided wherever
possible because they are also very slow.

On SMS, if you try to use recursive functions too much, you may end up with the rather esoteric error
‘program structures nested too deeply, my brain hurts’! It is however, more likely that you will end up
with an ‘Out of Error’ memory and not be able to do anything else (not even NEW).

NOTE 6

The LOCal statement (if used) must appear as the next statement following DEFine FuNction, otherwise
an error will be reported. Under SMS if this is not the case, the error ‘Misplaced LOCal’ will be reported.

NOTE 7

SMS and QLiberator do not seem to mind if you do not end the FuNction name with a $ symbol when a
string is to be returned and the FuNction will work perfectly well in the compiled version of the program.
However, this should be avoided as the program will not work on other QL ROMs and also cannot be
compiled with TURBO. For example, take the following program, which works under SMS or when
QLiberated.

For other ROMs and TURBO, rename the function to GETSUBDIR$:

100 file$='n1_win2_test_bas'
110 test$=GETSUBDIR(file$)
295 :
300 DEFine FuNction GETSUBDIR(s$)
310 IF s$(LEN(s$))<>'_':s$=s$&'_'
320 IF LEN(s$)=5:IF s$(4) INSTR '1234567890':RETurn ''
322 REPeat t_loop
325 root=1
330 FOR x=1 TO LEN(s$)
340 IF s$(x)='_'
350 IF x=3:IF s$(2) INSTR '1234567890':root=3
360 IF x=5:IF s$(4) INSTR '1234567890':root=5
370 IF x>5:IF root=1:s$=PROGD$ & s$:NEXT t_loop
380 IF x=8:IF root=3:root=8
390 END IF
400 NEXT x
410 IF root=1:s$=PROGD$ & s$:NEXT t_loop
415 as$=s$
420 IF root=3:s$=s$(1 TO 3) & PROGD$
425 IF root=3:IF LEN(as$)>3:s$=s$&as$(4 TO):NEXT t_loop:ELSE EXIT t_loop
430 END FOR x

(continues on next page)

232 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

435 EXIT t_loop
440 END REPeat t_loop
445 as$=s$
460 RETurn s$(1 to root)
470 END DEFine

NOTE 8

Do not try to DEFine one FuNction inside another - although this is actually allowed under most imple-
mentations, compilers presume that an END DEFine should be placed before the start of the next DEFine
FuNction and it makes programs very difficult to follow.

Under SMS the error ‘Defines may not be within other clauses’ will be reported when you try to RUN
the program.

NOTE 9

On Minerva pre v1.96, if you try to link in machine code procedures or functions from inside a DEFine
PROCedure or DEFine FuNction block, problems could occur after a CLEAR command.

WARNING 1

On most ROMs (at least on JM, MGx, AH and Minerva up to v1.97), a single line recursive FuNction
will not respond to the break key. For example:

10 DEFine FuNction Root(a): a=2^Root(a)

The solution for all ROMs (or all those tested so far!) - insert an additional colon (:) as in:

10 DEFine FuNction Root(a)::a=2^Root(a)

This is fixed on SMS v2.59+.

WARNING 2

All ROMs also suffer from this problem on multiple line recursive FuNctions, where there is no active
program line between the definition line and the line which calls the FuNction. For example:

10 DEFine FuNction Root(a)
20 a = 2^Root(a)
30 END DEFine

The solution here is to insert another active program line at line 15 - for example:

15 :

or:

15 PRINT

Do however note that a REMark, DATA or LOCal line at line 15 will not be sufficient as these are not
active commands. Again, this is fixed under SMS v2.59.

WARNING 3

11.22. DEFine FuNction 233

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Except under SMS, if you assign the same name to a FuNction as a resident command, not only will you
no longer be able to use the resident command, but it may crash the system!

SMS NOTES

In v2.59+, if you fail to create a SuperBASIC function correctly, the error INCOMPLETE DEFine ap-
pears (for example if you omit the END DEFine). Prior to v2.89 SMS would only allow a single line
DEFine FuNction if END DEFine appeared on the same line. However, although v2.89 would allow
a single-line DEFine FuNction without an END DEFine , it would report an error if the END DEFine
existed!! Thankfully, v2.90+ fixes this problem, allowing both.

CROSS-REFERENCE

END DEFine tells the interpreter where the end of the definition block can be found. RETurn allows you
to return the result of the Function. DEFine PROCedure is very similar. LOCal allows you to assign
temporary variables with the same name as variables used outside the definition block. PARUSE and
PARTYP allow you to examine the type of the parameters which are passed to the definition block.

11.23 DEFine PROCedure

Syntax DEFine PROCedure name [(item *[,itemi]*)]
Location QL ROM

This command marks the beginning of the SuperBASIC structure which is used to surround lines of
SuperBASIC code which forms an equivalent to a machine code SuperBASIC procedure, which can be
called from within SuperBASIC as a sub-routine. This forms a powerful alternative to GO SUB and
helps to make SuperBASIC programs very easy to read and de-bug.

The syntax of the SuperBASIC structure can take two forms:

DEFine PROCedure name [(item *[,itemi]*)]: statement *[:statement]*

or

DEFine PROCedure name [(item *[,itemi]*)] *[LOCal var *[,vari]*]* *[statements]* [RETurn] END
DEFine [name]

When the specified procedure name is called, the interpreter then searches the SuperBASIC program for
the related DEFine PROCedure statement.

If this cannot be found, then the interpreter will look for a machine code procedure of that name.

If the definition of name cannot be found, then the error ‘Not Found’ will be reported if name was defined
in the past, but the definition line has since been deleted.

If name has never been defined in the current SuperBASIC program, then the ‘Bad Name’ error will be
reported. As with FuNctions, the method of searching means that a machine code PROCedure can be
overwritten with a SuperBASIC definition and then later lost. Parameters and items are treated in the
same manner as with DEFine FuNction. However, please note that calling parameters should not appear
in brackets after the name (unless you intend to pass them otherwise than by reference!).

234 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

When called, all of the SuperBASIC code within the definition block will be executed until either an
END DEFine or RETurn is found, in which case execution will return to the statement after the calling
statement. In contrast however, to DEFine FuNction, there is no need for a PROCedure definition block
to contain a RETurn statement.

Strictly a PROCedure cannot return a value - however due to the nature of the parameters being passed
by reference (see DEFine FuNction), this is possible.

Example

A simple demonstration program which highlights the fact that a PROCedure or FuNction can actually
be recursive (ie. call itself), and also highlights the effect of passing parameters by reference - keep an
eye on the values in #0:

100 radius=50:height=125:CLS:CLS#0
110 Rndom_circle radius,(height),100
120 AT #0,0,0:PRINT#0,radius,height,100
125 :
130 DEFine PROCedure Rndom_circle(x,y,z)
140 INK RND(7):FILL RND(1)
150 CIRCLE RND (y),RND(z),x
160 FILL 0
170 AT #0,0,0:PRINT#0,x,y,z:PAUSE
180 x=x-RND(5):y=y-1:z=z+1
190 IF x<1:RETurn
200 Rndom_circle (x),y,z
210 END DEFine

NOTE 1

On pre JS ROMs, you could not define new PROCedures with names which had already been used in the
same program.

NOTE 2

On pre MG ROMs, any more than nine parameters may upset the program, corrupting it by replacing
names with PRINT towards the end of a program. This can however be circumvented by increasing the
size of the Name Table by 8 bytes for each name (plus a little more for luck), using the line:

CALL PEEK_W(282)+36,N

NOTE 3

Recursive PROCedures (ie. PROCedures which call themselves, or call another PROCedure or FuNction
which in turn calls the original PROCedure) are allowed (up to 32767 recursions on Minerva). They do
however gobble up memory at an amazing rate and can cause problems in compiled SuperBASIC due
to the fact that they need an ever-increasing amount of stack space. They should be avoided wherever
possible. On SMS, if you try to use recursive functions too much, you may end up with the error ‘program
structures nested too deeply, my brain hurts’! It is however, more likely that you will end up with an ‘Out
of Memory’ error and not be able to do anything else (not even NEW).

NOTE 4

The LOCal statement (if used) must appear as the next statement following DEFine PROCedure, other-
wise an error will be reported. Under SMS if this is not the case, the error ‘Misplaced LOCal’ will be
reported.

11.23. DEFine PROCedure 235

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE 5

Do not try to DEFine one PROCedure inside another - although this is actually allowed under most
implementations, compilers presume that an END DEFine should be placed before the start of the next
DEFine PROCedure and it makes programs very difficult to follow. Under SMS the error ‘Defines may
not be within other clauses’ will be reported when you try to RUN the program.

WARNING 1

As with DEFine FuNction problems do exist with recursive PROCedures which prevent the Break key
from working. These problems are fixed by SMS v2.59+

WARNING 2

Except under SMS, if you assign the same name to a PROCedure as a resident command, not only will
you no longer be able to use the resident command, but it may crash the system!

SMS NOTES

From v2.59, as with DEFine FuNction, SMS insists that all PROCedures have an END DEFine statement,
even if they are on a single line. If this does not exist, or there is something else wrong with the syntax,
then the error ‘Incomplete DEFine is reported. The same problems exist in versions prior to v2.90 as
with DEFine FuNction for in-line code.

CROSS-REFERENCE

Please see DEFine FuNction! Also see END DEFine. Look at the example for SWAP which provides a
more practical use of recursive PROCedures.

11.24 DEFINED

Syntax DEFINED (anything)
Location BTool

SuperBASIC is different from other BASIC dialects in that it does not assign a default value to newly
introduced but still unset variables (except on SMS which assigns the value Zero to an unset numeric
variable and an empty string to an unset string).

This makes it possible for a program to detect if a variable has been properly initialised - an ‘error in
expression’ (-17) is reported if you try to carry out operations on unset variables.

The function DEFINED takes any parameter, no matter what type it is, provided that it is a constant or a
variable. DEFINED returns 0 if the parameter was a variable but unset and 1 for defined variables and
constant expressions.

NOTE

This function does not work on SMS

CROSS-REFERENCE

CLEAR makes all variables undefined. PRINT writes asterisks if unset variables are required to be
printed. TYPE returns 1, 2 or 3 for undefined variables. See also UNSET .

236 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.25 DEG

Syntax DEG (angle)
Location QL ROM

This function is used to convert an angle in radians into an angle in degrees (which is the system more
readily used by humans). Although this will work for any value of angle, due to the very nature of angles,
angle should be in the range 0. . . 2*PI, which will return a value in the range 0. . . 360.

CROSS-REFERENCE

See RAD and the Mathematics section of the Appendix.

11.26 DELETE

Syntax DELETE file or
DELETE file *[,filei]* (THOR XVI)

Location QL ROM, Toolkit II

The command DELETE removes the stated file from a medium (it actually only deletes its entry from the
directory map, which thus allows these files to be recovered if necessary, with a utility such as the Public
Domain RETTUNGE_exe, provided that nothing has been written to the disk since it was deleted).

The filename must include the name of the medium, unless you have Toolkit II installed, which alters the
command so that the default data device is recognised (see DATAD$).

The command does not report an error if a file was not found! However, if an invalid device is used and
Toolkit II is not present, an error will be reported.

The THOR XVI variant of this command follows the original proposal for this command, allowing you
to delete several files at the same time by listing each filename, eg:

DELETE flp1_boot,flp1_main_bas

This latter syntax is accepted on non-Minerva systems, but only the first file will be deleted. If Toolkit II
is present, error -15 (bad parameter) is reported.

Example

DELETE mdv2_PROG_bak
DELETE PROG_bak

CROSS-REFERENCE

WDEL deletes several files interactively. WDEL_F, WDIR and TTEDELETE are also worth a look.

11.25. DEG 237

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.27 DEL_DEFB

Syntax DEL_DEFB
Location Toolkit II

QDOS stores information concerning devices and files (and in relation to files, even their contents) in
areas of memory known as ‘slave blocks’ (memory permitting). These slave blocks can be very useful,
since when the computer tries to access the same device (or file) again, the access is much quicker, since
the relevent details can be loaded from memory, rather than the device - the computer only need look at
the device to make certain that it is the same device (or disk) as was previously used.

There are three problems with the use of these slave blocks:

• The initial device access is slowed down as all of the information is effectively read twice - once
into memory and once into the program.

• Some disk drives do not support a means of checking if a disk has been amended on a second
computer since the last access - meaning that the old version of the information stored in the slave
blocks can be loaded instead

• On some hard-disks, the hard-disk itself may not have been altered (you may need to use a com-
mand such as WIN_FLUSH).

The command DEL_DEFB can assist with the second of these problems, by deleting all of the slave blocks
from memory. Another problem which can be assisted by DEL_DEFB is ‘heap fragmentation’. To keep
memory tidy, there is an internal list which says where to find which pieces of information. These lists
reserve memory and can lead to the phenomenon known as heap fragmentation. The following example
demonstrates this:

PRINT FREE_MEM
a=ALCHP(10000)
b=ALCHP(10000)
PRINT FREE_MEM
RECHP a
PRINT FREE_MEM

First, we noted how much memory is free and then we reserved 20000 bytes of memory in two steps. So
there are now 20000 bytes of free memory less. Now, we release the first 10000 bytes and look again at the
free memory: it has not actually increased as much as you would have thought! Actually, the memory
isn’t lost. FREE_MEM returns the largest piece of free memory in RAM. A further ALCHP(10000)
would not reduce FREE_MEM in the above example.

Maybe an illustration would make memory management clearer:

free memory |-------------------------|
ALCHP(10000) |######|------------------|
ALCHP(10000) |######|######|-----------|
release first block |======|######|-----------|

Key:

238 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

-- : free memory (returned by FREE_MEM)
: reserved memory
== : free memory (used for ramdisks)

The above-mentioned internal list allocates a small piece of memory which may reduce the largest piece
of free RAM available to certain operations which draw large chunks of memory at a time, causing
them to fail (out of memory), even though there would be enough memory had the ‘drive definition
blocks’ not fragmented it. The command DEL_DEFB clears these blocks, thus helping to relieve the
heap fragmentation.

NOTE

Because DEL_DEFB deletes the slave blocks, future device accesses will be slowed!

WARNING

Do not use DEL_DEFB if any channels are open to a file.

CROSS-REFERENCE

RECHP, CLCHP, RELEASE, FREE_MEM, FREE. Dynamic RAM disks use effectively all of the free
memory. FORMAT lists other ways of causing heap fragmentation.

11.28 DESPR

Syntax DESPR (bytes)
Location DESPR

The function DESPR uses an un-documented system call to try and release a given number of bytes from
the resident procedure memory on the QL. It is unknown how the ROM tries to decide which bytes to
release.

WARNING

The system call used only works properly on Minerva ROMs and can crash some versions of the QL.
This function should not be used!!

CROSS-REFERENCE

Use RESPR to allocate resident procedure memory, and do not try to release it at a later stage. Use
ALCHP and RECHP to allocate areas of memory which may be later released.

11.29 DESTD$

Syntax DESTD$
Location Toolkit II

This function always contains the current default destination device, which is an unofficial QDOS stan-
dard and supported by the Toolkit II variants of COPY, WCOPY, WREN, and SPL.

11.28. DESPR 239

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

When Toolkit II is initiated, DESTD$=’SER’. The default device means that if no other device is stated
for the destination file, this device will be used. The default destination device will also be consulted if
a device name is supplied but the given file cannot be found on that device.

For example, assuming that DESTD$=’flp2_’ and DATAD$=’ram1_’, if you enter COPY example_txt,
then the file ram1_example_txt will be copied to flp2_example_txt. This idea can be extended to use
prefixes as sub-directories. Sub-directories are separated by underscores, DESTD$ always ends with an
underscore.

CROSS-REFERENCE

DEST_USE and SPL_USE both define the default destination device.

DUP, DDOWN and DNEXT allow you to move around the sub-directory tree. PROGD$ returns the
default program device, DATAD$ returns the default data device. DLIST prints all default devices.

11.30 DEST_USE

Syntax DEST_USE name
Location Toolkit II

This command sets the current default destination device to the named directory device. An underscore
will be added to the end of the name if one is not supplied. If you supply name as an empty string, this
will turn off the default destination directory.

Example

DEST_USE win1_Quill

NOTE 1

DEST_USE will overwrite the default set with SPL_USE.

NOTE 2

The default devices cannot exceed 32 characters (plus a final underscore) - any attempt to assign a longer
string will result in the error ‘Bad Parameter’ (error -15).

CROSS-REFERENCE

Please see DESTD$ and SPL_USE.

11.31 DEMO

Syntax DEMO n
Location Shape Toolkit

As the name suggests, this is only a demonstration. Try the command DEMO 1 and see what happens.
Use only odd parameters if you want the screen to be restored to its previous status when the demonstra-
tion finishes.

CROSS-REFERENCE

240 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

The function ODD checks if a number is odd or even.

11.32 DET

Syntax DET [array]
Location Math Package

The function DET returns the determinant of a square matrix, meaning that the array (or the part passed)
must have two dimensions of equal size, otherwise DET breaks with error -15 (bad parameter).

The array needs to be a floating point array, any other type (including integer arrays) will also produce
error -15.

If no parameter is given, DET will use the array that has been supplied to the previously executed MAT-
INV command as its source. If however, this command has not yet been used, DET without a parameter
will stop with the error -7 (not found).

You may ask what a determinant is? Briefly speaking, it represents a square matrix by a single number
so that important characteristics of the matrix can be deduced from it, eg. the matrix cannot be inverted
if the determinant is zero.

Example

We will try to approach the eigenvalues of a matrix and list them all (the so-called “spectrum” of a matrix).
Due to approximation errors and the simple algorithm employed, there can be more output values than
there should be. This can be improved by increasing estep in line 130, but at the cost of speed.

The range of expected eigenvalues (eval1 to eval2) is adapted to the chosen matrix whose random ele-
ments only range between 0 and 1. There is no limit for the positive size n of the matrix, n=0 is allowed
but does not make sense because CHARPOLY becomes constant:

100 CLEAR: RANDOMISE 10: PRINT "Eigenvalues:"
110 n=2: DIM matrix(n,n), one(n,n)
120 MATRND matrix: MATIDN one
130 :
140 eval1=-1: eval2=1: esteps=200
150 eprec<(eval2-eval1)/estep)
160 c1=CHARPOLY(matrix,eval1): count%=0
170 FOR eval=eval1+eprec TO eval2 STEP eprec
180 c2=CHARPOLY(matrix,eval)
190 IF SGN(c1)<>SGN(c2) THEN PRINT eval
200 c1=c2: count%=count%+1
210 AT#0,0,0: PRINT#0,INT(100*count%/esteps);"%"
220 END FOR eval
230 PRINT "absolute fault:"!eprec
240 :
250 DEFine FuNction CHARPOLY(matrix,lambda)
260 LOCal diff(n,n),i
270 FOR i=1 TO n: one(i,i)=lambda
280 MATSUB diff,matrix,one

(continues on next page)

11.32. DET 241

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

290 RETurn DET(diff)
300 END DEFine CHARPOLY

In practice, a Newton iteration algorithm (or better) would be used.

CROSS-REFERENCE

MATINV co-operates closely with DET , so that for each of them a matrix parameter can be omitted if
the other function has been called before; MATINV calls DET internally. In the example, we used the
MATRND, MATIDN , SGN and MATSUB keywords which are all part of the same Toolkit.

11.33 DEV_NAME

Syntax device$ = DEV_NAME(address)
Location DJToolkit 1.16

This function must be called with a floating point variable name as its parameter. The first time this
function is called, address must hold the value zero, on all other calls, simply pass address unchanged
back. The purpose of the function is to return a directory device name to the variable device$, an example
is worth a thousand explanations.

1000 addr = 0
1010 REPeat loop
1020 PRINT "<" & DEV_NAME(addr) & ">"
1030 IF addr = 0 THEN EXIT loop: END IF
1040 END REPeat loop

This small example will scan the entire directory device driver list and return one entry from it each time
as well as updating the value in ‘addr’. The value in addr is the start of the next device driver linkage
block and must not be changed except by the function DEV_NAME. If you change addr and then call
DEV_NAME again, the results will be very unpredictable.

The check for addr being zero is done as this is the value returned when the final device name has been
extracted, in this case the function returns an empty string for the device. If the test was made before the
call to DEV_NAME, nothing would be printed as addr is zero on entry to the loop.

Please note, every QL has at least one device in the list, the ‘MDV’ device and some also have a device
with no name as you will see if you run the above example (not the last one as it is always an empty string
when addr becomes zero).

The above example will only show directory devices, those that can have DIR used on them, or FORMAT
etc, such as WIN, RAM, FLP, FDK etc, however, it cannot show the non-directory devices such as SER,
PAR (or NUL if you have Lightning), as these are in another list held in the QL.

Note

From version 1.14 of DJToolkit onwards, there is a function that counts the number of directory devices
present in the QL. See MAX_DEVS for details.

CROSS-REFERENCE

MAX_DEVS.

242 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.34 DEVICE_SPACE

Syntax DEVICE_SPACE ([#]channel)
Location Turbo Toolkit

This function returns the number of unused bytes on the medium (disk, hard disk or microdrive) to which
the specified channel is open. The channel must relate to an open file on a directory device (otherwise
junk figures may be returned).

Example

A short routine which saves an area of memory to disk, with error checking.

100 OPEN #3,'CON_448X200A32X16'
110 CLS #3
120 FILE$='FLP1_MEMORY_BIN'
130 FILE_SIZE=20000: ADDR=ALCHP(FILE_SIZE)
140 REPEAT LOOP
150 INPUT #3,'ENTER FILENAME TO SAVE MEMORY TO : [DEFAULT=';(FILE$);']';F$
160 IF F$='': F$=FILE$: ELSE FILE$=F$
170 OPEN_STATE=DEVICE_STATUS(2,FILE$)
180 IF OPEN_STATE=-20: PRINT #3,'DEVICE IS READ ONLY': NEXT LOOP
190 IF OPEN_STATE=-11: PRINT #3,'DEVICE IS FULL': NEXT LOOP
200 IF OPEN_STATE=-8
210 INPUT #3,'DO YOU WANT TO DELETE EXISTING FILE ? (Y/N)';A$
220 IF A$=='Y'
230 CH=FOP_IN(FILE$)
240 ELSE
250 PRINT #3;'ENTER NEW FILENAME': PAUSE 100
260 NEXT LOOP
270 END IF
275 ELSE
277 CH=FOP_NEW(FILE$)
280 END IF
300 IF CH<0:REPORT #3: NEXT LOOP
305 FREE_SPACE=DEVICE_SPACE(#CH)
307 IF OPEN_STATE=-8: FREE_SPACE=FREE_SPACE+FLEN(#CH)
310 IF FREE_SPACE>=FILE_SIZE: PRINT#3,'SAVING FILE': EXIT LOOP
320 PRINT #3;'NOT ENOUGH ROOM ON DEVICE'
330 CLOSE #CH
335 IF OPEN_STATE<>-8: DELETE FILE$
340 END REPEAT LOOP
350 CLOSE #CH
355 DELETE FILE$
360 SBYTES FILE$,ADDR,FILE_SIZE

NOTE

Current versions of this fuction have difficulty returning the amount of space on large capacity drives,
such as hard disks. It assumes that a sector contains 512 bytes and will only cope with a maximum of
65535 sectors.

11.34. DEVICE_SPACE 243

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE

See FOPEN and DEVICE_STATUS for more details on accessing directory devices. DEVTYPE finds
out what type of device a channel is looking at.

11.35 DEVICE_STATUS

Syntax DEVICE_STATUS ([open_type,] filename$)
Location Turbo Toolkit

This function returns a value representing the current status of the device to which the specified filename$
points and can be used to check if an error will be generated when you try to access the given file. The
open_type defaults to 2 and can take the following values:

• -1: Use for OPEN or OPEN_NEW

• 0: Use for OPEN

• 1: Use for OPEN_IN

• 2: Use for OPEN_NEW

If an open_type of 2 is specified, then the function will try to create the file and return an error code if
this is not possible. The temporary file is deleted in all cases.

If an open_type of 0 is specified then the function will try to open the file for exclusive two way access
and report any errors.

If an open_type of 1 is specified the function opens the specified file for read only access, which means
that it does not care if a channel is already open to the file from another program.

Finally, if an open_type of -1 is specified, the function will first of all try to open a channel to the file,
returning -8 if it already exists and can therefore be read.

If it does not already exist, the function will try to create a temporary file and then read back from it
to check that the device can be written to and read from, reporting any errors which are found. Any
temporary file is then deleted by the function. This enables IN USE and bad or changed medium errors
can be detected!

If the open is successful the amount of free space on the drive is returned akin to DEVICE_SPACE,
otherwise a standard QDOS error code is returned.

NOTE 1

Current versions of this fuction have difficulty returning the amount of space on large capacity drives,
such as hard disks. It assumes that a sector contains 512 bytes and will only cope with a maximum of
65535 sectors.

NOTE 2

Due to a bug in the QL’s hardware, it is impossible to check if a microdrive is read only. In this instance,
you will get a bad or changed medium error code (-16).

CROSS-REFERENCE

See DEVICE_SPACE for an example.

244 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.36 DEVLIST

Syntax DEVLIST [#channel]
Location TinyToolkit

This command lists all directory devices recognised by the system to the specified channel. A directory
device is one which contains files. The default list channel is #1.

NOTE

If device names appear in the listing more than once, this means that more than one device driver is
loaded. This normally happens with ramdisks (“RAM”).

CROSS-REFERENCE

Directory devices may be renamed with CHANGE (this will have a corresponding effect on DEVLIST),
whilst any device can be renamed using QRD (this will have no effect on DEVLIST). Compare DLIST .

11.37 DEVTYPE

Syntax DEVTYPE [(#channel)]
Location SMS

This function returns a value to indicate the type of device the specified channel (default #0) is connected
to. At present, you should only look at the first three bits of the return value, ie:

x%=DEVTYPE(#channel)
x%=x% && 3

The value returned is:

• 0 - a purely serial device

• 1 - a screen device

• 2 - a file system device (ie. it supports file positioning)

Any other values indicate that there is something wrong with the channel (if the value is >2) otherwise,
a negative value means that the channel is not open.

NOTE

Prior to v2.71, DEVTYPE would return ‘End of File’ error if the specified channel was attached to a file
and the file pointer was at the end of the file.

CROSS-REFERENCE

OPEN , OPEN_IN , OPEN_NEW and OPEN_OVER allow you to open channels.

11.36. DEVLIST 245

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.38 DEV_LIST

Syntax DEV_LIST [#channel]
Location DEV device, GOLD CARD, ST/QL, SMS

This command lists all DEV_USE definitions to the given channel, default #1. You can also use a public
domain utility, DEV Manager, to set and list DEV definitions on a per-program basis.

Example

DEV_LIST for example 4a of DEV_USE prints:

DEV1_ FLP2_SOURCES_ -> DEV4_
DEV2_ FLP1_COMPILER_ -> DEV3_
DEV3_ FLP1_COMPILER_UTILS_ -> DEV4_
DEV4_ RAM1_ -> DEV5_
DEV5_ FLP1_SOURCES_OTHER_ -> DEV1_

CROSS-REFERENCE

DEV_USE, DEV_USE$, DEV_NEXT Compare DEVLIST and DLIST .

11.39 DEV_NEXT

Syntax DEV_NEXT (n) n=1..8
Location DEV device, GOLD CARD, ST/QL, SMS

The function DEV_NEXT returns the number of the next DEVice where a given DEV will look on next
if a file was not found. If a DEV is not defined or has the search option disabled, DEV_NEXT returns
zero (0), otherwise an integer from 1 to 8 will be returned.

Example

A program which lists a search path:

100 INPUT "Which DEV device (1..8)?"!n
110 IF n<1 OR n>8 THEN RUN
120 DIM checked%(8)
130 REPeat SPate
140 IF NOT DEV_NEXT(n) OR checked%(n): EXIT SPate
150 PRINT DEV_USE$(n)
160 checked%(n)=1
170 n=DEV_NEXT(n)
180 END REPeat SPate

If you understood this example, then you will know exactly how the DEV device works.

CROSS-REFERENCE

DEV_USE$, DEV_LIST , DEV_USE

246 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.40 DEV_USE

Syntax DEV_USE n,drive [,next_dev] n=1..8 or
DEV_USE [n](SMS v2.70+ only) or
DEV_USE [drivetype]

Loca-
tion

DEV device, GOLD CARD, ST/QL, SMS

The DEV device is a universal method of driving devices (MDV, FLP, WIN, MOS, ROM), and thus
allows old software to recognise default devices/ sub-directories as well as simplifying the use of them.
It also introduces fully programmable search paths to QDOS.

There are eight separate DEV drives available, DEV1_ to DEV8_, each of which can point to a real drive
and directory defined with DEV_USE.

The first parameter of the command is the number of the DEV device to be defined.

The second specifies what DEVn_ represents.

There is no default and nothing is predefined, but DEV_USE permits only valid drives and directories.
Any default devices (DATAD$, PROGD$ etc) are not recognised so the full directory name (including
the drive name) must be stated.

There is one special second parameter, the empty string, which removes the definition of the given DEV
device; there is no error reported if it was not defined.

The second syntax (SMS v2.70+) also allows you to remove a definition by simply passing the number
of the DEV device to delete.

Example 1

DEV_USE 1,flp1_
DEV_USE 2,flp1_SUBDIR_
DEV_USE 3,flp1_SUBDIR
DEV_USE 4

Each time that DEV1_ is accessed, the actual drive which will be accessed is FLP1_, eg. DIR DEV1_
lists a directory of FLP1_.

However, LOAD DEV2_BOOT will load FLP1_SUBDIR_BOOT but especially note that LOAD
DEV3_BOOT would try to load FLP1_SUBDIRBOOT (that’s not a typing error).

You can therefore see the importance of specifying the underscore! Whereas DATA_USE always adds
an underscore to the supplied parameter if there one was not specified, DEV_USE does not. Please pay
attention to this difference!

DEV_USE’s third parameter is optional and ranges from 0 to 8. This is used to specify another DEV
device which should be tried if DEVn_ was accessed for a given file, but the file was not present on that
DEV device.

In all other cases: if the drive in general is currently inaccessible (eg. open for direct sector read/write),
the file is damaged or already in use, the DEV device will stop with the appropriate error message, and
behave as normal in such situations.

Example 2

11.40. DEV_USE 247

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

DEV_USE 1,flp1_,2
DEV_USE 2,flp1_TEST_

VIEW DEV1_Prog_bas will first try to show FLP1_Prog_bas and if it did not find that file, it will then
try DEV2_Prog_bas which is actually FLP1_TEST_Prog_bas. If this also fails, VIEW stops with a ‘Not
Found’ error. You might notice that this could lead to an endless search if DEV2_ was told to jump back
to DEV1_ if flp1_TEST_Prog_bas also did not exist.

Example 3

DEV_USE 1,flp1_,2
DEV_USE 2,flp1_TEST_,1

Luckily, this is no problem - the DEV device never circles back to a DEV which has already been tried.
So, using the definition given for example 3, VIEW DEV1_Prog_bas looks for FLP1_Prog_bas, then
FLP1_TEST_Prog_bas and breaks with ‘Not Found’ because DEV1_ has already been tested.

That’s why a DEV device cannot point to another DEV device, DEV_USE 1,DEV2_ is illegal.

It is advisable to give seldom used drives and directories a lower search priority because it naturally takes
a little time to scan through a directory for a file. Preferred directories and fast RAM disks (which take
next to no time to check for a file) should be checked before the less often-used directories are looked at.

Example 4a

DEV_USE 1,flp2_SOURCES_,4
DEV_USE 2,flp1_COMPILER_,3
DEV_USE 3,flp1_COMPILER_UTILS_,4
DEV_USE 4,ram1_,5
DEV_USE 5,flp2_SOURCES_OTHER_,1

The search path for DEV1_ is:

• FLP2_SOURCES_ go to DEV4_

• RAM1_ go to DEV5_

• FLP2_SOURCES_OTHER_ go to DEV1_, we already tried that, so stop

The search path for DEV2_ is:

• FLP1_COMPILER_go to DEV3_

• FLP1_COMPILER_UTILS_ go to DEV4_

• RAM1_ go to DEV5_FLP2_SOURCES_OTHER_ go to DEV1_

• FLP2_SOURCES_ go to DEV4_, already checked, so stop.

You see that the two search paths for DEV1_ and DEV2_ are connected in one way. This rather compli-
cated example suggests that it would be useful to set the data and program device as follows:

Example 4b

DATA_USE DEV1_
PROG_USE DEV2_

248 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Taking into account that Toolkit II tries the program device after failing to find a file on the data device, a
VIEW TEXT will first search through the DEV1_ list and then DEV2_ (thus looking through all DEVs)
while EX PROG_exe stops after checking DEV2_ and its connected DEVs.

All operations creating or deleting files will only check for the original DEV definition and ignore the
optional paths. This prevents files from being unintentionally deleted or overwritten.

Given the settings of examples 4a and 4b, OPEN_IN #3,DEV1_TEXT will act as VIEW did before
whereas OPEN_NEW #3,DEV1_TEXT creates FLP2_SOURCES_TEXT or reports an error/asks if you
want to overwrite (if necessary).

DELETE always behaves as an exception in that it does not report an error if a file was not found.

You may have noticed that the third parameter allows a wider range than the DEV number. A zero as the
third parameter simply does the same as no third parameter.

The third syntax of DEV_USE is completely different from the first two. It is analogous to the FLP_USE,
RAM_USE and NFS_USE commands and allows you to use a different three letter code for the DEV
device:

DEV_USE fry.

DEV1_ is now called fry1_, DEV2_ fry2_ and so on. However, you can also use existing devices.

Example 4c

DEV_USE FLP

Now, things become really complex. With examples 4a and 4b still being valid, FLP1_ actually refers to
FLP1_SOURCES_, searching through all the other DEV definitions as well in order to find a file.

The definitions of DEV1_ as FLP1_SOURCES_ and DEVs as FLP do not collide. However, if you issued
FLP_USE DEV, FLP1_ and DEV1_ are not known any more until FLP_USE FLP restores the default
name for disk drives.

Equally, DEV_USE DEV restores the DEV name (although this can be abbreviated by a DEV_USE
without any parameters).

Example 5

DEV_USE DEV1_

refers to the true DEV1_ again, DEV2_, DEV3_, . . . , too.

Renaming DEV has been mainly implemented to convince existing software believing that a directory
file always has five letters (eg. MDV1_) to accept sub-directories of level-2 drivers as directory files, too.

NOTE

At least up to v2.01, the DEV device does not work fully on any machine. For example WSTAT lists the
file names but not the other information: DEV_USE 1,FLP1_TEST_ WSTAT DEV1_

CROSS-REFERENCE

DATA_USE, PROG_USE,DEV_USE$, DEV_NEXT . DEV_USEN is the same as the third syntax on
SMSQ/E. DEV_LIST lists all DEV definitions. MAKE_DIR and the DMEDIUM_XXX commands, start-
ing with DMEDIUM_DENSITY are also interesting.

11.40. DEV_USE 249

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.41 DEV_USEN

Syntax DEV_USEN [drivetype]
Location SMSQ/E

This command is provided on SMSQ/E to allow you to alter the three letter reference used to access the
DEV devices. If no parameter is specified, then the name reverts to DEV.

Example

DEV_USE 2,'win1_progs_'
DEV_USEN 'flp' DIR flp2_

This will provide a directory of win1_progs_ - this can be reset with:

DEV_USEN
DIR dev2_

CROSS-REFERENCE

DEV_USE allows you to do the same thing. FLP_USE allows you to alter the three letter description for
floppy disks.

11.42 DEV_USE$

Syntax DEV_USE$ (n) where n=1..8
Location DEV device, GOLD CARD, ST/QL, SMS

The DEV_USE$ function returns the actual drive and directory for the number of a DEV device. If a
device was not defined, DEV_USE$ will return an empty string “”, LEN(DEV_USE$(n))=0.

Example

A listing of all DEV definitions:

100 UNDER 1: PRINT "DEV";: UNDER 0
110 PRINT " ";: UNDER 1: PRINT "definition": UNDER 0
120 found=0
130 FOR n=1 TO 8
140 IF LEN(DEV_USE$(n)) THEN
150 PRINT n TO 5;DEV_USE$(n)
160 found=1
170 END IF
180 END FOR n
190 IF NOT found: PRINT "no DEVs defined"

CROSS-REFERENCE

DEV_NEXT , DEV_LIST ,DEV_USE.

250 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.43 DIM

Syntax DIM array (index1 *[indexi]*) *[,arrayj (index *[indexj]*)]*

Location QL ROM

The command DIM allows you to set up one or more SuperBASIC arrays which may be of string, integer
or floating point type. Each index must be an integer in the range 0. . . 32767.

11.43.1 Numeric Arrays

Each index defines the maximum number of elements (less one) in any one direction, which provides the
following examples:

DIM a(10)

sets up a floating-point array a containing 11 elements, a(0) to a(10);

DIM z%(10,10)

sets up a two dimensional integer array z% containing 121 elements, z%(0,0) to z%(10,10) Each element
can hold a different number which can later be accessed by specific reference to each index. When the
array is set up, each element is set to zero.

11.43.2 String Arrays

String arrays are peculiar and have various differences to both un-dimensioned strings and number arrays.

In a string array, the final index contains the maximum length of a string, rounded up to the next even
number (an attempt to assign a longer string to one of the array elements will result in a truncated string).
For example:

DIM a$(10)

sets up a one-dimensional string array a$ with a maximum of 10 characters. This is similar to a$=FILL$(”
“,10), except that a$ now has a maximum length;

DIM z$(10,9)

sets up a two-dimensional string array, which can hold 11 strings (z$(0) to z$(10)), each up to 9 characters
long.

When a string array is set up with DIM, each entry is set to a nul string (“”). The zero’th element of each
string array contains the actual length of that string, for example:

DIM a$(10,10): a$(1)='Hello': PRINT a$(1,0)

will return the value 5, as will PRINT LEN(a$(1)).

If a$ is undimensioned and a$=’Hello World’, PRINT a$(0) does not generally work and will result in an
‘Out of Range’ error, except under SMS v2.60+ and Minerva where PRINT a$(0) is the same as PRINT
LEN(a$).

11.43. DIM 251

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.43.3 Sub-Sets of Arrays

Sub-sets of arrays can also be accessed, for example:

PRINT z$(0 TO 2)

will print the first three strings stored in the array z$.

11.43.4 Omitting Indices

This can be one of the most difficult parts of SuperBasic from the point of view of making programs
compatible on all implementations of SuperBASIC and also making programs work the same under the
interpreter and when compiled.

The ST/QL Emulators (with E-Init v1.27 or later) follow the same rules as SMS. If an index is omitted,
SuperBASIC inserts a default index of:

0 TO DIMN (array,index_no)

For example, if array is a two-dimensional array, array(1) is the same as using the form array (1,0 TO
DIMN(array,2)). Unfortunately, string arrays are slightly different when using the last index.

If the last index is omitted, this defaults to an index of:

1 TO LEN(array$(x))

However, except on SMS, if a start descriptor is specified, but not an end one, the last index defaults
once again to: start_descriptor TO DIMN(array$,index_no). On SMS this defaults to start_descriptor
TO LEN(array$(x).

Even more oddly, except on SMS and Minerva, if a start descriptor is omitted, but an end descriptor
specified, the index defaults to: 0 TO end_descriptor normally resulting in an error. (On SMS and
Minerva this defaults to 1 TO end_descriptor).

However, except on SMS and Minerva, if neither a start nor end descriptor are specified, but the TO itself
is specified, this defaults to 0 TO DIMN (array$,index_no), again normally causing an error.

On SMS this defaults to 1 TO LEN (Array$ (x)

On Minerva this defaults to 1 TO DIMN (array$,index_no)

This creates the following result:

DIM a$(10):a$='Hello' INK 7:PAPER 0
STRIP 2

PRINT a$

Prints ‘Hello’ => a$ (1 TO LEN(a$) (On all implementations)

PRINT a$(1 TO)

Prints ‘Hello ‘ => a$(1 TO DIMN(a$,1)) (except on SMS, where it prints ‘Hello’, unless the program is
compiled with Qliberator in which case the original system is adopted).

252 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

PRINT a$(TO)

Results in ‘Out of Range’ => a$(0 TO DIMN(a$,1)) (except on SMS, where it prints ‘Hello’, and on
Minerva where it prints ‘Hello ‘ In both cases, if the program is compiled with Qliberator it still reports
an error).

PRINT a$(TO 5)

Results in ‘Out of Range’ => a$(0 TO 5) (again on SMS and Minerva it still prints ‘Hello’, unless the
program is compiled with Qliberator, which reports an error).

11.43.5 Un-Dimensioned Strings

You can use sub-sets of un-dimensioned strings, for example:

a$='Hello World':PRINT a$(1 TO 5)

However, such subsets are always treated as expressions, which means that if such a subset was passed as
a parameter to a FuNction or PROCedure (see DEFine FuNction), it cannot be passed by reference and
the string will remain unaltered by the FuNction/PROCedure.

Compare this with a sub-set of a string array, which will be altered (this sub-set exists as a sub-array).
Please see Example 3 below.

The handling of descriptors is also different with un-dimensioned strings. If neither a start nor an end
descriptor are specified, this, like string arrays, defaults to:

1 TO LEN(string$)

However, if the start descriptor is specified, but not the end descriptor, this defaults to:

start_descriptor TO LEN(string$)

However, if the start descriptor is omitted (whether the end descriptor is specified or just TO is used),
unless you have Minerva or SMS, this defaults to:

0 TO end_descriptor

and:

0 TO LEN(string$)

respectively, both of which cause an ‘out of range’ error.

On Minerva and SMS however, this defaults to:

1 TO end_descriptor

and:

1 TO LEN(string$)

11.43. DIM 253

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

respectively, thus avoiding this error.

This leads to the following result:

CLEAR
x$='Hello'
INK 7: PAPER 0: STRIP 2

PRINT x$

This Prints ‘Hello’.

PRINT x$(1 TO)

This prints ‘Hello’

PRINT x$(TO)

This results in ‘Out of Range’ or ‘Hello’ on Minerva and SMS.

PRINT x$(TO 10)

This results in ‘Out of Range’ or ‘Hello’ on Minerva and SMS.

11.43.6 ERRORS

Due to the complexity of DIM, we felt that it would be useful to explain some of the various errors which
may be reported. SMS has an improved Interpreter which reports more intelligible error codes, therefore
those have been used:

Only arrays may be dimensioned

This occurs when you try to DIM the name of a procedure or function. It also occurs if you try to use
DIM on one of the parameters of a procedure or function and that parameter is not itself a dimensioned
variable:

100 DIM x(10)
110 c=1:test x,1
130 DEFine PROCedure test (a,b)
140 DIM b(10)
150 END DEFine

On other implementations, 'Bad Name' is reported in both instances.

Procedure and function parameters may not be dimensioned

This only happens as in the example above where you try to DIMension a variable which is in fact one
of the parameters from the DEFine PROCedure or DEFine FuNction line (eg. line 140). Here, if you
pass a dimensioned variable, eg: TEST 1,x, you get this error under SMS. Also see note 7. On other
implementations no error is reported and the problems listed in Note 7 occur.

SBASIC cannot put up with negative dimensions

This occurs if you try to use a negative index, for example: DIM x(-10) On other implementations ‘Out
of Range’ is reported.

254 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Dimensional overflow - you cannot be serious!

Too many indices have been specified in the DIM statement - refer to Appendix 8.

Error in Expression

SMS has either been unable to make any sense of the index, or else it exceeds 32767. On other ROMs
you will get the error ‘Overflow’ if index exceeds 32767.

Unknown function or array

This is generally reported of you try to use a Procedure name as the index. Other implementations report
‘Error in Expression’

11.43.7 EXAMPLES

Example 1

A program which acts as a simple quiz program, but shows off some of the best features of using arrays
- it is simplicity itself to add new questions and answers to this quiz (just amend quest and target and add
the new questions and answers as DATA at the end of the program):

100 MODE 8:WINDOW 512,256,0,0:PAPER 0:CLS
110 WINDOW 448,200,32,16
120 quest=5:target=5
130 DIM question$(quest,50),option$(quest,3,25),answer(quest)
140 RESTORE
150 FOR i=0 TO quest-1
160 READ question$(i)
170 FOR j=1 TO 3:READ option$(i,j)
180 READ answer(i)
190 END FOR i
200 REPeat main_loop
210 score=0
220 FOR i=1 TO 7,1:BORDER 10,i:PAUSE 2
230 PAPER 6:CLS:INK 2:AT 3,10:UNDER 1:CSIZE 2,1
240 PRINT 'QUIZ EXAMPLE':CSIZE 2,0:UNDER 0
250 INK 0:AT 0,20:PRINT 'SCORE = ';score
260 DIM asked(quest)
270 REPeat loop
280 opt=RND(1 TO quest)
290 IF asked(opt)=1 THEN
300 FOR j=1 TO quest
310 IF asked(j)=0:opt=j:EXIT j
320 NEXT j
330 DIM asked(quest):NEXT loop
340 END FOR j
350 END IF
360 asked(opt)=1
370 AT 4,0:CLS 2
380 ask_question(opt)
390 reply=get_answer
400 AT 16,0:PAPER 2:INK 7

(continues on next page)

11.43. DIM 255

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

410 IF reply=answer(opt-1)
420 PRINT 'Correct':score=score+1
430 ELSE
440 PRINT 'Wrong!':score=score-1
450 END IF
460 PAPER 6:INK 0
470 AT 0,20:PRINT 'SCORE = ';score
480 PAUSE
490 IF score=target OR score<0:EXIT loop
500 END REPeat loop
510 PAPER 0:CLS
520 INK 2+2*(score=target):CSIZE 3,1
530 IF score=target
540 PRINT 'Congratulations'
550 ELSE
560 PRINT 'Oh Dear'
570 END IF
580 CSIZE 2,0:INK 7
590 PRINT \\'Try again?? -----> y/n'
600 REPeat keys
610 key$=INKEY$(-1):IF key$ INSTR 'yn':EXIT keys
620 END REPeat keys
630 IF key$=='n':STOP
640 END REPeat main_loop
645 :
650 DEFine PROCedure ask_question(no)
660 LOCal i
670 AT 6,0:start_word=1:end_word=1
680 no=no-1
690 REPeat quest_loop
700 FOR char=start_word TO question$(no,0)
710 IF question$(no,char)=' ':EXIT char
720 END FOR char
730 end_word=char
740 PRINT !question$(no,start_word TO end_word)!
750 IF end_word=question$(no,0):EXIT quest_loop
760 start_word=end_word+1
770 END REPeat quest_loop
780 REPeat opt_loop
790 PRINT \
800 FOR i=1 TO 3
810 PRINT TO 5;i;' = ';option$(no,i)
820 END FOR i
830 END DEFine
835 :
840 DEFine FuNction get_answer
850 REPeat keys
860 key$=INKEY$(-1)
870 IF key$ INSTR '123':RETurn key$

(continues on next page)

256 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

880 END REPeat keys
890 END DEFine
895 :
900 DATA 'The standard Sinclair QL has how much memory?'
910 DATA '16K','128K','640K',2
920 DATA "What was the name of Sinclair's first computer?"
930 DATA 'Z80','ZX81','ZX80',3
940 DATA 'Who is the main person responsible for QDOS?'
950 DATA 'T.Tebby','J.Jones','C.Sinclair',1
960 DATA "Which company created the QL's Gold Card?"
970 DATA 'Miracle Ltd.','Digital Precision Ltd.','Mercury',1
980 DATA 'Who is the main person responsible for SuperBASIC?'
990 DATA 'T.Tebby','J.Jones','C.Sinclair',2

Some of you may have noticed that we have used DIM option$(quest,3,25) when we could have used
DIM option$(quest,2,25). The reason for this is to make it easier to check the text - try PRINT option$
and you will see that each set of three options is separated by a blank string.

Example 2

Take the two arrays set up with:

DIM x(2,3,4),x$(2,4,6).

The following sub-arrays produce the following equivalents:

x(TO, TO 2, 1 TO) => x(0TO 2,0 TO 2,1 TO 4)
x$(1 TO 2, TO 2) => x$(1 TO 2,0 TO 2,1 TO LEN(x$(..)))
x$(TO 2, TO,1 TO) => x$(0 TO 2,0 TO 4,1 TO 6)

Example 3

A short example of the use of sub-arrays and subsets of undimensioned strings:

100 DIM a$(11)
110 a$='Hello World'
120 b$='Great World'
130 swap_array a$(1 TO 5),b$(1 TO 5)
140 PRINT a$,b$
150 :
1000 DEFine PROCedure swap_array (a,b)
1010 c$=b: b=a: a=c$
1020 END DEFine

NOTE 1

The Turbo compiler alters DIM in compiled programs to enable you to re-dimension arrays without losing
their original contents. You may therefore need to physically set the contents of arrays to zero (or nul
strings) to ensure that a program works properly when compiled.

NOTE 2

On AH ROMs, a floating point array is limited to 384K size.

11.43. DIM 257

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE 3

A variable cannot be used as both a simple variable and an array variable. It is set to an array variable
as soon as the line containing the relevant DIM statement is parsed. This means that if a line containing
DIM var has been entered, the array var cannot be used until such time as the program has RUN this
line, and in any case, an attempt to use var without array descriptors (eg. var=1) is likely to fail, either
resulting in a ‘Bad Name’ error or ‘Error in Expression’.

NOTE 4

You cannot assign one array to another. For example:

DIM a$ (3,10) , z$(3,10) :z$=a$

will report a ‘Not Implemented’ error.

Compare:

z$ (1, 1 TO 10)=a$ (1, 1 TO 10).

NOTE 5

The Turbo and Supercharge compilers insist that strings are all dimensioned as string arrays. They do
however also alter the way in which string arrays work so that they operate more like un-dimensioned
strings. Un-dimensioned strings may also upset Qliberated tasks!

NOTE 6

On pre JS ROMs you cannot use one array as the array sub-script of another in the DIM statement (other
than as the first sub-script), for example:

DIM a(10):a(3)=10
DIM a$(10,a(3))

If you try this, you will find that previous array sub-scripts are set to the value 0, ie. using the above
example, a$(0) would be acceptable, whereas a$(2) would cause an error. This will work okay provided
that the array is used as the first sub-script, otherwise use a temporary variable. For example:

subs=a(3): DIM a$(10,subs)
DIM a$(a(3),10)

would both work okay on all ROM versions.

NOTE 7

There is a bug in SMS (at least up to v2.88) if you try to DIMension a variable which has been used as a
parameter for a PROCedure or FuNction call.

Take the example given above to demonstrate the error ‘procedure and function parameters may not be
dimensioned’. Now use:

CLEAR : TEST a,b

no error is reported (although line 140 has no effect).

PRINT a,b

258 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

is equivalent to PRINT a; and any attempt to use b (eg. x=b) reports error in expression, even after
CLEAR.

On other ROMs no error is reported. However, the variable passed as a parameter is not re-dimensioned,
but some of its elements will no longer be the original value, but very small numbers and any attempt to
assign another value to those elements which have been changed may in fact fail!!

NOTE 8

Current versions of Qliberator treat all strings in the same way as on the original QL, therefore although
a program may RUN fine under the SMS or Minerva intepreter, it may cause problems when compiled.
The TURBO and SuperCHARGE compilers treat strings the same as SMS, except see Note 1 and Note
5.

MINERVA NOTE

Minerva alters the way in which both dimensioned and undimensioned strings are handled so that:

PRINT a$(TO 10)

is now acceptable! See above.

Minerva also allows you to slice expressions and numbers. Lines such as:

PRINT 'abcd' (2 TO 3)

and:

a$=101010 (3)

will now work. Minerva v1.96+ allows multiple index lists (see SMS Notes).

SMS NOTES

SMS alters the way in which both undimensioned and dimensioned strings are handled to make them
more sensible (see above). We now await a compiler which handles strings in the same way! SMS says
that it no longer handles multiple index lists on assignments (which apparently were allowed on earlier
ROM versions - did anyone ever use these?). An example is the line:

100 DIM a$(3,4,5)
110 a$(3,4)='Hello'
120 a$(3,4)(2 TO 5)='ELLO'

SMS will not let you type in line 120 reporting invalid syntax. To overcome this you have to replace the
line with:

120 a$(3,4,2 TO 5)='ELLO'

In common with Minerva, SMS will now also allow you to slice expressions and numbers. There is a
bug in current versions of SMS (at least up to v2.90) when passing string array sub-sets by reference, for
example the following program:

5 DIM x$(11)
10 x$='Hello World'
15 PRINT x$
20 change x$(1 TO 11)

(continues on next page)

11.43. DIM 259

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

30 PRINT x$
40 :
1000 DEFine PROCedure change (a$)
1010 a$(1 TO 3)='EXT'
1020 END DEFine

At line 30, x$ is shown to be ‘HeEXT World’?? It should be ‘EXTlo World’. Try making line 20 read:

20 change x$

Although v2.90 fixes this problem, if you pass a sub-set of an undimensioned string, a worse problem is
created. Try deleting line 5 and adding line:

1015 PRINT a$: PAUSE

before RUNning the program (you may need to use CLEAR beforehand).

WARNING

DIM and dimensioned variables can crash the system in certain instances - refer to A8.4 for details of the
possible problems and more error messages which can be generated.

CROSS-REFERENCE

DIMN allows you to find out the maximum sizes of an array. Please see the Appendix on Compatability
concerning String Lengths. LEN allows you to find the length of a string.

11.44 DIMN

Syntax DIMN (array [,dimension]) or
DIMN (array (dimension1 *[,dimensioni]*))

Location QL ROM

This function allows you to investigate the size of the given index of a specified array.

The first syntax is the most common: it will return the specified dimension (index) used in the original
DIM statement when the array was defined. If the index did not exist, then a result of zero is returned.

If dimension is not specified, then the size of the first index is returned.

The second syntax is somewhat obscure and has no practical advantages. This second syntax will not
allow you to access the size of the first index. It works by reference to the array itself, for example:

PRINT DIMN(a$(1))

will return the size of the second index, and:

PRINT DIMN(a$(1,1))

will return the size of the third index and so forth. Once the number of dimensions used within the DIMN
statement has reached the number used by the array, then the value 1 will be returned. If any more are
specified, then the error ‘Out of Range’ will result.

260 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Examples

Take an array created with the statement:

DIM a$(10,12)

The following results will be returned:

PRINT DIMN(a$)

Will return 10.

PRINT DIMN(a$,1)

Will return 10.

PRINT DIMN(a$,2)

Will return 12.

PRINT DIMN(a$,3)

Will return 0.

PRINT DIMN(a$(1))

Will return 12.

PRINT DIMN(a$(1,1))

Will return 1.

PRINT DIMN(a$(1,1,1))

Will cause an ‘Out of Range’ error.

CROSS-REFERENCE

LEN will return the actual length of characters held within a string. DIM initialises an array.

11.45 DIR

Syntax DIR [#channel,] device or
DIR [#channel,] [device] (Toolkit II) or
DIR \file [,device] (Toolkit II)

Loca-
tion

QL ROM, Toolkit II

This command produces a listing to the specified channel (default #1) of all of the files contained on the
given device.

The listing gives the name of the device (specified with FORMAT) followed by the number of available
sectors/the number of usable sectors; followed by a list of the files in the order they appear on the disk.

11.45. DIR 261

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

If you try to get a directory of a ram disk, eg. DIR RAM1_ then the name of the device shown on screen
will be RAM1.

If Toolkit II is present, and #channel is a window, a <CTRL><F5> keystroke (pausing output) is generated
at the end of each screen full of the listing. You can however also use the third syntax to output the
directory to the specified file. If file already exists, you will be given the option of overwriting it. If file
doesn’t include a device name, the data default directory is used.

The Toolkit II variant also supports the default data directory, which will be used if no device name is
given in device, or if the specified device name would result in the error ‘Not Found’.

If you have Level-2 or Level-3 device drivers, and there are any sub-directories (created with
MAKE_DIR) in the given directory, then if you have Toolkit II present, the names of these sub-directories
will appear with the suffix ->.

You can then list the contents of these sub-directories by using DIR with the original device name plus
the name of the sub-directory. Level-3 drivers take this one step further in that after the name of the disk
in the specified device, appears details of the type of disk being read, ie. MS-DOS or QDOS followed
by SD, DD, HD or ED to confirm whether the disk is Single Density, Double Density, High Density or
Extra Density. RAM disks are listed as QDOS SD.

Example 1

With a cartridge in the left hand microdrive slot,

DIR mdv1_

might produce the following listing in window #1:

QUILL 102/220 sectors
boot
QUILL
install_exe
printer_dat

Example 2

If Level-2 device drivers are present,

DIR flp1_

might produce the following:

PSION DISK 1000/2880 sectors
QUILL ->
ARCHIVE ->

With Level-3 drivers, you would get the same output except the first line would become:

PSION DISK QDOS HD

DIR 'flp1_QUILL'

would on both Level-2 and Level-3 drivers, then produce the following output:

262 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

PSION DISK 1000/2880 sectors
QUILL_boot
QUILL_QUILL
QUILL_install_exe
QUILL_printer_dat

NOTE 1

With the Toolkit II variant, the <CTRL><F5> will be generated even where the channel is a window
which has been opened over the network (eg. n1_scr_200x200), which can cause problems as the slave
machine will wait for a key to be pressed!

This can be avoided if you have the command FIXPF (provided as part of the QPTR documentation),
which will enable you to re-install the ROM variant of DIR.

Alternatively write the directory to a file and copy the file to the host machine, eg.

DIR \ram1_tmp, flp1_
SPL ram1_tmp TO n1_scr_200x200

It is even more sophisticated to use a named pipe instead of the temporary file ram1_tmp for the same
job:

SPL pipe_dir TO n1_scr_200x200
DIR \pipe_dir_1000, flp1_

NOTE 2

The THOR XVI retains the original QL ROM variant of this command, which does not support the
default device, nor does it show sub-directory names.

NOTE 3

Unless you have Toolkit II present, the Break key will not have any effect on DIR. Press Break when the
listing pauses at the end of a page under Toolkit II (Minerva v1.78+ is supposed to recognise the Break
key, but it does not appear to work). The Break key is however recognised in Minerva v1.97 (at least!).

NOTE 4

Prior to Toolkit II v2.25, DIR of a Level-2 device driver could cause problems when used inside a TURBO
compiled program.

NOTE 5

If a directory contains a file with a null string as a name (eg. SAVE flp1_), this file will not be listed on
the directory listing. This was used as a form of copy protection on some early QL software, but stops
the program from working on a QL with Level-2 or Level-3 Device Drivers as they use this file to store
the main directory!

NOTE 6

On some versions of Toolkit II, the third variant could cause problems if you supply the name of an
existing file to store the directory in, for example:

DIR \ram1_XDIR

11.45. DIR 263

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

if you said ‘N’ when asked if it was OK to Overwrite the existing file - the display would be sent to #0
and #0 would then be CLOSEd!! v2.49 of Toolkit II (and possibly earlier) does not cause any problems
but does not report an error. v2.85 of SMSQ/E (and possibly earlier) also has no problems but reports
the error ‘Already Exists’.

NOTE 7

Some people try to divide up DIRectory listings by creating files such as:

SAVE 'flp1_----------------'

However, DIR will only list the files in the order in which they were created if you are using a virgin disk
which has not had other files deleted from it already.

CROSS-REFERENCE

DATA_USE sets the current data default directory, MAKE_DIR creates sub-directories, WDIR allows
wildcard names.

11.46 DISCARD

Syntax DISCARD [adr]
Location Memory Toolkit (DIY Toolkit Vol H)

This command removes memory which has been allocated with RESERVE fairly safely, ensuring that
the memory had been allocated with RESERVE and has not already been DISCARDed. If the adr does
not point to memory set aside with RESERVE the error ‘not found’ is returned.

CROSS-REFERENCE

See RESERVE and LINKUP. Also see CLCHP, RECHP and DESPR.

11.47 DISP_BLANK

Syntax DISP_BLANK [xblank][,yblank]
Location QVME (Level E-19 Drivers onwards), SMSQ/E for Atari ST & TT (QVME cards only)

The Atari range of computers can be attached to a wide range of monitors, some of which are able to
display higher resolutions than others. A 17” multi-sync monitor, for example, can display resolutions
of up to 1024x1024 (depending on make).

The QVME card is unable to detect the various parameters related to monitors and therefore allows you
to set your own parameters either from SuperBASIC or by configuring SMSQ/E.

This command is used for setting the margins between the currently displayed QL screen and the edges of
the monitor. This difference is known as the overscan (pixels available on the monitor which are currently
unused). xblank sets the number of horizontal pixels x2 from the edge of the monitor to the left hand
side of the QL screen.

The standard value for a 512x256 screen is 128 pixels (a standard QL monitor linked to an Atari can
display a screen 640x480) (640-512)/2=64 pixels from the left hand side of the monitor.

264 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

If xblank is omitted or 0, then the original value is left unaltered.

Yblank sets the number of lines x 0.5 from the top of the monitor to the top edge of the QL screen. The
standard value is 56, which gives a top margin of (480-256)/2=112 pixels from the top of the screen. If
yblank is omitted or 0, then the original value is left unaltered.

NOTE 1

If you use DISP_SIZE to alter the size of the displayed QL screen, it will automatically adjust the param-
eters for the overscan.

NOTE 2

If the y parameter is used to alter the number of blank lines, this will override any setting of the line scan
rate with DISP_RATE.

CROSS-REFERENCE

DISP_SIZE allows you to pass these parameters at the same time as amending the size of the displayed
QL screen. DISP_RATE sets the frame and line scan rates for the display - if this command is used to
adjust the line scan rate, this will alter the totoal number of lines.

Both SMSQ/E and QVME include programs to allow you to try out the various settings for the various
DISP_. . . commands.

11.48 DISP_INVERSE

Syntax DISP_INVERSE status
Location SMSQ/E for Atari ST & TT

The Atari range of computers support a high resolution (640x400) monochrome display mode which can
be supported under SMSQ/E and SMS2. If SMSQ/E or SMS2 is running on an Atari ST connected to a
monochrome monitor (or running on an Atari TT connected to such a monitor, without QVME), then it
will automatically start up by loading the monochrome display driver (if available) and set the QL into
the monochrome 640x400 display mode. The QL screen can then appear either as white ink on a black
background or black ink on a white background. DISP_INVERSE allows you to invert the QL display,
with status=0 giving the default white on black and status=1 the black on white display.

NOTE

This command is not available on SMS2.

CROSS-REFERENCE

DISP_TYPE allows you to find out if the monochrome display driver is running. INVERSE allows you
to print in inverse colours.

11.48. DISP_INVERSE 265

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.49 DISP_RATE

Syntax DISP_RATE [frame_scan][,line_scan]
Location QVME (Level E-19 Drivers onwards), SMSQ/E for Atari ST & TT (QVME cards only)

Due to the multitude of monitors which are available for the Atari ST range, it is necessary to be able to
alter the horizontal and vertical scan rates (default = 50Hz, the setting on standard QL monitors).

The first parameter specifies the frame rate (the horizontal scan rate), a setting of 70 (or more) will reduce
flicker on most Atari monitors. If omitted or 0, the original value is unchanged.

The second parameter specifies the line rate (the vertical scan rate), although this is normally not required
as it is equal to the frame rate multiplied by the total number of lines. If this parameter is omitted or zero,
the original is recalculated by reference to the number of lines and the frame rate.

The total number of lines and line rate can be calculated by reference to the following program:

100 INPUT #0,'Enter y size of QL screen (DISP_SIZE) ';QLy
110 INPUT #0,'Enter horizontal frame rate (DISP_RATE) ';Frate
120 INPUT #0,'Enter vertical blank pixels setting (DISP_BLANK) ';Blanky
130 Total_y=QLy+Blanky
140 total_lines=Total_y*(Qly/QLy)
150 PRINT 'The total number of displayed lines will be ';total_lines
160 PRINT 'Line scan rate will be ';total_lines*Frate

If you use DISP_RATE to set the line scan rate, then using the total number of lines (and hence the blank
lines) are recalculated, using the following routine:

100 INPUT #0,'Enter y size of QL screen (DISP_SIZE) ';QLy
110 INPUT #0,'Enter horizontal frame rate (DISP_RATE) ';Frate
120 INPUT #0,'Enter vertical line scan rate (DISP_RATE) ';Lrate
130 Total_y=INT(Lrate/Frate)
140 PRINT 'Blank Lines for DISP_BLANK will be ';Total_y-QLy

CROSS-REFERENCE

DISP_SIZE allows you to pass these parameters at the same time as amending the size of the displayed
QL screen. DISP_BLANK sets the number of horizontal and vertical blank pixels on the edge of the
display.

Both SMSQ/E and QVME include programs to allow you to try out the various settings for the DISP_. . .
commands.

266 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.50 DISP_SIZE

Syntax DISP_SIZE
Location QVME (Level E-19 Drivers onwards), SMSQ/E

This command lets you alter the size of the QL screen being displayed.

The first two parameters allow you to specify the display width in pixels and the height in lines (the
normal QL display is DISP_SIZE 512,256). The remaining four parameters are those which can be set
using the DISP_RATE and DISP_BLANK commands respectively. The effect of the first two parameters
depends upon the system it is being used on:

Extended Mode4 Emulator

Any width up to 512 will select the standard QL resolution. Any width over 512 will select the extended
resolution (768x280).

QVME, QXL and QPC

The width and height of the display can only be altered in increments of 32 pixels and 8 lines respectively.
If width is not a multiple of 32 or height is not a multiple of 8, they are made into the nearest feasible
size. The minimum size is 512x256 pixels.

NOTE 1

If you try to use DISP_SIZE to specify both the line rate and the number of blank lines, the line rate is
ignored and calculated according to the internal formula (see DISP_RATE).

NOTE 2

DISP_SIZE will not work if you have already used the A_OLDSCR command.

NOTE 3

Some combinations of Super Gold Card and AURORA may cause the internal QL clock to run too quickly
unless you follow DISP_SIZE by PROT_DATE 0.

NOTE 4

This command has no effect if your implementation of the QL does not support higher resolution displays.

NOTE 5

Using higher resolution displays will affect the location of the start of the screen (see SCR_BASE) - using
DISP_SIZE 512,256 to set the display size back to the normal QL resolution will not set the base of the
screen back to 131072 (the normal screen base on a standard QL). See A_OLDSCR.

NOTE 6

Be careful when reducing screen resolution size - windows are not resized and therefore you may not be
able to see all of a program’s windows, or the SuperBASIC cursor!!

CROSS-REFERENCE

All of these parameters can be configured in SMSQ/E so that they are available immediately on start-up.
See DISP_RATE and DISP_BLANK .

11.50. DISP_SIZE 267

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.51 DISP_TYPE

Syntax DISP_TYPE
Location SMSQ/E

This function returns a number which allows you to find out the type of display driver which is currently
being used. The values returned are:

• 0 Original ST QL Emulator, QL Hardware (either of these two may support MODE 8) plus QXL
and QPC. All of these (except the original ST QL emulator) may support higher resolutions.

• 1 Extended Mode 4 Emulator (either 512x256 or 768x280 pixel screen)

• 2 QVME Mode 4 Emulator

• 4 Monochrome display (only two colours)

CROSS-REFERENCE

See DISP_INVERSE. MACHINE and PROCESSOR allow you to find out more about the hardware which
a program is being run on.

11.52 DISP_UPDATE

Syntax DISP_UDPATE x,y
Location QXL (SMSQ only)

This is an undocumented command and it is uncertain what its parameters do - it affects the rate at which
the screen is updated on the QXL. The higher x and y, the faster that the screen is updated (and hence the
smoother the graphics), although this also slows down the other parts of the QXL. If x and y are equal
to 0, the screen is only updated when you press a key - this allows the QXL to perform complex maths
routines very quickly (so long as they do not access the screen).

NOTE 1

Prior to SMSQ/E v2.65 if you used DISP_UPDATE with a parameter larger than 1 in MODE 8, this
could cause problems on screen.

NOTE 2

Using parameters smaller than 0 could lock up some versions of QXL. SCR_PRIORITY is similar under
Amiga QDOS.

268 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.53 DISPLAY_WIDTH

Syntax bytes_in_a_line = DISPLAY_WIDTH
Location DJToolkit 1.16

This function can be used to determine how many bytes of the QL’s memory are used to hold the data in
one line of pixels on the screen. Note that the value returned has nothing to do with any window width,
it always refers to the total screen display width.

Why include this function I hear you think? If you run an ordinary QL, then the result will probably
always be 128 as this is how many bytes are used to hold a line of pixels, however, many people use Atari
ST/QLs, QXL etc and these have a number of other screen modes for which 128 bytes is not enough.

This function will return the exact number of bytes required to step from one line of pixels to the next.
Never assume that QDOS programs will only ever be run on a QL. What will happen when new Graphics
hardware or emulators arrive? This function will still work, assuming that the unit uses standard QDOS
channel definition blocks etc.

For the technically minded, the word at offset $64 in the SCR_ or CON_ channel’s definition block
is returned. This is called SD_LINEL in ‘Tebby Speak’ and is mentioned in Jochen Merz’s QDOS
Reference Manual and the QL Technical Manual by Tony Tebby et al. Andrew Pennel’s book, the QDOS
Companion gets it wrong on page 61, guess which one I used first!

11.54 DIV

Syntax x DIV y
Location QL ROM

This operator returns the integer part of x divided by y.

If x or y is not an integer, then the given value is rounded to the nearest integer (compare INT).

On non-SMS implementations the answer and both parameters must lie within the range -32768. . . 32767.

On SMS, the answer and both parameters can lie anywhere within roughly -2e9. . . 2e9 (32-bit numbers).

The result of the operation is always rounded down to the next integer ie. x DIV y=INT(x/y). Although
this leads to some unexpected results with negative numbers this is so that the formula: x=y*(x DIV
y)+(x MOD y) is always true.

If you wish to use 32-bit numbers on non SMS systems, you will need to use the formula: PRINT INT(x/y)
instead of PRINT x DIV y if either x or y is outside of the specified range.

Examples

PRINT 13 DIV 5

gives the result 2 (13 divided by 5 is 2.6)

PRINT 13.4 DIV 1.5

gives the result 6 (13 DIV 2).

11.53. DISPLAY_WIDTH 269

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

PRINT -13 DIV 5

gives the result -3

NOTE

DIV has problems with the value -32768: PRINT -32768 DIV -1 gives the result -32768 on most imple-
mentations. On Minerva v1.76 (or later) it gives the correct result, being an overflow error (the answer is
+32768 which cannot be stored as a short integer variable). On SMS v2.75+, it returns the value +32768
as DIV can handle the larger numbers!!

CROSS-REFERENCE

MOD returns the modulus of x divided by y. Also please see the alternative version of DIV .

11.55 DIV

Syntax DIV (x,y)
Location Math Package

This function returns x/y as an integer in the same way as the ROM based DIV operator. However, this
version is not limited to 16-bit integers (-32768..32767). It will happily handle 32-bit integer numbers (-
INTMAX..INTMAX, roughly -1E9..1E9). Division by zero is not defined and will produce an overflow
message.

Example

PRINT -40000 DIV 3

will produce an error on a standard QL ROM. Instead, you can now use:

PRINT DIV(-40000,3)

which gives the correct result.

NOTE 1

Both variants of DIV can be used in the same program, although the Turbo and Supercharge compilers
will not accept this version.

NOTE 2

If you try to use a program compiled under Turbo or Supercharge after loading the Math Package, if the
program uses the normal SuperBASIC operator MOD or DIV, an error will be generated and the program
will refuse to work!

CROSS-REFERENCE

MOD (as an operator or a function) returns the remainder of a division. Compare the other version of
DIV .

270 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.56 DJ_OPEN

Syntax channel = DJ_OPEN(‘filename’)
Location DJToolkit 1.16

Open an existing file for exclusive use. See DJ_OPEN_DIR below for details and examples.

CROSS-REFERENCE

DJ_OPEN_IN , DJ_OPEN_NEW , DJ_OPEN_OVER, and DJ_OPEN_DIR.

11.57 DJ_OPEN_IN

Syntax channel = DJ_OPEN_IN(‘filename’)
Location DJToolkit 1.16

Open an existing file for shared use. The same file can be opened by other applications running at the
same time. Provided they have a compatible non-exclusive OPEN mode. See DJ_OPEN_DIR below for
details and examples.

CROSS-REFERENCE

DJ_OPEN , DJ_OPEN_NEW , DJ_OPEN_OVER, and DJ_OPEN_DIR.

11.58 DJ_OPEN_NEW

Syntax channel = DJ_OPEN_NEW(‘filename’)
Location DJToolkit 1.16

Create a new file for exclusive use. See DJ_OPEN_DIR below for details and examples.

CROSS-REFERENCE

DJ_OPEN , DJ_OPEN_IN , DJ_OPEN_OVER, and DJ_OPEN_DIR.

11.59 DJ_OPEN_OVER

Syntax channel = DJ_OPEN_OVER(‘filename’)
Location DJToolkit 1.16

Open existing file but overwrite all the contents. See DJ_OPEN_DIR below for details and examples.

CROSS-REFERENCE

DJ_OPEN , DJ_OPEN_IN , DJ_OPEN_NEW , and DJ_OPEN_DIR.

11.56. DJ_OPEN 271

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.60 DJ_OPEN_DIR

Syntax channel = DJ_OPEN_DIR(‘filename’)
Location DJToolkit 1.16

All of these DJ_OPEN functions return the SuperBasic channel number if the channel was opened without
any problems, or, a negative error code otherwise. You can use this to check whether the open was
successful or not.

The filename must be supplied as a variable name, file$ for example, or in quotes, ‘flp1_fred_dat’.

They all work in a similar manner to the normmal SuperBasic OPEN procedures, but, DJ_OPEN_DIR
offers a new function not normally found on a standard QL.

DJToolkit Author’s Note

I am grateful to Simon N. Goodwin for his timely article in QL WORLD volume 2, issue 8 (marked Vol 2,
issue 7!!!). I had been toying with these routines for a while and was aware of the undocumented QDOS
routines to extend the SuperBasic channel table. I was, however, not able to get my routines to work
properly. Simon’s article was a great help and these functions are based on that article. Thanks Simon.

EXAMPLE

The OPEN routines work as follows:

1000 REMark open our file for input
1010 :
1020 chan = DJ_OPEN_IN('filename')
1030 IF chan < 0
1040 PRINT 'OOPS, failed to open "filename", error ' & chan
1050 STOP
1060 END IF
1070 :
1080 REM process data in file here

DJ_OPEN_DIR is a new function to those in the normal QL range, and it works as follows:

1000 REMark read a directory
1010 :
1020 INPUT 'Which device ';dev$
1030 chan = DJ_OPEN_DIR(dev$)
1040 IF chan < 0
1050 PRINT 'Cannot open ' & dev$ & ', error ' & chan
1060 STOP
1070 END IF
1080 :
1090 CLS
1100 REPeat dir_loop
1110 IF EOF(#chan) THEN EXIT dir_loop
1120 a$ = FETCH_BYTES(#chan, 64)
1130 size = CODE(a$(16)): REMark Size of file name
1140 PRINT a$(17 TO 16 + size): REMark file name

(continues on next page)

272 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

1150 END REPeat dir_loop
1160 :
1170 CLOSE #chan
1180 STOP

In this example, no checks are done to ensure that the device actually exists, etc. You could use
DEV_NAME to check if it is a legal device. The data being read from a device directory file must always
be read in 64 byte chunks as per this example.

Each chunk is a single directory entry which holds a copy of the file header for the appropriate file. Note,
that the first 4 bytes of a file header hold the actual length of the file but when read from the directory as
above, the value if 64 bytes too high as it includes the length of the file header as part of the length of a
file.

The above routine will also print blank lines if a file has been deleted from the directory at some point.
Deleted files have a name length of zero.

Note that if you type in a filename instead of a device name, the function will cope. For example, you
type in ‘flp1_fred’ instead of ‘flp1_’. You will get a list of the files on ‘flp1_’ if ‘fred’ is a file, or even,
if ‘fred’ is not on ‘flp1_’. If, however, you have the LEVEL 2 drivers (see LEVEL2 below), and ‘fred’ is
a sub-directory then you will get a listing of the sub-directory as requested.

CROSS-REFERENCE

DJ_OPEN , DJ_OPEN_IN , DJ_OPEN_NEW , and DJ_OPEN_OVER.

11.61 DJTK_VER$

Syntax v$ = DJTK_VER$
Location DJToolkit 1.16

This simply sets v$ to be the 4 character string ‘n.nn’ where this gives the version number of the current
toolkit. If you have problems, always quote this number when requesting help.

EXAMPLE

PRINT DJTK_VER$

11.62 DLINE

Syntax DLINE [#ch,] [range *[,rangei]*](Not SMS)
DLINE [range *[,rangei]*](SMS Only)

Location QL ROM

This command deletes a given range of lines from the current SuperBASIC program. The range of lines
is as per the LIST command. If an empty range (for example DLINE) is specified, no action is taken.
When the lines have been deleted, except under SMS, the current listed lines are re-shown in the given

11.61. DJTK_VER$ 273

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

channel (default #2), although we cannot see any reason why you would wish this to happen on another
channel! On SMS this command has no effect on the display.

NOTE 1

DLINE TO is expanded to DLINE 1 TO 32767.

NOTE 2

Only Minerva v1.96+ rejects invalid channel parameters.

NOTE 3

On Minerva pre v1.98, DLINE to the last line could crash the QL!

CROSS-REFERENCE

EDIT and AUTO allow you to enter lines. LIST allows you to view program lines.

11.63 DLIST

Syntax DLIST [#channel]
Location Toolkit II

This command lists all three current default directories (otherwise returned by the DATAD$, PROGD$
and DESTD$ functions) to the specified channel (default #1).

Example

DLIST

possible Output:

flp1_Quill_letters_
ram1_
par

NOTE

Some Toolkit II manuals mention a second syntax: DLIST \file but it seems as though this was never
implemented. This should not be a problem since programs can read the same information from the
DATAD$, PROGD$ and DESTD$ functions.

CROSS-REFERENCE

DATAD$ (DATA_USE), PROGD$ (PROG_USE), DESTD$ (SPL_USE or DEST_USE), DDOWN , DUP
Compare DEVLIST and DEV_LIST .

274 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.64 DMEDIUM_DENSITY

Syntax DMEDIUM_DENSITY [(#channel)] or
DMEDIUM_DENSITY (\file)

Location SMSQ/E v2.73+

This function returns a number representing the density of the medium on which the specified file or
directory is located, or to which the specified channel is open. If no parameter is specified, it looks to
channel #3 (or #1 if #3 is not open). An error will occur if the specified channel is not open or the given
file does not exist.

The value returned is:

• 0 Non-directory device

• 1 Double Density

• 2 High Density

• 3 Extra Density

• 255 Hard disk or ram disk as they have no density.

Example

PRINT DMEDIUM_DENSITY(\flp1_)

CROSS-REFERENCE

DMEDIUM_NAME$ gives the name of the disk attached to the specified channel. DMEDIUM_RDONLY
and DMEDIUM_FORMAT are also useful.

11.65 DMEDIUM_DRIVE$

Syntax DMEDIUM_DRIVE$ [(#channel)] or
DMEDIUM_DRIVE$ (\file)

Location SMSQ/E v2.73+

This function returns the three letter code representing the device connected to the specified channel or
file. If no parameter is specified then it tries #1, unless channel #3 is open in which case it will access #3.
If an error occurs, for example you specify a channel which is not open or a file which does not exist, then
an error will occur. Luckily due to the fact that directories are stored in files under Level-2 and Level-3
drivers, this means that you can use:

PRINT DMEDIUM_DRIVE$(\flp2_)

if you wish. If the specified channel is not open to a directory device then an empty string will be returned.

NOTE 1

This function does not appear to work 100%, for example on Falkenberg hard disk interfaces it returns
‘WINq’ - however you can get around this by copying the returned string to another variable and only
looking at the first three letters, for example:

11.64. DMEDIUM_DENSITY 275

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

DRV$=DMEDIUM_DRIVE$
IF DRV$<>"":PRINT DRV$(TO 3)

NOTE 2

This function will ignore the dev_ device, returning the three letter name of the device to which dev
points, for example:

DEV_USE 1,'flp1_quill_'
drv$=DMEDIUM_DRIVE$(\DEV1_)
IF drv$<>'':PRINT drv$(to 3)

Compare:

PRINT DMEDIUM_DRIVE$(\DEV1_)

CROSS-REFERENCE

DMEDIUM_NAME$ allows you to find out the name of the disk in the specified drive.

11.66 DMEDIUM_FORMAT

Syntax DMEDIUM_FORMAT [(#channel)] or
DMEDIUM_FORMAT (\file)

Location SMSQ/E v2.73+

This function returns a number representing the operating system under which the medium (or hard disk
partition) on which the specified file or directory is located (or to which the specified channel is open)
was created. If no parameter is specified, it looks to channel #3 (or #1 if #3 is not open).

The values returned currently are:

• 1 QDOS or SMSQ or SMSQ/E

• 2 DOS or TOS

NOTE

This function does not appear to work on Falkenberg hard disk interfaces where it always returns 255.

CROSS-REFERENCE

DIR will provide this information also on Level-3 device drivers. DMEDIUM_DENSITY allows you to
check the medium’s density. There is currently no way to format a disk in a format other than QDOS
or SMSQ/E without the ATARI_rext commands which were available with the ST/QL emulators from
Jochen Merz, or without specialist software (some of which is public domain).

276 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.67 DMEDIUM_FREE

Syntax DMEDIUM_FREE [(#channel)] or
DMEDIUM_FREE (\file)

Location SMSQ/E v2.73+

This function returns the number of free sectors available on the medium on which the specified file or
directory is located, or to which the specified channel is open. If no parameter is specified, it looks to
channel #3 (or #1 if #3 is not open).

CROSS-REFERENCE

DMEDIUM_TOTAL allows you to find out the total number of sectors available on the related medium.
DIR can also be used to obtain this information.

11.68 DMEDIUM_NAME$

Syntax DMEDIUM_NAME$ [(#channel)] or
DMEDIUM_NAME$ (\file)

Location SMSQ/E v2.73+

This function returns the name which was given to the medium on which the specified file or directory is
located (or to which the specified channel is open), when that medium was FORMATted. If no parameter
is specified, it looks to channel #3 (or #1 if #3 is not open).

Example

A routine to re-format a floppy disk with the same details as previously allocated to that disk (except for
the files). The drive to format (eg. flp1_) can be passed with or without quotes, due to the use of line
120:

100 DEFine PROCedure RE_FORMAT(drv)
110 v$=VER$:IF v$<>'HBA':PRINT #0,'NOT SUPPORTED':PAUSE:RETurn
120 drv$=PARSTR$(drv,1)
130 CH=FOPEN(drv$)
140 IF CH<0:PRINT #0,'File Error - cannot access drive':PAUSE:RETurn
150 IF DMEDIUM_RDONLY(#CH)
160 PRINT #0,'Disk Write Protected, cannot proceed':PAUSE
170 CLOSE #CH:RETurn
180 END IF
190 dname$=DMEDIUM_NAME$(#CH)
200 drv_density=DMEDIUM_DENSITY(#CH)
210 IF DMEDIUM_FORMAT(#CH)<>1
220 PRINT #0,'Not QDOS / SMSQE disk, cannot proceed':PAUSE
230 CLOSE #CH:RETurn
240 END IF
250 IF DMEDIUM_TYPE(#CH)<>1
260 PRINT #0,'This routine only supports floppy disks!!':PAUSE

(continues on next page)

11.67. DMEDIUM_FREE 277

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

270 CLOSE #CH:RETurn
280 END IF
290 CLOSE #CH
300 IF LEN(dname$)>10:dname$=dname$(1 TO 10)
310 SELect ON drv_density
320 =1:dname$=dname$&'*D'
330 =2:dname$=dname$&'*H'
340 =3:dname$=dname$&'*E'
350 END SELect
360 FORMAT drv$&dname$
370 END DEFine

Usage:

REMark Without quotes:
RE_FORMAT flp1_

or:

REMark With quotes:
RE_FORMAT 'flp2_'

CROSS-REFERENCE

The name of a medium is set with FORMAT . You can read it with DIR also.

11.69 DMEDIUM_RDONLY

Syntax DMEDIUM_RDONLY [(#channel)] or
DMEDIUM_RDONLY (\file)

Location SMSQ/E v2.73+

This function returns the value 1 (true) if the the medium on which the specified file or directory is located
(or to which the specified channel is open) is write-protected either through hardware or software control.
If no parameter is specified, it looks to channel #3 (or #1 if #3 is not open). If the medium can be written
to, the value returned is zero.

NOTE

This function does not appear to work on Falkenberg hard disk interfaces where it always returns 1.

CROSS-REFERENCE

See DMEDIUM_NAME$ for an example.

278 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.70 DMEDIUM_REMOVE

Syntax DMEDIUM_REMOVE [(#channel)] or
DMEDIUM_REMOVE (\file)

Location SMSQ/E v2.73+

This function returns the value 1 (true) if the medium on which the specified file or directory is located
(or to which the specified channel is open) is a removable hard disk. Otherwise it returns 0 (false). If no
parameter is specified, it looks to channel #3 (or #1 if #3 is not open).

NOTE

This function does not appear to work on Falkenberg hard disk interfaces where it always returns 1.

CROSS-REFERENCE

DMEDIUM_RDONLY allows you to check if a disk is write- protected. There do not appear to be any
ways in which you can check if any channels are currently open to the medium (ie. whether it is safe to
remove the disk), except for listing all currently open channels, see CHANNELS.

11.71 DMEDIUM_TOTAL

Syntax DMEDIUM_TOTAL [(#channel)] or
DMEDIUM_TOTAL (\file)

Location SMSQ/E v2.73+

This function returns the number of total sectors available on the medium on which the specified file or
directory is located, or to which the specified channel is open. If no parameter is specified, it looks to
channel #3 (or #1 if #3 is not open).

CROSS-REFERENCE

DMEDIUM_FREE allows you to find out the number of sectors which currently do not contain any data
on the related medium. DIR can also be used to obtain this information. FORMAT releases all sectors
on a disk, marking any which may be corrupt as unavailable.

11.72 DMEDIUM_TYPE

Syntax DMEDIUM_TYPE [(#channel)] or DMEDIUM_TYPE (\file)
Location SMSQ/E v2.73+

This function returns a number representing the type of drive on which the specified file or directory is
located (or to which the specified channel is open). If no parameter is specified, it looks to channel #3
(or #1 if #3 is not open).

The values currently returned are:

• 0 RAM disk

11.70. DMEDIUM_REMOVE 279

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• 1 Floppy disk drive

• 2 Hard disk drive

• 3 CD-ROM drive

NOTE

This function does not appear to work on Falkenberg hard disk interfaces where it always returns 255.

CROSS-REFERENCE

See DMEDIUM_NAME$ for an example.

11.73 DNEXT

Syntax DNEXT subdirectory
Location Toolkit II

This command allows you to move across a directory tree by replacing the current sub-directory with the
specified subdirectory in the default data device.

If the default program device is the same as the default data device, then this will also be altered by
DNEXT.

If the default destination device is a directory device (ie. if it ends with an underscore), DNEXT also alters
the last sub-directory in this (whether or not it points to another drive, or is further down the directory
tree).

win1_
win1_C_
win1_C_include_
win1_C_objects_
win1_BASIC_
win1_QUILL_
win1_QUILL_letters_
win1_QUILL_translations
win1_secret_

The above could be a directory tree on a hard disk. DATA_USE win1_C_ defines win1_C_ as the default
directory device, so WDIR will list all of the files in win1_C_.

Assuming that PROGD$=’win1_BASIC_’ and DESTD$=’flp2_C_Include_’, entering DNEXT Quill
will result in the following:

• DATAD$=’win1_Quill_’

• PROGD$=’win1_BASIC_’

• DESTD$=’flp2_C_Quill_’

NOTE 1

DNEXT does not check if there are any files with the given prefix which exist.

NOTE 2

280 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

DNEXT breaks with error -17 (error in expression) if the parameter is a resident keyword. So append
an underscore to the directory name, eg. DNEXT NEW_, or specify the parameter between quote marks
(eg. DNEXT ‘NEW’).

NOTE 3

The default devices cannot exceed 32 characters (plus a final underscore) - any attempt to extend them
beyond this will result in the error ‘Bad Parameter’ (error -15).

CROSS-REFERENCE

DUP moves up the tree, DDOWN moves down the tree. DATAD$ and DLIST can be used to find out
about the current sub-directory and default devices respectively.

11.74 DO

Syntax DO [device_] filename
Location Toolkit II

This command allows you to execute a set of commands stored in a file (acting as an overlay).

It is intended to perform tasks dictated by a numberless file, which enables you to do many things whilst
releasing memory once the tasks have been performed.

DO is actually very similar to the Toolkit II variant MERGE and will ensure that if the given file only
contains numberless lines, the channel is closed afterwards.

It does however work just as well as MERGE on numbered files!

A numberless program is basically a set of SuperBASIC lines which do not have any line numbers. These
can therefore best be entered with the aid of an editor program. Each line is loaded into the QL with the
relevant command, and then executed (one line at a time), as if they had been entered from the command
line (#0).

This therefore means that although they can call resident SuperBASIC PROCedures and FuNctions, you
can only have in-line structures, such as IF. . .END IF and SELect ON. . .END SELect.

Once each line has been executed, it is lost and the memory occupied by that line released.

One advantage for pre JS ROMs is that if you use a numberless file to link resident keywords, such
keywords can then be used in the same program which MERGEd the numberless file. For example, if
you have a numberless file flp1_resident_bas such as:

a=RESPR(12000)
LBYTES flp1_Toolkit,a: CALL a

you can then link and use the Toolkit commands in the same program by including a line such as:

110 DO flp1_resident_bas

NOTE

On at least v2.28-v2.49 of Toolkit II, MERGE appears to work much better than DO at executing num-
berless files. If DO is entered as a direct command, none of the numberless lines are executed (compare

11.74. DO 281

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

MERGE which executes the first line), and if DO is part of a program, only the first line is executed
(compare MERGE which executes all of the commands in the numberless file). This is fixed under SMS.

CROSS-REFERENCE

Please refer to MERGE. SMS allows you to EXECute a SuperBASIC program, letting it run in the back-
ground and perform functions on supplied data using pipes or channels (see EX).

11.75 DOS_USE

Syntax DOS_USE device$
Location SMSQ/E for QPC

DOS_USE may be used to set the name of the DOS device. The name should be three characters long,
in upper or lower case.

Example

DOS_USE mdv

The DOS device is renamed MDV.

DOS_USE DOS

The DOS device is restored to DOS.

DOS_USE

The DOS device is restored to DOS.

11.76 DOS_DRIVE

Syntax DOS_DRIVE drive%, directory$
Location SMSQ/E for QPC

This changes the directory the DOS device is connected to.

By default, DOS1_ corresponds to C:\, DOS2_ to D:\ and so on, but the base can be freely chosen in the
configuration dialogue or even at runtime:

DOS_DRIVE 2, "C:\WINDOWS"

will assign DOS2_ to the windows directory on the host’s C:\ drive.

PRINT DOS_DRIVE$(2)

would now return “C:\WINDOWS”.

282 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.77 DOS_DRIVE$

Syntax directory$ = DOS_DRIVE$(drive%)
Location SMSQ/E for QPC

This reads back the currently connected directory of the DOS device.

Example

If we continue from the example above for DOS_DRIVE, then:

PRINT DOS_DRIVE$(2)

Will print “C:\WINDOWS”.

11.78 DOTLIN

Syntax DOTLIN p1, p2, p3, col, x1, y1, x2, y2
Location HCO

The command DOTLIN is a variant of LDRAW - it draws a dotted line in the specified colour col from
the absolute co-ordinates (x1,y1) to (x2,y2).

The three first parameters are small non-negative integers which specify after how many pixels the line
is to be broken (they are known as the periods).

The line is drawn by plotting the first p1 pixels, then leaving a gap of p2 pixels, plotting the next p3 pixels
and once again leaving a gap of p2 pixels before recommencing the pattern.

Examples

DOTLIN 10,10,10,3,40,40,200,60

draws a white line from the point (40,40) to the point (200,60) but only for periods of ten pixels.

If a pixel is represented by an asterisk, this would look like this:

********** ********** ...
|-- 10 --||-- 10 --||-- 10 --| ...

DOTLIN with the periods 3, 5 and 10:

*** ********** *** **********
|3||-5-||---10---||-5-||3||-5-||---10---|

CROSS-REFERENCE

All the warnings relevant to SET apply.

11.77. DOS_DRIVE$ 283

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.79 DRAW

Syntax DRAW x1,y1 TO x2,y2 ,colour
Location Fast PLOT/DRAW Toolkit

This command draws a line in absolute co-ordinates on the screen. Any windows and window attributes
are ignored. x1 and x2 range from 0 to 511, y1 and y2 from 0 to 255. DRAW uses the screen base address
defined with SCRBASE (which enables it to draw on a screen stored in memory as well as the currently
visible screen. It is therefore compatible with QL emulators and Minerva’s dual screen mode, although
it cannot support higher resolutions). The range for the colour parameter is 0..7, other values give odd
results without being dangerous.

Example

Here is a procedure which draws a line given in polar co-ordinates. A point in a polar system is specified
by a radius and angle.

170 DEFine PROCedure POLAR_DRAW (r1,phi1,r2,phi2,col)
180 REMark less precise but fast version
190 LOCal r,phi,r_old,phi_old,dr,dphi
200 LOCal x1,x2,y1,y2,dist
210 r_old=r1: phi_old=phi1
220 r=r1: phi=phi1
230 x1=1.35*r_old*SIN(phi_old+PI/2)+255
240 y1=r_old*COS(phi_old+PI/2)+127
250 dist=(r1+r2)/2 * (phi1+phi2)/PI
260 IF dist==0 THEN RETurn
270 dr=(r2-r1)/dist: dphi=(phi2-phi1)/dist
280 REPeat Drawing
290 IF r>=r2 AND phi>=phi2 THEN EXIT Drawing
300 r=r_old+dr: phi=phi_old+dphi
310 x2=1.35*r*SIN(phi+PI/2)+255
320 y2=r*COS(phi+PI/2)+127
330 DRAW x1,y1 TO x2,y2 ,col
340 r_old=r: phi_old=phi
350 x1=x2: y1=y2
360 END REPeat Drawing
370 END DEFine POLAR_DRAW

POLAR_DRAW 0,0 TO 100,8*PI ,7

draws an archimedic spiral and these few lines create a polar pattern:

10 SCLR 0
20 FOR a=0 TO 50 STEP 10
30 POLAR_DRAW a,0 TO a,2*PI ,7
40 POLAR_DRAW 0,PI*a/25 TO 50,PI*a/25, 7
50 END FOR a
60 REFRESH

NOTE

284 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

DRAW is specific to the resolution of 512x256 pixels. It can however be used to draw on Minerva’s
second screen by using the command SCRBASE SCREEN(#3) (assuming that #3 is open on the second
screen).

CROSS-REFERENCE

PLOT plots a pixel, SCLR clears the screen and REFRESH makes the screen pointed to by SCRBASE
visible. See also DOTLIN and the other variant of DRAW .

11.80 DRAW

Syntax DRAW [#ch,] x2,y2
Location DRAW (DIY Toolkit - Vol G)

This command draws a line in absolute co-ordinates on the screen with reference to the specified window
channel (if any - default #1). The line is drawn from the last point plotted with the PLOT command
from the same toolkit, to the point specified by x2,y2. This is quicker than using the SuperBASIC LINE
command and unlike other similar commands, it will support the current INK colour and OVER mode.

<CTRL><F5> will pause the line drawing and it will even work in MODE 4, 8 and 12 (on the THOR
XVI, provided that you have v1.6+). The main limitation on this command is that the line must appear
fully within the specified window, so x2 and y2 cannot exceed the width or height of the specified window
(in pixels) nor be less than zero.

NOTE

Although DRAW will work wherever the screen base is located, it assumes that a line of pixels takes 128
bytes - it will not therefore currently work on higher resolutions.

CROSS-REFERENCE

See the other variant ofDRAW . See also PLOT . LINE is much more flexible.

11.81 DROUND

Syntax DROUND (d, x)
Location TRIPRODRO

The function DROUND will return the floating point number x rounded to d decimal digits, counted from
the left of the number. DROUND rounds the last digit up or down depending on the next digit (ignoring
any others).

Example

DROUND(3, 1234.56) = 1230
DROUND(4, 1234.56) = 1235

CROSS-REFERENCE

PROUND rounds to a given precision.

11.80. DRAW 285

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.82 DUP

Syntax DUP
Location Toolkit II

This command strips off the last part of the default data device, thus moving up the directory tree. If the
default program device is the same as the default data device, then this will also be altered by DUP. If the
default destination device is a directory device (ie. if it ends with an underscore), DUP also alters this
(whether or not it points to another drive).

win1_
win1_C_
win1_C_include_
win1_C_objects_
win1_BASIC_
win1_QUILL_
win1_QUILL_letters_
win1_QUILL_translations
win1_secret_

If DATAD$ is win1_, DDOWN Quill moves down to win1_Quill_, whilst DUP will move DATAD$ back
up to win1_.

If DATAD$ is win1_Quill_letters_secret_, three DUPs will change it back to win1_.

NOTE

It is not possible to move beyond the name specifying the actual device to be used. In the above example,
this is the named root, win1_.

CROSS-REFERENCE

DATA_USE allows you to set the absolute directory root, DDOWN goes down the tree, and DNEXT
skips from branch to branch. DATAD$ returns the current default data device ie. the device name plus
the current sub-directory.

286 Chapter 11. Keywords D

CHAPTER

TWELVE

KEYWORDS E

12.1 EASTER

Syntax EASTER (year%) where year% >= 1583
Location Math Package

This function calculates the date of Easter Sunday for any given year after 1583 (when the Gregorian
calender was introduced by Pope Gregory XIII to replace the Julian calender of Julius Ceasar which had
been in use since 46 BC). EASTER returns the date as a floating point number, where the day is the
integer part of the number and the month is given by the digits following the floating point, eg. PRINT
EASTER(1993) shows 11.4 (April, 11th)

Example

Easter Sunday is used as a basis to fix other clerical days, so if two years have Easter Sunday on the same
day, the other holy dates are identical, too:

100 INPUT "Year=";year
110 east1=EASTER(year)
120 FOR y=year+1 TO 32767
130 east2=EASTER(y)
140 IF east1=east2 THEN
150 PRINT "Next Easter Sunday on"!east1;". is in"!y;"."
160 EXIT y
170 END IF
180 END FOR y

NOTE

EASTER does not return the correct value on SMSQ/E for some reason.

CROSS-REFERENCE

GREGOR

287

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

12.2 ED

Syntax ED [#ch,] [start_line]
Location Toolkit II

This command invokes Toolkit II’s full-screen editor. This provides powerful facilities for editing a
SuperBASIC program loaded in memory and forms a useful alternative to the QL’s standard EDIT and
AUTO commands.

ED will list the current SuperBASIC program from its first line (or from the specified start_line) onwards
in the given channel (default #2). If the specified channel (#ch) is not a console con_ channel, then an
error -15 (Bad Parameter) will be reported. If any lines are too long to fit in the specified window, they
are wrapped round onto the next line, with this ‘continuation line’ indented in order to differentiate from
other program lines. It does however make sense to use the widest possible window to avoid wrapping
of lines.

Once a window-full of the listing is shown, ED will activate the cursor in the window and you can then
move up or down through the listing by using the up and down cursor keys. The left and right cursor keys
will move across the listing lines (and even ‘blank’ space where the actual program lines do not appear).

Any attempt to alter a line (eg. to delete a character) will activate that line, in which case it will be shown
in inverse colours. Any attempt to move the cursor off that line (or pressing <ENTER>) will tell ED to
accept the alterations and de-activate that line.

If the line is not acceptable to the SuperBASIC parser, then a ‘Bad Line’ error will be generated in #0
and the line re-activated.

If you press the Break key or <ESC> whilst a line is active, it will be de-activated and returned to its
original state. If no line is active, <ENTER> will insert a new line number half-way (if possible) between
the number of the line on which the cursor is situated and the next line number. If there is no room for
an additional line between the two program lines, <ENTER> will be ignored.

If on the other hand, there is a gap of 20 or more (or there are no further program lines), the new line
number will be the current line number plus 10.

Another way of creating new lines is to amend the line number of the current line. If you do this, a new
line with the amended line number will be inserted (overwriting any existing line) and the current line
will remain the same (the cursor remains on the same line). This enables you to copy lines from one part
of a program to another.

By way of further assistance to the SuperBASIC programmer, ED can work in two modes - Overwrite
Mode and Insert Mode. The latter is the default, in which case any characters typed will activate the
current line and insert them at the current cursor position.

In Overwrite Mode, any characters typed will activate the current line and replace the characters under
the cursor.

A line can be deleted either by using <CTRL><ALT><←> (except on SMS where you must use
<CTRL><←>) or by deleting all of the visible characters in a line. If you delete everything but the
line number, then the line pointed to by that line number will be deleted.

There are several other keys available which make editing a SuperBASIC program much easier than under
EDIT. The keys available from within the standard ED are listed on the next page.

NOTE 1

288 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Avoid ED #0 if possible.

NOTE 2

ED is likely to cause various problems if used from within a SuperBASIC program.

NOTE 3

Any attempt to create SuperBASIC lines which are longer than 32766 characters may crash SuperBASIC.

NOTE 4

If a program contains a line 32767, this may upset ED when you are editing the end of the program.

NOTE 5

ED is not very helpful when there is no program actually in memory, as it starts off with a blank screen
and you have to type the whole line, including line number (even if you passed a line number with the
command).

NOTE 6

As from SMS v2.58 you can use ED ERLIN to edit the line which has caused an error. We are not certain
if this works on other implementations.

NOTE 7

Any attempt to ED a line number greater than 32757 can cause problems (on some versions ED creates
negative line numbers, on others you cannot see the line being edited). SMSQ/E v2.85 (at least) does not
have these problems, but see Note 4 above.

ED Special Key Presses

The keys available in ED are:

Key Press Action
<ENTER> Create new line, unless line is active, in which case this tells ED to accept alterations

to the line and de-activate it.
<ESC> Leave ED - control returns to #0 unless line is active, in which case this de-activates

line without altering it.
<CTRL><SPACE>See <ESC>.
<TAB> Move to the right by multiples of eight.
<SHIFT><TAB>Move to the left by multiples of eight.
↑ Move up one line.
<ALT> ↑ Scroll up a line (cursor remains still, text moves down).
<SHIFT> ↑ Scroll up one page (cursor remains still).
↓ Move down one line.
<ALT> ↓ Scroll down a line (cursor remains still, text moves up).
<SHIFT> ↓ Scroll down one page (cursor remains still).
→ Move right one character.
<CTRL> → Delete character under cursor (line becomes active).
← Move left one character.
<CTRL> ← Delete character to left of cursor (line becomes active).
<CTRL><ALT>
←

Delete line under cursor (not under SMS).

<SHIFT><F4> Switch between overwrite and insert mode.

12.2. ED 289

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

SMS adds the following additional keys:

Key
Press

Action

<SHIFT>
←

Move left one word.

<ALT>
←

Move to start of line.

<CTRL><SHIFT>
←

Delete word to left of cursor (line becomes active).

<CTRL><ALT>
←

Delete from cursor to start of line (line becomes active).

<SHIFT>
→

Move right one word.

<ALT>
→

Move to end of line.

<CTRL><SHIFT>
→

Delete word under cursor (line becomes active).

<CTRL><ALT>
→

Delete from cursor to end of line (line becomes active).

<CTRL>
←

Delete whole line under cursor.

<SHIFT><F5>Stuff the currently activated line into the Hotkey buffer so that this can be later recalled
with <ALT><SPACE>. Note this will only work if the Hotkey system is active (see
HOT_GO). For this you need v2.58+.

SMS NOTES

Oddly, the SuperBasic interpreter allows you to enter a line which is beyond the permitted range of line
numbers, for example, enter as a direct command:

40000 PRINT 'This should not be accepted'

No error is reported, and the line is executed as if it had been entered without a line number!

SMS also suffers with problems if you edit a long line at the bottom of a window, so that as you type
in more text for the line, the program line extends below the bottom of the window. ‘Invalid Syntax’ is
printed over and over in #0, crashing the computer. This was improved in v2.71 but still has not been
totally fixed.

The keying <CTRL> → clashes with the key used by early versions of the program MasterBasic (by
Ergon Software) which is used to move between occurrences of an object which has been searched for
in the program. This has been resolved in v1.46+ of the program.

If you try to use ED on #2 and this is not open, then SMS will use #0 (if this is not open, it will open a
default window #0). This is useful for SBASICs which may be started with only one channel open (an
input channel).

Another useful feature implemented on SMS is that as from v2.69, if you enter the command ED without
any parameters, this has one of two effects. If you have not previously used ED, this edits the start of the
program (as on all other versions). However, if you have previously used ED, the line which is shown
at the top of #2 is the line which was at the top of the window when you left ED previously - this can
therefore be useful when testing a section of the program.

290 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE

Please also refer to AUTO and EDIT which are replaced by this command.

12.3 EDIT

Syntax EDIT [start_number] [,step]
Location QL ROM

This command allows you to enter the SuperBASIC line editor in order to alter a SuperBASIC program
loaded in memory. It will automatically create line numbers in the command line (#0) to assist in entering
SuperBASIC programs, in much the same way as AUTO. EDIT would normally only be entered as a direct
command (although you can include it in a program line, the line numbers will not be generated until the
program has finished its work).

Once entered, you will be presented with the first line start_number (default 100) - if this line already
exists in the program, then the existing line will be presented. Otherwise, you will only see the current
line number.

Pressing the up and down arrow keys will move you to the previous line or the next line (respectively) in
the program, although if there is no previous (or next) line, then you will exit the EDIT mode. However,
if you press the Enter key, if step is specified (default 0), this will act in the same way as AUTO. However,
if step is not specified, you will leave EDIT mode.

The main advantage of using EDIT over ED is how EDIT handles the screen. If the program has not
been previously EDITed (or a PROC/FN Cleared message has been displayed) then EDIT will show a
section of the current program in #2 when you move off the line currently being EDITed with the cursor
keys or <ENTER>. This section will have the line which was just EDITed as the top line and will go on
to fill #2 with additional lines of the program. However, if the program has already been EDITed and
the PROC/FN Cleared message has not been displayed, then EDIT will not affect the display on screen
(other than showing parts of the program in #0) until you EDIT a line which is within the range of lines
which were previously being EDITed.

This range of lines is actually slightly bigger than the lines which would have been displayed in #2, going
from an invisible top line (the line above the displayed line) to an invisible bottom line (the line below
the displayed line). Now, this can be quite useful when searching a program for some text or deciding
where to copy a section of the program to, or even to line up characters on screen when the program has
been RUN.

The listing which last appeared on #2 is represented as:

110 PAPER 0:INK 4:CLS(Invisible Top Line)
--
120 PRINT 'A PROGRAM'(Displayed Lines)
130 PRINT 'TO GET YOUR NAME'
140 INPUT \\'ENTER YOUR NAME';name$
150 PRINT \\
160 PRINT 'HELLO'!name$
--
170 PRINT \\"I'M YOUR COMPUTER"(Invisible bottom Line)

NOTE 1

12.3. EDIT 291

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

You cannot set an absolute step value of zero - omit this parameter to achieve the same result!

NOTE 2

On non-Minerva ROMs EDIT uses the same routine as RENUM to check its parameters, which means
that you can specify a start_line and an end_line, although they do nothing. For example:

EDIT 100 TO 1000;1000,20

would create lines 1000, 1020, 1040,

NOTE 3

The maximum line number is 32767. Both start_number and step should be integers - if they are not,
they will be rounded to the nearest integer (compare INT).

NOTE 4

Additional keys are available for editing on Minerva (see INPUT).

NOTE 5

EDIT can give problems if it is issued after breaking into a program which was in the middle of a PRO-
Cedure or FuNction at the time.

On non-Minerva ROMs, this is likely to produce a ‘not implemented’ error and the wrong line. Press
Break and try again do not try to edit the line. On Minerva ROMs (pre v1.97) this is compounded by the
fact that Minerva tends to try to run the program again.

Sometimes you are lucky and Minerva tries to jump to a non-existent line number before presenting you
with the desired line. Unfortunately, EDIT is never really safe in this context, and you should either type
CLEAR before EDIT or use ED.

NOTE 6

On pre Minerva ROMs SuperBASIC is liable to lock up if you try to EDIT a line after trying to call a
PROCedure/FuNction which was defined at the end of the program, but had been deleted.

SMS NOTES

On SMS the EDIT command is exactly the same as ED.

CROSS-REFERENCE

AUTO is very similar, especially where STEP is specified. DLINE deletes program lines. INPUT contains
details of the available keypresses for cursor navigation. ED provides a different means of editing a
SuperBASIC program.

PRINT PEEK_W(\\HEX('9C'))

returns the line number of the invisible top line which was last EDITed (except on SMS).

PRINT PEEK_W(\\HEX('9E'))

returns the line number of the bottom line in #2 which was last EDITed (except on SMS).

292 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

12.4 EDITF

Syntax EDITF ([#ch,] {default | default$} [,maxlen%])
Location Turbo Toolkit

This function is similar to EDLINE$. However, EDITF is intended solely for asking the user to enter a
floating point number. The specified default (which may be given as a number or a string) is printed at the
current text cursor position in #ch (default #1) and allows you to edit it. The parameter maxlen% dictates
the maximum number of characters allowed (this defaults to the amount set when the Turbo Toolkit is
configured). The edited result is returned when <ENTER> is pressed. If the string contains a nonsensical
value when <ENTER> is pressed, a warning beep is sounded.

NOTE

On non-SMS machines, a buffer full error could be reported if an attempt was made to enter a string longer
than 118 characters, or the length of the longest SuperBASIC line listed or edited to date, whichever is
longer.

CROSS-REFERENCE

See EDLINE$. EDIT% and EDIT$ are also useful.

12.5 EDIT%

Syntax EDIT% ([#ch,] {default | default$} [,maxlen%])
Location Turbo Toolkit

This function is the same as EDITF, except that only integer values are acceptable.

CROSS-REFERENCE

See EDITF.

12.6 EDIT$

Syntax EDIT$ ([#ch,] default$ [,maxlen%])
Location Turbo Toolkit

This function is similar to EDLINE$. It operates in the same way as EDITF, except that any string of
characters can be edited, rather than being restricted to a number.

CROSS-REFERENCE

See EDITF.

12.4. EDITF 293

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

12.7 EDLINE$

Syntax EDLINE$ (#ch, maxlen%, edit$)
Location EDLINE (DIY Toolkit Vol E)

The function EDLINE$ prints edit$ at the current text cursor position in #ch (there is no default channel)
and allows you to edit it. A maximum length of maxlen% characters is allowed. The edited result is
returned. Unlike INPUT, EDLINE$ will not finish with <UP> or <DOWN> but only after <ENTER> and
<CTRL><SPACE> (also <ESC> on Minerva). Instead <UP> and <DOWN> move the cursor to the start
and end of the string respectively; apart from that the usual keys for editing are used: <CTRL><LEFT>
deletes the character to the left of the cursor, <CTRL><RIGHT> the character under the cursor.

Example

100 CLS
110 REPeat ask_name
120 PRINT \"Please enter your name: ";
130 Name$ = "Billy the Kid"
140 Name$ = EDLINE$(#1,40,Name$)
150 PRINT "Your name is '";Name$;"' (y/n)? ";
160 ok$ = EDLINE$(#1,1,"y")
170 IF ok$ INSTR "yY" THEN EXIT ask_name
180 PRINT "Try again..."
190 END REPeat ask_name
200 PRINT "Hello,"!Name$;"!"

NOTE

You need a special version of EDLINE$ to work correctly on Minerva and SMS. This version is included
with the DIY Toolkit package.

CROSS-REFERENCE

EDLINE$ can be used to input numbers but you have to ensure that the entered text can be successfully
coerced to a number, see CHECK% and CHECKF for that. EDIT$ is similar. Other routines for human
input are for example: INPUT , INKEY$, ASK and REPLY .

12.8 EL

Syntax EL
Location Beuletools

This function returns the control codes needed to switch on the NLQ (near letter quality) font on an
EPSON compatible printer:

PRINT EL

is the same as:

294 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

PRINT CHR$(27)&"x"&CHR$(1).

CROSS-REFERENCE

NORM, BLD, DBL, ENL, PRO, SI , NRM, UNL, ALT , ESC, FF, LMAR, RMAR, PAGDIS, PAGLEN .

12.9 ELIS

Syntax ELIS (keyword$)
Location TinyToolkit

This function will return the machine code start address of the specified resident keyword if it is recog-
nised by SuperBASIC. If the keyword is unknown, then the function will generate a Not Found error.

CROSS-REFERENCE

See KEY_ADD, FLIS and CODEVEC. Compare FIND and LOOKUP%.

12.10 ELLIPSE

Syntax ELLIPSE [#ch,] x,y,radius,ratio,ecc *[;xi,yi,radiusi,ratioi,ecci]*

Location QL ROM

Both the ELLIPSE and CIRCLE commands perform exactly the same function. We have however decided
to split them, since if users adopt the habit of using ELLIPSE to draw ellipses and CIRCLE to draw circles,
this will help users understand SuperBASIC programs much more easily.

This command allows you to draw an ellipse in the current INK colour of the given radius with its centre
point at the point (x,y).

The ratio affects the difference between the major axis and the minor axis - the greater the ratio, the
greater the difference between the two.

The major (y) axis is specified by the parameter radius, whereas the minor (x) axis is calculated by
radius*ratio which therefore means that if ratio>1, the major axis will become the (x) axis (if you see
what we mean!).

Ecc defines the angle at which the ellipse will be drawn. This is measured in radians and forms the anti-
clockwise angle between a vertical line drawn through the origin of the ellipse and the major axis. Thus,
ecc=PI/4 draws an ellipse at an angle of 45 degrees.

The actual positioning and size of the ellipse will depend upon the scale and shape of the specified
window (default #1).

The co-ordinates are calculated by reference to the graphics origin, and the graphics pointer will be set to
the centre point of the last ellipse to be drawn on completion of the command. If any parts of the ellipse
lie outside of the specified window, they will not be drawn (there will not be an error).

If the parameters ratio and ecc are omitted, this command has exactly the same effect as CIRCLE. This
command will actually allow you to draw multiple ellipses by including more sets of parameters. Each

12.9. ELIS 295

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

additional set must be preceded by a semicolon (unless the preceding ellipse uses five parameters). This
means for example, that these all perform the same action:

ELLIPSE 100,100,20,1,2,50,50,20
ELLIPSE 100,100,20,1,2; 50,50,20
ELLIPSE 100,100,20,1,2: CIRCLE 50,50,20

Although the FILL command will allow you to draw filled ellipses on screen (in the current ink colour),
you will need to include a FILL 1 statement prior to each ellipse if they are to appear independently on
screen (this cannot be achieved when using this command to draw multiple ellipses).

If this rule is not followed, then any points which lie on the same horizontal line (even though they may
be in different ellipses) will be joined.

Example

Try the following for an interesting effect:

100 MODE 8
110 WINDOW 448,200,32,16:PAPER 0:CLS
120 SCALE 100,0,0
130 INK 4:OVER -1
140 REPeat loop
150 FOR ang=0 TO PI*2-(PI*2/20) STEP PI*2/20
160 FILL 1:ELLIPSE 70,50,40,.5,ang
170 FILL 1:ELLIPSE 70,50,40,.5,ang
180 END FOR ang
190 END REPeat loop

NOTE

On all ROMs other than Minerva v1.89+, very small ellipses and very large ones can cause problems.
Try:

ELLIPSE 80,80,80,6,1

on a non-Minerva machine for a laugh.

Unfortunately, Lightning SE (v2.11) still contains this bug and will bring it back!

CROSS-REFERENCE

Please refer to CIRCLE, ELLIPSE_R, ARC, LINE and POINT .

12.11 ELLIPSE_R

Syntax ELLIPSE_R [#ch,] x,y,radius,ratio,ecc *[;xi,yi,radiusi,ratioi,ecci]*

Location QL ROM

This command draws an ellipse relative to the current graphics cursor. See ELLIPSE above!

CROSS-REFERENCE

Please refer to ARC_R and CIRCLE_R.

296 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

12.12 ELSE

Syntax ELSE *[:statements]*

Location QL ROM

This command forms part of the IF. . .END IF structure and allows you to take alternative action if the
condition contained in the IF statement proves to be false.

CROSS-REFERENCE

See IF for more details.

12.13 END

Syntax END . . .
Location QL ROM

This keyword forms part of the structures: END WHEN, END SELect, END IF, END REPeat, END
FOR and END DEFine As such, it cannot be used on its own within a program - this will cause a ‘bad
line’ error.

CROSS-REFERENCE

Please refer to the individual structure descriptions below for more details.

12.14 END DEFine

Syntax END DEFine [name]
Location QL ROM

This command marks the end of the DEFine PROCedure and DEFine FuNction SuperBASIC structures,
and has no meaning on its own. You may if you wish, place the name of the PROCedure or FuNction
after END DEFine to help make the SuperBASIC program more readable - this will however have no
effect on how the command is treated by the interpreter, which will still take the next END DEFine as
the end of the current definition block (even if it is followed by a different name).

The interpreter will jump out of a definition block whenever it meets a RETurn statement. It will also
jump out of a DEFine PROCedure definition when it meets an END DEFine statement. This does of
course mean that END DEFine can be used in the middle of a PROCedure to force a return to the calling
statement - however, this can cause other problems and a RETurn should be used, with END DEFine
only appearing at the very end of the definition block.

On the other hand, the interpreter can only jump out of a DEFine FuNction definition if it meets a RETurn
- if the interpreter comes across an END DEFine in such situations, it will report the error ‘Error In
Expression’. On SMS the error ‘RETurn not in Procedure or Function’ is reported. If the definition block
is not actually being used, but the interpreter is working its way through the program, when a DEFine

12.12. ELSE 297

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

PROCedure or DEFine FuNction statement is met, the interpreter will search for the next END DEFine,
and having found one, will resume the program at the next statement.

This does however mean, that unless an in-line DEFine structure is being used, if this command is miss-
ing, the interpreter will carry on searching through the program and may just stop without an error if
END DEFine does not appear anywhere in the program after the initial DEFine PROCedure (or DEFine
FuNction).

Example 1

The above rules mean that the following example will work under SuperBASIC, but is extremely ineffi-
cient and difficult to decode:

10 FOR i=1 TO 100
20 PRINT power(i)
30 DEFine FuNction power(x)
40 RETurn 2^x
50 END DEFine
60 END FOR i

Example 2

See if you can work out why the following program goes wrong:

100 FOR i=1 TO 100
110 PRINT power(i)
120 DEFine FuNction power(x)
130 DEFine FuNction base
140 RETurn 2
150 END DEFine base
160 RETurn base^x
170 END DEFine power
180 END FOR i

If you are having trouble, try inserting:

155 PRINT 'Program line 155:';x

NOTE

END DEFine need not appear in an in-line definition statement, except under SMS.

SMS NOTE

Checks are made on a program before it is run, and so if an END DEFine statement is missing, this will
be reported as an error (‘Incomplete DEFine clause’). SMS’s improved interpreter will report the error
‘Misplaced END DEFine’ if END DEFine does not mark the end of a DEFine PROCedure or DEFine
FuNction block.

CROSS-REFERENCE

Please see DEFine PROCedure and DEFine FuNction. Other SuperBASIC structures are SELect ON ,
IF, REPeat, WHEN XXX and FOR.

298 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

12.15 END FOR

Syntax END FOR loop
Location QL ROM

This command marks the end of the FOR..END FOR SuperBASIC structure with the same loop name,
and has no real meaning on its own. When the interpreter meets this statement, it then looks at the stack
to see if a related FOR command has already been parsed.

If not, then the error ‘Not Found’ will be reported, however, if such a FOR loop has been parsed, the
interpreter will fetch the end parameter and if the loop is not yet at this value, then step is added to loop
and control returned to the statement following FOR.

If however loop is already at the end value, control passes to the statement following END FOR.

The second variant is only available under SMS, where the interpreter presumes that if no loop name is
specified, the programmer means the interpreter to return control to the most recent FOR statement (if
the loop is not at its final value).

When an EXIT loop is found, the interpreter will search for the relative END FOR loop, and if found,
will resume program flow at the next statement.

Under SMS, neither EXIT nor END FOR need have a loop identifier, and therefore EXIT will simply
cause the program to jump to the statement after the next END FOR command (if no loop is specified).

This does however mean, that except under SMS, unless an in-line FOR structure is being used, if this
command is missing, the interpreter will carry on searching through the program and may just stop
without an error if END FOR loop does not appear anywhere in the program.

NOTE

END FOR need not appear in an in-line FOR statement.

SMS NOTE

SMS will report ‘unable to find an open loop’ if the interpreter comes across an END FOR command
(without a loop variable name) without a corresponding open FOR loop. If the interpreter comes across
an END FOR command (with a loop variable name) without a corresponding open FOR loop the error
‘undefined loop control variable’ is reported.

CROSS-REFERENCE

Please see FOR. Compare NEXT and EXIT . Other SuperBASIC structures are: DEFine PROCedure,
DEFine FuNction, SELect ON , IF, REPeat, and WHEN XXX.

12.16 END IF

Syntax END IF
Location QL ROM

This command marks the end of the IF..END IF SuperBASIC structure, and has no meaning on its own.

12.15. END FOR 299

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

When the interpreter finds an IF condition statement it then evaluates the condition and carries out certain
commands depending on whether the condition was true or false.

Having carried out those commands, the interpreter then looks for a related END IF command, and will
pass control onto the statement following END IF.

This does however mean, that except under SMS, unless an in-line IF structure is being used, if this
command is missing, the interpreter will carry on searching through the program and may just stop
without an error if END IF does not appear anywhere in the program.

NOTE 1

END IF need not appear in an in-line IF statement.

NOTE 2

All ROMs (except for Minerva v1.93+ or SMS) can get mixed up with multiple in-line IF..END IF struc-
tures - see IF.

SMS NOTE

Checks are made on a program before it is run, and so if an END IF statement appears without a corre-
sponding IF command, the error ‘Misplaced END IF’ is reported.

CROSS-REFERENCE

Please see IF. Other SuperBASIC structures are: DEFine PROCedure, DEFine FuNction, SELect ON ,
REPeat, FOR, and WHEN XXX.

12.17 END REPeat

Syntax END REPeat identifier or
END REPeat [identifier]SMS only

Location QL ROM

This command marks the end of the REPeat. . .END REPeat SuperBASIC structure with the same iden-
tifier, and has no meaning on its own.

When the interpreter meets this statement, it then looks at the stack to see if a related REPeat command
has already been parsed. If not, then the error ‘Not Found’ will be reported, however, if such a REPeat
identifier has been parsed, the interpreter will force the program to loop around and return control to the
statement following REPeat.

Under SMS there is no need to specify the identifier on the END REPeat statement, in which case, the
interpreter will presume that this is the end of the last REPeat loop to have been encountered.

When an EXIT identifier is found, the interpreter will search for the relative END REPeat identifier
(or under SMS the next END REPeat command), and if found, will resume program flow at the next
statement.

This does however mean, that except under SMS, unless an in-line REPeat structure is being used, if
this command is missing, the interpreter will carry on searching through the program and may just stop
without an error if END REPeat identifier (or END REPeat under SMS) does not appear anywhere in the
program.

NOTE

300 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

END REPeat need not appear in an in-line REPeat statement.

SMS NOTE

SMS will report ‘unable to find an open loop’ if the interpreter comes across an END REPeat command
(without a loop identifier) without a corresponding open REPeat loop. If the interpreter comes across
an END REPeat command (with a loop identifier) without a corresponding open REPeat loop the error
‘undefined loop control variable’ is reported.

CROSS-REFERENCE

Please see REPeat.

NEXT loop_variable is practically the same although see EXIT . Other SuperBASIC structures are: DE-
Fine PROCedure, DEFine FuNction, SELect ON ,IF, FOR, and WHEN XXX.

12.18 END SELect

Syntax END SELect
Location QL ROM

This marks the end of the SELect ON. . .END SELect SuperBASIC structure, and has no meaning on
its own. When the interpreter has found a match for the value of the variable, it performs a series of
commands, and then looks for the end of the block marked with END SELect.

This means that except under SMS, unless an in-line SELect ON structure is being used, if this command
is missing, the interpreter will carry on searching through the program and may just stop without an error
if END SELect does not appear anywhere in the program.

NOTE 1

END SELect need not appear in an in-line SELect ON statement.

NOTE 2

Under SMS, if END SELect appears in an in-line SELect ON statement, if any commands appear after
END SELect on the same line, an error will be reported.

SMS NOTE

Checks are made on a program before it is run, and so if an END SELect statement is missing, this will
be reported as an error (‘Incomplete SELect clause’). SMS’s improved interpreter will report the error
‘Misplaced END SELect’ if END SELect does not mark the end of a SELect ON definition block.

CROSS-REFERENCE

Please see SELect ON . Other SuperBASIC structures are DEFine PROCedure, DEFine FuNction, IF,
REPeat, WHEN XXX and FOR.

12.18. END SELect 301

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

12.19 END WHEN

Syntax END WHEN
Location QL ROM (post JM)

This marks the end of the SuperBASIC structures: WHEN ERRor and WHEN condition . . . END
WHEN, and has no meaning on its own. When the program is first run, the interpreter marks the start of
this structure and then (unless it is an in-line structure) looks for the end of the block marked with END
WHEN.

This means that if this statement is missing, except under SMS, the interpreter will carry on searching
through the program and may just stop without an error if END WHEN does not appear anywhere in the
program.

NOTE

END WHEN need not appear in a single line WHEN or WHEN ERRor statement, eg:

100 WHEN a>4:PRINT 'a>4'.

SMS NOTES

Checks are made on a program before it is run, and so if an END WHEN statement is missing, this will
be reported as an error.

SMS’s improved interpreter will also report the error ‘Misplaced END WHEN’ if END WHEN does not
mark the end of a WHEN ERROR definition block.

CROSS-REFERENCE

Please see WHEN ERRor and WHEN condition. Other SuperBASIC structures are DEFine PROCedure,
DEFine FuNction, IF, REPeat, SELect and FOR.

12.20 END_CMD

Syntax END_CMD
Location Turbo Toolkit

This marks the end of a numberless file of direct commands for use with the MERGE command. This
command should be entered on its own as the last line of the numberless file. It overcomes the problem
explained in NOTE 1 of MERGE.

CROSS-REFERENCE

Please see MERGE. DO is also useful for executing such files.

302 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

12.21 END_WHEN

Syntax END_WHEN
Location Turbo Toolkit

This marks the end of the Turbo structure equivalent to the SuperBASIC WHEN ERRor structure.
END_WHEN has no meaning on its own and should only be used within Turbo compiled programs.

CROSS-REFERENCE

Please see WHEN ERRor

12.22 ENV_DEL

Syntax ENV_DEL name$
Location Environment Variables

This command is used to remove a specified environment variable. Please note that the name of the
environment variable is case sensitive. If an empty string is passed as the argument, then an error will
be reported.

Example

A boot program may specify where the files for the main program are stored and then pass it to subse-
quently called programs with. Once the program has finished, the environment variable may be deleted.

1000 source$='win1_PROGS_utils_'
1010 SETENV "PROGLOC="&source$
1020 EXEC_W source$&'main_exe'
1030 ENV_DEL "PROGLOC"

CROSS-REFERENCE

Please see SETENV.

12.23 ENV_LIST

Syntax ENV_LIST [#ch]
Location Environment Variables

This command lists all currently active environment variables to the specified channel (default #1).

CROSS-REFERENCE

Please see SETENV.

12.21. END_WHEN 303

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

12.24 ENL

Syntax ENL
Location Beuletools

This function returns the control codes needed to switch on double width on an EPSON compatible
printer:

PRINT ENL

is the same as:

PRINT CHR$(27)&"W"&CHR$(1)

CROSS-REFERENCE

NORM, BLD, EL, DBL, PRO, SI , NRM, UNL, ALT , ESC, FF, LMAR, RMAR, PAGDIS, PAGLEN .

12.25 EOF

Syntax EOF [(#ch)]
Location QL ROM

This is a logical function which actually has two uses in SuperBASIC. If no channel number is specified,
then PRINT EOF will return 1 unless the current program contains some DATA lines which have not yet
been READ. This is therefore useful to create programs which can handle any amount of data. However,
if a channel number is specified, for example PRINT EOF(#1), then zero will be returned unless the given
channel is linked to a file and the file pointer is at (or beyond) the end of that file (ie. whether or not there
is data to be read from that channel).

Example

Two simple programs to retrieve an address from a given name (the full name must be given on input).
The first of these has the data stored in the program, whereas the second has it stored on a file called
flp1_address_data:

100 RESTORE
110 MODE 4
120 OPEN #3,con_448x200a32x16:BORDER#3,1,2:PAPER#3,0:INK#3,7
130 INPUT #3,'Input name to look for:'!search$
140 REPeat loop
150 IF EOF:PRINT#3\\"No address stored":EXIT loop
160 READ name$,address$
170 IF name$==search$:PRINT #3\\name$,address$:EXIT loop
180 END REPeat loop
190 CLOSE #3
200 DATA 'Fred Blogs','17 Mulberry Court'
210 DATA 'John Peters','182 Johnson Ave.'
220 DATA 'Martin Edwards','83 Olive Drive'

304 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

100 OPEN_IN #3,flp1_Address_data
110 MODE 4 120 OPEN #4,con_448x200a32x16:BORDER#4,1,2:PAPER#4,0:INK#4,7
130 INPUT #4,'Input name to look for:'!search$
140 REPeat loop
150 IF EOF(#3):PRINT#4\\"No address stored":EXIT loop
160 INPUT #3;name$,address$
170 IF name$==search$:PRINT #4\\name$,address$:EXIT loop
180 END REPeat loop
190 CLOSE #4:CLOSE #3

SMS NOTE

Until v2.55 this command was the same as EOFW, which meant that it would only return a value if there
was data waiting or it had received an end of file code - this was changed back to the original to maintain
compatibility.

CROSS-REFERENCE

DATA specifies a line of data statements. RESTORE resets the data pointer and READ will actually fetch
the data. CLOSE closes a given channel after it has been used. PEND or IO_PEND% are much better
for use on pipes. See also EOFW .

12.26 EOFW

Syntax EOFW (#ch)
Location SMS

This function is very similar to EOF in that it returns the value 0 if there is data waiting to be read from the
specified channel, otherwise it returns 1. The difference is that this version of the function will however
wait until data is received or the end of file code is received, which is especially useful on pipes which
may not always work with EOF which returns 1 if the channel does not contain any data to be read.

CROSS-REFERENCE

See EOF. PEND and IO_PEND% are very similar.

12.27 EPROM_LOAD

Syntax EPROM_LOAD device_file
Location ATARI_REXT (v1.21+), SMS

You cannot plug QL EPROM cartridges into the various other computers which now support QL software,
which would normally make some software which contains part of its code on EPROM, unusable. In
order that you can use such software on other computers, you need to create a file on an original QL
containing an image of the EPROM cartridge plugged into the QL’s ROM port. To do this, use the
command:

12.26. EOFW 305

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

SBYTES flp1_EPROM_image,49152,16384

It is hoped that software producers who sell software which requires an EPROM cartridge will make
versions available with ready-made images of the cartridge, so that the software can be used by users
without access to an original QL.

Having done this, you will need to have the ST/QL Emulator switched on (or SMS loaded on the other
computer), then insert that disk into the Atari’s disk drive, and use the command: EPROM_LOAD
flp1_EPROM_image This will then copy the EPROM code into the same address on the Emulator or
other computer as the EPROM cartridge occupies on the QL, thus making it usable.

NOTE 1

If you make images of several EPROM cartridges in this way, then additional ones which are loaded with
EPROM_LOAD will be stored in arbitrary addresses under SMS or the emulator. Therefore you will
need to ensure that cartridges which insist on being loaded at the address $C000 (the QL’s ROM port
address), will need to be loaded first with EPROM_LOAD.

NOTE 2

On early versions of the Emulator, this was called ROM_LOAD.

NOTE 3

On SMS before v2.52, this could crash the system if used on a Gold Card or Super Gold Card without
the specified file being present.

CROSS-REFERENCE

See also ROM, ROMs and ROM_TEST.

12.28 EPS

Syntax EPS [(x)]
Location Math Package

Since the precision of the QL is limited, a number may not change if a very small value is added. The
function EPS(x) returns the smallest value which can be added to x so that the sum of x and EPS(x)
will be different from x. This only makes sense for floating point numbers. The default parameter is 0.
EPS(x) attains its smallest value at x=0, so EPS(0) returns the smallest absolute number which can be
handled by SuperBASIC. EPS(x) is always greater than zero and EPS(x)=EPS(-x).

Example

An approximation of PI/4 as proposed by Leibniz:

100 x = 0: d = 1
110 t0 = DATE
120 FOR i=1 TO 1E100
130 IF ABS(1/d) < EPS(x) THEN EXIT i
140 x = x + 1/d
150 d = - SGN(d) * (ABS(d)+2)
160 END FOR i

(continues on next page)

306 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

170 t = DATE - t0
180 PRINT "Iterations ="!i!" Runtime ="!t;"s"
190 PRINT "Iterations per Second ="!i/t
200 PRINT "PI ="!4*x!"(";PI;")"

Unfortunately, the algorithm is not efficient enough to compete with the QL’s precision, so that about
2E9 iterations are necessary to get a suitable result. Since this will take a while (ages!), you can reduce
precision by a factor of one million, by modifying line 130:

130 IF ABS(1/d) < 1E6 * EPS(x) THEN EXIT i

The program will then finish after 1075 iterations with 4*x = 3.140662, not bad compared to 3.141593
when taking the drastic reduction of precision into account.

NOTE

EPS does not recognise the higher precision used by Minerva. Minerva’s higher precision may have an
effect on fractals and similar esoteric calculations.

12.29 EQ$

Syntax EQ$ (type, string1$, string2$)
Location Btool

This function expects the same parameters as GT$. It will return a value of 1 if the two strings are equal
to each other using the same test as GT$.

CROSS-REFERENCE

See GT$ for more details. NE is the same as:

NOT EQ$ (type, string1$,string2$)

12.30 ERLIN

Syntax ERLIN
Location QL ROM (post JM version)

This function returns the line where the last error occurred. If the error occurred in a line typed into the
command window (#0), then zero is returned (zero is also returned if there is no error).

Example

It takes a lot of time to debug programs, so save typing by including a variation of the following line in
your BOOT program. Then, if an error occurs and the program stops with an error message, simply press
<ALT><E> to see and edit the line where something went wrong:

12.29. EQ$ 307

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

ALTKEY "e","ED ERLIN-20"&CODE(216)&CODE(216),""

or:

ALTKEY "e","AUTO ERLIN",""

CROSS-REFERENCE

ERNUM returns the error number, REPORT invokes an error message and WHEN ERRor allows error
trapping. ERLIN% is exactly the same.

12.31 ERLIN%

Syntax ERLIN%
Location Turbo Toolkit

This function is exactly the same as ERLIN, except it will work on all versions of the QL ROM.

CROSS-REFERENCE

See ERLIN and ERNUM%.

12.32 ERNUM

Syntax ERNUM
Location QL ROM (post JM version)

This function returns the error number of the last error which occurred. An error number is negative and
can be returned by any program (SuperBASIC, jobs, M/C Toolkits,. . .). The equivalent error messages
are the same on all of the implementations of SuperBASIC, although they are also supported in different
languages (see the Appendix for other languages):

308 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Error English message
-1 Not Complete
-2 Invalid Job
-3 Out of Memory
-4 Out of Range
-5 Buffer Full
-6 Channel not Open
-7 Not Found
-8 Already Exists
-9 In Use
-10 End of File
-11 Drive Full
-12 Bad Name
-13 Xmit Error
-14 Format Failed
-15 Bad Parameter
-16 Bad or Changed Medium
-17 Error in Expression
-18 Overflow
-19 Not Implemented Yet
-20 Read Only
-21 Bad Line

NOTE

Jobs may return a positive error number. The meaning of such a number depends on the job. No error
message will be reported.

SMS NOTE

The error messages have been redefined to try to make them more intelligent, they are now:

12.32. ERNUM 309

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Error English message
-1 Incomplete
-2 Invalid Job ID
-3 Insufficient memory
-4 Value out of range
-5 Buffer full
-6 Invalid channel ID
-7 Not found
-8 Already exists
-9 Is in use
-10 End of file
-11 Medium is full
-12 Invalid name
-13 Transmission error
-14 Format failed
-15 Invalid parameter
-16 Medium check failed
-17 Error in expression
-18 Arithmetic overflow
-19 Not implemented
-20 Write protected
-21 Invalid syntax
-22 Unknown message
-23 Access denied

Other errors are reported by the SBASIC interpreter, but these are not covered by ERNUM.

CROSS-REFERENCE

ERLIN returns the line number where the error occurred. ERNUM% is the same as this function. RE-
PORT invokes an error message and WHEN ERRor can be used to trap errors. The ERR_XX functions
are alternatives to ERNUM.

12.33 ERNUM%

Syntax ERNUM%
Location Turbo Toolkit

This function is exactly the same as ERNUM, except it will work on all versions of the QL ROM.

CROSS-REFERENCE

See ERNUM and ERLIN%.

310 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

12.34 ERR_XX

Syn-
tax

ERR_NC, ERR_NJ, ERR_OM, ERR_OR, ERR_BO, ERR_NO, ERR_NF,
ERR_EX, ERR_IU, ERR_EF, ERR_DF, ERR_BN, ERR_TE, ERR_FF,
ERR_BP, ERR_FE, ERR_XP, ERR_OV, ERR_NI, ERR_RO, ERR_BL

Lo-
ca-
tion

QL ROM

These are logical functions which return either 0 or 1 if the corresponding error has occurred. Only one
of them can have the value 1 at any time.

Function Error Code
ERR_NC NOT COMPLETE -1
ERR_NJ INVALID JOB -2
ERR_OM OUT OF MEMORY -3
ERR_OR OUT OF RANGE -4
ERR_BO BUFFER OVERFLOW -5
ERR_NO CHANNEL NOT OPEN -6
ERR_NF NOT FOUND -7
ERR_EX ALREADY EXISTS -8
ERR_IU IN USE -9
ERR_EF END OF FILE -10
ERR_DF DRIVE FULL -11
ERR_BN BAD NAME -12
ERR_TE TRANSMISSION ERROR -13
ERR_FF FORMAT FAILED -14
ERR_BP BAD PARAMETER -15
ERR_FE FILE ERROR -16
ERR_XP ERROR IN EXPRESSION -17
ERR_OV ARITHMETIC OVERFLOW -18
ERR_NI NOT IMPLEMENTED -19
ERR_RO READ ONLY -20
ERR_BL BAD LINE -21

NOTE 1

These functions are not affected by REPORT.

NOTE 2

On Minerva pre v1.98, the ERR_XX functions were returning 1 if any higher error had occurred!!

WARNING

The JS ROM version of ERR_DF had a bug which crashed the system when used. All later operating
systems and Toolkit II, the THOR XVI, the Amiga-QL Emulator, TinyToolkit, and BTool fix this.

CROSS-REFERENCE

See Appendix for other languages.

12.34. ERR_XX 311

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

12.35 ERRor

Syntax ERRor
Location QL ROM (post JM)

This keyword forms part of the structure WHEN ERRor. Please refer to WHEN ERRor. As such, this
keyword cannot be used in a program on its own - this will report ‘bad line’.

CROSS-REFERENCE

WHEN ERRor contains a detailed description of this structure.

12.36 ERT

Syntax ERT function
Location HOTKEY II

Normally, whenever you use a function (or anything else which may return an error code), you will need
to assign the result of the function (or whatever else) to a variable and then test that variable in order to
see whether or not an error has been generated.

If an error has been generated, you will then need to report the error (if you do not intend to take any
action to try and rectify the situation), something which can take a lot of program space, if you intend to
write a program which does not require the command REPort to be present.

The command ERT was introduced in the Hotkey System II to enable you to write programs which test
the result for an error code and report the error all in one step.

Example 1

A simple program which provides its own error trapping:

100 PAPER 0:INK 7
110 REPeat loop
120 CLS
130 AT 0,0:PRINT 'Enter an integer (0 to 300): ';
140 xerr=GET_INT
150 IF xerr<0:PRINT 'Error - try again':ELSE x=xerr:EXIT loop
160 PAUSE
170 END REPeat loop
180 PRINT 'The integer was : ';x
185 :
190 DEFine FuNction GET_INT
200 valid$='0123456789'
210 INPUT a$:IF a$='':RETurn -1
220 FOR i=1 TO LEN(a$):IF a$(i) INSTR valid$=0:RETurn -17
230 IF a$>300:RETurn -4
240 RETurn a$
250 END DEFine

312 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Example 2

A similar program which is designed to stop on an error:

100 PAPER 0:INK 7
110 CLS
120 AT 0,0:PRINT 'Enter an integer (0 to 300): ';
130 xerr=GET_INT
140 IF xerr<0:REPORT xerr:STOP:ELSE x=xerr
150 PRINT 'The integer was : ';x
155 :
160 DEFine FuNction GET_INT
170 valid$='0123456789'
180 INPUT a$:IF a$='':RETurn -1
190 FOR i=1 TO LEN(a$):IF a$(i) INSTR valid$=0:RETurn -17
200 IF a$>300:RETurn -4
210 RETurn a$
220 END DEFine

Example 3

The same program as in the second example, but using ERT:

100 PAPER 0:INK 7
110 CLS
120 AT 0,0:PRINT 'Enter an integer (0 to 300): ';
130 ERT GET_INT
140 PRINT 'The integer was : ';x
150 DEFine FuNction GET_INT
160 valid$='0123456789'
170 INPUT a$:IF a$='':RETurn -1
180 FOR i=1 TO LEN(a$):IF a$(i) INSTR valid$=0:RETurn -17
190 IF a$>300:RETurn -4
200 x=a$
210 RETurn x
220 END DEFine

NOTE

When you are using ERT, always beware of what you are testing for an error, for example, if you had
altered line 130 in the second example to:

130 ERT x=GET_INT

you would not actually be testing to see whether the function GET_INT returned an error, but whether
the line x=GET_INT produced an error - x itself would not be altered, hence the need to assign the result
to x inside the function.

CROSS-REFERENCE

REPORT will report an error without stopping the program.

12.36. ERT 313

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

12.37 ESC

Syntax ESC
Location Beuletools

This function returns the control codes ESC, or CHR$(27) for use on an EPSON compatible printer:

PRINT ESC

is the same as:

PRINT CHR$(27)

CROSS-REFERENCE

NORM, BLD, EL,DBL,ENL,PRO,SI ,UNL,ALT ,FF,LMAR,RMAR,PAGDIS, PAGLEN . UPUT

12.38 ET

Syntax ET file *[,{filex | #chx}]* [;cmd$]
Location Toolkit II

The syntax for ET is the same as for the Toolkit II variant of EX and it also operates in a similar manner.
However, ET is intended for low level debugging, ie. to trace execution of the machine code commands
step by step.

A monitor program such as Qmon is necessary.

The command ET loads the executable program, installs the job and immediately suspends the job by
setting its priority to zero. Control is then returned to SuperBASIC to allow you to use a monitor program.

CROSS-REFERENCE

EX

12.39 ETAB$

Syntax ETAB$ (string$ [,tabdist]) where tabdist=1..255
Location BTool

Some editors and word-processors use the character CHR$(9) as a tab mark to save the space which
would otherwise be needed to store several spaces. The function ETAB$ takes a given string, expands
all tab marks in it and returns the result.

If the tabulator distance, tabdist, is not given, a default of eight characters is assumed. The length of
string$ has to be smaller than 256 characters: LEN(string$)<256.

Tabdist>255 has no effect.

314 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Example

The text file test_txt is shown with all tab marks expanded:

100 OPEN_IN#3,test_txt
110 CLS
120 REPeat all_lines
130 IF EOF(#3) THEN EXIT all_lines
140 INPUT#3,line$
150 IF LEN(line$)>255 THEN line$=line$(1 TO 255)
160 PRINT ETAB$(line$,4)
170 END REPeat all_lines
180 CLOSE#3

NOTE

A value of tabdist<=0 will not produce usable output.

WARNING

Although tab mark distances of 32766 and 32767 are allowed, ETAB$ will not produce a sensible output.
It may even possibly crash the system.

CROSS-REFERENCE

CTAB$ is the complimentary function to ETAB$. INSTR finds the position of a string in another string.
LEN returns the length of a string.

12.40 ETAT

Syntax ETAT (file$)
Location ETAT

This function checks to see if the given file (passed as a string) exists and then checks upon its status
(whether it can be opened etc). If necessary a standard error number is returned, otherwise ETAT will
return 0, which means that the file can be accessed without the danger of an error such as “not found”.
This can therefore be used to avoid the need for error trapping.

Example

This program copies text files to window #1:

100 REPeat input_loop
110 INPUT "File to view:"!file$
120 AnError=ETAT(file$)
130 IF NOT AnError: EXIT input_loop
140 PRINT "Sorry, ";: REPORT#1,AnError
150 END REPeat input_loop
160 OPEN_IN#3,file$
170 REPeat view_file
180 IF EOF(#3) THEN EXIT view_file
190 INPUT#3,line$: PRINT line$

(continues on next page)

12.40. ETAT 315

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

200 END REPeat view_file
210 CLOSE#3

CROSS-REFERENCE

FTEST works like ETAT but recognises the default device and directory. FILE_OPEN , FOPEN ,
FOP_IN , FOP_OVER and FOP_NEW are all functions to open files without the need for error trap-
ping. OPEN , OPEN_IN and OPEN_NEW stop with error messages if an error occurs. To avoid this,
error trapping facilities, such as WHEN ERRor have to be used.

12.41 EW

Syntax EW file *[,{filex | #chx}]*

Location Toolkit II, THOR XVI

This command causes the given file (which must be an executable program) to be executed.

If the drivename is not given, or the file cannot be found on the given device, EW will load the first file
from the default program directory (see PROGD$), with subsequent programs being loaded from the
default data directory (see DATAD$). The calling program will be stopped whilst the new job is running
(ie. the new job cannot multitask with the calling program). If you supply any channels (which must
already be open in the calling program) or filenames as parameters, these form channels which can be
accessed by the job.

If your program has been compiled with QLiberator or is to be run as an SBASIC job under SMS then
each supplied channel will become #0, #1, #2

Note that with Turbo compiled programs the channels work backwards and will become #15, #14, #13
. . . To access these channels from within the job, merely ensure that the job does not try to open its own
channel with the same number, and then write the program lines as if the channels were open. Further,
you can pass a command string (cmd$) to the program specifying what the executed job should do. It
depends on the job what cmd$ should look like and also how you will access the given string. The Turbo
and QLiberator compilers include commands in their Toolkits to read the supplied string; and Minerva
MultiBASICs and SMS SBASICs include the function CMD$ which allows you to read the supplied
string.

If you have not used one of these compilers to produce the job, then you will need to read the string from
the stack. Please note that the command string must appear as the last parameter for the command. The
command string can be explicit strings and names as well as expressions. However, variables must be
converted into expressions, for example by:

EW 'flp1_xchange';(dataspace)

On some very early versions of Toolkit II, you needed:

EW 'flp1_xchange';dataspace&""

Executable programs often return an error code back to the owner job (the program which started it).
Especially with ‘C’ compiled programs, this will be non-zero if there are any errors. EW stops the owner

316 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

job if this happened. There is unfortunately no way to stop this from happening unless you use error
trapping (eg. WHEN ERRor, or Q_ERR_ON from QLiberator).

Example 1

EW QED;"flp1_readme_txt"

The editor will be started from the default program directory and told to load the file readme_txt.

Example 2

EW mdv1_QUILL

will start QUILL from microdrive 1.

NOTE 1

There are problems with EW and EX in Toolkit II v2.05 (and previous versions) which make them unre-
liable and difficult to use with compiled programs. The main problem lay in what was classed to be the
owner of a secondary Job. From v2.06 onwards, the owner for EX has been Job 0 and the owner for EW,
the current Job.

NOTE 2

TinyToolkit and BTool allow you to break out of a program started with EW at any time by pressing
<CTRL><SPACE> - the program can then be treated as if it was started with EX.

NOTE 3

On some versions of the QL ROM (and Toolkit II), unless the Pointer Environment is loaded, you may
need to press <CTRL><C> to get back the cursor at the end of the task.

NOTE 4

You cannot use EW (or similar) to execute a file stored on a PC or TOS disk (even with Level-3 Device
Drivers) - see the Device Drivers Appendix, in particular the notes on Level-3 Device Drivers for further
details.

MINERVA NOTES

As from v1.93+, MultiBASICs can be started up with the command:

EW pipep *[,{filex | #chx}]* [;cmd$]

Prior to this version, you needed to load the file Multib_exe contained on the disk supplied with Minerva
and use the command:

EW flp1_Multib_exe *[,{filex | #chx}]* [;cmd$]

How any supplied channels are dealt with is slightly different to all other implementations. Its effect
depends on how many channels are passed:

• No channels passed - MultiBASIC started with a single small window which is the same for #0
and #1.

• One channel passed - This becomes both #0 and #1.

• Two channels passed - These become #0 and #1 respectively.

• Three or more channels passed - The first two become #0 and #1 respectively, then any additional
ones become #3 onwards.

12.41. EW 317

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Minerva MultiBASICs also treat any command string passed to them in a special way:

• If the last character of the command string is an exclamation mark (!), then the MultiBASIC is
started up with the original keywords built into the ROM, and any which had been linked into
SuperBASIC subsequently (for example Toolkit II) will not be available to that MultiBASIC. This
character is then removed from the command string before it can be read by the MultiBASIC.

• If the command string contains the greater than sign (>), then anything which appears before that
character in the string, is opened as an input command channel (thus allowing you to run a Multi-
BASIC program in the background) and then all characters up to and including the greater than
character are deleted from the command string before it can be read by the MultiBASIC.

Example

Take a simple BASIC program to convert a given file (say flp1_TEST_TXT) into uppercase:

110 REPeat loop
120 IF EOF(#0) THEN EXIT loop
130 INPUT #0,a$
140 IF a$='' THEN NEXT loop
150 FOR i=1 TO LEN(a$)
160 IF CODE(a$(i))>96 AND CODE(a$(i))<123 THEN
170 a$(i)=CHR$(CODE(a$(i))-32)
180 END IF
190 END FOR i
200 PRINT a$
210 END REPeat loop
220 IF VER$(-1):CLOSE #0

Save this as flp1_UC_bas and then enter the command:

OPEN #3,con
EW pipep,flp1_test_txt,#3;'flp1_UC_bas>'

or, prior to v1.93, use:

OPEN #3,con
EW flp1_Multib_exe,flp1_test_txt,#3;'flp1_UC_bas>'

The last line checks to make sure this program is not being run from the original SuperBASIC interpreter
(job 0) in which case, it then closes #0. Unfortunately, on v1.97 (at least), this program fails to spot the
end of the file (try PEND instead of EOF), and therefore reports an ‘End of File’ error on completion.
Oddly, this error is not reported if you use EX to run the program.

SMS NOTE

SMS allows EW and EX to run basic programs in the background, as an SBASIC job. For example,
using the Minerva example program above, this could be used with the line:

EW flp1_UC_bas,flp1_test_txt,#3

This does not report an error on completion. Beware however that prior to v2.69, this command would
not work in Qliberated programs to start an SBASIC program. Because of this ability, SMS v2.58+ has
amended the EW set of commands so that it searches for a file in much the same way as LOAD under
SMS.

318 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Taking a default program device to be flp1_,

EW ram1_TEST

will look for the following files:

• ram1_TEST

• ram1_TEST_sav

• ram1_TEST_bas

• flp1_ram1_TEST

• flp1_ram1_TEST_sav

• flp1_ram1_TEST_bas

CROSS-REFERENCE

For further information see EX. SBASIC allows you to set up several SBASIC jobs under SMS. MB
allowed you to start up a MultiBASIC on early versions of Minerva. Please also see the appendix on
Multiple BASICs.

12.42 EX

Syntax EX file *[,{filex | #chx}]* [;cmd$]
Location Toolkit II, THOR XVI

This command forces the given file (which must be an executable program) to be executed and control
is then generally returned to the calling program to enable the new job to multitask alongside the calling
program. Similar parameters as for EW can be passed to the job.

Use EW if the program cannot multitask for some reason or if you do not want it to, for example, because
you want to see any error messages returned by the executable task. EX doesn’t report them, it cannot as
the executable task may still be running when EX returns to the command prompt.

Example 1

EX QED;"readme_txt"

The QED editor will be started from the default program device and told to load the file readme_txt from
the editor’s default device.

Example 2

EX UC_obj,ram1_hope_lis,par

A program called UC_obj (a program which converts text to all upper case) will be started up to run
alongside all other programs. Two n:ref:ew channels (‘ram1_hope_lis’ and ‘par’) are opened for the task
to use for its input and output channels respectively - the task must not open its own channels but will
rely upon the user supplying them as parameters.

The BASIC version of such a program is:

12.42. EX 319

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

110 REPeat loop
120 IF EOF(#0) THEN EXIT loop
130 INPUT #0,a$
140 IF a$='' THEN NEXT loop
150 FOR i=1 TO LEN(a$)
160 IF CODE(a$(i))>96 AND CODE(a$(i))<123 THEN
170 a$(i)=CHR$(CODE(a$(i))-32)
180 END IF
190 END FOR i
200 PRINT#1,a$
210 END REPeat loop

Turbo users will need to alter #0 and #1 to #15 and #14 respectively.

Minerva and SMS users can use this program without compiling it (see EW above).

Using EX to set up filters

It is actually quite simple to create a multitasking environment on the QL using the EX command to set
up several programs all of which will process a given file (or data entered into a given channel) in turn.

The syntax for this version of the command is:

EX jobparams1*[TO jobparamsi]* [TO #chan0]

where jobparams represents the same parameters as are available for the normal EX command, being:

file *[,{filex |#chx}]* [;cmd$]

What this actually does, is to set up a chain of jobs or channels whereby one extra channel is opened for
each job to form the output channel for the job on the left of the TO and another channel is opened to
form the input channel of the job on the right of the TO.

Where a channel number appears at the end of the line (after a TO), this is taken as being the final output
channel and nothing further can be done to the original input.

Examples

How about extending the Upper case conversion ‘filter’ so that a given text file is then printed out one
line at a time with each line being printed out as normal, but then printed again, but this time backwards!

First of all, the program to do the printing:

110 REPeat loop
120 IF EOF(#0): EXIT loop: REMark Turbo uses #15, not #0
130 INPUT #0,a$:PRINT#1,a$: REMark Turbo uses #14, not #1
140 IF CMD$=='y': REMark Turbo users use OPTION_CMD$
150 IF a$='':NEXT loop
160 FOR lop=LEN(a$) TO 1 STEP -1
170 PRINT#1,a$(lop);
180 END FOR lop
190 PRINT#1
200 END IF
210 END REPeat loop

Compile this program and save the compiled version as flp1_Back_obj.

320 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Now to carry out the desired task:

OPEN #3,con
EX flp1_uc_obj,flp1_test_txt TO flp1_back_obj,#3;'y'

On Minerva v1.93+, you could use:

OPEN #3,con
EX pipep,flp1_test_txt;'flp1_uc_bas>' TO pipep,#3;'flp1_back_bas>y'

Or on SMS:

OPEN #3,con
EX flp1_uc_bas,flp1_test_txt TO flp1_back_bas,#3;'y'

How about trying this:

OPEN #3,con
EX flp1_uc_obj,flp1_test_txt TO flp1_back_obj;'y' TO flp1_back_obj,#3;'y'

NOTE 1

On pre JS ROMs, you may find that if you EX a new Job whilst there is already one Job in progress, the
ink and paper colours of the first Job are set to zero. This is a problem unless you have a key to redraw
the screen for the first Job (or the Pointer Interface).

NOTE 2

The THOR XVI always ensures that cursor control is passed to the new Job on start-up rather than
returning to the calling Job.

MINERVA NOTE

Please refer to notes about EW which explain how to use this command to control MultiBASICs.

SMS NOTE

Please refer to notes about EW and use this command to control multiple SBASICs.

CROSS-REFERENCE

Use FTYP or FILE_TYPE to check if a file is executable. FDAT returns the dataspace of an executable
file, FXTRA provides other information. ET is very similar to EX.

12.43 EXCHG

Syntax EXCHG device_file,old$,new$
Location ATARI_REXT

This command creates a Job which opens a channel to the specified file and then works through the file,
replacing every occurrence of old$ with new$. The search for old$ is case independent. Both old$ and
new$ must be the same length.

Example

12.43. EXCHG 321

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

EXCHG flp1_Task_obj,'mdv','flp'

will replace all references to mdv1_ or mdv2_ to flp1_ and flp2_ respectively in the file flp1_task_obj.

NOTE

CHR$(0) cannot be replaced!

CROSS-REFERENCE

See also CONVERT .

12.44 EXEC

Syn-
tax

EXEC program or
EXEC file *[,{filex | #chx}]* [;cmd$] (Toolkit II, THOR XVI) or
EXEC file *[,#chx]* [;cmd$] (Minerva v1.93+)

Loca-
tion

QL ROM, Toolkit II

This command loads and starts a machine code or compiled program, but then returns control to the
calling job (ie. the job which issued EXEC) so that both jobs are multitasking.

Minerva v1.97+ has now implemented a sub-set of the Toolkit II standard, in that you can pass details of
existing channels to a job as well as a command string.

CROSS-REFERENCE

With Toolkit II installed or on a THOR XVI, EXEC is the same as EX. See also EXEC_W , EW , TTEX
and ET . If you are using the Hotkey System or SMS then see EXEP in this manual.

12.45 EXEC_W

Syn-
tax

EXEC_W program or
EXEC_W file *[,{filex | #chx}]* [;cmd$] (Toolkit II, THOR XVI) or
EXEC_W file *[,#chx]* [;cmd$] (Minerva v1.93+)

Lo-
ca-
tion

QL ROM, Toolkit II

This command is the same as EXEC except that the calling job is suspended until the program has
finished.

CROSS-REFERENCE

Toolkit II and a THOR XVI make EXEC_W the same as EW . See also EXEC, EX, TTEX, TTEX_W and
ET .

322 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

12.46 EXEP

Syn-
tax

EXEP filename [;cmd$] [,Jobname$] [,options] or
EXEP Thingname$ [;cmd$] [,Jobname$] [,options] (version 2.17+)

Loca-
tion

HOTKEY II

The first variant of the EXEP command is similar to the EX and EW commands provided by Toolkit II.
However, not only does EXEP allow you to pass a command string to the program being called (as with
EX or EW), but you can also supply the Job name which will be shown in a list of the Jobs currently
loaded into memory.

In order to make various ‘problem’ programs work correctly under the Pointer Environment, it is some-
times necessary to pass various parameters (options) to the Hotkey System when the program is called
in order to tell it how to treat the program.

The command EXEP allows you to execute a program (in the same way as with EXEC), but at the same
time, pass these parameters to the Pointer Environment. The parameters (or options) currently supported
are:

• P [,size]- This tells the Hotkey System that the program is a Psion program (eg. Quill) which will
try to grab all of the available memory.

If size is not specified, then the Hotkey System will ask the user to specify the maximum amount of
memory (in kilobytes) that the program should use before the program actually starts. Otherwise,
the program will be allowed to use size kilobytes of memory (if available).

When the Pointer Environment was first released, Qjump produced a program (Grabber) which
could be used to amend the amount of memory addressed by the Psion programs once and for all
- if this program has been used on your copies of the Psion programs, then do not use this option.

• G [,x,y,a,b] - When a program is started, the Pointer Interface will store the area of the screen
contained under each window as it is opened, restoring any part of the screen is no longer covered
by an active window.

This provides non-destructive windows, one of the major assets of the Pointer Interface. However,
some programs have a habit of opening windows, writing to the screen and then closing the window
so that the text cannot be altered - creating background information.

Unfortunately, due to the way in which the Pointer Interface works, as soon as this window is
closed, the background information would be lost.

The solution to this is to use a guardian window (created using this parameter) which specifies the
area of the screen which the program is allowed to use and which must therefore not be restored until
the program has ended (even if there are no current windows open on that area). The parameters
are used to open a guardian window x pixels wide by y pixels high at the origin (a,b).

Any attempt by a program to open or resize a window so that part of it would fall outside this
Guardian window will fail.

If you do not pass the size of the Guardian window as a parameter (eg. EXEP flp1_Graph_exe,g),
the maximum permissible window size will be assumed (eg. 512x256 on a standard QL).

• F - Some programs which use KEYROW to read the keyboard, or access the screen directly, can
wreak havoc when multitasking alongside other programs.

12.46. EXEP 323

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

This parameter causes the computer to only pass any keypresses read with KEYROW to the pro-
gram started with EXEP.

• U - With some programs, for example, a clock, it is desirable for this to be updated on screen even
though it is not the Job at the top of the pile (ie. it is overwriting part of the current Job’s windows).

The Pointer Interface will allow you to do this by passing the u parameter (for unlock), for example:

EXEP flp1_Clock,u

The second syntax of EXEP is similar, except that instead of loading a task stored with the given filename,
it searches through the Thing list for an Executable Thing with the given Thingname and then (if present),
will start that up as a new Job (if it is not present, then EXEP will look on the default program device for
a file called Thingname).

For example, if you have QPAC2 present, EXEP Files will call up the files sub-menu (in the latest versions
of QPAC2, you could use, for example:

EXEP files;'\S \D flp1__exe \O v','View _EXE'

to create a View files menu which will list all of the files on flp1_ which end with _exe, without any sort
order; the job being called ‘View _EXE’ in the Jobs list).

Example 1

Consider the following program:

100 MODE 4
110 OPEN #0,CON_10x10a132x66
120 OPEN #1,CON_448x200a32x16
130 PAPER 0:INK 7:CLS
140 BORDER 1,2:AT 10,9:PRINT 'Y AXIS'
150 AT 15,35:PRINT 'X AXIS'
160 OPEN #1,CON_248x100a132x66:BORDER 1,4
170 PAUSE

If this program was compiled (without windows being copied across) and then run, as soon as line 160
was reached, the information around the sides of the graph would be lost! The reason for the PAUSE
in line 170 is that as soon as the compiled program reached the end, it would close all of its windows,
and you would not be able to see anything! The answer is to use a Guardian window (created using this
parameter). Presuming that the above program has been compiled under the filename flp1_Graph_exe,
you could use the line:

EXEP flp1_Graph_exe,G,448,200,32,16

to define a Guardian window 448x200 pixels with its origin at (32,16).

Example 2

Try for example, compiling the following program and starting it with:

EXEP flp1_Test_exe,u

(presuming that is the filename you allocate to it):

324 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

100 OPEN #1,con_512x256a0x0
110 REPeat Loop
120 PRINT KEYROW(0)
130 END REPeat Loop

You will find it very difficult to do anything (including removing this job). The solution is to pass this
parameter to the Pointer Interface which tells it to Freeze the program when it is in buried under another
Job’s windows (eg. if you used <CTRL><C> to change to another Job). For example, use the line:

EXEP flp1_Test_exe,f

Example 3

The SuperBASIC line:

EXEP flp1_EDT;'flp2_Text',Editor,g

will start up an editor stored under the filename flp1_EDT, which will be given the Job name ‘Editor’
(which will be shown for example in the JOBS table), provide it with a guardian window of 512x256,
and tell it to load a file called flp2_Text.

NOTE 1

Before v2.21 of the Hotkey System II, you could not pass a command string to the program being called.

NOTE 2

The various parameters can be mixed together, for example:

EXEP flp1_Graph_exe,F,G,448,200,32,16;'ser1'

NOTE 3

Versions earlier than v2.24 will not allow you to alter the Job Name, which will otherwise be the name
given the program when it was created.

CROSS-REFERENCE

THING allows you to test whether or not a given Thing is present. EX, EXEC, EW and EXEC_W are all
similar to the first variant of EXEP. GET_STUFF$ will call up the QPAC2 files sub-menu and allow you
to read the chosen filename. HOT_THING allows you to set up a hotkey to call an Executable Thing.

12.47 EXIT

Syntax EXIT loop_variable (FOR loops) or
EXIT loop_name (REPeat loops) or
EXIT(SMS only)

Loca-
tion

QL ROM

Using the first two variants of this command, the specified loop (either a FOR or a REPeat structure) will
be finished and the program will jump to the first statement after the relative END FOR loop_variable or
END REPeat loop_name.

12.47. EXIT 325

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

The third variant only exists under SMS and will force the interpreter to jump out of the current loop
being executed, whether it is a FOR loop or a REPeat loop - the interpreter will just search the program
for the next END REPeat or END FOR statement.

NOTE 1

If two or more loops are nested together, it is possible to EXIT the outer loop from within the inner loop:

REPeat loop1
...
REPeat loop2
...
IF condition THEN EXIT loop1 ---+
... |

END REPeat loop2 |
... |

END REPeat loop1 |
... <------------+

Such a structure is not regarded as elegant by some people because it is not possible to draw a structogram
from this.

NOTE 2

If a program is badly written, this can lead to confusion - for example, try:

100 REPeat loop
120 PRINT 'Hello'
130 EXIT loop
140 END REPeat loop
150 END REPeat loop

The interpreter fails to notice the misplaced END REPeat at line 150.

The first time that EXIT loop is encountered, the interpreter leaves the loop at line 140 - however, line 150
forces the interpreter to execute the loop a second time. This time, EXIT loop forces the interpreter to
jump out the loop at line 150. The same thing happens if you use FOR . . . END FOR instead of REPeat
. . . END REPeat

This feature allows you to jump back into a loop from anywhere in the program (although this should be
avoided). Compare what happens if NEXT loop is used instead of END REPeat loop in line 150, EXIT
loop will always exit the loop at line 140. This means that NEXT loop can also be used to jump back
into a loop from anywhere in the program (although again, this should be avoided).

Note that in any event, these latter two features will only work if the named loop has already been RUN
(setting up the loop variables)!!

CROSS-REFERENCE

Please see FOR and REPeat for more details.

326 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

12.48 EXP

Syntax EXP (var)
Location QL ROM

This function returns the value of the mathematical base e to the power of the given parameter (in other
words, this is equivalent to the mathematical expression evar). This is the opposite to the function LN, ie.
var=LN(EXP(var)).

QDOS supports var in the range -512. . . 511. The approximate value of e can be found by:

PRINT EXP(1)

PRINT EXP(0)

returns the value 1 - as any good mathematician knows, anything to the power of 0 returns the value 1.

CROSS-REFERENCE

LN returns the natural logarithm of the given value.

12.49 EXPAND

Syntax EXPAND file$
Location COMPICT

This command takes a screen file (which must have been created with COMPRESS), and re-expands it
on the visible screen.

NOTE 1

EXPAND needs a working space of 32K. A memory overflow error will be reported if there is not enough
memory available.

NOTE 2

EXPAND assumes that the screen starts at $20000 and will therefore not work on Minerva’s second
screen or extended resolutions.

NOTE 3

EXPAND will not work on QLs with resolutions above 512x256

WARNING

If the file was not saved by COMPRESS, it is most likely that the system will crash. This is certain if the
file is longer than 32K.

CROSS-REFERENCE

COMPRESS, FASTEXPAND.

12.48. EXP 327

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

12.50 EXPLODE

Syntax EXPLODE
Location ST/QL, QSound

This command produces the sound of an explosion, very nice.

CROSS-REFERENCE

SND_EXT , BELL, SHOOT .

12.51 EXTRAS

Syntax EXTRAS [#channel] or
EXTRAS \file (Toolkit II, THOR only) or
EXTRAS [#channel][,width] (BTool only)

Loca-
tion

Toolkit II, THOR XVI, QSound, BTool

This command lists all of the machine code Procedures and Functions (keywords) which are recognised
by the SuperBASIC interpreter in the given channel (default #1), or the given file (if the second variant is
used), which will be automatically opened and even overwritten if it already exists (after asking the user
to confirm that this is okay).

The file will be closed at the end of the operation.

The THOR XVI version will not list those keywords which are resident in ROM (ie. available when the
THOR is first powered up).

The BTool version lists the keywords in columns and as such is the same as EXTRAS_W. The number
of columns is adapted automatically to a window’s width; if this is too wide for your needs then you can
specify a width in characters.

The QSound variant is intended for output to a non-screen channel (see WIDTH), in which case an empty
line appears between each name. If output is sent to a window, then the words are all printed on the same
line, obscuring output.

NOTE 1

BTool’s EXTRAS does not support the SuperBASIC WIDTH command and you will therefore need to
specify an absolute width as the second parameter to format output.

NOTE 2

Versions of Tiny Toolkit pre v1.10 contained a different implementation of this command, now renamed
TXTRAS.

NOTE 3

Within an SBASIC (on SMS), EXTRAS only lists those keywords used in that SBASIC to date - this is
because the whole name table is not copied when an SBASIC is started up, allowing different SBASICs
to use the same name for different things.

328 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE

Use SXTRAS if you have a lot of extensions in memory and you are looking for a specific one. See also
TXTRAS, VOCAB and NEW_NAME.

12.52 EXTRAS_W

Syntax EXTRAS_W [#ch]
Location ATARI_REXT

This lists all of the current SuperBASIC commands to the given channel (default #1). Unlike EXTRAS,
the output appears in columns and there is no pause when the given window is full.

CROSS-REFERENCE

EXTRAS is very similar.

12.52. EXTRAS_W 329

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

330 Chapter 12. Keywords E

CHAPTER

THIRTEEN

KEYWORDS F

13.1 FACT

Syntax FACT(n) where n=0..300
Location Math Package, FACT

The FACT function takes a non-negative integer n up to 300 and returns the factorial of the number,
calculated as the product: 1*2*3*. . . *n

Example

n elements can be combined in FACT(n) different ways, eg. take the three first letters, the FACT(3)=6
permutations of A, B and C are:

1. ABC

2. ACB

3. BAC

4. BCA

5. CAB

6. CBA

CROSS-REFERENCE

BINOM

13.2 FALSE%

Syntax FALSE%
Location TRUFA

The function FALSE% returns the constant 0. It is used to write programs which are more legible or
which adopt habits from the PASCAL language.

CROSS-REFERENCE

TRUE%. See also SET concerning user definable resident constants.

331

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.3 FASTEXPAND

Syntax FASTEXPAND adr1,adr2
Location COMPICT

If a screen which has been compressed and saved with COMPRESS is loaded into memory with LBYTES
(for example), this command allows quicker expansion of the screen than would otherwise be possible
with EXPAND.

FASTEXPAND also allows you to expand the screen to any address (provided that there is at least 32K
of free memory stored there). adr1 is the address where the compressed screen is stored and adr2 the
place in RAM where the expanded screen should be moved to.

Example

100 COMPRESS ram1_test_scr
110 a=ALCHP(FLEN(\ram1_test_scr))
120 LBYTES ram1_test_scr,a
130 FASTEXPAND a,SCREEN
140 RECHP a

NOTE

FASTEXPAND will not work on screen resolutions in excess of 512x256 pixels.

CROSS-REFERENCE

COMPRESS, EXPAND.

13.4 FBKDT

Syntax FBKDT [(#channel)] or
FBKDT (\file)

Location Level-2 Device Drivers, SMS

It is proposed that this function be used to return the date on which a given file was last backed up.
Current versions of SuperBASIC commands, such as COPY and WCOPY do not set the back-up date of
the file being copied, although some software will do this, WinBack for example.

The idea of a back-up date is mainly for use in automatic back-up programs which can be told to copy all
files on a given medium within certain parameters, namely files which have been altered since a specific
date and which have been altered since the last time that they were backed up.

The value returned is the date in QDOS format, ie. the number of seconds since Midnight 1st January
1961 {check this initial date with PRINT DATE$(0)}. This backup time currently needs to be set man-
ually using SET_FBKDT, although it is hoped that future versions of COPY and WCOPY will do so
automatically.

If it has not been set, FBKDT will return zero. The default data device and sub-directories are supported,
default channel is #3.

Example

332 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

The PROCedure below will make an intelligent backup of all files contained in the medium specified by
the first parameter to the medium specified in the second parameter, which have been altered since they
were last backed up. TinyToolkit’s TCONNECT or DIY-TK’s QLINK is necessary to use this example.
This can be used for example by entering the line:

BACKUP flp1_ TO flp2_

Although sub-directories and the default data device are fully supported on the medium being backed-up,
the procedures would need modification to enable them to create similar sub-directories on the destination
device. The PROCedure makes heavy use of recursive programming, which means that it uses a lot of
memory (not all of which is released at the end of the PROCedure). It would need a considerable re-write
to be in a form which could be safely compiled.

100 DEFine PROCedure BACKUP (dir1,dir2)
110 LOCal dir1$,dir2$,old_datad$,old_destd$
120 LOCal ERRno,outer,sloop
130 dir1$=PARSTR$(dir1,1):dir2$=PARSTR$(dir2,2)
140 old_datad$=DATAD$:old_destd$=DESTD$
150 DATA_USE '':ERRno=-7
160 REPeat sloop
170 IF FTEST(dir1$)<0
180 dir1$=old_datad$&dir1$
190 IF FTEST(dir1$)<0:PRINT #0,dir1$;' ';:EXIT sloop
200 END IF
210 full_dir$=(dir1$&' ')(1 TO 5):orig_dir$=dir1$
220 IF FTEST(dir2$)<0
230 outer=FOP_NEW(dir2$):IF outer>0:CLOSE #outer
240 IF outer<0
250 dir2$=old_destd$&dir2$
260 IF old_destd$(LEN(old_destd$))<>'_':ERRno= -15:EXIT sloop
270 IF FOP_OVER(dir2$)<0:PRINT #0,dir2$;' ';:EXIT sloop
280 END IF
290 END IF
300 ERRno=0:EXIT sloop
310 END REPeat sloop
320 DATA_USE old_datad$
330 IF ERRno<0:REPORT ERRno:RETurn
340 IF dir2$(LEN(dir2$))<>'_':dir2$=dir2$&'_'
350 main_ch=-1:max_ch=0
360 read_directory dir1$
370 PRINT #0,'Backup complete'
380 FOR i=main_ch TO max_ch:CLOSE #i
390 END DEFine
400 :
410 DEFine PROCedure read_directory(current_dir$)
420 LOCal in_ch,out_ch
430 in_ch=FOPEN('scr_'):IF main_ch=-1:main_ch=in_ch
440 out_ch=FOPEN(pipe_10000):DIR #out_ch,current_dir$
450 TCONNECT #out_ch TO #in_ch
460 CLOSE #out_ch
470 copy_file$ #in_ch,full_dir$,dir2$

(continues on next page)

13.4. FBKDT 333

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

480 IF in_ch>max_ch:max_ch=in_ch
490 END DEFine
500 :
510 DEFine PROCedure copy_file$(chan,in$,out$)
520 LOCal files_loop,junk$,outer,test1,test2
530 INPUT #chan,junk$,junk$
540 REPeat files_loop
550 IF EOF(#chan):EXIT files_loop
560 INPUT #chan,in_file$
570 out_file$=out$&in_file$
580 in_file$=in$&in_file$
590 IF LEN(in_file$)>3
600 IF in_file$(LEN(in_file$)-2 TO)=' ->'
610 read_directory in_file$(1 TO LEN(in_file$)-3)
620 NEXT files_loop
630 END IF
640 END IF
650 test1=FBKDT(\in_file$)
660 outer=FOPEN(out_file$)
670 IF outer>0
680 test2=FUPDT(#outer):CLOSE #outer
690 ELSE
700 test2=-7
710 END IF
720 IF test2<test1 OR test1=0
730 PRINT 'Backing-up'!in_file$!'=>'!out_file$
740 DELETE out_file$:COPY in_file$ TO out_file$
750 SET_FBKDT \in_file$,DATE
760 END IF
770 END REPeat files_loop
775 CLOSE#chan
780 END DEFine

CROSS-REFERENCE

FUPDT , FLEN , FTYP, FDAT , FXTRA, FILE_LEN , FILE_LEN , FILE_TYPE, FVERS and FNAME$
return other information about a file.

13.5 FDAT

Syntax FDAT [(#channel)] or
FDAT (\filename) (Toolkit II and THOR)

Location Toolkit II, THOR XVI, BTool

This function returns the value of four bytes (at offset 6 to 9) in a file header. This value represents the
dataspace of executable files (file type 1). There is no convention for any other file types. The default
data device and sub-directories are supported, the default channel is #3.

334 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE

FXTRA returns the other four bytes of the type dependent information contained in the file header.
FILE_DAT is very similar to FDAT . See also FTYP.

13.6 FDEC$

Syntax FDEC$ (value,length,ndp)
Location Toolkit II, THOR XVI

This function is similar to CDEC$ except for two major differences. FDEC$ does not assume that value
is an integer, and therefore uses the whole of value, although if the given ndp (number of decimal places)
is less than the number of decimal places in value, value will be rounded up or down accordingly.

FDEC$ does not insert commas in the characters to the left of the decimal point.

Examples

PRINT FDEC$(100.235,6,2)

will print ‘100.24’

PRINT FDEC$(100,6,2)

will print ‘100.00’

CROSS-REFERENCE

Please see CDEC$.

13.7 FETCH_BYTES

Syntax a$ = FETCH_BYTES(#channel, how_many)
Location DJToolkit 1.16

This function returns the requested number of bytes from the given channel which must have been opened
for INPUT or INPUT/OUTPUT. It will work on CON_ channels as well, but no cursor is shown and the
characters typed in are not shown on the screen. If there is an ENTER character, or a CHR$(10), it will
not signal the end of input. The function will not return until the appropriate number of bytes have been
read.

WARNING - JM and AH ROMS will cause a ‘Buffer overflow’ error if more than 128 bytes are fetched,
this is a fault with QDOS and not with DJToolkit. See the demos file, supplied with DJToolkit, for a
workaround to this problem.

EXAMPLE

LineOfBytes$ = FETCH_BYTES(#4, 256)

13.6. FDEC$ 335

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.8 FEXP$

Syntax FEXP$ (value,length,ndp)
Location Toolkit II

This function is different to CDEC$ in that it always prints the given value in exponential format. This
means that there is always only one character to the left of the decimal point (plus any sign), and ndp
(number of decimal places) states how many characters should be to the right of the decimal point.

FEXP$ does not assume that value is an integer and therefore also caters for floating point values. The
length of the field must be at least ndp+7, otherwise an empty string is returned.

If necessary, values are rounded up or down to fit in the specified ndp number of decimal places.

Examples

PRINT FEXP$(-100.235,11,4)

will print -1.0023E+02

PRINT FEXP$$(100.235,11,4)

will print 1.0024E+02

CROSS-REFERENCE

CDEC$, IDEC$, FDEC$ and PRINT_USING all provide means of formatting number output.

13.9 FET

Syntax FET(file *[,{filex | #chx}]* [;cmd$])
Location SMSQ/E

Executes and returns the job ID of the job filename in suspended state (by immediately setting the new
job’s priority to zero). This function is a functional version of ET , with the same set of arguments, that
executes a job into suspended state for tracing with a monitor. In addition to what ET does, it returns the
job ID of the new job that was started.

Examples

jId = FEX ("win1_XChange_xchange")

Will start Psion XChange in win1_xchange in suspended state and return the job ID of the new job.

CROSS-REFERENCE

See ET , EXEC, JOBS.

336 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.10 FEW

Syntax FEW(filen *[,{filex | #chx}]* [;cmd$])
Location SMSQ/E

Executes and waits for completion of the job filen, then returns the error code from that job. FEW is a
function version of EW and shares its argument list.

Example

retcode = FEW ("win1_XChange_xchange")

Will start Psion XChange in win1_xchange, wait until that job has ended and will then return the error
code of that job.

CROSS-REFERENCE

See EW , EXEC_W , JOBS, QUIT .

13.11 FEX

Syntax FEX(file *[,{filex | #chx}]* [;cmd$])
Location SMSQ/E

Executes and returns the job ID of the job filename. This function is a functional version of EX, with the
same set of arguments, that executes a job. In addition to what EX does, it returns the job ID of the new
job that was started.

Example

jId = FEX ("win1_XChange_xchange")

Will start Psion XChange in win1_xchange and return the job ID of the new job.

NOTES In some combinations of SMSQ/E and FileInfo2 versions, there might be a clash of extension
names between FEX supplied as an SMSQ/E function (as described here) and a function with the same
name (but very different purpose) supplied by FileInfo2. Later versions of FileInfo2 resolved this name
clash by renaming the corresponding function to EXF.

CROSS-REFERENCE

See EX, FET , FEW , EXEC, JOBS.

13.10. FEW 337

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.12 FEX_M

Syntax FEX_M file *[,{filex | #chx}]* [;cmd$]
Location SMSQ/E

Variant of the FEX function that executes the given file and returns the new job ID. Differently to FEX,
which starts the new job as owned by the system, FEX_M starts the job as a job owned by its parent job.
This means that the newly started job will be killed whenever its owner job is killed.

Example

the_job_id = FEX_M(win1_qmac)

Will execute Qmac as a job owned by the current S*BASIC interpreter. When the current interpreter
ceases to exist, the new Qmac job will also be killed.

NOTE

An exhaustive explanation of the possible options can be found with the description of EX. FEX_M takes
the exact same arguments.

CROSS-REFERENCE

See EX.

13.13 FF

Syntax FF
Location Beuletools

This function returns CHR$(12), which performs a form feed when sent to an EPSON compatible printer.

CROSS-REFERENCE

NORM, BLD, EL, DBL, ENL, PRO, SI , NRM, UNL, ALT , ESC, LMAR, RMAR, PAGDIS, PAGLEN .

13.14 FGET%

Syntax FGET% [(#channel)]
Location BTool

This function reads two bytes from #channel (default #1) and makes an integer value from them, so these
bytes should be in the internal format of an integer to make FGET% useful.

An integer is stored in two bytes as Integer = Byte1*256+ byte2

CROSS-REFERENCE

See GET and MKI$. CVI% converts a string containing the internal format of an integer to an integer
number. See also FPUT%

338 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.15 FGET$

Syntax FGET$ [(#channel)]
Location BTool

This function reads a string in internal format from a specified channel (default #1) and returns the string.

A string is stored internally as a two byte integer (see FGET%) specifying the length of the string followed
by the characters of the string itself.

Example

100 OPEN_NEW#3,ram1_test
110 PRINT#3,MKS$("Hello World.")
120 FPOS_A#3,0
130 PRINT FGET$(#3)
140 CLOSE#3
150 DELETE ram1_test

CROSS-REFERENCE

GET , FGETB, FGET%, FGETL, MKS$. FPUT$ writes a string in internal format. CVS$ converts a
string into its internal format.

13.16 FGETB

Syntax FGETB [(#channel)]
Location BTool

This function reads a single byte (character) from a specified channel (default #1) and returns its numeric
value.

Example

100 PRINT "Please press any key..."
110 CLEAR: c = FGETB
120 PRINT "You pressed '";CHR$(c);"', ";
130 PRINT "which is code"!c!"($";HEX$(c,8);")."

CROSS-REFERENCE

The Toolkit II equivalent is BGET . See also FPUTB!

13.15. FGET$ 339

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.17 FGETL

Syntax FGETL [(#channel)]
Location BTool

This function reads four bytes, being the internal representation of a longword, from a specified channel
(default #1) and returns the longword’s value.

Example

It is preferable to store a large integer in internal format because this is faster than text representation and
needs less memory, even if the number could be stored in internal float format:

100 large_int = 1.19344E7
110 :
120 REMark save value
130 OPEN_NEW#3,ram1_test
140 PRINT#3,MKL$(large_int)
150 CLOSE#3: CLEAR
160 :
170 REMark read value
180 OPEN_IN#3,ram1_test
190 large_int = FGETL(#3)
200 CLOSE#3: PRINT large_int

CROSS-REFERENCE

LGET , MKL$. FPUTL allows you to write numbers in internal format to channels. CVL converts strings
containing the internal format to long integers.

13.18 FGETF

Syntax FGETF [(#channel)]
Location BTool

The function FGETF gets six bytes from a channel (default #1) in the internal format of a floating point
number.

WARNING

FGETF will hang SuperBASIC if the six bytes did not represent a valid floating point, so be careful.

CROSS-REFERENCE

GET , MKF$, PEEK_F, FPUTF. CVF converts a string containing the internal format into a floating
point number.

340 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.19 FGETH$

Syntax FGETH$ [(#filechan)]
Location BTool

This function reads the file header from an open channel linked to a file (default #3).

Each file has a header of 64 bytes which contains technical information about the file. FGETH$ returns a
string containing 64 characters, each of which represents one byte of the file header. The string contains
the following information:

Character Meaning Value in string Equivalent Function
1. . . 4 file length CVL(h$(1 TO 4)) FLEN
5 file access key CODE(h$(5)) None
6 file type CODE(h$(6)) FTYP
7..14 type dependent info (see below) FDAT,FXTRA
15..16 filename length CVI%(h$(15 TO 16)) LEN(FNAME$)
17..52 filename bytes CVS$(h$(15 TO 52)) FNAME$
53..56 update time CVL(h$(53 TO 56)) FUPDT
57..58 version number CVI%(h$(57 TO 58)) FVERS
59..60 reserved CVI%(h$(59 TO 60)) None
61..64 backup date CVL(h$(61 TO 64)) FBKDT

The type dependent information is different for each file type. For type 1 (executable files) bytes 7 to
10 hold the dataspace: CVL(h$(7 TO 10)). In early documentation, bytes 57 to 60 were reserved for a
reference date which was never implemented. The last eight bytes (57 to 64) are actually not used on
level-1 drivers, level-2 drivers use every byte. There is an unofficial standard for the file access key, which
is generally used by Toolkits to store file attributes in the format:

Bit
No

Meaning

7 Set if the file is read-only.
6 Set if the file is hidden and will not appear on a directory of the disk. Neither can it be accessed.
0 -
5

are used to contain the User Number. Basically, this file will only be accessible by someone
with the same user number (0-63).
Files with a user number of 0 will be visible and usable by any user.
Files with a user number of 63 are generally only available to a user in a special mode (normally
this will require a password).

You will need specialist toolkits such as Toolkit III and System, neither of which are compatible with
SMS if the File Access Key is to have any effect.

Examples

Nearly every part of a file header (apart from the two unused bytes) can be read by special functions (see
the list above), here are two functions to read the rest:

13.19. FGETH$ 341

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

100 DEFine FuNction FACCKEY (chan)
110 LOCal h$
120 h$=FGETH$(#chan)
130 RETurn CODE(h$(5))
140 END DEFine FACCKEY
150 :
160 DEFine FuNction FSPEC% (chan)
170 LOCal h$
180 h$=FGETH$(#chan)
190 RETurn CVI%(h$(59 TO 60))
200 END DEFine FSPEC%

CROSS-REFERENCE

FSETH$ is the counterpart of FGETH$. HEADR and GetHEAD read file headers to given memory
positions, FSETH$, HEADS and SetHEAD set them. Functions like FLEN , FTYP, FXTRA etc. read the
file header implicitly and return a certain piece of information from it. Use the CVI%, CVL and CVS$
functions to convert the internal representations to actual values.

13.20 FILE_BACKUP

Syntax bk = FILE_BACKUP(#channel)
bk = FILE_BACKUP(‘filename’)

Location DJToolkit 1.16

This function reads the backup date from the file header and returns it into the variable bk. The parameter
can either be a channel number for an open channel, or it can be the filename (in quotes) of a closed file.
If the returned value is negative, it is a normal QDOS error code. If the value returned is positive, it can
be converted to a string be calling DATE$(bk). In normal use, a files backup date is never set by QDOS,
however, users who have WinBack or a similar backup utility program will see proper backup dates if
the file has been backed up.

EXAMPLE

1000 bk = FILE_BACKUP('flp1_boot')
1010 IF bk <> 0 THEN
1020 PRINT "Flp1_boot was last backed up on " & DATE$(bk)
1030 ELSE
1040 PRINT "Flp1_boot doesn't appear to have been backed up yet."
1050 END IF

CROSS-REFERENCE

FILE_DATASPACE, FILE_LENGTH, FILE_TYPE, FILE_UPDATE.

342 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.21 FILE_DAT

Syntax FILE_DAT (filename) or
FILE_DAT (file$)

Location TinyToolkit

This is the same as FDAT except that default devices and sub- directories are not supported.

13.22 FILE_DATASPACE

Syntax ds = FILE_DATASPACE(#channel) or
ds = FILE_DATASPACE(‘filename’)

Location DJToolkit 1.16

This function returns the current dataspace requirements for the file opened as #channel or for the file
which has the name given, in quotes, as filename. If the file is an EXEC’able file (See FILE_TYPE) then
the value returned will be the amount of dataspace that that program requires to run, if the file is not an
EXEC’able file, the result is undefined, meaningless and probably zero. If the result is negative, there
has been an error and the QDOS error code has been returned.

EXAMPLE

1000 ds = FILE_DATASPACE('flp1_WinBack_exe')
1010 IF ds <= 0 THEN
1020 PRINT "WinBack_exe doesn't appear to exist on flp1_, or is not␣
→˓executable."
1030 ELSE
1040 PRINT "WinBack_exe's dataspace is set to " & ds & " bytes."
1050 END IF

CROSS-REFERENCE

FILE_BACKUP, FILE_LENGTH, FILE_TYPE, FILE_UPDATE.

13.23 FILE_LEN

Syntax FILE_LEN (filename) or
FILE_LEN (file$)

Location TinyToolkit

This function returns the length of a file in bytes. It does not support the default devices or sub-directories.

Example

A short program to show simple file statistics (without any support of wild cards):

13.21. FILE_DAT 343

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

100 dev$="FLP1_"
110 OPEN#3,PIPE_10000: OPEN#4,PIPE_200
120 TCONNECT #3 TO #4
130 DIR#3,dev$: INPUT#4,h$\h$
140 :
150 sum=0: count=0
160 REPeat add_lengths
170 IF NOT PEND(#4) THEN EXIT add_lengths
180 INPUT#4,file$
185 IF " ->" INSTR file$ THEN NEXT add_lengths
190 sum=sum+FILE_LEN(dev$ & file$)
200 count=count+1
210 END REPeat add_lengths
220 :
230 CLS
240 PRINT "There are"!count!"files in"!dev$;"."
250 PRINT "They are altogether"!sum!"bytes long,"
260 PRINT "the average length is"!INT(sum/count+.5)!"bytes."

TinyToolkit’s TCONNECT or DIY Toolkit’s QLINK is necessary

NOTE

It is not recommended to get a file list by writing a directory into a file or pipe. Problems arise with
sub-directories on level-2 drivers: a sub-directory is marked with an appended “ ->” in the directory list
(WDIR, WSTAT, DIR), so opening a file such a “test ->” will fail. Refer to OPEN_DIR and FOP_DIR
for a cleaner method.

CROSS-REFERENCE

FLEN has a more flexible syntax. FILE_TYPE, FILE_DAT , FILE_POS, FNAME$, FPOS, FTYP,
FUPDT and FXTRA hold other information on a file.

13.24 FILE_LENGTH

Syntax fl = FILE_LENGTH(#channel)
fl = FILE_LENGTH(‘filename’)

Location DJToolkit 1.16

The file length is returned. The file may be open, in which case simply supply the channel number, or
closed, supply the filename in quotes. If the returned value is negative, then it is a QDOS error code.

EXAMPLE

1000 fl = FILE_LENGTH('flp1_WinBack_exe')
1010 IF fl <= 0 THEN
1020 PRINT "Error checking FILE_LENGTH: " & fl
1030 ELSE
1040 PRINT "WinBack_exe's file size is " & fl & " bytes."
1050 END IF

344 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE

FILE_BACKUP, FILE_DATASPACE, FILE_TYPE, FILE_UPDATE.

13.25 FILE_OPEN

Syntax FILE_OPEN ([#ch,] device [,{mode% | ChID}])
Location BTool

FILE_OPEN is a function which will open any device (default data directory supported for files) for all
kinds of tasks. If a channel number #ch is not supplied, FILE_OPEN will choose the channel number on
its own by searching for the next free channel number and returning it.

FILE_OPEN returns the channel number if it was not specified or otherwise zero. In case of failure it
will return a (negative) error code. If error -4 (‘out of range’) is returned when a channel number has not
been supplied, this indicates that the channel table of a compiled job is full.

The third parameter can be either the open mode or the channel ID of an un-named pipe.

The open mode (default 0) is:

• 0 (old exclusive) - open an existing file to read and write.

• 1 (old shared) - open an existing file to read only.

• 2 (new exclusive) - create a new file if it does not exist.

• 3 (new overwrite) - create a new file, whether or not it exists.

• 4 (dir open) - open a directory to read only.

If the third parameter is the channel ID of an open input pipe, then FILE_OPEN will create an output
pipe linked to that channel.

Example

Count additional keywords:

100 ch1=FILE_OPEN(pipe_10000)
110 ch2=FILE_OPEN(pipe_,CHANID(#ch1))
120 EXTRAS#ch1
130 FOR count=1 TO 1E6
140 IF IO_PEND%(#ch2) THEN EXIT
150 INPUT#ch2,keyword$
160 AT 0,0: PRINT count
170 END FOR count
180 CLOSE#ch1,#ch2

CROSS-REFERENCE

FILE_OPEN combines OPEN , OPEN_IN , OPEN_NEW , OPEN_OVER, OPEN_DIR, FOPEN ,
FOP_IN , FOP_OVER, FOP_NEW , FOP_DIR, TTEOPEN and TCONNECT . See also CHANID and ER-
NUM.

13.25. FILE_OPEN 345

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.26 FILE_POS

Syntax FILE_POS (#channel)
Location TinyToolkit

This performs the same function as FPOS, although with slightly less flexible parameters.

13.27 FILE_POSITION

Syntax where = FILE_POSITION(#channel)
Location DJToolkit 1.16

This function will tell you exactly where you are in the file that has been opened, to a directory de-
vice, as #channel, if the result returned is negative it is a QDOS error code. If the file has just been
opened, the result will be zero, if the file is at the very end, the result will be the same as calling
FILE_LENGTH(#channel) - 1, files start at byte zero remember.

EXAMPLE

1500 DEFine FuNction OPEN_APPEND(f$)
1510 LOCal ch, fp
1515 :
1520 REMark Open a file at the end, ready for additional
1530 REMark data to be appended.
1540 REMark Returns the channel number. (Or error)
1545 :
1550 ch = DJ_OPEN(f$)
1560 IF ch < 0 THEN
1570 PRINT "Error: " & ch & " Opening file: " & f$
1580 RETurn ch
1590 END IF
1595 :
1600 MOVE_POSITION #ch, 6e6
1610 fp = FILE_POSITION(#ch)
1620 IF fp < 0 THEN
1630 PRINT "Error: " & fp & " reading file position on: " & f$
1640 CLOSE #ch
1650 RETurn fp
1660 END IF
1665 :
1670 PRINT "File position set to EOF at: " & fp & " on file: " &f$
1680 RETurn ch
1690 END DEFine

CROSS-REFERENCE

ABS_POSITION , MOVE_POSITION .

346 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.28 FILE_PTRA

Syntax FILE_PTRA #channel, position
Location TinyToolkit

This command forces the file pointer to be set to the given position. Positions greater than the actual file
length or smaller than zero will set the pointer to the end or start of the file respectively.

CROSS-REFERENCE

FILE_PTRR, FILE_POS, FPOS, FLEN , FILE_LEN , GET .

13.29 FILE_PTRR

Syntax FILE_PTRR #channel, bytes
Location TinyToolkit

This command moves the file pointer from its current position by the given number of bytes forward,
negative numbers allow backward movement.

The file pointer cannot go beyond the limits of the file itself, so if you try to do so, the pointer will be set
to the start or end of the file.

Example

A program to store several names and telephone numbers in a file and then to search for the given name
and return the relevant telephone number:

100 DIM a$(3,30),number(3)
110 RESTORE
120 FOR i=1 TO 3: READ a$(i),number(i)
130 OPEN_NEW #3,flp2_phone_dbs
140 FOR stores=1 TO 3
150 PUT#3,a$(stores),number(stores)
160 END FOR stores
170 CLOSE#3
180 :
200 INPUT name$
210 OPEN_IN#3,flp2_phone_dbs
220 REPeat find_NAME
230 IF EOF(#3) THEN PRINT 'NAME not found...': STOP
240 GET#3,entry$
250 IF entry$==name$ THEN
260 GET#3,telno
270 EXIT find_NAME
280 END IF
290 FILE_PTRR#3,6: REMark skip next phone number
300 END REPeat find_NAME
310 CLOSE#3

(continues on next page)

13.28. FILE_PTRA 347

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

320 PRINT entry$;'....';telno
330 :
350 DATA 'P.C. Green','999'
360 DATA 'CATFLAP inc.','7212.002121'
370 DATA 'Tim','98081'

Note that on Minerva, Integer Tokenisation will need to be disabled.

CROSS-REFERENCE

FILE_PTRA, FILE_POS, FPOS, FLEN , FILE_LEN , GET .

13.30 FILE_TYPE

Syntax ft = FILE_TYPE(#channel)
ft = FILE_TYPE(‘filename’)

Location DJToolkit 1.16

This function returns the files type byte. The various types currently known to me are :

• 0 = BASIC, CALL’able machine code, an extensions file or a DATA file.

• 1 = EXEC’able file.

• 2 = SROFF file used by linkers etc, a C68 Library file etc.

• 3 = THOR hard disc directory file. (I think!)

• 4 = A font file in The Painter

• 5 = A pattern file in The Painter

• 6 = A compressed MODE 4 screen in The Painter

• 11 = A compressed MODE 8 screen in The Painter

• 255 = Level 2 driver directory or sub-directory file, Miracle hard disc directory file.

There may be others.

EXAMPLE

1000 ft = FILE_TYPE('flp1_boot')
1010 IF ft <= 0 THEN
1020 PRINT "Error checking FILE_TYPE: " & ft
1030 ELSE
1040 PRINT "Flp1_boot's file type is " & ft & "."
1050 END IF

CROSS-REFERENCE

FILE_BACKUP, FILE_DATASPACE, FILE_LENGTH, FILE_UPDATE.

348 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.31 FILE_UPDATE

Syntax fu = FILE_UPDATE(#channel)
fu = FILE_UPDATE(‘filename’)

Location DJToolkit 1.16

This function returns the date that the appropriate file was last updated, either by printing to it, saving it
or editing it using an editor etc. This date is set in all known QLs and emulators etc.

EXAMPLE

1000 fu = FILE_UPDATE('flp1_boot')
1010 IF fu <> 0 THEN
1020 PRINT "Flp1_boot was last written/saved/updated on " & DATE$(fu)
1030 ELSE
1040 PRINT "Cannot read lates UPDATE date from flp1_boot. Error: " & fu &
→˓"."
1050 END IF

CROSS-REFERENCE

FILE_DATASPACE, FILE_LENGTH, FILE_TYPE, FILE_TYPE.

13.32 FILL

Syntax FILL [#channel,] boolean
Location QL ROM

This command switches Fill mode on and off. If the Fill mode is on (after FILL 1), all points in the given
window channel (default #1) that have the same vertical co-ordinate are connected by a line in the current
ink colour so that only non re-entrant figures can be filled correctly. This means that figures must only
contain two points on each horizontal row of pixels. The fill mode is de-activated by FILL 0.

Example 1

FILL 1: POINT 20,20,40,20: FILL 0

draws a horizontal line from 20,20 to 40,20.

Example 2

100 DEFine PROCedure SQUARE (x,y,size,angle)
110 LOCal n: POINT x,y
120 TURNTO angle: PENDOWN: FILL 1
130 FOR n=1 TO 4: MOVE size: TURN 270
140 PENUP: FILL 0
150 END DEFine SQUARE

NOTE 1

13.31. FILE_UPDATE 349

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

FILL only affects those graphic commands which use relative co-ordinates, ie. which are influenced by
SCALE. Commands which operate in absolute window or screen co-ordinates will not invoke filling.

NOTE 2

On non-Minerva ROMs, 1K of memory may be lost if you do not issue a FILL 0 before closing a win-
dow. This is however fixed by v1.38 (or later) of the Pointer Interface (although earlier versions will
re-introduce it to Minerva!).

NOTE 3

When drawing several shapes, all of which are to be filled, ensure that you issue a FILL 0 between each
shape, otherwise they will be joined together if any points appear on the same horizontal line!

NOTE 4

FILL works by setting aside a buffer of approximately 1K. Whenever a point is then plotted in the given
window, FILL looks at the buffer to see if anything appears to the left of that point on the same horizontal
line (in which case, it fills the line between the two points), otherwise, FILL will just note the co-ordinate
of the point in its buffer.

FILL then checks if anything appears to the right of the given point, and if so, will fill the line between
the two points. Again, the co-ordinate of the point will be stored if nothing appears to the right of it.

This should explain quite a few of FILL’s quirks. Whenever a new FILL command is used on that window,
the old buffer is lost, meaning that FILL will forget about any points previously plotted.

Unfortunately, the interaction of this buffer causes a lot of problems (and prevents re-entrant shapes),
especially in view of the fact that only FILL or CLOSE will clear the buffer. The buffer is not cleared
once a shape has been completely filled (eg. with CIRCLE), nor even when the screen is cleared with
CLS. Try this for example:

100 INK 7:FILL 1
110 CIRCLE 50,50,20
130 CLS
135 INK 2
140 CIRCLE 70,60,20

NOTE 5

If OVER -1 is switched on, the same line of an image may be FILLed twice causing that line to be left
empty, unless you start drawing the image from either the top or the bottom. You may also encounter
problems if you try to draw a line which has already been completed by FILL - for example try:

100 OVER -1: FILL 1
110 LINE 50,50 TO 60,60 TO 70,50 TO 50,50

The FILL command will complete the triangle as soon as the line between the points (60,60) and (70,50)
has been drawn, therefore this should be re-written:

100 OVER -1:FILL 1
110 LINE 50,50 TO 60,60 TO 70,50

On Minerva v1.97 and SMSQ/E, matters are further complicated - the first example draws a complete
triangle, whereas the second one doesn’t!

NOTE 6

350 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

If OVER -1 is switched on, a shape which is drawn as FILLed will not be wiped out by re-drawing the
same shape again, unless you do a FILL 1 before re-drawing the shape. For example, try this:

100 OVER -1:FILL 1:CIRCLE 50,50,20
110 PAUSE: CIRCLE 50,50,20

The answer is to insert a line:

105 FILL 1

NOTE 7

On Minvera pre v1.86 FILL 0 when fill was not actually switched on would stop SuperBASIC!!

CROSS-REFERENCE

The paint colour of FILL is specified by INK .

13.33 FILL$

Syntax FILL$ (short$,length)
Location QL ROM

This function will generate a string of the given length and return it. The new string will consist of a
repeated series of short$ which may be one or two characters long. The length (as with any string) ranges
from 0 to 32767.

Examples

FILL$("W-",7)

returns “W-W-W-W”.

FILL$("+",10)

returns “++++++++++”.

FILL$("Jo",0)

returns “” (the empty string).

FILL$("Test",6)

returns “TeTeTe”.

NOTE 1

A bug in the THOR XVI (v6.40) meant that the return stack could be destroyed when appending the
result to an even length string.

NOTE 2

A program will run more quickly (although it is more difficult to type in) if you declare the string explicitly
rather than using FILL$.

13.33. FILL$ 351

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE 3

The maximum length of string that can be produced with FILL$ depends on the ROM version - see the
Compatibility Appendix.

CROSS-REFERENCE

Refer to DIM about strings in general.

13.34 FILLMEM_B

Syntax FILLMEM_B start_address, how_many, value
Location DJToolkit 1.16

Fill memory with a byte value. See FILLMEM_L below.

CROSS-REFERENCE

FILLMEM_L, FILLMEM_W .

13.35 FILLMEM_W

Syntax FILLMEM_W start_address, how_many, value
Location DJToolkit 1.16

Fill memory with a 16 bit word value . See FILLMEM_L below.

CROSS-REFERENCE

FILLMEM_L, FILLMEM_B.

13.36 FILLMEM_L

Syntax FILLMEM_L start_address, how_many, value
Location DJToolkit 1.16

Fill memory with a long (32 bit) value.

EXAMPLE

The screen memory is 32 kilobytes long. To fill it all black, try this:

1000 FILLMEM_B SCREEN_BASE(#0), 32 * 1024, 0

or this:

1010 FILLMEM_W SCREEN_BASE(#0), 16 * 1024, 0

352 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

or this:

1020 FILLMEM_L SCREEN_BASE(#0), 8 * 1024, 0

and the screen will change to all black. Note how the second parameter is halved each time? This is
because there are half as many words as bytes and half as many longs as words.

The fastest is FILLMEM_L and the slowest is FILLMEM_B. When you use FILLMEM_W or
FILLMEM_L you must make sure that the start_address is even or you will get a bad parameter error.
FILLMEM_B does not care about its start_address being even or not.

FILLMEM_B truncates the value to the lowest 8 bits, FILLMEM_W to the lowest 16 bits and
FILLMEM_L uses the lowest 32 bits of the value. Note that some values may be treated as negatives when
PEEK‘d back from memory. This is due to the QL treating words and long words as signed numbers.

CROSS-REFERENCE

FILLMEM_B, FILLMEM_W .

13.37 FIND

Syntax FIND (procfn$)
Location BTool

If procfn$ is the name of a machine code keyword (eg. “FILL$”) then the function FIND returns the
address where the definition is stored in memory.

If, however, procfn$ contains the name of a SuperBASIC PROCedure or FuNction then FIND will return
the line number where the PROCedure or FuNction starts.

FIND returns 0 if the passed name is unknown.

Example

<ALT><r> requests a Procedure/Function name and calls Toolkit II’s full screen editor accordingly:

ALTKEY "r","ED FIND('')"&CHR$(192)&CHR$(192)

CROSS-REFERENCE

KEY_ADD, ELIS, NEW_NAME Also see FLIS.

13.38 FLASH

Syntax FLASH [#ch,] switch
Location QL ROM

This command turns on or off flashing in the specified window channel (default #1). Switch can only
have the values 0 (to enable flashing) and 1 (to turn flashing on).

This command will only have any effect in MODE 8.

13.37. FIND 353

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

If flashing is enabled, then any characters PRINTed to the given window afterwards will be shown to
flash - it is first written out as normal, but then the parts of the character which would normally be shown
in the current INK colour will alternate with the colour of the background.

The colour of the background can in fact be different for each row of pixels - this is calculated by the
colour of the left-most pixel on each row for each character PRINTed.

Example

This short listing shows the effect of the FLASH command - note that the display is not actually changed
back to its original form.

100 PAPER 2: INK 1
120 CSIZE 3,1: MODE 8: CLS
130 FOR i=0 TO 50: LINE 80+i,80 TO 15+i,10
140 INK 7: CURSOR 100,120
150 OVER 1: FLASH 1: PRINT 'This is flashing'
160 CSIZE 1,0: FLASH 0

NOTE 1

This command only affects characters PRINTed to the screen after the FLASH 1. There is no effect on
graphics commands, or BLOCK or LINE.

NOTE 2

Spurious results may occur if you write over part of a flashing character (with OVER -1).

NOTE 3

This command does not work on the Amiga-QDOS Emulator or ST/QL Emulators.

CROSS-REFERENCE

Please also refer to UNDER, OVER and PRINT . MODE resets the FLASH mode to off.

13.39 FLEN

Syntax FLEN [(#channel)] or
FLEN (\file)(Toolkit II and THOR only)

Location Toolkit II, THOR XVI, BTool

This function returns the length of a file in bytes. If the second version is used, then Toolkit II’s default
data device and sub-directories will be supported, meaning that the command will consult the default
data directory if necessary (see DATAD$).

If you use the first version however, you will first of all need to open a channel. If you do not supply a
channel number, then the default used by the function is #3.

NOTE 1

The space on disks, cartridges, ramdisks and all other media where files can be stored is divided up into
sectors, which are normally 512 bytes long. A file does not occupy the number of bytes returned by
FLEN but a certain number of sectors for the contents of the file itself, a few bytes for the file header and

354 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

the directory entries (sector map, etc). The total number of sectors which are occupied by the file data
are:

sectors = 2 + CEIL(FLEN(\file)/512)

NOTE 2

If the second syntax does not work, update your Toolkit.

CROSS-REFERENCE

FILE_LEN has a slightly different syntax. FILE_TYPE, FILE_DAT , FILE_POS, FNAME$, FPOS,
FTYP, FUPDT and FXTRA hold other information about a file. HEADR and HEADS allow you to
directly access a file header.

13.40 FLIS

Syntax FLIS (procfn$)
Location Tiny Toolkit

If procfn$ is the name of a SuperBASIC PROCedure or FuNction then FLIS will return the line number
where the PROCedure or FuNction is defined.

If however, it is a machine code keyword (eg. “FILL$”) then the function FLIS will return 0.

If the name is not recognised the error ‘Not Found’ is reported.

CROSS-REFERENCE

KEY_ADD, ELIS, NEW_NAME Also see FIND.

13.41 FLP_DENSITY

Syntax FLP_DENSITY density (density = S, D, H or E)
FLP_DENSITY (SMSQ/E for QPC only)

Loca-
tion

Gold Cards, SMS, SMSQ/E for QPC

There are four types of floppy disk drives which can be connected to a QL with a Gold Card (or to other
computers which are running a QL emulator). The command FLP_DENSITY sets the type for use with
FORMAT:

Sides Density Abbrev Capacity FLP_Density
Single Double SSDD 360 Kb S
Double Double DSDD 720 Kb D (Not QPC)
Double High DSHD 1440 Kb H
Double Extra DSED 3240 Kb E (Not QPC)

13.40. FLIS 355

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Parameters other than the four letters S, D, H and E, (including several characters or several parameters)
are not allowed.

Examples

FLP_DENSITY h
FLP_DENSITY 'D'

NOTE 1

Tests have shown that it is not always advisable to FORMAT a disk to a lower density than would other-
wise be possible, for example a high density disk to double density. The result may be that the number
of good sectors is less than could have been achieved by formatting a disk of the lower density.

During testing, an undamaged double density disk was formatted to 1440 sectors and a high density disk
to 2880 sectors, but if the high density disk had been formatted to double density, eg. with:

FLP_DENSITY D : FORMAT flp1_

less than 1440 sectors might be good sectors.

You may also find that some disk drives which support the higher density will be unable to read these
disks, since it will presume that they are FORMATted to their maximum density.

NOTE 2

Since FLP_DENSITY only has any affect during formatting, it should generally be avoided. This does
not really matter because a disk is automatically formatted to the highest possible density and it would
be a waste of money to use a HD disk as a DD disk.

NOTE 3

If a high or extra density disk is formatted on a system which does not support those capacities, it will be
formatted to double density without any disadvantages. Such a disk does not cause problems when used
with a Gold Card QL.

NOTE 4

A double density disk cannot be formatted to a higher density with HD drives - the Level-2 (or
Level-3) device driver will automatically reduce a density which had been set at too high a figure by
FLP_DENSITY, to the appropriate figure. An ED drive however can successfully format HD disks and
even DD disks to high and extra density, but such disks may be unreliable, ie. data could be easily lost.

NOTE 4

High density is only supported on 3.5” disks, not 5.25” disks (widely used on MS/DOS systems). Extra
density also only exists on 3.5” disks. QL DD and HD formatted disks have the same physical (but not
software) format as MS/DOS and Atari TOS disks.

NOTE 5

High density and Extra density disks are much faster than double density disks, ED disks can even be as
fast as slow hard disks.

NOTE 6

FLP_DENSITY overrides the in-built trial-and-error density detection which is slow for HD drives and
even slower with ED drives. This can however cause problems when FORMATting DSDD disks - see
FORMAT!

356 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE 7

On SQMS/E for QPC, the same code letters may be added (after a *) to the end of the medium name to
force a particular density format. (For compatibility with older drivers, if the code letter is omitted after
the *, single sided format is assumed).

• FORMAT ‘FLP1_Disk23’ Format at highest density or as specified by FLP_DENSITY .

• FORMAT ‘FLP1_Disk24*’ Format single sided

• FORMAT ‘FLP1_Disk25*S’ Format single sided

• FORMAT ‘FLP1_Disk25*D’ Format double sided, double density

Also, FLP_DENSITY on it’s own resets automatic density selection.

CROSS-REFERENCE

The same effect as FLP_DENSITY can be achieved with a special FORMAT syntax. FLP_TRACK allows
you to specify the number of tracks to be formatted onto a disk. STAT prints the name, good and free
sectors of a medium. See also the The DMEDIUM_XXX functions, starting at DMEDIUM_DENSITY .

13.42 FLP_DRIVE

Syntax FLP_DRIVE drive%, drive$
Location SMSQ/E for QPC

This changes the drive/image the floppy device is connected to.

Example

FLP_DRIVE 2,"C:\FLOPPY.IMG"

Now FLP2_ is assigned to the floppy image FLOPPY.IMG on the host computer’s C:\ drive.

FLP_DRIVE 2,"B:\"

FLP2_ is assigned to the physical B:\ floppy drive of the host computer.

13.43 FLP_DRIVE$

Syntax drive$ = FLP_DRIVE$(drive%)
Location SMSQ/E for QPC

This reads back the current connection of the floppy device.

Example

PRINT FLP_DRIVE$(2)

will tell you the current setting for flp2_.

13.42. FLP_DRIVE 357

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.44 FLP_EXT

Syntax FLP_EXT
Location Gold Cards

If you use RES_128 or RES_SIZE to reset the computer to 128K memory any attempts to access the
floppy disk drives can be haphazard, and can even crash the computer.

The command FLP_EXT resolves these problems and adds the following commands for use:
RAM_USE, CACHE_ON, CACHE_OFF, SCR2DIS, SCR2EN, AUTO_TK2F1, AUTO_TK2F2,
AUTO_DIS, FLP_JIGGLE, PAR_USE, FSERVE, NFS_USE, DEV_USE, DEV_LIST, DEV_USE$,
DEV_NEXT, SDUMP, SDP_SET, SDP_KEY, SDP_DEV, PRT_USE, PRT_ABT, RES_128,
RES_SIZE, PROT_DATE

CROSS-REFERENCE

See RES_128 and TK2_EXT .

13.45 FLP_JIGGLE

Syntax FLP_JIGGLE [driveno,] flag
Location Gold Cards

There were originally various problems when using Mitsubishi ED disk drives with the Gold Card and
so a fix was incorporated in both the Gold Card and Super Gold Card operating systems which forces the
drive read/write head to make a number of rapid steps.

This can however cause problems with other ED disk drives (normally seen in the form of ‘Not Found’
or ‘Bad or Changed Medium’ errors.

It was therefore felt necessary to be able to enable or disable this feature at the users request (the default
is to have the feature disabled).

To enable this feature set flag to 1, 0 will disable it.

If driveno is not specified, then the setting will be applied to all disk drives connected to the (Super) Gold
Card and automatically stored so that it is available on power on.

If driveno is specified, then the setting will only apply to that specified disk drive and will be forgotten
when the power is switched off.

CROSS-REFERENCE

See FLP_STEP and FLP_START which overcome various other problems with some disk drives.

358 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.46 FLP_SEC

Syntax FLP_SEC level
Location Gold Cards, Trump Card, SMS, THORs, SMSQ/E for QPC

The Gold Card, Trump Card and Thor range of computers, together with SMS provide a high standard
of disk security, meaning that they are unlikely to fail to notice when a disk has been swapped over, and
thereby try to write a file across two disks!

However, this level of security does affect the speed of disk access, as the system must check to see if the
disk has been altered each time that it is written to.

The command FLP_SEC allows you to choose between three levels of security, the lowest of which (level
0) is still at least as secure as many other disk operating systems (such as MSDOS). The lower the level
of security, the quicker disk access will be. The levels of security are as follows:-

Security Level 0
The disk system will only check to see if the disk has changed if a file is opened and the disk has
stopped (ie. the disk light will have gone out) since the last time it was checked. The disk map is
only updated when a file is closed (or flushed) and no other disk access has happened within half a
second. Confusion can be expected on both read and write operations whenever a disk is changed
whilst the disk light is still on or there are files open to the disk.

Security Level 1
The disk is checked each time that a file is opened, data is written to the disk, or the disk map is to
be written; provided that the disk has stopped since the last time it was checked. The disk map is
only updated when a file is closed (or flushed) and no other disk access has happened within half a
second. The disk is not checked when anything is read from the disk, which can lead to confusion
if a disk is changed whilst there are files still open.

Security Level 2
The disk is checked whenever a file is opened, data is written to or read from the disk, or the map
is to be read or written to; provided that the disk has stopped since the last time that it was checked.
The disk map and directory are updated and the slave buffers flushed every time that a file is closed
(or flushed).

SMS NOTE

FLP_SEC has no effect - the security level is fixed at 2, the most secure.

SMSQ/E for QPC NOTE

FLP_SEC has no effect - the security level is fixed at 2, the most secure.

13.46. FLP_SEC 359

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.47 FLP_START

Syntax FLP_START time
Location Gold Cards, Trump Card, THORs, ST/QL (level D.02+ drivers), SMS, SMSQ/E for QPC

The disk system always tries to read data from a disk as soon as it can. However, when writing to a disk,
it is necessary to ensure that the disk is running at full speed before any information is sent to it.

For relatively new drives, the default waiting time of 0.5 seconds should be enough to ensure that the
disk is running at full speed.

The command FLP_START can be used for older disks to allow a longer run-up time. You will need to
specify the time in 20ms units - some older drives may require a value of about 60.

Example

FLP_START 13

sets the start up time to 13 * 20ms (260ms) - this may suit the most recent 3.5” drives.

NOTE

FLP_START has no effect on either the QXL or QPC implementations of SMSQ and SMSQ/E.

CROSS-REFERENCE

You may also need to alter the stepping rate with FLP_STEP.

13.48 FLP_STEP

Syntax FLP_STEP [drive,] rate
Location Disk Interfaces, Gold Cards, SMS, SMSQ/E for QPC

The step rate enables the computer to known how quickly to step across tracks on the disk surface.
Normally, this is automatically set to 3 milliseconds (ms) for 80 track disks and 6ms for 40 track disks,
although if the system detects repeated errors on reading the disk, it will automatically slow the step rate.

Various old disk drives may require a slower stepping speed (you will generally know this from the noise
the disk drive makes - it will make a repetitive knocking sound each time that the disk is accessed). You
can do this by increasing the value specified by setting the rate using this command.

If drive is not specified, the new step rate is taken to apply to all disk drives connected to the system,
otherwise, you can specify the number of the drive to which the new step rate is to apply.

Examples

FLP_STEP 12

Will produce quite a slow step rate for older drives.

FLP_STEP 2,12

360 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Will produce a step rate of 12ms for the drive in FLP2_.

NOTE 1

The first, optional parameter may not be available on some interfaces.

NOTE 2

FLP_STEP has no effect on the QXL, QPC or Atari implementations of SMSQ and SMS.

CROSS-REFERENCE

FLP_SEC will alter the security setting for reading and writing to a disk. FLP_START may also be
needed on older drives.

13.49 FLP_TRACK

Syntax FLP_TRACK tracks
Location Gold Cards, Trump Card, THOR, ST/QL, SMS

When a disk is formatted, the operating system will check to see if there are more than 55 tracks on the
disk, and if so, will presume that it should be formatted to 80 tracks (otherwise it will presume the disk
is to be formatted to 40 tracks).

The command FLP_TRACK allows you to override this setting, so that you can format a disk to, say, 75
tracks. FLP_TRACK 40 should be used as standard when a 40 track disk drive is attached to the system
as this will prevent the system from trying to read track 55 (which does not exist!!), thus saving wear on
the drive.

Example

FLP_TRACK 40

can be used on a standard DSDD 80 track disk to format it into a form readable on a 40 track drive.

CROSS-REFERENCE

FLP_DENSITY also affects how a disk is FORMAT ted.

13.50 FLP_USE

Syntax FLP_USE [device]
Location Gold Cards, Trump Card, THORs, ST/QL, SMS, SMSQ/E for QPC

Software which was written in the early days of the QL tended to assume that it would always be run
from microdrive, and therefore included no facilities to alter the default devices used by the software.

You may even find some software was written on a non-standard disk system and assumed that disks
would be accessed via FDK rather than the normal FLP.

The FLP_USE command allows you to use such software by making the FLP device emulate any other
device. You merely need to supply a three letter parameter representing the name of the device which

13.49. FLP_TRACK 361

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

is to be emulated. Once you do this, the FLP device will no longer be recognised. If the device is not
specified, then the system reverts to using FLP to access the disk drives.

Example

FLP_USE 'mdv'

will allow you to use software which would normally run from microdrive (unless it is copy protected!).

CROSS-REFERENCE

RAM_USE, DEV_USE and WIN_USE are very similar. DMEDIUM_TYPE can be used to find out the
type of device which a name actually refers to. DMEDIUM_NAME$ will return the default name of a
device.

13.51 FLUSH

Syntax FLUSH [#ch]
Location Toolkit II

The command FLUSH forces all of the QL’s temporary buffers attached to the specified channel (default
#3) to be emptied into that channel. This will only work on channels attached to files, any other type of
channel will return error -15 (bad parameter).

This command is necessary due to the use by QDOS of slave blocks whenever a file is opened. Data can
be stored partly in the slave blocks to aid speed and when writing to a file, which will only be written to
that file once the channel has been CLOSEd or the slave blocks have become full.

Because of this, there is always a danger that part of the data will be lost if there is a power failure or
other accident. FLUSH helps you to avoid this.

NOTE

FLUSH will not work with Micro Peripherals disk drives. Nor can it be used to flush the Networks.

CROSS-REFERENCE

See OPEN and CLOSE.

13.52 FLUSH_CHANNEL

Syntax FLUSH_CHANNEL #channel
Location DJToolkit 1.16

This procedure makes sure that all data written to the given channel number has been ‘flushed’ out to the
appropriate device. This means that if a power cut occurs, then no data will be lost.

EXAMPLE

362 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

1000 DEFine PROCedure SaveSettings
1010 OPEN_OVER #3, "flp1_settings.cfg"
1020 FOR x = 1 to 100
1030 PRINT #3, Setting$(x), Value$(x)
1040 END FOR x
1050 FLUSH_CHANNEL #3
1060 CLOSE #3
1070 END DEFine

13.53 FMAKE_DIR

Syntax FMAKE_DIR (subdirectory)
Location Level-2 Device Drivers

This function will only work if Level-2 or Level-3 device drivers are available.

FMAKE_DIR is identical to MAKE_DIR except that it is a function and does not stop a program if an
error occurs, instead it returns the code of the error concerned.

The following errors need some explanation:

• Error -9 (in use) : There is already a sub-directory with the same name;

• Error -8 (already exists) : File (not a sub-directory) exists already with that name;

• Error -15 (bad parameter) : Medium does not support sub-directories.

NOTE 1

If MAKE_DIR or FMAKE_DIR fail on a ramdisk, an old type ramdisk may have been loaded. There is
no other way to activate the integral ramdisk other than by resetting the whole system.

NOTE 2

If error -15 occurs (ie. if you try to created a sub-directory on a medium where this is not possible),
MAKE_DIR and FMAKE_DIR will leave an empty file with the name of the desired sub-directory on
the medium. Remember to remove this.

CROSS-REFERENCE

See MAKE_DIR.

13.54 FNAME$

Syntax | FNAME$ [(#channel)] or
FNAME$ (\file)(Toolkit II only)

Location Toolkit II, BTool

This function returns the filename of a file attached to the specified channel (default #3), including the
sub-directory prefix but without the pure device name (eg. RAM1_).

13.53. FMAKE_DIR 363

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

The second syntax enables you to find out the full filename of the specified file.

It is hard to understand why one should need to find out about the name of an opened file - the second
syntax is even more absurd.

One possible usage is to convert a Toolkit II filename, which need not include the current sub-directory,
to a full file name. However, the functions DATAD$, PROGD$ together with some string operations are
much faster and more elegant because they skip the need to access the file header.

CROSS-REFERENCE

FLEN , FTYP, FDAT , FXTRA, FUPDT , FILE_LEN and FILE_TYPE return other information about a
file.

13.55 FOPEN

Syntax FOPEN (#ch, name) or
FOPEN (name)

Location Toolkit II, THOR XVI

This function is designed to allow you to access files safely without causing errors which force a program
to stop.

If the first variant of FOPEN is used, this is actually very similar to the command OPEN in operation,
except that if for some reason opening the specified channel (#ch) with the specified name would cause
an error, FOPEN returns the relevant error code. If the specified channel is successfully opened, then
FOPEN returns 0.

By contrast, if the second variant of the command is used, where no specific channel number is used, if
successful, FOPEN will return a positive number representing the number of the next available channel
(ie. the number of the lowest entry in the channel table which is empty).

If a negative number is returned, this is the appropriate error number, allowing the programmer to take
any necessary action (such as requesting the user to input a new file name).

Examples

ERRno = FOPEN(#3,scr_448x200a32x16)
Chan = FOPEN('flp1_Input_dat'): IF Chan>0 THEN INPUT #Chan,x

NOTE 1

All versions of this command (other than v2.28 of Toolkit II or later) can be confused by filenames
which exceed 36 characters, in which case FOPEN will return 0. On later versions, FOPEN supports 41
character filenames (including any default directory).

NOTE 2

Although FOPEN opens a file for both reading and writing, it will only return an error if the file does
not already exist or is in use. It does not check whether the file is read only. Use FOP_NEW or
DMEDIUM_RDONLY for this. If you do not check whether the file is read only, an error will only
be reported if you try to write to the file!!

CROSS-REFERENCE

364 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

ERNUM contains details of the various error messages. WHEN ERRor allows you to error trap a complete
program. Also see FOP_DIR, FOP_IN , FOP_OVER and FOP_NEW . Also see OPEN . FTEST allows
you to test the status of a file without (explicitly) opening a channel.

13.56 FOP_DIR

Syntax FOP_DIR (#ch, name) or
FOP_DIR (name)

Location Toolkit II, THOR XVI

The function FOP_DIR is a complementary function to OPEN_DIR in much the same way as FOPEN
is to OPEN. This function returns the same values and suffers from the same problem as FOPEN.

CROSS-REFERENCE

See FOPEN , TTEOPEN and OPEN_DIR.

13.57 FOP_IN

Syntax FOP_IN (#ch, name) or
FOP_IN (name)

Location Toolkit II, THOR XVI

The function FOP_IN falls into the same series of functions as FOPEN, FOP_DIR, FOP_NEW and
FOP_OVER. This function is a complementary function to OPEN_IN in much the same way as FOPEN
is to OPEN. This function returns the same values and suffers from the same problem as FOPEN.

CROSS-REFERENCE

See FOPEN and OPEN_IN .

13.58 FOP_NEW

Syntax FOP_NEW (#ch, name) or
FOP_NEW (name)

Location Toolkit II, THOR XVI

This function, together with its companions FOPEN, FOP_IN, FOP_DIR and FOP_OVER, is designed
to allow you to access files safely without causing errors which force a program to stop. This function
is the complement to OPEN_NEW and returns the same values and suffers from the same problem as
FOPEN. If the specified file already exists, you are asked whether you want to over-write the existing file.
An error (-8) is returned if you press N, and error (-20) is returned if the disk is read only.

CROSS-REFERENCE

See FOPEN and OPEN_NEW .

13.56. FOP_DIR 365

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.59 FOP_OVER

Syntax FOP_OVER (#ch, name) or
FOP_OVER (name)

Location Toolkit II, THOR XVI

This function is the complement to OPEN_OVER and suffers from the same problem as FOPEN. It also
returns the same values as FOP_NEW, except that it will implicitly over-write an existing file with the
same name.

CROSS-REFERENCE

See FOPEN and OPEN_OVER.

13.60 FOR

Syntax FOR var = range *[,rangei]*

Location QL ROM

The SuperBASIC version of the classic FOR loop is extremely flexible.

The syntax of this SuperBASIC structure can take two forms:

FOR var=range *[,rangei]* :statement *[:statement]*

or :

FOR var=range *[,rangei]* *[statements]* [EXIT var] [NEXT var] END FOR var

Where range can be one of the following:

start_value TO end_value [STEP step]

or, simply just:

value

The first of these variants is known as an in-line FOR loop. Provided that there is at least one statement
following FOR, this line will be repeated until the end value is reached (see below). There is no need for
a related END FOR statement and therefore the shortest in-line FOR loop possible is:

FOR x=1 to 100: NEXT x

If an in-line loop is terminated prematurely, for example with EXIT, control will be passed to the statement
following the corresponding END FOR statement (if one exists), or the next program line. This allows
the following:

FOR x=1 TO 100: IF INKEY$=' ': EXIT x: END FOR x: PRINT x

The basic function of FOR is to count a floating point variable from a given start value to an end value by
adding step to var during each pass of the loop (step may be positive or negative depending on the start
and end values). If no step is specified, STEP 1 will be assumed.

366 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

However, if step is negative when the end value is greater than the start value (or vice versa), then the
loop will immediately exit, and nothing contained in the loop will be processed.

A similar effect can be achieved by using a REPeat structure:

var=start_value
REPeat loop

...
IF var >= end_value THEN
EXIT loop

ELSE var = var + step
END REPeat loop

The similarity between these two SuperBASIC loop types can be extended to the use of EXIT and NEXT
statements which can be used identically in both structures.

EXIT terminates the loop, and the next statement which will be processed is the first statement after the
corresponding END FOR. NEXT forces the program to make the next pass of the loop.

PROGRAMMING NOTES

1. When NEXT is used within a FOR..END FOR structure, if var is already at the end_value, the
NEXT statement will have no effect:

100 FOR x=1 TO 9
110 PRINT x;" ";
120 IF x MOD 2 THEN NEXT x
130 PRINT x^2
140 END FOR x

Output:

1 2 4
3 4 16
5 6 36
7 8 64
9 81

To prevent the odd result when x=9, line 120 would need to be altered to read:

120 IF x MOD 2 THEN NEXT x: EXIT x

2. Except on a Minerva ROM or under SMS, the loop variable is set to 0 before the FOR is executed,
therefore the following program prints the square roots of the numbers 0 to 9:

100 x=3
110 FOR x=x TO 9
120 PRINT x;' ';
130 IF NOT RND(10) THEN EXIT x
140 PRINT SQRT(x)
150 END FOR x

On Minerva ROMs and under SMS, this would print out all of the square roots of the numbers 3
to 9 (as expected).

13.60. FOR 367

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

3. A NEXT statement directly after the FOR statement could be used to omit some values of the loop
variable:

100 FOR x=1 TO 9
110 IF x MOD 2 THEN NEXT x: EXIT x
120 PRINT x; TO 4; x^2
130 END FOR x

However, in some cases, it may be easier and shorter to write:

100 FOR x=2,4,6,8
110 PRINT x; TO 4; x^2
120 END FOR x

4. Single values and intervals can be freely mixed after the equals sign. The following examples are
all valid expressions:

FOR x=2,4 TO 10 STEP 2,4.5,7 TO -4 STEP -.2
FOR x=1

5. To shorten program lines even further, the FOR loop can be used in a single line and the END FOR
omitted (this is called an in-line FOR loop):

FOR x=2,4,6,8: PRINT x; TO 4; x^2

Example 1

A short routine to count the lines of a text file (using the oddities of the NEXT command):

100 OPEN#3,file
110 FOR lines=0 TO 10000
120 IF EOF(#3) THEN PRINT lines: EXIT lines
130 INPUT #3,line$: NEXT lines
140 PRINT 'OOPS - program is longer than 10000 lines!!'
150 END FOR lines
160 CLOSE#3

Example 2

The next example is a routine to nest a variable number (loops) of times which go from Value_min to
Value_max at Value_step:

100 FOR loop=1 TO loops:Value(loop)=Value_min(loop)
110 REPeat Nesting
120 <instructions using Value(1...s) go here>
130 FOR loop=1 TO loops
140 IF Value(loop)=Value_max(loop) THEN
150 IF loop=loops THEN EXIT Nesting
160 Value(loop)=Value_min(loop)
170 NEXT loop
180 ELSE
190 Value(loop)=Value(loop)+Value_step(loop)
200 EXIT loop

(continues on next page)

368 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

210 END IF
220 END FOR loop
230 END REPeat Nesting

NOTE 1

If you use multiple in-line FOR loops in the same program line, only the inner loop will be executed. For
example:

FOR i=1 TO 3: FOR j=1 TO 10: PRINT i*j: END FOR j

Output:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

This will actually work correctly under SMS.

You can get it to work on a Minerva ROM and under SMS (but not others) if the line is amended to read:

FOR i=1 TO 3: FOR j=1 TO 10: PRINT i*j: END FOR j: END FOR i

In fact, SMS will even allow the line to work if it simply reads:

FOR i=1 TO 3: FOR j=1 TO 10: PRINT i*j

NOTE 2

Unless you have SMS or a Minerva ROM, do not use GO SUB together with an in-line FOR loop, because
this will act as an END FOR command and will not call the desired routine:

100 FOR i=1 TO 10: PRINT 'Junk - test';: GO SUB 200: PRINT i
110 STOP
200 PRINT ' Number ';
210 RETurn

NOTE 3

On JS (except ST/QL) and MGx ROMs, you cannot use the first of several PROCedure/FuNction param-
eters as the loop identifier:

100 TEST 5,10
110 FOR j=1 TO 10: PRINT 'OOPS...'
120 FOR k=1 TO 10: PRINT 'OKAY...'
125 :
130 DEFine PROCedure TEST(j,k)
140 AT j,k:PRINT 'Errors'
150 END DEFine

NOTE 4

No error will be reported and all should work okay if NEXT is used instead of END FOR (unless you
try to use EXIT which would try to jump to the statement after the non-existent corresponding END
FOR, and may reach the end of the program without finding the END FOR, therefore stopping without
reporting any error), but you will have seen that NEXT is intended for another purpose.

13.60. FOR 369

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Apart from programming elegance, compilers may not be able to understand your meaning (they assume
that you have forgotten the END FOR) and may abort compilation or report a warning.

NOTE 5

Counting downwards without a negative step has no effect at all For example:

FOR loop=0 TO -3

Omitting the STEP parameter is the same as STEP 1.

MINERVA NOTES

On a Minerva machine, a FOR loop can use either a single character string variable or an integer variable:

FOR A$='A' TO 'Z' STEP CHR$(2):PRINT A$;' ';

This prints out:

A C E G I K M O Q S U W Y

FOR loop%=1 TO 255: ...: END FOR loop%

This is a little quicker than:

FOR loop=1 to 255: ...: END FOR loop

These examples will not work on other ROMs, unless you have SMS, even if they will let you type them
in!

SMS NOTES

Like Minerva, SMS will allow you to use integer variables in FOR loops (but not string variables). As
from v2.57, the range is checked to ensure that it is within the valid word integer range (-327678..32767)
when the FOR loop is started, otherwise it returns ‘Error in Expression’.

If you try to use a string loop variable, the error ‘unacceptable loop variable’ is reported. EXIT, NEXT
and END FOR do not need to contain the loop identifier, SMS will presume that when used in a program,
they refer to the loop currently being executed.

CROSS-REFERENCE

REPeat . . . END REPeat is the other loop type. See also END FOR.

13.61 FORCE_TYPE

Syntax FORCE_TYPE string$
Location TinyToolkit

This command forces the given string to be typed into the current keyboard queue, just as if you had typed
it from the keyboard. There is not much use for this command in connection with applications because
key macros such as ALTKEY are much easier to use. But, FORCE_TYPE can be used to perform an
action without anyone actually needing to press a key.

370 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Example

Your telephone rings and you talk half an hour with a friend. Meanwhile your computer crashes - God
only knows why - and the BASIC program you were writing has now disappeared along with everything
else.

You could decrease this danger by writing and compiling such a program:

100 last_stroke = DATE
110 REPeat Sleeping
120 IF KEYROW(1) THEN last_stroke = DATE
130 IF DATE-last_stroke > 300 THEN
140 FORCE_TYPE "SAVE_O FLP1_Backup_bas" & CHR$(10)
150 REPeat Wait: IF KEYROW(1) THEN EXIT Wait
160 last_stroke=DATE
170 END IF
180 END REPeat Sleeping

This example should obviously be adapted to your specific needs, applications and tools.

NOTE 1

Every console channel (ie. con_ windows) has a keyboard queue - the channel accessed by
FORCE_TYPE must first be activated by a dummy INKEY$, PEND etc. to that channel.

NOTE 2

In earlier versions of Tinytoolkit (pre v1.10), this command was called TYPE_IN, which could cause
problems with Turbo compiled programs.

CROSS-REFERENCE

STAMP does exactly the same as FORCE_TYPE.

13.62 FORMAT

Syntax FORMAT [#channel,] medium
Location QL ROM

Each medium where data can be stored as files (disks, ramdisks, microdrives or hard disks) has to be
given a structure which is recognisable by QDOS. This is done by FORMATting it. Each medium can
also be given a name of up to ten characters long. The command FORMAT clears a medium from scratch
so that any data stored there is definitively lost. Be careful!

The following standard devices can be formatted:

• MDV1_ .. MDV8_ - microdrive cartridges

• FLP1_ .. FLP8_ - floppy disks

• RAM1_ .. RAM8_ - ramdisks

• WIN1_ .. WIN8_ - hard disks

Depending on the type of medium, several additions to the pure medium name are possible:

13.62. FORMAT 371

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

MDV Up to ten characters can be added, these will form the name of the cartridge, eg:

FORMAT mdv2_SuperBASIC

FLP As with microdrive cartridges, a medium name can be added. If the eleventh character of the name
is an asterisk (*), the disk will be formatted single sided, ie. just the first side is used. In order to use the
single sided only option, is it necessary to put the whole parameter in quotes, eg:

FORMAT "flp1_TEST *"

This is not applicable to HD and ED disks: their density will also be affected, making them single sided
double density (SSDD). If a single sided disk can still be bought today, it will actually be a double sided
disk of low quality.

With Super Gold Card, Gold Card and SMS, an appended asterisk plus a letter which indicates the density
will format the disk accordingly: S, D, H and E are allowed, eg:

FORMAT "flp1_TEST*h"

See FLP_DENSITY .

RAM This depends very much on the ramdisk drivers:

With standard static ramdisks, which are built into most disk interfaces and available as public domain,
you need to specify how many sectors are to be allocated to the ramdisk by adding the number of sectors
to the device name, eg:

FORMAT ram1_200

formats ram2_ to 200 sectors (100K).

These static ramdisks must be FORMATted before use.

On the other hand, the Qjump ramprt ramdisk (provided with Qpac 2 and various expansion boards,
including Trump Card, Gold Card and Super Gold Card) is dynamic - it adapts its size automatically to
the size of the files being stored on it - there is no need to FORMAT the ramdisk prior to use. This can
however also be used as a static ramdisk.

Trump Card, Super Gold Card and Gold Card ROMs also contain a special variant of a ramdisk which
allows you to produce an image of a microdrive cartridge on a ramdisk, for example by using:

FORMAT ram4_mdv2.

Faulty files are marked with an asterisk added to the end of their filenames. Although this may allow
you to ‘rescue’ a corrupt microdrive cartridge those files marked with an asterisk are faulty and therefore
unreliable.

The name of a ramdisk is always the name of the medium without an underscore, eg. RAM1 for RAM1_;
this is the same on dynamic ramdisks.

WIN A medium name can normally be stated, as with a microdrive cartridge. Please check the docu-
mentation of the hard disk drivers, they differ very much! For example, the firmware on the Falkenberg
interface disables FORMAT for hard disks until certain settings have been specified with another com-
mand.

On the THOR, an asterisk needs to be included, eg:

372 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

FORMAT 'win1_*HARDDISK'

See below.

SMS for ATARI computers and QXL / QPC, expects you to have already partitioned the hard disk us-
ing the computer’s native commands. On ATARIs, under SMSQ/E you then need to identify the drive
and partition using WIN_DRIVE. After that, you can use the normal QL FORMAT command on all
these systems, however, SMSQ/E has adopted a level of protection which insists that you must use the
WIN_FORMAT command before FORMAT and the FORMAT command itself will display two charac-
ters on screen and ask you to type them in.

You should then use WIN_FORMAT to protect the partition again.

The standard drivers for the ST/QL Emulators adopt a form of protection in that you will need to type in
the two characters shown on screen as with SMSQ/E.

You can also only FORMAT a hard disk from SuperBasic Job 0 and then only when Channel #0 is OPEN.

If the hard disk has already been partitioned by the Atari ST (the first partition will normally be marked
GEM or BGM), then you will be asked to enter the number of the first partition to be used by QDOS and
the number of subsequent partitions ot be used for this disk.

Under SMSQ/E on the QXL or QPC, this same two- level protection is adopted. However, instead of
passing the medium name of the hard-disk, you have to pass the size of the QL hard disk to be created in
megabytes, for example:

FORMAT WIN1_20

This will create a 20 Megabyte hard disk on PC drive C:

On early versions, the maximum size that could be created was 23 Megabytes and only one drive could
be created. Later versions allow you to create WIN1 to WIN8 (all on drive C:).

After formatting, FORMAT will either report that the process has failed (error -14), because there was
no cartridge/disk in the drive or if the medium was faulty.

The command will also fail if the given device was write-protected.

If everything was okay, a small message is printed to the specified channel (default #1) indicating how
many sectors could be achieved and how many were good. If the two numbers differ, QDOS will have
marked some sectors as bad and will ignore them. However, experience shows that if the difference be-
tween the two numbers is great, it can be very dangerous to store important data on those disks/cartridges.

It is recommended that new microdrive cartridges should be formatted 10 times before use (you should
expect to get about 220 available sectors). It may also be useful to try formatting the cartridge in the
other microdrive.

Examples

FORMAT mdv2_Startup

formats cartridge in microdrive 2

FORMAT "mdv2_Startup"

as above.

13.62. FORMAT 373

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

FORMAT flp1_backup

formats disk in disk drive 1

FORMAT "flp1_backup *"

as above but single sided

FORMAT "flp1_backup*d"

double sided, double density

FORMAT "flp2_backup*h"

double sided, high density

FORMAT ram1_100

format ramdisk 1 to 50K

FORMAT ram1_

remove ramdisk 1

FORMAT ram1_mdv1

format ram1_ to 255 sectors and copy cartridge in microdrive 1

Notes on the different media:

The traditional microdrive is relatively slow and unreliable, and cartridges need to be formatted several
times to give good results (usually around 210-220 sectors) - pushing them firmly into the microdrive
slot while they are being formatted is said to be more efficient.

However, as new cartridges are becoming more rare and expensive today, the next best and very highly
recommended upgrade are disk drives.

It is also becoming less and less common to find users who can read information stored on microdrive,
SMS and emulators for example, do not support microdrives.

3.5” double density disks (720K)

These are pretty cheap and you can get them everywhere (although the quality does vary); they have
become a standard on the QL, although it is becoming ever more difficult to find replacement disk drives.
FORMAT should report 1440 sectors.

3.5” high density disks (1.4Mb)

These are also fairly cheap and you can get them everywhere (although the quality does vary). These
have become the new standard disks used by IBM compatible computers and therefore the disk drives
are easy to obtain. FORMAT should report 2880 sectors.

3.5” extra density disks (3.2Mb)

These are fairly expensive and difficult to obtain as they were never really accepted in the IBM PC world,
although for a time, they looked like becoming a new standard for the QL, being very quick and storing
a lot of information. FORMAT should report either 1600 or 6400 sectors (see note 8).

374 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

5.25” disks (720K)

These are also widely spread in the QL scene, especially in the USA, although they are now becoming
less and less common. With the introduction of the Super Gold Card and Gold Card by Miracle Systems
Ltd, high density (HD, 1440K) and even extra density (ED, 3200K) drives have become available to
QDOS for the first time. These formats are several times faster and even more reliable, not to mention
the increased space for programs and data.

Hard disks

These are becoming more and more common, with them being readily available to people using Emu-
lators on other computers, and also now the release of relatively cheap interfaces and disk drives for the
QL and AURORA.

Ramdisks

These are not specific to any hardware configuration because they only exist in RAM and any stored data
is lost if the machine is reset or turned off. On the other hand, ramdisks are extremely fast.

NOTE 1

Unless you have a Minerva ROM (see below), do not try to FORMAT a microdrive whilst any microdrive
is still running, since this will report an ‘in use’ error.

PEEK(SYS_VARS+HEX('EE'))

will be zero if no microdrives are running.

NOTE 2

On the THOR XVI (v6.37 and earlier), there existed a bug when accessing anything greater than win2_.

NOTE 3

If there is no disk in a drive, FORMAT may also fail with a read only error (-20) instead of reporting not
found (-7).

NOTE 4

You cannot use FORMAT n1_flp1_ (for example) to FORMAT a medium over the network.

NOTE 5

The ST/QL drivers cannot FORMAT the fifth and subsequent partitions on the hard disk unless the
extended partition table is in the form used by SUPRA, ICD and similar drives.

NOTE 6

Minerva (pre v1.98) had some bugs in the code for FORMATting microdrives.

NOTE 7

FORMAT expects the specified channel (or #1) to be OPEN, otherwise an error will be reported.

NOTE 8

FORMAT cannot report a number of sectors in excess of 32768 and so may return wrong values on
large capacity drives. SMS correctly reports the number of sectors obtained, although on an ED disk,
FORMAT will report 1600 Sectors (DIR will show the figure of 6400 sectors instead!). This is because
on an ED disk, sectors are 2048 bytes long instead of the usual 512 bytes expected by the QL device
drivers (which have to be fooled to see each sector as 4x512 byte sectors).

13.62. FORMAT 375

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

MINERVA NOTE

On Minerva v1.78 (and later), a check is carried out before performing FORMAT to see if there are any
files open on the desired medium. This stops Digital Precision’s Conqueror and Solution from working
correctly. To switch it off, use:

POKE !124 !49, PEEK (!124 !49) || 128

SMS NOTES

As with Minerva, you cannot FORMAT a medium if there are any files open on that medium (‘Is In
Use’ error is reported). If there is a problem during the FORMAT process, SMS will emit a series of
BEEPs. However, be warned that an error message is not always displayed and the FORMAT may appear
to have completed correctly!! SMS does not allow you to access the QL’s microdrives, nor can it solve
the problem on the QXL below. SMS can corrupt floppy disks (so they have to be thrown away) if you
try to FORMAT them to the wrong density.

Some users have reported problems in using SMS to FORMAT Double Density disks in ED disk drives
linked to a Super Gold Card. This appears to afflict versions of SMS after v2.85 and all makes of
ED drives. The problem only occurs if you specify the density with FORMAT ‘flp1_NAME*D’ or
FLP_DENSITY ‘D’. In these cases, a noise is emitted during FORMAT to indicate that it has failed,
but SMS still reports 1440/1440 sectors, even though subsequent attempts to access the disk report ‘Not
Found’. The answer is to not use FLP_DENSITY in this instance.

QXL NOTES

You cannot reliably FORMAT floppy disks from scratch on most PCs using this emulator. FORMAT
merely re-formats an already formatted disk. Prior to v2.67 of SMS there existed several further problems
with FORMAT on QXL.

THOR XVI NOTES

The THOR XVI, v6.37 (and later) allows a variant of the medium name to deal with the THOR’s hard
disk:

FORMAT "win1_options*name"

The available options which can be specified are:

• /C : Certify drive before formatting - this reconstructs the THOR’s defect list, describing the bad
sectors and tracks;

• /Q : Quick reformat - merely sets up new directory map;

• /F : Fast reformat - does not verify the disk;

• /Gn : Set group or cluster size in blocks. Default = /G16;

• /Dn : Set directory size in number of groups or clusters. Default = /D2.

Examples

FORMAT 'win1_/Q*Main'
FORMAT 'win1_/G16/D2*THORDisk'

WARNING

Prior to v2.71 of SMS FORMAT flp3_1 on the QXL could in fact FORMAT WIN1_.

376 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE

Before formatting, the number of tracks on a disk can be specified with FLP_TRACK . HD and ED disks
can be formatted to different densities if FLP_DENSITY was used to override automatic detection of
the density. See WIN_FORMAT for hard disk protection. The DMEDIUM_XXX functions, starting at
DMEDIUM_DENSITY return various details about how a medium has been formatted.

13.63 FPOS

Syntax FPOS [(#channel)]
Location Toolkit II, THOR XVI, BTool

This function returns the current position of the file pointer.

The relevant file must already be open as #channel, default channel is #3. A value of zero means that the
file pointer is at the very beginning of a file, whereas a position equivalent to the file length means that it
points to the very end. The file pointer is a means by which the QL can keep track of exactly whereabouts
in a file it should take the next input from, or write to.

CROSS-REFERENCE

FILE_POS works exactly as FPOS but does not use a default channel. FILE_PTRA and FILE_PTRR
move the file pointer, which may also be set with GET , PUT , BGET and BPUT .

13.64 FPOS_A

Syntax FPOS_A ([#ch,] pos)
Location BTool

This is the same as FILE_PTRA.

13.65 FPOS_R

Syntax FPOS_R ([#ch,] offset)
Location BTool

This is the same as FILE_PTRR.

13.63. FPOS 377

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.66 FPUT$

Syntax FPUT$ [#ch,] string *[,stringi]*

Location BTool

This command writes the given string(s) in internal format to #ch, default is #1. The internal format of
a string is a word (two bytes) giving the length of the string followed by the contents of the string itself.

Example

FPUT$ 'Hello'

will produce the equivalent of PRINT CHR$(0)&CHR$(5)&’Hello’.

CROSS-REFERENCE

FGET$, PUT .

13.67 FPUT%

Syntax FPUT% [#ch,] integer *[,integeri]*

Location BTool

This command writes the specified integer(s) (range 0. . . 32767) in its internal format to #ch, default is
#1. An integer is stored internally as two bytes (one word).

CROSS-REFERENCE

FGET%, PUT

13.68 FPUTB

Syntax FPUTB [#ch,] {byte | string$} *[,{bytei | stringi$}]*

Location BTool

FPUTB is a command which writes single or multiple bytes to a channel #ch (default #1). FPUTB can
take any kind of parameters which must be either a numeric value byte in the range 0..255 for a single
byte, in the range 256..32767 for two bytes or a string string$.

Example 1

CLS: FPUTB "First line",10,"Second line"
CLS: FPUTB "First line",2570,"Third line"

because CVI% (CHR$ (10) & CHR$ (10)) = 2570) which is (10 * 256) + 10 in big-endian format, as
the QL is.

Example 2

378 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

FPUTB is very handy for controlling printers:

OPEN#3,par
FPUTB#3,27,"x",1
CLOSE#3

will enable near letter quality (NLQ) on an EPSON compatible printer.

CROSS-REFERENCE

BPUT , CHR$, CODE. FGETB is a complementary function.

13.69 FPUTF

Syntax FPUTF [#ch,] float *[,floati]*

Location BTool

This command writes the floating point number(s) float in its internal format (six bytes) to #ch, default
is #1.

CROSS-REFERENCE

FGETF, PUT

13.70 FPUTL

Syntax FPUTL [#ch,] longint *[,longinti]*

Location BTool

This command writes the specified long integer(s) longint (-231..231-2) in internal format (four bytes)
to #ch, default is #1.

CROSS-REFERENCE

FGETL, PUT

13.71 FRACT

Syntax FRACT (x)
Location FRACT

The function FRACT separates the fractional part of any floating point number x. It could easily be
rewritten in SuperBASIC as the following:

13.69. FPUTF 379

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

100 DEFine FuNction MYFRACT (x)
110 RETurn x - INT(x) - (x < 0)
120 END DEFine MYFRACT

CROSS-REFERENCE

TRINT is complementary to FRACT .

13.72 FREAD

Syntax FREAD (#ch,address,bytes)
Location TinyToolkit

The function FREAD reads a number of bytes (bytes) from a given channel into memory, starting at
address. The number returned by FREAD gives the number of bytes it actually read.

Example

A BASIC Procedure APPEND which adds a file (file1$) to the end of a target file (file2$). If the target
file does not exist, it will be created.

The first file will be erased (remove line 220 if you do not want this). The third parameter allows you to
determine the working space of the procedure; the larger this space, the quicker the execution:

100 DEFine PROCedure APPEND (file1$,file2$,bufsize)
110 LOCal length,buffer,file1,file2,part
120 file1=FOP_IN(file1$): length=FLEN(#file1)
130 buffer=ALCHP(length)
140 file2=FOPEN(file2$)
150 IF file2=-7 THEN file2=FOP_NEW(file2$)
160 GET #file2 \1E9
170 FOR part=0 TO INT(length/bufsize)
180 bufsize=FREAD(#file1,buffer,bufsize)
190 FWRITE #file2,buffer,bufsize
200 END FOR part
210 CLOSE #file1, #file2: RECHP buffer
220 DELETE file1$
230 END DEFine APPEND

It can be called as follows:

APPEND "ram1_tumb_tmp" TO "flp2_tump_dat",20480

NOTE

If the channel number supplied to FREAD does not refer to a file, then the error -15 (bad parameter) will
be reported after it has done its work. This behaviour is pretty strange.

CROSS-REFERENCE

FREAD$, FWRITE, LBYTES, SBYTES, GET , PUT .

380 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.73 FREAD$

Syntax FREAD$ ([#ch], length)
Location BTool

The FREAD$ function is very similar to the FREAD command: A fixed number of characters is read
from a channel (default #0) and returned as a string. FREAD$ does not stop with an error if the end of
file is reached - you have to detect this by testing if the length of the returned string is really length.

Example

MYCOPY copies a file with flexible buffering up to 32k, eg. type:

MYCOPY "mycopy_bas" TO "ram2_whatever_dat", 1000

to use a 1000 bytes buffer. The larger the buffer, the faster the file is copied; try a one byte buffer to see
the difference! Ok, here is the listing:

100 DEFine PROCedure MYCOPY (file1$, file2$, bufsiz%)
110 LOCal ch1, ch2, buffer$
120 ch1 = FOP_IN(file1$)
130 ch2 = FOP_NEW(file2$)
140 REPeat copying
150 buffer$ = FREAD$(#ch1, bufsiz%)
160 PRINT#ch2,buffer$;
170 IF LEN(buffer$) < bufsiz% THEN EXIT copying
180 END REPeat copying
190 CLOSE #ch1, #ch2
200 END DEFine MYCOPY

CROSS-REFERENCE

INPUT$, FWRITE$, COPY , GET_BYTE$

13.74 FREE

Syntax FREE
Location BTool

This function returns the largest block of the available free memory. This can be less than the actual free
memory if the heap has become fragmented (see DEL_DEFB).

CROSS-REFERENCE

See also FREE_MEM and TPFree.

x=ALCHP(FREE)

reserves the largest piece of memory available.

13.73. FREAD$ 381

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.75 FREE_FAST

Syntax FREE_FAST
Location ATARI_REXT for QVME (v2.31+)

The Atari TT recognises two types of RAM, standard ST RAM (up to 10MB) and FastRAM (otherwise
known as TT RAM) which is specifically designed for the Atari TT and works about twice as fast as the
standard ST RAM.

The QL emulator can use both types of RAM but will only recognise and use a maximum 4MB of
standard ST RAM.

If FastRAM is available, the Emulator places the device drivers into this area in order to speed them up as
well as freeing additional standard ST RAM. However, if your programs are to access the FastRAM, they
need to use various new commands. FREE_FAST is a function which returns the amount of available
FastRAM.

CROSS-REFERENCE

The other commands to access FastRAM are RESFAST , and LRESFAST .

Compare RESPR, ALCHP and FREE_MEM.

13.76 FREE_MEM

Syntax FREE_MEM
Location Toolkit II, THOR XVI

Exactly the same as FREE.

13.77 FREEZE

Syntax FREEZE switch (switch=ON or OFF)
Location BTool

The keys <CTRL><F5> cause the QL to stop working until any further key (except <CTRL>, <SHIFT>,
<ALT> and <CAPSLOCK>), including <CTRL><F5>, is pressed, which will reactivate the QL.

This keystroke is generated by some commands to give the user a chance of reading the output, eg. VIEW,
EXTRAS, SXTRAS, WDIR.

FREEZE OFF disables <CTRL><F5>, FREEZE ON re-activates it.

Example

FREEZE OFF
EXTRAS
FREEZE ON

382 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.78 FREEZE%

Syntax frozen = FREEZE%
Location BTool

FREEZE% returns either 0 or 1 (for OFF or ON respectively) if <CTRL><F5> has been disabled by
FREEZE or not.

Example

frozen = FREEZE%
IF frozen THEN do_stuff: END IF

CROSS-REFERENCE

ON and OFF are constant expressions for 1 and 0. FREEZE% returns the current state. Compare
FREEZE and FREEZE% to BREAK and BREAK%.

13.79 FSERVE

Syntax FSERVE or
FSERVE [device_name] (THOR XVI - v6.41 only)

Location Toolkit II (hardware version only or SMS), THOR XVI

This command creates a small fileserver job named Server which allows other network stations (slaves)
to access all devices on the machine where this fileserver is running (this is the Master).

The fileserver only works with the QNET network system, which itself only works reliably if Toolkit II
is installed as firmware (ie. on ROM or on EPROM) (or if Toolkit II is installed as part of SMS) on all
machines connected to the network.

To access a device on the Master, a prefix has to be added to the device name. This prefix specifies the
other machine by its network number (see NET) which may range from 1 to 8. The prefix consists of an
n, the number of the remote station and an underscore, ie: n1_ .. n8_.

If an access fails for any reason, the sending machine will not receive an acknowledgement from the
receiving one. In such cases, the network driver continues to try to get through for about 20 seconds and
then reports ‘Network aborted’ (in #0) if it still cannot communicate with the specified machine.

Examples

OPEN#3,n3_scr: PRINT#3,"Bye.": FLUSH#3: CLOSE#3
WDIR n1_flp1_

FORMAT n7_win1_

Be careful with this sort of thing!

SAVE n2_ram1_PROGGY_bas

13.78. FREEZE% 383

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE 1

All commands which use the SD.EXTOP or SD.FOUNT machine code calls will not work across the
network: CHAR_USE for example. This does not necessarily mean that these commands report errors:
CHAR_USE, for instance, changes the character set to a strange pattern. FORMAT will also fail over the
Network. ED and EDIT also cannot be used to edit a program on a window opened over the Network.

NOTE 2

Although windows (scr_ and con_ devices) are normally not buffered, this will be the case if they are
opened across the network. This affects just text output, all other operations (BORDER, INK, CLS,
WINDOW etc.) are performed on the host QL when issued. The buffer of 256 bytes is located in the
sending QL and flushed automatically if full. Otherwise a CLOSE command forces the buffer contents
to be sent (the FLUSH command will not work to send the buffer contents). See the Drivers section in
the Appendix for further details on Networks.

NOTE 3

If a channel was opened by a slave via the network and this QL is later removed from the network - say
by unplugging the network lead or by resetting the machine, then the channel is left open. As all such
channels are owned by the Server job, they can be flushed and closed by removing and restarting the job:

RJOB Server
FSERVE

Take care that all operations being carried out by other stations on the local machine (where the fileserver
is to be removed) have finished or have been suspended.

NOTE 4

Due to checksum tests, data transmission across the network is practically error free. There is still a very
small statistical possibility of transmission errors but really extensive experiments (moving megabytes
of data) did not even produce one.

NOTE 5

Although a normal file name can be of any length up to a maximum of 41 characters (including the device
name), if the file is to be accessed across the network, this is reduced to a maximum of 39 characters
(including the network prefix). For example:

OPEN #3,flp1_Quill_letters_Minerva2_update_doc239
OPEN #3,n1_win1_Quill_letters_Minerva2b_updates

will work, whereas the following two commands report ‘Not Found’ without attempting to access the
drives:

OPEN #4,flp1_Quill_letters_Minerva2_update_doc2392
OPEN #4,n1_win1_Quill_letters2_Minerva2b_updates

NOTE 6

If you OPEN a con_ device over the Network (onto a Master machine’s screen) and try to use INPUT to
read a variable entered on that Master, there are problems here in that the delete keys on the Master which
is displaying (and editing) the text displayed in the con_ device do not work properly, leaving splodges
on the screen. You can use IO_TRAP and QTRAP to call cursor positioning routines on the Master and
then print spaces to overwrite the deleted characters, using IO_TRAP or QTRAP to move the cursor back

384 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

to the correct position and possibly pan the window to get rid of excess characters. This technique was
used to good effect in the NetPal program in DIY Toolkit (Vol N).

NOTE 7

If you try to use a Toolkit II command such as DIR to direct the output onto a window which has been
OPENed over the Network, when it reaches the bottom of a page, the Toolkit II command automatically
generates a <CTRL><F5> at the slave machine end which can only be cleared by pressing a key on the
slave machine’s keyboard.

THOR XVI NOTE

The THOR XVI version of this command allows you to send, for example, a continuous log of status
messages to a file or device, eg. FSERVE scr_512x256a0x0. This is however really only useful for
debugging network programs or to analyse network traffic.

CROSS-REFERENCE

The fileserver job can be removed with RJOB, KJOB, KILL etc. or by using a desktop application (such
as QPAC2). See NET and NFS_USE for further information on networking.

Refer to the original documentation of Toolkit II and the Device Drivers Appendix for technical details.
SERNET and MIDINET create fileservers for other Networks supported by SMSQ/E and the Atari ST
Emulators.

13.80 FSETH$

Syntax FSETH$ [#ch,] header$
Location BTool

FSETH$ is a command which is the counterpart of FGETH$: it accepts either a 14 or 64 bytes long string
which contains a file header (or at least the first part of that) and sends that file header to the specified
channel (default #3).

CROSS-REFERENCE

See HEADS and SetHEAD!

13.81 FTEST

Syntax FTEST (name)
Location Toolkit II

The function FTEST is designed to allow you to test for the status of a file with the specified name. It
will return a value of 0 if the given name can be opened for input only. It may however return a negative
number representing an error code which would result if you tried to OPEN or OPEN_IN that file.

NOTE 1

The return of -6 (channel not open) has a special meaning in relation to this function, it means that the
function could not find any room in the channel table to try and access the file.

13.80. FSETH$ 385

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE 2

Due to the nature of the command, name can be used to represent any valid device, and could therefore,
for example, be used to check if a resolution of 768x280 pixels is supported:

100 a$='scr_768x280a0x0'
110 IF FTEST(a$)<0
120 a$='scr_512x256a0x0'
130 END IF
140 OPEN #3,a$

NOTE 3

On Level-2 and Level-3 devices, there is always a file with the same name as the actual name of the
device (eg. ‘flp1_’). This therefore allows you to check if a medium is present in a Level-2 device:

IF FTEST(flp1_) < 0 THEN PRINT 'Please insert disk'

You must however be aware that on Level-1 devices, it is unlikely that such a file will be present and that
FTEST will return -7 even if there is a disk present.

NOTE 4

FTEST will not warn you if a disk is read only, which can create problems.

CROSS-REFERENCE

FOPEN and FOP_IN allow you to open files safely. DMEDIUM_RDONLY can be used to find out if a
disk is write protected.

13.82 FTYP

Syntax FTYP [(#channel)] or
FTYP (\file) (Toolkit II and THOR only)

Location Toolkit II, THOR XVI, BTool

This function returns the file type of a file which is already open as #channel (the default channel is #3) or
else the second variant can be used (which supports the Toolkit II default data device and sub-directories)
to check a given file.

The file type is one byte in the file header which by convention represents the type of the file. There are
only four standard types:

• FTYP = 1 are executable jobs (normally suffixed _exe);

• FTYP = 2 are Sinclair Relocatable Object File (SROFF) modules (normally suffixed _REL);

• FTYP = 255 are sub-directories on level-2 and level-3 drivers;

• FTYP = 0 are everything else.

However, some programmers use their own file types for their applications, for example:

• FTYP = 2 may also signify sub-directory declaration files used by Ralf Biedermann’s flp utility
and Hirschbiegel drivers;

386 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• FTYP = 3 are sub-directories on THOR computers.

• FTYP = 4represents font files used by the PAINTER.

• FTYP = 5 are pattern files used by the PAINTER.

• FTYP = 6 or 11 are compressed screens generated by the PAINTER.

• FTYP = 70 is used to represent separation files from packages distributed by the Intergroup Free-
ware Exchange.

WARNING

Sometimes machine code files (Toolkits, for instance) which should be loaded with LBYTES, LRESPR
etc. have the file type 1. Executing such a file will lead to a crash in most cases, UNJOB changes the file
type back to 0. Authors with a lot of skill write machine code which can be either executed as a job or
loaded as a resident command executing the job from memory when called.

CROSS-REFERENCE

See HEADR for reading the whole file header and EX for executing jobs. FILE_TYPE does the same as
FTYP but has a slightly different syntax.

13.83 FuNction

Syntax . . . FuNction
Location QL ROM

This keyword forms part of the structure DEFine FuNction. As such, it cannot be used on its own within
a program - this will cause a ‘bad line’ error.

CROSS-REFERENCE

Please refer to the individual structure descriptions for more details.

13.84 FUPDT

Syntax FUPDT [(#channel)] or
FUPDT (\file) (Toolkit II only)

Location Toolkit II, BTool

This function returns the date on which a given file was last amended. The value returned is the date in
QDOS format, ie. the number of seconds since Midnight 1st January 1961. You can check this initial
date with:

PRINT DATE$(0)

The update time is altered whenever a file is created or amended. A file which has overwritten a previous
file or is a copy is regarded as a new file and will therefore have a different update time to the original.
The default data device and sub-directories are supported, default channel is #3.

Example

13.83. FuNction 387

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

It could be interesting to list all files which have been created during a certain time period. A simple
prototype of a program which will do just that follows on below.

If you want to check all files, then dev$ should contain no sub-directories or wild cards (just FLP2_,
WIN1_) and wild$ an empty string. Such a program could be used to write an intelligent backup program.

In order to run the program you will need TinyToolkit’s TCONNECT or DIY-TK’s QLINK. You could
also use similar commands in the toolkits provided with Turbo or Qliberator.

100 CLS: INPUT "Device:"!dev$ \"Wild card:"!wild$
110 INPUT "List from (dd mm yy):"!first$
120 INPUT TO 2;"to (<ENTER>=today):"!last$\
130 day1=first$(1 TO 2):month1=first$(4 TO 5)
135 year1=19&first$(7 TO 8)
140 IF LEN(last$) THEN
150 day2=last$(1 TO 2):month2=last$(4 TO 5)
155 year2=19&last$(7 TO 8)
160 ELSE last=DATE
170 END IF
180 DATE_tmp=DATE
190 SDATE year1,month1,day1,0,0,0: first=DATE
200 IF LEN(last$): SDATE year2,month2,day2,23,59,58: last=DATE
210 ADATE DATE_tmp-DATE+2
220 :
230 OPEN#3,pipe_10000: OPEN#4,pipe_100
240 TCONNECT #3 TO #4: WDIR#3,dev$ & wild$
250 yes=0: yesno=0
260 REPeat show_those
270 IF NOT PEND(#4) THEN EXIT show_those
280 INPUT#4,file$: this=FUPDT(\dev$ & file$): yesno=yesno+1
290 IF first<=this AND this<=last THEN
300 PRINT file$;TO 20;"(";DATE$(this);")"
310 yes=yes+1
320 END IF
330 END REPeat show_those
340 PRINT \"(";yes;"/";yesno!"files)"
350 CLOSE#3,#4

Minerva or SMS users can delete lines 180,190,200 and 210 and use the following lines instead:

190 first=DATE(year1,month1,day1,0,0,0)
200 IF LEN(last$): last=DATE(year2,month2,day2,23,59,58)

NOTE 1

The update time of a file will only be correct if the system clock was set to the correct time when the file
was last written to, since it is the date contained within the QL’s clock which is written to the header of the
file. If your machine has a battery backed real-time clock, then this presents no real problem; otherwise
you will need to ensure that you set the date and time after each startup.

NOTE 2

On some early versions of Toolkit II the machine code FS.RENAME routine also alters the update time
of a file!

388 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE 3

There is no legitimate way to change the update time of a file except with level-2 or level-3 drivers. It
is of course possible to set the system clock temporarily to the desired time, amend the file and then set
the clock back, but as the time taken to change the cannot be estimated exactly, this method will almost
surely reset the system clock to the incorrect time after carrying out such an operation a few times. On
level-2 and level-3 drivers, SET_FUPDT can be used.

NOTE 4

Minerva automatically updates the update dates of files on microdrives. Other ROM versions will not do
so without Toolkit II.

CROSS-REFERENCE

FBKDT , FLEN , FTYP, FDAT , FXTRA, FILE_LEN , FILE_TYPE, FVERS and FNAME$ return other
information about a file. See DATE and ADATE about handling the system clock and SET_FUPDT on
setting the time stamp of a file.

13.85 FVERS

Syntax FVERS [(#channel)] or
FVERS (\file)

Location Level-2 Device Drivers

This function reads the version number of the given file (or of the file attached to the specified channel
{default #3} if the first variant is used).

The version numbers can range from 0 to 216-1 (65535) and generally indicate how often a file has been
amended. If a file was created on a level-1 device driver system, its version number is zero (0), while
newly created files on level-2 device drivers will have the version number 1 after they have been closed.
FVERS supports Toolkit II’s default data device and sub-directories.

If the first variant is used, the default channel is #3 if none is specified.

Each time that a file is amended on level-2 and level-3 drivers, the version number is increased by one.
If the version reaches its limit of 65535, it will start at version 1 again. A file has to be re-opened to
change its version by more than one. After the file has been amended, the version will only increase after
a FLUSH or CLOSE.

Unfortunately current versions of SAVE and SBYTES do not increase the version number because they
overwrite existing files instead of truncating them.

Example

OPEN_OVER#3,test_tmp: REMark create the file
PRINT#3,"just a line": REMark write a line to the file
PRINT FVERS(#3): REMark 0, neither flushed nor closed
CLOSE#3: REMark close file
PRINT FVERS(\test_tmp): REMark 1
OPEN#3,test_tmp: REMark re-open file
PRINT FVERS(#3): REMark 1, nothing changed yet
PRINT#3,"replace the line": REMark amend file

(continues on next page)

13.85. FVERS 389

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

PRINT FVERS(#3): REMark still 1 not yet flushed
FLUSH#3: REMark write slave blocks to file
PRINT FVERS(#3): REMark now it's 2
FLUSH#3: REMark flush again
PRINT FVERS(#3): REMark 2
PRINT#3,"next line": REMark change file again
CLOSE#3: REMark close file
PRINT FVERS(\test_tmp): REMark still 2

NOTE

The file version number is not preserved if the file is overwritten. However, if you make a copy of a file,
this keeps the same version number as the original, but not on Level-1 drivers.

SMS NOTE

If you use the SAVE command without a filename to save a previously loaded SuperBASIC program, the
file version number will be increased by one.

CROSS-REFERENCE

SET_FVERS allows you to set the version number.

13.86 FWRITE

Syntax FWRITE #ch,address,bytes
Location TinyToolkit

The command FWRITE reads a given number of bytes (bytes) from memory (starting at address) and
writes them to the given channel, which should point to a file.

Example

A procedure which adds a file to another already existing file - CONCAT cannot do so. This is a rather
primitive version which grabs as much memory as necessary and uses only TinyToolkit extensions. The
program is very primitive (not in its use of these extensions), but because the memory management of
the routine is simple (but fast) and as FILE_LEN does not support default devices and sub-directories,
full filenames have to be passed.

See FREAD for an enhanced version!

100 DEFine PROCedure APPEND (file1$,file2$)
110 length=FILE_LEN(file1$)
120 buffer=GRAB(length)
130 LBYTES file1$,buffer
140 ch=FOPEN(file1$): FILE_PTRA#3,1E9
150 FWRITE #ch,buffer,length
160 CLOSE#ch: RELEASE buffer
170 END DEFine APPEND

The procedure is called by APPEND file1$ TO file2$, which will add the first file to the second file.
First, a buffer of the size of the first file is reserved in RAM, then, this file is read into the buffer. Now

390 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

the second file is opened, the file pointer moved to the end of it and the whole buffer is then appended to
the end of the file. Finally, the channel is closed and the buffer RELEASEd.

NOTE

If the channel number does not refer to a file or even if the channel has not yet been opened, FWRITE
will report error -15 (bad parameter) after it has completed its work. This behaviour is pretty strange.

CROSS-REFERENCE

FREAD, LBYTES, SBYTES, GET , PUT . If you intend to use APPEND, please see FREAD for a better
version.

13.87 FWRITE$

Syntax FWRITE$ [#ch,] string$
Location BTool

FWRITE$ is a command (not a function as the $ may suggest) and writes string$ to #ch (default #1). It’s
the same as PRINT#ch,string$;.

Example

FWRITE$ "Hello World"

NOTE

The Line feed character {CHR$(10)} is not printed at the end of the text.

13.88 FXTRA

Syntax FXTRA [(#ch)] or
FXTRA \file (Toolkit II only)

Location Toolkit II, BTool

This is a function which returns part of the file header relating to the specified file (or the file attached
to the specified channel {default #3} if the first variant is used). See FGETH$ for what part of the file
header FXTRA returns. The Toolkit II default data device and sub-directories are supported. If the first
variant is used, the default channel is #3.

CROSS-REFERENCE

See FDAT , FBKDT , FUPDT and FTYP which return similar information.

13.87. FWRITE$ 391

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

392 Chapter 13. Keywords F

CHAPTER

FOURTEEN

KEYWORDS G

14.1 GCD

Syntax GCD (x1, x2 *[,xi]*) Where xi=0..INTMAX
Location Math Package

The function GCD takes two or more positive integers and finds their greatest common denominator,
ie. the largest number by which all of the given parameters can be divided without remainder. There
is always such a number because 1 (the smallest common denominator) divides every number without
remainder. GCD converts all passed values into integers by removing any decimal places (as with INT)
before looking for the denominator.

CROSS-REFERENCE

LCM

14.2 GER_MSG

Syntax GER_MSG
Location ST/QL

The file GER_TRA_rext is supplied with the ST/QL Emulator which contains translation tables to al-
low the Emulator to use German. Once this file has been LRESPR’d, this function can be used to
find the start of the message translation table to be used with the TRA command. You can use: TRA
GER_TRA,GER_MSG to set up the printer and message translation tables for Germany.

CROSS-REFERENCE

See NOR_MSG and GER_TRA. Also see TRA.

393

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

14.3 GER_TRA

Syntax GER_TRA
Location ST/QL

This is the complementary function to GER_MSG and points to the printer translation table for Germany
contained in the file GER_TRA_rext.

CROSS-REFERENCE

See GER_MSG.

14.4 GET

Syntax GET [#channel\file_position,] [var1 *[,vari]* . . .] or
GET [#channel,] [var1 *[,vari]* . . .]

Location Toolkit II, THOR XVI

This command, together with PUT, helps to provide the QL with a means of using a file as a store
for variables. The QL stores variables in one of four ways: short%(range -128 to 127) is stored as
2 bytes. Short integers are only available on Minerva ROMs, when integer tokenisation is enabled.
integer%(range -32768 to 32767) is stored as 4 bytes. float(eg. 1.23 or any numbers outside the integer%
range) is stored as 6 bytes. string$(eg. ‘Hello’) is stored as 2 bytes containing the length of the string
followed by the string itself.

GET enables variables which have been stored in this manner to be retrieved from a file opened to the
given channel (default #3). The variable stored at the current position in the file (or the file position
given with the command, if the first variant is used) is read directly into the variable name given with the
command.

If you provide more than one variable name as the second, third parameter etc, then more variables will
be read from the file in one go.

If the first variant is used, the file position is always calculated as an absolute distance from the start of the
file. However, to help you, if you supply a variable for the file_position (eg. GET \pointer), this variable
will always be updated to the current file pointer at the end of the command.

Compare GET \pointer+3 which supplies an expression for the file_pointer and cannot therefore be up-
dated automatically by the command.

If no variable is specified, the file pointer will be set to the specified position if the first variant is used.

If the second variant is used, this will have no effect.

Example

A program to store three names on a file and then to retrieve them (this would be useful in a database for
instance):

100 RESTORE
110 DIM a$(3,20)

(continues on next page)

394 Chapter 14. Keywords G

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

120 FOR i=1 TO 3: READ a$(i)
130 OPEN_NEW #3,ram1_storage
140 PUT #3,a$(1),a$(2),a$(3)
150 CLOSE #3 160 :
170 REPeat opt_loop
180 CLS: INPUT 'Which Number Name do you want?',no$
190 IF no$='':NEXT opt_loop
200 IF no$(1) INSTR '123': opt=no$(1): EXIT opt_loop
210 END REPeat opt_loop
220 OPEN_IN#3, ram1_storage
230 FOR i=1 TO opt:GET#3,retrieve$
240 PRINT retrieve$
250 CLOSE #3
260 DATA 'Fred Bloggs','Filthy Rich','Peter Rabbit'

NOTE 1

The example works fine if only a few fields have to be stored. Generally, it is better to move around a file
using file pointers in a file based database.

NOTE 2

Current versions of the Turbo and Supercharge compilers are not able to compile programs which use
GET.

NOTE 3

Except under SMS v2.81+, this command can crash the system if you try to GET a string variable which
has been dimensioned {or even set with LOCal a$(512) for example}. This can be avoided by using:

a$=FILL$(' ',512)

to initialise the string instead.

NOTE 4

Although it is possible to use this command with non-file related channels, this is inadvisable, as each
entry would need to be typed in from the keyboard in its internal form, which can be rather difficult. If
you do use the command on a non-file related channel by accident, press the Break key to escape.

CROSS-REFERENCE

See PUT , BPUT , BGET , LGET , WGET .

14.5 GET_BYTE$

Syntax GET_BYTE$ (#channel,bytes)
Location TinyToolkit

This function will read a specific number of bytes from the given channel and return the result as a string.
If GET_BYTE$ cannot get the specified number of bytes from that channel, it will wait until there are

14.5. GET_BYTE$ 395

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

enough bytes present in the channel or until it detects an End Of File character. GET_BYTE$ does not
care which characters are read, so <LF> = CHR$(10) will not cause any problems unlike INPUT.

Example

A program to compare the contents of two files, both of which are the same length. The greater the buffer
size (maximum 32767 bytes), the faster will be the execution, but then again the greater the work space
which will be needed (maximum 64K). This is an example of the fundamental link between available
memory and operation speed:

100 File1$="ram1_a"
110 File2$="ram1_b"
120 Buffer=10000
130 :
140 Pieces=FILE_LEN(File1$) DIV Buffer
150 Rest=FILE_LEN(File1$) MOD Buffer
160 OPEN#3,File1$: OPEN#4,File2$
170 FOR Blk=0 TO Pieces+1
180 IF Blk>Pieces THEN Buffer=Rest
190 One$=GET_BYTE$(#3,Buffer)
200 Two$=GET_BYTE$(#4,Buffer)
210 PRINT "Block"!Blk TO 12;
220 IF One$<>Two$ THEN
230 PRINT "Difference between"!Buffer*Blk!"and"! Buffer*(Blk+1)
240 ELSE
250 PRINT "OK"
260 END IF
270 END FOR Blk
280 CLOSE#3: CLOSE#4

NOTE

Earlier TinyToolkit versions (pre v1.10) called this function GET$, which unfortunately caused problems
with a similar function in the Turbo Toolkit and EASYPTR.

CROSS-REFERENCE

INKEY$ reads just one byte from the given channel, which is therefore much slower than GET_BYTE$
if blocks of bytes are to be read. On the other hand, INKEY$ allows you to specify a timeout.

The INPUT command combines input/output and reads blocks, but a block must end with <LF>.

The usage of the different keywords depends mainly on the structure of the incoming data. User input
and lines in an ASCII file normally terminate with Enter <LF>, while internal data such as disk directory
entries are stored as blocks with a fixed length (see FOP_DIR). Have a look at GET , PUT , BGET and
BPUT , too. FILE_PTRR, FILE_POS, FPOS can be used for movement.

396 Chapter 14. Keywords G

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

14.6 GET_BYTE

Syntax byte = GET_BYTE(#channel)
Location DJToolkit 1.16

Reads one character from the file attached to the channel number given and returns it as a value between
0 and 255. This is equivalent to CODE(INKEY$(#channel)).

BEWARE, PUT_BYTE can put negative values to file, for example -1 is put as 255, GET_BYTE will
return 255 instead of -1. Any negative numbers returned are always error codes.

EXAMPLE

c = GET_BYTE(#3)

CROSS-REFERENCE

GET_FLOAT , GET_LONG, GET_STRING, GET_WORD.

14.7 GET_FLOAT

Syntax float = GET_FLOAT(#channel)
Location DJToolkit 1.16

Reads 6 bytes from the file and returns them as a floating point value.

BEWARE, if any errors occur, the value returned will be a negative QDOS error code. As GET_FLOAT
does return negative values, it is difficult to determine whether that returned value is an error code or not.
If the returned value is -10, for example, it could actually mean End Of File, this is about the only error
code that can be (relatively) safely tested for.

EXAMPLE

fp = GET_FLOAT(#3)

CROSS-REFERENCE

GET_BYTE, GET_LONG, GET_STRING, GET_WORD.

14.8 GET_LONG

Syntax long = GET_LONG(#channel)
Location DJToolkit 1.16

Read the next 4 bytes from the file and return them as a number between 0 and 2^32 -1 (4,294,967,295
or HEX FFFFFFFF unsigned).

BEWARE, the same problem with negatives & error codes applies here as well as GET_FLOAT .

14.6. GET_BYTE 397

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

EXAMPLE

lv = GET_LONG(#3)

CROSS-REFERENCE

GET_BYTE, GET_FLOAT , GET_STRING, GET_WORD.

14.9 GET_STRING

Syntax a$ = GET_STRING(#channel)
Location DJToolkit 1.16

Read the next 2 bytes from the file and assuming them to be a QDOS string’s length, read that many
characters into a$. The two bytes holding the string’s length are NOT returned in a$, only the data bytes.

The subtle difference between this function and FETCH_BYTES is that this one finds out how many
bytes to return from the channel given, FETCH_BYTES needs to be told how many to return by the user.
GET_STRING is the same as:

FETCH_BYTES(#channel, GET_WORD(#channel))

WARNING - JM and AH ROMS will give a ‘Buffer overflow’ error if the length of the returned string is
more than 128 bytes. This is a fault in QDOS, not DJToolkit. The demos file, supplied with DJToolkit,
has a ‘fix’ for this problem.

EXAMPLE

b$ = GET_STRING(#3)

CROSS-REFERENCE

GET_BYTE, GET_FLOAT , GET_LONG, GET_WORD, FETCH_BYTES.

14.10 GET_STUFF$

Syntax GET_STUFF$
Location GETSTUFF

The Hotkey System II uses the keys <ALT><SPACE> and <ALT><SHIFT><SPACE> to type into the
current keyboard buffer the contents of a certain piece of memory, known as the Hotkey Stuffer Buffer.
The command HOT_STUFF text$ puts text$ into this buffer.

The function GET_STUFF$ returns the contents of the hotkey stuffer or “0” if it does not contain any-
thing. If the FILES Thing of QPAC2 is present, this will be started first, prior to returning the stuffer
contents. This means that a program can easily ask for a filename - just by calling GET_STUFF$.

NOTE

GET_STUFF$ returns cryptic numbers in unusual circumstances, for example:

398 Chapter 14. Keywords G

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

HOT_STUFF ""
PRINT GET_STUFF$

WARNING

This function crashes SMSQ/E and Minerva when you Quit the Files Menu of QPAC 2.

CROSS-REFERENCE

See HOT_STUFF.

14.11 GetHEAD

Syntax GetHEAD #ch, adr
Location HEADER (DIY Toolkit)

GetHEAD loads the header of an opened file pointed to by the channel #ch into memory at adr, which
must point to at least 64 bytes of reserved memory.

Example

If the file header of an executable file is lost then you must modify it so that the file can be executed
again. Executable files need the file type set to 1 and the dataspace to be specified, the latter must be
large enough to avoid a serious crash. MAKEJOB does this with file$, demonstrating GetHEAD and
SetHEAD:

100 DEFine PROCedure MAKEJOB (file$, dataspace)
110 LOCal fp
120 fp=FOPEN(file$): IF fp<0 THEN STOP
130 adr=ALCHP(64): IF adr=0 THEN STOP
140 GetHEAD#fp,adr
150 POKE adr+5,1
160 POKE_L adr+6,dataspace
170 SetHEAD#fp,adr
180 CLOSE#fp: RECHP adr
190 END DEFine MAKEJOB

CROSS-REFERENCE

SetHEAD saves a file header. See FGETH$ for information about the file header. HEADR is very similar
to GetHEAD. See also HGET and HPUT .

14.11. GetHEAD 399

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

14.12 GET_WORD

Syntax word = GET_WORD(#channel)
Location DJToolkit 1.16

The next two bytes are read from the appropriate file and returned as an integer value. This is equivalent to
CODE(INKEY$(#channel)) * 256 + CODE(INKEY$(#channel)). See the caution above for GET_BYTE
as it applies here as well. Any negative numbers returned will always be an error code.

EXAMPLE

w = GET_WORD(#3)

CROSS-REFERENCE

GET_BYTE, GET_FLOAT , GET_LONG, GET_STRING.

14.13 GETXY

Syntax GETXY x%, y%
Location HCO

This command draws a crosshair (with its centre at (x%,y%) which can be moved with the cursor keys.
Holding down <SHIFT> while pressing a cursor key will speed up movement. Once the crosshair is
placed in the correct position, press <SPACE> to return to BASIC. The two parameters x% and y% will
be updated to the position of the centre of the cross.

NOTE 1

It is obligatory to pass integer variables to GETXY.

NOTE 2

GETXY returns a wrong value for y% on Minerva ROMs, so it is unusable.

NOTE 3

Turbo and Supercharge compilers cannot compile this command.

WARNINGS

See SET .

CROSS-REFERENCE

INVXY

400 Chapter 14. Keywords G

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

14.14 GO SUB

Syntax GO SUB line_number (GOSUB is expanded to GO SUB)
Location QL ROM

The command GO SUB was only implemented to make SuperBASIC more compatible with other ver-
sions of BASIC.

SuperBASIC offers much more elegant and powerful alternatives to this command - ‘structured program-
ming’. Structured programs do not have to be longer than the same program using GO SUB commands.

It is strongly recommended that you do not use GO SUBs in programs. A similar effect (and much more
besides) can be achieved by using DEFine PROCedure and DEFine FuNction.

The idea behind GO SUB is that it jumps to a sub-routine within a program which starts at the specified
line_number. Program flow then continues through that sub-routine until a RETurn statement is found,
in which case, control is then returned to the statement following the original GO SUB.

Example

A simple program which prints a title in shadow writing, using GO SUB to call up the shadow writing
routine:

100 MODE 8
110 WINDOW 448,200,32,16:PAPER 0:CLS
120 a$='Hello there World'
130 GO SUB 1000
140 PAUSE
150 CLS
160 :
999 STOP
1000 CSIZE 2,0
1010 AT 10,10:INK 4:PRINT a$
1020 CURSOR 42,56,10,10:INK 7:OVER 1:PRINT a$:OVER 0
1030 RETurn

This is actually much easier to read (and more flexible) if re-written to use DEFine PROCedure instead
(note that there is no longer any need for line 999).

100 MODE 8
110 WINDOW 448,200,32,16:PAPER 0:CLS
130 SHADOW_PRINT "Hello there World'
140 PAUSE
150 CLS
160 :
1000 DEFine PROCedure SHADOW_PRINT(v$)
1010 CSIZE 2,0
1020 AT 10,10:INK 4:PRINT v$
1030 CURSOR 42,56,10,10:INK 7:OVER 1:PRINT a$:OVER 0
1040 END DEFine

NOTE 1

14.14. GO SUB 401

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

It is not a crime to use GO SUB in your programs, after all, machines are built for human beings, so the
machines should be adapted to users, and users must all find the most comfortable way for them to use
their machines.

NOTE 2

A calculated GO SUB statement, eg:

GO SUB 1000+x*100

although allowed by the interpreter, is unlikely to be compiled successfully. Secondly, RENUM is unable
to change the line number of such GO SUBs. There were also problems with using an expression for GO
SUB in SMS pre v2.59.

NOTE 3

Avoid using GO SUB in an in-line FOR loop - see Note 2 of FOR.

CROSS-REFERENCE

Try to use SuperBASIC’s more powerful REPeat, FOR, DEFine PROCedure and DEFine FuNction struc-
tures instead!

14.15 GO TO

Syntax GO TO line_number(GOTO is expanded to GO TO)
Location QL ROM

The command GO TO behaves in a similar way to GO SUB in that it forces program flow to jump to a
different part of the program. It is not possible to RETurn to the statement following GO TO, unless you
use another GO TO command. SuperBASIC allows much more elegant and powerful structures which
should be used.

Example

An extremely simple password check:

10 INPUT Password$
20 IF Password$=='QL lives' THEN GO TO 50
30 PRINT 'Access DENIED'
40 GO TO 10
50 PRINT 'Access Granted'

This would be much better if re-written::

10 REPeat Pass_loop
20 INPUT Password$
30 IF Password$=='QL lives' THEN EXIT Pass_loop
40 PRINT 'Access DENIED'
50 END REPeat Pass_loop
60 PRINT 'Access Granted'

402 Chapter 14. Keywords G

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE

Please read GO SUB before you dare to try GO TO!

14.16 GPOINT

Syntax GPOINT [#ch,] x,y [,x2,y2 [,x3,y3, . . .]]
Location GPOINT

This command is the same as POINT but fixes the bug in MGx ROMs.

14.17 GRAB

Syntax GRAB (bytes)
Location TinyToolkit

GRAB is a function which reserves a specified amount of space in the common heap area of memory for
use and returns the start address of the allocated area.

CROSS-REFERENCE

With GRAB (unlike ALCHP), reserved memory can only be given back to QDOS for other purposes
with RELEASE. It is necessary to know the start address returned by GRAB to do this, so a formula like
SCRBASE GRAB(32768) wastes 32k of RAM if SCRBASE is used again. Although GRAB is comparable
to RESPR in this respect, it will work with jobs in memory just like ALCHP. See also RESERVE. The
amount of available memory can be found by using FREE or FREE_MEM.

14.18 GREGOR

Syntax GREGOR (day%, month%, year%)
Location Math Package

The function GREGOR takes three integers (floats & longs are rounded to the nearest integer) to specify
a date and returns the weekday as a number from 1 to 7 where:

• 1 = Sunday, (See Note 1 !)

• 2 = Monday,

• 3 = Tuesday,

• 4 = Wednesday,

• 5 = Thursday,

• 6 = Friday,

• 7 = Saturday.

14.16. GPOINT 403

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

As the name of the function suggests GREGOR uses the Gregorian calender.

This was introduced in 1583, so GREGOR has to refuse earlier years. Invalid parameters are not reported
by breaking with an error (unless one of the parameters is out of integer range) but by returning zero.

Example

Print your own calendar!

100 CLS
110 REPeat getmonth
120 INPUT "Year:"!year;TO 12;"Month:"!month
130 firstday$ = GREGOR(1,month,year)
135 firstday=firstday$(1)
140 IF NOT firstday THEN
150 PRINT "Invalid input."
160 ELSE EXIT getmonth
170 END IF
180 END REPeat getmonth
190 FOR lastday = 28 TO 31
200 IF NOT GREGOR(lastday+1,month,year): EXIT lastday
210 END FOR lastday
220 :
230 PRINT \" Sun Mon Tue Wed Thu Fri Sat"
240 PRINT FILL$(" ",4*(firstday-1));
250 FOR day = 1 TO lastday
260 PRINT FILL$(" ",4-LEN(day));day;
265 xday$=GREGOR(day,month,year)
270 IF xday$(1) = 7 THEN PRINT
280 END FOR day

NOTE 1

GREGOR was originally intended to return 1 for Monday, 2 for Tuesday and so on. The current version
(v2.05) follows the Christian tradition where Sunday was regarded as the first day of the week. The
programming example above corrects this by applying this interpretation and uses:

230 PRINT " Sun Mon Tue Wed Thu Fri Sat"

instead of:

230 PRINT " Mon Tue Wed Thu Fri Sat Sun".

NOTE 2

Current versions (v2.05) of this command include a bug which mean that it will not work correctly on
Minerva, SMSQ/E and possibly other ROMs.

CROSS-REFERENCE

EASTER, DAY$

404 Chapter 14. Keywords G

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

14.19 GT$

Syntax GT$ (type, string1$, string2$)
Location Btool

This function allows you to compare two strings using the comparison types supported by QDOS - it
is therefore more flexible than direct comparison using operators (see Appendix 11). The function will
always return 1 if string1$ is greater than string2$ and is therefore similar to:

PRINT string1$ > string2$

However, you can specify one of four comparison types, which will affect the outcome:

TYPE Effect
0 Compare the two strings character by character
1 Ignore the case of the letters
2 If there is no difference in the characters, compare the values of any embedded numbers.
3 Ignore the case of the letters and still if there is no difference in the characters, compare the

values of any embedded numbers.

The characters are compared by using the following order:

SPACE
!"#$%&'()*+,-/:;<=>?@[\]^_£{\|}~© 01234567890
AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrSsTtUuVvWwXxYyZz
Foreign characters (in order of the character set)

CROSS-REFERENCE

See INSTR. GE, LT, LE, EQ$ and NE are all similar facilities.

14.19. GT$ 405

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

406 Chapter 14. Keywords G

CHAPTER

FIFTEEN

KEYWORDS H

15.1 HEADR

Syntax HEADR file, adr
Location TinyToolkit

This command reads the file header of the specified file and stores it at the specified address (adr) in
memory. Note that file must be the full filename.

CROSS-REFERENCE

See GetHEAD (and FGETH$)!

15.2 HEADS

Syntax HEADS file, adr
Location TinyToolkit

This command sets the file header of the specified file to the 64 bytes stored at adr.

CROSS-REFERENCE

See HEADR and SetHEAD (and FGETH$)!

15.3 HEX

Syntax HEX (hex$)
Location Toolkit II, THOR XVI

This function returns the decimal value of a hexadecimal number. The hexadecimal system of numbering
is based upon base 16, which means that instead of each digit being in the range 0..9 (as in decimal), each
digit can actually hold the value 0..15.

Because a digit can only be one character, a system was devised for representing the value 10..15 - these
values are represented by the letters A..F respectively. Any digits outside the range 0..F will cause an
‘error in expression’.

407

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Hex$ can be anything in the range $80000000 (which equates to -2^31) to $79999999 (which equates to
2^31-1).

Examples

PRINT HEX('F')

will print the value 15.

PRINT HEX('10')

will print the value 16.

CROSS-REFERENCE

HEX$ works the other way around, converting decimal numbers into their hexadecimal equivalent. See
BIN and BIN$ for the binary versions. SMS users can achieve the same thing by using, for example:

PRINT $1AB

instead of:

PRINT HEX ('1AB').

15.4 HEX$

Syntax HEX$ (decimal,nibbles) or
HEX$ (decimal [,nibbles]) (THOR only)

Location Toolkit II, THOR XVI

This function converts a signed integer decimal number to the equivalent hexadecimal number to a spec-
ified number of nibbles (ranging from 1 to 32 - there are 4 nibbles in one digit). If nibbles is not divisible
by four, it is rounded up to the next multiple of four. Negative values are also handled correctly provided
that nibbles is set to 32. The range of decimal is -2^31<decimal<2^31

Examples

HEX (HEX$ (x,4))

Will = x if x is any number between 0 and 15.

PRINT HEX$ (300,10)

will return the value 12C.

PRINT HEX$ (300,8)

will return the value 2C.

THOR XVI NOTE

408 Chapter 15. Keywords H

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

The THOR XVI version of this command will accept a value of zero for nibbles {or even the command in
the form HEX$(decimal)}. In both of these cases the result is returned in the least number of Hexadecimal
digits necessary to store the number, for example:

PRINT HEX$(32)

gives the result 20.

THOR XVI WARNING

A second parameter of zero may crash some versions of this command except on v6.41 of the THOR
XVI.

CROSS-REFERENCE

See HEX and BIN , BIN$.

15.5 HGET

Syntax HGET [#ch] length [, access [, type [, dataspace [, extra]]]]
Location SMSQ/E

This command allows you to access the various parameters which are contained in the header of the
file attached to the specified channel (default #3). The command will set the supplied parameters to the
required information.

If the specified channel is not open to a file, then an Invalid Parameter error is reported.

The information returned is as follows:

• length = Length of the File

• access = File Access Key

• type = File Type

• dataspace = Dataspace for Executable Files

• extra = Extra Information

NOTE

You will not be able to compile this command with Turbo or SuperCharge due to the fact that it alters its
own parameters.

CROSS-REFERENCE

HPUT saves the file header information. See FGETH$ for information about the file header. See also
HEADR and GetHEAD.

15.5. HGET 409

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

15.6 HIS_SET

Syntax HIS_SET #channel
Location History Device (Needs Pointer Environment)

The History Device is an extension to the internal QDOS routine IO.EDLIN which reads editable text
input from the keyboard; IO.EDLIN is used if, for example, you use INPUT on a window - even the
interpreter uses IO.EDLIN to get its commands from #0. But let’s see how the History Device alters
keyboard input.

The toolkit must be loaded into Resident Procedure Memory (with RESPR) before any Jobs are started,
but after the Pointer Environment and Lightning / Speedscreen (or any other drivers which alter the con_
device driver) are installed (if either of these two packages are required).

Often, if you respond to a set of questions asked by a program, the same answers crop up again and
again. For example, take the SuperBASIC interpreter, if you have entered a command, it will carry it out
and wait for the next command to be entered. You may find that you want to type in the same text - or
something which you entered a few loops ago again.

Toolkit II and the Hotkey System install a last line recall when the <ALT><ENTER> key combination
is pressed (can be configured with the Hotkey System) - this is widely accepted (it’s even supported
by keyboard interfaces), but, has not proved to be very reliable or useful: recalling the last line typed
generally works well, but for lines which were entered some time ago, things become easily messed up.

The History Device sits on the afore-mentioned QDOS trap and stores a specified number of entered lines
for any console channel. If a program then requests input, previously entered lines can be recalled using
the <↑> and <↓> keys - this is called a command line history (hence the name of the History Device).

A history for a console channel must be explicitly installed, by using the HIS_SET command. HIS_SET
can only accept channel numbers which point to a con_ device, it breaks with ‘bad parameter’ if that is
not the case. Once the history is installed, you will need to activate it by using the command HIS_SIZE.

Example

To install a command line history for the SuperBASIC interpreter - these lines could be added to a BOOT
program:

HIS_SET #0: REMark Install a command line history for #0
HIS_SIZE #0, 40: REMark Activate history which stores 40 lines

NOTE 1

The History Device does not run on at least pre E.21 drivers of the ST/QL or STE/QL due to a bug in
the IO.EDLIN trap of these drivers. History is fine for Minerva up to v1.93, although there are harmless
problems with v1.96 in that the current line is not displayed before the line is altered. QView and Jochen
Merz Software have been informed about these difficulties, so these may already be fixed by now.

NOTE 2

You cannot redefine the keys used for last line recall!!

SMS NOTE

The History device is built into SMSQ/E, although the HIS_. . . commands are not included with
SMSQ/E, so in reality, you can only use the HISTORY device as a Last In First Out pipe system - see
Devices Appendix. In any event the HIS_. . . commands do not appear to work on SMS.

410 Chapter 15. Keywords H

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE

A history is automatically removed when a channel is closed but removal can also be forced with
HIS_UNSET . The QDOS/SMS Reference Manual contains full details of IO.EDLIN

15.7 HIS_SIZE

Syntax HIS_SIZE #channel, lines
Location History Device

A history which has been already been installed with HIS_SET has its size specified and is activated
(or de-activated) with HIS_SIZE. The different usages of the command are distinguished by the lines
parameter.

• Positive numbers for lines will activate a history for the given channel and tell it to store the next
lines number of lines which are terminated by pressing <ENTER>. If a history had already been
installed, then all stored lines are lost.

• Negative numbers will have exactly the same effect except that if a history was already active, the
absolute value of the given lines number is added to the memory capacity of the existing history.
Existing stored lines are retained in memory.

• Zero simply turns off a history and clears the tables which hold the entered lines.

History can store a maximum of 32767 lines which should be more than sufficient. Memory is allocated
dynamically, in four kilobytes chunks, so there is a small danger of heap fragmentation.

CROSS-REFERENCE

See HIS_SET .

15.8 HIS_UNSET

Syntax HIS_UNSET #channel
Location History Device

This command removes a history from a channel, regardless of its state of activity and the stored lines.
HIS_UNSET can only be used on channels where a history exists, otherwise an error will be reported.

Example

HIS_UNSET #0

CROSS-REFERENCE

HIS_USE, HIS_SIZE

15.7. HIS_SIZE 411

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

15.9 HIS_USE

Syntax HIS_USE device$
Location History Device

History’s command line history is installed as a device driver to allow you to use it from languages
other than SuperBASIC. The default device name is HIS and can be opened as an input pipe whenever a
IO.EDLIN call is to be used.

The HIS_USE instruction allows you to rename this device name to any other three letter code, passed
as a string. The use of the HIS device is beyond the scope of this book because it’s not necessary for
SuperBASIC where the HIS_SET, HIS_SIZE and HIS_UNSET commands are available to handle it.
Please refer to the original documentation!

SMS NOTE

The History device built into SMSQ/E uses the device name HISTORY and can therefore be used along-
side this version of the History Driver. You cannot rename SMSQ/E’s version.

CROSS-REFERENCE

See HIS_USE$ and HIS_SET .

15.10 HIS_USE$

Syntax HIS_USE$
Location History Device

This function returns the three letter device name which has been set with HIS_USE.

CROSS-REFERENCE

See HIS_USE.

15.11 HOT

Syntax HOT key, executable_file
Location TinyToolkit

This command will load the given executable job into memory and start it running from memory each
time that the specified key (together with <ALT>) is pressed, so there will not be any need to access the
drive, but the code has to be stored twice: once as the code loaded by HOT, and then the job created from
that code. Thus it is only practical to load small programs such as system utilities with this command.

Examples

412 Chapter 15. Keywords H

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

HOT c,FLP1_COLOURS_exe
HOT s,FLP1_tk2flp
HOT "4",FLP1_QED

NOTE 1

Any ALTKEY definitions which use the same hotkeys will be ignored.

NOTE 2

Non-standard machine code cannot be used (Supercharged or Turbo compiled SuperBASIC for instance):
the code has to be re-entrant, ie. when the job stops it should disappear. Jobs which relocate themselves,
redefine the trap table, change their own code (ie. are not ROMable), or can only be started one at a time,
tend to produce system crashes and other problems.

WARNING

Memory used by HOT-loaded programs cannot always be freed for use by SuperBASIC.

CROSS-REFERENCE

CLEAR_HOT clears a hotkey defined with HOT and (hopefully!) returns the occupied memory to
QDOS. Use the Hotkey System if you have this available!!

15.12 HOT_CHP

Syntax HOT_CHP (key$,filename [;cmd$] [,JobName$] [,options])
Location HOTKEY II

The main idea behind the Hotkey System II is that you can have access to any number of QL programs
by pressing one simple hotkey in order to access each program, rather than having to use <CTRL><C>
to cycle through all of the programs currently stored in the QL’s memory.

The function HOT_CHP will load an executable file with the specified filename into the common heap
and make it into an Executable Thing. Now, each time that you press <ALT> plus the specified key$, a
new copy of the program will be started up in memory (although the same code is used, meaning that
very little memory is used by each additional copy).

As from v2.03 of Hotkey System II, if you use an upper case key$, then you will need to press the upper
case character, compare where you use a lower case key$, which will recognise both the upper and lower
case character (if the upper case character has not been assigned to another hotkey).

HOT_CHP will support the current program default device if Toolkit II is loaded, otherwise it will use
its own default device which can be configured by using the program CONFIG on the file HOT_REXT.

When the program is loaded using this command, HOT_CHP will look to see whether the start of the
program contains a Job name, if not, then the program file name is used as the Job name (unless an
alternative is stipulated, using the Jobname$ parameter).

As with EXEP, you can pass a command string to the program which will be passed to each copy of the
program as and when they are started up. You can also supply a specific Job name for the program and
pass various options to the Pointer Interface to tell it how to treat the program. As well as those options
supported by EXEP, the following option is also supported:

15.12. HOT_CHP 413

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• -I This tells the Hotkey System that the program code is ‘impure’ (ie. it modifies its own code). This
means that code cannot be shared by every copy of the program - this therefore means that each time
that the program is called, a copy of the original code is made from which the program runs. For this
reason, you should consider using HOT_LOAD for such programs. The most common programs
which fall within this category have been written under BCPL or compiled with Supercharge or
Turbo.

If the program is successfully loaded into memory and set up as an executable Thing, HOT_CHP will
return 0, otherwise one of the following error codes will be returned:

• -2 Specified filename is not executable

• -3 Not enough memory to load the file

• -7 The specified filename cannot be found

• -9 The specified hotkey has already been defined, or the file is in use.

• -12 The specified filename is not supported (bad filename).

NOTE 1

Any programs which are to be loaded into the Hotkey System II should be re-entrant so that the same
code can be shared by any number of copies of the program, otherwise label them as Impure.

NOTE 2

Versions of the Hotkey System pre v2.21 do not allow you to pass a command string.

WARNING

You should not specify a Job name for impure programs as this may cause problems.

CROSS-REFERENCE

If you do not intend to remove the program in the future, use HOT_RES or HOT_RES1 as these will
ensure that the program starts up more quickly. HOT_CHP1, HOT_LOAD, HOT_LOAD1 are similar.
The hotkey will not be available until you enable the Hotkey System with HOT_GO.

15.13 HOT_CHP1

Syn-
tax

HOT_CHP1 (key$,filename [;cmd$] [,Jobname$] [,options]) or
HOT_CHP1 (key$,filename [;cmd$] !Wakename$ [,options])

Loca-
tion

HOTKEY II

The first variant of this function is very similar to HOT_CHP except that it will only start up a new copy
of the program when the specified hotkey is pressed if there is not already a copy of the program being
executed. If a copy of the program is already being executed, then the hotkey will merely move that copy
of the program to the top of the pile so that you can access it (it will PICK the program and execute a
WAKE event, if supported by the program - a Wake event is normally used by a program to force it to
update its tables etc).

The second variant of this command was introduced in v2.24 of the Hotkey System II and allows you to
specify a name of a job (Wakename$) which is to be woken up if there is already one copy of the original
program running in memory. Unfortunately this variant acts differently from the first in one main way:

414 Chapter 15. Keywords H

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• If the original program is already running, and Wakename$ points to another program which is not
yet running, a second copy of the original program will be started up.

Example

The following line will allow you to set up the <ALT><R> key to do one of two things:

• If a job called QR-Config is running already, this will be Woken; otherwise;

• A copy of a program called flp1_Route_Obj will be started up (even if one is already running).

ERT HOT_CHP1 ('R','flp1_Route_obj';'flp1_\' ! 'QR-Config')

NOTE 1

On early versions of the Hotkey System II, HOT_CHP1 did not create an Executable Thing.

NOTE 2

Versions of the Hotkey System pre v2.21 do not allow you to pass a command string.

CROSS-REFERENCE

See HOT_CHP. HOT_PICK allows you to set up hotkeys to PICK a program, and HOT_WAKE allows
you to set up hotkeys to WAKE a program. HOT_THING allows you to call an Executable Thing.

15.14 HOT_CMD

Syntax HOT_CMD (key$,command$ *[,command$]*)
Location HOTKEY II

This function allows you to set up a specify a key, which, when pressed with <ALT> will call up the
SuperBasic task (Job 0), Picking it to the top of the pile, and then send each specified command to the
command console (normally #0) followed by <ENTER> at the end of each string.

Example

ERT HOT_CMD ('d','INPUT "List Device: ";d$','DIR d$')

will set up a hotkey whereby whenever you press <ALT><d>, control will be returned to SuperBasic and
the user asked to enter a device, after which, a directory of that device will be produced.

NOTE

Although HOT_CMD will quite happily allow you to redefine an existing hotkey created with HOT_CMD
or HOT_KEY, if any other command has been used to set up the hotkey, error -9 (in use) will be reported.

CROSS-REFERENCE

See HOT_KEY . HOT_GO is required in order to make hotkey definitions operational. FORCE_TYPE is
very similar.

15.14. HOT_CMD 415

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

15.15 HOT_DO

Syntax HOT_DO key$ or
HOT_DO Thingname$

Location HOTKEY II

Once a hotkey is operational (see HOT_GO), you can call up the program or action set up on that hotkey
by using the command HOT_DO, which enables a program to emulate the user pressing <ALT><key>.

The first variant expects you to supply the key which would normally be used together with <ALT> to
call up the facility. You can however, also use the second variant to supply the name of an Executable
Thing to be called up.

Example

Take the following hotkey:

100 ERT HOT_WAKE ('f',Files)
110 HOT_GO

The following would all have the same effect:

• Pressing <ALT><f>

• HOT_DO ‘f’

• HOT_DO Files

CROSS-REFERENCE

See the other HOT . . . commands about setting up hotkeys.

15.16 HOT_GETSTUFF$

Syntax HOT_GETSTUFF$ [index]
Location SMSQ/E

This function returns the contents of the hotkey stuffer buffer. If given a parameter of 0, or no parameter,
it will return the current contents of the stuffer buffer (like ALT-SPACE). A parameter of -1 gets the
previous contents, like ALT-SHIFT-SPACE

Examples

result = HOT_GETSTUFF$: REMark Return current contents of stuffer buffer
result = HOT_GETSTUFF$(0) : REMark Return current contents of stuffer buffer
result = HOT_GETSTUFF$(-1) : REMark Return previous contents of stuffer buffer

CROSS-REFERENCE

See GET_STUFF$, HOT_STUFF.

416 Chapter 15. Keywords H

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

15.17 HOT_GO

Syntax HOT_GO
Location HOTKEY II

The Hotkey System II is actually a Job (called HOTKEY) which sits in the background of the QL looking
for the user to press the previously defined hotkeys. As many users should be aware, whenever a job is
present in the QL’s memory, you cannot access the resident procedure memory (which should be used to
install SuperBasic extensions and device drivers for example - see RESPR).

For this reason, the Hotkey System II was designed so that the Hotkey Job would not actually be created
until such time as the user was ready - ie. when all of the hotkeys had been defined and everything loaded
into the resident procedure memory. Users who have used Toolkit II’s ALTKEY system may have noticed
that although they have defined various hotkeys (with HOT_KEY for example), they do not work (or as
soon as the Hotkey System II has been loaded, the last line recall does not work). This is because the
Hotkey Job has to be started. This is achieved simply by using the command:

HOT_GO

This will start the Hotkey Job which will support all of the currently defined hotkeys, including the Hotkey
Stuffer Buffer keys (which can be re-defined by using the program CONFIG on the file HOT_REXT),
and the last line recall. If you want to remove the Hotkey Job at any time, you can do so by using the
command HOT_STOP, which has the same effect as RJOB ‘Hotkey’. This will not destroy any of the
Hotkey definitions and when you enter the command HOT_GO again, they will all be available once
again.

CROSS-REFERENCE

RESPR allocates areas of the resident procedure memory.

15.18 HOT_KEY

Syntax HOT_KEY (key$,string$ [,string2$ [,string3$. . .]])
Location HOTKEY II

This function is very similar to the first variant of the command ALTKEY provided by Toolkit II, except
that it operates by virtue of the Hotkey Job, rather than a polled task, which should make the hotkey a
little more reliable than the Toolkit II version (although this does mean than a hotkey set up under the
Hotkey System II cannot be accessed from within a program running in Supervisor mode).

As with ALTKEY, this function creates a key macro which will be typed into the current keyboard queue
each time that you press <ALT> and the specified <key$> at the same time. Again, if more than one
string appears in the definition, an <ENTER> (line feed) will be placed between each string. If you want
a line feed at the end of the final string, add a null (empty) string to the definition.

NOTE

Although HOT_KEY will quite happily allow you to redefine an existing hotkey created with HOT_CMD
or HOT_KEY, if any other command has been used to set up the hotkey (eg. ALTKEY), error -9 (in use)
will be reported.

15.17. HOT_GO 417

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE

As with other Hotkey System II definitions, you will need to use HOT_GO before you can access this
hotkey. See ALTKEY for more information.

15.19 HOT_LIST

Syntax HOT_LIST [#ch] or
HOT_LIST \filename

Location HOTKEY II

This command will produce a list in the given channel (default #1) of all of the currently set hotkeys
recognised by the Hotkey System II. If the second variant of the command is used, this will create a file
with the specified filename (default data device supported), offering the option to overwrite any existing
file, and list the hotkeys in that file. Each hotkey will be listed in tabulated form, with the key (which has
to be pressed together with <ALT>) followed by the operation or definition string. If you need to press
<SHIFT> along with the key, the key will be pre-fixed with ‘s’.

CROSS-REFERENCE

HOT_NAME$ returns the description or name for the hotkey. HOT_TYPE returns the type of hotkey
operation.

15.20 HOT_LOAD

Syntax HOT_LOAD (key$,filename [;cmd$] [,JobName$] [,options])
Location HOTKEY II

This function is similar to HOT_CHP in the parameters which it expects. By contrast, however,
HOT_LOAD does not store the program in memory, but, instead, each time that the specified hotkey
is pressed, it will look for the specified filename and then load the program at that stage (this is therefore
really designed for programs which are stored on Hard Disk, as it is improbable that you will keep the
same disk in a drive all of the time).

NOTE 1

The I (Impure code) option is not needed with this function.

NOTE 2

HOT_LOAD does not create an Executable Thing.

NOTE 3

Versions of the Hotkey System pre v2.21 do not allow you to pass a command string.

WARNING

Versions of the Hotkey System II, earlier than v2.15 (or Level B-08 of the ST/QL Drivers) contained
serious bugs in HOT_LOAD which could either remove the Hotkey Job or crash the computer.

CROSS-REFERENCE

418 Chapter 15. Keywords H

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

See HOT_LOAD1 and HOT_CHP.

15.21 HOT_LOAD1

Syn-
tax

HOT_LOAD1 (key$,filename [;cmd$] [,Jobname$] [,options]) or
HOT_LOAD1 (key$,filename [;cmd$] !Wakename$ [,options])

Loca-
tion

HOTKEY II

This function bears the same relationship to HOT_LOAD as HOT_CHP1 does to HOT_CHP. See
HOT_CHP1.

NOTE

Versions of the Hotkey System pre v2.21 do not allow you to pass a command string.

CROSS-REFERENCE

See HOT_LOAD.

15.22 HOT_NAME$

Syntax HOT_NAME$ (key$)
Location HOTKEY II

The function HOT_NAME$ returns the name of the Thing or the string associated with the specified
hotkey. A null string is returned if the hotkey is not defined.

Example

ERT HOT_RES ('/',flp2_Qram): ERT HOT_KEY ('s','Yours Sincerely','')
HOT_GO
PRINT HOT_NAME$ ('/') , HOT_NAME$('s')

will show the following: Qram Yours Sincerely

CROSS-REFERENCE

HOT_LIST will list details about all currently defined hotkeys, HOT_TYPE allows you to verify the type
of hotkey defined.

15.21. HOT_LOAD1 419

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

15.23 HOT_OFF

Syntax HOT_OFF (key$) or
HOT_OFF (Thingname$)

Location HOTKEY II

The HOT_OFF function allows you to turn off an individual hotkey by either specifying the hotkey itself,
or the name of the Thing accessed by using the hotkey, if the second variant is used (if there are two
hotkeys which access the same Thing, the first hotkey alphabetically will be turned off).

The second variant even allows you to pass the string or command used by HOT_KEY or HOT_CMD,
although this is a somewhat dubious method of doing this!!

Even though the hotkey has been turned off, it will still appear in the hotkey list (see HOT_LIST), although
pressing the hotkey will have no effect.

NOTE

If the hotkey or Thingname cannot be found, the function will return -7.

Example

HOT_OFF ('p')

will turn off the <ALT><p> hotkey, eg. if this is used by a program as a command.

HOT_SET ('p')

will turn it back on.

CROSS-REFERENCE

HOT_SET will turn the hotkey back on again. HOT_REMV will remove the hotkey definition for good.

15.24 HOT_PICK

Syntax HOT_PICK (key$, JobName$)
Location HOTKEY II

The function HOT_PICK is used to specify a hotkey to Pick a job of a specified name whenever that key
is pressed together with <ALT>. In effect, whenever the hotkey is pressed, the specified program will be
brought to the top of the pile, allowing you to continue work on it. The Job Name given need only be the
first word contained in the name shown when you use the JOBS command, therefore meaning that Job
names can be as descriptive as you like! If the specified Job is not present in memory when you press
the hotkey, a warning beep will be sounded.

Example

ERT HOT_PICK('p','Perfection')

420 Chapter 15. Keywords H

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

will set up a hotkey which will allow you to jump straight into Perfection from any other program (pro-
vided that Perfection is in memory), just by pressing <ALT><p>.

NOTE

HOT_PICK up to v1.22 gave problems on the ST Emulators.

CROSS-REFERENCE

EXEP, HOT_LOAD, HOT_CHP and HOT_RES all allow you to alter the Job Name of a program as it is
loaded. Compare HOT_WAKE.

15.25 HOT_REMV

Syntax HOT_REMV (key$) or
HOT_REMV (Thingname$)

Location HOTKEY II

The HOT_REMV function allows you to remove the hotkey definition associated with the specified key
or, if you prefer, the hotkey associated with the specified Thing. If the hotkey refers to a program which
has been loaded into the common heap (eg. with HOT_CHP), then this area of the common heap will
also be released.

NOTE

Prior to v2.26 of the Hotkey System 2, if key$ was an upper case letter, then any hotkey associated with
the lower case letter would also be removed.

CROSS-REFERENCE

See HOT_OFF for further details.

15.26 HOT_RES

Syntax HOT_RES (key$,filename [;cmd$] [,JobName$] [,options])
Location HOTKEY II

This function is the same as HOT_CHP except that the program is loaded into the resident procedure
area, and cannot therefore be removed in the future. If the resident procedure area cannot be accessed
(ie. if a task is already being executed), this function will access the common heap.

CROSS-REFERENCE

HOT_CHP.

15.25. HOT_REMV 421

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

15.27 HOT_RES1

Syn-
tax

HOT_RES1 (key$,filename [;cmd$] [,Jobname$] [,options]) or
HOT_RES1 (key$,filename [;cmd$] !Wakename$ [,options])

Loca-
tion

HOTKEY II

HOT_RES1 is the same as HOT_CHP1 except that the program is loaded into the resident procedure
area. If this cannot be accessed for any reason, the common heap will be used.

CROSS-REFERENCE

See HOT_RES and HOT_CHP1.

15.28 HOT_SET

Syn-
tax

HOT_SET (key$) or
HOT_SET (Thingname$) or
HOT_SET (newkey$,oldkey$) or
HOT_SET (newkey$,oldThingname$)

Loca-
tion

HOTKEY II

The first two variants of this function are the opposite to HOT_OFF in that they re-activate the specified
hotkey. If the specified hotkey does not exist, the value -7 will be returned. By contrast, the second two
variants allow you to re-define a hotkey by assigning a new key which is to replace the old key press. If
the specified new hotkey already exists, -9 will be returned, and if the old hotkey cannot be found, the
value -7 will be returned.

Example

10 ERT HOT_CHP ('p','flp1_Perfection')
20 HOT_GO
30 ERT HOT_SET ('L','p')
40 ERT HOT_WAKE ('p','Pick')

CROSS-REFERENCE

See HOT_OFF and HOT_KEY .

422 Chapter 15. Keywords H

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

15.29 HOT_STOP

Syntax HOT_STOP
Location HOTKEY II

See HOT_GO!

15.30 HOT_STUFF

Syntax HOT_STUFF string$
Location HOTKEY II

The Hotkey System II allows you to pass information to a program by using an area of memory known
as the Hotkey Stuffer Buffer. The contents of this buffer can be placed into the current keyboard
queue by pressing <ALT><SPACE> to read the last item to have been placed into the Stuffer Buffer,
or <ALT><SHIFT><SPACE> to read the previous item to have been placed in the Stuffer Buffer.

The keys used to recall the Stuffer Buffers can be configured by using the program CONFIG on the file
HOT_REXT.

Each item can by default be a maximum of 512 characters long (although this can be configured from
between 128 and 16384 characters if you wish). Note that two of the characters are used to store the
length of the Stuffer Buffer and must therefore be deducted from this setting.

The command HOT_STUFF allows you to place the specified string$ into the Stuffer Buffer so that it
may be read by other programs. If the Stuffer Buffer was previously empty, both <ALT><SPACE> and
<ALT><SHIFT> <SPACE> will return the same, however, if something was already in the Stuffer Buffer,
this will be read by <ALT><SHIFT><SPACE>, and the new entry as <ALT><SPACE>.

Example 1

Place an address in the Stuffer Buffer:

HOT_STUFF '10 Hardacre Way' & CHR$(10) & 'Hardacre' &CHR$(10) & 'Newcastle'

Example 2

Presuming an empty Stuffer Buffer, after:

HOT_STUFF 'DIR flp1_'

the Stuffer Buffer would look like this:

<ALT><SHIFT><SPACE> --- DIR flp1_
<ALT><SPACE> --- DIR flp1_

If you then use:

HOT_STUFF 'DIR flp2_'

the Stuffer Buffer would look like this:

15.29. HOT_STOP 423

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

<ALT><SHIFT><SPACE> --- DIR flp1_
<ALT><SPACE> --- DIR flp2_

NOTE

HOT_STUFF “” caused various problems until SMS v2.73 - see GET_STUFF$. It could even crash
compiled programs!!

CROSS-REFERENCE

GET_STUFF$ allows a program to read the contents of the Stuffer Buffer. HOT_LIST will allow you to
see the contents of the Stuffer Buffer. HOT_GO is required before <ALT><SPACE> or <ALT><SHIFT>
<SPACE> will work!

15.31 HOT_THING

Syntax HOT_THING (key$,Thingname$ [;cmd$] [,Jobname$])
Location HOTKEY II

The function HOT_THING allows you to define a hotkey which will start up a new copy of an Executable
Thing whenever the hotkey is pressed (if the Thing is present at that stage). You can pass a command
string to the Executable Thing and even change the name of the Job which will be created by passing
Jobname$.

More and more utilities are being written for QDOS which are set-up as Executable Things (for example,
most of the menus provided by QPAC2 are in fact Executable Things), which is a means of providing
various resources which a program can make use of (if they are present).

Executable Things can be seen as an executable program stored in memory, several copies of which can
be started up at any time, but the same piece of machine code will be used by all of the copies, meaning
that very little memory is required for each additional copy.

Example

ERT HOT_CHP('p',flp1_Perfection,'Perfection WP')
ERT HOT_THING('P','Perfection WP')

Both <ALT><p> and <ALT><P> will now have the same effect.

NOTE 1

Thingname$ should contain the full name of the Thing, otherwise it will not be recognised.

NOTE 2

Versions of the Hotkey System prior to v2.21 do not allow you to pass a command string. You also need
v2.24+ to pass a job name.

CROSS-REFERENCE

HOT_CHP and HOT_RES turn a file into an Executable Thing. THING allows you to test if a Thing is
present.

424 Chapter 15. Keywords H

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

15.32 HOT_THING1

Syntax HOT_THING1 (key$,Jobname$ [;cmd$] [,Jobname$]) or
HOT_THING1 (key$,Jobname$ [;cmd$] !Wakename$)

Loca-
tion

SMSQ/E v2.50+

This command is exactly the same as HOT_WAKE.

CROSS-REFERENCE

See HOT_WAKE.

15.33 HOT_TYPE

Syntax HOT_TYPE (key$)
Location HOTKEY II

This function is useful to find out the type of hotkey associated with the specified keypress. The values
returned by HOT_TYPE are as follows:

• -8 Hotkey for Last line recall

• -6 Hotkey for recall previous Stuffer Buffer

• -4 Hotkey for recall current Stuffer Buffer (HOT_STUFF)

• -2 Hotkey stuffs a defined string into the keyboard queue (HOT_KEY)

• 0 Hotkey PICKS SuperBasic and stuffs a command into #0 (HOT_CMD)

• 2 Hotkey DOES code

• 4/5 Hotkey executes a Thing (HOT_THING,HOT_RES,HOT_CHP)

• 6 Hotkey executes a File (HOT_LOAD)

• 8 Hotkey PICKS a Job (HOT_PICK)

• 10/11 Hotkey WAKES or executes a Thing (HOT_WAKE, HOT_RES1, HOT_CHP1)

• 12 Hotkey WAKES or executes a File (HOT_LOAD1)

CROSS-REFERENCE

HOT_NAME$ returns the name of the Thing or the string being accessed.

15.32. HOT_THING1 425

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

15.34 HOT_WAKE

Syntax HOT_WAKE (key$,Jobname$ [;cmd$] [,Jobname$]) or
HOT_WAKE (key$,Jobname$ [;cmd$] !Wakename$)

Loca-
tion

HOTKEY II

Many programs which have been written to use the Pointer Environment will recognise what is known
as a WAKE event - this defines something that the program should do once control is returned to the
program, for example, updating its tables.

Whereas PICKing a job merely brings it to the top of the pile ready for use, when you WAKE a job,
not only is it brought to the top of the pile, but also a WAKE event is executed (if supported). You
should therefore WAKE any program which provides information on the current state of the computer or
SuperBasic program for example.

The function HOT_WAKE allows you to set up a hotkey which will Wake the specified Jobname$ if a
copy of the program is already being executed. However, if there is not already a copy of the specified
Job being executed, the hotkey will then look for an Executable Thing with the same name as Jobname$
(which should therefore be specified in full), which, if found, will be executed by the hotkey, creating a
new copy of the program.

As with the other hotkey commands, a command string can be passed to the program when it is executed
(this will be ignored if the program is merely woken).

As with HOT_CHP1, HOT_RES1 and HOT_LOAD1, you can specify a Wakename$ which allows you
to use the Hotkey to access two jobs, if at least the first Job (or Executable thing) exists then the Hotkey
will do one of two things:

• If there is a current job called Wakename$, then this will be woken; otherwise;

• The first Job (or Executable Thing) will be Woken if it exists (or otherwise will be started up).

HOT_WAKE is ideally suited for programs where you would not want more than one copy to be executed
at any one time (eg. a calendar program).

Example

Some users prefer to be able to have a choice between either Waking an existing copy of a program (or
executing the first copy) and loading another copy of the program at a later stage. This can be achieved,
for example, with:

ERT HOT_RES ('Q',flp1_QUILL,'QUILL')
ERT HOT_WAKE ('q','QUILL')

NOTE

Versions of the Hotkey System prior v2.21 do not allow you to pass a command string. You also need
v2.24+ to pass a job name.

CROSS-REFERENCE

HOT_PICK allows you to define a hotkey to PICK an existing Job.

426 Chapter 15. Keywords H

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

15.35 HPUT

Syntax HPUT [#ch] length [, access [, type [, dataspace [, extra]]]]
Location SMSQ/E

This command allows you to set the various parameters which are contained in the header of the file
attached to the specified channel (default #3). The command will use the supplied parameters to set the
required information. If the specified channel is not open to a file, then an Invalid Parameter error is
reported. The information which can be set is as per HGET.

NOTE

You will not be able to compile this command with Turbo or SuperCharge due to the fact that it alters its
own parameters.

CROSS-REFERENCE

HGET reads the file header information. See FGETH$ for information about the file header. See also
HEADS and SetHEAD.

15.35. HPUT 427

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

428 Chapter 15. Keywords H

CHAPTER

SIXTEEN

KEYWORDS I

16.1 I2C_IO

Syntax I2C_IO (cmd$, res_len [,device [,param]])
Location Minerva extensions

The Minerva MKII operating system comes complete with a battery backed clock and a small amount of
on-board RAM (256 bytes) which can be used to store various details whilst a machine is switched off,
using some of those details to dictate the state of the machine when it is first switched on (or re-set).

An on-board serial bus is also included which can be used to link add-on interfaces and can transfer data
at speeds up to 100kbits per second.

Interfaces currently exist to allow the QL to drive motors (up to 4 amps), relay switches (up to 3 amps)
and an Analogue to Digital converter.

The I2C_IO function allows you to access the battery backed clock, RAM and other interfaces provided
by Minerva MKII, through what is known as the I2C bus. The results of the function will be returned by
way of a string.

The cmd$ should contain a series of bytes which are sent to the I2C bus to be sent to the device pointed to
by the other parameters. This is normally a byte which represents a command, followed by the parameters
for that command.

For the battery backed clock and RAM supplied with Minerva MKII, there are only three commands
which are required:

• CHR$(164) -Write param bytes to the specified device. The first byte to be written should in fact be
the memory address to write to. Param can be altered by preceding the command character in the
cmd$ by the number of bytes to write (eg. CMD$=CHR$(6)&CHR$(164)&CHR$(36)&’HELLO’
will write the string ‘HELLO’ to memory address 36 in the RAM). If you only use this to write one
byte, then this will merely set the memory address for access by further Write or Read commands.

• CHR$(188) -Read param bytes from the specified device. Again, you can precede this command
character by the number of bytes to be read if you wish. The bytes which are read will be returned
as the resultant string.

• CHR$(255) -This signifies the end of the command string.

The other parameters allowed by the function are:

• Res_len which signifies the expected length of the return string , which must not be too short!!

429

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• Device signifies which device is to be accessed. The value 80 is used to access the battery backed
RAM.

• Param depends upon the command being sent via cmd$.

The on-board RAM is allocated as follows:

BytesMeaning
0-
15

Reserved for the clock and other things set by the configuration program.

16-
19

QDOS version number (if this is different to the string returned by VER$, then the rest of the
configuration data stored in the RAM will be ignored).

20-
23

Warm reset value (as per CALL 390) to be used when the QL is re-booted.

24-
25

Year*2+month DIV 10 (do not amend!)

26-
27

Copy of locations 22 and 23 - this is used to reset the system if the the values in locations 20-23
do not make any real sense (do not amend)

28-
29

Each bit in these two locations can be set to disable up to 16 plug-in ROMs linked to the QL
(bit 7 of location 28 represents the ROM which appears at the top of the F1. . .F2 screen when
the QL is reset, bit 6 represents the second ROM and so on).

30 NET station number
31 System Enhancements (equivalent to POKE !124!49,x)
32 SuperBasic Enhancements (equivalent to POKE \\212,x)
33-
34

RESERVED

35 Length of boot string (0 to 128)
36-
163

Boot string or user area

164-
251

RESERVED

252 SER1 device (see below)
253 SER2 device (see below)
254 PAR device (see below)
255 RESERVED

The bytes contained in locations 252 - 254 are intended for use by programs to find out if printers or
modems are connected and what type they are. The values currently supported are:-

• 0: Nothing connected to this port

• 1-23: Printer type (as per SDUMP command)

• 253: Tandata Modem

• 254: Astracom ‘Native’ Modem

• 255: Astracom Hayes-Compatible Modem

Example

You can use this command to make the QL always start up by loading a specified program:

430 Chapter 16. Keywords I

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

startup$ = CHR$(232) & 'LRUN win1_ROUTE_boot' & CHR$(10)
command$ = CHR$(164) & CHR$(35) & CHR$ (LEN (startup$)) & startup$ & CHR$␣
→˓(255)
PRINT IC2_IO (command$, 0, 80, LEN (startup$) + 1)

CROSS-REFERENCE

Some expansion boards have their own in-built battery backed clock, which may need to be protected
from programs which re-set the system clock for their own purposes using SDATE.

See PROT_DATE.

Because Minerva MKII’s battery backed clock is read through the I2C bus, it cannot be affected by
programs, unless you abuse the I2C_IO function!!

16.2 IDEC$

Syntax IDEC$ (value,length,ndp)
Location Toolkit II, THOR XVI

This function is exactly the same as CDEC$ except that it does not place commas between the characters
to the left of the decimal point.

CROSS-REFERENCE

See CDEC$.

16.3 IF

Syntax IF condition
Location QL ROM

This command is used to mark the start of yet another powerful SuperBASIC structure which allows
a program to perform various functions dependent upon the status of a condition. The condition will
always be interpreted as having either the value 1 (true) or 0 (false), using boolean logic if necessary.
Such conditions may be simple, such as x=2 or complex, as in x=3 AND (y=1 OR y=2).

There are actually two forms of the SuperBASIC structure:

IF condition {THEN | :} statement *[:statement]* [:ELSE statement *[:statement]*]

or

IF condition [{THEN | :}] *[:statement]* . . . [ELSE] *[:statement]* . . . END IF

The first syntax represents in-line code, and the keyword THEN can either appear or be replaced by a
colon (:). If the condition is true, the statements following THEN (or :) are executed, until the end of the
line is reached. There is actually no need for a colon after THEN, for example the following are all the
same:

16.2. IDEC$ 431

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

IF x=1 : PRINT 'x is 1'
IF x=1 THEN PRINT 'x is 1'
IF x=1 THEN:PRINT 'x is 1'

If during processing of the statements following THEN, a corresponding ELSE keyword is found, the
interpreter will search the line for the corresponding END IF, in which case control will jump to the
statement following the END IF. If however, the line does not contain a corresponding END IF, as with
all other types on in-line code, control will jump to the next program line.

On the other hand, if the condition is false, the interpreter will search the line for the corresponding
ELSE, which, if found, will force control to jump to the first statement following ELSE. Control then
just continues along the program line and to the next program line. Note that a colon must appear before
the word ELSE, and although not strictly necessary after the word ELSE, it is advisable to place a colon
after the ELSE keyword (see the Note below).

If ELSE does not appear, control is passed to the statement following the corresponding END IF, or if
not present, the next program line.

The second syntax represents the much more flexible long-form of the IF..END IF statement. On the
first line containing the IF condition, the keyword THEN may be replaced by a colon, or even omitted
altogether. If the condition is true, control is passed to the next program line. If during interpretation, an
ELSE statement is found, the interpreter searches for the corresponding END IF and passes control to
the statement following this.

If the condition is false, the interpreter once again searches for a corresponding ELSE. If this is not
present, then control is passed to the next statement after the corresponding END IF. If on the other hand,
ELSE is present, control passes to the statement following ELSE (which may be on the same line as the
ELSE keyword). There is no need to follow ELSE by a colon in this long form.

Example 1

A short program to move a cross around the screen, using the keys <N>orth, <S>outh, <E>ast and
<W>est, press <ESC> to leave program:

100 WINDOW 448,200,32,16:PAPER 0:CLS
110 x=224:y=100:OVER 0:INK 7
120 CURSOR x,y:PRINT 'X':OVER -1
130 REPeat loop
140 dir$=INKEY$(-1)
150 old_x=x:old_y=y
160 IF dir$ INSTR 'nesw'
170 IF dir$=='n':IF y>0:y=y-1
180 IF dir$=='s' AND y<200-10:y=y+1
190 IF dir$=='e':IF x<448-6:x=x+1
200 IF dir$=='w' AND x>0:x=x-1
210 ELSE IF dir$=CHR$(27):EXIT loop:ELSE NEXT loop
220 END IF
230 CURSOR old_x,old_y:PRINT 'X'
240 CURSOR x,y:PRINT 'X'
250 END REPeat loop
260 OVER 0

Notice the use of both AND logic operators and second IF statements (these can be swapped around).
Placing the check for the keys <N>, <E>, <S> and <W> within another IF statement increases the speed

432 Chapter 16. Keywords I

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

of this routine, as the four statements in lines 170 to 200 do not need to be processed if another key is
pressed.

Example 2

The whole program can be simplified a little by using boolean logic, by replacing lines 170 to 200 with
the following:

170 IF dir$=='n':y=y-(y>0)
180 IF dir$=='s':y=y+(y<200-10)
190 IF dir$=='e':x=x+(x<448-6)
200 IF dir$=='w':x=x-(x>0)

This is about 2.5% quicker than the first example.

Example 3

On a Minerva ROM, the powerful and even quicker SELect ON statement could be used to make things
even easier to understand, by replacing lines 160 to 220 with:

160 SELect ON dir$
170 ='n':y=y-(y>0)
180 ='s':y=y+(y<200-10)
190 ='e':x=x+(x<448-6)
200 ='w':x=x-(x>0)
210 =CHR$(27):EXIT loop
215 =REMAINDER :NEXT loop
220 END SELect

This is about 22.5% quicker than the first example. Don’t worry that the ‘X’ disappears in a band across
the screen as it is being moved - as soon as you take your finger off the button, you are okay! It is unknown
why this phenomenon occurs..

NOTE 1

On ROM versions earlier than Minerva v1.92 (unless you have SMS), when using multiple in-line IF
statements, you need to be very careful over the use of ELSE and the colon ‘:’. Although the following
two lines have exactly the same effect:

IF x=0 : PRINT 'HELLO' : ELSE PRINT 'Bye'
IF x=0 : PRINT 'HELLO' : ELSE : PRINT 'Bye'

The following gives the interpreter problems:

10 x=0
20 PRINT x
30 IF x=0 : PRINT 'HELLO' : ELSE IF x=2 : PRINT 'GOODBYE' : END IF : x=x+1
40 x=x+2
50 PRINT x

This should make x=2 at line 40, but in fact x=3.

This is because the interpreter does not look for an END IF following the ELSE IF structure.

Compare this with what happens if line 30 is made to read:

16.3. IF 433

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

30 IF x=0 : PRINT 'HELLO' : ELSE : IF x=2 : PRINT 'GOODBYE' : END IF : x=x+1

This is actually a bug in the interpreter rather than a feature, as adding more IF statements into line 30
would appear to rectify it! The answer therefore is to ensure that a colon appears after every ELSE (or
compile the program).

NOTE 2

Another problem also exists with in-line IF. . .END IF statements - in the following program, line 100 is
called twice when d=1 and only once if d<>1.

2 IF d=1:PRINT 'd is 1':ELSE :PRINT 'd is not 1':END IF :PRINT 'A simple test
→˓':GO SUB 100
3 STOP
100 PRINT "Now this is peculiar!!":RETurn

The rule would appear to be that the first GOSUB/PROCedure call after the END IF contained in
an in-line IF. . .ELSE. . .END IF structure is called twice PROVIDED that the fist condition of the
IF..ELSE..END IF statement is true. Both Minerva v1.93+ and SMS cure this. Otherwise, set the
IF..ELSE..END IF statement out over several lines.

SMS NOTES

The improved interpreter checks whether IF statements are valid constructs before RUNning or SAVEing
a program and will report one of the following errors if there is a problem:

Incomplete IF clause

Normally appears where END IF has been omitted other than in the in-line format.

Misplaced END IF

There is no matching IF . . . clause

Misplaced ELSE

This error is normally reported if an ELSE statement has not been placed inside an IF. . .END IF construct.

CROSS-REFERENCE

SELect ON provides a much quicker (although less flexible) means of testing a variable. Other Super-
BASIC structures are WHEN condition, WHEN ERRor, DEFine PROCedure, DEFine FuNction, REPeat
and FOR.

16.4 IFORMAT

Syntax IFORMAT device_[name]
Location ATARIDOS

This command formats the specified device in IBM PS/2 disk format, giving it the specified name (if
any). The only difference between this and AFORMAT is the way in which the boot sector is created. As
with FORMAT, this will normally format a disk to the highest possible density - however, you can force
it to format a disk as single-sided by making the last character of the filename an asterisk (*). However,
some IBM compatible PC’s are unable to read single-sided disks.

434 Chapter 16. Keywords I

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE

Unfortunately, you cannot format 360K or 1.2M disks with this command.

CROSS-REFERENCE

See FORMAT and AFORMAT . Other commands added are IQCONVERT , ADELETE and QCOPY .

16.5 INARRAY%

Syntax INARRAY% (array[{ $ | % }] [,first] ,tofind[{ $ | % }])
Location INARRAY (DIY Toolkit - Vol Z)

This function searches a given array for a specified value. The array can be of any type, a string (although
this must only be two-dimensional), a floating point or integer (these latter two can be any number of
dimensions, up to 15 !!). INARRAY% will then search the specified array for the given value (tofind)
which must be a string, floating point or integer value, although it does not have to be the same type as
the array itself provided that you could assign the value to the array, for example:

array%(10)='2020'

and:

PRINT INARRAY%(array%,'2020')

are okay, compare:

array%(10)='x'

and:

PRINT INARRAY%(array%,'x')

which both return an error.

The search is not case-sensitive and will also equate embedded numbers so that the strings ‘020’ and
‘20.00’ are seen as the same as ‘20’. Like the function SEARCH, the search is very fast.

The first parameter can be specified, which allows you to tell INARRAY% from which element onwards
it should look (remember that the first element is indexed with 0).

The value returned by INARRAY% will be -7 if the value is not found in the specified array.

An error will be generated if tofind could not be coerced to the same type as the array.

An error will also be generated if the array contains more than 32768 entries.

If the search is successful, INARRAY% will return one value which represents the index of the entry.
For strings and single dimensional arrays, this is easy - if the value returned is srch, then:

PRINT array(srch)

will show the value you searched for. However, where the array has more dimensions, you will need a
little work to find out the entry referred to.

16.5. INARRAY% 435

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

For example, take a three-dimensional array s%(10,20,30) - this contains 11*21*31 (7161) entries,
with the first entry being index 0, this being s%(0,0,0) and the last entry being index 7160, this being
s%(10,20,30).

If INARRAY% (s%,300) returned the value 32, this would be index number 32, equivalent to s%(0,1,1).
This could be found out by using the formula for s%, where the value returned (index) points to s%(x,y,z),
where:

z=index MOD (31*21) MOD 31
y=index MOD (31*21) DIV 31
x=index DIV (31*21) MOD 31

It is important to work from right to left along the list of array elements, alternating MOD and DIV for
each entry.

NOTE

This function will not work in a program compiled with Turbo or SuperCharge.

CROSS-REFERENCE

Use INSTR to locate a sub-string in a string. See search which is similar.

16.6 INF

Syntax INF
Location Math Package

The function INF is a constant and holds the greatest number which can be used in SuperBASIC. It is
a floating point number exactly equal to 22047. If any value becomes greater than INF, an overflow will
occur. The smallest possible value is -INF.

CROSS-REFERENCE

MAXIMUM and MINIMUM can also be used to return this value.

16.7 INK

Syntax INK [#ch,] colour or
INK [#ch,] colour1,colour2 [,pattern]

Location QL ROM

This command sets the ink colour used inside the given window ch (default #1). Since the advent of
the Extended Colour Drivers under SMSQ/E v2.98+ the scope of colours accepted by this command has
been much enhanced and depends upon the colour mode selected for the current program. As a result,
the ink colour can be either a solid colour if the first syntax is used (in which case colour can be any
integer in the range 0..16777215) or a composite colour made up of the three parameters supplied in the
second syntax (colour1 and colour2 must both be in the range dictated by the current MODE).

436 Chapter 16. Keywords I

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Luckily, SMSQ/E allows you to include binary and hexadecimal numbers directly in programs (eg INK
$f800) which may make the non-standard QL colours easier to use. The way in which colours are han-
dled depends upon the operating system. On most systems, only the Standard QL Colour Drivers are
supported. However, SMSQ/E v2.98+ can be used to access further Extended Colour Drivers by config-
uring SMSQ/E to start with them loaded, or using the start-up screen on QPC.

16.7.1 STANDARD COLOUR DRIVERS

MODE 4 and MODE 8

This applies to standard QL operating systems, or can be set under SMSQ/E v2.98+ with the command
DISP_COLOUR 0,800,600 or by altering the configuration of the operating system. There are eight solid
colours which have the following values (although only four of these colours are available in MODE 4):

Value MODE 8 colour MODE 4 colour
0 black black
1 blue black (should be avoided)
2 red red
3 magenta red (should be avoided)
4 green green
5 cyan green (should be avoided)
6 yellow white (should be avoided)
7 white white

The values in MODE 4 which are marked “should be avoided” can be used on standard QLs, but lead to
compatibility problems when run under the Enhanced Colour Drivers (see below). Other integer values
in the range 8 to 255 are allowed, but these are generally ‘composite’ colours and repeats of other values.

16.7.2 EXTENDED COLOUR DRIVERS

The following is a description of the various colour modes available under the Extended Colour Drivers
provided by SMSQ/E v2.98+. These are available once SMSQ/E is configured to use the Extended Colour
Drivers. DISP_COLOUR can be used to switch between the standard and extended colour drivers.

QL Colour Mode

This is selected with the command COLOUR_QL and is the default when a program is executed. For the
purposes of INK, PAPER, STRIP etc commands, it provides the same colours as under the Standard QL
Colour Mode (provided the standard colour=0 to colour=7 is used), except that MODE 4 programs can
actually access all 8 colours not just the standard 4. However, the actual colours which represent each
of the different values can be amended by changing the palette (see PALETTE_QL). This can be used,
for example, to rectify programs which display the wrong colours because they presume INK 3 would
always be the same as INK 2.

8 Bit Colour Mode

This is supported on the Aurora motherboard (not yet implemented) and QPC, QXL and the Q40/Q60.
It is selected with COLOUR_PAL and allows colour to be in the range 0. . . 255. This is the PAL value
and is hardware independent - refer to Appendix 16 for a full list of the colours available.

16.7. INK 437

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

The colours which represent each of the 256 values allowed can be amended by changing the palette (see
PALETTE_8). For this mode, the INK parameter should be the PAL value listed in the table. If a stipple
is required, the two composite PAL colours will need to be specified explicitly - see below.

Native Colour Mode (8 or 16 bit colour)

This should be supported on all implementations of SMSQ/E v2.98+ and is selected with
COLOUR_NATIVE. The range supported by colour and the effects all depend upon the display hardware
currently in use. As a result, under Aurora, it is similar to COLOUR_PAL in that it only supports 8 bit
colours, but the colour is specified by the Native Colour Value instead of the PAL value. On the QPC,
QXL and Q40/Q60, it supports 65536 colours as standard. The value required for INK, PAPER, STRIP
etc. depends upon the hardware in use - look at the tables in Appendix 16 for the appropriate hardware
and then the Native Colour Value to use. It may be easier to use hexadecimal or binary to specify the
colour, for example INK $F81F for magenta on QPC/QXL.

24 Bit Colour Mode

This is only supported on QPC (dependent on hardware). It is selected with COLOUR_24 and allows
colour to be in the range 0..16777215. Due the values possible in 24 bit colour mode, it is essential that
hexadecimal is used to describe colours. Colours are defined as a 3 byte value representing a value for
red, green and blue respectively. For example, yellow would be INK $FFFF00.

COMPOSITE COLOURS

These are colours made up of either two or three values, for example:

INK 2,7
INK 1,7,2
INK $F800,$FDBF,1

Depending upon the combinations, they may not be displayed correctly on a television.

INK colour1,colour2

This creates a composite colour made up of the two given colours in a checkerboard pattern (stipple 3).

INK colour1,colour2,stipple

This creates a composite colour which is a mixture of the two given colours, and displayed in the given
stipple pattern.

The values for stipple are:

Value Pattern
0 Dots
1 Horizontal stripes
2 Vertical stripes
3 Checkerboard

If you wish to calculate the equivalent single parameter for Standard QL Colour Mode, you will need
to set various bits of colour by referring to the following table (note that this cannot be used under the
Extended Colour Drivers except under COLOUR_QL):

438 Chapter 16. Keywords I

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Stipple BITS 76 BITS 543 BITS 210 Colour
Dots 00 000 000 Black
Vertical Lines 01 001 001 Blue
Horizontal lines 10 010 010 Red
Checkerboard 11 011 011 Magenta

11 100 100 Green
11 101 101 Cyan
11 110 110 Yellow
11 111 111 White

NOTE

Turbo and Supercharge cannot compile the THOR’s floating point colours as they expect all parameters
to be integers. Use IO_TRAP instead, for example:

a=IO_TRAP(#ch,39,colour): REMark Sets the PAPER colour.
a=IO_TRAP(#ch,40,colour): REMark Sets the STRIP colour.
a=IO_TRAP(#ch,41,colour): REMark Sets the INK colour.

Unlike the PAPER command, if you use IO_TRAP here, you will also need to set the STRIP colour
explicitly.

THOR XVI NOTE

The THOR XVI allows a total of 16 colours in MODE 12 in the range 0 to 7.5 (stipple will actually fall
in the range 0. . . 1023). If you add .5 to the normal colour, this switches on the THOR’s intensity bit,
meaning that for example, the resultant colour for INK 1.5 is somewhere between black and blue (ie. a
very dark blue). You can also add .25 to each colour, which will result in a stipple mixture of colours
(details unknown at present).

CROSS-REFERENCE

PAPER and STRIP also set colours within windows. RMODE can be used to read the current colour
mode. COLOUR_QL, COLOUR_PAL, COLOUR_NATIVE and COLOUR_24 will also affect the colours
produced. PALETTE_QL and PALETTE_8 can be used to change the palette of colours available.
DISP_COLOUR can be used to switch from Extended Colour Drivers to Standard Colour Drivers. Also
refer to INVERSE. Please also look at the QL Display appendix (Appendix 16 - A16 The QL Display).

16.8 INKEY$

Syntax INKEY$ ([#chan,][timeout])
Location QL ROM

This function fetches a single character from the specified channel (default #0). If a timeout is specified,
INKEY$ will wait for timeout frames (there are 50 frames per second in the UK, 60 frames per second
in most other countries). If a character is read, the function will return straight away, otherwise, it will
wait for the specified number of frames and then return. Timeout can be in the range -32768..32767.
If a negative timeout is specified, INKEY$ will wait forever until a character is read from the specified
channel. The default of timeout is 0 which means return immediately. A timeout is therefore not really

16.8. INKEY$ 439

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

necessary if INKEY$ is being used to access a channel opened to a file, as the data will either be there
or not! If #chan is not an input channel (eg. scr_), error -15 (bad parameter) will be reported.

NOTE 1

Using timeouts allows programs to run at the same speed on all QL compatibles.

NOTE 2

It may be useful to clear the input buffer before trying to read a character from the keyboard (this prevents
overrun on keys) - you can do this by using something along the lines of:

100 dummy=KEYROW(0)
110 key$=INKEY$(-1)

CROSS-REFERENCE

INKEY$ is channel based, which means that it can be used safely in multi-tasking programs. KEYROW
will read the keyboard even though the current Job is not the one executing the KEYROW command
(although see the options available with EXEP). INPUT allows you to read a string of characters in one
go. PAUSE halts program execution temporarily.

16.9 INPUT

Syn-
tax

INPUT [#chan,] *[[separator] [prompti$ separator] vari]* or
INPUT *[[#chan,] [separator] [prompti$ separator] vari]* (THOR XVI and Minerva v1.97+
only)

Lo-
ca-
tion

QL ROM

This command will read a string of bytes from the specified channel (default #1), which must end in
CHR$(10) = <ENTER>. The fetched string is then placed in the specified variable (var), which may be
of any type. Several sets of bytes may be read at the same time by specifying more than one variable, for
example by:

INPUT a$,x,b$

Although each set of bytes must again be terminated by CHR$(10).

If the channel is write-only (eg. scr), error -15 (bad parameter) will be reported.

If the specified channel is a console channel (con), the cursor will be activated and the user will be able
to type in a string of characters at the current text cursor position. The characters typed will appear in
the current INK colour on the current STRIP colour, and will also be affected by the settings of CSIZE,
UNDER, FLASH and OVER.

If a channel is specified, this must be followed by a comma. It may however also be followed by one or
more separators. Each separator may be one of the following:

• ! - (Exclamation mark) If a character other than a space appears immediately to the left of the
current text cursor position, print a space. If prompt$ is specified after this, if prompt$ is too long
to fit on the line from the current text cursor position, it will be placed at the start of the next line.

440 Chapter 16. Keywords I

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

If nothing follows this separator, then the text cursor is not moved at the end of the command.

• , - (Comma) This forces the text cursor to be placed on the next column which is a multiple of 8.
Note that anything which appears on screen underneath the columns which are stepped over will
in fact be blanked out in the current STRIP colour. If the next column which is a multiple of 8 is
at the end of the current line, then the comma will move the text cursor to the start of the next line,
not overwriting any text on screen!

• \ - (Back slash) This forces the text cursor to be placed at the start of the next line. If nothing
follows this separator this has no further effect - the text cursor is automatically placed at the start
of the next line at the end of INPUT anyway (see below). This has no effect unless nothing follows
this separator, in which case the text cursor is left alone at the end of the command.

• TO col - This moves the text cursor to the specified column (col). If however, the text cursor is
already at or beyond the specified column, the text cursor is moved one space to the right (unless
you have a THOR XVI - see TO). This separator must however be followed by yet another separator
(normally ; (semicolon) so as to avoid confusion). If the specified column is further than the far
right side of the specified channel, then TO merely wraps around the channel, continuing to count
from the start of the next line. Note that any text under the columns which are jumped by TO will
be blanked out in the current STRIP colour.

At the end of the INPUT command, the text cursor is placed at the start of the next print line (unless an
end separator of ‘!’, ‘\’ or ‘;’ is used).

If prompt$ is specified, this will have no effect unless the specified channel (#chan) is a console channel.
If this is the case, the specified string is written to the console channel, (as with PRINT), followed by the
specified separator. The cursor on the specified channel is then activated at the current print position and
input awaited as normal if required.

If you are wondering how to include a variable as part of prompt$, this is achieved by placing the variable
in brackets, for example the following will prompt for 3 names to be entered:

100 DIM a$(3,10)
110 FOR i=1 TO 3
120 INPUT 'Enter name number' ! (i) ! a$(i) TO 40; '-- Thank you'
130 END FOR i

Unfortunately, you cannot include the variable which has been entered in that same INPUT statement as
a part of prompt$. If you do so, the prompt$ will include the variable at the value it contained at the start
of the INPUT statement. For example, the following will not work correctly, always saying x^2=1 no
matter what value you enter:

x=1: INPUT #2 ; 'Enter Number to Square' ! x \ 'x^2=' ; (x^2)

This could be fixed by using the following:

x=1: INPUT #2 ; 'Enter Number to Square' ! x: PRINT 'x^2=' ; (x^2)

The keys available for editing the string of characters as you enter it (via a console window) are shown on
the next page. Once the string has been entered, it is assigned to the specified variable and the interpreter
then looks at the INPUT command to see if any further prompt$ need to be printed out, or whether any
further variables need to be entered; and if so, will repeat the above steps.

KEYS AVAILABLE FOR EDITING

16.9. INPUT 441

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Once any prompt$ has been printed, whilst the user is inputting a string, the following keys are available
to the user to edit the string being entered:

• <LEFT> Move cursor left one character (if possible)

• <RIGHT> Move cursor right one character (if possible)

• <ENTER> Accept string input

• <UP> Ditto

• <DOWN> Ditto

• <CTRL><LEFT> Delete character to left of cursor

• <CTRL><RIGHT> Delete character under cursor

• <CTRL><SPACE> Break current command - return control to #0

Example 1

INPUT #2, TO 10 ; x$ \ TO 10 ; y$ \ 'Name:' ! : INPUT #2, TO 10 ; a$

Example 2

A function which will return a numeric variable safely. This accepts leading and trailing spaces, and even
spaces before the E part of a number. Unfortunately, there is no way to prevent overflow errors, where
the number is outside the range 10E-616. . . 10E616. However, it will accept for example: ‘ +1.32 E-20 ‘:

100 REMark Demonstration
110 AT 10,0:PRINT 'Enter number: ':no=INPUT_no(#1,10,13)
120 PRINT #0,lives
125 :
130 DEFine FuNction INPUT_no (chan, posx, posy)
140 LOCal var$,ix,loop,er,E_pos,dota,c
150 er=0
160 REPeat loop
170 IF er<0:BEEP 1000,10:er=0
180 dota=0
190 AT#chan,posx,posy:PRINT#chan,FILL$(' ',20)
200 AT#chan,posx,posy:INPUT#chan,var$
210 IF var$="":er=-1:NEXT loop
220 FOR ix=1 TO LEN(var$)
230 IF var$(ix)<>' ':var$=var$(ix TO):EXIT ix
240 END FOR ix
250 FOR ix=LEN(var$) TO 1 STEP -1
260 IF var$(ix)<>' ':var$=var$(1 TO ix):EXIT ix
270 END FOR ix
280 IF var$(1) INSTR '.1234567890-+'=0:er=-1:NEXT loop
290 IF var$(1)='.':dota=1
300 E_pos='E' INSTR var$
310 IF E_pos+1>LEN(var$):er=-1:NEXT loop
320 IF E_pos=0:E_pos=LEN(var$)+1
330 FOR ix=2 TO E_pos-1
340 c=CODE(var$(ix)):IF c=46:dota=dota+1
350 IF c<>46 AND (c<48 OR c>57) OR dota>1:er=-1:NEXT loop

(continues on next page)

442 Chapter 16. Keywords I

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

360 END FOR ix
370 IF E_pos>LEN(var$):RETurn var$
380 FOR ix=E_pos+1 TO LEN(var$)
390 IF var$(ix)<>' ':E_pos=ix-1:EXIT ix
400 END FOR ix
410 IF var$(E_pos+1) INSTR '1234567890-+'=0:er=-1:NEXT loop
420 IF var$(E_pos+1) INSTR '-+':IF E_pos+2>LEN(var$):er=-1: NEXT loop
430 FOR ix=E_pos+2 TO LEN(var$)
440 c=CODE(var$(ix)):IF c<48 OR c>57:er=-17:NEXT loop
450 END FOR ix
460 RETurn var$
470 END REPeat loop
480 END DEFine

NOTE 1

If you try to INPUT a string greater than 32766 characters, this may crash the system. It is therefore
important that when INPUTting from a file which is longer than 32766 characters, you are certain that it
contains a CHR$(10). If not, then use INKEY$.

NOTE 2

If no variable is specified, INPUT will have the same effect as PRINT. In particular, as from SMS v2.57,
INPUT on its own will clear a pending newline, in the same way as PRINT on its own.

NOTE 3

Pre JS ROMs have a small input buffer, meaning that strings over 128 characters long lead to a ‘Buffer
Full’ (-5) error. You can fix this for QLiberator with a compiler directive.

NOTE 4

INPUT a% cannot accept -32768 (except on Minerva v1.76+ and SMS).

NOTE 5

If you try to INPUT a value into a slice of an undimensioned string, the value will not be stored and
BASIC may stop without a message. For example:

100 a$='Hello World'
200 INPUT a$(7 TO)
210 PRINT a$

The above program will not even attempt to allow you to INPUT the value. The cure on all ROMs is to
dimension the string, or to INPUT a temporary variable:

100 a$='Hello World'
110 INPUT g$
120 a$(7 to)=g$
130 PRINT a$

NOTE 6

If the specified channel is not a console channel, prompt$ and any separators are completely ignored. If
there is no data in the channel to be read, then the error ‘End of File’ (-10) is reported. Under SMS, the
prompt$ is still printed out, but any attempt to read a variable results in ‘Invalid parameter’.

16.9. INPUT 443

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE 7

Except under Minerva v1.97+, if CURSOR was used to specify the position of the input line and the
position specified could not be set with the AT comand, the display could become messy if the cursor
was moved off the initial row and then returned to it.

NOTE 8

Before SMS v2.59 if the <BREAK> key was pressed during an INPUT command, the cursor could be
left active.

MINERVA NOTES

Minerva provides the following additional keys for use in editing the string:

• <ALT><LEFT> move to start of current text

• <ALT><RIGHT> move to end of current text

• <TAB> move along to x*8th character from start of line (or end of data if nearer)

• <SHIFT><TAB> moves back in steps of 8 characters (or start of data if nearer)

• <CTRL><ALT><LEFT> delete to start of current (visible) line

• <CTRL><ALT><RIGHT> delete from current character to end of line

• <ESC> same as <CTRL><SPACE> (Break key)

• <SHIFT><ENTER> same as <ENTER>

• <SHIFT><SPACE> same as <SPACE>

Minerva v1.93+ alters keys further, both to make editing text easier and also to prevent some anomalies
in earlier versions:

• <UP> where the input data consists of more than one line, the up key moves up a line, unless cursor
on first line of data in which case ends input. Any lines which have scrolled up out of the window
will be re-shown if you press <UP> to move onto those lines. On previous ROM versions, if a
line had disappeared off the screen, you could not access it. The only downside to this, is that any
prompt which appeared before the text being edited cannot be re-shown - the prompt is simply
‘blanked out’ in the current PAPER colour.

• <DOWN> where input data consists of more than one line, the down key moves down a line, unless
cursor on last line of data in which case it ends the input. This will allow you to access data lines
which have scrolled down out of the window.

• <SHIFT><RIGHT> moves you right to the start of the next word (or end of the data). The start of
a word is taken to be where the character to left of the cursor is space and the character under the
cursor is something other than space.

• <SHIFT><LEFT> moves you left to the start of the previous word (or start of the data).

• <CTRL> + any combination with <LEFT> or <RIGHT> will delete the characters moved over.
Spaces to the right which are caused by deletions are cleared in current PAPER colour - all other
versions clear in current STRIP colour. Minerva v1.96+ (as with THOR XVI) will also allow:
DIM x(4):INPUT x

This will patiently ask you to input the five values of x(0) to x(4). Minerva v1.96+ (as per THOR XVI)
also allows you to insert channel numbers part way through an INPUT statement, although - unlike the
THOR XVI implementation - you still cannot use the variable entered as part of the output.

444 Chapter 16. Keywords I

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

SMS NOTES

SMS provides the following additional keys for use in editing the string:

• <ALT><LEFT> move to start of current text

• <ALT><RIGHT> move to end of current text

• <TAB> move along to x*8th character from start of line

• <SHIFT><TAB> moves back in steps of 8 characters <ALT><LEFT>move to start of current text

• <ALT><RIGHT> move to end of current text

• <TAB> move along to x*8th character from start of line

• <SHIFT><TAB> moves back in steps of 8 characters

• <CTRL><DOWN> Deletes the whole of the input line

• <SHIFT><RIGHT> moves you right to the start of the next word (or end of the data). The start of
a word is taken to be where the character to left of the cursor is space and the character under the
cursor is something other than space.

• <SHIFT><LEFT> moves you left to the start of the previous word (or start of the data).

• <CTRL> + any combination with <LEFT> or <RIGHT> will delete the characters moved over.

The following keyings have also been altered:

• <DOWN> Has no effect!

• <UP> Has no effect!

THOR XVI NOTES

The THOR XVI (version 6.41) allows you to put channel numbers part way through a statement, for
example:

INPUT 'Your name' ; #0 , name$ \ #1 ; ' is ' ; (name$)

instead of:

PRINT 'Your name ' ; : INPUT #0,name$: PRINT 'is ';name$

The THOR XVI also allows you to INPUT arrays with one statement. For example:

DIM x(4): INPUT x

will wait around for five values to be entered. No other implementation (other than Minerva v1.96+)
currently allows this.

WARNING 1

There is no facility to check the characters entered using INPUT and if someone tries to enter a non-
numeric character when INPUTting a numeric variable an error will be caused. The second example
provides a means of ensuring numeric input is entered safely. Also refer to CHECKF and CHECK%.

WARNING 2

You can crash SMS if you try to omit unwanted data by using the same variable more than once in the
INPUT statement. For example, consider opening a channel to a file which contains a copy of a directory.

16.9. INPUT 445

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

The first two lines contained in the file are not needed, being the disk name and the number of sectors.
You therefore may use a line similar to:

100 OPEN_IN #3,ram1_direc
110 INPUT #3,dummy\dummy

which would simply read these two lines. Unfortunately, on SMSQ/E (pre v2.88), this appears to corrupt
the return stack and may cause problems when you try to use other variables. Minerva also exhibits some
of the same traits, although it manages to avoid a system crash. Oddly, if you enter PRINT dummy$
following this command, will print either rubbish (on SMSQ/E pre v2.88) or the first line of the file (on
Minerva), whereas it should in fact show the second line!! Even more curiously, if you RUN the program
a second time, INPUT works correctly! Later versions of SMSQ/E act in the same way as Minerva. The
original QL ROMs get this one correct.

CROSS-REFERENCE

The text cursor is positioned using commands such as AT and CURSOR. You may prefer to use EDLINE$
which allows you to provide a default string for alteration, as well as specifying the maximum number
of characters that can be typed in. PRINT has some similar characteristics. HIS_SET allows you to set a
history for a console channel.

16.10 INPUT$

Syntax INPUT$ ([#ch,] length)
Location BTool

INPUT$ is identical to FREAD$ with the single difference that the function also stops reading if a line
feed character CHR$(10) has been found. So, INPUT$ is dedicated to read line based text.

16.11 INSTR

Syntax str1$ INSTR str2$
Location QL ROM

This operator searches str2$ for str1$ and if found, it will return the position of the first character of str1$
in str2$. The search is not normally case-sensitive. If str1$ cannot be found, the value 0 is returned.

Examples

s$='Hello World':PRINT 'world' INSTR s$

will print 7.

PRINT 'worlds' INSTR s$

will print 0.

NOTE

446 Chapter 16. Keywords I

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

If str1$ is a nul string, eg. str1$=””, INSTR will always return the value 1.

SMS NOTE

You can specify a case sensitive search using INSTR_CASE.

CROSS-REFERENCE

See INSTR_CASE. INARRAY% and search can be used to compare entries within arrays.

16.12 INSTR_CASE

Syntax INSTR_CASE flag
Location SMSQ/E v2.58+

Normally the INSTR operator carries out a non-case sensitive search. This command allows you to
specify that the search should be case sensitive (if flag=1) or revert to the old system (if flag=0).

Example

INSTR_CASE 1
PRINT 'Hello' INSTR 'HELLO'

will return 0

INSTR_CASE 0
PRINT 'Hello' INSTR 'HELLO'

will return 1

NOTE 1

This command does not seem to have any effect on the speed of the INSTR operator.

NOTE 2

The setting of INSTR_CASE is cleared (to non-case sensitive) following NEW, LOAD, MERGE, LRUN,
RUN, MRUN.

CROSS-REFERENCE

See INSTR.

16.13 INT

Syntax INT(x)
Location QL ROM

This function returns the closest integer which is smaller than or equal to x. For positive parameters this
means that the non-integer part of the number is cut off, so INT(12.75)=12 and INT(5)=5. Note that for
negative numbers this is not true: INT(-12.75) = -13 because -13 < -12.75. INT can handle any number

16.12. INSTR_CASE 447

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

in the range -2^31<=x<2^31, except under SMS where it can handle much larger numbers, in the range
-2^255 <= x <= 2^2047.

Example

A function Rond(x,d) to round a number x to d decimal places:

100 DEFine FuNction Rond(no,plac)
110 LOCal temp
120 temp=INT(no*10^(plac+1)+.5)/10^(plac+1)
130 RETurn INT(temp*10^plac+.5)/10^plac
140 END DEFine

PRINT Rond (10.3226,2)

gives the result 10.32

NOTE 1

The INT function does not round to the nearest integer, use INT(x+.5) instead.

NOTE 2

On non-Minerva ROMs, unless you have SMS installed, INT with x>(2^31)-2 gives an overflow error.

CROSS-REFERENCE

CEIL is complementary to INT .

16.14 INTMAX

Syntax INTMAX
Location Math Package

The function INTMAX returns the constant 10737421823 = 2^30-1. Although SuperBASIC’s integers
can only handle a maximum of 16 bits (resulting in a range of 216 different values: -32768 to 32767), the
QL can internally, on a machine code level, happily handle larger integers. Many keywords listed in this
book actually make use of this possibility and that explains their valid parameter range.

NOTE

An error in the Maths Package (up to v2.04) means that a line such as PRINT 2^30-INTMAX will report
an out of memory error. This is fixed in later versions of the package.

CROSS-REFERENCE

EPS(x) = 1 if and only if ABS(x) = 2 * INTMAX.

448 Chapter 16. Keywords I

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

16.15 INVERSE

Syntax INVERSE [#channel]
Location ALIAS (DIY Toolkit - Vol A)

This command provides the QL with a facility which is available on most other implementations of
BASIC - inverse video. What this command actually does is swap over the values which have been set
for the specified window channel (default #1) for the STRIP and INK colours, thereby making any further
text which is PRINTed to that window stand out. This means that for example, if you set the INK to 7
(white) and the STRIP (or PAPER colour) to 2 (red), after INVERSE, text will be printed in red INK on
a white STRIP.

Example

STRIP #2,7:INK #2,0:PRINT #2,'This text is normal'
INVERSE #2:PRINT #2,'But this is in inverse video!!'

CROSS-REFERENCE

See also INK and STRIP.

16.16 INVXY

Syntax INVXY x%, y%
Location HCO

This is a simple command which draws a crosshair on screen with its centre at (x%,y%). It is drawn with
OVER -1 and uses the full screen.

WARNING

Do not use this!

16.17 IO_PEND%

Syntax IO_PEND% (#ch)
Location BTool

This function is the same as NOT PEND.

16.15. INVERSE 449

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

16.18 IO_PRIORITY

Syntax IO_PRIORITY level (level=1 to 1000)
Location SMS

This command is used to set the priority of the In / Out retry operations. This means that it affects the
amount of time that the scheduler will spend retrying IN / OUT operations (such as INKEY$ or PRINT).
Due to the QL’s multitasking abilities, it is possible that a program can be running in the background
whilst you are doing something else. If that program is trying to access a file or the Network port for
example, then it may find that there is no information waiting to be read at the time and the scheduler will
keep trying to access the file or Network until that information is received. By using this command to
set a higher priority, the scheduler will allocate more time to doing this and less time to running another
job. IO_PRIORITY 1is equivalent to the way in which the scheduler worked on the original QL ROM.

16.19 IO_TRAP

Syntax IO_TRAP ([#ch], D0 [,D1 [,D2 [,A1 [,A2 [,D3]]]]])
Location THOR XVI

This function enables you to directly access QDOS’s I/O TRAP (TRAP #3) machine code utilities. You
need to supply the number of the TRAP call as the parameter D0, but you can also set certain of the
other internal machine code registers used by the trap call by setting the other optional parameters. The
TRAP call will affect the specified channel (default #1). Apart from parameter D3 (this defaults to -1),
the purpose of the other parameters depends upon the TRAP call being used. Unless D3 is negative, ‘Not
Complete’ errors will not be reported, thus allowing programs to continue even though their windows are
buried under the THOR’s windowing system and therefore unusable. The return parameter is the value
returned in the machine code register D0 by the call.

Example 1

A short program to get the current window sizes and cursor position in the variables Window_Width,
Window_Height, Window_posx and Window_posy respectively:

100 a = ALCHP (8)
110 dummy=IO_TRAP (11,0,0,a) : REMark IOW.CHRQ TRAP
120 Window_Width = PEEK_W (a): Window_Height = PEEK_W (a+2)
130 Window_posx = PEEK_W (a+4): Window_posy = PEEK_W (a+6)
140 RECHP a

Example 2

Switch on the cursor in #1 (call IOW.ECUR):

t = IO_TRAP (HEX ('E'))

Example 3

Set cursor to column x in #3 (call IOW.SCOL):

450 Chapter 16. Keywords I

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

t = IO_TRAP (#3,HEX ('11'), x)

CROSS-REFERENCE

CLS, SCROLL and PAN all allow you to access machine code trap calls on different ROMs. INK contains
a good example of how to use IO_TRAP. TTET3,MTRAP, QTRAP and BTRAP are much better as they
can be used on all ROM versions. The QDOS/SMS Reference Manual (Section 15) contains details of
the I/O Access Traps.

16.20 IQCONVERT

Syntax IQCONVERT filename
Location ATARIDOS

This command takes a file which is stored on a QL Format disk and presumes that it was originally an
IBM format file. It will then convert special characters in that file to QL compatible characters as well as
converting any occurrence of a Carriage Return character (CR) followed by a Line Feed character (LF)
to a single Line Feed character LF.

CROSS-REFERENCE

Compare AQCONVERT and QICONVERT . See also IFORMAT and QCOPY .

16.21 IS_BASIC

Syntax IS_BASIC
Location MULTI

The function IS_BASIC allows you to find out whether the SuperBASIC program which executes the
command is running under the interpreter or has been compiled. This is done by returning the sum of the
jobnumber and the jobtag: the sum is 0 for the interpreter and a positive number for a compiled job. So
NOT IS_BASIC is 1 under the interpreter and 0 in a compiled program (or a MultiBASIC on Minerva
or Multiple SBASIC under SMS).

Example

If a compiler is available, programs are normally compiled for: - faster loading - faster execution -
possibly linking in Toolkits (QLiberator only) - easier multitasking - operating system independent
code(QLiberator only) - shared code/hotkey execution (QLiberator only) IS_BASIC helps the program-
mer who uses the interpreter to develop programs which distinguish between features which are only
available in compiled programs, for instance passing a command string:

100 IF NOT IS_BASIC THEN
110 CMD$="Test"
120 ELSE
130 INPUT CMD$
140 END IF

16.20. IQCONVERT 451

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE

IS_BASIC will fail to spot a MultiBASIC or SBASIC interpreter.

CROSS-REFERENCE

PRIO sets the priority of the current job. Under SMS or Minerva, you can use JOB_NAME$ to look at
the name of the task which would normally be SBASIC or have its first two letters as MB respectively
for a Multiple SBASIC or MultiBASIC interpreter, unless the name of the Interpreter has been altered.
Refer toJOB_NAME.

16.22 IS_PEON

Syntax IS_PEON [{ #ch | chan_ID | job_name$ }]
Location PEX

This function takes the same parameter as PEON and returns 0 if PEX is not activated for the specified
window (or Job) and returns a value not equal to 0 if PEX is active. If no parameter is specified, then this
function just checks if PEX is active at all. If a pre-JS ROM is installed, then this function will return the
value -19.

CROSS-REFERENCE

See PEON and IS_PTRAP for more details.

16.23 IS_PTRAP

Syntax IS_PTRAP (trapno [,status])
Location PEX

Not only does PEX allow you to enable background screen access for specific Jobs or windows, but you
can also dictate how the various TRAP #3 machine code routines should be treated (which has a knock
on effect on programs, since these routines are generally used to access the screen). For each TRAP #3
routine, you can specify the following status:

• 0 - if the window is buried, then halt the program when this routine is called (this is the normal
case under the Pointer Environment)

• 1 - Enable background screen access for this routine (if PEX is active - see PEON).

• 2 - This only enables background screen access for this routine if both PEX is active and PXON
has been used to enable SD.EXTOP routine calls.

• 3 - If the window is buried, then just ignore this call and allow the program to carry on. This could
be used for example to allow a program which has a large amount of calculation to do to carry on
in the background, printing a message to the screen only when its window is not buried to inform
the user of its progress.

On JS and MG ROMs, only values of 0 and 3 are recognised - PEON activates all routines as having
a status of 3 on these implementations. On all other implementations using the defaults provided with
PEX, PEON activates all of the following routines as having a status of 1.

452 Chapter 16. Keywords I

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• $05 iob.sbyt

• $07 iob.smul

• $09 iow.xtop to $0B iow.chrq

• $0F iow.dcur to $36 iog.sgcr

• $6C iop.flim

• $72 iop.rpxl to $76 iop.spry

If you use PEX_SAVE, PEON will set the various routines as specified by you previously. Not all TRAP
#3 machine code routines should be treated in this way - the following routines should be avoided if
possible:

• $00 iob.test

• $01 iob.fbyt

• $04 iob.elin

• $0C iow.defb

• $0E iow.ecur

If you decide to use this function to fine-tune the operation of PEX, then you can save the various settings
using the PEX_SAVE command. If status is not specified, then the value returned will be the status of
that particular machine code routine. If a negative number is returned then you probably have a JS or
MG ROM (or earlier). If you are writing a program which will is to run on all QLs, then you may wish
to use IS_PTRAP to set all of the routines to 0 if the QL ROM version is JS, MG or earlier.

NOTE

You need a good book on the QL’s operating system to be able to use this feature.

CROSS-REFERENCE

See PEON for more details. The QDOS/SMS Reference Manual Section 15 contains details of the
various TRAP #3 calls.

16.23. IS_PTRAP 453

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

454 Chapter 16. Keywords I

CHAPTER

SEVENTEEN

KEYWORDS J

17.1 JBASE

Syntax JBASE ({jobnr | jobname})
Location TinyToolkit

Each running job has a job header where information such as the job’s priority is stored. Usually, the
SuperBASIC programmer should read these settings by using JOBS, PJOB, OJOB etc, and change them
with SPJOB, AJOB etc.

However, for some purposes it might be interesting to access a job header directly - hence this function.

The function JBASE takes either a job number or job name and returns the start address of where its job
header is stored. JBASE breaks with error -2 (unknown job) if the parameter does not point to a job. The
jobname need not appear in quotes (unless it is also the name of a SuperBASIC variable, procedure or
function).

As from v1.11, the jobnr can be -1 which will return the base address of the current job.

The following parts of the job header are interesting from the SuperBASIC aspect, but please see system
documentation for more details:

Offset Length Meaning
0..3 4 Total length of job area
4..7 4 Job start address
8..11 4 Job ID of parent job (0 if none)
12..15 4 Address of job Released Flag (0 if Job released)
16..17 2 Job tag
19 1 Priority (Only on original QL ROMs and Minerva and Thor XVI)
20..21 2 Job status (0 active, >0 timeout, -1 suspended, -2 waiting)
23 1 Wait flag (bit 7 set if another job is waiting for this job) (not under SMS2)
24..27 4 Job ID of that waiting job

Example

This program lists all running jobs by name, occupied memory and status:

100 CLEAR: CLS: id=0: UNDER 1
110 PRINT "Job";TO 20;"Size";TO 25;"Status"

(continues on next page)

455

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

120 UNDER 0
130 REPeat job_list
140 id = NXJOB(id,0)
150 IF NOT id THEN EXIT job_list
160 name$=JOB$(id)
170 IF name$="" THEN name$="<anonymous>"
180 nr=id-65536*INT(id/65536)
190 base=JBASE(nr*(nr=nr))
200 length=1+INT(CVL(PEEK$(base,4))/1024)
210 status=CVI%(PEEK$(base+20,2))
220 SELect ON status
230 =0 TO 32767: timeout=INT(20*status)
240 status$="inactive for "&timeout&" ms"
250 =-1: status$="suspended"
260 =-2: status$="waiting"
270 =REMAINDER : status$="undefined"
280 END SELect
290 PRINT name$;TO 20;length;"k";TO 25;status$
300 END REPeat job_list

NOTE 1

JBASE returns an undefined value if the parameter used to be a job number but that job has already been
removed. For example, create a job with CLOCK #1 and look up its number with JOBS:

Job Tag Owner Priority
0 0 0 32
4 8 0 s1 Clock

Enter the command:

PRINT JBASE(4)

or:

PRINT JBASE('clock')

and see the result.

Now kill the job with KJOB 4 and check with JOBS if it has really gone:

Job Tag Owner Priority
0 0 0 32

The job is dead but PRINT JBASE(4) still returns something - usually that number will be negative.

NOTE 2

JBASE sometimes behaves oddly due to rounding errors. Before v1.11, JBASE would report an ‘invalid
job’ error if you used a variable to supply the job number (even if that variable pointed to an existing
job). The example above shows how the problem can be easily circumvented: use JBASE (nr*(nr=nr))
instead of JBASE (nr) - this converts the variable into an expression.

CROSS-REFERENCE

456 Chapter 17. Keywords J

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

JOBS, SJOB, AJOB, NXJOB. See JobCBS which corrects all of the problems associated with JBASE.
Details of Job Headers can be found in the QDOS/SMS Reference Manual Section 18 p8.

17.2 JobCBS

Syntax JobCBS ({jobnr | jobname})
Location BTool

This function is identical to JBASE, but the problems mentioned in the notes above do not exist with
JobCBS. Alas, it will not accept a jobnr of -1 in current versions.

17.3 JOBID

Syntax JOBID [({nr, tag} | <name>)]
Location SMSQ/E

This function returns the 32-bit job id of the job with the given details as a decimal value. The optional
parameters may be either a job number and job tag (as displayed by the JOBS command), or the job
name. If no parameters are supplied, the Job ID number of the current job is returned.

Examples

result = JOBID :REMark Returns the job ID of the current job
result = JOBID(job_name$) :REMark Returns the job ID of the job specified in␣
→˓job_name$
result = JOBID$(nr, tag) :REMark Returns the job ID of the job specified by␣
→˓nr and tag

CROSS-REFERENCE

See JOBS, JOB$.

17.4 JOBS

Syntax JOBS [#channel] or
JOBS \file

Location Toolkit II, THOR XVI

This command lists all jobs currently loaded into the QL to the given channel (default #1). Five pieces
of information are given: jobnumber (job), tag, owner, priority and jobname

JobNumber / Tag
The jobnumber and the jobtag are internally combined to form the job-ID (jobnumber+tag*2^16)
in order to identify jobs.

17.2. JobCBS 457

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Owner
The Owner of a job is not necessarily the job which started it nor must it be connected with it. If
a job is removed, all jobs owned by it will disappear too.

Priority
The higher the Priority of a job, the more processor time is given to it and therefore the faster it
runs.

An “s” in front of the priority means that the job is currently suspended, so the priority does not
matter.

Jobname
The jobname is another method of identifying the job, being the name given to the job when it was
programmed.

NOTE 1

If the second syntax does not work, you should update your Toolkit version.

NOTE 2

Minerva users will be dismayed to learn that current versions of this command do not display negative
priorities.

CROSS-REFERENCE

Commands like RJOB, SPJOB, REL_JOB, JOB_NAME and SJOB change job settings; JOB$, OJOB,
NXJOB, PJOB return the same information as appears on the JOBS list for single jobs. LIST_TASKS is
similar.

17.5 JOB$

Syntax JOB$ (job_ID) or
JOB$ (jobnr,tag) or
JOB$ (jobname)

Location Toolkit II

This function returns the name of a specified job, or an empty string if it has no name or if the parameters
do not specify an existing job. The third format is somewhat curious since you need to supply the very
thing you are asking for (ie. the jobname)! A negative job_ID points to the calling job.

CROSS-REFERENCE

See OJOB, PJOB, JOB_NAME and NXJOB for more information on current jobs. Compilers normally
include their own commands to set the correct job name.

458 Chapter 17. Keywords J

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

17.6 JOB_NAME

Syntax JOB_NAME title$
Location SMS

Although most Jobs have a name given to them by the programmer, there are three main exceptions to
this rule:

• Minerva MultiBASICs have a job name beginning with the two letters ‘SB’ followed by a number.

• The main SuperBASIC interpreter has a job name equivalent to a null string (“”) means that
no name is shown under the JOBS command. QPAC 2 changes this in its menus to ‘Super-
BASIC’ to identify this Job. You will also notice that when you put Job 0 to sleep (using
<ALT><SHIFT><F1>), under SMS the Button is given the name ‘System’.

• SMS’s multiple SBASIC interpreters are all given the name SBASIC and there is no way of dis-
tinguishing one copy from another.

This command allows you to set the name of a multiple SBASIC job under SMS to the specified title$.
It has no effect on a compiled program, or on the main Interpreter (Job 0).

Example

It can be necessary to include code within a program which caters for different situations depending on
whether the program is being run under an Interpreter or has been compiled. It is not sufficient to test the
name of the job, nor the job number, as this can be different on various setups. Luckily, both Minerva
and SMS allow you to discover whether a Job is an interpreter (other than Job 0).

• Minerva sets bit 6 in offset HEX(‘16’) of the Job’s Header;

• SMS places the four letters ‘SBAS’ at offset HEX(‘1E4’) of the Job’s header.

The following example uses these facts to decide what setup the program is running on:

100 vs$=VER$:prog_name$='TESTER'
110 IS_COMPILED=0:pass$=''
120 IF vs$<>'HBA' AND vs$<>'JSL1'
130 IF JOB$(-1)<>'':IS_COMPILED=1
140 ELSE
145 IF JOB$(-1)<>''
146 TJob=JBASE(-1)
147 IF vs$='HBA'
150 JOB_NAME prog_name$
160 IF PEEK$(TJob+HEX('1e4'),4)<>'SBAS': IS_COMPILED=1
165 ELSE
170 TByte=PEEK(TJob+HEX('16'))
180 IF NOT (TByte && 2^6): IS_COMPILED=1
182 END IF
185 END IF
190 END IF
200 IF IS_COMPILED
210 OPEN #1,con_448x200a32x16:PAPER 0:CLS
220 PRINT 'This program has been compiled'

(continues on next page)

17.6. JOB_NAME 459

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

230 pass$=cmd$
240 ELSE
250 IF JOB$(-1)<>''
260 OPEN #1,con_448x200a32x16
270 ELSE
280 WINDOW 448,200,32,16
290 END IF
300 PAPER 0:CLS:PRINT 'This program is running under an interpreter.'
310 IF JOB$(-1)=''
320 INPUT 'Enter Command String: ';pass$
330 ELSE
340 pass$=cmd$
345 IF pass$='':INPUT 'Enter Command String: ';pass$
350 END IF
360 END IF
370 IF pass$='':pass$='UNDEFINED'
380 PRINT 'Command String was ';pass$
390 PAUSE
400 IF IS_COMPILED=0:IF JOB$(-1)=prog_name$:QUIT
410 IF IS_COMPILED=0:IF JOB$(-1)<>'':CLOSE #1

Unfortunately, we do not know of any way of testing whether a MultiBASIC or multiple SBASIC inter-
preter was started up using the EX command or not (if not, then the CMD$ will need to be entered).

CROSS-REFERENCE

See SBASIC and MB, about the multiple interpreters provided by Minerva and SMS. JOBS and NXJOB
contain more information on current jobs. Compilers normally include their own methods of setting the
correct job name. You may want to use DEVTYPE to test if a channel is open if a program is to run
correctly under both Job 0 and a multiple SBASIC.

460 Chapter 17. Keywords J

CHAPTER

EIGHTEEN

KEYWORDS K

18.1 KBD_RESET

Syntax KBD_RESET
Location ATARI_REXT

This is a command which should never be needed. If you unplug the keyboard from the Atari whilst
the machine is switched on (this can ruin your machine), when you plug it back in, you may find that
the mouse buttons no longer work. This command re-initialises the keyboard driver so that the mouse
buttons will work again!

18.2 KBD_TABLE

Syntax KBD_TABLE num or
KBD_TABLE kcode (SMS only)

Location ST/QL (Level C-17 Drivers onwards), SMS (v2.31+)

Various keyboards can be attached to a computer depending on which country the computer is being used
in. It is therefore necessary to tell the operating system which keyboard layout is to be used so that it can
recognise which keys are being pressed.

The command KBD_TABLE does just that. num will have one of six possible values depending on the
keyboard layout (under SMSQ/E this equates to the international dialling code for that country) or you
can use the second variant to pass up to four letters representing the Car Registration Letters for that
country (the fourth letter is used where that country has more than one language):

Num Kcode Language
33 F French
34 E Spanish
44 GB English
45 DK Danish
46 S Swedish
47 N Norwegian
49 D German

461

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Num can also be used as a pointer to a user-defined keyboard table for countries which are not covered.
Details are beyond the scope of this book. A description of how to create new keyboard tables and
languages appears in IQLR Volume 5 Issue 1 and 5.

ST/QL NOTES

The values for num must be one of the following values: 0 English 1 German 2 French 3 Norwegian 5
Danish 6 Spanish

CROSS-REFERENCE

SET_LANGUAGE is similar for the THOR XVI. LANGUAGE and LANGUAGE$ allow you to enquire
about a language. LANG_USE allows you to change the language used by the system. TRA allows you
to change the output to a printer.

18.3 KBD_USE

Syntax KBD_USE [ser_port]
Location XKBD

This command ensures that any incoming data from the specified serial port (1 for ser1, 2 for ser2)
is transformed into keystrokes. Thus other computers or 8 bit keyboards can be used as an additional
external keyboard. Using the command without a parameter, or zero (eg. KBD_USE 0) closes the ser
channel and stops this operation.

NOTE

This task is carried out in the background of any other programs, but does not actually create a job.

18.4 KBYTES_FREE

Syntax memory = KBYTES_FREE
Location DJToolkit 1.16

The amount of memory considered by QDOS to be free is returned rounded down to the nearest kilo
byte. See also BYTES_FREE if you need the answer in bytes. The value in KBYTES_FREE may not be
equal to BYTES_FREE/1024 as the value returned by KBYTES_FREE has been rounded down.

EXAMPLE

kb_available = KBYTES_FREE

CROSS-REFERENCE

BYTES_FREE.

462 Chapter 18. Keywords K

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

18.5 KEY

Syntax KEY keynr, string$ or
KEY keynr (KEYMAN only) or
KEY (KEYMAN only)

Location FKEY, KEYMAN

The KEY command allows you to install keyboard short-cuts: that means if a certain key (specified
with keynr) is pressed the specified string$ will be typed into the current keyboard queue. The actual
implementation of the command under the two Toolkits is different, in that the FKEY variant only allows
keynr to be in the range 1..5 representing the five function keys (F1 to F5) (see table below).

The KEYMAN version allows keynr to be in the range 1. . . 60 which represents the following key presses:

Key Result Key Result
1 <F1> 31 <CTRL><K>
2 <F2> 32 <CTRL><L>
3 <F3> 33 <CTRL><M>
4<F4> 34 <CTRL><N>
5<F5> 35 <CTRL><O>
6<SHIFT><F1>, <F6> 36 <CTRL><P>
7<SHIFT><F2>, <F7> 37 <CTRL><Q>
8<SHIFT><F3>, <F8> 38 <CTRL><R>
9<SHIFT><F4>, <F9> 39 <CTRL><S>
10<SHIFT><F5>, <F10> 40 <CTRL><T>
11<CTRL><F1>, <F11> 41 <CTRL><U>
12<CTRL><F2>, <F12> 42 <CTRL><V>
13<CTRL><F3> 43 <CTRL><W>
14<CTRL><F4> 44 <CTRL><X>
15<CTRL><SHIFT><ESC> 45 <CTRL><Y>
16<CTRL><SHIFT><F1> 46 <CTRL><Z>
17<CTRL><SHIFT><F2> 47 <CTRL><SHIFT><1>
18<CTRL><SHIFT><F3> 48 <CTRL><SHIFT><K>
19<CTRL><SHIFT><F4> 49 <CTRL><SHIFT><L>
20<CTRL><SHIFT><F5> 50 <CTRL><SHIFT><M>
21<CTRL><A> 51 <CTRL><SHIFT><N>
22<CTRL> 52 <CTRL><SHIFT><O>
23 <CTRL><SHIFT><C> 53 <CTRL><SHIFT><P>
24 <CTRL><D> 54 <CTRL><SHIFT><Q>
25 <CTRL><E> 55 <CTRL><SHIFT><R>
26 <CTRL><F> 56 <CTRL><SHIFT><S>
27 <CTRL><G> 57 <CTRL><SHIFT><T>
28 <CTRL><H> 58 <CTRL><SHIFT><W>
29 <CTRL><SHIFT><I> 59 <CTRL><SHIFT><X>
30 <CTRL><SHIFT><J> 60 <CTRL><SHIFT><Y>

Once initiated, each time that the specified keying is pressed, the given string will be typed into the
keyboard queue, (note there is a maximum of 80 characters). The KEYMAN variant allows the second

18.5. KEY 463

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

syntax, KEY keynr, which allows you to check the current definition of keynr, which is then written to
#0.

KEY without any parameters activates the key translation if necessary. KEY keynr, “” can be used to
clear a definition with the KEYMAN variant.

Example

KEY 5,"STAT"&CHR$(10)

NOTE 1

In applications such as word-processors many of these key- presses are already used for other purposes
and this may cause problems - if you do use KEY to set a function key and then load a program which
uses those function keys, the program will first of all register that the function key has been pressed and
will then receive a stream of other keypresses (ie. the defined string).

NOTE 2

Key is quite a common variable name and so there is a large danger of errors occurring if KEY has
been loaded into the computer alongside a program which uses such a variable name - for example, the
statement:

key = KEYROW(1)

will make the program stop with error -17, (Error in expression).

Another problem would exist if key was declared in a program as a BASIC procedure or function, for
example:

DEFine PROCedure Key

in which case, this would overwrite the machine code definition and even the command NEW will not
restore it, however all stored KEY definitions are kept active, and they can no longer be altered because
the keyword KEY is no longer recognised by the system.

NOTE 3

Neither of these Toolkits should be linked into a Qliberated job, otherwise it is possible that the code
used for KEY will exist twice in memory, which would crash the machine. Also, the Toolkits should not
be loaded into a MultiBASIC or Multiple SBASIC unless you are certain that this Interpreter will never
disappear.

CROSS-REFERENCE

NOKEY under KEYMAN is equivalent to KEY without parameters. See ALTKEY for a concept similar
to this one here.

464 Chapter 18. Keywords K

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

18.6 KEYROW

Syntax KEYROW (row)
Location QL ROM

This function is used to read the keyboard. It is not linked with a channel which means that it can be
used by a job to read the keyboard whether or not that job has an active cursor. This is mainly only of
use for programs which work in the background unless a certain key is pressed to bring them to life. If
you try to use this command in a program to control the screen, then this will undoubtedly lead to screen
corruption as the active program may itself be accessing the screen.

The main advantage which this function has when compared to INKEY$ is that it allows programs to
recognise when the user is pressing several keys at once, such as the left and up cursor keys to move
diagonally.

The function KEYROW is able to read several keys at once by using a keyboard matrix, where each row
is numbered and each key is assigned to a certain row. If that key is pressed, then a bit is set in the integer
value of that row to represent which key has been pressed.

For British QLs, the format of the matrix is:

Row 0| 7 4 F5 F3 F2 5 F1 F4
Row 1| DOWN SPACE \ RIGHT ESC UP LEFT ENTER
Row 2| " M £ B C . Z]
Row 3| ; G = F S K CAPSLOCK [
Row 4| J D P A 1 H 3 L
Row 5| O Y - R TAB I W 9
Row 6| U T 0 E Q 6 2 8
Row 7| , N / V X ALT CTRL SHIFT

Bit 7 6 5 4 3 2 1 0
Value 128 64 32 16 8 4 2 1

Please see the A9 Character Set, Keyboard.

The table reflects the physical keyboard layout and so may be different on other languages.

Unfortunately, only one row at a time can be read with KEYROW and so the keys are arranged into groups
- for example, all of the cursor keys appear on one row, as do all of the function keys.

When the function is used, the supplied parameter row specifies which row of the matrix is to be looked
at. The value returned will have bits set representing which keys (if any) in that row were being pressed.

When KEYROW is used, any characters in the type-ahead buffer are cleared, therefore, if you wish to
avoid accidental input by the user of unwanted keys, you could use:

dummy = KEYROW(0): Quit$ = INKEY$(-1)

This will clear the type-ahead buffer and then wait for a new key to be pressed - this is essential where,
for example, you are asking for confirmation that a program should be quit.

Example 1

18.6. KEYROW 465

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

If you were holding the <SHIFT> key down together with the left and up cursor keys down:

PRINT KEYROW(7)

would return the value 1 and:

PRINT KEYROW(1)

would return the value 6.

Example 2

The following program moves a cross about the screen, using the cursor keys - diagonal movement is
allowed:

100 MODE 4
110 WINDOW 512,256,0,0:PAPER 0:CLS
120 WINDOW 448,200,32,16
130 INK 7:OVER -1
140 SCALE 150,-120,-75
150 x=0:y=0
160 LINE x-10,y TO x+10,y,x,y-10 TO x,y+10
170 REPeat loop
180 ax=KEYROW(1)
190 IF NOT ax:NEXT loop
200 LINE x-10,y TO x+10,y,x,y-10 TO x,y+10
210 IF ax&&2:x=x-(x>-120)
220 IF ax&&16:x=x+(x<128)
230 IF ax&&4:y=y+(y<75)
240 IF ax&&128:y=y-(y>-75)
250 IF ax&&8:PRINT 'Program Escaped':OVER 0:STOP
260 LINE x-10,y TO x+10,y,x,y-10 TO x,y+10
270 END REPeat loop

NOTE 1

Except under SMS, if you are holding three keys down which form three corners of a rectangle on the
keyboard matrix, the KEYROW function will return the same value as if the key which appears in the
fourth corner of the rectangle was also depressed. The QL Manual suggests this does not happen where
one of the keys is <CTRL>, <ALT> or <SHIFT>, but this still happens on the QL, even with Hermes.

NOTE 2

Some replacement full-sized keyboard interfaces will not recognise where two letter keys, two function
keys or two numerical keys are held down at the same time.

NOTE 3

It is just possible that if KEYROW is being executed whilst a task is being loaded or unloaded, the system
will crash (the command does not take place in supervisor mode). This has been fixed on THORs v4.16
(or later) and Minerva.

NOTE 4

KEYROW had various problems under SMS before v2.58.

NOTE 5

466 Chapter 18. Keywords K

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

This command is only partly implemented on THORs v4.16 (and later), and does not work at all on earlier
versions: the only multiple keystrokes recognised are: <SHIFT>, <CTRL>, <ALT> and one other key!
The corners of the numeric pad act as diagonal cursor keys and the <CAPSLOCK> result is obtained by
pressing <5> on the numeric pad. INKEY$ should be used instead.

NOTE 6

It is highly recommended that KEYROW is not used at all.

It reads the physical keyboard directly, so will conflict with other jobs running in a multitasking environ-
ment.

Another problem is the differences between keyboards, for example, on a German QL the <Z> and <Y>
keys are swapped over compared to a British QL - INKEY$ is much better!

ST/QL NOTES

On the ST/QL Emulator, the KEYROW table is much extended, with the following rows being added,
both to take account of the additional keys available on an ST keyboard and also to take account of the
numeric keypad (hence the repetition of various keys!):

Row 8 | F10 F9 F8 F7 F6 BACKSPACE ~
Row 9 | + - CLR/HOME
Row 10| DELETE INSERT
Row 11| <
Row 12| 8 7 * /) (HELP UNDO
Row 13| 0 3 2 1 6 5 4 9
Row 14| ENTER .

Bit 7 6 5 4 3 2 1 0
Value 128 64 32 16 8 4 2 1

The additional keys have the following meanings:

• BACKSPACE Delete one character to left (CTRL left).

• SHIFT BACKSPACE Deletes a word to the left.

• DELETE Delete character under cursor (CTRL right).

• SHIFT DELETE Deletes word under cursor.

• UNDO Undo current operation (CTRL ALT up).

• SHIFT UNDO Mega undo!

• CLR/HOME Freezes screen (CTRL F5)

• INSERT Hard space (SHIFT SPACE)

• CTRL SHIFT ALT UNDO Hard reset.

The keys on the numeric keypad have been redefined as follows:

18.6. KEYROW 467

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Keying Result
SHIFT ([
SHIFT)]
SHIFT /

SHIFT ENTER =
CTRL ({
CTRL) }
CTRL \ |

CROSS-REFERENCE

INKEY$ and INPUT allow user input from the keyboard whilst retaining compatibility across the vari-
ous QDOS implementations. These commands are also job specific, and hence much better for use in
multitasking programs. Some of the HOT_XXX commands and EXEP allow you to pass a U option to
the program to force the computer to freeze all other programs whilst this one is running - this can be
used to ensure that a program which uses KEYROW does not carry on reading the keyboard whilst you
are using another program.

18.7 KEYW

Syntax KEYW (keyword$)
Location Fn

This is a function which can be used to find whether or not a given keyword is linked into the interpreter.
If the keyword is known to the interpreter, KEYW returns 0, otherwise -7.

Example

The following function returns 1 on Gold Cards and 0 on other systems (or some early Gold Cards if
they do not support the SLUG command). It will unfortunately always return 1 under SMS which has
the SLUG command built-in.

100 DEFine FuNction Gold_Card
110 RETurn NOT KEYW("FLP_DENSITY") + KEYW("SLUG")
120 END DEFine Gold_Card

A better way would be to use the MACHINE function.

NOTE

This will always access Job 0, therefore it cannot tell you whether or not a keyword is linked into a
MultiBASIC interpreter or a multiple SBASIC interpreter.

CROSS-REFERENCE

ELIS, DEFINED and KEY_ADD are similar. Compare LOOKUP%.

468 Chapter 18. Keywords K

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

18.8 KEY_ADD

Syntax KEY_ADD (keyword$)
Location BeuleTools

This function returns the start address of where the machine code routine for the given keyword is stored.
If the keyword is unrecognised by the system, 0 will be returned. This command will work from Multi-
BASICs and Multiple SBASICs.

Example 1

The file server functions of Toolkit II will only work if the code is in ROM, on an EPROM cartridge,
under SMS or on a Trump Card for example.

Nevertheless, the FSERVE command is also found in the configurable software version. You can easily
check what version of Toolkit II is present by looking at the base address of TK2_EXT and then adapt
your program to take account of the system configuration.

100 TK2_location=KEY_ADD("TK2_EXT")
105 FILE_SERVER=0
110 SELect ON TK2_location
120 = 48*1024 TO 64*1024: FILE_SERVER=1
130 = REMAINDER: IF VER$='HBA': FILE_SERVER=1
140 END SELect
150 :
160 IF FILE_SERVER THEN
170 FSERVE
180 ELSE PRINT "Sorry, no ROM based file server."
190 END IF

Example 2

KEY_ADD does not produce an error (unlike ELIS) when a keyword is not found, and is therefore ideal
to check if a certain Toolkit, command or function is present. This can be used within programs to adapt
to available facilities.

In this example the internal date and time is saved as a hexadecimal number (this is more precise) if the
necessary functions are present, otherwise it saves it as a floating point number.

The load routine then checks if the DATE was stored as a hexadecimal or decimal number, taking whatever
action is necessary.

100 DateFile$="flp1_LastDATE_dat"
110 :
120 DEFine PROCedure WRITE_DATE
130 IF KEY_ADD("OPEN_OVER") THEN
140 OPEN_OVER#3,DateFile$
150 ELSE OPEN#3,DateFile$
160 END IF
170 IF KEY_ADD("HEX$") AND KEY_ADD("HEX") THEN
180 PRINT#3,"$" & HEX$(DATE,32)
190 ELSE PRINT#3,DATE

(continues on next page)

18.8. KEY_ADD 469

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

200 END IF
210 CLOSE#3
220 END DEFine WRITE_DATE
230 :
240 DEFine PROCedure READ_DATE
250 LOCal d$
260 OPEN_IN#3,DateFile$
270 INPUT#4,d$: CLOSE#3
280 IF d$(1)="$" THEN
290 IF NOT KEY_ADD("HEX") THEN RETurn
300 d$=HEX(d$(2 TO))
310 END IF
320 ADATE d$-DATE
330 END DEFine READ_DATE

CROSS-REFERENCE

ELIS differs from KEY_ADD in that it returns zero if the keyword is not found, rather than an error
message. See also KEYW and LOOKUP%. FIND and FLIS are also useful.

18.9 KEY_RMV

Syntax KEY_RMV keyword$
Location Beuletools

This is the same as ZAP!

18.10 KILL

Syntax KILL
Location BeuleTools, KILL

This command will cause all current jobs, except the main SuperBASIC interpreter (Job 0), to be stopped
and removed from memory.

Example

The presence of jobs prevents the commands RESPR / LRESPR from grabbing memory in the Resident
Procedure Area (although some implementations overcome this restriction, they do so by by allocating
space in the Common Heap) and because some machine code programs cannot or should not be loaded
into the common heap, the command KILL can be of assistance.

WARNING

Be sure that no important data gets lost!

CROSS-REFERENCE

470 Chapter 18. Keywords K

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

RJOB removes single jobs, KJOBS works in the same way as KILL.

18.11 KILLN

Syntax KILLN
Location Beuletools

This command removes all current jobs and re-activates the following jobs if the respective facilities
are available: HOTKEY (Qjump’s Hotkey System) BLANK (Blanks screen if no key pressed) Qmons
Nix-Job (see NIX) Server (see FSERVE)

WARNING

Again, be careful!

CROSS-REFERENCE

KILL removes all jobs as does KJOBS. KILL_A removes all jobs and clears the whole system for Super-
BASIC.

18.12 KILL_A

Syntax KILL_A
Location Beuletools

This command forces everything which can be accessed from SuperBASIC to be cleared, killed or re-
moved: Jobs, file definition blocks (except if Qjump’s Hotkey System is present), variables, the DATA
pointer, the common heap and all channels are closed. On an Atari QL-Emulator and under SMS, the
buffer for the serial and parallel port is also cleared.

WARNING

Be very careful! All data will be lost. Avoid this command if you can: it is more like a safe emergency
break.

CROSS-REFERENCE

KILL, KILLN , KJOBS, DEL_DEFB, CLCHP.

18.13 KJOB

Syntax KJOB jobname (TinyToolkit only) or
KJOB jobnr or
KJOB jobnr,tag (BTool only)

Location TinyToolkit, BTool

18.11. KILLN 471

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

This command kills the given job (causing it, together with all of its owned jobs, channels and memory
to be removed or freed). Jobname in the first variant can be passed as a string or as just the name of
the Job without quotes (so long as that name is not defined as a variable or SuperBASIC PROCedure or
FuNction). jobnr is the Job number as listed by the JOBS command. If this is -1, this will kill the current
Job.

The last variant is surplus at present - it was intended that it would pass the second parameter back to the
owner of the job, but due to an error in the code, this second parameter is seen as the job tag.

Examples

KJOB 'Perfection v2.04'
KJOB 1

NOTE

Before v1.11 of TinyToolkit, you could not pass jobnr as -1 nor could you use a variable to pass the jobnr
(see JBASE).

CROSS-REFERENCE

RJOB has a slightly different syntax. KILL and KJOBS remove all jobs. SPJOB, SJOB, REL_JOB, AJOB
are other commands which handle jobs. The function JOB$ will return the name of the given job.

18.14 KJOBS

Syntax KJOBS
Location TinyToolkit, BTool

This is the same as KILL.

472 Chapter 18. Keywords K

CHAPTER

NINETEEN

KEYWORDS L

19.1 LANG_USE

Syntax LANG_USE num or
LANG_USE kcode

Location SMS

This command sets the language to be used by SMS for its message tables (this includes interpreter
messages and error messages). The value of num and kcode can be the same as for the SMS implemen-
tation of KBD_TABLE. A description of the message tables and how to link in new message modules is
contained in IQLR Volume 5 Issue 1 and Issue 5.

NOTE

If you set a different language to the version of the Psion programs which you are using, then you may
find that the DATE function in Archive and Abacus fails.

CROSS-REFERENCE

LANGUAGE and LANGUAGE$ allow you to find out about the current language. TRA allows you to set
the various message tables also. See KBD_TABLE and SET_LANGUAGE.

19.2 LANGUAGE

Syntax LANGUAGE [(code)]
Location SMS

This function returns a number representing the international dialling code for the current language im-
plementation (if code is not specified). Otherwise it will return the dialling code of the language which
would be used if the language represented by code was installed using LANG_USE (in which case code
can be either the international dialling code or the car registration code).

CROSS-REFERENCE

LANGUAGE$ returns the car registration code. LANG_USE allows you to set the language for the mes-
sages.

473

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

19.3 LANGUAGE$

Syntax LANGUAGE$ or
LANGUAGE$ (code)(SMS only)

Location THOR range of computers, SMS

This function returns a string representing the current language layout of the keyboard which is linked
into the QL. Unfortunately, the string returned is different on THORs and SMS’s. For a list of the strings
returned on THOR computers, see SET_LANGUAGE. Under SMS the string returned is the international
car registration code for the language currently loaded (if code is not specified). The second variant
returns the car registration code of the language which would be used if the language represented by
code was installed using LANG_USE (in which case code can be either the international dialling code
or the car registration code).

CROSS-REFERENCE

SET_LANGUAGE allows you to alter the current keyboard. See also LANGUAGE and LANG_USE.

19.4 LAR

Syntax LAR file, array
Location ARRAY

LAR loads a file which must have been stored with SAR or SARO into a dimensioned array. The array
must have been initialised with DIM to the same dimensions of the stored array, and of course the type
(float, integer, string) must be the same. The default data device is supported.

CROSS-REFERENCE

See DATAD$ about the default data device. SAR and SARO are complementary commands.

19.5 LBYTES

Syn-
tax

LBYTES device_filename, start or
LBYTES [device_]filename, start(Toolkit II only) or
LBYTES #channel, start(SMS only)

Loca-
tion

QL ROM, Toolkit II

This command loads a chunk of machine code (or data) stored on the given device under the specified
filename and will report the error ‘Not Found’ (-7) if either the device or filename does not exist. If
Toolkit II is present, this command supports the default data device (see DATAD$). If found, the chunk
of machine code is loaded into the QL, starting at the specified start address. The code is loaded in one
huge block, which means that loading is very quick. However, there is also no check on the type of file
being loaded and therefore you should make sure that you know what you are doing. Under SMS the
third variant allows you to load the data from the specified channel which must be open to a file. This

474 Chapter 19. Keywords L

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

allows for more efficient programs, so that you can perform various tests on the file beforehand (such as
test its length and file type), whilst only opening a channel to the file once.

Examples

One of the main uses of this command is to load in machine code Toolkits and extensions. It is important
to note that if this command is used to do this, on pre JS ROMs, the commands in the machine code Toolkit
cannot be used in the same program which links them in. A typical boot program would therefore be:

100 a=RESPR (1024) : LBYTES flp1_Toolkit_ext,a : CALL a
110 LRUN flp1_Main_bas

Another use of LBYTES may be to load a screen which has been designed in a drawing program. A
normal QL screen is a maximum of 32768 bytes long, however quite often screens can be much larger,
so it is important to ensure that you check the length of the file before loading in what may be a screen
file. To load a screen under SMS, use:

10 OPEN_IN #3,flp1_Loading_scr
20 scr_length=FLEN (#3)
30 scr_size=SCR_YLIM * SCR_LLEN
40 IF scr_size < scr_length
42 PRINT #0,'Screen resolution is too small for the saved file.':STOP
45 END IF
50 IF scr_size>scr_length:PRINT #0,'Screen resolution is too big for the saved␣
→˓file.':STOP
60 LBYTES #3,SCR_BASE
70 CLOSE #3

WARNING

There is no check on the value of start, so ensure that you only try to LBYTES machine code into RAM
which has been set aside with ALCHP or RESPR. Also ensure that the file is not too long to fit in the
area of RAM allocated.

CROSS-REFERENCE

Normally code loaded with LBYTES has been saved using SEXEC or SBYTES. FLEN allows you to find
out the length of a file, FTYP its file type.

19.6 LCM

Syntax LCM (x1, x2, *[,xi]*) where xi=0..INTMAX
Location Math Package

LCM is a function which takes two or more numeric parameters and finds their least common multiple, ie.
the smallest number which can be divided by all of the parameters without a remainder. The parameters
should be positive integers.

Example

PRINT LCM (2,3,4)

19.6. LCM 475

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

returns 12 and indeed 12/2=6, 12/3=4 and 12/4=3.

NOTE

If you are not looking for the least common multiple but any common multiple then simply multiply all
the numbers, eg. 2*3*4=24.

CROSS-REFERENCE

GCD

19.7 LDRAW

Syntax LDRAW x1,y1 TO x2,y2, col
Location HCO

This command is similar to DRAW, ie. it draws quite a thick line on the screen, but LDRAW is part of
the same Toolkit as SET and uses a different col parameter to DRAW, see SET for that.

Example

Well, the sample listing which follows on below, is a bit too long for a simple demonstration of LDRAW.

The variable rstep% in line 110 determines via pics% how much memory is required to run the animation.

Unless you have SMS or Minerva, you will have to replace i% and j% by i and j.

100 WINDOW 512,64,0,0: PAPER 0: INK 3: CLS
110 rstep% = 20
120 pics% = 360 / rstep%: DIM adr(pics%): i% = 0
130 FOR r = 0 TO 360-rstep% STEP rstep%
140 i%=i%+1: CLS: AT 0,0: PRINT "(";i%;")";TO 6;r;"ø"
150 PYRAMID 20, 256, 32, r, r, r, 3
160 adr(i%) = ALCHP(HEX("2000"))
170 IF NOT adr(i%) THEN CLCHP: STOP: REMark memory overflow
180 MM_MOVE HEX("20000"), adr(i%), HEX("2000")
190 END FOR r
200 REPeat Animation
210 FOR i% = 1 TO pics%
220 MM_MOVE adr(i%), HEX("20000"), HEX("2000")
230 IF KEYROW(1)&&8 THEN EXIT Animation
240 END FOR i%
250 END REPeat Animation
260 CLCHP: STOP
270 :
290 DEFine PROCedure PYRAMID (size, px%,py%, rotx,roty,rotz, c%)
300 LOCal i%, j%, p1(2), p2(2)
310 RESTORE 410
320 FOR i% = 1 TO 8
330 READ p1(0),p1(1),p1(2), p2(0),p2(1),p2(2)
340 ROTATION p1(0),p1(1),p1(2), rotx, roty, rotz
350 ROTATION p2(0),p2(1),p2(2), rotx, roty, rotz

(continues on next page)

476 Chapter 19. Keywords L

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

360 FOR j%=0 TO 2: p1(j%)=size*p1(j%): p2(j%)=size*p2(j%)
370 LDRAW px%+p1(0),py%+p1(1) TO px%+p2(0),py%+p2(1), c%
380 END FOR i%
390 RETurn
400 :
410 REMark base square
420 DATA -1, -1, 0, 1,-1, 0
430 DATA 1, -1, 0, 1, 1, 0
440 DATA 1, 1, 0, -1, 1, 0
450 DATA -1, 1, 0, -1,-1, 0
460 REMark top
470 DATA -1, -1, 0, 0, 0, 2
480 DATA 1, -1, 0, 0, 0, 2
490 DATA 1, 1, 0, 0, 0, 2
500 DATA -1, 1, 0, 0, 0, 2
510 END DEFine PYRAMID
520 :
530 :
540 DEFine PROCedure ROTATION (x, y, z, wx, wy, wz)
550 REMark rotate point (x,y,z) by angles wx, wy and wz
560 REMark in degrees around point (0,0,0)
570 LOCal x1, y1, x2, z2
580 LOCal cx, cy, cz, sx, sy, sz
590 cx = COS(RAD(wx)): cy = COS(RAD(wy)): cz = COS(RAD(wz))
600 sx = SIN(RAD(wx)): sy = SIN(RAD(wy)): sz = SIN(RAD(wz))
610 x1 = x * cz -y * sz
620 y1 = x * sz + y * cz
630 x = x1 * cy - z * sy
640 z2 = x1 * sy + z * cy
650 y = y1 * cx + z2 * sx
660 z = -y1 * sx + z2 * cx
670 END DEFine ROTATION
680 :
700 DEFine PROCedure MM_MOVE (addr1, addr2, bytes)
710 REMark move memory
720 LOCal routine
730 IF VER$ = "JSL1" THEN
740 routine = PEEK_W(344) + 16384
750 CALL routine, bytes, 2, 3, 4, 5, 6, 7, addr2, addr1
760 ELSE
770 REMark with HCO:
780 BMOVE addr1, addr1+bytes TO addr2
790 END IF
800 END DEFine MM_MOVE

NOTE 1

LDRAW assumes that the screen is in a resolution of 512x256 pixels and is located at $20000.

NOTE 2

LDRAW only works correctly in MODE 4.

19.7. LDRAW 477

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

WARNINGS

See SET.

CROSS-REFERENCE

DRAW . Please use LDRAW only if you know what you are doing, do not intend to write user-friendly
programs, and especially if you do not intend to show your program listing to someone else! You can al-
ways use LINE and LINE_R, commands, DOTLIN and XDRAW , which can draw dotted lines (DOTLIN)
or work in XOR mode (XDRAW).

19.8 LEFT

Syntax LEFT [#channel]
Location QSOUND

This command will move the text cursor left one column in the specified channel (default #1). If there is
a pending newline on the specified channel (for example after a PRINT command) this will be cleared,
making it as if the last PRINT (or INPUT) statement ended with a comma - for example:

100 PRINT 'Hello World'
110 PRINT 'THIS LINE IS PRINTED AFTER A PENDING NEWLINE'
120 LEFT
130 PRINT 'THIS OVERWRITES PART OF THE LAST TEXT'

‘Out of Range’ will be reported if you try to move the cursor left past column zero.

CROSS-REFERENCE

AT allows you to position the text cursor. PRINT , TO, INPUT and CURSOR also affect the text cursor.

19.9 LEN

Syntax LEN (string$)
Location QL ROM

The function LEN returns the number of characters contained in the given string expression. However,
due to the QL’s native coercion routines, the expression passed as a parameter need not be a string (!)

Examples

x=100: PRINT LEN(x): REMark Returns 3.
PRINT LEN ('A string'): REMark Returns 8.
DIM x$(12): PRINT LEN (x$): REMark Returns 0, but add the following
: x$='Hello': PRINT LEN(x$): REMark Returns 5, the same as PRINT x$(0)

NOTE

On pre-JS ROMs, if you use PRINT LEN(x$), an ‘Out of Memory’ error will be reported if you have
previously tried to make x$ longer than 32766 characters, for example with:

478 Chapter 19. Keywords L

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

x$=FILL$('x',32764)
x$=x$&'xxx'
PRINT LEN (x$)

CROSS-REFERENCE

FILL$ returns a string of a specified length. DIMN returns important information about arrays. See also
the Compatibility Appendix for some important information concerning string lengths.

19.10 LET

Syntax [LET] variable=expression
Location QL ROM

The command LET has only been implemented to make SuperBASIC more compatible with other ver-
sions of BASIC. It assigns a specific value to the specified variable, which can be of any type. The
command may actually be omitted altogether. Normally any mistake in this command results in an ‘Er-
ror in Expression’ report.

Examples

LET x=100+10*20

Assigns the value 300 to the variable x.

x=100+10*20

Is exactly the same as above.

LET a$='Hello '&x

This places the string ‘Hello 300’ into the variable a$. The value of x is converted into a string and then
appended.

LET position(100)=10

This assigns the value 10 to the 101st element of the array position (see DIM).

NOTE 1

On the AH ROM, you need to be careful of what is being assigned to a numerical variable: LET X=”.”
did not produce an error on this ROM. Compare this with LET X=’0.12’ which in fact assigns the value
0.12 to the variable x due to coercion.

NOTE 2

It may be useful to explain the error codes which may be reported when trying to assign a value to a
variable. Under SMS the improved interpreter will report more meaningful errors if you try to use this
command incorrectly and therefore it is these errors which are highlighted.

Assignment can only be to a variable or array element
This is reported if you try to assign a value to a Procedure or Function name, eg: PRINT = 100

19.10. LET 479

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

On other versions this causes an . . .

Error in Expression
When assigning values to arrays there are four possible error reports:

Only arrays or strings may be indexed
This will be reported if you try to assign a value to an undimensioned array, for example if you
used the line: position (100)=10 without having used the line: DIM position (200) beforehand. On
other implementations, this causes the error . . .

Bad Name

Cannot assign to sub-array
We have not been able to find a situation when this error occurs.

Unacceptable array index list
This is reported normally if you try to use too many indices to reference an existing array, for
example: DIM x(100) : PRINT x(10,10)

On other implementations this causes an

Out of Range

Array index out of range
This is reported if you try to use an index which is greater than that used when the array was
dimensioned, for example: DIM x(100) : x(101)=100

On other implementations this also causes an

Out of Range

WARNING

On SMS, you can easily crash SBASIC by missing out an index on an assignment to a DIMensioned
array, for example:

DIM x(100) x (10,) = 100

Will report Not Complete:

x(10, ,) = 100

Will crash SBASIC.

On Minerva (and possibly other ROM versions) both of these merely report ‘Error In Expression’.

CROSS-REFERENCE

READ and INPUT also allow you to assign a value to a variable.

480 Chapter 19. Keywords L

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

19.11 LEVEL2

Syntax present = LEVEL2(#channel)
Location DJToolkit 1.16

If the device that has the given channel opened to it has the level 2 drivers, then present will be set to 1,
otherwise it will be set to 0. The level 2 drivers allow such things as sub_directories to be used, when
a DIR is done on one of these devices, sub-directories show up as a filename with ‘->’ at the end of the
name. Gold Cards and later models of Trump cards have level 2 drivers. Microdrives don’t.

EXAMPLE

2500 DEFine PROCedure MAKE_DIRECTORY
2510 LOCal d$, t$, l2_ok, ch
2520 INPUT 'Enter drive names :';d$
2530 IF d$(LEN(d$)) <> '_' THEN d$ = d$ & '_': END IF
2540 PRINT 'Please wait, checking ...'
2550 ch = DJ_OPEN_OVER (d$ & CHR$(0) & CHR$(0))
2560 IF ch < 0: PRINT 'Cannot open file on ' & d$ & ', error: ' & ch: RETurn
2570 l2_ok = LEVEL2(#ch)
2580 CLOSE #ch
2590 DELETE d$ & CHR$(0) & CHR$(0)
2600 IF l2_ok
2610 INPUT 'Enter directory name please : ';t$
2620 MAKE_DIR d$ & t$
2630 ELSE
2640 PRINT 'Sorry, no level 2 drivers!'
2650 END IF
2660 END DEFine MAKE_DIRECTORY

19.12 LGET

Syntax LGET [#ch\position,] [item *[,itemi]* ..] or
LGET [#ch,] [item *[,itemi]* ..]

Location SMSQ/E

This command is very similar to BGET, although this fetches a longword (4 bytes) at a time (in the range
0..232-1) from the given channel (default #3).

NOTE

LGET is affected by TRA.

CROSS-REFERENCE

See BGET . LPUT is complementary function. WGET allows you to fetch word values.

19.11. LEVEL2 481

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

19.13 LINE

Syntax LINE [#chan,] [x,y] [TO x1,y1] *[[;xi,yi] [TO xj,yj]]*

Location QL ROM

This command is part of the QL’s graphics repertoire and allows you to draw a straight line in the specified
channel (default #1) in the current INK colour between any two points. As with all of the other graphics
commands, the exact size and position of the line depends upon the current SCALE. Unfortunately, there
is no way of making the line any thicker, other than by drawing parallel lines. Although the above syntax
may seem rather complex, this can be explained as follows:

If the separator TO appears between any two sets of co-ordinates, then a line will be drawn between those
two co-ordinates.

If however the two sets of co-ordinates are the same, nothing will be drawn, eg: LINE 10,10 TO 10,10
has no effect.

If the start co-ordinates are not specified, then the current graphics cursor is used as the one end of the
line, eg: LINE 10,10 TO 15,10 TO 20,20 will draw a line between the points (10,10) and (15,10) and
then a line between (15,10) and (20,20). The graphics cursor is placed at the last set of co-ordinates.

If the separator TO does not appear, then no line is drawn and the graphics cursor is moved to the last
set of co-ordinates. For example: LINE 10,10 and LINE 20,20,10,10 have exactly the same effect - they
both place the graphics cursor at the point (10,10).

Any part of the lines which lie outside of the specified channel will not be drawn, but no error will be
reported.

Example

A simple demonstration program:

100 MODE 8 110 WINDOW 448,200,32,16:PAPER 0:CLS
120 SCALE 100,0,0
130 OVER -1
140 REPeat loop
150 xstep=RND
160 INK RND(7)
170 FOR i=1 TO 360 STEP xstep
180 ix=RAD(i)
190 LINE 50,50 TO 50+COS(ix)*50,50+SIN(ix)*50
200 END FOR i
210 END REPeat loop

NOTE

On a MG ROM, you may find that the last point is not always plotted.

CROSS-REFERENCE

LINE_R is very similar. See also ELLIPSE, CIRCLE, ARC, POINT and SCALE.

482 Chapter 19. Keywords L

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

19.14 LINE_R

Syntax LINE_R [#chan,] [x,y] [TO x1,y1] *[[;xi,yi] [TO xj,yj]]*

Location QL ROM

This command is very similar to LINE, except that all co-ordinates are taken to be relative to the current
graphics cursor.

CROSS-REFERENCE

Please see LINE, CIRCLE_R, ARC_R, ELLIPSE_R and POINT_R.

19.15 LINKUP

Syntax LINKUP file$
Location Memory Toolkit (DIY Toolkit Vol H)

This command is similar to LRESPR except that it will work even if jobs are running in the system.
Although it loads the specified file into the common heap, it marks the area of memory as permanent and
therefore this memory will not be removed by CLCHP or NEW. This therefore provides a safe means of
linking in new toolkits and device drivers permanently even when Jobs are have already been EXECuted.
Unlike LRESPR the default data device is not supported and the filename must be supplied in full as a
string.

CROSS-REFERENCE

See RESERVE and DISCARD. Also see LRESPR and ALCHP.

19.16 LINT2

Syntax LINT2 [#ch]
Location Beuletools

This command lists all interrupt (level 2) service routines and their link pointers to the given channel
(default #1). To understand this list, you will need to refer to documentation on the operating system
(QDOS).

CROSS-REFERENCE

LSCHD and LPOLL list other information about the current system interrupts. Details of the external
interrupt service list is contained in the QDOS/SMS Reference Manual Section 6.

19.14. LINE_R 483

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

19.17 LIST

Syntax LIST [#ch,] [range *[,rangei]*]
Location QL ROM

This command lists (in ASCII form) the specified range of the currently loaded SuperBASIC program to
the specified channel (default #2). Range must be in the form: [[start_line] TO [end_line]].

The default start_line is 1 and the default end_line is 32767, therefore if no range is given, the LISTing
range defaults to: 1 TO 32767.

Except under SMS, when the last line of the given range is reached, a table is set up which stores the
current list range. This list range contains a list of the lines of the program which are currently shown in
#2 - if you alter one of these lines (for example with EDIT or DLINE), then the listing in #2 is re-drawn
to reflect the change. Alterations to lines outside the list range will have no effect.

Again, except under SMS, special note is also taken of the program line just above the displayed listing,
and the program line just below the displayed listing - if either of these lines is altered, then the display
will scroll accordingly to show the newly altered line on screen.

Examples

LIST #3

List the whole of the program in #3

LIST 1

List program line 1 in #2

LIST 100,1000 TO

List lines 100 and from 1000 onwards in #2

OPEN#3,SER1: LIST#3: CLOSE#3

will list the current program to a printer connected to ser1.

NOTE 1

Except under SMS, you may sometimes find a large chunk of the program listing scrolling before your
eyes if you alter a line outside the range displayed in #2. This should not create any problems and generally
occurs when you press Break before the List Range has been updated.

NOTE 2

Version 2.13 (and later) of Toolkit II alters this command so that if you are using LIST to output to a file,
any errors will be reported (such as ‘Device Full’ or ‘Not Complete’).

NOTE 3

Prior to SMS v2.67 LIST #ch where #ch does not exist would attempt to SAVE the file.

CROSS-REFERENCE

When LIST ing to a file, this command is the same as SAVE. DLINE, ED, EDIT , and RENUM are other
commands for dealing with a SuperBASIC program in memory.

484 Chapter 19. Keywords L

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

19.18 LIST_TASKS

Syntax LIST_TASKS [#ch]
Location TASKCMDS (DIY Toolkit Vol J)

LIST_TASKS is nearly the same as JOBS, but the output is slightly different. Each line written to the
specified channel (default #1) consists of the job name, job number, job tag and priority. A ‘w’ appended
to the priority indicates that the job is currently suspended.

CROSS-REFERENCE

JOBS is similar.

19.19 LMAR

Syntax LMAR(n) with n=0..255
Location Beuletools

This function returns the control codes needed to set the left margin to n characters on EPSON compatible
printers: PRINT LMAR (10) is the same as PRINT CHR$(27)&’l’&CHR$(10)

CROSS-REFERENCE

NORM, BLD, EL, DBL, ENL, PRO, SI , NRM, UNL, ALT , ESC, FF, RMAR, PAGDIS, PAGLEN .

19.20 LN

Syntax LN (x)
Location QL ROM

This function returns the natural logarithm of the given value (in base e), so that eLN(x)=x. Due to the
nature of power numbers, the range of x is 0>x<=22046.

Logarithms were first invented to make multiplication and division easier, because whatever base you are
working in, multiplication and division can be calculated by using logarithms. For example, x*y is the
same as EXP(LN(x)+LN(y)), or 10(LOG10(x)+LOG10(y)); and x/y is the same as EXP(LN(x)-LN(y)), and
10(LOG10(x)-LOG10(y)).

Another reason is that logarithms can make it easier to calculate powers, for example, 10(p*LOG10(y)) gives
the same answer as yp, for any value of y or p.

Another use for logarithms is to enable square roots to be calculated. On the assumption that
x*x=10(2*LOG10(x)), the square root of a number y can be calculated using the formula: 10(LOG10 (y) / 2).

Natural logarithms (base e) are generally used in theoretical mathematics, as this can be useful in differ-
entiation, since if y=ex, dy<dx<y. Because negative values of x cannot be handled by logarithms (in any
base - this is because xy must always be greater than zero!), you will need to check for negative values
and zero values separately.

19.18. LIST_TASKS 485

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE

EXP converts natural logarithms to their true numbers in base 10, LOG10 provides logarithms in base
10 (common logarithms), and LOG2 provides base 2 logarithms.

19.21 LOAD

Syntax LOAD device_filename or
LOAD [device_]filename (Toolkit II)

Location QL ROM, Toolkit II

This command looks for a SuperBASIC program held on the given device under the specified filename
(a program file), reporting the error ‘not found’ if either the device or the filename does not exist. If
found, it then clears any current SuperBASIC program out of memory, closes all channels with a channel
number greater than #2, turns off any WHEN processing, and performs a CLS on #0, #1 and #2. Each
line of the program file is loaded into memory and then parsed as if it had been entered into the command
line by the user. If any lines cannot be parsed (ie. they would normally generate a ‘bad line’ error), then
the word MISTake is inserted into the line after the line number and the loading process continues.

Under SMS when the program has been loaded, if there have been any errors in the program, the error
‘MISTake in Program’ is reported, or any other Interpreter error, with the line number listed.

Program files are stored on directory devices by the computer as pure ASCII files, allowing them to be
imported into text editors for ease of editing (or even to be created in separate editing programs), copied
direct to a printer (using the COPY_N command), and VIEWed on screen.

However, this means that the program has to be parsed each time that it is loaded, making the loading pro-
cess quite slow. This can however be circumvented by using a fast loading utility - we highly recommend
QLOAD from Liberation Software for this purpose.

If the program file contains some lines in it which do not have line numbers, then these are automatically
executed as if they had been typed direct into the keyboard. For example, one method of software pro-
tection would be to turn off the Break key on loading and then RUN the program. This can be achieved
by entering the following as direct commands, with the desired program in memory:

OPEN_NEW #3,flp1_file
LIST #3 PRINT #3,'BREAK_OFF':RUN'
CLOSE #3

This actually opens a new file, and inserts as direct commands BREAK_OFF and RUN after the body of
the program (LIST in this instance is similar to SAVE except that it allows you to add further text to the
end of the program file).

These two commands will be interpreted immediately that flp1_file has been loaded, thus preventing
anyone from looking at the listing (the break key is disabled and the program immediately RUN).

Unfortunately though, this does not really work very well, as you cannot stop the user from VIEWing the
file on screen!!

If you have Toolkit II present, then if a device is not specified, or LOAD cannot find the specified file on
the given device, then Toolkit II will add the default data device to the filename. If the file still cannot be
found, then the default program device is used instead.

486 Chapter 19. Keywords L

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Example 1

To load a file Test1_bas on mdv1_ (the default data device is flp1_ and the default program device is
flp2_):

LOAD mdv1_Test1_bas

If Toolkit II is present and Test1_bas is not on mdv1_ (or there is not a microdrive cartridge in mdv1_),
the default data device is added, equivalent to:

LOAD flp1_mdv1_Test1_bas

If the file is still not found, the default program device is used, which is equivalent to:

LOAD flp2_mdv1_Test1_bas

Example 2

Some examples showing the capabilities of LOAD:

LOAD 'n' & station & '_flp1_'&file$

Loads the given file from flp1_ on the given network station.

LOAD ser1c

Loads a file from the device attached to ser1.

LOAD neti_3

Loads a file which will be SAVEd over the network by station 3.

NOTE 1

LOAD can leave error trapping enabled on JS and MG ROMs - see WHEN ERRor for details.

NOTE 2

Minerva users will notice that in current versions, LOAD clears both screens even if #0, #1 and #2 are
all on the same screen.

NOTE 3

LOAD allows programs which have been created on Minerva using integer tokenisation to be loaded
into any other ROM without any problems - any numbers in the program file are automatically converted
to floating point tokens (or long/short integers if integer tokenisation is enabled), thus preventing any
problems.

NOTE 4

LOAD cannot be used from within a PROCedure or FuNction unless you have a JS ROM, MGx ROM,
SMS or Minerva v1.83+. On other implementations, this causes the error ‘Not Implemented’.

NOTE 5

Except under SMS, line numbers can be added to a numberless program file using AUTO - please refer
to AUTO.

NOTE 6

19.21. LOAD 487

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

On Minerva v1.86, LOAD could become confused when used inside a program.

NOTE 7

Since Toolkit II v2.22 (and on Minerva), LOAD will refuse to try and load a file unless its file type is 0
(see FTYP).

NOTE 8

Any commands which appear on the same line as LOAD (after the LOAD command) will be ignored.

SMS NOTES

LOAD has been re-written so that it will also load files saved with the QLOAD utility from Liberation
Software (which is now part of SMS). If the specified filename does not end in _SAV or _BAS, then if
the specified filename does not exist, before trying the default data device and the default program device
(see above), LOAD will first of all try the filename with _BAS appended and if still not found, will try
the filename with _SAV appended.

So if the default data device is flp1_ and the default program device is flp2_, LOAD ram1_TEST will
look for the following files:

• ram1_TEST

• ram1_TEST_bas

• ram1_TEST_sav

• flp1_ram1_TEST

• flp1_ram1_TEST_bas

• flp1_ram1_TEST_sav

• flp2_ram1_TEST

• flp2_ram1_TEST_bas

• flp2_ram1_TEST_sav

Only if none of these filenames exist will it report a ‘Not Found’ error.

CROSS-REFERENCE

SAVE saves the current SuperBASIC program in memory. LRUN automatically runs the program after
loading. MERGE and MRUN are similar commands. Also see QLOAD and RELOAD. EXEC allows you
to load a multitasking program (normally a machine code program or a compiled program). LBYTES
allows you to load a section of memory.

19.22 LOADPIC

Syntax LOADPIC file$
Location PICEXT

This command will load an uncompressed 32K screen file and display it on the main screen. - This works
exactly the same as LBYTES file$,131072. Note that LOADPIC needs the full filename to be supplied
as a string.

Example

488 Chapter 19. Keywords L

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

LOADPIC “flp1_Example_scr”

NOTE 1

LOADPIC assumes that the screen will be located at $20000 and will therefore not work on Minerva’s
second screen.

NOTE 2

LOADPIC will not work on high resolution screens as it expects the screen to be 512x256 pixels.

CROSS-REFERENCE

SAVEPIC, SBYTES, LBYTES, SCREEN , EXPAND, COMPRESS.

19.23 LOCal

Syntax LOCal var1 *[, varx [(index1 *[indexi]*)]]*

Location QL ROM

This command must only be used as the first executable line within either a PROCedure or FuNction
definition block (ie. it can only be preceded by REMark lines) - if it is used elsewhere, it will cause
a ‘bad line’ error when the program is RUN. Under SMS’s improved interpreter the error ‘Misplaced
LOCal’ will be reported.

LOCal must be followed by a list of variables which are said to be ‘local’ to that definition block. This
means that although a variable may already have been used within the main body of the program, if it is
local to that definition block, on entry its value is stored and it is then made ‘unset’ (without value), and
can then be used for any means within that definition block (or within any sub-procedure or sub-function
called by that definition block).

When the definition block is left (with END DEFine or RETurn), the variable is restored to its original
value.

Arrays can also be made LOCal by placing an index after their name, which is used to specify their size
(as with DIM). Indeed this is the only way in which a simple variable can also be used as an array. In
any event, the parameters contained in the definition line are local to that definition block and can also
be safely used in the main program - these are in fact swapped with the actual parameters passed for the
duration of the definition block (see DEFine PROCedure).

Example

This program shows the status of three variables at various stages - note how x can be used as an array
in the main program and a simple variable within the PROCedure definition block:

100 DIM x(10)
110 test$='Wait'
120 moder=4:x(1)=10
130 PRINT moder,test$,x(1)
140 Change_vars
150 PRINT moder,test$,x(1)
155 :
160 DEFine PROCedure Change_vars

(continues on next page)

19.23. LOCal 489

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

170 LOCal moder(2,10),x,test$
180 PRINT moder(1,5),test$,x
190 test$='Changed':moder(1,5)=10
200 x=5
210 PRINT moder(1,5),test$,x
220 END DEFine

This produces the following output:

4 Wait 10 line 130
0 * * line 180, local variables
10 Changed 5 line 210, local variables
4 Wait 10 line 150

NOTE 1

On pre MG ROMs, any more than nine parameters may corrupt the program, by replacing names with
PRINT towards the end of a program. This can however be circumvented by increasing the size of the
Name Table by 8 bytes for each name (plus a little more for luck), by using the line:

CALL PEEK_W(282)+36,N

This bug is fixed on the ST/QL Emulator (with E-Init software v1.27+), Minerva and SMS.

NOTE 2

On most ROMs, you cannot LOCal the names of the parameters passed to the PROCedure or FuNction.
ROMs which can cope with this will simply set the passed value to undefined. Type in the following
small procedure test:

100 DEFine PROCedure test(a,b)
110 LOCal a
120 PRINT a,b
130 END DEFine

If your interpreter behaves correctly then:

test 3,2

will write:

* 2

SMS will print:

0 2

Any reference to a in the procedure, eg. a=a+1, will break with an error in expression (-17) because the
LOCal declaration of a undefined the passed parameter. You would need to expressly assign a value to
a within the PROCedure for this to work. This works correctly on Minerva ROMs (ie. a is unset by the
LOCal command).

CROSS-REFERENCE

490 Chapter 19. Keywords L

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

DIM sets up arrays normally. DEFine PROCedure, DEFine FuNction and END DEFine are used to
identify definition blocks.

19.24 LOCK

Syntax LOCK file,code$,code
Location CRYPTAGE

This command encodes the given file (the full filename must be stated) using two codes, a string and a
number, for security. Code$ can be any string and the code number (an integer) must range between 0
and 32767. Decoding with UNLOCK is only possible if both codes are known, so do not forget them
otherwise the file will be lost.

Example

LOCK ram1_secret_txt,”Phew”,7241

CROSS-REFERENCE

UNLOCK has the same syntax as LOCK but deciphers LOCKed files.

19.25 LOG2

Syntax LOG2 (x)
Location Math Package

This function returns the logarithm to the base 2 of the given number, which is calculated as LN(x)/LN(2).

Example

The greatest number which can be handled by SuperBASIC is returned by INF as 1.61585E616. This is
exactly 22047, because LOG2(INF)=2047 (ie. x=2LOG2(x)).

CROSS-REFERENCE

LOG10, LN , INF.

19.26 LOG10

Syntax LOG10 (x)
Location QL ROM

The function LOG10 calculates the logarithm to the base 10 of the given number. For the non-
mathematicians out there: x=10LOG10(x).

Examples

19.24. LOCK 491

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

100 INPUT "Integer Number:"!x
110 PRINT "This number has"!INT(1+LOG10(ABS(x)))!"digits."

The trivial function LOGN finds the logarithm of x to any base b which makes sense:

10 DEFine FuNction LOGN (x,b)
20 RETurn LN(x)/LN(b)
30 END DEFine LOGN

CROSS-REFERENCE

LN , LOG2.

19.27 LOOKUP%

Syntax LOOKUP% (search$)
Location Function (DIY Toolkit - Vol R)

This function expects you to pass a string parameter which contains a name used by the SuperBASIC
interpreter. This name can be a machine code Procedure or Function (such as are described here in this
manual), or a SuperBASIC variable, PROCedure or FuNction. If the specified name is recognised then
LOOKUP% returns the number of its entry in the name list. If the name is not recognised, then the value
-7 is returned.

Examples

PRINT LOOKUP% ('PRINT')

will return 0 on most QL ROMs as this is normally the first name in the name list.

PRINT LOOKUP% ('FSERVE')

can be used to see if Toolkit II’s fileserver is available.

NOTE 1

This function will only look at the name list for SuperBASIC Job 0, so although it can be used from
within a compiled task to look at Job 0, it cannot be used to look at a multiple BASIC interpreter!!

NOTE 2

This function will only work correctly with machine code Procedures and Functions on SMS.

CROSS-REFERENCE

SeeELIS, KEY_ADD. _NAME$ allows you to look at the name list. See also FLIS and FIND.

492 Chapter 19. Keywords L

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

19.28 LOWER$

Syntax LOWER$ (string$)
Location Function (DIY Toolkit - Vol R)

This function takes the given string and converts any upper case letters to lower case and then returns the
whole string. This will convert both UK and accented characters, although you may have to modify the
source code to enable it to work with some international character sets.

CROSS-REFERENCE

Compare UPPER$. See also ConvCASE$.

19.29 LPOLL

Syntax LPOLL [#ch]
Location Beuletools

This command lists all polling interrupts and their link pointers to the given channel (default #1). While
this text was being written, LPOLL produced the following list:

List of polled tasks:
Link Pointer Routine
1. $0002B5D8 $000C1434
2. $0002B8B8 $0009E0C2
3. $0002CAAA $000BD056
4. $0002B840 $0009E988

To understand these numbers, a deep knowledge of assembly language and the operating system is nec-
essary. Generally, each interrupt is a kind of background job which does not appear in the job list. For
further information, refer to system documentation.

CROSS-REFERENCE

LSCHD and LINT2 list other internal routines which are running in the interrupts. JOBS lists all jobs.

19.30 LPR_USE

Syntax LPR_USE device
Location Beuletools

LPR_USE sets the default output device for LPRINT and LLIST. This can be any valid QDOS device
name, provided it is not longer than 24 characters. The definition can be found with LPRINT$, the default
is SER1 (ie. if LPR_USE has not yet been used).

Examples

19.28. LOWER$ 493

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

LPR_USE par
LPR_USE ram1_print_dat
LPR_USE n2_ser1
LPR_USE con

NOTE

LPR_USE does not check the validity of the given device, so even completely wrong parameters are
accepted:

LPR_USE #2

will set LPRINT$ to “2”, LPRINT$ and LLIST will report the error.

CROSS-REFERENCE

LLIST, LPRINT$.

19.31 LPUT

Syntax LPUT [#ch\position,] [item *[,itemi]* ..] or
LPUT [#ch,] [item *[,itemi]* ..]

Location SMSQ/E

This command is the complement to LGET, in that it places the longword value for each item into the
specified channel (default #3) at the current file position (or the specified position if the first variant is
used).

NOTE

LPUT is affected by TRA.

CROSS-REFERENCE

See BPUT and LGET . WPUT and PUT are also similar.

19.32 LRESFAST

Syntax LRESFAST mc_file
Location ATARI_REXT for QVME (v2.31+)

This command is the same as LRESPR except that it will only work on a file in RAM disk and loads that
file into FastRAM on the Atari TT.

CROSS-REFERENCE

See LRESPR and alsoRESFAST , FREE_FAST .

CompareRESPR, ALCHP and FREE_MEM.

494 Chapter 19. Keywords L

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

19.33 LRESPR

Syntax LRESPR mc_file
Location Toolkit II, THOR XVI

This command is used as a quick way of loading and starting machine code routines (mainly Toolkits).
It will grab enough memory from the Resident Procedure Area to hold the given file, load the file into
memory and then call it. Toolkit II sub-directories and the default data device are supported. LRESPR
could be re-written as the following SuperBASIC procedure:

100 DEFine PROCedure LRESPR (mc_file$)
110 LOCal length,adress
120 length=FLEN(\mc_file$)
130 adress=RESPR(length)
140 LBYTES mc_file,adress
150 CALL adress
160 END DEFine LRESPR

Examples

LRESPR BeuleTools_bin
LRESPR ram1_MyTool_obj

NOTE 1

It is impossible to remove a program loaded with LRESPR so that the occupied memory can be given
back for other purposes.

NOTE 2

On version 2.23 (or later) of Toolkit II, LRESPR works even if a job is running because in this case, it
will load the file into the Common Heap. CLCHP, NEW, CLEAR etc. do not remove code loaded in this
way, so a crash is impossible.

NOTE 3

When using LRESPR (or any other means) to link in extensions to SuperBASIC, bear in mind that pre JS
ROMs needed the command NEW (or LOAD / LRUN) before those commands will be available. This
happens on MG ROMs sometimes as well.

NOTE 4

If this command is used to link a toolkit into a MultiBASIC under Minerva or a multiple SBASIC under
SMS, then that toolkit will be local to that BASIC interpreter - when you remove that BASIC, the toolkit
will also disappear.

CROSS-REFERENCE

See the second example for ALCHP. See also LINKUP and LRESFAST .

19.33. LRESPR 495

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

19.34 LRUN

Syntax LRUN device_filename or
LRUN [device_]filename (Toolkit II)

Location QL ROM, Toolkit II

This command is exactly the same as LOAD except for the fact that the program is automatically RUN
as soon as loading is complete.

CROSS-REFERENCE

See LOAD!

19.35 LSCHD

Syntax LSCHD [#ch]
Location Beuletools

This command lists all scheduler loop tasks with their linked pointers to the specified channel (default
#1). While this text was being written, the following list was produced:

List of scheduler loop tasks:
link pointer routine
1. $0002B848 $0009E9C0
2. $0002D140 $000ACC2A
3. $0002C0F0 $000B685C
4. $0002B648 $000C1572
5. $000B3964 $000AFAEE
6. $000B5FDA $000B50FE
7. $00001206 $0000120E
8. $00002D7C $00002D90
9. $00003504 $0000350C

An in-depth knowledge of the operating system and machine code is necessary to understand this list.
Please refer to the operating system documentation.

CROSS-REFERENCE

LPOLL, LINT2.

496 Chapter 19. Keywords L

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

19.36 LWC$

Syntax LWC$ (string$)
Location LWCUPC

The function exchanges all upper case characters in the given string to lower case characters and returns
the result. Only the standard alphabet is recognised - umlauts etc. are ignored.

CROSS-REFERENCE

UPC$ and UPPER$ return the string in upper case characters.

19.36. LWC$ 497

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

498 Chapter 19. Keywords L

CHAPTER

TWENTY

KEYWORDS M

20.1 MACHINE

Syntax MACHINE
Location SMSQ/E, SMSQ/E for QPC

This function returns a value corresponding to the type of system on which SuperBASIC is running. The
values currently returned are:

MACHINE Machine Type
0 ATARI ST / STM / STF / STFM
1 ORDINARY STE (1040) - NOT SUPPORTED!!!
2 MEGA ST or ST / STM / STF / STFM with REAL-TIME CLOCK
4 ATARI STACY
6 ATARI STE
8 MEGA STE
10 GOLD CARD
12 SUPER GOLD CARD
16 FALCON
17 Q40/Q60
18 Q68
20 SMSQmulator
24 ATARI TT 030
26 Q-emulator
28 QXL
30 QPC

On Standard QLs, MACHINE returns the above value plus 1 if HERMES is fitted.

On ATARI Computers, MACHINE returns the above value plus 1 is a BLITTER CHIP is fitted.

Users without SMSQ/E can use the command:

PRINT PEEK (SYS_VARS+HEX('a7')) && BIN ('0011111')

This should return the same values (except that 0 will also be returned on a standard QL without any
expansion board or a THOR computer).

You can test for a THOR by using:

499

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

PRINT PEEK (SYS_VARS+HEX('84'))

which will be 0 on any other implementation. We do not know what it returns on the THOR range of
computers.

Example

A program to test for the actual machine on which the program is running, as well as other interesting
data:

100 v$=VER$:q$=QDOS$
110 processor$='00':FPU=0:em_type=0
120 IF v$<>'HBA'
130 m_type=PEEK(SYS_BASE+HEX('A7'))
140 em_type=m_type && BIN('11100000')
150 m_type=m_type && BIN('00011111')
160 SELect ON em_type
170 =1:em_type=3
180 =2:em_type=1
190 =4:em_type=2
200 END SELect
210 IF v$='JSL1'
220 PRINT 'MINERVA FITTED'
230 m_type=100 : processor$='08'
240 ELSE
250 IF m_type=0
260 IF PEEK (SYS_BASE+HEX('84'))<>0
270 IF q$(1)='4':PRINT 'THOR 1 Computer';
280 IF q$(1)='5':PRINT 'THOR 20 Computer';
290 IF q$(1)='6':PRINT 'THOR XVI Computer';
300 IF q$(1) INSTR '456'=0:PRINT 'UNKNOWN THOR Computer'
310 PRINT ' v';q$:STOP
320 END IF
330 END IF
340 END IF
350 ELSE
360 m_type=MACHINE:processor$=PROCESSOR
370 FPU=processor$(2):processor$=processor$(1)&'0'
380 em_type=DISP_TYPE
390 END IF
400 extra_chip=m_type MOD 2
410 m_type=(m_type DIV 2)*2
420 SELect ON m_type
430 =0: IF v$='HBA'
440 PRINT 'ATARI ST / STM / STF / STFM';
450 ELSE :PRINT 'STANDARD QL - ROM VERSION ';v$: processor$='08'
460 END IF
470 =2: PRINT 'MEGA ST or ST / STM / STF / STFM with REAL-TIME CLOCK';
480 =4: PRINT 'ATARI STACY';
490 =6: PRINT 'ATARI STE';
500 =8: PRINT 'MEGA STE';

(continues on next page)

500 Chapter 20. Keywords M

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

510 =10: PRINT 'GOLD CARD';
520 =12: PRINT 'SUPER GOLD CARD';
530 =16: PRINT 'FALCON';
532 =17: PRINT 'Q40/Q60';
534 =18: PRINT 'Q68';
536 =20: PRINT 'SMSQmulator';
540 =24: PRINT 'ATARI TT 030';
542 =26: PRINT 'Q-emulator';
550 =28: PRINT 'QXL'
560 =30: PRINT 'QPC'
570 END SELect
580 SELect ON extra_chip
590 =0: PRINT
600 =1:
610 SELect ON m_type
620 =0,2,4,6,8,16,24:PRINT ' with BLITTER'
630 SELect ON em_type
640 =0: PRINT 'Original QL Emulator FITTED'
650 =1: PRINT 'Extended Mode 4 Emulator FITTED'
660 =2: PRINT 'QVME Emulator FITTED'
670 =3: PRINT 'Monochrome Display Only'
680 END SELect
690 =REMAINDER :PRINT ' with HERMES'
700 END SELect
710 END SELect
720 PRINT 'ROM VERSION - ';v$
730 PRINT 'OS VERSION - ';q$
735 IF m_type<>30
740 PRINT 'PROCESSOR - 680';processor$;
745 ELSE
750 PRINT 'INTEL PROCESSOR';
755 END IF
760 SELect ON FPU
765 =0 : PRINT
770 =1 : PRINT 'with Internal MMU'
780 =2 : PRINT 'with 68851 MMU'
790 =4 : PRINT 'with Internal FPU'
800 =8 : PRINT 'with 68881 or 68882 FPU'
810 END SELect

NOTE 1

The machine type was only stored with on the ST/QL on Level E-20 drivers onwards. E-Init v1.07+ is
also required.

NOTE 1

The wrong value was returned for the Mega ST prior to v1.33 of E-Init.

CROSS-REFERENCE

See PROCESSOR, DISP_TYPE, VER$ and QDOS$. VER$(1) and SYS_BASE replace SYS_VARS. See
also A_MACHINE.

20.1. MACHINE 501

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

20.2 MAKE_DIR

Syntax MAKE_DIR subdirectory
Location Level-2 and Level-3 Drivers, THOR XVI

The command MAKE_DIR creates a sub-directory which allows a group of files to be regarded as one
unit when the contents of a medium are listed. Operations other than the standard DIR, WDIR, WSTAT
and WDEL, are not affected. A file belongs to a sub-directory if the sub-directory’s name appears as a
prefix of the file, whether the file was created before or after the sub-directory.

Sub-directories are only supported on Level-2 (or higher) floppy disks, hard disks and ramdisks.

A sub-directory name can be any name but any underscore at its end will be ignored by MAKE_DIR.

If there is no medium in the given device, or if you do not specify a device name, the current default data
device will be used (see DATAD$).

Sub-directories are identified by a “->” in directory listings and programs can identify them by examining
their file type (255).

Empty sub-directories can be deleted as normal files, but a sub-directory which is not empty, cannot be
deleted: error -9 (in use) will be reported. Actually, sub-directories are normal files which hold a list
of the files which are contained within them. The list consists of the standard file headers of these files,
each being 64 bytes long.

A sub-directory file never decreases in length if a file in the sub-directory has been deleted, instead, the
file header is just marked as deleted by setting the name to a zero string.

All normal operations are allowed on sub-directory files (except RENAME), and they can be accessed
using OPEN_DIR and FOP_DIR.

Example

If FLP1_ contains an empty disk and we then save the current SuperBASIC program as flp1_my_prog_bas
and a backup as flp1_backup_bas:

SAVE flp1_my_prog_bas
SAVE flp1_backup_bas

a directory of flp1_, produced with WDIR flp1_ (for example), shows the following contents:

my_prog_bas
backup_bas

Now, we create the sub-directory my (or my_) with:

MAKE_DIR flp1_my_

or:

MAKE_DIR flp1_my

(both forms are equivalent) and look at the directory again:

502 Chapter 20. Keywords M

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

my ->
backup_bas

MAKE_DIR created a new file “my” (not “my ->”) which is marked as a sub-directory with the “->”
sign by the DIR, WDIR and WSTAT commands. The file type of my is 255, PRINT FTYP(\flp1_my)
will return that.

But where is my_prog_bas? It was moved into the sub-directory my_ and DIR flp1_my_ will show it
again.

NOTE 1

The QUBIDE interface does not allow you to use MAKE_DIR to create a sub-directory if any files
already exist which would fall into that sub-directory.

NOTE 2

The level-2 device drivers introduced a new standard for subdirectories - other methods which were
implemented in the past are not recognised in this (e)book.

NOTE 3

If a disk with a sub-directory is read by a level-1 device driver, the sub-directory appears as just another
file and files which have been added to a sub-directory after its creation cannot be accessed or seen by
the system. However, if a file had been created before the sub-directory, the level-1 device driver finds
this file just as if the sub-directory did not exist. So, if you prepare a disk which should also be readable
on level-1 device drivers, either don’t use sub-directories or create them after everything else.

NOTE 4

Sub-directory names longer than 27 characters on Toolkit II may hang up the SuperBASIC interpreter.
Since the system does not treat nested sub-directories differently, the above warning applies to long sub-
directory prefixes as well. However, this lock up will only occur when creating sub-directories not when
using them. This problem is fixed on SMS v2.85.

NOTE 5

A filename cannot be longer than 36 characters and as described above, sub-directories are prefixes which
reduce the maximum possible length of a filename. If you try to create a file (eg. SAVE) in a sub-directory
so that the combined length of the file name and sub-directory are longer than 36 characters, a ‘not found’
error will be returned.

WARNING 1

It is possible to create a sub-directory so that it cannot be removed any more (do not try this on a hard
disk, you have been warned)

SAVE test_
MAKE_DIR test

The file test_ (with an underscore) has been moved into the test directory, but it cannot be deleted to
empty test. - This has been fixed in drivers later than version 2.28.

WARNING 2

MAKE_DIR net_
MAKE_DIR "net"

20.2. MAKE_DIR 503

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

and similar commands lock-up the machine, so if you want you create a sub-directory called ‘net’ in the
current directory, use:

MAKE_DIR DATAD$ & "net".

WARNING 3

MAKE_DIR flp1__
MAKE_DIR flp1___

and similar commands could create recursive directories until this was fixed in SMS v2.77.

CROSS-REFERENCE

FMAKE_DIR is a syntactical variation of MAKE_DIR. OPEN_DIR and FOP_DIR allow you to read
directories of disks as well as sub-directories on level-2 drivers. The DUP, DDOWN , DNEXT and
DATA_USE commands are used to move around in a sub-directory tree. See FOP_DIR for a program
which lists a sub-directory tree. To enable programs to read sub-directories which have not been written
for that purpose, the DEV_ device exists (see DEV_USE). The only legal way of identifying a sub-
directory is by examining its file type as returned by FTYP or FILE_TYPE for example.

20.3 MATADD

Syntax MATADD sum,matrix1,matrix2
Location Math package

The command MATADD adds the two matrices contained in the arrays matrix1 and matrix2, setting
the result in the array sum. The parameters, matrix1, matrix2 and sum, must all be arrays of the same
dimensions, the same size and the same type. They can be of any number type, viz. floating point or
integer (% suffix), but not string and (we must stress this point) floating point and integer arguments must
not be mixed. If these conditions are not satisfied, then MATADD will break with a ‘bad parameter’ error
(-15). Provided that the parameters follow this rule, the command MATADD sets all of the elements of
the sum array to the sum of the respective elements of the two other arrays, matrix1 and matrix2.

Example

100 DIM a%(10,10,80), b%(10,10,80), c%(10,10,80)
110 MATRND a%,-5 TO 5: MATSEQ b%
120 MATADD c%,a%,b%

CROSS-REFERENCE

If you run this short example program (8000 internal loops!), you will notice the extraordinary speed
of MATADD which is representative of the other MAT. . . functions; MATSUB is almost equivalent to
MATADD.

504 Chapter 20. Keywords M

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

20.4 MATCOUNT

Syntax MATCOUNT (array, value) or
MATCOUNT (array1, array2)

Location Math Package

MATCOUNT is a function which counts how often a certain value appears in the given array where
array and value can be of any type (even strings) as long as they are of the same type. The second syntax
allows you to pass two arrays array1 and array2 of the same type and dimensions, MATCOUNT will then
compare these two arrays and return the number of different elements.

Example

The following programs compares two random integer arrays and will always print something around
33%:

100 DIM x%(1000), y%(1000)
110 MATRND x%,2: MATRND y%,2
120 PRINT MATCOUNT(x%,y%)/10;"%"

CROSS-REFERENCE

MATCOUNT comparisons are exact in that two numbers a and b are only regarded as equal if a=b in
SuperBASIC terms. The same is true for strings, it means that their comparison is case-sensitive. MAT-
COUNT1 differs from MATCOUNT (see below) only in the fact that comparisons are based on the Su-
perBASIC operator == instead of =.

20.5 MATCOUNT1

Syntax MATCOUNT1 (array, value) or
MATCOUNT1 (array1, array2)

Location Math Package

The function MATCOUNT1 is just a variation of MATCOUNT which performs comparisons not as exact
as MATCOUNT. Numbers must only be almost equal, the absolute difference must be smaller than the
absolute of the second number divided by 1E7: ABS (a-b) < ABS (b / 1E7). This is the case if a==b.
MATCOUNT1 is therefore the same as MATCOUNT if integers are being dealt with. Comparison of
strings is not case-sensitive, again this is analogous to the == operator: “QDOS”==”Qdos” is true while
“QDOS”=”Qdos” is not.

CROSS-REFERENCE

MATCOUNT , MATEQU.

20.4. MATCOUNT 505

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

20.6 MATEQU

Syntax MATEQU array1, {array2 | value}
Location Math Package

The command MATEQU sets up array1 in two different ways depending on the type of the second pa-
rameter: (1) If another array array2 of the same dimensions is supplied then each element of array1 is
set to the corresponding element of array2; or (2) If the second parameter is not an array but a constant,
variable or expression then each element of array1 is set to the given value. Array1, array2 and value can
be of any type: integer, floating point or string. array1 and array2 must however be of the same type and
have the same number of dimensions.

Examples

DIM a$(4,8), a%(2,2,2,2,2), a(0), b$(4,8)
MATEQU a$,"Hi there"
MATEQU a%,6
MATEQU a%,-PI
test$=9.5: MATEQU a%,test$
MATEQU a,9.5
MATEQU a$,b$

NOTE

Supercharge and Turbo users. . . sorry!

CROSS-REFERENCE

MATRND, MATIDN

20.7 MATDEV

Syntax MATDEV array[%]
Location Math Package

This function takes any numeric array and calculates a number from its values which gives information
about their standard deviation.

Example

10 DIM x(10)
20 PRINT MATDEV (x)

gives 0 because all elements of x are equal and therefore, have no deviation. Add the line:

15 MATRND x,10

and the result will be be around 3.2.

CROSS-REFERENCE

506 Chapter 20. Keywords M

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

MATMEAN

20.8 MATIDN

Syntax MATIDN matrix
Location Math Package

This command forces the square numeric array matrix to be initialised so that the matrix is given the
algebraic identity for matrices of that size. This gives the matrix the following format:

1 0 0 . . . 0 0 0
0 1 0 . . . 0 0 0
0 0 1 . . . 0 0 0
.
.
.
0 0 0 . . . 1 0 0
0 0 0 . . . 0 1 0
0 0 0 . . . 0 0 1

All elements on the diagonal line from the top left corner to the bottom right corner are set to 1 and all
other elements are set to 0. This forms the identity matrix, which means that when a matrix of the same
size is multiplied by this, the resultant matrix is the same as the original matrix, ie. matrix1 * matrix =
matrix1.

CROSS-REFERENCE

MATMULT multiplies matrices.

20.9 MATINPUT

Syntax MATINPUT array [{\ | , | ; | !}]
Location Math Package

The command MATINPUT reads each element of an array in turn from #1, so that you have to type them
all in. The modifiers ‘;’ and ‘!’ place the cursor behind the last entry whilst ‘,’ moves it to the next tab
position. The default is ‘\’ which forces a new line between entries - the ‘\’ can be omitted.

Example

100 DIM a(1,2)
110 MATINPUT a,

CROSS-REFERENCE

MATREAD, MATRND, FOR

20.8. MATIDN 507

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

20.10 MATINV

Syntax MATINV matrix2,matrix1
Location Math Package

The command MATINV takes the array matrix1, inverts it and stores the result in matrix2.

Inverting is a mathematical term and produces a result from a matrix which is similar to finding the
reciprocal of a number, namely, the relation is expressed by the fact that the product of a number and its
reciprocal is one and the product of a matrix and its inverse matrix is the identity matrix:

n=10: DIM A(n,n), B(n,n), C(n,n)
MATRND A

A is a random matrix.

MATINV A,B

makes B the inverted matrix of A.

MATMULT C,A,B

Multiply A with B and store the result in C. C will be almost identical to the matrix ONE defined with:

DIM ONE(n,n): MATIDN ONE

C and ONE do not have exactly the same values because of the limited precision of the QL maths package.
Two conditions are absolutely necessary for MATINV to work:

- DET (matrix1) <> 0
- matrix1 and matrix2 must be square matrices

Example

A matrix A and an array b form a so-called “linear equation system” which has a solution x which is an
array like b. This example will find the solutions x(i) of the system, for any positive value of n (the size
of the matrix):

100 n=5
110 DIM A(n,n), AINV(n,n), b(n), x(n)
120 MATRND A: MATRND b
130 :
140 MATINV A,AINV
150 MATSCALM AINV,b TO x
160 PRINT "Solutions:"\x
170 IF ABS(DET)<1E-6 THEN PRINT "(dubious results)"
180 :
190 DEFine PROCedure MATSCALM (matrix,array1,array2)
200 LOCal i,j
210 FOR i=0 TO DIMN(matrix,1)
220 array2(i)=0

(continues on next page)

508 Chapter 20. Keywords M

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

230 FOR j=0 TO DIMN(matrix,2)
240 array2(i)=array2(i)+array1(j)*matrix(i,j)
250 END FOR j
260 END FOR i
270 END DEFine MATSCALM

The method of solving a linear equation system by calculating the inverted matrix is known as Cramer’s
Rule. The advantage is that if the matrix A is constant and only the array b varies for other situations,
MATINV needs only be called once and not afterwards for each value of the array b.

NOTE

Calculation time takes longer as the size of the matrix increases eg. the above example will take nearly an
hour to calculate n=100. MATINV cannot be stopped with <CTRL><SPACE> whilst number crunching.

CROSS-REFERENCE

It is highly recommended to check if DET is very close to zero after MATINV has been executed, if this
is the case, MATINV may have found a result which does not exist:

IF ABS(DET) < 1E-6 THEN PRINT "dubious result"

This works because MATINV calls DET internally.

20.11 MATMAX

Syntax MATMAX (array[%])
Location Math Package

This function finds the largest value contained in an integer or floating point array.

NOTE

This cannot be compiled with Supercharge or Turbo.

WARNING

A string array makes MATMAX hang the system.

CROSS-REFERENCE

MATMIN is the complementary function. See also MAXIMUM and MAXIMUM%.

20.11. MATMAX 509

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

20.12 MATMEAN

Syntax MATMEAN (array[%])
Location Math Package

This function returns the average of the array’s elements, calculated by the sum of the elements divided
by the number of elements.

NOTE

Don’t compile with Supercharge or Turbo.

WARNING

Avoid string parameters!

CROSS-REFERENCE

See MATSUM for an example.

20.13 MATMIN

Syntax MATMIN (array[%])
Location Math Package

This function finds the smallest element in an integer or floating point array.

NOTE

Cannot be compiled with Supercharge or Turbo.

WARNING

A string array makes MATMIN hang the system.

CROSS-REFERENCE

MATMAX is the opposite function. Refer also to MINIMUM and MINIMUM% which are even quicker.

20.14 MATMULT

Syntax MATMULT product, matrix1, matrix2
Location Math Package

The command MATMULT performs multiplication on matrices of floating point type. The matrix1
is multiplied with matrix2 and the result stored in product. Since a n x m matrix represents a linear
transformation which takes n-dimensional vectors and produces m-dimensional vectors from them, the
following conditions must be satisfied by the three matrices supplied to MATMULT:

• All matrices must be two-dimensional.

510 Chapter 20. Keywords M

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• DIMN (matrix1, 2) = DIMN (matrix2, 1)

• DIMN (matrix1, 1) = DIMN (product, 1)

• DIMN (matrix2, 2) = DIMN (product, 2)

The latter three conditions are obviously satisfied by square matrices.

Example

Multiplication of two matrices means that their effect on a vector is combined into one matrix. The
following program demonstrates this on a simple square.

The square x is a list of four vectors. x is first rotated with ROT by 45o, the rotated square is stored in y.

Now this y is squeezed in size by one half with SQZ and stored in z. Lines 240 to 280 perform all this
and show the process.

After a keystroke, the matrix ROTSQZ will be created as the product of ROT and SQZ. Again the original
square is transformed but this time by ROTSQZ which rotates and squeezes in one go. This is done by
lines 300 to 350.

Lines 100 to 220 initialise the matrices and set up the window for drawing.

Due to the design of QL graphics, line 100 can be freely omitted.

At the bottom of the listing are three PROCedures:

MATVEC multiplies a vector with a matrix (ie. the vector is transformed by this matrix) and MATVECS
does the same for a list of vectors, just calling MATVEC for each individual vector. MATVEC(S) is
written in a dimension independent way, just to show how that can be done; there is no check on the
parameters, just to save space.

POLYDRAW draws a closed polygon from a supplied list of two-dimensional points.

100 WINDOW 448,200,32,16
110 SCALE 8,-5,-4: PAPER 0: CLS
120 :
130 DIM ROT(2,2): rc=1/SQRT(2)
140 ROT(1,1)=rc: ROT(1,2)=rc
150 ROT(2,1)=-rc: ROT(2,2)=rc
160 DIM SQZ(2,2): SQZ(1,1)=.5: SQZ(2,2)=.5
170 :
180 DIM x(4,2), y(4,2), z(4,2)
190 x(1,1)=-1: x(1,2)= 1
200 x(2,1)= 1: x(2,2)= 1
210 x(3,1)= 1: x(3,2)=-1
220 x(4,1)=-1: x(4,2)=-1
230 :
240 INK 5: POLYDRAW x
250 MATVECS y,ROT,x
260 INK 3: POLYDRAW y
270 MATVECS z,SQZ,y
280 INK 7: POLYDRAW z
290 :
300 PAUSE: CLS
310 DIM ROTSQZ(2,2)

(continues on next page)

20.14. MATMULT 511

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

320 INK 5: POLYDRAW x
330 MATMULT ROTSQZ,ROT,SQZ
340 MATVECS z,ROTSQZ,x
350 INK 7: POLYDRAW z
360 :
370 :
380 DEFine PROCedure MATVECS (vectors2, matrix, vectors1)
390 LOCal i
400 FOR i=1 TO DIMN(vectors1)
410 MATVEC vectors2(i),matrix,vectors1(i)
420 END FOR i
430 END DEFine MATVECS
440
:
450 DEFine PROCedure MATVEC (vector2, matrix, vector1)
460 REMark vector2 = matrix * vector1
470 LOCal i,j
480 FOR i=1 TO DIMN(vector2)
490 vector2(i)=0
500 FOR j=1 TO DIMN(matrix,2)
510 vector2(i)=vector2(i)+matrix(i,j)*vector1(j)
520 END FOR j
530 END FOR i
540 END DEFine MATVEC
550 :
560 DEFine PROCedure POLYDRAW (vectors)
570 LOCal i
580 POINT vectors(1,1),vectors(1,2)
590 FOR i=2 TO DIMN(vectors), 1
600 LINE TO vectors(i,1),vectors(i,2)
610 END FOR i
620 END DEFine POLYDRAW

NOTE

Normally the product of two matrices A*B is not the same as B*A, however, the matrices ROT and
SQZ in the above example are an exception to this rule. Replace line 330 with: 330 MATMULT ROT-
SQZ,SQZ,ROT and nothing will change.

CROSS-REFERENCE

See MATINV for another example of using MATMULT .

512 Chapter 20. Keywords M

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

20.15 MATPLOT

Syntax MATPLOT array [{, | ;}]
Location Math Package

This command takes a two-dimensional array and draws the points set out by the array (the first dimension
identifies the number of points and the second the co-ordinates) to the default window used by LINE
(normally #1). The array must be declared in the following way (an array which does not fall into this
category will cause an error):

DIM array (points,1)

points is the total number of points (less one) set out in the array, with array(p,0) the x-coordinate and
array(p,1) the y- coordinate of point number p-1. If a comma (,) appears after the name of the array
MATPLOT will connect each point with its successor by a line.

On the other hand, if a semicolon (;) appears after the name of the array, an additional line is drawn
between the first point and the last point.

These lines are drawn using the QDOS line drawing routine and therefore suffer from the same problems
as the LINE command. For those of you still uncertain of the possible uses of this command, a little hint:
the addition of a semicolon to the the parameter will always enclose the set of lines which have been set
out, thereby making this command ideal for creating all types of shapes (for example dodecahedrons)!
MATPLOT supports INK, PAPER, OVER and FILL.

Example

The following fractal generator was written by John de Rivaz in SuperBASIC and optimised by Simon
N. Goodwin. Originally, both the calculation and drawing was done in one loop which was a bit faster
(10-20%) than the following version (this calculates all points in one loop and then uses MATPLOT
to draw them quickly, creating a second internal loop). Another disadvantage compared to the original
version is the increase in memory usage because all points have to be stored:

100 MODE 4: WINDOW 512,256,0,0: PAPER 0: CLS
110 SCALE 20,-14,-10: iterations=10000
120 DIM pts(iterations-1,1): x=0: y=0
130 FOR loop=0 TO iterations-1
140 pts(loop,0)=x: pts(loop,1)=y
150 sy=0: IF x<0 THEN sy=-1: ELSE IF x THEN sy=1
160 xx=y-sy*(ABS(x-.9))^.5: y=1.01-x: x=xx
170 END FOR loop
180 INK 7: MATPLOT pts

A nice modification of the above example would be to:

• Replace MODE 4 with MODE 8 in line 100;

• Delete line 180;

• Add the following block:

180 REPeat loop
190 FOR n=1 TO 7

(continues on next page)

20.15. MATPLOT 513

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

200 INK n
210 MATPLOT pts
220 END FOR n
230 END REPeat loop

It’s up to you to produce more variants!

NOTE

The output of MATPLOT cannot be redirected to any other window and specifically any program which
uses MATPLOT (eg. the above example) cannot be compiled. So it is perhaps best to forget about
MATPLOT.

CROSS-REFERENCE

MATPLOT_R draws the figure relative to the graphic cursor. POINT draws a single point to any screen,
BLOCK can also be used to plot points, especially of variable size. PLOT , APOINT and POINT_ABS
plot points in absolute co-ordinates, directly to screen memory, ignoring windows.

20.16 MATPLOT_R

Syntax MATPLOT_R array [{, | ;}]
Location Math Package

This command is the same as MATPLOT except that the output is drawn relative to the graphic cursor.

CROSS-REFERENCE

POINT and all other commands related to graphics move the graphic cursor.

20.17 MATPROD

Syntax MATPROD (array)
Location Math Package

The function MATPROD returns the product of the array’s values, so array is not allowed to be a string
array.

Example

Can you see why MATPROD and FACT return the same number for every n?

100 n=8: DIM a%(n)
110 MATSEQ a%
120 PRINT MATPROD(a%) ;" = ";
130 PRINT FACT(n+1)

514 Chapter 20. Keywords M

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE

MATPROD is not compatible with Turbo and Supercharge.

CROSS-REFERENCE

MATPROD is almost identical to MATSUM except that it returns the product rather than the elements’
sum; so have a look at MATSUM which is also more useful.

20.18 MATREAD

Syntax MATREAD array
Location Math Package

The command MATREAD initialises the array (of any type) by reading each element from DATA lines.
Since MATREAD does the same as the following routine:

FOR i1=0 TO DIMN(array,1)
FOR i2=0 TO DIMN(array,2)
...
READ array(i1, i2)
...

END FOR i2
END FOR i1

all of the normal errors of READ may occur.

Example

The following example is identical to MATSEQ a%

100 DIM a%(3,2)
110 MATREAD a%
120 :
130 DATA 1, 2, 3, 4
140 DATA 5, 6, 7, 8
150 DATA 9,10,11,12

is identical to MATSEQ a%.

CROSS-REFERENCE

MATINPUT

20.18. MATREAD 515

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

20.19 MATRND

Syntax MATRND array or
MATRND array% [[,minval%] ,maxval%]

Location Math Package

This command initialises all of the elements of an integer or floating point array with random numbers.
Their default range depends on the type of array: for integer arrays, the values range from -32768 to
32767, whereas for floating point they range between 0 and 1.

MATRND selects the range itself if there is just one parameter, but for integer arrays only, an extended
syntax allows you to specify another range (as in the second variant).

If just a maximum value maxval% is specified then values range from 0 to maxval%, if a minimum
minval% is additionally given then values range from minval% to maxval%.

MATRND will reject any non-integer parameters for the second syntax.

Examples

DIM array%(4,3,2), array(1,2): min%=10
MATRND array
MATRND array%
MATRND array%,100
MATRND array%,min%,100

NOTE

Like all other MAT. . . commands, MATRND cannot be compiled with Supercharge or Turbo.

WARNING

MATRND allows a string array as a parameter. This leads to odd results and can possibly hang the
machine.

CROSS-REFERENCE

The random values chosen by MATRND can be influenced by RANDOMISE.

20.20 MATSEQ

Syntax MATSEQ array
Location Math Package

The command MATSEQ initialises the array (which must be a numeric array) with a constantly increasing
set of integer numbers: 1 2 3 4 5 6. . .

There is not really much use for MATSEQ except for demonstration.

Array can be either a floating point or integer variable. No strings are allowed.

CROSS-REFERENCE

516 Chapter 20. Keywords M

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

MATIDN is a useful means of initialising an array, MATEQU can be used to set all elements of an array
to a certain value. It is worth noting that any square matrix created with MATSEQ cannot be inverted
with MATINV because the determinant DET of that matrix is always zero:

100 n=30: DIM m(n,n), minv(n,n)
110 MATSEQ m
120 MATINV minv,m

This always fails at line 120 because DET (m) = 0.

20.21 MATSUB

Syntax MATSUB difference,matrix1,matrix2
Location Math Package

Provided that the parameters of the command MATSUB fulfil the same conditions as for MATADD,
MATSUB will store the difference between matrix1 and matrix2 in difference. Difference(. . .) = ma-
trix1(. . .) - matrix2(. . .). Two or all of the parameters can be identical, so:

MATSUB a,a,a

and:

MATSUB a,b,a

etc. are valid.

CROSS-REFERENCE

MATADD!

20.22 MATSUM

Syntax MATSUM (array[%])
Location Math Package

This function calculates the sum of all of the elements of the supplied array. array can be any floating
point or integer array, but not a string array. The latter leads to error -15 (bad parameter). Array can be
any number of dimensions, although the following example uses just one dimension for demonstration
reasons.

Example

If you stored a lot of values, eg. temperatures, in an array and want to find the average temperature, you
have to divide the sum of the temperatures by the number of values. Obviously the operation of adding
temperatures can take quite some time for a large data base, so this is a point where MATSUM helps:

20.21. MATSUB 517

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

100 values% = 200: DIM temp%(values%)
110 :
120 PRINT#0,"random initialisation..."
130 MATRND temp%,-20,30
140 PRINT#0,"equalising";
150 FOR equalize = 1 TO 10
160 FOR i = 0 TO values%-1
170 temp%(i) = (temp%(i) + temp%(i+1)) / 2
180 END FOR i
190 PRINT#0,".";
200 END FOR equalize
210 :
220 PRINT#0\\"drawing..."
230 WINDOW 448,200,32,16: SCALE 100,0,0
240 PAPER 3: CLS: INK 7: OVER 0
250 dist = 160 / values%: yoff = 50
260 FOR i = 0 TO values%-1
270 x1 = i*dist: x2 = x1+dist
280 y1 = temp%(i) + yoff: y2 = temp%(i+1) + yoff
290 LINE x1,y1 TO x2,y2
300 END FOR i
310 :
320 PRINT#0,"find medium..."
330 tmed = MATSUM(temp%) / values%
340 INK 3: OVER -1
350 LINE 0,tmed+yoff TO x2,tmed+yoff

The important line is 330 where MATSUM is used. Lines 150 to 200 transform the random values to
more realistic temperatures: you won’t find any country where outside temperature jumps from -20 to
+30 degrees Celsius in one day! The number of equalize loops can be freely chosen.

This is also true for values%, the figure adapts itself to the number of values (see dist in line 250).

NOTE

A program using MATSUM cannot be compiled with Turbo or Super-charge.

CROSS-REFERENCE

MATRND initialises an array with random values. MATPROD is very similar to MATSUM except that it
finds the product of an array’s elements. MATMEAN finds the mean value of a matrix’s values directly,
so line 330 could be replaced with:

330 tmed = MATMEAN(temp%)

518 Chapter 20. Keywords M

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

20.23 MATTRN

Syntax MATTRN array1, array2
Location Math Package

The command MATTRN takes numeric arrays of two dimensions or string arrays of three dimensions
and reads each row of array2, placing it in the corresponding column of array1.

It is obligatory that both arrays have the same type and are exactly DIMed to the needs of MATTRN.

The first dimension of array1 must be equal to the second of array2 and the first dimension of array2
must be equal to the second of array1.

For strings, additionally, the third dimensions of both arrays have to be equal:

DIM array1(x,y), array2(y,x)
DIM array1%(x,y), array2%(y,x)
DIM array1$(x,y,z), array2$(y,x,z)

So array1 and array2 can only be of identical dimensions for square matrices. In all other cases the
contents of array1 are not modified.

Example

100 DIM A%(2,3), B%(3,2)
110 MATRND B%,9: PRINT B%!\
120 MATTRN A%,B%: PRINT A%!\
130 MATTRN B%,A%: PRINT B%!\

20.24 MAX

Syntax MAX (x1 *[,xi]*)
Location Math Package, MINMAX2

This function must be given at least one number as a parameter - it will then return the highest value out
of the given list of parameters.

Example

PRINT MAX (2, 5, -10, 3.2)

will print 5.

CROSS-REFERENCE

MIN . See also MAXIMUM and MATMAX.

20.23. MATTRN 519

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

20.25 MAX_CON

Syntax error = MAX_CON(#channel%, x%, y%, xo%, yo%)
Location DJToolkit 1.16

If the given channel is a ‘CON_’ channel, this function will return a zero in the variable ‘error’. The
integer variables, ‘x%’, ‘y%’, ‘xo%’ and ‘yo%’ will be altered by the function, to return the maximum
size that the channel can be WINDOW ‘d to.

‘x%’ will be set to the maximum width, ‘y%’ to the maximum depth, ‘xo%’ and ‘yo%’ to the minimum
x co-ordinate and y co-ordinate respectively.

For the technically minded reader, this function uses the IOP_FLIM routine in the pointer Environment
code, if present. If it is not present, you should get the -15 error code returned. (BAD PARAMETER).

EXAMPLE

7080 DEFine PROCedure SCREEN_SIZES
7090 LOCal w%,h%,x%,y%,fer
7100 REMark how to work out maximum size of windows using iop.flim
7110 REMark using MAX_CON on primary channel returns screen size
7120 REMark secondaries return maximum sizes within outline where
7130 REMark pointer environment is used.
7140 w% = 512 : REMark width of standard QL screen
7150 h% = 256 : REMark height of standard QL screen
7160 x% = 0
7170 y% = 0
7180 :
7190 fer = MAX_CON(#0,w%,h%,x%,y%) : REMark primary for basic
7200 IF fer < 0 : PRINT #0,'Error ';fer : RETurn
7210 PRINT'#0 : ';w%;',';h%;',';x%;',';y%
7220 :
7230 fer = MAX_CON(#1,w%,h%,x%,y%) : REMark primary for basic
7240 IF fer < 0 : PRINT #0,'Error ';fer : RETurn
7250 PRINT'#1 : ';w%;',';h%;',';x%;',';y%
7260 :
7270 fer = MAX_CON(#2,w%,h%,x%,y%) : REMark primary for basic
7280 IF fer < 0 : PRINT #0,'Error ';fer : RETurn
7290 PRINT'#2 : ';w%;',';h%;',';x%;',';y%
7300 END DEFine SCREEN_SIZES

520 Chapter 20. Keywords M

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

20.26 MAX_DEVS

Syntax how_many = MAX_DEVS
Location DJToolkit 1.16

This function returns the number of installed directory device drivers in your QL. It can be used to
DIMension a string array to hold the device names as follows:

1000 REMark Count directory devices
1010 :
1020 how_many = MAX_DEVS
1030 :
1040 REMark Set up array
1050 :
1060 DIM device$(how_many, 10)
1070 :
1080 REMark Now get device names
1090 addr = 0
1100 FOR devs = 1 to how_many
1110 device$(devs) = DEV_NAME(addr)
1120 IF addr = 0 THEN EXIT devs: END IF
1130 END FOR devs

CROSS-REFERENCE

DEV_NAME.

20.27 MAXIMUM

Syntax MAXIMUM [(array)] or
MAXIMUM (*[value]*)

Location Minmax (DIY Toolkit - Vol Z)

The effect of this function depends on the parameter supplied. It is however an extremely fast way of
comparing values. If no parameter is supplied, then the greatest possible floating point number supported
by the QL is returned - this is equivalent to 1.61585 e616.

If a single parameter is supplied which is a single dimensional floating point array, then MAXIMUM
will return the value of the largest number stored within that array.

If you want to compare the values of an integer array, then use MAXIMUM% (a ‘bad parameter’ is
generated with this (MAXIMUM) function).

If, however, you use the second variant to pass a list of values (either numbers or variables), then the
highest value out of those parameters will be returned. Please note that you cannot pass an array in this
instance - it is therefore the same as MAX.

Example

20.26. MAX_DEVS 521

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

PRINT MAXIMUM

Returns 1.61585e616

DIM x(3): x(0)=10: x(1)=200: x(2)=2.5: x(3)=50.4
PRINT MAXIMUM (x)

Returns 200.

PRINT MAXIMUM (100, ax ,21*10+ac)

Returns the highest value.

NOTE

This function cannot be compiled with Supercharge or Turbo if you intend to pass an array as the param-
eter.

CROSS-REFERENCE

MATMAX, MAXIMUM% and MAX are similar. Refer also to MINIMUM and MINIMUM%.

20.28 MAXIMUM%

Syntax MAXIMUM% [(array%)] or
MAXIMUM% (*[value]*)

Location Minmax (DIY Toolkit - Vol Z)

This function is exactly the same as MAXIMUM except that it only accepts integer parameters and is
therefore able to work much more quickly. As with MAXIMUM, you can use this function to find the
highest value in an array, provided that the first variant is used, and the array is a single dimensional
integer array. If no parameter is supplied, then the greatest possible integer number supported by the QL
is returned - this is equivalent to 32767.

Example

PRINT MAXIMUM%

Returns 32767

DIM x%(3): x%(0)=10: x%(1)=200: x%(2)=2: x%(3)=50
PRINT MAXIMUM% (x%)

Returns 200.

PRINT MAXIMUM% (100, ax ,21*10+ac)

Returns the highest value as an integer.

NOTE

This function cannot be compiled with Supercharge or Turbo if you intend to pass an array as the param-
eter.

522 Chapter 20. Keywords M

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE

MATMAX, MAXIMUM and MAX are similar. Refer also to MINIMUM%.

20.29 MB

Syntax MB
Location Minerva

Early versions of Minerva (pre v1.97) did not have built-in MultiBASICs and they had to be EXECuted
from disk. However, you could make them resident by linking in the file Mulib_rext with the LRESPR
command and then this command, MB would be available to start up MultiBASIC interpreters. This is
not a very convenient way of starting MultiBASICs as you cannot pass parameters to the MultiBASIC,
nor can you use the command to run filter programs.

NOTE

This command is redundant on Minerva v1.97+, whereby MultiBASICs can be started up using EXEC
pipep.

CROSS-REFERENCE

See SBASIC and EW . Also see QUIT . Check out the appendix on Multiple BASICs.

20.30 MD

Syntax MD subdir
Location Beuletools (Needs Level-2 Drivers)

This command is just used as an abbreviation for the MAKE_DIR command on Level-2 (and higher)
floppy/ winchester/ ramdisk drivers.

CROSS-REFERENCE

An alternative would be to rename MAKE_DIR with NEW_NAME. See also MAKE_DIR.

20.31 MERGE

Syntax MERGE device_filename or
MERGE [device_]filename (Toolkit II)

Location QL ROM, Toolkit II

This command is similar to LOAD except that it does not clear the current program and variables out
of memory prior to loading the given program file. Neither is the screen cleared, which enables loading
pictures to be shown on screen whilst the main program loads.

20.29. MB 523

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

This means that any line numbers which appear in the program currently in memory and which are
repeated in the program file will be overwritten by the lines in the program file, whereas any new lines
will be inserted into the program in memory.

Again, any lines without line numbers are automatically executed as they are loaded into memory. This
could therefore be used within a program to execute a ‘command file’ stored on a directory device (how-
ever, see below).

Example

A short program - when typed in, save this using the command:

SAVE mdv1_test1_bas

10 REMark Test1
20 PRINT 'The Sinclair QL'

Now, type NEW and enter the following short program:

5 REMark Test
20 PRINT 'An old program line'
30 PRINT 'SuperComputer'

Now, enter the command:

MERGE mdv1_test1_bas

followed by:

LIST

and the following will now form the program in memory:

5 REMark Test
10 REMark Test1
20 PRINT 'The Sinclair QL'
30 PRINT 'SuperComputer'

NOTE 1

Unfortunately, if you MERGE a file of direct commands (ie. a program file without line numbers), only
the first line will be read and the file will be left open, making it impossible to change the disk/microdrive
cartridge. Some compilers provide commands to ensure that the file is closed and all of the commands
executed.

Minerva and Toolkit II close the file, but still only the first command is executed, unless the MERGE
command is used from within a program (in which case, the whole of the command file is executed).
SMS ensures that MERGE works in both of these circumstances.

NOTE 2

When writing command files, ensure that the lines are all checked thoroughly before saving them without
the line numbers, since a ‘bad line’ error on such a file may crash the QL. However, if Toolkit II is present,
this makes a safe recovery, reporting ‘bad line’.

NOTE 3

524 Chapter 20. Keywords M

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

MERGE can become confused if used from within a PROCedure or FuNction. Minerva and Toolkit II
both report ‘Not Implemented’.

NOTE 4

On Minerva v1.86, MERGE could become a little confused when used within a program.

NOTE 5

When used within a program MERGE and MRUN are the same.

NOTE 6

Since Toolkit II v2.22 (and on the Minerva version), MERGE has refused to try and load a file which
does not have a file type of 0 - see FTYP.

SMS NOTE

MERGE follows the same rules for finding a program name as the LOAD command.

CROSS-REFERENCE

MRUN is very similar. See LOAD and SAVE. DO is also very similar to MERGE.

20.32 MIDINET

Syntax MIDINET
Location SMSQ/E, ATARI Emulators

A file MIDINET_rext is provided with SMSQ/E and the Emulators for the Atari computers which allows
you to set up a Network using the MIDI ports provided on the Atari computers.

Once the Network has been set up with the necessary leads, and MIDINET_rext been loaded on all
computers in the Network, the command MIDINET should be issued to start up the fileserver Job on
each computer. This creates a background Job called ‘MIDINET’ which is similar to the ‘Server’ Job
created by FSERVE.

The two fileservers are very similar in operation in that they both allow other computers to access the
resources of the Master machine over the Network. However, MIDINET has built-in protection for files
which can prevent other users in a Network accessing sensitive files. This is implemented by means of
recognising files which start with a specific series of characters:

Char-
acters

Effect

*H or
*h

These files cannot be accessed over the Network. Any attempt to use these files by a Slave
Machine will return ‘Not Found’ errors.

*R These files are Read Only over the Network.
*D These files cannot be accessed over the Network and will return ‘Not Implemented’ - this

prevents direct sector access.

CROSS-REFERENCE

MNET is needed to control the Network. See also FSERVE and SERNET . See the Appendix on Networks
for further details.

20.32. MIDINET 525

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

20.33 MIN

Syntax MIN (x1 *[,xi]*)
Location Math Package, MINMAX2

This function must be given at least one number as a parameter - it will then return the lowest value out
of the given list of parameters.

Example

100 INPUT "a ="!a
110 INPUT "b ="!b
120 FOR x=MIN(a,b) TO MAX(a,b): PRINT x

CROSS-REFERENCE

MAX is MIN’s counterpart. Compare MINIMUM and MATMIN .

20.34 MINIMUM

Syntax MINIMUM [(array)] or
MINIMUM (*[value]*)

Location Minmax (DIY Toolkit - Vol Z)

The effect of this function depends on the parameter supplied. It is however an extremely fast way of
comparing values.

If no parameter is supplied, then the smallest possible floating point number supported by the QL is
returned - this is equivalent to -1e614.

If a single parameter is supplied which is a single dimensional floating point array, then MINIMUM will
return the value of the smallest number stored within that array. If you want to compare the values of an
integer array, then use MINIMUM% (a ‘bad parameter’ is generated with this function if you attempt to
use it for integers).

If, however, you use the second variant to pass a list of values (either numbers or variables), then the
smallest value out of those parameters will be returned.

Please note that you cannot pass an array in this instance - it is therefore the same as MIN.

Example

DIM x(3): x(0)=10: x(1)=200: x(2)=2.5: x(3)=50.4
PRINT MINIMUM (x)

Returns 2.5

NOTE

This function cannot be compiled with Supercharge or Turbo if you intend to pass an array as the param-
eter.

526 Chapter 20. Keywords M

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE

MATMIN , MINIMUM% and MIN are similar. Refer also to MAXIMUM and MAXIMUM%.

20.35 MINIMUM%

Syntax MINIMUM% [(array%)] or
MINIMUM% (*[value]*)

Location Minmax (DIY Toolkit - Vol Z)

This function is exactly the same as MINIMUM except that it only accepts integer parameters and is
therefore able to work much more quickly. As with MINIMUM, you can use this function to find the
smallest value in an array, provided that the first variant is used, and the array is a single dimensional
integer array. If no parameter is supplied, then the smallest possible integer number supported by the QL
is returned - this is equivalent to -32768.

NOTE

This function cannot be compiled with Supercharge or Turbo if you intend to pass an array as the param-
eter.

CROSS-REFERENCE

MATMIN , MINIMUM and MIN are similar. Refer also to MAXIMUM%.

20.36 MISTake

Syntax MISTake
Location QL ROM

MISTake is a keyword which will only rarely ever be found. It cannot be inserted into a program from
the keyboard. Instead, it is generated internally whenever LOAD, LRUN, MERGE or MRUN commands
are used and a line in the file being loaded cannot be parsed (ie. if it would generate a ‘bad line’ error if
typed in at the keyboard).

Rather than reporting an error and stopping the loading process, the word MISTake is inserted in the
offending line after the line number. If you then try to RUN the offending line, a ‘Bad Line’ error will be
generated (under SMS the error ‘MISTake in program’ is reported.

You can however EDIT the offending line - you must delete the word MISTake as well as correcting the
error before the line will be accepted by the parser. Once this is done, then the program should run as
normal.

NOTE

Unfortunately, QREF (from Liberation Software) cannot find lines containing MISTake - in order to do
this, you need a much more complex system such as MasterBasic+ (from Ergon Development).

CROSS-REFERENCE

Please see LOAD and MERGE about loading a SuperBASIC program in general.

20.35. MINIMUM% 527

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

20.37 MKF$

Syntax MKF$ (float)
Location BTool

This function returns a string containing the internal representation of a floating point number (which is
stored as six bytes).

CROSS-REFERENCE

CVF, MKI$, MKS$, MKL$, PEEK_F, POKE_F

20.38 MKI$

Syntax MKI$ (integer%) where integer% = -32768..32767
Location BTool

The function MKI$ returns a string containing the internal representation of an integer number (which
is stored as two bytes).

Example

MKI$(11111)

Would return the string “+g”, because:

CODE("+")*256 + CODE("g")

Equals 11111.

CROSS-REFERENCE

CVI% is the opposite function. MKF$, MKL$, MKS$

20.39 MKL$

Syntax MKL$ (longint) where longint = -2*INTMAX-1..2*INTMAX+1
Location BTool

This function returns a string containing the internal format of a long integer number (which is stored as
four bytes).

CROSS-REFERENCE

CVL is the complementary function. MKI$, MKF$, MKS$

528 Chapter 20. Keywords M

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

20.40 MKS$

Syntax MKS$ (string$)
Location BTool

This function returns a string containing the internal format of a string {which is stored as two bytes
indicating the length of the string (as returned by MKI$) and the string itself}.

Example

MKS$("Test") = CHR$(0)&CHR$(4) & "Test"

because:

MKI$ (4)

returns the string CHR$(0)&CHR$(4).

CROSS-REFERENCE

CVS$, MKI$, MKF$, MKL$

20.41 MNET

Syntax MNET station
Location SMSQ/E, ATARI Emulators

This command is similar to the NET command in that it sets the Network Station number of the machine
on which it is issued. The only difference is that here it sets the station number for the MIDINET Network
(as opposed to QNET).

CROSS-REFERENCE

See MNET%, MNET_USE and NET . Also please see MIDINET , SERNET and FSERVE.

20.42 MNET%

Syntax MNET%
Location SMSQ/E, ATARI Emulators

This function returns the current station number of the computer as set with MNET.

CROSS-REFERENCE

See MNET . NET_ID is similar.

20.40. MKS$ 529

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

20.43 MNET_OFF

Syntax MNET_OFF
Location SMSQ/E, ATARI Emulators

This command turns the MIDINET driver off temporarily so that you can use the MIDI ports indepen-
dently.

CROSS-REFERENCE

See MNET_ON .

20.44 MNET_ON

Syntax MNET_ON
Location SMSQ/E, ATARI Emulators

This command switches the MIDINET driver back on after it has been disabled with MNET_OFF.

CROSS-REFERENCE

See MNET_OFF. Also see MIDINET .

20.45 MNET_S%

Syntax MNET_S% (station)
Location SMSQ/E, ATARI Emulators

This function enables you to check whether a machine with the specified station number is connected to
the MIDINET. This can be useful to prevent the problem of the Network retrying several times before
failing when asked to send or read data from a Network station which does not exist.

CROSS-REFERENCE

See MNET .

20.46 MNET_USE

Syntax MNET_USE id
Location SMSQ/E, ATARI Emulators

Due to the fact that MIDINET Networks can be run on computers alongside SERNET Networks and
even QNET Networks, it may be necessary to alter the identification letter used to access facilities on
other computers in the Network. The default letter id is n (as with FSERVE), but this can be set to any

530 Chapter 20. Keywords M

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

other single letter by using this command. However, you should avoid letters which already appear as
the first letter in another device driver (see DEVLIST).

Example

MNET_USE m
OPEN #3,m2_con_512x256a0x0

Open an input channel covering the screen on station number 2 in the MIDINET Network.

CROSS-REFERENCE

See MNET and MIDINET . Refer also toMNET_S%.

20.47 MOD

Syntax x MOD y
Location QL ROM

This operator returns the value of x to modulus y. This is defined as x-(x DIV y)*y. If x or y is not an
integer value, then it is rounded to the nearest integer (compare INT). On non-SMS implementations the
answer and both parameters must lie within the range -32768. . . 32767. On SMS, the answer and both
parameters can lie anywhere within roughly - 2e9. . . 2e9.

Examples

PRINT 13 DIV 5

gives the result 3. This is because 13 DIV 5 is 2, 2 multiplied by 5 is 10, 13 minus 10 is 3.

PRINT 13.4 MOD 1.5

gives the result 1 (13 MOD 2).

NOTE 1

MOD has problems with the value -32768: PRINT -32768 MOD -1 gives the result -1 on most imple-
mentations. On Minerva v1.76 (or later) and SMS v2.77+ it gives the correct result, being 0.

NOTE 2

If you write a program for SMSQ/E which uses values outside the range -32768. . . 32767, this will not
work on non-SMSQ/E machines - instead of:

PRINT x MOD y

you will need to use:

PRINT x - (INT(x / y) * y)

CROSS-REFERENCE

DIV returns the integer part of x divided by y. Also, please see the alternative version of MOD.

20.47. MOD 531

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

20.48 MOD

Syntax MOD (x,y)
Location Math Package

The function MOD returns the value x-(DIV(x,y)*y), ie. the value of x to modulus y, in a similar fashion
to the ROM based operator MOD.

However, this version is not limited to a range of -32768 to 32767, but will accept parameters in the range
-INTMAX to INTMAX. Because both versions of MOD return the integer remainder of a division, x
MOD 0 or MOD(x,0) lead to an overflow error, because division by zero is undefined.

NOTE 1

Both versions of MOD can be used in the same program, although the Turbo and Supercharge compilers
will not accept this alternative form.

NOTE 2

If you try to use a program compiled under Turbo or Supercharge after loading the Math Package, if the
program uses the normal SuperBASIC operator MOD or DIV, an error will be generated and the program
will refuse to work!

CROSS-REFERENCE

DIV MOD (ROM version)

20.49 MODE

Syn-
tax

MODE mode% or
MODE screen_mode [,display_type] (Minerva, Q-Emulator, Amiga-QDOS v3.23+) or
MODE [screen_mode [,display_type]](PEX only)

Lo-
ca-
tion

QL ROM, PEX

The original QDOS operating system will only recognise two display modes: Low resolution and High
resolution. However, the following MODEs are currently set aside for use by QDOS compatible systems:

MODE Resolution Colours System
2 640 x 400 2 SMS-2
4 <=1000 x 400 4 SMS-2
4 768 x 280 4 ST/QL, Ext. MODE 4
4 <=1024 x 1024 4 QVME
4 <=800 x 600 4 QXL, QXL II, QPC
4 512 x 256 4 QDOS and others
8 256 x 256 8 QDOS and others
8 256 X 256 4 ST/QLs
12 256 x 256 16 THOR XVI

532 Chapter 20. Keywords M

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

The MODE command is used to select the mode and redraw all windows. Without Qjump’s Window
Manager WMAN, the screen mode is set globally, whereas if WMAN (or SMSQ/E) is installed (this is
highly recommended), MODE will only affect the current job.

The parameter mode% can be any legal integer between -32768 and 32767. However, to ensure compat-
ibility with other systems one of the above four values should be used. Normally if a system does not
support the mode type selected, MODE 4 is selected.

The MODE command also resets the current status of UNDER, FLASH, CSIZE and OVER.

Without specialised software, only one screen mode can be used at a time (even with the specialised
software contained in the Quanta library, the screen can only be split in two horizontally).

The second variant is supported on Minerva, Q-Emulator (for the MacIntosh), PEX and the Amiga QDOS
Emulator (v3.23+) and allows you to dictate the type of display used. The display_type can be one of
four values (the default is -1):

Display_type Effect
0 Set to monitor mode
1 Set to TV (625 lines) mode (European)
2 Set to TV (525 lines) mode (American)
-1 Leave display type as it is

On the PEX variant, if you do not specify any parameters, MODE will default to MODE 4,0

NOTE 1

Normally, High resolution is described as MODE 4 because this value represents a characteristic of the
mode (4 colours) as well as setting it. Equally, MODE 8 stands for Low resolution. However, with
the ability of QDOS to access much higher resolution screens, these terms now tend to be somewhat
unnecessary.

NOTE 2

Unfortunately for Minerva users who wish to run software in dual screen mode, current versions of the
Pointer Interface do not allow you to have different MODEs on each of the two screens (the pointer
interface fails to recognise that a program is running on the second screen only and does not therefore
affect the main display screen located at $20000). Speedscreen may also give problems in Minerva’s dual
screen mode unless the ‘p’ version is used.

NOTE 3

If you want to make your programs appear more professional, you should always seek to cut out unnec-
essary MODE commands (see RMODE), also because of the fact that MODE tends to re-draw all of the
current windows (clearing them in their current paper and border colours as it works), it is always an idea
to ensure that all currently opened windows are set to black paper and black (or no) border before issuing
this command.

NOTE 4

On an American JSU QL (which was adapted for use with the American 525-line TV picture, as opposed
to the British 625-line TV picture), only 192 lines of pixels are allowed instead of the normal 256 in
MODE 4 and MODE 8 (when the QL is linked to a TV). There are less and less users using their QL
with a TV set nowadays and therefore this can be largely ignored. In any event, software should generally
still run on an American QL without modification (the lower number of available lines on the TV screen
ensures that pictures still appear to retain the same height/width ratio).

20.49. MODE 533

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE 5

If you are planning to use the dual screen mode, it is essential that you ensure that the current screen is
also the displayed screen before opening windows or using the MODE command - see below.

NOTE 6

The standard screen modes are MODE 4 and MODE 8. MODE 8 is however only supported on a limited
number of implementations. It is supported by the original QL, some early ST-QL Emulators and Amiga-
QDOS (v3.23+).

DUAL SCREEN MODE

Minerva and some other implementations allow you to have two screens which can both be accessed
by the user (and can be switched between by pressing <CTRL><TAB>). Each of these two screens (if
you are in dual screen mode), can support a different mode. In order to cater for these new features,
screen_mode is very complex, and to make it worse, it is important to know which screen is the default
screen (see DEFAULT_SCR).

Programs which use the normal MODE commands will still work under dual screen mode, since the new
version of the MODE command will only work if the display_type is specified.

When the QL is first started, unless you choose <F3> or <F4> (on Minerva), only one screen will be
available for use by programs, otherwise Minerva is placed into Dual Screen Mode.

In the dual screen mode, after starting up the QL, the default screen is scr0 (located at $20000 - the
normal QL display screen). The second screen (scr1) is located at $28000 and is known as the Other
Screen.

To make matters worse, each job present in the QL’s memory will be allocated its own default screen,
being the current default when it was started. A job can therefore alter its own current default screen
without upsetting the rest of the system.

Before proceeding any further it is important to realise that the Displayed Screen (what you can see on
your TV/monitor) and the Default Screen are not necessarily one and the same thing. Oh, it is also
important to know that a screen can also be either visible or blank (this is so that work can be prepared
on a screen without the user being able to see the process). Perhaps some definitions might help:

Displayed Screen:
This is the screen which is currently in front of the user on his/her monitor or TV.

Default Screen:
The screen on which a program’s windows will be opened and upon which the normal MODE 4
and MODE 8 commands will have an effect.

Other Screen:
The opposite to the Default Screen (ie. if the Default Screen is scr0, then the Other Screen will be
scr1).

Visible Screen:
This means that the specified screen can actually be seen by the user.

Blank Screen:
The specified screen is invisible to the user (allows background work to be carried out).

That’s the definitions out of the way, and hopefully, they will provide a better understanding of what is
to follow. The command:

534 Chapter 20. Keywords M

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

OPEN#3,scr_448x200a32x16

will open a new window on the current Default Screen. After this, any subsequent commands using #3
will be shown on that screen (whether or not it is still the current Default Screen).

Problems may exist with some Toolkit functions which do not check to see where the screen starts for
the given window, and just assume that the screen starts at $20000.

Unfortunately, current versions of Lightning and the Pointer Interface introduce various problems to the
Dual Screen Mode, the most important one of which is that the screen will not be re-drawn unless the
current screen is also the Displayed Screen.

Another plus to the altered MODE command is that there is no forced re-draw of all the current windows
unless you specify that this must be carried out (or if you use the original MODE variants).

In order to try and explain the new display_mode parameters, it is easier to split it into two sections:
toggling current values and setting absolute values.

Toggling the Screen Parameters

This uses the format MODE 64+n,-1, where:

n Effect From: To:
1 Toggle Other Screen Visible Blank
2 Toggle Default Screen Visible Blank
4 Toggle Other Screen Mode 4-colour 8-colour
8 Toggle Default Screen Mode 4-colour 8-colour
16 Toggle Displayed Screen scr0 scr1
32 Toggle Default Screen scr0 scr1

Adding together different values of n will combine these effects (although if one of the values is to be 32,
the default screen will be toggled before anything else is carried out).

Examples

MODE 64+16,-1: PAUSE: MODE 64+16,-1

Show both screens.

MODE 64+4+8,-1

Toggle the mode of both screens Details of the values used to set absolute screen parameters appear on
the next page.

Setting Absolute Screen Parameters

This uses the format MODE -128 + m - 256 * t + c, -1

where:

• m = k1*n1 + k2*n2 + k3*n3 +. . .

• t = n1 + n2 + n3 +. . . n

• c = (see below)

• n can have the same values as above, depending on which effect is to be altered.

20.49. MODE 535

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• k1, k2, k3 etc. have the following effect upon the corresponding values of n1, n2, n3, etc.

k Sets n to:
0 The ‘from..’ column above
1 The ‘to..’ column above

c Effect
0 Do not redraw any screens
-16384 Re-draw the Other Screen
32768 Re-draw the Default Screen
16384 Re-draw both screens

Again, different effects can now be combined with relevant values for each n and k. If you wish to toggle
any effects at the same time, simply add the corresponding value of n to the first parameter. Some Minerva
manuals do not have the correct formula for calculating these values, which can lead to some peculiar
results. Changing the default screen will again take precedence to all other changes.

Dual Screen Examples

MODE 4

change the Default Screen to MODE 4 and re-draw all currently opened windows on the Default Screen.

MODE 64+32,-1

toggle current Default Screen.

MODE 64+32+16,-1

toggle current Default Screen and show to user.

MODE -17791,-1

blank out Other Screen and then force it into 4-colour mode, redrawing all windows, Where does -17791
come from? The formula given above:

-128 + m - 256*t + c

Into which we substitute the following:

t = 1 + 4
m = 1*1 + 0*4
c = -16384

Care must however be taken when opening channels if the two screens are in different modes - on ver-
sions of Minerva earlier than v1.97, if you open a channel on the non-Displayed Screen, it will have the
characteristics of a window opened in the mode of the Displayed Screen (although sadly this does not
mean that you can have a MODE 4 window in the middle of a MODE 8 screen). To ensure that the
current Default Screen is the current Displayed Screen, use:

536 Chapter 20. Keywords M

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

MODE -128 + DEFAULT_SCR * 16 - 256 * 16, -1

Q-EMULATOR NOTE

Q-Emulator for the Apple MacIntosh computer supports Minerva’s dual screen mode and the extended
MODE command.

AMIGA-QDOS NOTE

From v3.23, the Amiga-QDOS Emulator also supports Minerva’s dual screen mode and the extended
MODE command. Before this version, it did not support MODE 8. Even now, FLASH is not supported
in MODE 8.

WARNING 1

Changing the display_type may have odd effects, especially if Qjump’s Button Frame (part of QPAC2)
is present.

WARNING 2

On pre JS ROMs, if you open a screen (scr_) or console (con_) channel after a MODE command, the ink
and paper colours for the new channel could both be 0 (black).

WARNING 3

On pre Minerva ROMs, MODE alters the value contained in the system variable SYS.DTYP (also known
as SV.TMOD) which normally contains a value from 0. . . 2 showing the type of TV/Monitor the QL is
set up for. Speedscreen, the Pointer Environment and Lightning all fix this.

CROSS-REFERENCE

RMODE can be used to read the current screen mode (and even whether the second screen is available)
and DEFAULT_SCR will tell you which is the current default screen. SCREEN(#3) will tell you the
address of the start of the screen on which window #3 is situated. DISP_SIZE can be used to set the size
of the displayed screen on extended resolutions.

20.50 MONTH%

Syntax MONTH% [datestamp]
Location SMSQ/E

This function complements the DATE and DATE$ functions, by returning the month number correspond-
ing to the given datestamp, or current date, if no datestamp was given.

Examples

PRINT MONTH% (0)

will print the month part of the QL’s epoch, 1 for January

PRINT MONTH%

will print the current month number, (1. . . 12, starting with January).

CROSS-REFERENCE

20.50. MONTH% 537

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

See DATE, YEAR%.

20.51 MORE

Syntax MORE [#ch,] filename
Location MORE (DIY Toolkit - Vol V)

This command adds a quite sophisticated file viewing facility to the QL which far surpasses the simple
Toolkit II VIEW command.

In its simplest form, MORE will open a channel to the specified filename (adding the data default direc-
tory if the file does not exist) and display it in the specified window channel (default #1). If #ch does not
refer to a window or is #0, then bad parameter will be reported. The file will then be displayed in the
specified channel, one window full at a time. #0 is used by the command to display the length of the file
in bytes and the number of the last byte displayed in the window.

You can move around the file by using the following keys:

• <ENTER> - Allows you to enter a file position to look at (this will be the first byte displayed in the
window).

• <ALT><UP> - This moves back up the file one page at a time.

• <ALT><DOWN> - This moves down the file one page at a time.

• <DOWN> - Move down the file one line.

• <ESC> - Leave MORE.

MORE can however, also be used to look at the QL’s memory (or that on a networked computer) by using
the MEM device. In this mode, only the address of the last byte on screen is shown in #0 - there is no
file length. For example:

MORE #2,MEM

will allow you to use MORE to page through the whole of the QL’s memory.

MORE #2,n2_MEM

allows you to page through the whole of another computer’s memory.

OPEN #3,MEM7_60p: PRINT #3,'Hello World': CLOSE #3

creates a permanent buffer (MEM7) and stores two words in it. If you follow the above by:

MORE #2,MEM7

then you will be able to look at the contents of the buffer MEM7.

NOTE

Trying to use MORE on anything other than files or MEM devices (for example on named pipes) will
cause problems - press <CTRL><SPACE> a few times to escape from this.

CROSS-REFERENCE

538 Chapter 20. Keywords M

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Refer to the Devices Appendix for more details on MEM.

Compare:

COPY flp1_test_bas to SCR

and:

VIEW flp1_test_bas

20.52 MOUSE_SPEED

Syntax MOUSE_SPEED [#ch,] acceleration, wakeup
Location SMSQ/E for QPC

This function adjusts the mouse acceleration and wake up factor. The acceleration factor is of no conse-
quence to QPC2. The wakeup values, however, may still be set. They range from 1 to 9, with 1 being the
most sensitive.

20.53 MOUSE_STUFF

Syntax MOUSE_STUFF [#ch,] hot$
Location SMSQ/E for QPC

This function adjusts the string that is stuffed into the keyboard queue when the middle mouse button is
pressed (or both left and right buttons are pressed simultaneously). The string cannot be longer than two
characters, but this is enough to trigger any hotkey, which in turn, can do almost anything.

Example

MOUSE_STUFF '.'

Generates a dot if middle mouse button is pressed.

MOUSE_STUFF CHR$(255) & '.'

Generates hotkey <Alt><.> which will activate whatever has been defined on that key combination.

20.52. MOUSE_SPEED 539

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

20.54 MOVE

Syntax MOVE [#ch,] distance
Location QL ROM

The QL supports a simplified means of drawing pictures known as turtle graphics. This was based upon
an early educational tool, whereby simple commands could be entered into a computer to drive a small
robot turtle which moved around the floor and held a pen. This pen could either be up in which case the
turtle would just move around, or down in which case a line would be left by the turtle on the floor as it
moved.

When a window is first opened, an invisible turtle appears at the graphics origin (altered with SCALE)
facing to the right, with its pen in the up position.

The command MOVE forces the turtle in the specified window (default #1) to move in the current direc-
tion by the specified distance.

The actual distance moved on screen depends on the current SCALE applicable to that window. If dis-
tance is negative, the turtle will move backwards. MOVE always works from the current graphics cursor
position, and after using this command, the current graphics cursor is placed at the turtle’s position on
screen. MOVE is affected by the current INK colour, FILL and also OVER, just like any other graphics
command.

Example

A simple procedure to draw a shape of a set number of equal length sides:

100 DEFine PROCedure POLYGON (chan, sides, side_length)
110 TURNTO #chan,0: PENDOWN #chan
120 FOR k = 1 TO sides
130 MOVE #chan, side_length
140 TURN #chan, 360 / sides
150 END FOR k
155 PENUP #chan
160 END DEFine

Try for example, POLYGON #2,5,10.

NOTE

The THOR XVI v6.40 tended to crash when using turtle graphics, especially if a channel number was
specified.

CROSS-REFERENCE

PENDOWN forces the pen into the down position, leaving a trail on screen. PENUP allows the turtle to
move without leaving a trail. TURN and TURNTO allow you to alter the direction of the turtle.

540 Chapter 20. Keywords M

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

20.55 MOVE_MEM

Syntax MOVE_MEM destination, length
Location DJToolkit 1.16

This procedure will copy the appropriate number of bytes from the given source address to the destination
address. If there is an overlap in the addresses, then the procedure will notice and take the appropriate
action to avoid corrupting the data being moved. Most moves will take place from source to destination,
but in the event of an overlap, the move will be from (source + length -1) to (destination + length -1).

This procedure tries to do the moving as fast as possible and checks the addresses passed as parameters
to see how it will do this as follows :-

• If both addresses are odd, move one byte, increase the source & destination addresses by 1 and
drop in to treat them as if both are even, which they now are!

• If both addresses are even, calculate the number of long word moves (4 bytes at a time) that are to
be done and do them. Now calculate how many single bytes need to be moved (zero to 3 only) and
do them.

• If one address is odd and the other is even the move can only be done one byte at a time, this is
quite a lot slower than if long words can be moved.

The calculations to determine which form of move to be done adds a certain overhead to the function and
this can be the slowest part of a memory move that is quite small.

EXAMPLE

MOVE_MEM SCREEN_BASE(#0), SaveScreen_Addr, 32 * 1024

20.56 MOVE_POSITION

Syntax MOVE_POSITION #channel, relative_position
Location DJToolkit 1.16

This is a similar procedure to ABS_POSITION , but the file pointer is set to a position relative to the current
one. The direction given can be positive to move forward in the file, or negative to move backwards. The
channel must of course be opened to a file on a directory device. If the position given would take you
back to before the start of the file, the position is left at the start, position 0. If the move would take you
past the end of file, the file is left at end of file.

After a MOVE_POSITION command, the next access to the given channel, whether read or write, will
take place from the new position.

EXAMPLE

MOVE_POSITION #3, 0

moves the current file pointer on channel 3 to the start of the file.

20.55. MOVE_MEM 541

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

MOVE_POSITION #3, 6e6

moves the current file pointer on channel 3 to the end of the file.

CROSS-REFERENCE

ABS_POSITION .

20.57 MRUN

Syntax MRUN device_filename or
MRUN [device_]filename (Toolkit II)

Location QL ROM, Toolkit II

This command is similar to MERGE except that once the two programs have been merged, if MRUN
was issued as a direct command, then the merged program is RUN from line 1. However, if MRUN was
used from within the program, the statement following the MRUN statement is executed, thus making
this command the same as MERGE when used within a program.

CROSS-REFERENCE

See MERGE!

20.58 MSEARCH

Syntax MSEARCH (add1 TO add2, tofind$)
Location MSEARCH (DIY Toolkit - Vol X)

This function is very similar to the Tiny Toolkit version of the SEARCH function except that it performs
an extremely fast case-independent search through memory (much more quickly than other implementa-
tions).

CROSS-REFERENCE

See search and TTFINDM also. SEARCH_MEM is a variant on this version.

20.59 MT

Syntax MT (i,n)
Location Toolfin

The function MT returns the value of (1+i)n where i and n can be any floating point numbers. Instead
of reporting an overflow error for values which cannot be computed (eg. i=-1, n=-1) MT returns 1. If
the returned value would be too large, a modulated value is returned. It is therefore imperative that the
programmer takes care that the parameters are correct, otherwise the return values may not make much
sense.

542 Chapter 20. Keywords M

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Example 1

MT gives you a factor which indicates the increase (i>1) or decrease (i<1) of capital at an interest rate
i over a number of periods n. The gain is known as compound interest. If you give any sum to a bank
at an interest rate of five percent (ie. annual 5 per 100 increase) for (say) ten years, you will gain 62.9%
because: MT(0.05, 10) = 1.628895

Example 2

MT(1/n,n)

approximates EXP(1) for large values of n.

CROSS-REFERENCE

VA, VFR, VAR, TCA, TNC, TEE, RAE, RAFE

20.60 MTRAP

Syntax MTRAP key [,d1 [,d2 [,d3 [,a0 [,a1]]]]] or
MTRAP key\jobnr [,d2 [,d3 [,a0 [,a1]]]]]

Location TRAPS (DIY Toolkit Vol T)

This command is similar to QTRAP in that it allows you to access the machine code TRAP #1 system
calls directly. Unless you are using the second variant, you will need to pass at least one parameter, the
operation key to be carried out (this is equivalent to the value in D0 when TRAP #1 is performed). The
other parameters allow you to pass the various register values which may be required by the system calls.

The second variant is useful for when you are using a TRAP #1 call which requires a job ID - you can
merely pass the jobnr of the required job, obtained from the JOBS list (rather than having to set D1 to
the Job ID). For example to force remove Job 12, use the command:

MTRAP 5\12,0,0

WARNING

Several TRAP #1 calls can crash the computer - make certain that you know what you are doing!

CROSS-REFERENCE

See IO_TRAP, QTRAP and BTRAP. REMOVE_TASK and RJOB are better for removing Jobs. Any
return parameters can be read with DATAREG and ADDREG. Refer to the QDOS/SMS Reference Manual
(Section 15) for details of the various system TRAP #3 calls.

20.60. MTRAP 543

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

544 Chapter 20. Keywords M

CHAPTER

TWENTYONE

KEYWORDS N

21.1 NDIM

Syntax NDIM (array)
Location Math Package

Identical to NDIM%.

21.2 NDIM%

Syntax NDIM% (array)
Location NDIM

This function returns the number of dimensions of a given array. DIMmed variables of any type (floating
point, integer and string) are legal parameters.

Example

DIM test% (10,50,2)
PRINT NDIM% (test%)

gives the answer 3.

NOTE

String arrays often have one more dimension than the number of elements which they can hold. This
extra dimension sets the maximum length of each element, for example:

DIM name$(100,20)

sets aside space in the array name$ for 100 strings, each of which can be a maximum of 20 characters
long:

PRINT NDIM%(name$) returns 2.

CROSS-REFERENCE

DIMN finds the defined size of each dimension and can be used to replace NDIM%. DIM declares an
array. NDIM is exactly the same as NDIM%.

545

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

21.3 NET

Syntax NET x%
Location QL ROM

This command sets the computer’s station number for use in a network to x%. A station can have any
integer number in the range 1..128 (although see Note below). Each station in the network should have a
different station number to avoid confusion. When the computer is first switched on (or reset), it is given
the station number 1.

Example

NET 12

sets the station number to 12.

NOTE

Many implementations allow a station number in the range 1..127 (SMS allows 1..255), although there
is still a maximum of 64 computers which can be linked into the network at any one time using standard
QLs.

Auroras allow more to be linked together.

CROSS-REFERENCE

Please see the Appendix concerning Networks. See also SNET and MNET .

21.4 NETBEEP

Syntax NETBEEP delay, pulses
Location FLEXYNET (DIY Toolkit - Vol Y)

This command allows you to send signals through the QL’s network ports - if you plug a pair of earphones
into the network port (instead of a Network lead), you will be able to hear the sound generated - this can
even work alongside the QL’s BEEP command to provide the QL with rudimentary polyphonic sound.
In fact, some of the Spectrum emulators for the QL use this feature to provide the QL with Spectrum-like
sound.

The first parameter tells the command the length of the delay between pulses sent to the Network port -
the higher the delay, the lower will be the pitch.

The second parameter tells the command the number of pulses to send to the port - each pulse will send
an electrical signal through the network port (equivalent to turning a switch on and then back off).

You can also use this command (in conjunction with NETPOLL on other computers in the Network to
test the speed settings for Flexynet) - simply send a series of bytes over the Flexynet (using NETBEEP)
and check that they have been received correctly at the other end by using NETPOLL. If the bytes are
incorrect, you may need to increase the delay.

NOTE

546 Chapter 21. Keywords N

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

The units used by both parameters are quite arbitrary and therefore some experimentation may be re-
quired.

CROSS-REFERENCE

Refer to the Appendix on Networks to find out more about Flexynet. See NETPOLL which allows you
to read signals sent through the network ports. NETRATE allows you to alter the speed of the Flexynet
and NETREAD / NETSEND can be used to read and send multiple bytes.

21.5 NETPOLL

Syntax NETPOLL address, bytes
Location FLEXYNET (DIY Toolkit - Vol Y)

This command allows you to sample electrical signals sent over the QL’s Network, which can be used to
decode any digital data stream, such as information sent by cassettes tapes (this method has been used
by some Spectrum emulators for the QL to allow you to load Spectrum games direct from tape).

You need to pass two parameters - the address of a place in memory where the data which is read is to
be stored, followed by the number of bytes which can be stored at the address.

For each byte to be stored at the specified address, NETPOLL ‘listens’ to the QL’s Network ports and
whenever an electrical pulse is received by the port (for example as sent by NETBEEP), then NETPOLL
counts the length of this pulse and sets the data byte to the relevant value, moving onto the next available
byte (or returning to BASIC if it has reached the end of the storage area).

The value of the data byte will be between 0 and 254, with the delay being the difference between the
value and 255 (hence a value of 127 shows a delay of approximately twice a value of 254). If a value is
255, this indicates that the timer ran out before a pulse arrived.

NOTE

An odd number of bytes at the storage area will be rounded up, so that an even number of pulses will
always be read.

CROSS-REFERENCE

The amount of time that NETPOLL will wait for a pulse is affected by NETRATE0,0,x. See NETBEEP
which sends signal tones along the network ports. Also see NETRATE,NETREAD andNETSEND.

21.6 NETRATE

Syntax NETRATE transmit_delay, reception_delay, timeout
Location FLEXYNET (DIY Toolkit - Vol Y)

This command is at the heart of the Flexynet philosophy and allows you to alter the speed of the QL’s
networks (as regards NETSEND and NETREAD), so that you can match the speed of the network ports
to the various computers which are linked together over the network. This enables different machines
to talk to each other substantially more quickly than using the Network drivers supplied with the QL or
Toolkit II.

21.5. NETPOLL 547

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Values are sent over the Network ports as pulses equivalent to bits, with eight bits representing one byte
(0. . . 255) - the pulse is an electrical signal, either 1 or 0 (on or off). The three parameters are all in
arbitrary units and if they are specified as zero, any existing value will remain unchanged. They are used
as follows:

• Transmit_delay - this specifies the amount of time that the sending machine will alter the voltage
for on the network to signify either a 1 or a 0 bit. This needs to be higher than the reception delay
on the receiving machine as the receiving process is fundamentally slower than the transmission
process. The higher the value, the longer the delay.

• Reception_delay - this specifies the amount of time Flexynet will wait for changes in the voltage
over the network ports.

If the change occurs after Flexynet has counted up to the reception_delay value, then a bit of 0 is
assumed, otherwise a bit of 1. Once eight bits have been received then a byte made up of those
eight bits is stored in memory. For example: CHR$(10) is represented by the bits 0 0 0 0 1 0 1 0
This can be seen by:

PRINT BIN$ (10,8)

• Timeout - this represents a timing loop which Flexynet will wait for the next pulse over the net - if
nothing is received in this time, then a ‘not complete’ error will be reported. This value will need
to exceed the reception_delay parameter by a comfortable margin. The easiest way to match up
the required parameter values for two machines connected using Flexynet is to send a copy of one
machine’s screen to the other machine and compare the display. To do this, enter the command:

NETREAD 131072,32768

on the receiving machine, then enter the command:

NETSEND 131072,32768

on the sending machine.

If the NETRATE parameters are incorrect, you will notice that the displays do not match - either in-
crease the reception_delay on the receiving machine or increase the transmit_delay on the sending
machine, making notes of the values which you have tried at either end.

It is difficult to give any advice on the parameters to use as it depends on the expansion boards being
used with your particular QL, as well as the speed of the ZX-8301 chip which forms part of the QL’s
motherboard. However, the author cites the following test results:

• Standard QL to Standard QL (both with code in ROM or fast RAM such as CST 512K expansion
board):

NETRATE 5,3,127

on both machines

• Gold Card on British QL to Gold Card on Foreign QL:

NETRATE 8,4,0

on both machines.

• Gold Card on Foreign QL to Gold Card on British QL:

548 Chapter 21. Keywords N

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NETRATE 33,12,0

on both machines

• Standard QL (with code in ROM or fast RAM such as CST 512K expansion board) to Gold Card
on Foreign QL:

NETRATE 2,2,127

on the Standard QL:

NETRATE 20,7,127

on the Gold Card QL

NOTE

Flexynet will not work on machines which do not use a 68000 or 68008 chip (for example QXLs or Super
Gold Card), unless the Cache is disabled (see CACHE_OFF). It also requires an expanded machine to
work properly.

CROSS-REFERENCE

Refer to the Networks Appendix for further details. See NETVAR% which allows you to read the various
speed settings. Also see NETREAD and NETSEND

21.7 NETREAD

Syntax NETREAD address, bytes
Location FLEXYNET (DIY Toolkit - Vol Y)

This command will attempt to read the specified number of bytes over the Network port using the Flexynet
driver and store any bytes it receives at the area in memory starting with the specified address. This area
of memory should therefore really be set aside with ALCHP or RESPR before use (unless you know that
the area of memory can be altered (such as the screen memory - see SCREEN).

NOTE 1

This command should only be used in conjunction with NETSEND. Do not attempt to use any other
network drivers whilst one machine has used this command.

NOTE 2

This command must be used before the NETSEND command is issued, if it is to catch the data sent by
the transmitting machine.

CROSS-REFERENCE

See NETRATE which allows you to set the speed of the receiving machine to match the speed of the
sending machine. Also see NETSEND.

21.7. NETREAD 549

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

21.8 NETSEND

Syntax NETSEND address, bytes
Location FLEXYNET (DIY Toolkit - Vol Y)

This command will attempt to send the specified number of bytes over the Network port using the Flexynet
driver, reading the bytes to be sent from the area in memory starting with the specified address.

NOTE

Please refer to the notes given for NETREAD.

CROSS-REFERENCE

See NETRATE which allows you to set the speed of the transmitting machine to match the speed of the
receiving machine. Also see NETREAD.

21.9 NETVAR%

Syntax NETVAR% (parameter)
Location FLEXYNET (DIY Toolkit - Vol Y)

This function returns the various values set with the NETRATE command. The possible values of pa-
rameter are:

Parameter Meaning
1 Return the Transmission Delay
2 Return the Reception Delay
3 Return the Timeout

CROSS-REFERENCE

See NETRATE.

21.10 NET_ID

Syntax NET_ID
Location THOR XVI

This function returns the computer’s station number set with NET . Other ROMs can also find out their
station number by using:

PRINT PEEK (SYS_VARS+55)

or:

550 Chapter 21. Keywords N

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

PRINT PEEK (!!55)

(the latter syntax being accepted by Minerva and SMS).

CROSS-REFERENCE

See NET which sets the station number. Also see MNET% and SNET%

21.11 NEW

Syntax NEW
Location QL ROM, Toolkit II

If the command NEW is issued under the interpreter, the current SuperBASIC program is removed from
memory, the values of all variables are forgotten, all channels owned by the interpreter (job 0) which have
a number equal to or higher than #3 are closed and the windows #0, #1, #2 are cleared (in this order).

The Minerva, THOR XVI and Toolkit II versions of NEW also disable WHEN ERRor clauses. A bug in
JS and MGx ROMs meant that these clauses could not be disabled once activated.

From within a compiled program, NEW removes the job from which it was issued (ie. the current job).

WARNING

All data stored in variables is lost.

CROSS-REFERENCE

CLEAR, KILL_A. Inside compiled programs, NEW and STOP are effectively the same. RESET clears
the whole system by restarting it.

21.12 NEWCHAN%

Syntax NEWCHAN%
Location Function (DIY Toolkit - Vol R)

When writing / designing SuperBASIC programs, it is essential that you try to keep the channel numbers
as small as possible for two reasons - compilers only allow a fixed number of channels to be OPENed by a
program (normally 16) and if you OPEN #100,scr (for example), space has to be created by SuperBASIC
in the channel table for channels #1 to #99, thus wasting a lot of memory if those channels are not used.

This function can therefore be quite useful - it looks at the channel table and returns the number of the
next available channel number which can be OPENed.

Example

After:

NEW
PRINT NEWCHAN%

21.11. NEW 551

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

will always return 3, as the only channels OPEN will be #0, #1 and #2.

CROSS-REFERENCE

OPEN allows you to open a channel. FOPEN and similar functions will automatically open the next
available channel number.

21.13 NEW_NAME

Syntax NEW_NAME old_name$, new_name$
Location TinyToolkit

This command allows all keywords, variables, procedures, functions and device names to be renamed,
whether they are in RAM or ROM (except device names, which must be RAM based), BASIC or machine
code implementations. If a program is loaded when the command is issued, then all references in that
program to the given name will also altered.

Examples

• FORMAT can destroy a lot of data. To avoid a catastrophe when an alien, unknown BASIC pro-
gram formats your hard disk for example, you could rename FORMAT:

NEW_NAME "FORMAT" TO "FORMAT_MEDIUM"

Note that you would need to issue this command before loading the program!

• Creating algorithms is very easy and fast in SuperBASIC, especially if short variable names like i
,n, q1 are used. But even the author him/herself may have difficulty in understanding source code
full of such meaningless names. The obvious solution: Rename them! - for example:

NEW_NAME "d","dog"

BASIC programs loaded in memory are amended completely and permanently - at once.

• If you prefer to see all names in capital letters, run this short program:

100 adr=BASICP(32)
110 REPeat all_names
120 length=PEEK(adr)
130 IF NOT length THEN EXIT all_names
140 name$=PEEK$(adr+1,length)
150 NEW_NAME name$,UPPER$(name$)
160 adr=adr+length+1
170 END REPeat all_names

NOTE

A name may be up to 255 characters long, and because it is only stored once (in the name table) and
represented in a tokenised program by symbols pointing to the name table, the actual speed of operation
will not be slowed down by using longer names.

WARNING

552 Chapter 21. Keywords N

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

It is possible to rename FORMAT to FORMAT! (for example) but FORMAT! is an illegal name, can no
longer be called from BASIC and may crash some advanced implementations of SuperBASIC.

CROSS-REFERENCE

ZAP and KEY_RMV remove a resident keyword. See REPLACE and ALIAS as well.

21.14 NEXT

Syntax NEXT loop_variable (inside FOR loops) or
NEXT loop_name (inside REPeat loops) or
NEXT(SMS only)

Loca-
tion

QL ROM

This command forces the program to make the next pass in a loop structure - the next command to be
processed is the first after the relevant FOR or REPeat instruction. NEXT can be used in both loop
structures, FOR and REPeat.

NOTE

If a FOR loop has already reached its last value, NEXT will have no effect.

SMS NOTE

The loop_name / loop_variable do not need to be specified, in which case NEXT merely makes the
program make the next pass of the latest defined FOR or REPeat loop. If NEXT does not appear within a
loop structure, the error ‘unable to find an open loop’ will be reported. If however, NEXT is followed by
a loop_name or loop_variable and that does not correspond to a currently open loop, the error ‘undefined
loop control variable’ will be reported.

CROSS-REFERENCE

You must study FOR or REPeat before using NEXT . EXIT leaves a loop.

21.15 NFS_USE

Syntax NFS_USE newdrive, drive1 [,drive2 [. . . , drive8]] or
NFS_USE [newdrive]

Location Toolkit II, THOR XVI

Two QLs, both fitted with Toolkit II on EPROM (or SMS) and connected via a network cable, can use
Toolkit II’s file server which is activated by the FSERVE command. All of the devices on the other QL
(provided the Server job is running on that QL) can then be accessed as if they were a normal device on
the QL wishing to use the facilities. This is achieved by prefixing the device name by: n<netnr>_, eg:

DIR n2_flp1_

will show the directory of flp1_ on station number 2.

NET sets this station number.

21.14. NEXT 553

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Two problems do however arise from using this technique: Firstly, it is a bit annoying to have to type
n2_flp1_. Secondly, a lot of programs check the validity of a device by checking if the length is five
characters, the first three characters of which must be letters, and the fourth character of which must be a
digit from 1 to 8 with an underscore at the end. These programs therefore only allow device names such
as ram6_, mdv1_, etc. To fool these programs (and also to shorten names):

NFS_USE

can be used to create a new device which has a shorter name. The first parameter is the name of the new
drive which can be any description up to four characters long (there is no need to include a number or
underscore). After this up to eight parameters (each of which can be up to a maximum of 15 characters)
can follow which specify the drive which should be accessed as (for example): flop1_, . . . flop8_. It is
neither possible to rename a local drive with:

NFS_USE test,ram1_

(error -12), nor indirectly with NET1:

NFS_USE test,n1_ram1_

The second example can be entered but any attempted access to test1_ will lead to a Network aborted
message after half a minute of complete silence.

The second syntax is used to remove a specified set of definitions (or, if no parameter is supplied, then
all definitions will be removed) which have been created with NFS_USE.

Examples

NFS_USE flop,n2_flp1_,n3_flp1_

creates a device name flop where flop1_ refers to flp1_ on QL2 and flop2_ to flp1_ on QL3. NFS_USE
flop clears the above definition.

NFS_USE without any parameters clears all such definitions.

NOTE

Devices can be shared by several remote QLs. Although a file can be read by several jobs (or QLs) at
the same time, QDOS will ensure that a file cannot be opened by one job (or QL) for writing to whilst
another is trying to read from it (or vice versa). If this occurs, then an error -9 (IN USE) will be reported.

CROSS-REFERENCE

QRD renames any local device. See also FLP_USE, RAM_USE and DEV_USE. MIDINET and SERNET
set up similar fileservers to FSERVE - NFS_USE can be used with these fileservers also, provided that
you use SNET_USE n or MNET_USE n to ensure that they are identified by the letter n.

554 Chapter 21. Keywords N

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

21.16 NIX

Syntax NIX
Location Beuletools

Nix is a word from colloquial German and means nothing, which is nearly what this command does.
The command is intended to help multitask Qmon, a monitor program published by Qjump. When the
command is issued, a dummy job named Qmons Nix-Job is created. If the monitor is started to examine
this job, for example by entering:

QMON con_,4

(assuming that the dummy job has the job number 4), Qmon can easily be switched on and off.

21.17 NO_CLOCK

Syntax NO_CLOCK
Location THOR XVI

The command NO_CLOCK removes the THOR’s clock task which is invoked with CLOCK. This is
a much cleaner method of removing the CLOCK job and can avoid some problems (see the note on
CLOCK).

CROSS-REFERENCE

CLOCK starts up the clock job on the THOR’s screen.

21.18 NOCAPS

Syntax NOCAPS
Location BeuleTools

If capslock was on, this command forces it to be switched off.

CROSS-REFERENCE

See CAPS for an example.

21.16. NIX 555

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

21.19 NOKEY

Syntax NOKEY
Location KEYMAN

This command temporarily disables all definitions of KEY. Pressing the key combination
<CTRL><CAPS> toggles between enabled and disabled state, so this is partially equivalent to NOKEY.

CROSS-REFERENCE

See KEY for details.

21.20 NORM

Syntax NORM
Location Beuletools

This function returns the control codes needed to reset an EPSON compatible printer:

PRINT NORM

is the same as:

PRINT CHR$(27)&"@"

Example

LPRINT NORM

CROSS-REFERENCE

BLD, EL, DBL, ENL, PRO, SI , NRM, UNL, ALT ,ESC,FF,LMAR, RMAR,PAGDIS, PAGLEN .

21.21 NOR_MSG

Syntax NOR_MSG
Location ST/QL

The file NOR_TRA_rext is supplied with the ST/QL Emulator which contains translation tables to al-
low the Emulator to use Norwegian. Once this file has been LRESPR’d, this function can be used to
find the start of the message translation table to be used with the TRA command. You can use: TRA
NOR_TRA,NOR_MSG to set up the printer and message translation tables for Norway.

CROSS-REFERENCE

See GER_MSG and NOR_TRA. Also see TRA.

556 Chapter 21. Keywords N

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

21.22 NOR_TRA

Syntax NOR_TRA
Location ST/QL

This is the complementary function to NOR_MSG and points to the printer translation table for Norway
contained in the file NOR_TRA_rext.

CROSS-REFERENCE

See NOR_MSG.

21.23 NOT

Syntax NOT x
Location QL ROM

NOT is an operator which does not combine two operands (unlike +, DIV or || for example) but only
operates on one. In fact, it can be regarded as a function which returns a value depending on the operand,
except that brackets are not needed around the operand.

NOT is a logical operator and returns either 1 if the operand is zero or 0 in any other case. The following
function would work the same way:

100 DEFine FuNction NOT1 (x)
110 IF x=0 THEN RETurn 1: ELSE RETurn 0
120 END DEFine NOT1

or even shorter:

100 DEFine FuNction NOT2 (x)
110 RETurn x=0
120 END DEFine NOT2

Example

The above replacements of NOT demonstrate that it is not necessary at all to use NOT. But in context,
NOT can clarify an expression and make program listings more readable. If is_lamp is a logical variable
used to say whether something is a lamp (is_lamp=1) or not (is_lamp=0), there are (at least) two variants
to write the status of is_lamp to the screen. Which is easier to read?

PRINT "This is ";: IF is_lamp=0 THEN PRINT "not ";PRINT "a lamp."

or:

PRINT "This is ";: IF NOT is_lamp THEN PRINT "not ";PRINT "a lamp."

Let’s assume lamps is a variable counting lamps and you want to write out a message if there are no
lamps left:

21.22. NOR_TRA 557

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

IF lamps=0 THEN PRINT "Sorry, we are out of lamps."

or:

IF NOT lamps THEN PRINT "Sorry, we are out of lamps."

Here, the first formulation, which does not use NOT is clearer.

Until now, the examples have shown that NOT can be used to improve the style of a program, but there
are also ways to put NOT to practical use, especially if a logical variable is to be set depending on another
logical variable.

For instance, this procedure will accept such a value as a parameter and convert it to its logical counterpart
for its own use:

100 DEFine PROCedure MY_CIRCLE (x,y,r, filled)
110 IF filled THEN FILL 1
120 CIRCLE x,y,r
130 IF filled THEN FILL 0
140 END DEFine MY_CIRCLE

As IFs are relatively slow and FILL takes a logical parameter, the following variant is faster:

100 DEFine PROCedure MY_CIRCLE (x,y,r, filled)
110 FILL filled
120 CIRCLE x,y,r
130 FILL 0
140 END DEFine MY_CIRCLE

As FILL cannot handle parameters other than 0 and 1, if filled could have any value at all (not just 0 or
1), it would be necessary to change filled so that it was either 0 or 1, by an additional line:

105 IF filled THEN filled=1

NOT is ideal (although here a bit complex!) to avoid the IF and calculate filled directly:

110 FILL NOT(NOT filled)

NOTE

When dealing with logical variables, the use of NOT to toggle the value, for example:

filled = NOT filled

is invariably quicker than the use of an IF statement:

IF filled THEN filled = 0: ELSE filled = 1

CROSS-REFERENCE

Comparisons between any two values (or even two variables) is regarded as a numeric expression by
SuperBASIC. IF handles actual numeric values.

558 Chapter 21. Keywords N

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

21.24 NRM

Syntax NRM
Location Beuletools

This function returns the control codes to switch back to the normal font (Pica) on an EPSON compatible
printer:

PRINT NRM

is the same as:

PRINT CHR$(27)&"P".

CROSS-REFERENCE

NORM, BLD, EL,DBL,ENL,PRO,SI ,UNL,ALT ,ESC,FF,LMAR,RMAR,PAGDIS, PAGLEN . UPUT al-
lows you to send untranslated bytes to the printer.

21.25 NXJOB

Syntax NXJOB (job_ID, topjob_ID) or
NXJOB (jobname, topjob_ID) or
NXJOB (jobnr, jobtag, topjob_ID)

Loca-
tion

Toolkit II

This function will work downwards through a ‘job tree’ to find all of the current jobs which are both used
by the given ‘top job’ and those which are used by that second set of jobs. A job tree may look something
like this:

SuperBASIC
|

+------------+-----------+
| | |

EDITOR QPAC-FILES CLOCK
|

+--------+----------+
| |

QUILL ABACUS

A job can be referred to either by its name (eg. ‘Quill’), its job number and job tag (eg. 1,2) (shown
by JOBS), or its job ID (a number calculated by job_number+65536*job_tag). These are always inter-
changeable, so assuming there is a job ‘Test’ with job number 1 and job tag 12.

PRINT NXJOB ('Test',0)
PRINT NXJOB (1,12,0)
PRINT NXJOB (65548,0)

21.24. NRM 559

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

are all the same.

Note that the top job ID must not be the job’s name or job number and tag. You could, for instance, use:

PRINT NXJOB(0,0)

to find that SuperBASIC is using the Job QPAC-FILES. You must now follow that branch to its tip by
using:

PRINT NXJOB ('QPAC-FILES',0)

to find the job ID of Quill.

PRINT NXJOB('Quill',0)

will then find the job ID of Abacus. Since Abacus is at the end of a main branch,

PRINT NXJOB('Abacus',0)

will find Clock.

Should you wish to merely find out which Jobs are used by QPAC-FILES, you can do this by altering the
topjob_ID to the job_ID given for QPAC-FILES - eg:

PRINT NXJOB('QPAC-FILES',65535)

Example

A short program to work out the whole job tree belonging to SuperBASIC. This is very similar to the
JOBS command, but displays the information slightly differently:

100 MODE 4
110 a=0: b=0
120 REPeat loop
130 c=NXJOB(a,b)
140 IF c=0: PRINT\'End of Job Table': STOP
150 a=c: IF LEN(JOB$(c))=0:PRINT'ANONYMOUS';: ELSE PRINT JOB$(c);
160 PRINT TO 15;'Priority = ';PJOB(c);
170 IF OJOB(c)=0: own$='SuperBASIC': ELSE own$=JOB$(OJOB(c))
180 PRINT TO 30;'Owner = ';own$
190 END REPeat loop

CROSS-REFERENCE

PJOB, JOB$, and OJOB also deal with the job tree. For jobs in general, see JOBS, RJOB, SPJOB, SJOB,
AJOB.

560 Chapter 21. Keywords N

CHAPTER

TWENTYTWO

KEYWORDS O

22.1 ODD

Syntax ODD (number)
Location TinyToolkit, BTool

This function checks if the integer part of number can be divided by two without remainder, ie. whether
it is an odd number or not. If the number is odd, the function will return 1, otherwise it will return 0.
The ODD function could easily be duplicated in BASIC by the following function:

10 DEFine FuNction ODD (number%)
20 RETurn number% MOD 2
30 END DEFine ODD

22.2 OFF

Syntax OFF
Location BTool

This is a constant which returns 0. OFF and ON are intended to make listings more readable.

Example

FREEZE OFF

CROSS-REFERENCE

ON , FALSE%, TRUE%, SET

561

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

22.3 OJOB

Syntax OJOB (job_ID) or
OJOB (jobnr, tag) or
OJOB (jobname)

Location Toolkit II

This function will return the job_id of the ‘owner’ of the given job. Normally the owner of a job is the
job which initiated it. So, if job 1 creates job 2 then job 1 is the owner of job 2. However, because jobs
can execute other jobs without becoming their owner, generally the owner of a job is the job that will kill
that job when it itself is removed. A negative job_ID points to the job which calls OJOB.

CROSS-REFERENCE

JOB$, NXJOB and PJOB return other information about a job. JOBS lists all jobs.

22.4 ON

Syntax ON
Location BTool

This is a constant which returns 1.

Example

FREEZE ON

CROSS-REFERENCE

OFF, FALSE%, TRUE%, SET

22.5 ON. . .GO TO

See ON. . .GO SUB.

22.6 ON. . .GO SUB

Syntax ON condition GO TO line1 *[,linei]* or
ON condition GO SUB line1 *[,linei]*

Location QL ROM

The QL supports a structure which enables the program to jump to specific lines depending upon the
value of a variable. condition must be an integer expression which returns a value of one or more. After
the command GO TO or GO SUB must appear a list of line numbers to jump to depending on the value of
the condition. The value returned is then used to determine which of these line numbers will be jumped

562 Chapter 22. Keywords O

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

to, by counting the different options. If the result of the condition is zero, or more than the number of
options, then the error ‘Out of Range’ will be returned. If ON. . .GO SUB is used, then when a RETurn is
executed from within the sub-routine, the program will continue from the statement following ON..GO
SUB.

Example

A procedure to print out the locations in an adventure might look like this:

100 no_of_locations=3
110 start=0
120 PRINT_LOC 2
130 DEFine PROCedure PRINT_LOC (xa)
140 IF xa=0 OR xa>no_of_locations THEN PRINT 'Undefined Location':RETurn
150 ON xa+start GO SUB 170,180,190
160 PRINT 'What now?':RETurn
170 PRINT 'This is location 1':RETurn
180 PRINT 'This is location 2':RETurn
190 PRINT 'This is location 3':RETurn
200 END DEFine

For a simpler (and clearer) way of writing this PROCedure, please refer to the example given for SELect
ON.

NOTE

ON can also be used with the SELect ON structure - please refer to SELect ON for further details.

CROSS-REFERENCE

These two commands can generally be replaced either by a calculated GO SUB or GO TO statement, or
the SELect ON structure.

22.7 OPEN

Syntax OPEN #channel, device channel=0..32767 or
OPEN #channel, device, type (Minerva v1.80+ only)

Loca-
tion

QL ROM, Toolkit II

This is the general command used to open a channel to a device for input and/or output, so that data can
be read from and written to the specified device. The channel number can be any integer greater than or
equal to zero and should be kept as small as possible because QDOS allocates roughly 40 bytes for each
possible channel number below the highest one. So if you open channel #1000, 40K of memory would
be lost - only badly written programs need a thousand channels.

After the channel has been OPENed, if a program needs to access that device in the future, it can do so
by passing that channel number to the relevant keyword.

Actually, a dozen channels should be sufficient and the Turbo compiler strictly limits the highest channel
number to 15, while QLiberator allows you to configure this to the user’s needs via a $$chan directive.
The compilers allocate memory for all of the channels when a job is created so that the channel table of
the job is independent of other jobs and cannot be extended or decreased.

22.7. OPEN 563

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Under the interpreter, the channel table can be freely extended but not decreased - only NEW and KILL_A
clear the channel tables.

When talking about devices, it is necessary to note the difference between drives (file drivers) and serial
devices:

• A drive is a medium where files can be stored (eg. floppy disks or microdrive cartridges). Since
there can always be several drives of a given type, drive names contain a drive number from 1 to
8. Data is always stored in a stream of bytes. Data can be read in any order and from any position.

• On the other hand, with a serial device, data has to be read as it comes in: byte by byte or in larger
pieces. Another type of device is a screen device which is a defined section of the TV or Monitor
display itself.

There are also mixtures between all of these types.

The difference between the device types becomes obvious when looking at the operations which can be
performed on a device: the files on a drive can be listed in a directory and colours are only available for
windows, just to give a few examples. Other operations (especially basic read and write operations) are
independent of the device, which is a characteristic of QDOS.

This so-called device independence makes it easy to re-direct basic input or output from a program
because the program has no need to know specifics about the device other than its name and/or channel
number. If you have Toolkit II installed OPEN supports sub-directories and default devices when used
on drives. OPEN will look in the data directory (see DATAD$) for the given file if no device is specified.

Basic details of the various standard devices supported by the QL follow (further details appear in the
Drivers Appendix):

Device Type Name Typical uses
Serial device ser Printers, communication with other computers or modems,

control of processes, reading analogue data.
par Output to printers via a centronics interface,
nul A dummy device which simply receives incoming data and im-

mediately forgets it, useful for debugging. There are several
variants available.

pipe Pipes are intended for communication between jobs, every pipe
has an input and output side - there are both standard pipes and
named pipes. This is a First In First Out device.

history Similar to a pipe, except that it is a Last In First Out device.
net To send or receive data from another network station.
mem A device to read and write in memory, especially useful to di-

rectly access memory on remote network stations via the file-
server.

Drives mdv Microdrives, the original drives on QLs - files are stored on
cartridges.

flp Floppy disk drives are regarded as standard today - files are
stored on disks, early drivers are called fdk.

win Winchester drives, also called hard disks - files are stored on a
permanently installed very large and fast disk.

ram Ramdisks, virtual but extremely fast drives, the files are stored
in RAM and are lost when the computer is switched off.

dev A kind of universal device, see DEV_USE for an introduction.
continues on next page

564 Chapter 22. Keywords O

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table 1 – continued from previous page
Device Type Name Typical uses

pth Very similar to dev - see PTH_ADD.
mos Permanent ramdisk, needs specific hardware.
rom Also a permanent ramdisk.

Windows con Interfaces to a console device (window) for input and output.
scr The same as con_ but for output only.

Other devices n The fileserver device which allows you to access any device on
a remote network station.

sdump A device for a general window dump.

Please refer to other parts of this book for more specific information on the devices. A lot of examples
are given throughout the book.

NOTE 1

The OPEN command will close a channel which is already open with the same channel number prior to
opening the new channel - do not try to OPEN #0 (except from within a compiled program) unless you
have Minerva or SMS - even then, do not try to OPEN #0 as anything other than a CON_ device, except
from within a MultiBASIC/Multiple SBASIC.

NOTE 2

On AH ROMs, if two tasks tried to read the same file at the same time, the second task was likely to miss
the start of the file and read the directory header instead.

NOTE 3

On QL ROMs (pre MG) there is a maximum of 32767 OPENs in a session.

NOTE 4

The pointer environment has a little bug in it which can lead to odd results when OPENing screen win-
dows. Try, for a laugh (and beware that this will crash the QL eventually), the following:

FOR I=1 TO 32768: OPEN #3,scr: PRINT#3,'Hello ';i

This is fixed under SMSQ/E and WMAN v1.52.

NOTE 5

The maximum number of channels which can be opened at the same time depends on the amount of
memory available, but in current implementations, there is an overall maximum of 360 channels, unless
you are using Minerva (see below). SMS seems to allow a much larger number of channels to be open
at the same time.

NOTE 6

Any attempt to open more than one channel to a serial port will report the error ‘in use’, unless you are
using the ST/QL Emulator which allows more than one input channel to be opened to a serial port.

NOTE 7

On the QXL (pre v2.50 of SMS), an attempt to OPEN #ch,ser2 would fail if ser1 was not available to the
operating system for any reason.

MINERVA NOTES

22.7. OPEN 565

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

On v1.80 (and later), a third parameter is supported on this command which can be used to specify the
‘open type’. This is only of any use on drives and pipes.

Drives

Open type Effect
0 Open existing file for exclusive use (same as OPEN)
1 Open existing file for shared use (same as OPEN_IN)
2 Open new file (same as OPEN_NEW)
3 Open file and overwrite if already exists (same as OPEN_OVER)
4 Open directory file (same as OPEN_DIR)

(Compare this list with the list at FILE_OPEN!)

Minerva Example

OPEN#3,ram1_test_device,3

opens a new file called ram1_test_device whether or not it already exists.

Pipes

The extra parameter supplies the QDOS channel number of the source end of the pipe. This is therefore
only of use when opening the ‘read’ end of the pipe. This gets around the necessity for commands like
QLINK. For example these two lines are the same:

OPEN#4,'pipe_4000': QLINK#4 TO #3
OPEN#4, 'pipe_4000': pipe_id=PEEK_W (\48\4*40+2) : OPEN#3, 'pipe_', pipe_id

Unfortunately, Toolkit II replaces this variant of OPEN with its own, but all of the above facilities (apart
from pipe channel numbers) are provided by specific Toolkit II commands in any event. Due to Minerva’s
System Xtensions, the maximum number of permitted channels open at any one time has been reduced
to 304 on an expanded machine (earlier ROMs allow 360). On an unexpanded machine, you can only
open 112 under Minerva.

In MultiBasics, both channel #0 and channel #1 can be inextricably linked. Due to the fact that the OPEN
command closes an existing channel before setting up the new channel with the given parameters, OPEN
#0 or OPEN #1 from within a MultiBasic will remove the MultiBasic in certain instances - see MultiBasic
appendix.

CROSS-REFERENCE

Opened channels are closed with CLOSE and can be listed with CHANNELS. FOPEN is the same
as OPEN except it works as a function and OPEN_IN / FOP_IN open a device for input only.
OPEN_DIR (FOP_DIR) opens a directory (or a sub-directory on level-2 drivers). Also see OPEN_NEW ,
FOP_OVER, TTEOPEN and FILE_OPEN . NEWCHAN% can be quite useful when OPEN ing channels.

566 Chapter 22. Keywords O

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

22.8 OPEN_DIR

Syntax OPEN_DIR #channel, device_directory or
OPEN_DIR #channel, [device_]directory(Toolkit II only)

Loca-
tion

Toolkit II, THOR XVI

This command is a specialised version of OPEN which is aimed at allowing you to read directories of
any given drive device. The directory of a drive contains a copy of every file header which has ever been
created on that medium.

When a file is deleted, its entry is blanked out (with zeros) in the directory, thus enabling recovery
programs to actually still read the file (provided that nothing else has been written to the sectors where
it was stored). It can therefore be very useful to access these directories, for example to provide the user
with a selection of files to choose from.

It is however important to differentiate between directories and the output from the DIR command!

On Level-2 and Level-3 device drivers, it is quite easy to access a directory as the directory is stored in
a file. For example, on a floppy disk, try:

COPY flp1_ TO scr

this will show the directory file.

Sub-directories are similar in that after the command:

MAKE_DIR flp1_Quill_

the file flp1_Quill will be created which contains a copy of all of the file headers for the files within that
sub-directory.

Standard device drivers on the other hand are another kettle of fish, in that they allow you to create a file
without any name. For example:

SAVE mdv1_

If you then:

COPY mdv1_ TO scr

you will see that this is exactly the same as if you had used:

SAVE mdv1_boot

(apart from the name of the file).

Such files are not revealed by DIR and can be used as a form of copy-protection by some programs.
Because of this, you might suffer from a ‘Not Found’ (-7) error if you tried to:

COPY flp1_ TO scr

from a disk with a Level-1 device driver. A disk created on a level-1 driver does not look different to a
level-2 driver.

22.8. OPEN_DIR 567

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

If a file with a zero length name was created under a level-1 driver, then this file will only be accessible
under the same driver level. To use the command OPEN_DIR, you will need to supply the intended
channel number which must be an integer in the range 0. . . 32767. As with OPEN this must be kept as
low as possible. After this, comes the name of the directory to be opened. This should generally be
simply the name of the device to be accessed, such as:

OPEN_DIR #ch,mdv1_

OPEN_DIR works correctly with standard device drivers even if there is a file on the drive without a
name, eg. mdv1_.

If you have Level-2 device drivers, sub-directories may be accessed by providing the name of the drive
plus the name of the sub-directory, for example:

OPEN_DIR #3,flp1_Quill

If Toolkit II is present, the default data device is supported (see DATAD$), although a directory will still
need to be provided, therefore to simply access the default data directory, you will need to use:

OPEN_DIR #ch,''

Having opened the directory, you can then examine the file header for each file which has been stored on
that drive by fetching blocks of 64 bytes from the channel at a time and examining each block per file.

Example

A short program which will provide a more detailed directory listing of any device:

100 WINDOW 448,200,32,16:PAPER 0:MODE 4:CLS
110 INK 7
120 INPUT 'Read directory of which device? - ';dev$
130 CLS:PRINT 'Directory of ';dev$
140 PRINT 'Filename';TO 40;'File length';TO 54;'Update date'
150 head_start=0
160 INK 4
170 OPEN_DIR #3,dev$:no_files=FLEN(#3)/64
180 FOR listing=1 TO no_files
190 BGET #3\head_start+0,flen1,flen2,flen3,flen4,faccess,ftype
200 flength=flen4+flen3*2^8+flen2*2^16+flen1*2^24-64
210 IF flength>0
220 GET #3\head_start+14, File$
230 BGET #3\head_start+52,fdate1,fdate2,fdate3,fdate4
240 fdate=fdate4+fdate3*2^8+fdate2*2^16+fdate1*2^24
245 IF LEN(File$)=0:File$='<Un-named>'
250 IF ftype<255
260 PRINT File$;TO 40;flength;TO 54;DATE$(fdate)
270 ELSE
280 PRINT File$&'->'
290 END IF
300 END IF
310 head_start=head_start+64
320 END FOR listing

(continues on next page)

568 Chapter 22. Keywords O

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

330 CLOSE #3
340 INK 7:PRINT 'End of Listing'

NOTE 1

The OPEN_DIR command will close a channel which is already open with the same channel number
prior to opening the new channel - do not try to OPEN_DIR #0 unless you have read the notes to OPEN!

NOTE 2

On QL ROMs (pre MG) there is a maximum of 32767 OPENs (in total) in a session.

NOTE 3

If you specify a device which is not actually used for the storage of files (for example:

OPEN_DIR#3,scr
OPEN_DIR#3,pipe_1000

then this command has exactly the same effect as the OPEN command.

NOTE 4

If the specified directory actually points to a non-directory file (or the file does not even exist), then
OPEN_DIR will actually open the directory in which that file is located, for example, if the directory
flp1_TK_ contained the file flp1_TK_FN_cde:

OPEN_DIR#3,flp1_TK_FN_cde
OPEN_DIR#3,flp1_TK_FN
OPEN_DIR#3,flp1_TK

would all have exactly the same effect.

NOTE 5

Because of the way in which Level-2 and Level-3 device drivers work, provided that you only use the name
of an actual directory (or sub-directory) as the parameter, you could actually use OPEN or OPEN_IN
instead of OPEN_DIR, but this has its limits, in that it would be useless with standard device drivers and
creates havoc if the name of a non-directory file is supplied.

NOTE 6

Except under SMS, if a channel has been opened with OPEN_DIR to a main directory, no other channel
can access that directory at the same time. Several channels can however be open to the same sub-
directory (a bug perhaps) or to a sub-directory further down the tree, which for example allows:

100 OPEN_DIR #3,flp1_
110 OPEN_DIR #4,flp1_TK
120 OPEN_DIR #5,flp1_TK

but not:

100 OPEN_DIR #3,flp1_TK
110 OPEN_DIR #4,flp1_

This also has the result that whilst a channel which has been opened with OPEN_DIR is open to a main
directory, commands such as DIR, WDIR, WDEL etc. will report ‘in use’ as they cannot access the

22.8. OPEN_DIR 569

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

directory themselves. The result of this (combined with the operation of the OPEN_DIR command)
makes it actually possible to have two channels open to the main directory, by ensuring that the filename
passed to the OPEN_DIR commands does not exist on the drive, for example:

OPEN_DIR #3,flp1_test
OPEN_DIR #4,flp1_test

will leave both channels #3 and #4 open to the main directory (flp1_).

Under SMS you can have several channels open to the same directory thereby avoiding these problems.

CROSS-REFERENCE

Please see OPEN . Commands such as FLEN , FGETH$ and HEADR allow you to examine parts of
each files header - see FGETH$ for details of the file header. FOP_DIR is an error trapped version of
OPEN_DIR. The Minerva variant of OPEN , OPEN_IN and OPEN_NEW can all be made to work in a
similar way to OPEN_DIR.

22.9 OPEN_IN

Syn-
tax

OPEN_IN #channel, device_filename or
OPEN_IN #channel, [device_]filename (Toolkit II only) or
OPEN_IN #channel, device_filename, type (Minerva v1.80+ only)

Lo-
ca-
tion

QL ROM, Toolkit II

This command is a specialised version of OPEN which is aimed at allowing you to read data from files.
This opens the specified channel (#channel must be an integer in the range 0. . . 32767) for input only to
the specified filename on the given device.

Any number of channels may be linked to a file using OPEN_IN, although if you try to use any other
type of OPEN call to that filename, the error ‘in use’ will be reported.

The Toolkit II variant of this command supports the default data device if necessary (see DATAD$), but
in any case, if the file does not exist (either on the specified device or on the default data device), the
error ‘Not Found’ (-7) will be reported.

NOTE 1

OPEN_IN will close a channel which is already open with the same channel number prior to opening the
new channel - do not try to OPEN_IN #0 unless you have read the notes to OPEN!

NOTE 2

On AH ROMs, if two tasks tried to read the same file at the same time, the second task was likely to miss
the start of the file and read the directory header instead.

NOTE 3

On QL ROMs (pre MG) there is a maximum of 32767 OPENs in a session.

NOTE 4

570 Chapter 22. Keywords O

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

If instead of device_filename, another type of device is used, such as scr_, OPEN_IN has the same effect
as OPEN.

MINERVA NOTES

On v1.80 and later, a third parameter is supported by OPEN_IN as with OPEN. This means that this
command (if the third parameter is used) has exactly the same effect as OPEN.

CROSS-REFERENCE

FOP_IN is an error trapped equivalent to this command. OPEN_DIR allows you to access directories on
drives. OPEN contains a general description of all the open types. OPEN_NEW and OPEN_OVER are
also linked with this.

22.10 OPEN_NEW

Syn-
tax

OPEN_NEW #channel, device_filename or
OPEN_NEW #channel, [device_]filename(Toolkit II only) or
OPEN_NEW #channel, device_filename, type (Minerva v1.80+ only)

Lo-
ca-
tion

QL ROM, Toolkit II

This command is yet another specialised version of OPEN. This time it is aimed at providing a means of
creating a new filename on the specified device and opening a specified channel (#channel must be an
integer in the range 0..32767) to that filename for output.

If Toolkit II is present, OPEN_NEW supports the default data device (see DATAD$), however in any
case if the device (or default data device) does not contain a formatted medium, the error ‘not found’ (-7)
will be reported. An error will also be reported if the medium is read only.

Without Toolkit II, if the filename already exists, then the error ‘already exists’ will be generated. On the
other hand, Toolkit II will show the familiar ‘OK to Overwrite?’ prompt.

Once the channel is open, any attempt to open another channel to that same filename at the same time
will report an error ‘In use’.

Example

A simple interactive copying routine:

100 INPUT #0,'COPY :-'!in$!'=>'!out$
110 OPEN_IN #3,in$
120 OPEN_NEW #4,out$
130 REPeat copy_loop
140 IF EOF(#3):EXIT copy_loop
150 a$=INKEY$(#3)
160 PRINT a$;:PRINT #4,a$;
170 END REPeat copy_loop
180 CLOSE #4,#3
190 PRINT #0,'Copying complete'

NOTE 1

22.10. OPEN_NEW 571

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

The OPEN_NEW command will close a channel which is already open with the same channel number
prior to opening the new channel - do not try to OPEN_NEW #0 unless you have read the notes on OPEN!

NOTE 2

If instead of device_filename, another type of device is used, such as scr_, OPEN_NEW has the same
effect as OPEN.

NOTE 3

In version 2.05 of Toolkit II, if the filename already exists, the channel may be left open.

NOTE 4

Similar problems exist with OPEN_NEW to those encountered with SAVE when trying to write to a
write-protected microdrive cartridge. Unfortunately however, the problem is made worse by the fact
that the problem is not revealed when the channel is opened. Instead ‘bad or changed medium’ is only
displayed when the file is written to (ie. when 512 characters have been written to the channel, or the
channel is CLOSEd).

CROSS-REFERENCE

FOP_NEW is an error trapped function which is equivalent to this command. OPEN_DIR allows you to
access directories on drives. OPEN contains a general description of all the open types. OPEN_IN and
OPEN_OVER are also linked with this.

22.11 OPEN_OVER

Syntax OPEN_OVER #channel, device_filename or
OPEN_OVER#channel, [device_]filename(Toolkit II only)

Loca-
tion

Toolkit II, THOR XVI

This command is exactly the same as the Toolkit II version of OPEN_NEW except that if the specified
filename already exists, the filename is automatically overwritten. Also, the THOR XVI version of this
command does not support the default data device.

CROSS-REFERENCE

See OPEN_NEW ! The Minerva variant of OPEN , OPEN_IN and OPEN_NEW can all be made to work
in the same way as OPEN_OVER. FOP_OVER is a function which operates like OPEN_OVER except
that it allows any errors to be trapped.

22.12 OR

Syntax condition1 OR condition2
Location QL ROM

This combination operator combines two condition tests together and will have the value 0 if both con-
dition1 and condition2 are false, or 1 if either condition1 or condition2 are true (or both are true). Please
note the difference between this and the bitwise OR operator: x||y, which compares x and y bit by bit.

572 Chapter 22. Keywords O

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Example 1

PRINT 1 OR 0

Returns 1.

PRINT 12 OR 10

Returns 1.

Compare PRINT 12&&10 which returns 14).

Example 2

10 FOR x=1 TO 5
20 FOR y=1 TO 5
30 IF x=3 OR y>3:PRINT x;'=>';y,
40 END FOR y
50 END FOR x

produces the following output:

1=>4 1=>5 2=>4 2=>5 3=>1 3=>2 3=>3 3=>4 3=>5 4=>4 4=>5 5=>4 5=>5

CROSS-REFERENCE

AND, NOT and XOR are the other combination operators.

22.13 OUTL

Syntax OUTL [#]chan [,width,height,x,y]
Location PEX

This command is similar to OUTLN except for a few variations:

1. If chan is not preceded by # then it is taken to be a QDOS channel number (and this command can
therefore be used to redefine an Outline for any Job).

2. You cannot specify a shadow.

3. If only the chan parameter is used (with or without a #), then the current maximum sizes of the
Jobs windows are used (similar to OUTLN without any parameters).

CROSS-REFERENCE

See OUTLN . CHANNELS allows you to find out about QDOS channel numbers.

22.13. OUTL 573

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

22.14 OUTLN

Syntax OUTLN [#chan,] width,height,x,y [,x_shad,y_shad] or
OUTLN (SMSQ/E only)

Location ATARI_REXT (v2.12+), SMSQ/E

This command is used within the Pointer Environment to signal that a specified window (default #0)
which must already be open, is to be looked after by the Pointer Environment (managed).

Because of the way in which the Pointer Environment works, it is always a good idea to use OUTLN on
the first window to be used for input/output by a program (this is known as the Primary Window), as this
will ensure that all windows which are subsequently OPENed by the program will be what is known as
Secondary Windows and also managed.

Because of this, if a program is to be run under the SuperBASIC interpreter, OUTLN should be used
on #0, whereas in a compiled program, OUTLN needs to be used on the first channel which is OPENed
(ensure that the program is compiled without any windows open).

Hints on writing programs to run under the Pointer Environment appear below, showing how OUTLN
should be used.

If an OUTLN has been defined, any attempt to OPEN a window which would fall outside of the managed
Primary Window will cause an ‘out of range’ error. If you then use OUTLN on a Secondary window, the
first time that OUTLN is encountered after the window is OPENed, the contents of the screen under that
window will be stored. Then, if you again use OUTLN on the same window, the contents of the screen
under the Secondary Window are restored (see the example).

With the first syntax of the command, the first five parameters supplied to OUTLN are exactly the same
as with WINDOW, however, you can also add two further parameters, x_shad and y_shad to specify the
width of a shadow which will appear to the right and bottom (respectively) of the window to make it
stand out. They both default to zero (no shadow).

SMSQ/E v2.53+ allows the second syntax, which will allow you to use OUTLN without any parameters
at all. In this case, the primary window will be outlined to the smallest area which can encompass all
currently OPEN windows at the time that OUTLN is used.

Writing programs to use the Pointer Environment

Some information concerning this appears in Section 4, however, when designing a program to use the
Pointer Environment, it is useful to follow this procedure:

1. Open a main channel to define the maximum screen area available to the job, eg: OPEN #1,con_
This should be the first window OPENed by the program - if it is compiled, compile the program
without Windows enabled.

2. Fetch the screen limits, eg:

scr_width%=QFLIM (#1,0)
scr_height%=QFLIM (#1,1)

3. Ensure that the screen is in the right mode:

IF RMODE<>0: MODE 4

4. Outline #1 (the main channel) to the size of the program:

574 Chapter 22. Keywords O

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

OUTLN #1,450,210,0,0

The program will then have a maximum screen area of 450x210 pixels available. When you wish to
resize the program’s display, you will need to mark the main channel (#1) as unmanaged and then use
OUTLN to resize the main channel. For example, the following method was used (using commands from
EasyPTR by Jochen Merz Software) to allow the user to re- size the program Q-Route (available from Q
Branch):

The procedure is called when the user highlights the Resize Loose Item on the main menu (which is drawn
on #1). In order for this to work, the main menu had to be loaded as a separate file into the common heap
area pointed to by the variable m_store (as there is no way in current versions of EasyPTR to allow you
to find the address of the original menu definition in an Appended definition file - this is not the working
menu definition used by the Window Manager).

For more general information on EasyPTR, you are directed to the EasyPTR tutorial contained in the
Quanta magazine in 1994. The outline of a routine (excuse the pun) to re-size the main menu used by
a program appears on the next page (note that this requires EasyPTR (c) Albin Hessler, and substantial
additions to the code in order to work):

9620 DEFine PROCedure RESIZE_MAIN
9621 sel_key%=0
9622 DIM result%(16)
9630 PVAL #Main_menu,result%
9635 old_x%=result%(14):old_y%=result%(15)
9637 : REMark Fetch original pointer co-ordinates
9640 pxpos%=old_x%:pypos%=old_y%
9650 RDPT #Main_menu,130,pxpos%,pypos%
9651 : REMark Draw and move re-size ICON
9652 : REMark NOTE THIS CRASHES SUPERBASIC!!
9655 PVAL #Main_menu,result%
9660 IF result%(6)=27:st%=MSTAT%(#Main_menu,-3,0):RETurn:
9662 : REMark ESC pressed therefore ignore new setting
9665 Menu_add=m_store
9667 : REMark Look at where original Menu definition is stored.
9670 pwidth=PEEK_W(Menu_add+28):pheight=PEEK_W(Menu_add+30)
9675 : REMark These offsets contain the size of the existing menu
9675 px=prog_x:py=prog_y
9685 pwidth=pwidth-(pxpos%-old_x%):IF pwidth MOD 2:pwidth=pwidth+1
9690 pwidth=MAX(pwidth,450)
9695 pwidth=MIN(pwidth,scr_width%-12)
9700 px=MIN(pxpos%-34,(scr_width%-pwidth)-12)
9705 px=MAX(px,0)
9710 pheight=MAX(pheight-(pypos%-old_y%),210)
9715 pheight=MIN(pheight,scr_height%-10)
9720 py=MIN(pypos%-5,(scr_height%-pheight)-10)
9725 py=MAX(py,0)
9726 : REMark the lines 9675-9725 calculate the new width and height
9727 : REMark of the menu (minimum size 450x210)
9728 : REMark (maximum size scr_width%-12 x scr_height%-10)
9755 prog_x=px:prog_y=py
9760 MCLEAR #Main_menu:CLPT #1

(continues on next page)

22.14. OUTLN 575

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

9762 : REMark Remove the old working menu definition
9765 OUTL #1,pwidth,pheight,px,py
9770 : REMark Resize outline & main window dimensions
9775 POKE_W Menu_add+28,pwidth:POKE_W Menu_add+30,pheight
9780 POKE_W Menu_add+76,pwidth:POKE_W Menu_add+78,pheight
9782 : REMark Alter the menu sizes in the menu definition
9784 :
9785 : REMark You will now need to re-position various loose items as␣
→˓necessary
9787 : REMark There is no easy way to find the offsets of the definitions
9788 : REMark within the original menu definition.
9790 : REMark You will also need to re-size Information and Application Sub-
→˓Windows
9795 : REMark as necessary.
9795 :
9865 MDRAW #1,m_store,px,py:Main_menu=MWDEF(#1)
9866 : REMark Redraw the main menu, creating a new Working Menu Definition
9870 : REMark you will now need to redraw any information which is normally␣
→˓shown in the
9875 : REMark main menu but not contained in the menu when it was designed.
9885 END DEFine

Example

A short program which produces a graphical effect and then provides a pull-down menu on a secondary
window, using OUTLN to restore the screen after you have used the menu.

100 OUTLN #0,512,256,0,0
110 PAPER #0,0:CLS#0
120 REMark Force #0 to Primary Window
130 WINDOW #0,448,40,32,216
140 WINDOW 448,200,32,16
150 PAPER 2:INK 7:CLS
180 PRINT 'This is a Secondary Window'
190 REPeat loop
200 INK RND(3 TO 7)
210 FOR i=0 TO 360 STEP RND(10 TO 30)
220 x=RAD(i):LINE 50,50 TO 50-40*SIN(x),50-40*COS(x)
230 END FOR i
235 OPEN #3,scr_400x100a56x20
236 PAPER #3,0:INK #3,7
240 OUTLN #3,400,100,56,20:CLS#3
250 PRINT #3,' MENU'
260 PRINT #3,'Press <ESC> to leave'
270 PRINT #3,'Press <SPACE> to continue'
280 REPeat keys
290 x$=INKEY$(-1):IF x$ INSTR ' '&CHR$(27):EXIT keys
300 END REPeat keys
310 OUTLN #3,400,100,56,20
315 CLOSE #3

(continues on next page)

576 Chapter 22. Keywords O

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

320 IF x$=CHR$(27):EXIT loop
330 END REPeat loop

Note the need to CLOSE #3 each time that it is removed from the screen.

If #3 was OPENed outside of the loop, OUTLN would only save the contents of the screen under #3 the
first time that line 240 was encountered, and each subsequent time that it was used, will try to restore the
contents of the screen!

NOTE 1

If you use OUTLN to reduce the area of a Primary Window, any Secondary Windows which would
contain an area outside of the new Primary Window will be re-sized so that they have exactly the same
size and position as the new Primary Window. Any saved contents will be lost. This is also true of any
windows which are OPENed after an OUTLN command - if they would fall outside of the area defined by
OUTLN, then the newly OPENed window will occupy the same area as the OUTLN. Compare WINDOW
which will cause an error.

NOTE 2

Before v2.58 of SMSQ/E, OUTLN without any parameters did not work if an OUTLN was already set.

CROSS-REFERENCE

See QFLIM. OUTL is similar. WMON and WTV also add an outline to a program.

22.15 OVER

Syntax OVER [#channel,] switch
Location QL ROM

This command allows you to set the way in which anything is written to a specified window (default #1),
whether by PRINT, LINE, BLOCK, or any other command which prints something on a window. If the
supplied channel is not a window, then error -15 (bad parameter) will be generated, as will any value
of switch outside of the range -1..1. When the QL is first initiated (or following a MODE command),
OVER is set to 0 (see below). This can be altered by giving a different value for switch which will have
the following effect:

Switch Effect
-1 Everything is PRINTed on a transparent strip. However, each pixel which is drawn

on that window in the current INK (or with BLOCK) is actually xored with the
colour of the existing background.

0 This is the standard mode, where characters are PRINTed in the current INK and
STRIP and any pixels plotted on screen are also in the current INK.

1 This PRINTs characters on a transparent STRIP but pixels are drawn in the current
INK colour. BLOCK is unaffected.

When OVER -1 is used, it may be useful to calculate how different colours will appear on screen. This
can be achieved by XORing the two colours in binary, with col1 ^^ col2, for example, a line drawn in
blue on a white background with OVER -1 will actually appear on screen to be INK 1^^7=6 (Yellow).

22.15. OVER 577

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

A result of OVER -1 is that if something is drawn twice in the same place in the same colour, the object
is effectively removed from the screen, leaving the screen unaltered. This can be seen in the example
program given for IF.

Example

A simple demonstration which shows the effects of OVER on CIRCLE, PRINT and BLOCK. See how
easy/difficult it is to calculate how the end display will look:

100 MODE 8:WINDOW 448,200,32,16:PAPER 0:CLS
110 INK 2:SCALE 100,0,0
120 FILL 1:CIRCLE 50,50,35
125 PAUSE
130 INK 7:OVER -1:FILL 1:CIRCLE 50,50,35
135 PAUSE 140 FILL 0:OVER 0
150 PAPER 4:INK 7:PRINT"This is a simple circle"
155 PAUSE
160 OVER 1:PRINT"This is another line of text"
165 PAUSE
170 OVER -1:PRINT\"This is yet another line"
175 PAUSE
180 BLOCK 448,200,0,0,2

NOTE 1

OVER 0 is set after a MODE command.

NOTE 2

The following appears to be a bug in Minerva (pre v1.96) and most other implementations:

On Minerva pre v1.96, OVER#0 and OVER#1 are equivalent to OVER#1,0 and OVER#1,1 respectively,
OVER#2 gives bad parameter, as does OVER#-1. OVER is equivalent to OVER #1,0!!

On all later versions of Minerva and SMS, the behaviour is more logical:

The channel number defaults to #1 and the switch to 0, so OVER#0 is OVER#0,0, OVER#1 is OVER#1,0
(not OVER#1,1), OVER#2 is OVER#2,0 and OVER#-1 naturally produces a ‘channel not open’ error.

NOTE 3

OVER -1 causes various problems with the FILL command - see FILL.

CROSS-REFERENCE

Please look at INK and PRINT .

578 Chapter 22. Keywords O

CHAPTER

TWENTYTHREE

KEYWORDS P

23.1 PAGDIS

Syntax PAGDIS (lines) lines=0..127
Location Beuletools

This function returns the printer control codes needed to set the length of the page header when sent to
EPSON compatible printers.

PRINT PAGDIS (lines)

is equivalent to:

PRINT CHR$(27) & CHR$(78) & CHR$(lines)

Example

To set the header to three lines:

OPEN #3,ser1:PRINT #3,PAGDIS(3):CLOSE#3

CROSS-REFERENCE

PAGLIN , PAGLEN , LMAR, RMAR.

23.2 PAGLEN

Syntax PAGLEN (inches) inches=0..22
Location Beuletools

This function returns the control codes needed to set the length of a page (in inches) when sent to EPSON
compatible printers. This is normally 12”. The function is equivalent to:

CHR$(27) & 'C' & CHR$(0) & CHR$(inches)

CROSS-REFERENCE

PAGDIS, PAGLIN , LMAR, RMAR.

579

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

23.3 PAGLIN

Syntax PAGLIN (lines) lines=0..127
Location Beuletools

This function returns the control codes needed to set the length of a page (in lines) when sent to EPSON
or compatible printers. This is normally either 66 or 72 lines.

PRINT PAGLIN (lines)

is the same as:

PRINT CHR$(27) & 'C' & CHR$(lines)

CROSS-REFERENCE

PAGDIS, PAGLEN , LMAR, RMAR.

23.4 PAINT

Syntax PAINT x, y, col, bufadr, buflen
Location HCO

The command PAINT addresses the screen directly and fills a closed figure with the colour col (which
must be in the range 0..4, see SET).

The command requires a buffer of at least 4K whose start address is passed to PAINT as bufadr and whose
length as buflen (which must be a minimum of 4096 bytes). The larger the buffer, the better, but very
large buffers (say, 100K) seem to confuse PAINT and will make it stop before it has finished - therefore
keep the buffer below 32K.

Example 1

Random drawing:

100 WINDOW 512,256,0,0: BORDER 1,3: PAPER 0: CLS
110 buflen = 10240
120 :
130 FOR i = 1 TO 15
140 LDRAW RND(511),RND(255) TO RND(511),RND(255), 3
150 END FOR i
160 :
170 buffer = ALCHP(buflen)
180 PAINT RND(1 TO 510), RND(1 TO 255), 2, buffer, buflen
190 RECHP buffer

Example 2

A spectacular crash!

580 Chapter 23. Keywords P

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

PAINT 50,50,4,131072,32768

WARNING 1

See those at SET.

WARNING 2

PAINT will crash the machine if it runs out of the screen, so you have to ensure that the figure to be filled
is closed. Another means of protection is to use a BORDER, as in the example.

CROSS-REFERENCE

FILL, SET , LDRAW

23.5 PALETTE_QL

Syntax PALETTE_QL [#ch,] start, true_colour1 *[,true_colourx]*
Location SMSQ/E v2.98+

This command allows you to redefine the eight colours used by the Extended Colour Drivers to display
COLOUR_QL. A valid window channel must be open, default #1 (or #0 on a SBASIC with only #0
open), although one may also be supplied as #ch.

Start is the number of the first colour to change, followed by each of the new colours described in 24 Bit
Colour Mode. On hardware with a true palette map (most PCs), this command will affect all programs,
including information already displayed on screen. However, on all other hardware, most notably the
Q40 and Q60, existing information will remain unaffected.

Example 1

PALETTE_QL 4,$FFB6DB

makes the computer use PINK instead of GREEN when INK 4 (QL Colour Value) is used within a
program.

PALETTE_QL 5,$B6FFFF,$929200

will change INK 5 to Light Blue (from Cyan) and INK 6 to Mustard (from Yellow).

Example 2

Many programs written with MODE 4 in mind, presume that INK 3 is the same as INK 2 (for exam-
ple). However, under COLOUR_QL, even MODE 4 programs can access the standard MODE 8 colours,
therefore INK 3 becomes MAGENTA. To overcome this problem, use the following routine:

100 red=255*65536+100:REMark $FF0064 - red and a bit of blue
110 blue=255*256+155: REMark $00FF9B - green and the rest of blue
120 white=blue+red: REMark $FFFFFF
125 REMark - Now change all 8 colours, starting at INK 0
130 PALETTE_QL 0,0,0,red,red,blue,blue,white,white

23.5. PALETTE_QL 581

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE

The problem with using 24 bit values is that they have to be trimmed to fit into the native colour scheme
on the computer in use - as a result, although the same 24 bit colour value is specified, the resultant colour
will be slightly different on QPC, Q40 and Aurora.

CROSS-REFERENCE

COLOUR_QL, INK , PALETTE_8 Also refer to Appendix 16 which lists the first 256 24 Bit Colours.

23.6 PALETTE_8

Syntax PALETTE_8 [#ch,] start, true_colour1 *[,true_colourx]*
Location SMSQ/E v2.98+

This command is similar to PALETTE_QL, except that it allows you to redefine all 256 colours available
under COLOUR_PAL.

As with PALETTE_QL, start is the number of the first colour to change, followed by each of the new
colours described in 24 Bit Colour Mode. A valid window channel must also be open, default #1 (or #0
on a SBASIC with only #0 open), although one may also be supplied as #ch.

On hardware with a true palette map (most PCs), this command will affect all programs, including in-
formation already displayed on screen. However, on all other hardware, most notably the Q40 and Q60,
existing information will remain unaffected.

Examples

PALETTE_8 4, $FFB6DB

makes the computer use PINK, instead of BLUE when INK 4 (PAL Colour Value) is used within a
program.

PALETTE_8 5, $B6FFFF, $929200

will change INK 5 to Light Blue (from Magenta) and INK 6 to Mustard (from Yellow).

NOTE 1

This command will not have any effect on Aurora, which only provides 256 colours to choose from. It
therefore may not be implemented on the Aurora version of SMSQ/E.

NOTE 2

The problem with using 24 bit values is that they have to be trimmed to fit into the native colour scheme
on the computer in use - as a result, although the same 24 bit colour value is specified, the resultant colour
will be slightly different on QPC and Q40.

CROSS-REFERENCE

See PALETTE_QL and COLOUR_PAL for more details.

582 Chapter 23. Keywords P

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

23.7 PAN

Syntax PAN [#ch,] distance [,area]
Location QL ROM

This command is very similar to SCROLL except that this enables you to move a window left and right as
opposed to up and down. In its most simple form, PAN allows you to move the specified window (default
#1) a given number of pixels sideways. If a positive value for the distance is given, the window will move
to the right, whereas a negative distance will move the window to the left. Again, as with SCROLL, the
gap left behind from the move will be coloured in the current PAPER colour, and any contents of the
window moved off the screen will be lost. The additional parameter allowed by PAN lets you specify an
area of the given window to be moved. This can have one of the following values:

Area Effect
0 This moves the whole window (this is the default).
3 This moves the whole of the text cursor line.
4 This moves everything on the text cursor line to the right of the cursor (including the

character under the cursor).

Example

A short procedure to scroll a given text message across the screen:

100 DEFine PROCedure SCROLL_TEXT(line$)
110 LOCal l$,loop
120 l$=line$
130 OPEN #3,scr_448x10a32x246
140 PAPER#3,2:INK#3,0:CSIZE#3,1,0:CLS#3
150 AT #3,0,0:PRINT#3,'INCOMING MESSAGE:'
160 INK#3,7
170 REPeat loop
180 IF LEN(l$)=0:EXIT loop
190 AT #3,0,55:PRINT#3,l$(1)
200 BEEP 100,10
210 IF LEN(l$)<=1:EXIT loop
220 l$=l$(2 TO)
230 AT #3,0,18:PAN #3,-8,4
240 PAUSE 30
250 END REPeat loop
260 END DEFine

NOTE 1

In low-resolution mode (8 or 12), the distance will always be rounded down to an even number of pixels.

NOTE 2

As with SCROLL, odd values for area and distance allow you to access machine code routines (unless
you have a THOR XVI, SMS, or Minerva ROM (v1.63 or v1.64). To access these machine code routines:

• Take the TRAP #3 value for D0 and deduct 27.

23.7. PAN 583

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• If the figure is less than 27, then take the negative result and add to 128.

For example, PAN 0,115 turns on cursor in #1 (TRAP #3,D0=$E).

This is in fact more useful than SCROLL or CLS as area can be used to pass a parameter to D1, thus
allowing you for example, to access IOF.POSR - use PAN #3,n%,40 - to move the file pointer.

NOTE 3

On pre MG ROMs, this command may fail if the window is smaller than the cursor.

NOTE 4

On SMSQ/E pre v2.88, PAN in MODE 8 could ruin the screen display if an odd parameter was specified,
since SMSQ/E tried to move the screen by an odd number of pixels (not supported in MODE 8). Although
annoying, this only had small effects.

CROSS-REFERENCE

Also please see SCROLL and PAPER. THORs allow you to use IO_TRAP to access additional system
calls. Most system calls can be accessed using Toolkit II in any event. Otherwise, see BTRAP, QTRAP,
TTET3 and MTRAP. The QDOS/SMS Reference Manual Section 15 contains full details of the TRAP
#3 calls.

23.8 PAPER

Syntax PAPER [#window,] colour or
PAPER [#window,] colour1,colour2 [,pattern]

Location QL ROM

This command sets the background colour inside a window (default #1). Characters printed to that
window will be written with the PAPER colour as a background unless another colour has been specified
with STRIP.

Example

100 OPEN#3,scr_512x256a0x0
110 REPeat forever
120 FOR c=0 TO 7
130 BORDER#3,RND(100)
140 PAPER#3,c
150 CLS#3
160 END FOR c
170 END REPeat forever

NOTE

PAPER also resets the STRIP to the specified colour.

CROSS-REFERENCE

INK sets the foreground colour and STRIP the background for characters only. CLS clears a window in
the current paper colour. See INK concerning colour in general.

584 Chapter 23. Keywords P

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

23.9 PARHASH

Syntax PARHASH (parameter)
Location PARAMS (DIY Toolkit - Vol P)

This is an addition to the normal PARUSE and PARNAM$ functions which allows you to check whether
a value passed as a parameter to a SuperBASIC PROCedure or FuNction was preceded by a hash or not.

Example

The following PROCedure allows you to create a CAT command which is similar to DIR, allowing you
to use the following syntaxes:

CAT #channel [,device]
CAT [#channel,] [device]

to read a directory.

If device is not specified, then a directory of the default data device is produced. If a channel is not
specified, then #1 will be used. The device can be in quotes or not if you prefer. The following can
therefore all be used:

CAT #2
CAT CAT flp1_
CAT #3,'win1_'

100 DEFine PROCedure CAT (ch,direct)
110 LOCal dir_ch,sepa%,hash%
112 hash%=PARHASH(ch): sepa%=PARSEPA(ch)
120 IF sepa%>0
130 file$=PARSTR$(direct,2)
140 ELSE
150 IF hash%
160 file$=DATAD$
170 ELSE
180 file$=PARSTR$(ch,1):ch=1
185 IF file$='': file$=DATAD$
187 END IF
190 END IF
200 dir_ch=FOP_DIR(file$)
210 IF dir_ch<0: PRINT #0,'CANNOT ACCESS DIRECTORY ON ';file$:RETurn
220 CLOSE #dir_ch
230 DIR #ch,file$
250 END DEFine

NOTE 1

There is a problem with this function that prevents the above example from working under SMS - once
either PARHASH or PARSEPA have been used once on a parameter, they will not work again!!

For example, try adding the following lines to the above and compare the results:

23.9. PARHASH 585

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

116 PRINT PARHASH(ch), PARSEPA(direct), PARNAME$(2), PARTYP(ch),␣
→˓PARTYPE(direct)
117 PRINT PARHASH(ch), PARSEPA(direct), PARNAME$(2), PARTYP(ch),␣
→˓PARTYPE(direct)
118 STOP

NOTE 2

TURBO and SuperCHARGE cannot compile programs which use PARHASH.

CROSS-REFERENCE

PARTYPE, UNSET and PARNAME$ are also added by this toolkit.

23.10 PARNAM$

Syntax PARNAM$ (number)
Location Toolkit II

This function can be used to find the name of an actual parameter passed to a SuperBASIC PROCedure
or FuNction. You merely need to supply the number of the parameter in the definition line which you
wish to find. If the parameter was passed as a name (ie. by reference), then this name will be returned
by PARNAM$, however, in all other cases, a nul string will be returned.

Example

A short procedure which prints the square of the parameter passed (and if possible squares the actual
parameter!):

1000 DEFine PROCedure Square (x)
1010 LOCal param$,loop,key$
1020 param$=PARNAM$(1)
1030 IF param$<>'' THEN
1040 PRINT #0,param$!'will be altered - is this okay?'
1050 REPeat loop:key$=INKEY$(-1):IF key$ INSTR 'yn':EXIT loop
1060 IF key$=='n':RETurn
1070 END IF
1080 x=x^2:PRINT x
1090 END DEFine

Compare the following:

number=2:Square number: REMark number is passed by reference
number=2:Square (number): REMark number is passed by value

NOTE

TURBO and SuperCHARGE cannot compile programs which use PARNAM$.

CROSS-REFERENCE

PARTYP, PARUSE and PARSTR$ allow you to find out other information about parameters. See also
DEFine FuNction and DEFine PROCedure. PARNAME$ is exactly the same.

586 Chapter 23. Keywords P

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

23.11 PARNAME$

Syntax PARNAME$ (number)
Location PARAMS (DIY Toolkit - Vol P)

This is exactly the same as PARNAM$.

CROSS-REFERENCE

PARTYPE, PARHASH and PARSEPA are also added by this toolkit.

23.12 PARSEPA

Syntax PARSEPA (name)
Location PARAMS (DIY Toolkit - Vol P)

This function is a useful addition that allows you to check on the type of separator which follows a value
passed as a parameter to a SuperBASIC PROCedure or FuNction. The value returned by PARSEPA is:

PARSEPA Meaning
0 No separator follows - this is the end of the line.
1 A comma (,) follows.
2 A semicolon (;) follows.
3 A backslash (\) follows.
4 An exclamation mark (!) follows.
5 The word TO follows.

NOTE

This function suffers from the same problems as PARHASH.

CROSS-REFERENCE

SeePARHASH in particular - this contains an example which uses this function.

23.13 PARSTR$

Syntax PARSTR$ (name,number)
Location Toolkit II

This function, together with its associated functions: PARTYP, PARUSE and PARNAM$ allows you to
find out information about a parameter passed to a SuperBASIC PROCedure or FuNction.

PARSTR$ is aimed for use in PROCedures or FuNctions where a user might more naturally pass a pa-
rameter as a name rather than a string (for example, when passing a filename).

23.11. PARNAME$ 587

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Many users will have noted how many machine code procedures and functions do not need filenames to
be passed as a string, for example:

SAVE flp1_boot

and wondered why when they write a PROCedure, it has to be passed as a string, for example:

SSAVE 'flp1_boot'

Well, PARSTR$ allows you to do either!!

The two parameters which need to be supplied to PARSTR$ are the name of the parameter as listed in
the definition line and the number of that parameter in the parameter list.

Example

A re-write of a SAVE routine to keep the current file version up to date (this could be used for example
when developing a program):

100 DEFine PROCedure SSAVE(file)
110 LOCal version
120 file$=PARSTR$(file,1)
130 version=FVERS(\file$)
140 SAVE file$
150 SET_FVERS \file$, version+1
160 END DEFine

To update the saved version of the program in memory, you can then use either:

SSAVE flp1_program_bas

or

SSAVE ‘flp1_program_bas’.

Note that SMS users can just use SAVE (without a filename) to achieve this.

NOTE 1

If you try to assign the string returned by PARSTR$ back into the original parameter (eg. change the
variable file in the example program to the variable file$), this will cause an ‘error in expression’. You
could try adding file$ to the LOCal definition, however although this will avoid the ‘error in expression’,
file$ is set to a nul string by the LOCal definition!!

NOTE 2

TURBO and SuperCHARGE cannot compile programs which use PARSTR$.

CROSS-REFERENCE

Please also see PARNAM$. FBKDT also contains a useful example of PARSTR$.

588 Chapter 23. Keywords P

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

23.14 PARTYP

Syntax PARTYP (name)
Location Toolkit II, THOR XVI

As disclosed in the description of DEFine FuNction, a parameter is passed to a SuperBASIC PROCedure
or FuNction by reference, meaning that the variable type listed in the definition line will actually be
overriden by the type of variable which has been passed as a parameter.

The function PARTYP returns the type of the actual parameter which has been passed, which can be
used to error trap PROCedures and FuNctions. PARTYP expects only one parameter - the name of the
parameter from the definition line to be looked at. PARTYP will then return one of the following values
depending on the type of the actual parameter passed:

PARTYP Meaning
0 A null string has been passed.
1 A string has been passed.
2 A floating point has been passed.
3 An integer has been passed.

Example

A PROCedure to swap any two variables (it can only handle simple strings and variables, not arrays):

100 a=1:b%=2
110 swap_var a,b%
115 :
120 DEFine PROCedure swap_var (x,y)
130 LOCal xa,xa$,param
140 IF PARUSE(x)=0 OR PARUSE(y)=0
150 PRINT 'A variable is unset!':RETurn
160 END IF
162 IF PARNAM$(1)="" OR PARNAM$(2)=""
164 PRINT 'Parameters are not both variables!':RETurn
165 END IF
170 IF PARUSE(x)=3 OR PARUSE(y)=3
180 PRINT 'Arrays not handled':RETurn
190 END IF
200 param=PARTYP(x)
210 IF PARTYP(y)=1 AND param<>1 OR param=1 AND PARTYP(y)<>1
220 PRINT 'You cannot swap a string with a value!'
230 RETurn
240 END IF
250 SELect ON param
260 =0,1:xa$=y:y=x:x=xa$
270 =2,3:xa=y:y=x:x=xa
280 END SELect
290 END DEFine

23.14. PARTYP 589

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE 1

There is a difference in the way that PARTYP will report an omitted parameter, depending on whether
you implicitly omit the parameter. Try the following using the above example:

Implicit omission:

swap_var a$

or even:

swap_var a$,

PARTYP(y) returns the type of the notional parameter (here y is a floating point, so PARTYP (y) returns
2), and PARUSE(y) also reports 2. Compare explicit omission:

swap_var ,a$

PARTYP(x) will return 0 as will PARUSE(x) If a program is Qliberated, PARTYP will return 0 whether
parameters are implicitly or explicitly omitted.

NOTE 2

If you pass a null string as a parameter, eg:

swap_var a$,''

in the above example, PARTYP will still return 1 (and not zero) as you may think, hence the need to look
at PARUSE also.

NOTE 3

TURBO and SuperCHARGE cannot compile programs which use PARUSE.

CROSS-REFERENCE

PARTYP should be used alongside PARUSE to find out whether a parameter was passed as a variable
(ie. by reference) or as a value. PARTYPE is the same. PARNAM$, PARHASH, PARSEPA and PARSTR$
form companions to these commands.

23.15 PARTYPE

Syntax PARTYPE (name)
Location PARAMS (DIY Toolkit - Vol P)

This function is exactly the same as PARTYP and suffers from the same problems.

CROSS-REFERENCE

PARHASH, UNSET and PARNAME$ are also added by this toolkit.

590 Chapter 23. Keywords P

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

23.16 PARUSE

Syntax PARUSE (name)
Location Toolkit II, THOR XVI

PARUSE is a companion function to PARTYP. PARUSE also expects only one parameter - the name of
the parameter from the definition line to be looked at. PARUSE will then return one of the following
values depending on the actual parameter passed:

PARUSE Meaning
0 An unset variable has been passed.
2 A variable (or value) has been passed.
3 An array has been passed.

NOTE 1

The Toolkit II Manual gives incorrect values.

NOTE 2

There is a difference in the way that PARUSE will report an omitted parameter, depending on whether
you implicitly omit the parameter or explicitly omit it - see Note 1 relating to PARTYP. Under current
versions of Qliberator a program, PARUSE will always return 2 whether the parameter is implicitly or
explicitly omitted.

NOTE 3

TURBO and SuperCHARGE cannot compile programs which use PARUSE.

CROSS-REFERENCE

Please see PARTYP.

23.17 PAR_ABORT

Syntax PAR_ABORT or
PAR_ABORT port_number(SMSQ/E only)

Location ST/QL, SMSQ/E

This command clears out all of the closed PAR buffers and then sends an ‘aborted’ message, to the PAR
device, thus effectively stopping the computer from sending any information still in the buffers through
the PAR device. Any open channels connected to the port are unaffected.

NOTE

Although the SMSQ/E implementation allows a port to be specified, there are currently no implementa-
tions of the QL which have more than one parallel port, therefore trying to pass a port_number at present
results in a bad parameter error.

CROSS-REFERENCE

23.16. PARUSE 591

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

SER_ABORT and PRT_ABORT are very similar. PAR_CLEAR clears out the buffers but does not tell
anyone. PRT_ABT is similar on the Trump Card and Gold Cards.

23.18 PAR_BUFF

Syntax PAR_BUFF [size] or
PAR_BUFF port_number, size(SMSQ/E only)

Location ST/QL, SMSQ/E

Normally, SMSQ/E and the Emulator will use all available memory as a buffer for its serial and parallel
ports (this is known as a dynamic buffer). Although this enables control to be returned to programs very
quickly after sending output to one of the ports, it can however mean that the whole of the memory can
be filled up with printer output.

The command PAR_BUFF therefore allows you to specify a fixed size in bytes for the parallel buffer for
each channel opened to it.

If no size is specified, or a size of 0 bytes is set, then the parallel buffer becomes dynamic once again.
Otherwise, size should be at least 5 bytes to ensure future compatibility.

Example

PAR_BUFF 10000

sets the parallel buffer to 10000 bytes.

NOTE

Although the SMSQ/E implementation allows a port to be specified, there are currently no implementa-
tions of the QL which have more than one parallel port, therefore trying to pass a port_number at present
results in a bad parameter error.

CROSS-REFERENCE

PRT_USE sets up a dynamic printer buffer except under SMSQ/E.

23.19 PAR_CLEAR

Syntax PAR_CLEAR or
PAR_CLEAR port_number(SMSQ/E only)

Location ST/QL, SMSQ/E

This clears out all currently closed PAR buffers, thus preventing any further output. Any channels which
are open to the PAR port will be left unaffected.

NOTE

Although the SMSQ/E implementation allows a port to be specified, there are currently no implementa-
tions of the QL which have more than one parallel port, therefore trying to pass a port_number at present
results in a bad parameter error.

592 Chapter 23. Keywords P

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE

SER_CLEAR and PRT_CLEAR are similar.

23.20 PAR_DEFAULTPRINTER$

Syntax name$ = PAR_DEFAULTPRINTER$
Location SMSQ/E for QPC

This returns the name of Windows’ default printer. The name can later be used with PAR_SETPRINTER
for example.

23.21 PAR_GETFILTER

Syntax state% = PAR_GETFILTER(port%)
Location SMSQ/E for QPC

This returns whether the printer filter is enabled for the specified port.

23.22 PAR_GETPRINTER$

Syntax name$ = PAR_GETPRINTER$(port%)
Location SMSQ/E for QPC

This returns the PAR port setting: “LPT1”, “LPT2” or “LPT3” if it isn’t linked to a printer but directly
to a printer port or the name of the printer otherwise. An empty string designates the default printer.

23.23 PAR_PRINTERCOUNT

Syntax n% = PAR_PRINTERCOUNT
Location SMSQ/E for QPC

This returns the number of printers available on this system.

23.20. PAR_DEFAULTPRINTER$ 593

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

23.24 PAR_PRINTERNAME$

Syntax name$ = PAR_PRINTERNAME$(n)
Location SMSQ/E for QPC

This returns the name of printer number n (counted from 1 to PAR_PRINTERCOUNT).

23.25 PAR_PULSE

Syntax PAR_PULSE x
Location ST/QL, SMSQ/E for the Atari

Some accelerator boards enhance the speed of the Atari ST and TT computers so much that the parallel
printer port may be affected. This can be fixed by using PAR_PULSE to increase the rate of the strobe
pulse. This problem tends to be required if you have a printer which has heavy drive requirements (notably
a CANON) or if you use a long printer cable.

Example

PAR_PULSE 80

NOTE

On SMSQ/E running on non-Atari’s, this command has no effect.

23.26 PAR_SETFILTER

Syntax PAR_SETFILTER port%, state%
Location SMSQ/E for QPC

Enables (state% = 1) or disables (state% = 0) the printer filter for the specified port. If the printer should
be enabled although none is available a “not found” error is returned.

23.27 PAR_SETPRINTER

Syntax PAR_SETPRINTER port%, name$
Location SMSQ/E for QPC

Connects the PAR port either to a hardware port (Example name$ is “LPT1”) or to the printer spooler
(name$ is one of the names returned by PAR_PRINTERNAME$).

594 Chapter 23. Keywords P

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

23.28 PAR_USE

Syntax PAR_USE [device]
Location ST/QL, SMSQ/E, SuperQBoard, PAR/SER Interfaces, Super Gold Card

As with many other devices, such as RAM, FLP and WIN, it can be useful to alter the three letter de-
scription used to access the parallel printer port on the Atari ST. The command PAR_USE allows you to
replace the three letter description by any other three letters. If device is not specified, this changes the
description back to PAR.

Example

PAR_USE ser

will divert any attempt to access the serial ports to the parallel printer port.

CROSS-REFERENCE

RAM_USE, FLP_USE, WIN_USE, SER_USE and PRT_USE are all very similar.

23.29 PAUSE

Syntax PAUSE [timeout] or
PAUSE [#chan,] [timeout](Minerva v1.80+, THORv6.41, SMS, ST/QL E-init v1.27+)

Loca-
tion

QL ROM

The command PAUSE halts execution of a program temporarily for the specified timeout number of
frames (there are 50 frames per second in the UK and Europe, 60 frames per second in the US). If no
timeout or a negative timeout is specified, the command will wait indefinitely. If a timeout of zero is
specified, no actual PAUSE will take place. Execution will continue at the end of the timeout, or if a key
is pressed. The key is read from channel #0 and therefore the command will report the error ‘channel not
open’ if #0 is not open.

The second variant of this command allows you to specify a channel #chan (default #0) upon which the
command should operate, thus allowing the command to be used in programs which do not have #0 open.

Example

PAUSE 100

Pauses for approximately 2 seconds, unless a key is pressed in the meantime!

NOTE 1

Using timeouts allows programs to run at the same speed on all QL implementations.

NOTE 2

Normally, if #0 or the specified channel (in the THOR variant of this command) is not a console window
(or not open), an error will be generated, of either ‘Bad Parameter’ or ‘Channel not open’ respectively.

23.28. PAR_USE 595

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

However, the Minerva and SMS variants of this command do not report any error messages and merely
return straight away (although see next note).

NOTE 3

On Minerva (v1.90+), the second variant of this command will also work on a screen (scr_) channel.

NOTE 4

The second variant didn’t really work on ST/QL Emulators until v1.30 of E-Init).

CROSS-REFERENCE

INKEY$ allows you to read the key which has been pressed, as well as halting program execution.

23.30 PE_BGOFF

Syntax PE_BGOFF
Location SMSQ/E >= 3.12

Classic versions of the Pointer Environment suspend any jobs that are “buried” in the window stack and
try to output onto their window. Some system extensions like PIE, PICE and PEX implemented work-
arounds for this, allowing jobs to continue running in the background even with output to the screen.

Starting from version 3.12, SMSQ/E supports background window I/O and update natively. This feature
is enabled and disabled by the commands PE_BGON and PE_BGOFF.

Example

PE_BGOFF

Disables background window I/O.

CROSS-REFERENCE

See PEOFF, PIE_ON , PXOFF, PE_BGON .

23.31 PE_BGON

Syntax PE_BGOFF
Location SMSQ/E >= 3.12

Classic versions of the Pointer Environment suspend any jobs that are “buried” in the window stack and
try to output onto their window. Some system extensions like PIE, PICE and PEX implemented work-
arounds for this, allowing jobs to continue running in the background even with output to the screen.

Starting from version 3.12, SMSQ/E supports background window I/O and update natively. This feature
is enabled and disabled by the commands PE_BGON and PE_BGOFF.

Example

596 Chapter 23. Keywords P

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

PE_BGON

Enables background window I/O.

CROSS-REFERENCE

See PEOFF, PIE_ON , PXOFF, PE_BGOFF.

23.32 PEEK

See PEEK_L below.

23.33 PEEK_FLOAT

Syntax value = PEEK_FLOAT(address)
Location DJToolkit 1.16

This function returns the floating point value represented by the 6 bytes stored at the given address.
BEWARE, although this function cannot detect any errors, if the 6 bytes stored at ‘address’ are not a
proper floating point value, the QL can crash. The crash is caused by QDOS and not by PEEK_FLOAT.
This function should be used to retrieve values put there by POKE_FLOAT mentioned above.

EXAMPLE

1000 addr = RESERVE_HEAP(6)
1010 IF addr < 0 THEN
1020 PRINT "OUT OF MEMORY"
1030 STOP
1040 END IF
1050 POKE_FLOAT addr, PI
1060 myPI = PEEK_FLOAT(addr)
1070 IF myPI <> PI THEN
1080 PRINT "Something went horribly wrong!"
1090 PRINT "PI = " & PI & ", myPI = " & myPI
1100 END IF

CROSS-REFERENCE

POKE_STRING, PEEK_STRING, POKE_FLOAT .

23.32. PEEK 597

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

23.34 PEEK_STRING

Syntax a$ = PEEK_STRING(address, length)
Location DJToolkit 1.16

The characters in memory at the given address are returned to a$. The address may be odd or even as no
word for the length is used, the length of the returned string is given by the length parameter.

EXAMPLE The following set of functions return the Toolkit 2 default devices:

1000 DEFine FuNction TK2_DATA$
1010 RETurn TK2_DEFAULT$(176)
1020 END DEFine TK2_DATA$
1030 :
1040 DEFine FuNction TK2_PROG$
1050 RETurn TK2_DEFAULT$(172)
1060 END DEFine TK2_PROG$
1070 :
1080 DEFine FuNction TK2_DEST$
1090 RETurn TK2_DEFAULT$(180)
1100 END DEFine TK2_DEST$
1110 :
1120 :
1200 DEFine FuNction TK2_DEFAULT$(offset)
1210 LOCal address
1220 IF offset <> 172 AND offset <> 176 AND offset <> 180 THEN
1230 PRINT "TK2_DEAFULT$: Invalid Offset: " & offset
1240 RETurn ''
1250 END IF
1260 address = PEEK_L (SYSTEM_VARIABLES + offset)
1270 IF address = 0 THEN
1280 RETurn ''
1290 ELSE
1300 REMark this is a pointer to the appropriate TK2 default
1310 RETurn PEEK_STRING(address+2, PEEK_W(address))
1320 END IF
1330 END DEFine TK2_DEFAULT$

CROSS-REFERENCE

POKE_STRING, PEEK_FLOAT , POKE_FLOAT .

598 Chapter 23. Keywords P

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

23.35 PEEK_W

See PEEK_L below.

23.36 PEEK_L

Syn-
tax

PEEK (address) where address=0,1,2,3,. . . and
PEEK_W (address) where address=0,2,4,6,. . . and
PEEK_L (address) where address=0,2,4,6,. . .

Lo-
ca-
tion

QL ROM

These three functions are complementary to POKE, POKE_W and POKE_L, in that instead of setting a
byte, word or longword in memory, these three functions return the value of the byte, word or longword
stored at the given address.

NOTE 1

Due to the way in which values are stored in memory, it can be difficult to read negative values. However,
although PEEK will return an unsigned byte in the range 0..255, PEEK_W will return a signed word in
the range -32768. . . 32767 and PEEK_L a signed longword.

NOTE 2

Do not try to PEEK_W or PEEK_L with an odd address (eg. 10001) as this will cause an error unless
you are using Minerva (see below).

MINERVA NOTES

As with the POKE commands, the PEEK functions on Minerva (version 1.77 or later) are very much
enhanced and different. Minerva allows you to use PEEK_W and PEEK_L on odd addresses, eg:

PRINT PEEK_W(131073)

Minerva has also added to the usefulness of the PEEK, PEEK_W and PEEK_L functions by allowing
them to access system variables, Minerva’s System Xtensions and SuperBASIC variables. You will need
a good book on QDOS (eg. QDOS/SMS Reference Manual) to find out what the possible values are.

The syntax for these extra commands is:

Look at SuperBASIC variables

PEEK (\\SBvar)
PEEK_W (\\SBvar)
PEEK_L (\\SBvar)

PEEK (\SBvar\Offset)
PEEK_W (\SBvar\Offset)
PEEK_L (\SBvar\Offset)

Look at System variables

23.35. PEEK_W 599

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

PEEK (!!Sysvar)
PEEK_W (!!Sysvar)
PEEK_L (!!Sysvar)

PEEK (!Sysvar!Offset)
PEEK_W (!Sysvar!Offset)
PEEK_L (!Sysvar!Offset)

Look at System Xtensions

sx_base=PEEK_L(VER$(-2) + 124)
PEEK (sx_base + offset)

SMS NOTES

SMS has altered the PEEK functions so that they are able to access System variables and SuperBASIC
variables, using the same format as Minerva.

CROSS-REFERENCE

Please see in particular POKE, POKE_W , and POKE_L. PEEK$ reads a string stored in memory and
contains some examples of the new variants introduced on Minerva and SMS. PEEK_F and PEEKS are
also worth a look.

23.37 PEEKS

See PEEKS_L below.

23.38 PEEKS_W

See PEEKS_L below.

23.39 PEEKS_L

Syn-
tax

PEEKS(address) where address=0,1,2,3,. . . and
PEEKS_W(address) where address=0,2,4,6,. . . and
PEEKS_L(address) where address=0,2,4,6,. . .

Lo-
ca-
tion

SMSQ/E and ATARI_REXT v2.17+

These three functions are only of any use on the Atari series of computers. They are the same as the
normal forms of PEEK, PEEK_W and PEEK_L, except that they operate in Supervisor Mode and can
therefore be used to read data direct from the Atari’s IO hardware. On all other implementations they are
the same as PEEK, PEEK_W and PEEK_L.

CROSS-REFERENCE

600 Chapter 23. Keywords P

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

See PEEK . POKES is the complementary command. See PROT_MEM also.

23.40 PEEK$

Syntax PEEK$ (start_address,bytes) or
PEEK$ (start_address [,bytes])(BTool only)

Location ATARI_REXT, SMS, TinyToolkit, BTool

This function will read a specified number of bytes from start_address in memory onwards and return
the result as a string.

For BTool the second parameter is optional. If bytes is not specified then BTool’s PEEK$ will try to
read a string in QDOS format (ie. two bytes specifying the length of the string followed by the string
itself) from the location start_address, just like CVS$ does. This string will then be returned. Note that
start_address must always be even if bytes is omitted.

Example

Do you know how many keywords, filenames, variables etc. are currently known to the interpreter? This
program lists and counts them.

100 adr=BASICP(32): num=0
110 REPeat all_names
120 length=PEEK(adr)
130 IF NOT length THEN EXIT all_names
140 name$=PEEK$(adr+1,length)
150 PRINT name$,
160 adr=adr+length+1: num=num+1
170 END REPeat all_names
180 PRINT\\num!"names"

SMS NOTE

PEEK$ allows you to access the System Variables and SuperBASIC variables in the same way as PEEK
(etc.). For example, the above short program may be re-written as:

100 adr=0: num=0
110 REPeat all_names
120 length=PEEK(\$20\adr)
130 IF NOT length THEN EXIT all_names
140 name$=PEEK$(\$20\\adr+1,length)
150 PRINT name$,:PAUSE 160 adr=adr+length+1: num=num+1
170 END REPeat all_names
180 PRINT\\num!"names"

WARNING

A string cannot be longer than 32766 characters and so an expression such as a$=PEEK$(0,40000) may
lead to unpredictable effects. Be careful!

CROSS-REFERENCE

23.40. PEEK$ 601

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

POKE$ is the complementary procedure to PEEK$. PEEK , PEEK_W and PEEK_L read single bytes,
words and long words from memory. TTPEEK$ is the same as this function.

23.41 PEEK_F

Syntax PEEK_F (address)
Location BTool

PEEK_F is a function which reads six bytes from any position in memory, which it assumes is the internal
representation of a SuperBASIC floating point number, and returns its value.

WARNING

PEEK_F will lead to a crash if the six bytes at address did not represent a valid floating point, compare
this with CVF.

CROSS-REFERENCE

POKE_F, CVF, MKF$ See also PEEK$

23.42 PEND

Syntax PEND (#channel)
Location TinyToolkit

PEND is a logical function and returns 1 if there is data waiting in the specified channel to be read and
0 if not.

Example 1

If the Window Manager is present, PEND can be used to check if a window is currently hidden, and
therefore to decide whether information should be printed to that channel or not. Under the Pointer
Environment, jobs which are trying to output data to a window channel cannot do so until the channel is
activated (eg. by pressing <CTRL><C>).

The following program calculates a large sum and prints the current value of the calculation in a small
window, however, the calculation itself will not stop if one switches to another window, thus hiding this
one.

100 n=1546: sum=0
110 OPEN#3,"con_"&(6*LEN(n)+6)&"x12a0x0"
120 BORDER#3,1,3: INK#3,7: CLS#3
130 FOR i=1 TO n
140 sum=sum+i
150 IF PEND(#3) THEN PRINT#3;FILL$(" ",4-LEN(i));i
160 END FOR i
170 IF sum<>n*(n+1)/2 THEN BEEP 0,33,44,66,22,44
180 CLOSE#3

602 Chapter 23. Keywords P

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Example 2

Pipes should be used for communication between jobs. It is very bad practice to write information to a
file and let the other job read it because other tasks may be affected.

Here are two programs which have to be compiled and executed to multitask. Both open a small window,
the first job inputs text and then sends it to the second job which shows that text. Typing “end” will
terminate both jobs.

The output job would work without PEND but would not be able to do something else whilst waiting for
further input.

100 REMark Input Job
110 :
120 OPEN#3,con_50x30a30x40: PAPER#3,3
130 INK#3,7: BORDER#3,1,4: CLS#3
140 OPEN#4,pipe_communication_200
150 REPeat input_loop
160 INPUT#3,text$
170 PRINT#4,text$
180 IF text$=="END" THEN EXIT input_loop
190 END REPeat input_loop
200 CLOSE#3: CLOSE#4

100 REMark Output Job
110 :
120 OPEN#3,scr_50x30a100x40: PAPER#3,3
130 INK#3,7: BORDER#3,1,4: CLS#3
140 OPEN#4,pipe_communication
150 REPeat output_loop
160 IF PEND(#4) THEN
170 INPUT#4,text$
180 IF text$=="END" THEN EXIT output_loop
190 PRINT#3,text$
200 END IF
210 IF NOT RND(200): d$=DATE$: PRINT#3,d$(16 TO)
220 END REPeat output_loop
230 CLOSE#3: CLOSE#4

By the way, in this case it is not very efficient to separate the input and output jobs, but good terminal
Emulators do this. You will also notice that the programs use named pipes which make it much easier
for them to link up with each other. These named pipes are present in the latest version of the ST/QL
Emulator as well as SMS. They are also provided by several public domain device drivers - See the
appendix on devices for further details.

NOTE

PEND only works with channels which will accept input (not scr_) and reports an “end of file” error
(ERNUM=-10, ERR_EF=1) if a connected output pipe has been closed.

Unfortunately, EOF cannot be used to trap the end of a named pipe early enough, so you have to ensure
that the output pipe tells the accompanying input pipe that it is about to be closed.

CROSS-REFERENCE

23.42. PEND 603

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

See TCONNECT and FILE_OPEN about connecting two unnamed pipes. EOF checks if a file is at its
end. IO_PEND% and NOT EOFW are identical to PEND.

23.43 PENDOWN

Syntax PENDOWN [#ch]
Location QL ROM

This command is part of the QL’s turtle graphics set of commands, and places the pen to the down position
in the specified window (default #1). When a window is first opened, the pen is set to the up position.

CROSS-REFERENCE

PENUP has the opposite effect to this command. Also see MOVE.

23.44 PENUP

Syntax PENUP [#ch]
Location QL ROM

This command places the turtle’s pen to the up position in the specified window (default #1), thus pre-
venting any further drawing.

CROSS-REFERENCE

See PENDOWN and MOVE for more details.

23.45 PEOFF

Syntax PEOFF [{ #ch | chan_ID | job_name$ }]
Location PEX

This command is similar to PIE_OFF except that it allows you to disable background screen access for
specific multitasking jobs if you wish (reverting to the original Pointer Environment method of managing
windows). The same parameters as for PEON can be used to specify the Jobs or windows to be affected.

NOTE

PEX should not be used with PIE.

CROSS-REFERENCE

Refer to PEON .

604 Chapter 23. Keywords P

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

23.46 PEON

Syntax PEON [{ #ch | chan_ID | job_name$ }]
Location PEX

PEX is similar to the PIE system extension (see PIE_ON for more details), in that it allows buried pro-
grams to access the screen in the background. However, PEX cannot be used with PIE and is completely
independent. PEX should be loaded after the Pointer Environment (notably the PTR_GEN file), and after
any other code which redefines the window handling of the QL (for example Lightning or Speedscreen).
It must however be loaded before the History device (except on SMSQ/E which has a built in History
device).

People who use PEX or PIE may like to also use another utility PICE which updates the QL screen at
pre-defined time intervals so that any part of a window which is not buried will actually appear on screen
(whether or not part of that window is buried). If you wish to use PICE, it is recommended to set the
PICE job to a priority of 1 so as not to slow the system down too much.

The PEON command allows you to select which windows and Jobs should allow background screen
access - this is important since the more programs which continue to run in the background, the slower
your QL will appear!! If no parameter is specified, then background screen access is enabled for all Jobs.

You can however pass any number of parameters, which can be:

1. A SuperBASIC channel number for the current program;

2. A QDOS channel number (see CHANNELS) in which case PEX will only affect that specific
channel;

3. The name of a Job (passed as a string - use a null string (“”) for SuperBASIC). PEX will affect all
windows used by that specified Job.

NOTE 1

PEX will not work on pre-JS ROMs. On JS and MG ROMs, its functionality is reduced in that it can
only be used to allow a few machine code calls which do not access the screen to operate notwithstanding
that the Pointer Environment would normally stop them from working from within a buried program. It
is equivalent to:

FOR i=0 TO 127: x=IS_PTRAP(i,3)

NOTE 2

Some toolkits report errors when used alongside PEX and some Qliberated programs refuse to work.

CROSS-REFERENCE

See PEOFF, PIE_ON , PXON , PEX_INI and IS_PEON for more details. IS_PTRAP allows you to enable
PEX for specific machine code routines.

23.46. PEON 605

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

23.47 PEX$

Syntax PEX$
Location PEX

This function returns the date of assembly, version and sub-version of the PEX file.

CROSS-REFERENCE

PEX_SAVE alters the sub-version number. See also QL_PEX and PIF$.

23.48 PEX_INI

Syntax PEX_INI
Location PEX

This command initiates PEX and makes it take effect - it may be useful for example to set up the various
programs and the windowing environment, using PEON and IS_PTRAP and then to start PEX working
at that stage, by using this command.

NOTE

Some toolkits report errors when used alongside PEX and some Qliberated programs refuse to work.

CROSS-REFERENCE

See PEON for more general details. You should also see PEX_XTD and PX1ST .

23.49 PEX_SAVE

Syntax PEX_SAVE directory$
Location PEX

This command stores the current settings of PEX in a file called PEX19_byt (for version 19.30) in the
specified directory so that when you next load PEX (with LBYTES directory$&PEX_19_byt for exam-
ple), you will not have to re-set all of the various settings. The sub-version number of PEX is increased
by one.

Example

PEX_SAVE 'win1_start_'

will create the file win1_start_PEX19_byt.

NOTE

An underscore must appear at the end of directory$.

CROSS-REFERENCE

606 Chapter 23. Keywords P

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

See PEON for more general details. The settings which are saved are set with the command IS_PTRAP
and IS_PXLST. PEX$ returns the sub-version number.

23.50 PEX_XTD

Syntax PEX_XTD
Location PEX

This command re-installs the keywords provided as part of PEX and can help overcome the problem of
other toolkits re-defining PEX keywords.

CROSS-REFERENCE

See PEON for more general details. You should also see PEX_INI and PX1ST .

23.51 PHONEM

Syntax PHONEM (string$)
Location Ähnlichkeiten

This function returns a string (even though the name does not end with $) which is a (more Germanic)
phonetic transcription of the supplied string. If two words sound similar or are even homophones, their
PHONEM’s are identical. The function is not case-sensitive.

Examples

A$ = PHONEM ("Toolkit")
A$ = PHONEM ("DoolGid")
A$ = PHONEM ("DOLGYD")

All of which return “DOLCYD”.

NOTE

An expression such as:

PRINT PHONEM (a$) INSTR PHONEM (b$)

will always return 0 on pre Minerva ROMs. Use temporary variables to get around this problem:

t1$=PHONEM(a$) : t2$=PHONEM(b$)
PRINT t1$ INSTR t2$

which will work properly.

CROSS-REFERENCE

SOUNDEX, WLD.

23.50. PEX_XTD 607

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

23.52 PI

Syntax PI
Location QL ROM

This function is a constant number which returns the value of Pi with an error of 10^(-29). You can test
the precision of PI with such a program:

100 p = PI - 3: PRINT "PI = 3.";
110 FOR n = 1 TO 35
120 p = p * 10
130 PRINT INT(p);
140 p = p - INT(p)
150 END FOR n
160 PRINT

CROSS-REFERENCE

The trigonometrical functions (SIN , TAN , ACOS etc) expect parameters in radians, so PI must be used
in most cases. Another fundamental mathematical constant, e, can be obtained with EXP(1).

23.53 PICK$

Syntax PICK$ (n, slct1$ *[,slcti$]*)
Location CONTROL (DIY Toolkit Vol E)

The function PICK$ takes one positive integer n and one or more other parameters slct1$, slct2$, etc.
The function returns the value of the nth parameter, so n must be smaller than or equal to the number of
supplied slctx$. Don’t forget, n must be greater than zero!

Example

PICK$ is intended to simplify expressions, here are some silly examples:

100 bool%=RND (0 TO 1)
110 IF bool% THEN PRINT "yes": ELSE PRINT "no"

becomes:

100 bool%=RND (0 TO 1)
110 PRINT PICK$ (bool%+1,"no","yes")

Whereas:

100 members = RND (4)
110 PRINT "The team has ";
120 IF members>0: PRINT members;: ELSE PRINT "no";
130 PRINT " member";
140 IF members<>1 THEN PRINT "s": ELSE PRINT

608 Chapter 23. Keywords P

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

becomes:

100 members = RND(4)
110 PRINT "The team has ";
120 PRINT PICK$ (1+(members<>0),"no",members);
130 PRINT " member";PICK$ (1+(members<>1),"","s")

The slightly more complex:

100 DIM num$ (9,5)
110 RESTORE : FOR i=0 TO 9: READ num$(i)
120 DATA "zero","one","two","three","four"
130 DATA "five","six","seven","eight","nine","ten"
140 :
150 REPeat typing
160 key = CODE (INKEY$ (-1))-48
170 IF key<0 OR key>9 THEN EXIT typing
180 PRINT num$ (key)!!
190 END REPeat typing

becomes:

100 REPeat typing
110 key = CODE (INKEY$(-1))-48
120 IF key<0 OR key>9 THEN EXIT typing
130 PRINT PICK$ (key+1,"zero","one","two","three","four","five","six","seven",
→˓"eight", "nine", "ten")
140 END REPeat typing

CROSS-REFERENCE

Note that conditions have a numeric value, see IF, AND and OR for details. SELect ON .. END SELect
<KeywordsS.clean.html#-end-select>`__ is a less restrictive alternative to PICK$.

23.54 PICK%

Syntax PICK% [(JobID] or
PICK% (JobID, action)

Location PEX

This function can be used to perform various acts.

The first syntax is the more common and will bring the specified Job (by reference to its QDOS Job id
or its Job Number as specified by JOBS) to the top of the pile under the Pointer Environment, making all
of its windows appear on screen as if it had been Picked from the Qpac 2 file menu.

If JobID is -1 or omitted, then the Job which contains this command, ie the current job, is brought to the
top of the pile. This variant is therefore similar to TOP_WINDOW.

If JobID is -2, then the next Job in the Job Table (see NXJOB) is brought to the top of the pile - this is
therefore similar to pressing <CTRL><C>.

23.54. PICK% 609

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

The second variant is more complex and depends upon the values of JobID and action.

1. If JobID refers to an existing Job and action is -4, then the screen is frozen - this is equivalent to
pressing <CTRL><F5>.

2. If JobID equals -3 and action is an existing QDOS channel number (see CHANNELS) or Super-
BASIC channel number then that particular channel is unfrozen, allowing input from / output to
that channel provided that the Job which owns that channel is at the top of the pile or can use
background screen access under PEX.

3. If JobID equals -4 and action is an existing QDOS channel number (see CHANNELS) or SuperBA-
SIC channel number then that particular channel is frozen again and any attempt by a program to
access that channel will (unless that program is not buried) cause that program to halt temporarily.

The values returned by PICK% are normally zero if the function is successful. Otherwise errors are
returned as follows:

• -1 : Job is In Use (although we are not certain when this will be reported).

• -2 : Job does not exist.

• -6 : Specified QDOS channel number does not exist.

CROSS-REFERENCE

OJOB and NXJOB allow you to find out details about a specified Job. PEON allows background screen
access.

23.55 PIE_EX_OFF

Syntax PIE_EX_OFF
Location PIE

PIE_ON contains details about what PIE is used for and you should first of all refer to that.

Presuming that PIE is enabled (with PIE_ON), you may want to treat any programs (or toolkits) which
use SD.EXTOP machine code calls to access the screen differently.

Normally, the Window Manager halts any program which attempts to call the SD.EXTOP machine code
routine unless that program does not have any buried windows. However, PIE_ON allows all buried
programs to continue in the background, storing the changes to the screen as necessary.

However, SD.EXTOP routines may be used for various purposes including writing to the screen directly
and for this reason, if PIE is active, you may find that a program writes to the screen using SD.EXTOP
even though its windows are buried (thus overwriting part of an existing program’s display).

PIE_EX_OFF prevents this effect by still halting any program which attempts to use SD.EXTOP.

CROSS-REFERENCE

See PIE_ON and PIE_EX_ON . See also PXOFF which is similar.

610 Chapter 23. Keywords P

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

23.56 PIE_EX_ON

Syntax PIE_EX_ON
Location PIE

This command re-enables PIE for SD.EXTOP system calls, so that they are affected by the normal
PIE_ON and PIE_OFF commands.

CROSS-REFERENCE

See PIE_ON .

23.57 PIE_OFF

Syntax PIE_OFF
Location PIE

See PIE_ON below.

23.58 PIE_ON

Syntax PIE_ON
Location PIE

The Window Manager forms part of the Pointer Environment and is a standard system extension. It
allows you to multitask all kinds of programs easily, provides non-destructible windows and more.

One of the main problems with current versions of the Window Manager is that if any part of the windows
owned by a given Job is buried under another Job’s windows (ie. you cannot see that part of the window
on-screen because of another program), then if that buried Job tries to access the screen (with PRINT for
example), the Window Manager will pause that Job until its window is no longer buried.

The Pointer Interface Extension (PIE) modifies the Pointer Environment so that a program is not halted
when it tries to send screen output while its window is fully or partially buried by another job.

It does this by storing the changes to the buried window in memory and then when the buried Job is
brought to the top of the pile (see PICK%), then its window is updated.

PIE_ON enables PIE, PIE_OFF disables it. These commands on their own cannot lead to any problems,
you can switch PIE on and off whenever you like.

CROSS-REFERENCE

PIE_EX_ON and PIE_EX_OFF. See also PEON and PXON which greatly enhance these facilities.
PEND can be used to check if a Job can send output to the screen.

23.56. PIE_EX_ON 611

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

23.59 PIF$

Syntax PIF$
Location PEX

This is the same as QRAM$!

23.60 PINF$

Syntax PINF$
Location Fn

This is the same as QRAM$ and PIF$!

23.61 PIXEL%

Syntax PIXEL% ([#ch,] x1,y1)
Location PIXEL (DIY Toolkit - Vol G)

This function can be used to read the colour of a point in absolute co-ordinates on the screen with reference
to the specified window channel (if any - default #1).

This function will work in MODE 4, 8 and 12 (on the THOR XVI, if you have v0.9+). The main limitation
on this function is that the point must appear within the specified window, so x1 and y1 cannot exceed
the width or height of the specified window (in pixels), or be less than zero.

NOTE

Although PIXEL% will work wherever the screen base is located, prior to v1.0, it assumed that a line of
pixels takes 128 bytes - early versions will not therefore work on higher resolutions.

CROSS-REFERENCE

PLOT and DRAW allow you to draw points and lines on the screen. INK gives details about the various
colour values which may be returned (this will be in the range 0. . . 16).

23.62 PJOB

Syntax PJOB (job_ID) or
PJOB (jobnr,tag) or
PJOB (jobname)

Location Toolkit II

612 Chapter 23. Keywords P

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Each job has a priority - the function PJOB finds it and returns 0 if the given job does not exist, otherwise
it returns the priority of the specified job.

You can calculate the job_ID with the formula:

job_id = jobnr + tag * 216

A negative job_ID (preferably -1) identifies the job calling PJOB. The higher the priority, the more work-
ing time a job draws from the processor, and therefore the faster the execution.

Example

The priority of the main SuperBASIC interpreter can be seen with:

PRINT PJOB(0)

MINERVA NOTE

The maximum priority for a job on a standard QL is 255, however, on a Minerva ROM, the acceptable
priority range is altered to -128. . . 127. If PJOB returns a value over 127, then deduct the difference
between this and 256 from zero to get the priority on a Minerva machine - see SPJOB for further details.

CROSS-REFERENCE

JOB$, OJOB and NXJOB return other information about a job.

23.63 PLAY

Syntax PLAY nr, music$
Location ST/QL, QSound

The command PLAY will store the sequence music$ under the sequence number nr. The sequences are
numbered 1, 2, 3, etc. No details are available for the limits of nr and the structure of music$.

CROSS-REFERENCE

RELEASE nr plays a sequence. SND_EXT .

23.64 PLOT

Syntax PLOT x,y,colour
Location Fast PLOT/DRAW Toolkit

This command forces a pixel to be set at the absolute screen position x,y. The origin (0,0) is the upper
left corner of the full QL screen, the opposite corner (diagonally) is (511,255). Two neighbouring points
do not have any space between them.

Co-ordinates greater than 511 (x) or 255 (y) or smaller than 0 are modulated - (x MOD 511) and/or (y
MOD 255). The base address of the screen used by PLOT is defined with SCRBASE. PLOT works in
MODE 4 only.

Example

23.63. PLAY 613

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

The following procedure plots a point given in polar co-ordinates. A simple approach to draw a line in a
polar system is listed at DRAW. A sensible range for the radius is 0 <= r <= 127.

100 DEFine PROCedure POLAR_PLOT (r,phi,col)
110 LOCal x,y
120 x=1.35*r*SIN(phi+PI/2)+255
130 y=r*COS(phi+PI/2)+127
140 PLOT x,y,col
150 END DEFine POLAR_PLOT

NOTE 1

PLOT writes directly into screen memory and will work on 512x256 resolutions only, it assumes by
default that the screen starts at $20000 (redefine with SCRBASE) and works in MODE 4 only.

NOTE 2

Minerva users can SCRBASE SCREEN(#3) to allow PLOT to draw on the screen on which channel #3
is located.

CROSS-REFERENCE

DRAW draws a line, SCLR clears the screen, and REFRESH makes the screen defined by SCRBASE
visible. Compare the other implementation of PLOT .

23.65 PLOT

Syntax PLOT [#ch,] x1,y1
Location DRAW (DIY Toolkit - Vol G)

This command plots a point in absolute co-ordinates on the screen with reference to the specified window
channel (if any - default #1). This is also used to specify the start point of a line to be drawn with the
DRAW command from the same toolkit.

This is quicker than using the SuperBASIC POINT command and unlike other similar commands, it will
support the current INK colour and OVER mode.

<CTRL><F5> will pause the point drawing and it will even work in MODE 4, 8 and 12 (on the THOR
XVI, if you have v1.6+).

The main limitation on this command is that the point must appear within the specified window, so x1
and y1 cannot exceed the width or height of the specified window (in pixels), or be less than zero.

NOTE

Although PLOT will work wherever the screen base is located, it assumes that a line of pixels takes 128
bytes - it will not therefore work on higher resolutions.

CROSS-REFERENCE

See the other variant of PLOT . See also DRAW . Compare POINT .

614 Chapter 23. Keywords P

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

23.66 POINT

Syntax POINT [#ch,] x,y *[;xi,yi]*

Location QL ROM, GPOINT

This command draws one or more specified points in the given window (default #1). The co-ordinates
are floating point numbers, which means that two POINTs drawn with:

POINT 20,20: POINT 21,20

or:

POINT 20,20; 21,20

for example, are not normally neighbours. If a point lies outside a window, it is simply not drawn, ie.
overflow errors do not occur. The graphics cursor is updated to the last point to be plotted.

Examples

POINT 50,50
POINT 50,50; 60,60
POINT #2,20,50
POINT #2,20,50; 50,20; 20,20; 50,50

NOTE

On MGx ROMs, there is a well-known POINT bug which makes POINT draw two points instead of
one. This is fixed by some versions of Toolkit II, the ST/QL Emulator, SMS, Gold Card, other ROMs
(especially Minerva) and small patches like GPOINT. GPOINT includes two commands: a replacement
POINT and GPOINT which is just another name for the same thing.

CROSS-REFERENCE

The relation between the supplied co-ordinates and their position in the window is defined with SCALE.
The colour of the point(s) is set with INK . The window can be resized with WINDOW . LINE draws a
line. The GPOINT command is fully identical to POINT except that it fixes the MGx ROM bug. Check
the ROM version with VER$.

23.67 POINT_R

Syntax POINT_R [#ch,] x,y *[;xi,yi]*

Location QL ROM

This command is similar to POINT except that all co-ordinates given are relative to the current graphics
pointer.

CROSS-REFERENCE

See POINT ! Also see LINE_R and CIRCLE_R.

23.66. POINT 615

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

23.68 POKE

See POKE_L below.

23.69 POKE_FLOAT

Syntax POKE_FLOAT address, value
Location DJToolkit 1.16

This procedure will poke the 6 bytes that the QL uses to represent a floating point variable into memory
at the given address. The address can be odd or even as the procedure can cope either way.

EXAMPLE

1000 Address = RESERVE_HEAP(6)
1010 IF Address < 0 THEN
1020 PRINT "ERROR " & Address & " Allocating heap space."
1030 STOP
1040 END IF
1050 POKE_FLOAT Address, 666.616

CROSS-REFERENCE

POKE_STRING, PEEK_STRING, PEEK_FLOAT .

23.70 POKE_STRING

Syntax POKE_STRING address, string
Location DJToolkit 1.16

This procedure simply stores the strings contents at the given address. Only the contents of the string are
stored, the 2 bytes defining the length are not stored. The address may be odd or even.

If the second parameter given is a numeric one or simply a number, beware, QDOS will convert it to the
format that would be seen if the number was PRINTed before storing it at the address. For example, 1
million would be ‘1E6’ which is arithmetically the same, but characterwise, very different.

EXAMPLE

1000 Address = RESERVE_HEAP(60)
1010 IF Address < 0 THEN
1020 PRINT "ERROR " & Address & " Allocating heap space."
1030 STOP
1040 END IF
1050 POKE_STRING Address, "DJToolkit " & DJTK_VERS$

CROSS-REFERENCE

PEEK_STRING, PEEK_FLOAT , POKE_FLOAT .

616 Chapter 23. Keywords P

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

23.71 POKE_W

See POKE_L below.

23.72 POKE_L

Syn-
tax

POKE address,value or
POKE address, value1 *[,valuei]*(Minerva and SMS only) or
POKE address, {value1 | value1$} *{,valuei | valuei$}* (SMS only)
and
POKE_W address,value or
POKE_W address, value1 *[,valuei]*(Minerva and SMS only)
and
POKE_L address,value or
POKE_L address, value1 *[,valuei]*(Minerva and SMS only)

Lo-
ca-
tion

QL ROM

Both kinds of internal memory (RAM and ROM) are organised as a stream of values. The basic unit for
memory is a bit (a value of 0 or 1 relating to false or true), which relates to the binary system of counting.

Eight bits are combined to form a byte (0 to 255), sixteen bits make a word, and thirty-two a longword.
Words and longwords are signed whilst bytes are unsigned.

The POKE commands allow you to set values in memory.

It is however unwise to POKE just anywhere, because there could be important code present in that part
of memory which will be disrupted by POKEs and could crash your computer. You would generally have
already set aside a part of memory for use by your own programs, by using RESPR or ALCHP and then
you would POKE different values in that part of memory, eg. for storing data. This is a representation of
the relationship between bits, bytes, words and longwords:

Bits 10011000 10001000 11011111 10111000
Bytes 152 136 223 184
Words -26488 -8264
Long Word -1.73586E9

or

Bits 01110110 11000111 01100000 00000011
Bytes 118 199 96 3
Words 30407 24579
Long Word 1.992778E9

NOTE 1

Negative values can also be stored in memory. However, they are stored by deducting the number from
the maximum number which can be stored in a byte plus one.

23.71. POKE_W 617

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

POKE 131072,255
POKE 131072,-1

have the same effect.

NOTE 2

Do not try to POKE_W or POKE_L to an odd address (eg. 10001) as this will cause an error unless you
are using Minerva (see below).

NOTE 3

If you try to poke a value which is too big to fit into the given space, eg:

POKE 131072, -32768

then only the least significant byte is used (with POKE) and the low word is used (with POKE_W).

NOTE 4

The THOR XVI limits value to the following ranges: POKE: -128..255; POKE_W: -32768..65535

MINERVA NOTES

The POKE, POKE_W and POKE_L commands on Minerva (version 1.77 or later) are very much en-
hanced and different. Minerva allows you to POKE_W and POKE_L to odd addresses. eg:

POKE_W 131073,100100

Minerva has also added to the usefulness of the POKE, POKE_W and POKE_L commands by allowing
them to store a list of numbers in one go.

As an example the following two program lines have exactly the same effect, although only line 100 will
run on a non-Minerva QL.

100 POKE_W start,10: POKE_W start+2,125: POKE_W start+4,10322
110 POKE_W start,10,125,10322

Minerva also allows the BASIC programmer to access the QL’s SuperBASIC variables, system variables
and Minerva’s own System Xtensions (although the extended PEEKs should be of more use). You will
need a good book on QDOS (eg. QDOS/SMS Reference Manual) to find out what the possible values
are. The syntax for these extra commands is:

Alter SuperBASIC variables

POKE \\SBvar,value: REMark SBvar=0...256
POKE_W \\SBvar,value
POKE_L \\SBvar,value

POKE \SBvar\Offset,value
POKE_W \SBvar\Offset,value
POKE_L \SBvar\Offset,value

Alter System variables

618 Chapter 23. Keywords P

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

POKE !!Sysvar,value: REMark Sysvar=0...1152
POKE_W !!Sysvar,value
POKE_L !!Sysvar,value

POKE !Sysvar!Offset,value
POKE_W !Sysvar!Offset,value
POKE_L !Sysvar!Offset,value

The command

POKE \\SBvar,value

will alter the SuperBASIC variable pointed to by Sysvar, such as the current line number. The most
useful of these are variables $68 onwards.

The command

POKE \SBvar\Offset,value

allows you to alter the different SuperBASIC tables used by the QL (eg. the channel table). The start
addresses of the different tables are contained in the SuperBASIC variables $0 to $64. SBvar must contain
the relevant SuperBASIC variable (the pointer to the required table), then the Offset is the required address
within the table.

The command

POKE !!Sysvar,value

allows you to alter the different system variables (normally stored at $28000 on a QL, but they can move!).
These are useful for accessing the current network number, finding free space, accessing device drivers,
forcing <CAPSLOCK>. Sysvar merely contains the number of the required system variable.

The command

POKE !Sysvar!Offset,value

takes the address contained within the given system variable, adds the Offset to that address and then
pokes it with the given value.

On a Minerva machine the system variable stored at $7C (124) (SV.CHTOP) contains the address of the
Minerva System Xtensions, therefore to alter these:

SysX = PEEK_L (ver$(-2) + 124)
POKE SysX + offset,value
POKE_W SysX + offset,value
POKE_L SysX + offset,value

Minerva’s System Xtensions provide such things as the addresses for translation tables, the attributes for
the size type and colour of a cursor, the fonts for all subsequently opened windows and much more. . .
(see Minerva manual for list).

Minerva Example 1

It is sometimes useful to alter the key repeat delay and frequency to make allowances for when a different
keyboard is attached to the QL, so that you can type more quickly without having the problem that you

23.72. POKE_L 619

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

are waiting around for auto-repeat to take effect. These two values can now simply be altered using:

POKE_W !!140, key_delay
POKE_W !!142, key_frequency

Minerva Example 2

Want to attach a new font to all channels which will be opened in the future?

100 a=RESPR(2000)
110 LBYTES flp1_new_font, a
120 POKE_L !124!40, a

Minerva Example 3

It might be useful in an error trapping routine to find the current DATA position (eg. if there is an error
when reading data into a variable), so that the position may be returned to later once the error has been
overcome. You may even wish to miss out the problem DATA line. This program is an ‘intelligent’
data-loader:

100 WHEN ERRor
110 data_line=PEEK_W(\\148)
115 PRINT 'ERROR IN DATA LINE'!data_line!';statement'! PEEK(\\151)-1
120 INPUT 'Go to next data line (y/n)'!a$
130 IF a$=='y': POKE_W\\148,data_line+1: POKE\\150,1:POKE\\151,1: RETRY
140 IF a$=='n' THEN
145 data_store=PEEK_W(\\148)*65536+(PEEK(\\150)-1)*256+PEEK(\\151)-1
147 PRINT"Alter offending line then enter re_run":STOP
149 END IF
150 END WHEN 155 :
160 RESTORE
170 ax=RESPR(100):i=0
180 REPeat data_load
190 IF EOF: EXIT data_load
200 READ b
210 PRINT b,i:POKE ax+i,b
220 i=i+1
230 END REPeat data_load
240 DATA 10,10,2,3,3a,10
250 DATA 10,2,2,3,3,2
255 :
260 DEFine PROCedure RE_run
270 POKE_L \\148,data_store: GO TO 170
280 END DEFine

SMS NOTE

POKE, POKE_W and POKE_L have been made the same as on Minerva except that POKE_W and
POKE_L cannot address odd addresses.

SMS does not possess Minerva’s System Xtensions.

Please also note that SMS’s improved interpreter won’t allow you to enter line 240 in the Minerva Ex-
ample 3 as the data item 3a will be rejected.

620 Chapter 23. Keywords P

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

One extra addition to SMS is that the POKE command can actually accept a string as a value to be poked
into memory. If a string is passed as a parameter, each character of the string is converted to its character
code and then that byte poked into memory, for example:

POKE base,0,5,'WIN1_'

will store ‘WIN1_’ as a standard QL string (a word containing its length followed by the string itself) at
the address in memory pointed to by base. Note that if you pass an empty string, this will have no effect.

WARNING

If you are POKEing around in memory then make sure that you know what you are doing.

On every QDOS machine, even RAM areas which have not been set aside for program use are used by
the operating system, eg. for buffering purposes. On Emulators and QLs fitted with a Gold Card, the
operating system itself is no longer in ROM but is moved into RAM. POKEing in this area will almost
surely lead to crashes. Even advanced users who know which parts of memory are used by QDOS should
avoid amending QDOS directly. There are more elegant and safer methods how to do this which will run
on every QDOS compatible computer.

CROSS-REFERENCE

PEEK , PEEK_W , PEEK_L and PEEK$ read memory values and POKE$ is another command to set
them. CHAR_DEF allows you to attach a font to all channels OPENed after the command. POKES
allows you to POKE memory in Supervisor mode.

23.73 POKES

See POKES_L below.

23.74 POKES_W

See POKES_L below.

23.75 POKES_L

Syn-
tax

POKES address, {value1 | value1$} *{,valuei | ,valuei$}*

and
POKES_W address, value1 *[,valuei]*

and
POKES_L address, value1 *[,valuei]*

Lo-
ca-
tion

SMSQ/E and ATARI_REXT v2.17+

These three commands are only of any use on the Atari series of computers. They are the same as the
simple forms of POKE, POKE_W and POKE_L, except that they operate in Supervisor Mode and can
therefore be used to write data direct into the Atari’s IO hardware. On all other implementations they are
the same as POKE, POKE_W and POKE_L.

23.73. POKES 621

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE

See POKE and PEEKS. Also see PROT_MEM.

23.76 POKE$

Syntax POKE$ address,string$
Location ATARI_REXT, TinyToolkit, BTool, SMS

The standard version of this command pokes the code of each of the given string’s characters to memory
from address onwards. In SuperBASIC, the procedure might look similar to:

100 DEFine PROCedure POKE$ (address,string$)
110 LOCal i
120 FOR i=1 TO LEN(string$)
130 POKE address+i-1,CODE(string$(i))
140 END FOR i
150 END DEFine POKE$

The BTool version writes the string in QDOS internal format: the string’s contents are preceded by two
additional bytes (one word) indicating the length of the string. address must be even. If you pass an
empty string, all versions of this command will not do anything.

SMS NOTE

This command is now very similar to POKE in that POKE allows you to pass a string as a parameter.
POKE$ can also now access the System Variables and SuperBASIC variables directly as with POKE.

CROSS-REFERENCE

PEEK$ reads strings from memory. MKS$ returns the internal format of a given string. TTPOKE$ is the
same as this command.

23.77 POKE_F

Syntax POKE_F address,float
Location BTool

Floating point numbers are internally stored as six bytes. POKE_F will store any float at address in
memory where ODD(address)=0.

Example

Floating point numbers can be stored in internal format in a file with PUT. The disadvantage of that
method is low disk access speed if you need to store a large number of values.

Compare the following two programs which store the same amount of data at different speeds.

Slow but minimal memory usage:

622 Chapter 23. Keywords P

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

100 n=1000: file$="flp1_test_dat"
120 fp=FOP_NEW(file$)
130 FOR i=1 TO n: PUT#fp,RND
140 CLOSE#fp

Fast but 6K buffer required:

100 n=1000: file$="flp1_test_dat"
120 a=ALCHP(6*(n+1))
130 FOR i=0 TO n: POKE_F a+i*6,RND
140 SBYTES file$,a,6*(n+1)
150 RECHP a

CROSS-REFERENCE

POKE, POKE_W and POKE_L store different ranges of integer numbers. MKF$ returns the internal
representation of a floating point number as a string. GET and PUT write all kinds of data types in
their internal format to a channel, FPUTF and FGETF are specialised variants for floats only. See also
PEEK_F!

23.78 PRINT

Syn-
tax

PRINT [#chan,] *[[separator] [strgi$ separator] vari]* or
PRINT *[[#chan,] [separator] [strgi$ separator] vari]* (THOR XVI & Minerva v1.97+ only)

Lo-
ca-
tion

QL ROM

This command will send a string of bytes to the specified channel (default #1).

If any variables (var) are specified, the contents of those variables are PRINTed in the specified channel.

If the channel is a window, the characters printed appear at the current text cursor position, in the current
INK colour on the current STRIP colour, and will also be affected by the settings of CSIZE, UNDER,
FLASH and OVER.

If you tell PRINT to use an unset variable, an asterisk (’*’) will be PRINTed on screen rather than an
error being reported (except on SMS where an unset variable is given the value 0 (if a numeric variable)
or ‘’ for a string). Beware, however that if you try to use an unset variable in a calculation inside the
PRINT statement, an ‘Error in Expression’ error will be generated, for example:

a=10 : PRINT 'A is :'! a ,'B is :'! b : PRINT 'A*B is :' !a*b

If a channel is specified, this must be followed by a comma. It may however also be followed by one or
more separators, as with INPUT.

At the end of the PRINT command, the text cursor is placed at the start of the next print line (unless an
end separator of ‘!’, ‘\’ or ‘;’ is used). When using a separator of ‘!’, TO or ‘,’ on a non-window channel,
the PRINT statement will always assume the end of each line to be the number of characters specified
with the WIDTH command, thus allowing you to format your output on a printer, for example.

Example

23.78. PRINT 623

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

The following procedure allows you to print text to a given channel without splitting words when the text
wraps onto the next line:

100 DEFine PROCedure PRINT_TEXT(ch,txt$)
110 LOCal print_loop
120 REPeat print_loop%
130 IF LEN(txt$)=0:PRINT #ch:RETurn
140 I%=' ' INSTR txt$
150 IF I%=0:PRINT #ch!!txt$:RETurn
160 PRINT #ch!!txt$(1 TO I%-1)!
170 IF I%<LEN(txt$):txt$=txt$(I%+1 TO):ELSE txt$=''
180 END REPeat print_loop%
190 END DEFine

Try:

WINDOW #1,50,100,32,16: PRINT_TEXT #1,'This is a test line'

Compare:

PRINT #1,'This is a test line'

NOTE 1

Version 6.40 of the THOR XVI ROM can crash if you try to use PRINT with the ‘!’ separator in a
non-window channel.

NOTE 2

The THOR XVI (all versions) and non-Minerva ROMs (unless SMS is installed) have problems with the
concatenation of values which should produce an ‘Overflow Error’. For example:

PRINT 'hello'&(1/0)

may crash the computer rather than producing an overflow error.

NOTE 3

PRINT can only show a maximum of six integer digits. If a number is larger than this, it will be repre-
sented by the E function (eg. 1E2 is the same as 100). If on the other hand, the figure is a floating point,
then the QL can cope with seven digits excluding the decimal point, eg. 123.4567. Any more digits will
cause the number to be rounded up or down as appropriate.

MINERVA NOTE

v1.97+ allows different channels part way through statement as per THOR XVI.

THOR XVI NOTE

Version 6.41 of the THOR XVI allows you to put channel numbers part way through a statement, for
example:

PRINT 'Name:'!name$ \#0; 'Address:' !address$

instead of:

624 Chapter 23. Keywords P

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

PRINT 'Name '!name$: PRINT #0;'Address:'!address$

CROSS-REFERENCE

See also INPUT which contains a description of the different types of separators. Please also see
WIDTH. TO has other meanings - see TO. VG_PRINT allows you to print using scalable fonts on screen.
CHAR_USE and CHAR_DEF allow you to alter the fonts used for printing characters on screen.

23.79 PRINT_USING

Syntax PRINT_USING [#ch,] format$, *[itemi]*

Location Toolkit II

This command allows you to send output to the specified channel (default #1) in a particular format. This
for example, allows you to print neat columns of figures easily, all lined up on the decimal point.

The format$ is made up of a mixture of special characters, text and fields. Basically, PRINT_USING will
print out format$ as normal, until one of these special characters is met. The special characters currently
supported are: © (copyright) + - (# * , . ! \ ‘ “ and $. These have the following effects:

Character Effect
© This forces PRINT_USING to print out the next character in format$ even if it is a

special character. If you want to print some text including one of the special char-
acters, this must be used.

+ This is used to either prefix or postfix a decimal field. If present, then the sign of
the decimal number is written out in this position.

- This is used to either prefix or postfix a decimal field. The sign of the decimal
number will only be written in this position if the number is negative. This and the
closing bracket can be used to surround a decimal field, in which case if the number
is negative, it will appear in brackets.

(Hash) This is used to mark a type of field (see below).
* (Asterisk) This is also used to mark a type of field (see below).
\ This will force a newline to take place. Unlike PRINT, PRINT_USING does not

automatically carry out a newline after finishing its work.
“ and ‘ Anything between either single or double quotation marks will be printed out with-

out looking for special characters.
$ This is used to signify the start of a currency field. Any characters between this sign

and the next ‘#’ symbol are taken to be the name of the currency and are pushed
right to line up with the actual amount.

The fields in the format$ allow you to print text and/or figures in specific formats. Each item following
format$ is then read and inserted in place of each field. If however, a numeric field is not long enough to
hold the specified figure, then the field appears as just ‘#’ marks on screen. Text fields will just truncate
the text supplied to fit. The fields which are recognised are:

23.79. PRINT_USING 625

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Field Meaning
If item is text, write it left justified and truncate to fit size of field if necessary. If item

is a number, write the integer part of the number right justified (eg. PRINT_USING
‘###’,’Hello’ will print Hel).

**** This is the same as #### except that any unused part of the field to the left of the
characters is filled with ‘*’ characters. (eg. PRINT_USING ‘****’,1.234 will print
***1).

###.## Print a fixed decimal point number right justified to a set number of decimal places.
(eg. PRINT_USING ‘##.#’,1.26 will print 1.3).

***.** The same as ###.## except that any unused part of the field is filled with ‘*’ char-
acters.

#,###.## This is the same as ###.## except that a comma will be used to separate thousands.
*,***.** This is similar to #,###.## except that any unused part of the field will be filled with

‘*’.
-#.###!!!! This is used for an exponential field with the sign only being shown if the figure is

negative. (eg. PRINT_USING ‘-#.##!!!!’,3120 will print 3.12E+03). An exponen-
tial field must always begin with a sign followed by one # mark and a decimal point,
and always end with four ! marks.

+#.###!!!! This is the same as -#.###!!!! except that the sign of the number is always shown.
###.>> This is introduced by SMSQ/E v2.73+ and is the same as ###.## except that it is for

fixed point decimal figures, scaled accordingly. This allows you, for example, to con-
vert a calculation from pennies into pounds. (eg. PRINT_USING ‘###.>>’,312.01
will print 3.12). You can add more > characters after the decimal point if you need
to convert to three decimal places.

***.>> This is introduced by SMSQ/E v2.73+ and is the same as ###.>> except that any
unused part of the field is filled with ‘*’ characters.

Example

A program which prints out a stocklist, which might be useful for a small business:

100 RESTORE
110 MODE 4
120 WINDOW 448,200,32,16:PAPER 0:INK 7:CLS
130 CSIZE 2,0:AT 1,10:UNDER 1:PRINT 'STOCK LIST'
140 CSIZE 1,0:AT 5,0
150 PRINT 'NO ITEM IND. PRICE TOTAL'
160 UNDER 0
170 total=0:Lines=6
180 REPeat loop
190 IF EOF:EXIT loop
200 READ equipment$,items,ind_price
210 price=ind_price*items
220 total=total+price:Lines=Lines+1
230 PRINT_USING '#,###. ##############',items,equipment$
240 PRINT_USING ' $##.## $##,###.##\',ind_price,price
250 END REPeat loop
260 OVER 1:AT Lines-1,0:UNDER 1
270 PRINT FILL$(' ',45):UNDER 0

(continues on next page)

626 Chapter 23. Keywords P

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

280 IF INT(total)<>total:total=total*100
290 PRINT TO 23;'Total Stock £';CDEC$(total,9,2)
1000 DATA 'Minerva',110,40,'Minerva MKII',205,65.61
1010 DATA 'Hermes',100,25,'68008 CPU',1230,8.7

NOTE 1

On Toolkit II versions before v2.08, this command could cause problems if an empty string was passed
to it.

NOTE 2

Some versions of the Toolkit II manual get the copyright symbol (’©’) mixed up with the ‘at’ symbol
(‘@’). The latter has no special meaning.

NOTE 3

Because of variations in the way in which numbers are represented in different countries, either a comma
or full stop is recognised as a decimal point by PRINT_USING. If a field only contains one comma or full
stop, that is taken to be the decimal point, however, if more than one comma and/or full stop appears in the
field, the last one is taken to be the decimal point, the others being assumed to be thousands separators.
If you want numbers to be printed with thousands separators but no decimal point, use a comma or full
stop as the last character of the field.

CROSS-REFERENCE

See also FDEC$, IDEC$ and CDEC$.

23.80 PRIO

Syntax PRIO priority
Location PRIO

This command sets the priority of the current job to the given priority. Priority must range from 0 to 127.

Example

Multitasking jobs waiting for a keypress or anything else to be activated slow down the whole system
although they are actually doing nothing. A job which is waiting (perhaps for a certain amount of time)
for input could set its own priority to one, and then when it is able to continue, reset to a higher priority
value.

NOTE

If a job has priority 0 it will not be able to run. Other tasks may however set that job’s priority (eg. with
SPJOB and allow it to continue).

CROSS-REFERENCE

SPJOB, SP_JOB, and PJOB also deal with job priorities.

SPJOB -1

is exactly the same as PRIO, priority, or PRIORITISE.

23.80. PRIO 627

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

23.81 PRIORITISE

Syntax PRIORITISE [jobnr, jobtag,] priority
Location TASKCMDS (DIY Toolkit Vol J)

PRIORITISE is a command which takes either one or three parameters and sets the priority of the current
job (if only one parameter is used) or the job specified by jobnr and jobtag to priority.

Example

PRIORITISE 127

gives the current job the maximum amount of processor time available when multitasking.

CROSS-REFERENCE

A one parameter variant of PRIORITISE is PRIO. Refer to SPJOB and connected keywords for more
information on jobs and priorities. JOBS will give details of job numbers and job tags.

23.82 PRO

Syntax PRO
Location Beuletools

This function returns the codes needed to switch on the proportional font on an EPSON compatible
printer:

PRINT PRO

is the same as:

PRINT CHR$(27) & "p" & CHR$(1)

CROSS-REFERENCE

NORM, BLD, EL, DBL, ENL, SI , NRM, UNL, ALT , ESC, FF, LMAR, RMAR, PAGDIS, PAGLEN .

23.83 PROCESSOR

Syntax PROCESSOR
Location SMSQ/E

This function returns a value which can be used to find the type of Processor on which SuperBASIC is
running (normally a member of the Motorola 680xx family). The values returned are:

628 Chapter 23. Keywords P

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

PROCESSOR Chip Type
0x 68000 or 68008
1x 68010 or an INTEL chip (QPC < 3.33)
2x 68020 (and QPC >= 3.33)
3x 68030
4x 68040
6x 68060

In the above ‘x’ is replaced by a value between 0 and 8 to indicate if a maths co-processor is installed).

You can also test if a maths co-processor is installed, by using:

coprocessor%=PEEK(!!$A1) && BIN('1111')

The following values may be returned:

Coprocessor Meaning
0 No FPU fitted.
1 An Internal MMU is fitted.
2 A 68851 MMU is fitted.
4 An internal FPU is fitted.
8 Either a 68881 or 68882 FPU is fitted.

NOTE

The processor type was not stored before Level E-20 of the ST/QL Drivers.

QPC Note

QPC versions prior to 3.33 will return a value of 10 for the PROCESSOR function while those from 3.33
onwards will return 20.

CROSS-REFERENCE

See MACHINE, QDOS$ and VER$

23.84 PROCedure

Syntax . . . PROCedure
Location QL ROM

This keyword forms part of the structure DEFine PROCedure. As such, it cannot be used on its own
within a program - this will cause a ‘bad line’ error.

CROSS-REFERENCE

Please refer to the individual structure descriptions for more details.

23.84. PROCedure 629

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

23.85 PROGD$

Syntax PROGD$
Location Toolkit II

This function returns the default program device as set by PROG_USE, see below.

CROSS-REFERENCE

PROG_USE, DLIST , DATAD$.

23.86 PROG_USE

Syntax PROG_USE default_device
Location Toolkit II, THOR XVI

The command PROG_USE and dependent commands behave in the same way as DATA_USE with a few
differences.

The program device set with PROG_USE is used by the EX (EXEC), EW (EXEC_W) and (exceptionally
SEXEC) commands as the default device. Whereas some commands which use the data device (eg.
MERGE, LOAD) check the program device if they do not find a given file on the data device, the above
commands which use the program device will not look at the data device should they fail on the program
device.

NOTE

The default devices cannot exceed 32 characters (plus a final underscore) - any attempt to assign a longer
string will result in the error ‘Bad Parameter’ (error -15).

CROSS-REFERENCE

PROGD$ returns the program device setting. See DATA_USE for more information.

23.87 PROT_DATE

Syntax PROT_DATE flag
Location SMS, Gold Card

Many systems which can run SMS (including QXL, the Gold Card and Super Gold Card) include a battery
backed clock (also known as a real-time clock). In this case, there are actually two clocks running:

One is run by the operating system (the QL internal clock) which is found on each QL implementation.
The internal clock forgets the time if the computer is switched off and has to be set each time the machine
is powered up.

The other clock is the battery backed clock which keeps the time even when the QL is switched off (until
the battery runs flat) and this normally sets the Internal Clock each time the QL is reset (or switched on).

630 Chapter 23. Keywords P

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

It may be necessary to adjust the QL’s internal clock whilst the QL is being used, without wishing to
disrupt the battery backed clock - some software alters the QL’s internal clock when there is no need, the
internal clock can also be affected by crashes during program development.

Some battery backed clocks may alter their time when the QL’s internal clock is altered and therefore some
form of protection is needed - you will normally need to enable the protection by using the command:

PROT_DATE 1

PROT_DATE 0

will disable the protection.

NOTE 1

This has no effect on the battery backed clock provided by Minerva MKII which has to be altered using
the configuration program.

NOTE 2

If you reset the Gold Card or Super Gold Card to 128K, PROT_DATE 1 is executed.

NOTE 3

Serious crashes and some old games may disturb the battery backed clock even in protected mode.

NOTE 4

On some combinations of AURORA and Super Gold Card, if you use PROT_DATE 1, the QL’s internal
clock will run too quickly (see also the notes on DISP_SIZE).

WARNING

SMS, the Gold Card and Super Gold Card do not automatically protect the battery backed clock. It is
therefore advisable to include the line:

PROT_DATE 1

in your boot program.

CROSS-REFERENCE

SDATE and ADATE alter the QL’s internal clock.DATE$ and DAY$ can be used to read the time on the
QL’s internal clock.

23.88 PROT_MEM

Syntax PROT_MEM level
Location SMSQ/E

The command PROT_MEM can be used to set the level of memory protection which is afforded on Atari
ST and TT computers, to try and stop the user from altering essential areas of the operating system by
mistake. There are five levels of memory protection currently available:

23.88. PROT_MEM 631

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Level Protection
0 Memory access faults are not reported.
1 Write memory access faults are trapped from all jobs except from Job 0. Read op-

erations from a protected area read 0.
2 Read memory access faults are trapped from all jobs except Job 0. Any Write oper-

ations to a protected area are ignored.
3 Both Read and Write memory access faults are trapped from all jobs except Job 0.
7 Both Read and Write memory access faults are trapped from all jobs.

The default level is 3.

We would recommend that Level 0 is avoided if at all possible. Memory access faults tend to occur when
the user (or a program) tries to access memory which does not exist or can only be accessed in Supervisor
Mode (the vector area, the TOS system variables and the IO hardware). However, under SMSQ/E, if there
is an attempt to read an address which actually forms part of the legitimate QL vector area, this will not
cause a fault. If a memory access fault is trapped, the Job which has caused the fault is paused and the
program counter is placed on the stack (all registers are preserved). An advanced user may then use a
debugger to examine the Job to find out what has caused the fault.

NOTE

Unfortunately, on other implementations, this command has no effect, and it is therefore still possible to
overwrite the operating system on QL Emulators (non-Atari based), Gold and Super Gold Cards.

CROSS-REFERENCE

See POKES and PEEKS. PROT_DATE protects a battery backed clock.

23.89 PROUND

Syntax PROUND (p, x)
Location TRIPRODRO

PROUND is a function which rounds the given floating pointer number x to the precision of 10p. It looks
at the next digit to decide whether to round upwards or downwards and ignores any others.

Example

Print ten random number with three digits after the decimal point:

100 RANDOMISE
110 FOR i = 1 TO 10
120 PRINT PROUND(-3, 10*RND)
130 END FOR i

CROSS-REFERENCE

DROUND.

632 Chapter 23. Keywords P

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

23.90 PRT_ABORT

Syntax PRT_ABORT
Location ST/QL, SMSQ/E

This is the same as PAR_ABORT or SER_ABORT, depending on which device PRT is linked to.

CROSS-REFERENCE

See SER_ABORT and PAR_ABORT . PRT_USE allows you to specify which port prt emulates.

23.91 PRT_ABT

Syntax PRT_ABT
Location Trump Card, Gold Card, QXL

Because all output sent to the Trump Card, Gold Card and Super Gold Card’s built in PRT device is
buffered (except if you are running SMSQ/E which uses its own PRT device), it can be useful to stop the
port from outputting any further data.

PRT_ABT will prevent any further output and clear the contents. The message ****** ABORTED
****** will then be sent to the port.

CROSS-REFERENCE

PRT_USE allows you to specify the type of output to be buffered. The ST/QL Emulator and SMSQ/E
support a similar function with PRT_ABORT , PAR_ABORT and SER_ABORT .

23.92 PRT_BUFF

Syntax PRT_BUFF [size]
Location ST/QL, SMSQ/E

This is exactly the same as PAR_BUFF except that it creates buffered output on whichever port is attached
to the PRT device.

CROSS-REFERENCE

See PAR_BUFF.

23.90. PRT_ABORT 633

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

23.93 PRT_CLEAR

Syntax PRT_CLEAR
Location ST/QL, SMSQ/E

This clears out all currently closed PRT buffers, thus preventing any further output, in the same way as
PAR_CLEAR.

CROSS-REFERENCE

PAR_CLEAR and SER_CLEAR are similar.

23.94 PRT_USE

Syntax PRT_USE device
Location ST/QL, SMSQ/E

The ST/QL Emulator and SMSQ/E allow you to set up the PRT device so that it mimics the SER, STX or
PAR device. This means that programs can be written which merely send their output to the PRT device
and it is then up to the user to set the port and options required by the device attached to either the serial
or parallel port.

The command PRT_USE allows you to specify both the port and options to be associated with PRT.

It will ignore SER_USE and PAR_USE settings and therefore expects device to be in one of the following
forms:

PAR<port><translate><convert><eof>
SER<port><parity><handshake><translate><convert><eof>
STX<port><parity><handshake><translate><convert><eof>

See the Appendix on drivers for further details.

Example

PRT_USE ser1etf

will cause all attempts to access the PRT device to be re-directed to serial port 1 with Even parity, trans-
lation enabled and a form feed being printed at the end of the file.

CROSS-REFERENCE

RAM_USE, FLP_USE, WIN_USE, SER_USE and PAR_USE are all very similar. See the other version
of this command.

634 Chapter 23. Keywords P

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

23.95 PRT_USE

Syntax PRT_USE usage,device
Location Qjump RAMPRT, Trump Card, Gold Card, QXL Card

Unlike the ST/QL Emulator and SMSQ/E implementations of this command, this version of this com-
mand is used to enable you to set up dynamic buffering on serial and parallel ports. The command
PRT_USE enables you to connect a buffer to a specified device, altering the description (usage) used
to access that buffered device. Initially, the default usage is PRT and the default device is SER which
means that any attempt to send output to the PRT device will actually access ser1, using the whole of the
available memory as a buffer.

PRT_USE will actually recognise the full device name, allowing it to have a similar effect as the alterna-
tive version of this command. For example, the following are both equivalent:

PRT_USE prt,ser1c (On the Gold Card)
PRT_BUFF 0: PRT_USE ser1c (Under SMSQ/E)

The PRT device will also allow the same options as the device which it is emulating, for example, the
following are both the same (except the latter uses buffered output):

OPEN #3,ser1c
PRT_USE prt,ser:OPEN #3,prt1c

If you wish to buffer output on a given device, then you merely need to specify the usage to be the same
as the device. For example:

PRT_USE ser,ser

will create buffered output to the serial ports whenever ser is used.

PRT_USE will also allow you to specify the device to be buffered at run-time. This is achieved by leaving
the device parameter as an empty string. For example:

PRT_USE buff_,""

allows you to use the device name buff_ser1 to access ser1, buff_par to access the parallel port etc. and
all with buffered output.

NOTE 1

PRT_USE prt,ser

will return the QL to the normal state after being switched on (ie. only buffered output will occur if the
device PRT is used).

NOTE 2

If PRT_USE is used to allow background printing, then some characters may be lost (especially if you
are using an old serial to parallel converter), if you use a command which stops the QL multitasking (for
example FORMAT, LOAD, LBYTES, SBYTES and SAVE).

You can tell when this happens as the printer will stop while the command is being carried out.

23.95. PRT_USE 635

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE

See also PRT_ABT . See the other version of this command.

23.96 PRT_USE$

Syntax PRT_USE$
Location ST/QL, SMSQ/E

This function returns a string representing the current port emulated by the PRT device, thus allowing
you to check whether or not you need to alter the device set with PRT_USE.

Example

PRT_USE ser1etf
PRINT PRT_USE$

will return ‘ser1etf’.

CROSS-REFERENCE

See PRT_USE.

23.97 PTH_ADD

Syntax PTH_ADD [n,] directory
Location Path device

First we need to explain the PTH device before you can understand what the command PTH_ADD and
its related commands/ functions do.

Using sub-directories helps to clean up disk storage - even if you know on which disk a file is kept, if
you are using a large storage media like HD/ED disks or even hard disks, you will soon find yourself
searching through the whole directory tree with a desktop or WDIR. That’s why PTH was created.

This virtual device interfaces with any kind of drive and searches through a list of directories when a file
is to be opened. For instance, instead of being forced to type:

VIEW win1_games_defender_manual_txt

a short:

VIEW pth1_manual_txt

would be enough to show the manual_txt if the directory win1_games_defender_ is in the path list.

The size of the search list is only limited by memory available; a list of 30000 entries has been tested,
900k was necessary to store it - but this is not a realistic limitation. Who works with several thousand
directories?

PTH_ADD modifies that list which can have as many entries as necessary.

636 Chapter 23. Keywords P

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

PTH_ADD (the name says it already) adds a directory to the path list, it can be inserted (you cannot
replace pathnames!) at a certain position by directly specifying the position n (a non-negative integer) in
the list.

If n is not specified, the new directory is merely added to the end of the list. The example will clarify
this.

Example

We assume the path list is empty.

PTH_ADD flp1_

will add flp1_ to the list which will now look like this (the list can be obtained with:

PTH_LIST

0 flp1_

The first column is the number of the entry, programmers tend to start counting with zero, that’s why the
first entry has the number 0. If you type, for example:

SPL pth1_pth_bin,#1

the binary file pth_bin in flp1_ will be spooled to channel #1 (usually a window under the interpreter).

Now let’s add a few more entries to exploit the power of the path device:

PTH_ADD flp1_basic_
PTH_ADD flp2_
PTH_ADD ram1_

The list is now:

0 flp1_
1 flp1_basic_
2 flp2_
3 ram1_

Assume the file myprog_bas is in ram1_:

LOAD pth1_myprog_bas

tries to load the following files one by one and skips to the next one in case of failure:

• flp1_myprog_bas

• flp1_basic_myprog_bas

• flp2_myprog_bas

• ram1_myprog_bas

If myprog_bas does not appear in any of the directories, the usual ‘Not Found’ error would appear.

NOTE 1

23.97. PTH_ADD 637

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

The name of the path device can be freely configured with the Qjump standard configuration program
Config (or MenuConfig). We use the default in this manual, which is PTH. The name can be changed
temporarily with PTH_USE.

NOTE 2

PTH suffers from the same problem as the DEV device, see the note at DEV_USE.

NOTE 3

An underscore is added to the directory if it’s missing. On this point PTH_ADD behaves differently from
DEV_USE.

WARNING

Some applications do not co-operate happily with PTH so that a file may get spread over all directories
if you save it from some editors etc. There are no crashes, do not worry, but this strange behaviour could
lead to a loss of data if you are not aware of the strange phenomenon.

CROSS-REFERENCE

The path device is very similar to the dev_ device, please read through DEV_USE to understand the idea
behind both devices. It’s pretty useful to set the Toolkit II DATAD$ and PROGD$ to pth1_:

DATA_USE pth1_
PROG_USE pth1_

Do this preferably in your BOOT program. - Look at the other ‘PTH_XXX’ keywords starting at
PTH_ADD!

23.98 PTH_LIST

Syntax PTH_LIST [#ch]
Location Path device

The command PTH_LIST prints a list of the search paths available to the PTH device.

Examples

PTH_LIST
PTH_LIST#2

CROSS-REFERENCE

PTH$ is an alternative way to get the path list.

638 Chapter 23. Keywords P

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

23.99 PTH_RMV

Syntax PTH_RMV n
Location Path device

This command removes a search path from the search list and all directories below the removed entry are
moved up in the list by one position to fill the gap. The number n corresponds to the number in the list
produced by PTH_LIST.

Example

Assume the following search list:

0 flp1_
1 flp1_basic_
2 flp2_
3 ram1_

PTH_RMV 2

will remove entry 2 (flp2_), entry 3 will become entry 2 so that the new list will be:

0 flp1_
1 flp1_basic_
2 ram1_

The search list can be totally cleaned up with the following little procedure PTH_CLEAR:

10 DEFine PROCedure PTH_CLEAR
20 REPeat clean_up
30 IF PTH$(0)="" THEN EXIT clean_up
40 PTH_RMV 0
50 END REPeat clean_up
60 END DEFine PTH_CLEAR

CROSS-REFERENCE

Other ‘PTH_XXX’ keywords starting at PTH_ADD!

23.100 PTH_USE

Syntax PTH_USE [path_name]
Location Path device

The default name used for the path device is PTH. If you don’t like that, you can change it with PTH_USE
to any other combination of three letters, including existing drive names. If no parameter is used, the
default name is restored.

Examples

23.99. PTH_RMV 639

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

::
PTH_USE huh PTH_USE flp PTH_USE

NOTE

The default name can be permanently configured with Qjump’s Config program.

CROSS-REFERENCE

PTH_USE$ returns the current setting.

23.101 PTH_USE$

Syntax PTH_USE$
Location Path device

As mentioned above, the function PTH_USE$ gives you the name which is used for the path device.

Example

PRINT PTH_USE$

23.102 PTH$

Syntax PTH$ (n)
Location Path device

The function PTH$ returns the nth directory in the search list of the path device.

Examples

The procedure PTH_INFO prints all of the current settings concerning the the pth device to #1.

The function PTH_ENTRIES% returns the number of directories in the path list.

100 DEFine PROCedure PTH_INFO
110 LOCal n: n=0
120 PRINT "Path device:"!PTH_USE$
130 PRINT\"Search paths";
140 REPeat list_them
150 IF PTH$(n)="" THEN EXIT list_them
160 IF NOT n THEN PRINT
170 PRINT FILL$(" ",3-LEN(n));n;TO 5,PTH$(n)
180 n=n+1
190 END REPeat list_them
200 IF NOT n THEN PRINT " no entries"
210 END DEFine PTH_INFO
220 :
240 DEFine FuNction PTH_ENTRIES%

(continues on next page)

640 Chapter 23. Keywords P

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

250 LOCal n
260 FOR n=0 TO 32767: IF PTH$(n)="" THEN EXIT n
270 RETurn n
280 END DEFine PTH_ENTRIES%

CROSS-REFERENCE

PTH_ADD, PTH_LIST

23.103 PTR_FN%

Syntax PTR_FN% (offset)
Location KMOUSE, MOUSE (DIY Toolkit - Vol I - v2.8+)

The DIY Toolkit includes code which allows you to link a serial mouse to the QL, similar to the com-
mercial SERMouse package which is packaged with SMSQ/E for the Gold Card. Refer to the Appendix
on Mice for more details.

The mouse is enabled with PTR_ON. This function can be used to read various values used by the DIY
mouse driver and which can be altered using other commands from this toolkit.

The value of offset should be in the range 0. . . 13 and returns the following:

Offset Meaning
0 Latest X position (Read with X_PTR%)
1 Latest Y position (Read with Y_PTR%)
2 Maximum X co-ordinate (Set with PTR_MAX)
3 Maximum Y co-ordinate (Set with PTR_MAX)
4 Step X (Set with PTR_INC)
5 Step Y (Set with PTR_INC)
6 Details of buttons pressed (Read with BUTTON%)
7 Synchronisation counter (Read with SYNCH%)
8 or 9 Zero, or serial channel ID
10 Accumulated X drift
11 Accumulated Y drift
12 Set = cursor key emulation (Set with PTR_KEY)
13 Set = Pointer Wrap (Set with PTR_KEY)

The Accumulated X and Y drift are counters, used by the serial mouse driver to judge how far off the
horizontal / vertical the mouse has moved and whether to continue moving the pointer in a straight line
or to take this into account.

CROSS-REFERENCE

For more details, refer to the individual commands/ functions.

23.103. PTR_FN% 641

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

23.104 PTR_INC

Syntax PTR_INC x_step, y_step
Location KMOUSE (DIY Toolkit - Vol I)

This command is only really of any use when the Cursor Key emulation is enabled (see PTR_KEY).
It allows you to set the number of mouse pulses which are taken to correspond to moving the cursor 1
character either in an x direction or a y direction.

The two values given are normally set to 12 and 24 respectively for MODE 4 operation, although if this
proves too quick (especially in MODE 8), you could try PTR_INC 24,24. The higher the values, the
slower the cursor will move as you push the mouse about the table.

CROSS-REFERENCE

See PTR_KEY and also compare SERMSPEED.

23.105 PTR_KEY

Syntax PTR_KEY cursor, edge
Location KMOUSE (DIY Toolkit - Vol I)

Normally DIY Toolkit’s mouse driver will enable you to control the mouse pointer on screen. This mouse
pointer is however, not the one used by the Pointer Environment (therefore the mouse cannot be used to
control programs written specifically for the Pointer Environment except in cursor emulation mode) and
you need a separate program to run in the background which will display a symbol to show the position
of the mouse on screen.

Th PTR_KEY command allows you to specify whether the serial mouse driver should emulate the cursor
keys (instead of the pointer), which allows it to operate software such as word processors.

To emulate the cursor keys, cursor should be 1 - to emulate the pointer again, set cursor to 0.

The DIY Toolkit mouse driver is actually better than the SERMouse driver in this respect in that the
mouse does not automatically switch back into Pointer Mode when you leave the program (see SERM-
CUR). Then again, you cannot switch between the two modes using the mouse buttons, or control Pointer
Environment programs. . .

The second parameter expected by this command is used to specify what should happen to the cursor (or
pointer) at the edge of the screen - if edge=1, moving the cursor or pointer over the edge of the screen
will make it re-emerge on the opposite edge (a wrapping effect). edge=0 disables this.

CROSS-REFERENCE

See PTR_INC also. Also see PTR_ON and SERMPTR

642 Chapter 23. Keywords P

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

23.106 PTR_LIMITS

Syntax PTR_LIMITS minx, miny, maxx, maxy
Location KMOUSE, MOUSE (DIY Toolkit - Vol I), Amiga QDOS (v3.20+)

This command is used to set the limits of the screen over which the mouse pointer can be moved using
the mouse. The command expects four parameters, the minimum x and y co-ordinates and the maximum
x and y co-ordinates. For a standard QL, you would normally set these values with:

PTR_LIMITS 0,0,511,255

However, on larger resolution displays, larger limits will be needed.

On the DIY Toolkit variant, the first two limits are ignored (they are always taken to be zero). The
maximum co-ordinates should be in pixel sizes and can be any positive number up to 32767.

On Amiga QDOS, negative numbers can be used, but to retain compatibility, the first two parameters
should be zero.

Having set these parameters, once the mouse pointer has reached this position on screen then what
happens depends on whether the wrap-around display mode has been enabled with PTR_KEY 0,1 or
PTR_KEY 1,1 (or not). If it has been disabled, then the mouse pointer will move no further. If it has
been enabled, then the mouse pointer will appear at the other extreme limit.

CROSS-REFERENCE

PTR_POS can be used to dictate where the mouse pointer should appear on screen. This command only
calls PTR_MAX on the DIY implementation.

23.107 PTR_MAX

Syntax PTR_MAX maxx, maxy
Location KMOUSE, MOUSE (DIY Toolkit - Vol I), Amiga QDOS v3.20+

This command is the same as: PTR_LIMITS 0,0,maxx,maxy

CROSS-REFERENCE

See PTR_LIMITS!

23.108 PTR_OFF

Syntax PTR_OFF
Location KMOUSE, MOUSE (DIY Toolkit - Vol I), Amiga QDOS v3.20+

This command switches off the mouse driver, releasing memory which is used by it for temporary short-
age. PTR_ON switches the driver back on.

23.106. PTR_LIMITS 643

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE

This is similar to SERMOFF.

23.109 PTR_ON

Syntax PTR_ON
Location KMOUSE, MOUSE (DIY Toolkit - Vol I), Amiga QDOS v3.20+

This command enables the mouse driver after it has been loaded or after it has been disabled with
PTR_OFF. All of the mouse settings are reset to the defaults (set when the files were originally assembled)
and the pointer is positioned in the top left corner of the screen (position 0,0).

CROSS-REFERENCE

You can re-position the mouse with PTR_POS. See SERMON and PTR_OFF. PTR_INC, PTR_KEY and
PTR_MAX are also needed to set various parameters on start-up.

23.110 PTR_POS

Syntax PTR_POS x,y
Location KMOUSE, MOUSE (DIY Toolkit - Vol I), Amiga QDOS v3.20+

This command can be used to set the initial position of the mouse pointer on screen - it is normally located
at 0,0 (the top left hand corner of the screen).

You can however use this command to set it to the specified absolute pixel co- ordinates, which must be
within the area defined with the PTR_LIMITS command.

CROSS-REFERENCE

See PTR_LIMITS and PTR_ON . The pointer position can be read with X_PTR%, Y_PTR% and
PTR_FN%.

23.111 PTR_X

Syntax PTR_X (argument, module)
Location PTRRTP

The function PTR_X transforms a point (described in polar co-ordinates) into the rectangular co-
ordinates and returns the real part of the latter. argument is an angle in radians, module a radius.

Example

A line in rectangular co-ordinates transformed to polar co-ordinates looks like a circle when plotted on
screen. However, if you were to look at this line using polar co-ordinates, it would appear as straight line
again. Confused?

644 Chapter 23. Keywords P

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

100 SCALE 10,-5,-5: PAPER 0: CLS
110 FOR a = 0 TO 2*PI STEP PI/128
120 POINT PTR_X(a,2), PTR_Y(a,2)
130 END FOR a

CROSS-REFERENCE

The other rectangular co-ordinate is found with PTR_Y below. Also see RTP_R and RTP_T

23.112 PTR_Y

Syntax PTR_Y (argument, module)
Location PTRRTP

This function is very similar to PTR_X but this time the imaginary part is returned.

23.113 PURGE

Syntax PURGE
Location CONTROL (DIY Toolkit Vol E)

The command PURGE has the same (fatal) effect as KILL or KJOBS.

23.114 PUT

Syntax PUT [#channel\file_position,] [item1 *[,itemi]* . . .] or
PUT [#channel,] [item1 *[,itemi]* . . .]

Loca-
tion

Toolkit II, THOR XVI

This command forms the complement to GET and allows you to store variables in the specified channel
(default #3) in the QL’s internal format.

The variables are stored at the current position in the file (or the file_position given with the command,
if the first variant is used).

If you provide more than one variable name as the second, third parameter etc, then several variables will
be stored in the file in one go.

If no variable is specified, the file pointer will be set to the specified position if the first variant is used.

If the second variant is used, this will have no effect.

If a variable is given as the file pointer, then this variable will be updated with the current file position
once PUT has finished its work.

23.112. PTR_Y 645

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

PUT can actually be used to store variables in a different type to their current use (this might, for example,
be useful if storing part of a string), by adding the following suffixes to each item:

+0 Force floating point type (see note 2 below!)
&” Force string type
||0 Force integer type

Example

a$='Entry 123':PUT #3,a$,a$(7 TO) || 0

will store in channel #3 two bytes giving the length of the string a$, followed by the characters of the
string itself, followed by two bytes representing the integer value 123 (ie. 0*256+123).

NOTE 1

On version 2.09 (or earlier) of Toolkit II, PUT could cause problems when used on a channel opened
over the network.

NOTE 2

Although PUT can convert variable types as above, if integer tokenisation is enabled on Minerva, then
PUT x%+0 will not work. You need to use something such as PUT x%+1e-555 instead.

NOTE 3

Whenever storing data on disk, it is always preferable to store it in its internal format (unless it is to
be read on other systems as well). Internal storage is faster because conversion between internal and
readable format is no longer necessary. It also produces shorter files since the internal format needs less
space and for floating point numbers, the internal format gives the greatest possible accuracy.

CROSS-REFERENCE

See PUT , BPUT , WPUT , LPUT , UPUT and GET .

23.115 PUT_BYTE

Syntax PUT_BYTE #channel, byte
Location DJToolkit 1.16

The given byte is sent to the channel. If a byte value larger than 255 is given, only the lowest 8 bits of the
value are sent. The byte value written to the channel will always be between 0 and 255 even if a negative
value is supplied. GET_BYTE returns all values as positive.

EXAMPLE

PUT_BYTE #3, 10

CROSS-REFERENCE

PUT_FLOAT , PUT_LONG, PUT_STRING, PUT_WORD.

646 Chapter 23. Keywords P

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

23.116 PUT_FLOAT

Syntax PUT_FLOAT #channel, byte
Location DJToolkit 1.16

The given float value is converted to the internal QDOS format for floating point numbers and those 6
bytes are sent to the given channel number. The full range of QL numbers can be sent including all the
negative values. GET_FLOAT will return negative values correctly (unless an error occurs).

EXAMPLE

PUT_FLOAT #3, PI

CROSS-REFERENCE

PUT_BYTE, PUT_LONG, PUT_STRING, PUT_WORD.

23.117 PUT_LONG

Syntax PUT_LONG #channel, byte
Location DJToolkit 1.16

The long value given is sent as a sequence of four bytes to the channel. Negative values can be put and
these will be returned correctly by GET_LONG unless any errors occur.

EXAMPLE

PUT_LONG #3, 1234567890

CROSS-REFERENCE

PUT_BYTE, PUT_FLOAT , PUT_STRING, PUT_WORD.

23.118 PUT_STRING

Syntax PUT_STRING #channel, string
Location DJToolkit 1.16

The string parameter is sent to the appropriate channel as a two byte word giving the length of the data
then the characters of the data. If you send a string of zero length, LET A$ = “” for example, then only
two bytes will be written to the file. See POKE_STRING for a description of what will happen if you
supply a number or a numeric variable as the second parameter. As with all QL strings, the maximum
length of a string is 32kbytes.

EXAMPLE

23.116. PUT_FLOAT 647

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

PUT_STRING #3, "This is a string of data"

CROSS-REFERENCE

PUT_BYTE, PUT_FLOAT , PUT_LONG, PUT_WORD.

23.119 PUT_WORD

Syntax PUT_WORD #channel, word
Location DJToolkit 1.16

The supplied word is written to the appropriate channel as a sequence of two bytes. If the word value
supplied is bigger than 65,535 then only the lower 16 bits of the value will be used. Negative values will
be returned by GET_WORD as positive.

EXAMPLE

PUT_WORD #3, 65535

CROSS-REFERENCE

PUT_BYTE, PUT_FLOAT , PUT_LONG, PUT_STRING.

23.120 PXOFF

Syntax PXOFF
Location PEX

This command is the same as PIE_EX_OFF except for the PEX system extension - it disables PEX for
SD.EXTOP system calls, so that they are trapped by the Pointer Environment.

CROSS-REFERENCE

See PXON andPEON .

23.121 PXON

Syntax PXON
Location PEX

This command is the same as PIE_EX_ON except for the PEX system extension - it enables PEX for
SD.EXTOP system calls, so that they can work in the background.

CROSS-REFERENCE

See PXOFF andPEON .

648 Chapter 23. Keywords P

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

23.122 PX1ST

Syntax PX1ST [{ flag }]
Location PEX

This function can be used to determine whether IS_PTRAP has been used to dictate that any screen
operations should just be ignored (this is the default under PEX on JS and MG ROMs). The function
name has a digit one in it, not a letter ‘eye’.

If the value returned is 0, then (providing that you do not have a JS or MG ROM), PEX may be allowing
background screen access.

If the value is not 0, then screen operations are merely ignored by the operating system (and therefore
the display is not affected).

If you use this function to pass a parameter, then if the parameter is 0, then screen operations will not be
ignored and whether they cause a Buried program to halt will depend on whether PEX is active. If you
pass a non-zero parameter, then any screen operations will be ignored.

CROSS-REFERENCE

See PEON and in particular, refer to IS_PTRAP for more details. See also IS_PEON .

23.123 P_ENV

Syntax P_ENV (#ch)
Location MULTI

This function detects whether the given channel is running under the Pointer Environment and returns:

• 0 if the Pointer Environment is not connected to that channel, or no parameter was used, or #ch is
not a screen channel;

• 1 if the Pointer Interface (ptr_gen) is active in that channel;

• 2 if the Pointer Interface and the Window Manager (wman) are present for that channel.

Example

All programs which need the Pointer Environment to work, should check to see if it is present. This short
program does so:

100 ch=FOPEN(con_2x2a0x0): p=P_ENV(#ch): CLOSE#ch
110 IF p<2 THEN
120 PRINT "This program does not run without the P.E.,"
130 PRINT "so program execution has to stop here."
140 PRINT " Press any key...": PAUSE 400
150 STOP
160 END IF

CROSS-REFERENCE

23.122. PX1ST 649

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

WMAN$ finds the version of the Window Manager and QRAM$ the version of the Pointer Interface.
These functions can also be used to detect the presence of the Pointer Environment (=Window Manager
& Pointer Interface).

650 Chapter 23. Keywords P

CHAPTER

TWENTYFOUR

KEYWORDS Q

24.1 QACONVERT

Syntax QACONVERT filename
Location ATARIDOS

This command takes a file which is stored on a QL Format disk and converts it into Atari Format. It
will then convert special characters in that file to Atari compatible characters as well as converting any
occurrence of a Line Feed character CHR$(10) to a Carriage Return character CHR$(13) followed by a
Line Feed character CHR$(10).

CROSS-REFERENCE

Compare AQCONVERT and QICONVERT . See also ACOPY and QCOPY .

24.2 QCOPY

Syntax QCOPY filename1,filename2
Location ATARIDOS

This command is similar to COPY except that it copies a file from an Atari Format disk to a QL Format
disk. No conversion takes place.

NOTE

You will need to pass the Atari filename in quote marks if it includes a three letter extension preceded by
a dot eg:

QCOPY "flp1_PROGRAM.BAS", flp2_PROGRAM.BAS

CROSS-REFERENCE

ACOPY copies a file from a QL disk to an Atari disk. Level-3 device drivers allow you to read and write
to Atari and IBM format disks anyway. See AFORMAT and AQCONVERT .

651

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

24.3 QCOUNT%

Syntax QCOUNT% (#pipe_ch)
Location PIPES (DIY Toolkit - Vol P)

This function is designed to make the use of pipes easier. Provided that the specified channel is linked to
a pipe (normally the input end of the pipe), this function will return the number of characters which are
waiting to be read from the pipe.

NOTE

The value returned will be the exact number of characters placed into the pipe, which will therefore
include the line feed characters and other control characters. Take the example of:

10 OPEN #3,pipe_1048
20 PRINT #3,'HELLO'
30 PRINT QCOUNT%(#3)

The value of 6 is returned, this is because the PRINT statement has added a line feed to the end of the
word ‘HELLO’, so that this can be read by an INPUT command.

CROSS-REFERENCE

Refer to QLINK and also the Device Drivers Appendix. See also QSIZE% and QSPACE%.

24.4 QDOS$

Syntax QDOS$
Location Fn, TinyToolkit, BTool

This function returns a string containing the version code of the operating system on which SuperBASIC
is running. For example

PRINT QDOS$

• Version 1.03 was the first main version of QDOS (an upgrade is essential if you have an earlier
version!)

• Version 1x13 is for all MGx ROMs, eg. 1G13 for the MGG.

• 1.63 was the first version of Minerva.

• 1.76 was the first version of Minerva with reliable MultiBASICs.

• 1.98 was the latest and best version of Minerva

• 2.xx SMS version.

• 3.xx is the version number of the Amiga QL Emulator.

• 4.xx is the first version of ARGOS on a THOR 1 computer. #

• 5.xx is the version of ARGOS on a THOR 20 computer.

652 Chapter 24. Keywords Q

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• 6.xx is the version of ARGOS on a THOR XVI computer.

• 6.41 is the final version of the THOR ARGOS ROM.

NOTE 1

VER$ is normally used to identify the version of the SuperBASIC interpreter and QDOS$ to identify the
version of QDOS (the operating system). However, as SuperBASIC is an integral part of the operating
system on most QDOS computers, there should really only be a need to use one of these functions and
not both.

NOTE 2

The ‘.’ in QDOS$ is changed on MG and SMS v2.50+ (on Gold Cards and Super Gold Cards only) to
reflect the country code of the language version currently loaded.

CROSS-REFERENCE

VER$ contains another code identifying the operating system. VER$(1) is identical to QDOS$ for Min-
erva ROMs and SMS. You should also look at MACHINE and PROCESSOR. LANG_USE allows you to
change the operating system language.

24.5 QFLIM

Syntax QFLIM ([#channel,] n) n=0..3
Location Fn

With the Pointer Interface present, each job has a maximum outline window size in which it can open its
windows to avoid storing more information than necessary when switching between jobs and saving the
window contents. The function QFLIM returns the following information about this maximum outline
size, in the (window independent) absolute co-ordinate system for the different n:

N Information Returned
0 Width in pixels (eg. 512 on a standard QL display).
1 Height in pixels (eg. 256 on a standard QL display).
2 Leftmost horizontal position.
3 Uppermost vertical position.

QFLIM needs an open window to get the information from (default #1). The return values refer to the
current job. If any other values of n are used, a bad parameter error will be generated.

Example

If there are no windows other than #0, #1 and #2, and their positions are set up as follows:

100 WINDOW #0,100,100,50,50
110 WINDOW #1,20,20,0,0
120 WINDOW #2,200,50,40,40
130 FOR c=0 TO 2: PAPER #c,3: BORDER #c,1,4: CLS #c

The Pointer Interface will reduce the outline size of the screen available to SuperBASIC, which can be
checked with the next program or by swapping to other jobs which fill the whole screen.

24.5. QFLIM 653

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

100 ch=2
110 xmin = QFLIM(#ch, 2): xmax = xmin + QFLIM(#ch,0)
120 ymin = QFLIM(#ch, 3): ymax = ymin + QFLIM(#ch,1)
130 PRINT "x = "; xmin; ".."; xmax
140 PRINT "y = "; ymin; ".."; ymax
150 percent% = 100 * QFLIM(#ch, 0) * QFLIM(#ch, 1) / (512 * 256)
160 PRINT "fills"! percent%; "% of the screen"

Type WTV or WMON to restore standard window sizes. Note that this example expects the display to
be 512x256 pixels.

NOTE 1

The Pointer Interface makes a distinction between the primary window (generally the first window to
be used for input/output operations) and secondary windows. Although using QFLIM on a secondary
window will return the maximum outlines for the current job’s windows, using QFLIM on the primary
window (eg. #0 in SuperBASIC) will return the physical screen size, ie. the parameters of the largest
possible window:

WINDOW QFLIM(#0, 0), QFLIM(#0, 1), QFLIM(#0, 2), QFLIM(#0, 3)

This can therefore be used to check whether or not the extra high resolution modes provided by some
Emulators and the AURORA is available:

exten4 = 0
IF QFLIM(#0,1) > 256: exten4 = 1

NOTE 2

QFLIM returns useless numbers greater than 10000 if the Pointer Interface is not present.

CROSS-REFERENCE

WMAN$, WINF$ allow you to find out various information about the Pointer Environment. XLIM,
SCR_XLIM, YLIM and SCR_YLIM are similar to QFLIM. See also OUTLN .

24.6 QICONVERT

Syntax QICONVERT filename
Location ATARIDOS

This command takes a file which is stored on a QL Format disk and converts it into IBM Format. It
will then convert special characters in that file to IBM compatible characters as well as converting any
occurrence of a Line Feed character CHR$(10) to a Carriage Return character CHR$(13) followed by a
Line Feed character CHR$(10).

CROSS-REFERENCE

Compare IQCONVERT and AQCONVERT . See also ACOPY and QCOPY . See IFORMAT .

654 Chapter 24. Keywords Q

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

24.7 QLINK

Syntax QLINK #output TO #input
Location PIPES (DIY Toolkit - Vol P)

This command is the same as TCONNECT.

CROSS-REFERENCE

The following functions are also useful when accessing pipes: EOFW , PEND, QSIZE%, QCOUNT%
and QSPACE%.

24.8 QLOAD

Syntax QLOAD [device_]filename
Location SMS

This command is very similar to LOAD as implemented on the SMS. The only difference are that it insists
that the program must have been saved with the _sav suffix (eg. flp1_TEST_sav). QLOAD will then
proceed to load the BASIC program whether it was saved with the normal SAVE or SAVE_O commands,
or with the QSAVE or QSAVE_O commands.

NOTE 1

If a program has been saved using QSAVE on a Minerva machine with Integer Tokenisation enabled,
then QLOAD will not be able to understand it properly and you will notice that numbers and keywords
have been replaced by various symbols.

NOTE 2

Any commands which appear after a QLOAD command will be ignored.

CROSS-REFERENCE

Also see LOAD, QLRUN , QMERGE and QSAVE Compare UNLOAD.

24.9 QLRUN

Syntax QLRUN [device_]filename
Location SMS

This command is exactly the same as QLOAD except that the program is automatically RUN as soon as
it has been loaded into memory.

CROSS-REFERENCE

See QLOAD and QMRUN .

24.7. QLINK 655

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

24.10 QL_PEX

Syntax QL_PEX
Location PEX

This function returns the offset of the keyword linkage block of the keywords added by the PEX toolkit.
This offset is needed for Qliberator’s $$asmb directorive.

CROSS-REFERENCE

See PEX_SAVE.

24.11 QMERGE

Syntax QMERGE [device_]filename
Location SMS

This command bears the same relationship to MERGE as QLOAD does to LOAD.

CROSS-REFERENCE

Refer to QLOAD and MERGE. See also QMRUN

24.12 QMRUN

Syntax QMRUN [device_]filename
Location SMS

This command is exactly the same as QMERGE except that it ensures that the program is RUN as soon as
it has been merged into memory. If the command is issued from the command line as a direct command,
then the merged program is RUN from line 1. If, however, QMRUN appears in the program itself, the
program continues from the statement following QMRUN (making it the same as QMERGE).

CROSS-REFERENCE

See QMERGE and MRUN .

24.13 QPC_CMDLINE$

Syntax cmd$ = QPC_CMDLINE$
Location SMSQ/E for QPC

This returns the argument that was supplied to QPC after the “-cmdline” command line argument. This
can be used to do different actions depending on the way QPC was started.

656 Chapter 24. Keywords Q

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

24.14 QPC_EXEC

Syntax QPC_EXEC command$[, parameter$]
Location SMSQ/E for QPC

This command can be used to call an external DOS or Windows program. The name of the executable
file is given in the first parameter. Optionally, you can also supply a second parameter, which is then
passed to the executed program as its command line arguments.

Furthermore, you can supply a data file as the first parameter. In this case, the associated application for
this file type is executed.

Example

QPC_EXEC 'notepad','c:\text.txt'

Starts notepad and loads the c:\text file.

QPC_EXEC 'c:\text.txt'

Starts the default viewer for .txt files.

24.15 QPC_EXIT

Syntax QPC_EXIT
Location SMSQ/E for QPC

This simply quits QPC.

24.16 QPC_HOSTOS

Syntax os% = QPC_HOSTOS
Location SMSQ/E for QPC

This function returns the host operating system under which QPC was started.

Possible return codes are:

• 0 = DOS (QPC1)

• 1 = Win9x/ME (QPC2)

• 2 = WinNT/2000/XP (QPC2)

24.14. QPC_EXEC 657

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

24.17 QPC_MAXIMIZE

Syntax QPC_MAXIMIZE
Location SMSQ/E for QPC

Maximises the QPC window. (Yes, the spelling of the command name is American!)

24.18 QPC_MINIMIZE

Syntax QPC_MINIMIZE
Location SMSQ/E for QPC

Minimizes the QPC window. (Yes, the spelling of the command name is American!)

24.19 QPC_MSPEED

Syntax QPC_MSPEED x_accel, y_accel
Location SMSQ/E for QPC

This command has no effect on QPC2.

24.20 QPC_NETNAME$

Syntax name$ = QPC_NETNAME$
Location SMSQ/E for QPC

This function returns the current network name of your PC (the one you supplied upon installation of
Windows). The result can be used to distinguish between different PCs (For example, in a BOOT pro-
gram).

24.21 QPC_QLSCREMU

Syntax QPC_QLSCREMU value
Location SMSQ/E for QPC

Enables or disables the original QL screen emulation. When emulating the original screen, all memory
write accesses to the area $20000-$207FFF are intercepted and translated into writes to the first 512x256
pixels of the big screen area. If the screen is in high colour mode, additional colour conversion is done.

Possible values are:

658 Chapter 24. Keywords Q

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• -1: automatic mode

• 0: disabled (default)

• 4: force to 4-colour mode

• 8: force to 8-colour mode

When in QL colour mode, the emulation just transfers the written bytes to the larger screen memory, i.e.
when the big mode is in 4-colour mode, the original screen area is also treated as 4-colour mode. In
high colour mode however, the colour conversion can do both modes. In this case, you can pre-select the
emulated mode (parameter = 4 or 8) or let the last issued MODE call decide (automatic mode). Please
note that that automatic mode does not work on a per-job basis, so any job that issues a MODE command
changes the behaviour globally.

Please also note that this transition is one-way only, i.e. bytes written legally to the first 512x256 pixels
are not transferred back to the original QL screen (in the case of a high colour screens this would hardly
be possible anyway). Unfortunately, this also means that not all old programs will run perfectly with this
type of emulation. If you experience problems, start the misbehaving application in 512x256 mode.

24.22 QPC_RESTORE

Syntax QPC_RESTORE
Location SMSQ/E for QPC

Restores the QPC window. This will return the window size from minimised or maximised to what it
was before.

24.23 QPC_SYNCSCRAP

Syntax QPC_SYNCSCRAP
Location SMSQ/E for QPC

In order to rapidly exchange text passages between Windows and SMSQ/E the Syncscrap functionality has
been introduced. The equivalent of the Windows clipboard is the scrap extension of the menu extensions.

After loading the menu extensions you can call this command, which creates a job that periodically checks
for changes in either the scrap or the Windows clipboard, and synchronizes their contents if necessary.
Please note that only text data is supported. The character conversion between the QL character set and
the Windows ANSI set is done automatically. The line terminators (LF or LF+CR) are converted too.

24.22. QPC_RESTORE 659

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

24.24 QPC_VER$

Syntax v$ = QPC_VER$
Location SMSQ/E for QPC

This returns the current QPC version.

Example

PRINT QPC_VER$

Will print 4.00 or higher.

24.25 QPC_WINDOWSIZE

Syntax QPC_WINDOWSIZE x, y
Location SMSQ/E for QPC

This sets the size of the client area (the part that displays SMSQ/E) of the QPC window. It does NOT alter
the resolution SMSQ/E runs with, so the pixels are effectively zoomed. It is equivalent to the “window
size” option in the main configuration window. If QPC is currently in full screen mode it will switch
to windowed mode. Window size cannot be set smaller than the SMSQ/E resolution or bigger than the
desktop resolution.

Example

DISP_SIZE 512,256
QPC_WINDOWSIZE 1024,512

Does a 200% zoom of the QPC window.

24.26 QPC_WINDOWTITLE

Syntax QPC_WINDOWTITLE title$
Location SMSQ/E for QPC

Sets the string that can be seen when QPC runs in windowed mode. This can be used to easily distinguish
between several QPC instances.

Example

QPC_WINDOWTITLE "Accounting"

Sets the title to “Accounting”, without the quotes though!

660 Chapter 24. Keywords Q

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

24.27 QPTR

Syntax PE_Found = QPTR(#channel)
Location DJToolkit 1.16

This function returns 1 if the Pointer Environment is loaded or 0 if not. The channel must be a SCR_
or CON_ channel, if not, the result will be 0. If a silly value is given then a QDOS error code will be
returned instead.

EXAMPLE

PRINT QPTR(#0)

will print 1 of the PE is loaded or zero otherwise.

24.28 QRAM$

Syntax QRAM$
Location TinyToolkit, BTool

This function returns a string containing the version number of the Pointer Environment, or an empty
string if this is not present.

CROSS-REFERENCE

PINF$ is exactly the same as QRAM$. WMAN$ and WINF$ contain the version number of the Window
Manager.

24.29 QSAVE

Syntax QSAVE [device_]filename or
QSAVE

Location SMS

For several years now, the best utility for saving SuperBASIC programs in a form which can be loaded
very quickly into memory has been QLOAD from Liberation Software.

This utility stores SuperBASIC programs on disk in a special format which although seems meaningless
if you VIEW the file, allows the program to be loaded at around 3x the speed of the normal LOAD
command, which can be very useful for large programs.

Unlike other similar utilities, programs which have been saved using this utility can be loaded into any
other ROM version without any trouble, using the QLOAD command. It is nice to see that this utility
has been implemented as part of SMS.

The QSAVE command allows you to save the whole of SuperBASIC program currently in memory under
the specified filename to the specified device. If the filename does not end in the suffix _SAV, then this
will be added automatically.

24.27. QPTR 661

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

If no device is specified (or it does not exist), then Toolkit II’s default data device will be used. You will
also be prompted to confirm whether an existing file should be overwritten if necessary.

The second variant of the command will allow you to QSAVE the program in memory under the same
filename as when LOAD or QLOAD was last used (with the _SAV suffix appended if necessary).

If the original filename used when the program was LOADed ended in _BAS, then QSAVE will alter this
to be the _SAV suffix.

This variant will also take the version number of the file when it was LOADed (or QLOADed) and then
increase this by one.

NOTE 1

To ensure that QSAVEd programs can be used on all implementations of the QL, ensure that if used from
Minerva, Integer Tokenisation is switched off - you will need to follow the following procedure:

1. POKE \\212,128

2. LOAD the ASCII version of the program (or type NEW)

3. Alter the program as necessary . . .

4. QSAVE the fast loading version of the program.

NOTE 2

QSAVE without a filename suffers the same problems as SAVE.

CROSS-REFERENCE

See SAVE, QLRUN and QMERGE. DATAD$ allows you to read the current default data device. See also
QSAVE_O. FVERS allows you to read the current version number of a file.

24.30 QSAVE_O

Syntax QSAVE_O [device_]filename or
QSAVE_O

Location SMS

This command is the same as QSAVE except that it will automatically overwrite an existing file with the
same filename.

NOTE

On Minerva machines you need to be careful about Integer Tokenisation - see QSAVE.

CROSS-REFERENCE

See QSAVE.

662 Chapter 24. Keywords Q

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

24.31 QSIZE%

Syntax QSIZE% (#pipe_ch)
Location PIPES (DIY Toolkit - Vol P)

This function is designed to read the amount of characters which a pipe linked to the specified channel
can hold at any one time.

Example

10 OPEN #4,pipe_200
20 QLINK #4 TO #3
25 PRINT #4,'QL DATA'
30 PRINT QSIZE% (#3), QCOUNT%(#3)
40 CLOSE #3: CLOSE #4

This short program will print 203 and 8 on screen.

This will also work with named pipes on SMS:

10 OPEN_NEW #4,pipe_test_200
20 OPEN_IN #3,pipe_test
25 PRINT #4,'QL DATA'
30 PRINT QSIZE% (#3), QCOUNT%(#3)
40 CLOSE #3:CLOSE #4

Note however, that if you re-run the program the figure returned by QCOUNT% continues increasing -
this is because a named pipe does not disappear just because both ends of the pipe have been closed. You
would need to add the line:

50 DELETE pipe_test

to overcome this. Alternatively, try:

DIR pipe: WDEL pipe

NOTE

A pipe can normally hold a few extra characters that the size originally given to the pipe (in the example
203 is returned on most implementations rather than 200 as might be expected). This does not cause a
problem.

CROSS-REFERENCE

Refer to QLINK and also the Device Drivers Appendix. See also QCOUNT% and QSPACE%.

24.31. QSIZE% 663

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

24.32 QSPACE%

Syntax QSPACE% (#pipe_ch)
Location PIPES (DIY Toolkit - Vol P)

This function returns the amount of empty space in a pipe connected to the specified channel.

PRINT QSPACE(#3)

is therefore the same as:

PRINT QSIZE%(#3) - QCOUNT%(#3)

CROSS-REFERENCE

Refer to QCOUNT% and QSIZE%.

24.33 QTRAP

Syntax QTRAP #ch,key [,d1 [,d2 [,d3 [,a1 [,a2]]]]]
Location TRAPS (DIY Toolkit Vol T)

This command is similar to IO_TRAP in that it allows you to access the machine code TRAP #3 system
calls directly.

You will need to pass at least two parameters, the number of the channel to be affected and the operation
key to be carried out (this is equivalent to the value in D0 when TRAP #3 is performed).

The other parameters allow you to pass the various register values which may be required by the system
calls. The timeout parameter (D3) defaults to -1 (infinite timeout).

This can be used effectively to set the INK and PAPER colours for THOR XVI’s MODE 12 and still
allow the program to be compiled. For example:

QTRAP #2,HEX('27'),4

will set the PAPER colour in the window #2 to Green (although the STRIP colour will remain unaffected).

WARNING

Several TRAP #3 calls can crash the computer - make certain that you know what you are doing!

CROSS-REFERENCE

See IO_TRAP, TTET3, MTRAP and BTRAP. Any return parameters can be read with DATAREG and
ADDREG. CLS, PAN and SCROLL can also be used to call TRAP #3. Refer to the QDOS/SMS Reference
Manual (Section 15) for details of the various system TRAP #3 calls.

664 Chapter 24. Keywords Q

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

24.34 QuATARI

Syntax QuATARI
Location Beuletools, FN

This is a logical function which returns either 1 (true) or 0 (false) depending on whether or not the
command was executed on an Atari QL-Emulator. Unfortunately, there are some additional keywords
only available on the Emulator, so a portable program which uses these has to check which system it is
running on first.

NOTE

This function does not always work!

CROSS-REFERENCE

Also see QDOS$, ATARI , VER$, QRAM$, WMAN$, P_ENV . MACHINE is much more reliable.

24.35 QUEUE%

Syntax QUEUE% (string$)
Location QBASE (DIY Toolkit Vol Q)

QUEUE% is a function but does exactly the same as FORCE_TYPE and TYPE_IN.

The return value is zero if all bytes have been successfully typed in, negative if the keyboard queue is full
and positive if another problem occurred.

The absolute value of the return always indicates how many characters QUEUE% failed to send.

24.36 QUIT

Syntax QUIT [return code]
Location SMS

This command is used to force remove a Multiple SBASIC Interpreter or a compiled Job (in the latter
case it is the same as STOP).

An optional error code may be supplied to pass back to the calling job. This is only effective if the
calling job is waiting for this one - ie, started with EXEC_W , FEW etc, otherwise the returned error code
is ignored.

NOTE

If this command is used from SuperBASIC Job 0, it will return an ‘Incomplete’ error.

CROSS-REFERENCE

See MB, FEW and SBASIC. CLOSE #0 has the same effect from within a Multiple SBASIC or Multi-
BASIC Interpreter

24.34. QuATARI 665

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

666 Chapter 24. Keywords Q

CHAPTER

TWENTYFIVE

KEYWORDS R

25.1 RAD

Syntax RAD (angle)
Location QL ROM

This function is used to convert an angle in degrees into an angle in radians (which is the system used by
QDOS to represent angles in commands such as SIN, COS, TAN, etc.). Although this will work for any
value of angle, due to the very nature of angles, angle should be in the range 0..360, which will return a
value in the range 0..2Pi.

Example

A small program to draw a circle split into 30 degree segments:

100 MODE 4:WINDOW 448,200,32,16:SCALE 100,0,0
110 STRIP 2:INK 7
120 x1=75:y1=50:x2=x1:y2=y1+25
130 CIRCLE x1,y1,25
140 FOR x=0 TO 360/30-1
150 x2=x1+SIN(RAD(30)*x)*25:y2=y1+COS(RAD(30)*x)*25
160 LINE x1,y1 TO x2,y2
170 END FOR x

CROSS-REFERENCE

See DEG, SIN , COS. Also please refer to the Mathematics section of the Appendix.

25.2 RAE

Syntax RAE (i,n)
Location Toolfin

The function RAE returns the value of: i/(((1+i)1/n) -1) *n) where i and n can be any floating point
numbers (see MT for error handling).

CROSS-REFERENCE

MT , VA, VFR, VAR, TCA, TNC, TEE, RAFE

667

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

25.3 RAFE

Syntax RAFE (i,n)
Location Toolfin

The function RAFE returns the value of (((1+i)(1/n-1) * n)/i where i and n can be any floating point
numbers (see MT for error handling).

CROSS-REFERENCE

MT , VA, VFR, VAR, TCA, TNC, TEE, RAE

25.4 RAMTOP

Syntax RAMTOP
Location Beuletools

The function returns the active memory in KBytes, whether this is free memory or not. On the original
QL without any expansion this function will return 128, whereas on a QL expanded to 640K, 640 is
returned.

CROSS-REFERENCE

The value of RAMTOP can be lowered with RESET to emulate a machine which has less available mem-
ory.

PRINT (PHYSTOP/1024)-128 gives the value of the additional memory.

FREE_MEM and FREE return the actually available memory.

25.5 RAM_USE

Syntax RAM_USE [device]
Location Trump Card, Gold Card, ST/QL, SMS

This command is the same as FLP_USE except that it alters the name of the device used to access the
ramdisks.

NOTE

device must only be three letters long.

CROSS-REFERENCE

See FLP_USE.

668 Chapter 25. Keywords R

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

25.6 RAND

Syntax RAND (devicename) or
RAND (device$)

Location TinyToolkit

Every physical directory device (eg. floppies and microdrives, but not RAM disks), contain a ran-
dom number in their FAT (which is a place on the medium which contains internal data, the number
of free/bad/empty sectors etc). The function RAND returns this number which can be used by QDOS to
check if a medium has been changed.

NOTE

QDOS increases access speed by temporarily storing data in so-called slave blocks. On QDOS and
compatible machines this may lead to the phenomenon that RAND only returns the correct value the first
time that it is used, and then returns the same value for any other medium. This can be avoided by using
the command DEL_DEFB, or better CLRMDV before each RAND.

CROSS-REFERENCE

FOP_DIR opens a directory. FLP_SEC allows you to alter the amount of checking carried out by a disk
interface to see if a disk has been swapped.

25.7 RANDOMISE

Syntax RANDOMISE [(start)] or
RANDOMISE \ (Minerva v1.82+ only)

Location QL ROM

SuperBASIC uses a standard method to generate pseudo random numbers.

Each time that the function RND is called, a start value specified by the command RANDOMISE is
multiplied by a large number and another number is added, the solution is modulated and the final number
is nearly unpredictable.

This method means that after a RANDOMISE command with parameter, RND will always generate the
same numbers. If you pick another number as the parameter (or do not specify a parameter at all), this
will let RND produce other numbers. If no parameter is specified, RANDOMISE calculates a random
number by combining some internal system data such as the time, date, pointers etc.

Example

100 RANDOMISE 38
110 FOR n=1 TO 10: PRINT RND(10)

The program will always write the same ten random numbers on the screen.

MINERVA NOTE

The main problem with using RANDOMISE is that even without a parameter, the same pattern of ‘ran-
dom’ numbers is generated if the interval between when the computer is switched on and when the line

25.6. RAND 669

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

containing RANDOMISE is reached tends to be the same every time that a program is run. Although
v2.53+ of SMS makes RANDOMISE without a parameter more random, the only other fix is on v1.82+
of Minerva which allows you to use:

RANDOMISE \

instead of the normal RANDOMISE which should alleviate this problem somewhat.

CROSS-REFERENCE

RND is the function that returns a random number. RANDOMISE influences MATRND in the same way.

25.8 READ

Syntax READ var1 *[vari]*

Location QL ROM

This command forces the interpreter to look at the current data pointer, that is to say the next program
line which begins with the marker DATA.

When a program is first RUN, the data pointer is set to the start of the program, and hence READ will
attempt to assign the first value following the first occurrence of DATA to the specified variable. Having
assigned this value, the data pointer is updated to the next value in the same DATA statement, or the next
program line if there are no more values following the DATA statement.

If no more DATA is contained within the program and you try to READ a value, the error ‘End of File’
is reported. SMS’s improved interpreter reports ‘End of DATA’.

Example

A simple program to convert the three letter code returned by DAY$ into the full name of the day:

100 DATA 'Monday','Tuesday','Wednesday','Thursday'
110 DATA 'Friday','Saturday','Sunday'
120 RESTORE
130 dday$=DAY$
135 day=(dday$ INSTR ' MonTueWedThuFriSatSun')/3
140 FOR find_day=1 TO day
150 IF EOF:EXIT find_day
160 READ dday$
170 END FOR find_day
180 PRINT dday$

NOTE 1

The data pointer is not reset to the start of the program following every RUN. You need a RESTORE
command to do this - try running the above program without line 120.

NOTE 2

If you try to READ a value into a slice of an undimensioned string, the value will not be stored and
SuperBASIC may stop without a message, eg:

670 Chapter 25. Keywords R

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

100 DATA 'Bess '
110 a$='Hello World'
120 READ a$(7 TO)
130 PRINT a$

Try by way of comparison, adding the line:

10 DIM a$(12)

Both of these work under SMS.

NOTE 3

The interpreter does not really check the parameters listed after READ, and unacceptable parameters, for
example:

READ 1

won’t report an error and the program continues as if it had read a variable. SMS’s improved Interpreter
reports ‘Unacceptable Parameters for READ’ when the program is RUN.

MINERVA NOTE

As from v1.96, READ has been improved so that it will accept an array parameter and then read a value
for each element of the array in turn, without having to put READ into a loop.

Example

100 DIM x(5)
110 READ x
120 :
1000 DATA 1,2,3,4,5,6

This will read x(0), x(1), x(2), x(3), x(4) and x(5)

All other implementations insist upon you using something akin to:

100 DIM x(5)
110 FOR i=0 TO 5:READ x(i)
120 :
1000 DATA 1,2,3,4,5,6

CROSS-REFERENCE

RESTORE allows you to alter the program line pointed at by the data pointer. DATA sets out lines to be
READ. EOF allows you to test for the end of all program data.

25.8. READ 671

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

25.9 READ_HEADER

Syntax error = READ_HEADER(#channel, buffer)
Location DJToolkit 1.16

The file that is opened on the given channel has its header data read into memory starting at the given
address (buffer). The buffer address must have been reserved using RESERVE_HEAP, or some similar
command.

The buffer must be at least 64 bytes long or unpredictable results will occur. The function will read the
header but any memory beyond the end of the buffer will be overwritten if the buffer is too short. After
a successful call to this function, the contents of the buffer will be as follows :

Address Value Size
Buffer + 0 File length 4 bytes long (see FILE_LENGTH)
Buffer + 4 File access 1 byte long - currently zero
Buffer + 5 File type 1 byte long (see FILE_TYPE)
Buffer + 6 File dataspace 4 bytes long (see FILE_DATASPACE)
Buffer + 10 Unused 4 bytes long
Buffer + 14 Name length 2 bytes long, size of filename
Buffer + 16 Filename 36 bytes long

Directory devices also have the following additional data :

Address Value Size
Buffer + 52 Update date 4 bytes long (see FILE_UPDATE)
Buffer + 56 Reference date 4 bytes long - see below
Buffer + 60 Backup date 4 bytes long (see FILE_BACKUP)

Miracle Systems hard disc’s users and level 2 users will find the files version number stored as the the 2
bytes starting at buffer + 56, the remaining 2 bytes of the reference date seem to be hex 094A or decimal
2378 which has no apparent meaning, this of course may change at some point!

This function returns an error code if something went wrong while attempting to read the file header
or zero if everything went ok. It can be used as a more efficient method of finding out the details for a
particular file rather than calling all the various FILE_XXX functions. Each of these functions internally
call the READ_HEADER routine.

To extract data, use PEEK for byte values, PEEK_W for the filename length and version number (if level
2 drivers are present, see LEVEL2), or PEEK_L to extract 4 byte data items.

The filename can be extracted from the buffer by something like:

f$ = PEEK_STRING(buffer + 16, PEEK_W(buffer + 14)).

EXAMPLE The following example allows you to change the current dataspace requirements for an
EXECutable file:

672 Chapter 25. Keywords R

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

6445 DEFine PROCedure ALTER_DATASPACE
6450 LOCal base, loop, f$, ft, nv
6455 base = RESERVE_HEAP (64)
6460 IF base < 0 THEN
6465 PRINT "ERROR: " & base & ", reserving heap space."
6470 RETurn
6475 END IF
6480 REPeat loop
6485 INPUT'Enter filename:';f$
6490 IF f$ = '' THEN EXIT loop
6495 ft = FILE_TYPE(f$)
6500 IF ft < 0 THEN
6465 PRINT "ERROR: " & ft & ", reading file type for " & f$ & "."
6510 END IF
6515 IF ft <> 1 THEN
6520 PRINT f$ & 'is not an executable file!'
6525 NEXT loop
6530 END IF
6535 PRINT 'Current dataspace is:'; FILE_DATASPACE(f$)
6540 INPUT 'Enter new value:'; nv
6545 OPEN #3,f$: fer = READ_HEADER (#3,base)
6550 IF fer < 0 : CLOSE #3 : PRINT "READ_HEADER error: " & fer : NEXT loop
6555 POKE_L base + 6,nv
6560 fer = SET_HEADER(#3,base)
6565 IF fer < 0 : PRINT "SET_HEADER error: " & fer
6570 CLOSE #3
6575 END REPeat loop
6580 RELEASE_HEAP base
6585 END DEFine ALTER_DATASPACE

CROSS-REFERENCE

SET_HEADER, FILE_LENGTH, FILE_TYPE, FILE_DATASPACE, FILE_UPDATE, FILE_BACKUP.

25.10 RECHP

Syntax RECHP address or
RECHP address1 *[,addressi]* (BTool only)

Location Toolkit II, THOR XVI, BTool

The common heap is an area in memory where all programs may store data, this space being only limited
by the memory available. A BASIC program can reserve space in the common heap with the function
ALCHP.

The command RECHP allows you to recover this memory. The parameter of RECHP must be the ad-
dress which was returned by ALCHP. The Btool variant of this command allows you to recover several
addresses at once.

Example

25.10. RECHP 673

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Loading a title screen:

100 Title$="FLP1_TITLE_SCR"
110 IF FREE_MEM < 38*1024 THEN
120 LBYTES Title$,SCREEN
130 ELSE
140 TitleAdr=ALCHP(32768)
150 LBYTES Title$,TitleAdr
160 SCRBASE TitleAdr: REFRESH
170 RECHP TitleAdr
180 END IF

NOTE

RECHP reports error -15 if the address was not reserved with ALCHP or if the memory has already been
given back to QDOS.

CROSS-REFERENCE

CLCHP clears all memory reserved by ALCHP, CLEAR deletes the values of all variables. See also
DISCARD, TTREL and RELEASE.

25.11 RECOL

Syn-
tax

RECOL [#ch,] black,blue,red,magenta,green,cyan,yellow,white (MODE 8) or
RECOL [#ch,] black,1,red,3,green,5,white,white (MODE 4)

Loca-
tion

QL ROM

This command recolours all individual pixels in the specified window (default #1).

At least eight parameters must be specified, representing each of the colours available in MODE 8.

Each parameter must then have a value in the range 0..8 representing how that colour pixel is to be
recoloured.

The rather odd syntax for use in MODE 4 is due to a slight apparent bug in the RECOL command which
means that on some implementations the parameter which would normally represent the colour to replace
yellow on screen has to be used to specify the colour to replace white.

Example

A simple demonstration program which recolours a circle randomnly:

100 WINDOW 448,200,32,16
110 PAPER 0:CLS:INK 7
120 SCALE 100,0,0
130 REPeat loop
140 CIRCLE 75,50,20
150 new_col=RND(1 TO 6)
160 RECOL 0,1,2,3,4,5,6,new_col
170 END REPeat loop

674 Chapter 25. Keywords R

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Note how this only works in MODE 8 (except on SMS): to get it to work in MODE 4, you would need to
alter line 160 to:

160 RECOL 0,1,2,3,4,5,new_col,new_col

NOTE 1

Do not forget that the value of each parameter is taken to be the new colour, therefore if RECOL is to
have no effect at all, you will need to use:

RECOL 0,1,2,3,4,5,6,7

and not:

RECOL 0,0,0,0,0,0,0,0

as you might at first think (the latter turns the whole window to black!).

NOTE 2

This command did not work on ST/QL Emulators prior to Level D-05 drivers.

CROSS-REFERENCE

INK , FILL See also W_SWOP, SET_RED and SET_GREEN .

25.12 REFRESH

Syntax REFRESH
Location Fast PLOT/DRAW Toolkit

This command forces the whole screen pointed to by SCRBASE to be copied onto the visible part of
memory.

NOTE

REFRESH assumes 512x256 pixel resolution, the screen base is always assumed at $20000.

CROSS-REFERENCE

See also SCRBASE, SCLR, PLOT and DRAW . See also W_SHOW .

25.13 RELEASE

Syntax RELEASE address
Location TinyToolkit

This command allows you to return a section of memory reserved by GRAB to QDOS.

NOTE

25.12. REFRESH 675

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

LOAD, CLEAR, NEW and similar commands do not free GRABbed memory (unlike memory reserved
with ALCHP).

WARNING

Never free memory where extensions, device drivers or other code have been loaded and started (for
example with CALL) because the operating system will continue to update these routines regularly and
find code which may have been overwritten by other programs, internal data etc. Crash!

CROSS-REFERENCE

RECHP and CLCHP clear memory allocated with ALCHP. DISCARD releases memory allocated with
RESERVE. See also the other version of RELEASE.

25.14 RELEASE

Syntax RELEASE nr
Location ST/QL, QSound

RELEASE activates the enhanced sound capabilities of the ST/QL (or the QSound interface which has
now been out of production for some years). A sequence which has been previously stored with PLAY
under the number nr is ‘executed’ by RELEASE.

CROSS-REFERENCE

PLAY , SND_EXT Beware the other version of RELEASE.

25.15 RELEASE_HEAP

Syntax RELEASE_HEAP address
Location DJToolkit 1.16

The address given is assumed to be the address of a chunk of common heap as allocated earlier in the
program by RESERVE_HEAP. In order to avoid crashing the QL when an invalid address is given, RE-
LEASE_HEAP checks first that there is a flag at address-4 and if so, clears the flag and returns the
memory back to the system. If the flag is not there, or if the area has already been released, then a bad
parameter error will occur.

It is more efficient to RELEASE_HEAP in the opposite order to that in which it was reserved and will
help to avoid heap fragmentation.

CROSS-REFERENCE

See RESERVE_HEAP, below, for an example of use.

676 Chapter 25. Keywords R

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

25.16 RELEASE_TASK

Syntax RELEASE_TASK jobnr, jobtag
Location TASKCMDS (DIY Toolkit Vol J)

See REL_JOB and RELJOB below. Refer to NXJOB for information about the job identification.

25.17 RELJOB

Syntax RELJOB jobId
Location BTool

Same as REL_JOB apart from the fact that this expects the JobID of the Job rather than its name or a
simple job number.

25.18 RELOAD

Syntax RELOAD program_name
Location MutiBASIC (DIY Toolkit - Vol M)

This command is the opposite to UNLOAD in that it fetches the program which is stored in memory and
loads it into the current SuperBASIC interpreter. If the screen mode has been stored with UNLOAD (or
RESAVE), then when the program is loaded, RELOAD checks if the current display mode is the correct
one and if not will alter it (although see below).

NOTE 1

See the various notes and warnings given for UNLOAD.

NOTE 2

Any commands which appear after RELOAD will be ignored.

NOTE 3

If you RELOAD a program which has a stored screen in a different mode to the current display mode,
then the system can become confused if the Pointer Environment or Speedscreen is loaded. Therefore
you should always ensure that the correct MODE is set before you RELOAD a program.

NOTE 4

If the specified file is not a file you stored with UNLOAD or does not exist, an error will be generated.
You may also get the error ‘Channel not Open’ if the program uses a channel which was OPEN when the
program was UNLOADed but is no longer OPEN.

CROSS-REFERENCE

25.16. RELEASE_TASK 677

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

SCR_SAVE allows you to dictate whether the screen display and mode should be stored together with
the program. REMOVE allows you to remove a program stored in memory with this command. See also
RESAVE and QLOAD.

25.19 REL_JOB

Syntax REL_JOB jobname or REL_JOB jobnr
Location TinyToolkit

This command releases a suspended job, so that it becomes active again.

NOTE 1

Releasing a job which is waiting for screen input/output will normally kill it, because it should be activated
by <CTRL><C>.

NOTE 2

Before v1.11 of this Toolkit, jobnr could not be a variable (see JBASE).

CROSS-REFERENCE

Jobs can be suspended by SJOB and removed with RJOB, KJOB, KILL, etc. JOBS lists the current jobs.
See RELJOB.

25.20 REMAINDER

Syntax REMAINDER
Location QL ROM

This keyword can only be used within a SELect ON structure. It is used to represent all possible untested
values of the SELect ON variable.

CROSS-REFERENCE

Please see SELect ON .

25.21 REMark

Syntax REMark text
Location QL ROM

This command has no purpose when a program is RUNing. It is however used to place comments in
the program which can be useful when you later come to edit a SuperBASIC program. Anything which
appears after REMark on the same line, will be ignored by the interpreter, thus allowing you to make any
sort of comment you like.

Example

678 Chapter 25. Keywords R

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

100 REMark Line 110 could be altered to: 101 REMark 110 INPUT ‘Your name’;a$:IF
password$<>a$:STOP 110 Name$=’Author’

CROSS-REFERENCE

Another means of splitting a SuperBASIC program into sections is to include program lines which only
contain a colon (:), for example:

100 PRINT "End of Program":STOP
110 :
200 DATA 'Some data to read'

25.22 REMOVE

Syntax REMOVE program_name
Location MultiBASIC (DIY Toolkit - Vol M)

This command allows you to remove a task (or program stored in memory with UNLOAD or RESAVE)
by reference to its name. It is therefore very similar to RJOB, REL_JOB and REMOVE_TASK (amongst
others).

25.23 REMOVE_TASK

Syntax REMOVE_TASK jobnr, jobtag
Location TASKCMDS (DIY Toolkit - Vol J)

Please see RJOB, because REMOVE_TASK a,b works like RJOB a,b,0.

25.24 RENAME

Syntax RENAME [device_]oldname TO [device_]newname
Location THOR XVI, Toolkit II

This command allows you to alter the name of a file which has already been created on the given device.

You must first of all specify the name of the file to be renamed (if no device is specified, the default data
directory will be used). You will then need to specify the new name for that file (again, if no device is
specified, the default data device will be used). Assuming that both filenames are valid, an attempt will
be made to alter the filename as requested. If however newname already exists an error will be generated.

Example

RENAME flp1_boot TO flp1_oldboot

25.22. REMOVE 679

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE 1

If you try to RENAME a file across to another drive, (eg:

RENAME flp1_boot, flp2_oldboot

the error ‘bad name’ will be reported.

NOTE 2

Although you can RENAME each file within a sub-directory so that they no longer appear in that sub-
directory, any attempt to RENAME the sub-directory itself (even if there are no files in it) will cause the
error ‘Read Only’.

For example, assuming that a directory of disk flp1_ returns the following:

boot QUILL->

You could for example, use:

RENAME flp1_QUILL_boot TO flp1_ARCHIVE_boot

if you wished, but any attempt to use:

RENAME flp1_QUILL TO flp1_ARCHIVE

will cause an error except on SMSQ/E (although an error is still generated on RAM disks).

NOTE 3

Unless you have Minerva v1.77 (or later) fitted, RENAME will alter the date of a microdrive file when
used to rename a file on microdrive.

NOTE 4

In versions of Toolkit II before v2.10, RENAME could leave the file open (and therefore inaccessible) if
only one name was provided.

NOTE 5

If you try to use RENAME to change a filename to upper case (or lower case) the error ‘Already Exists’
will be reported.

CROSS-REFERENCE

See also WREN which allows you to rename several files at once. TTRENAME is similar.

25.25 RENUM

Syntax RENUM [start_line [TO end_line];][new_line][,step] or
RENUM [start_line] TO [end_line][;new_line][,step]

Loca-
tion

QL ROM

When developing a SuperBASIC program, you will find that you sometimes run out of space in which
to insert a new line, because of the line numbers which you have used. Line numbers can be any integer

680 Chapter 25. Keywords R

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

in the range 1. . . 32767 and it is therefore unlikely that you will not be able to make room to fit any more
lines into the program. To make more room, you will need to RENUMber the program. You can either
elect to use RENUM in its simplest form, or a more complex form.

The simplest form of RENUM is the command:

RENUM

This will renumber the whole of the SuperBASIC program in memory, so that the first line number
becomes line 100 and every subsequent SuperBASIC line number will be in an increment of 10.

You can however also use RENUM to renumber a specified range of lines in a program, by using some
of the optional parameters. These parameters have the following effects:

• Start_line specifies the first line to be RENUMbered (default 1).

• End_line specifies the last line in the range to be RENUMbered (default 32767).

• New_line the line number which the start_line will be RENUMbered to (default 100).

• Step specifies the gap between each new line number (default 10).

RENUM will also alter line numbers referred to in the standard QL ROM commands:

GO SUB
GO TO
RESTORE

provided of course that the line number referred to is within the range of lines being renumbered!.

If the line number originally referred to does not exist, then RENUM will point it to the next program
line following that line number.

It is also possible that a reference to a line number is actually calculated when the interpreter reaches that
line. In such instances, the line number reference can only be renumbered if it is the first thing in the
expression. For example, take the following program:

100 locat = 0
110 REPeat loop
120 RESTORE locat + 1000
125 IF EOF: EXIT loop
130 READ description$
140 PRINT description$
150 locat = locat + 1
155 PAUSE
160 END REPeat loop
888 :
1000 DATA 'Location One'
1001 DATA 'Location Two'
1002 DATA 'Location Three'

RENUM would renumber all of the line numbers beginning with line 100 in steps of 10, however, the
program would no longer work as the RESTORE command in line 120 would then point to a non-existant
line 1000. To solve this, before using RENUM, alter line 120 to:

120 RESTORE 1000 + locat

25.25. RENUM 681

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Having carried out the renumbering task, if the lines currently shown in the list window are affected, they
will be relisted in #2 (except under SMS).

Examples

RENUM 100

or:

RENUM 1 TO

These are both the same as RENUM.

RENUM 100 TO 1000;10,5

This will renumber all lines in the range 100 to 1000, with the new lines beginning from line 10 in steps
of 5.

RENUM 1000;2000

This will renumber all lines from line 1000 onwards, with the new line numbers beginning with line
2000, and increasing in steps of 10.

RENUM 1000,20

This will renumber all lines from 1000 onwards, with the new line numbers beginning with line 100 and
increasing in steps of 20.

NOTE 1

On pre Minerva v1.77 ROMs, RENUM will not generally work correctly on the line number reference
in a RESTORE where this appears on the same line as a DATA statement.

NOTE 2

On non Minerva ROMs, the current DATA pointer and ERLIN line numbers tend to get lost in the process!
Although SMS updates the DATA pointer, it still has some problems. For example, try the following
program:

1 RENUM TO 170;1,1
2 RESTORE
3 READ x:PRINT x
4 RENUM
5 READ x:PRINT x
6 RESTORE 6: DATA 10,12: RESTORE 6
7 READ x: PRINT x
8 STOP
180 PRINT 'Why have I reached here?'

If you alter line 1 to read:

1 RENUM 1,1

then the program just stops without an error at line 4. Minerva still has problems with the above.

Try entering the command:

682 Chapter 25. Keywords R

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

RENUM 1 TO 7;1,1

An out of range error is reported even though there is no problem with this range. Minerva does this
correctly. We believe other ROMs will show different symptoms (see the WARNING below).

NOTE 3

On Minerva ROMs (pre v1.97), if integer tokenisation is enabled, RENUM cannot renumber line numbers
less than 128.

NOTE 4

You cannot use RENUM to renumber lines out of sequence. For example, given the following lines:

100 REPeat loop
110 IF INKEY$=CHR$(27):EXIT loop
120 END REPeat loop

Any attempt to:

RENUM 110 TO 110;200

would report an ‘Out of Range’ error, as you would be trying to renumber line 110 out of order!

NOTE 5

If you try to renumber a line outside of the range of line numbers (see above), or there is not enough
space between line numbers outside the given range to fit the newly renumbered program lines into, this
will cause an ‘Out of Range’ error. For example, taking the routine listed at note 4:

RENUM 32760

or:

RENUM 100 TO 110;119,1

would both report such an error.

NOTE 6

The Turbo and Supercharge compilers from Digital Precision cannot compile a program with calculated
RESTOREs, GO SUBs or GO TOs.

NOTE 7

Unfortunately, RENUM will not handle line number references in commands other than GO TO, GO
SUB or RESTORE, which can leave lines such as:

SAVE flp1_Prog_ext,1000 TO 2000

high and dry!

WARNING

It is generally inadvisable to use RENUM within a program as the interpreter tends to lose its place (see
Note 2 above).

CROSS-REFERENCE

25.25. RENUM 683

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

DLINE allows you to delete lines from a program. ED allows you to edit a program in memory. Also see
AUTO.

25.26 REPeat

Syntax REPeat identifier or
REPeat [identifier](SMS only)

Location QL ROM

The SuperBASIC REPeat loop is extremely flexible and provides an alternative to the classic FOR loop.

It sets up a perpetual loop which can only be ended (correctly) by means of the EXIT command. The
syntax of this SuperBASIC structure can take two forms:

REPeat identifier :statement *[:statement]*

or:

REPeat identifier *[statements]* . . . [EXIT identifier] [NEXT identifier] . . . END REPeat identifier

The first of these variants is known as an in-line REPeat loop. Provided that there is at least one statement
following REPeat, this line will be repeated forever (unless there is an EXIT statement - see below). There
is no need for a related END REPeat statement and therefore the shortest (practicable) in-line REPeat
loop possible is:

REPeat loop: IF INKEY$=' ' THEN EXIT loop

If an in-line loop is terminated with EXIT, control will be passed to the statement following the corre-
sponding END REPeat statement (if one exists), or the next program line. This allows the following:

REPeat loop: IF INKEY$=' ':EXIT loop: END REPeat loop: PRINT 'Phew!'

EXIT is used (in both REPeat loops and FOR loops) to terminate the loop, and the next statement which
will be processed is the first statement after the corresponding END REPeat (if one exists).

NEXT forces the program to make another pass of the loop, returning program control to the statement
following REPeat.

Example

A short FuNction which waits for a key to be pressed which can be <ESC> or any key listed in a string
passed as the parameter, and returns the CODE of the key pressed:

100 DEFine FuNction Getkey(key$)
105 LOCal loop,k$
110 REPeat loop
120 k$=INKEY$:IF k$='':NEXT loop
130 IF k$ INSTR key$&CHR$(27):RETurn CODE(k$)
140 END REPeat loop
150 END DEFine

NOTE 1

684 Chapter 25. Keywords R

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

The loop identifier must be a floating-point, except under Minerva or SMS. However, if the loop identifier
is also used as a variable in the program, its value will not be altered by the REPeat / END REPeat / EXIT
/ NEXT statements. It can therefore still be used as a variable within the loop without any problems.

NOTE 2

It is actually possible to force a NEXT loop from outside of the loop, for example in a program such as:

100 REPeat Getkey
110 AT 0,0:PRINT 'Looping'
120 a$=INKEY$:IF a$='':NEXT Getkey
130 PRINT a$
140 IF a$=='x':EXIT Getkey
150 END REPeat Getkey
155 :
160 PRINT 'You have decided to leave the loop'
170 PRINT 'Press a key to return to it'
180 PAUSE
190 CLS
195 :
200 NEXT Getkey

This is however very bad programming style and should be avoided. It makes it very difficult to follow
programs and no SuperBASIC compilers would be able to make sense of it. The above program should
be re-written:

100 REPeat Getkey
110 AT 0,0:PRINT 'Looping'
120 a$=INKEY$:IF a$='':NEXT Getkey
130 PRINT a$
140 IF a$=='x'
150 PRINT 'You are now still in the loop'
160 PRINT 'Press a key to restart it'
170 PAUSE
180 CLS
190 END IF
200 END REPeat Getkey

MINERVA NOTES

This allows string REPeat loops and integer REPeat loops, although the use of the former is dubious.
You can of course still use the identifiers within the loop as variables. Integer REPeat loops do not seem
to be any quicker than floating point loops.

If you do use a string identifier, Minerva restricts such strings to a maximum of four characters. If the
string identifier is defined as a variable beforehand, it will be truncated if necessary - for example, try:

a$='Hello World': REPeat a$: PRINT a$ and a$='': REPeat a$: a$ = a$ & 'x':␣
→˓PRINT a$

String and integer REPeat loops will not safely work on other ROMs (except under SMS), even if they
will let you type them in!

SMS NOTES

25.26. REPeat 685

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Like Minerva, SMS allows string REPeat loops and integer REPeat loops. However, SMS does not restrict
the length of a string loop identifier (except to the normal string length limit of 32767 characters). SMS
also allows you to omit the loop identifier, in which case the relative EXIT, NEXT and END REPeat
statements must also omit the loop identifier. This flexibility brings this command more in line with
other implementations of BASIC. Error trapping of incorrectly structured REPeat loops is also improved
- please refer to NEXT and END REPeat.

CROSS-REFERENCE

FOR. . .END FOR is the other loop type.

25.27 REPLACE

Syntax REPLACE oldvar, newvar
Location REPLACE (DIY Toolkit - Vol R)

The REPLACE command is intended for use from the interpreter’s command line and for program de-
velopment only.

The idea of REPLACE is to rename SuperBASIC variables contained in the program which is currently
loaded into the interpreter. The first and second parameter can be any variables, they must not be given
as strings ie. inside quotes (this leads to error -15: bad parameter).

REPLACE will replace oldvar by newvar for the whole program (in fact for the whole interpreter).

Acceptable types of parameters are variables and also REPeat loop names but not PROCedure or FuNc-
tion names.

You can even use this to change unquoted device names if you wish, such as:

LBYTES flp1_data_cde

You could use:

REPLACE flp1_data_cde, flp2_data_cde

REPLACE is extremely fast, without any noticeable reduction in speed for large programs due to the fact
that the interpreter stores the program lines in tokenised format, this means that a line is not stored as
text but as a set of numbers (tokens) which represent the elements of the line. So REPLACE merely has
to modify the name table and change the name which is identified with a certain token.

Example

Enter the following lines:

10 x = 1
20 PRINT SQRT(x)

Now type:

REPLACE x, Whatever

and then LIST or ED, the program now reads:

686 Chapter 25. Keywords R

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10 Whatever = 1
20 PRINT SQRT(Whatever)

and is functionally identical to the original.

NOTE 1

Never use REPLACE as part of a program.

NOTE 2

REPLACE will work on a program loaded into a MultiBASIC.

WARNING 1

There is one possibility that you can harm your program: if you replace a variable by another variable
which is already used in this program then the program will usually behave very differently after the
REPLACEment.

WARNING 2

According to the Minerva Technical Manual REPLACE is “not particularly safe”. At least if you are
using the original version as published in QL World then you need to turn off Minerva’s integer tokeni-
sation (POKE \\212,128). Later versions (v0.3+) do however cope with integer tokenisation. Despite the
warning, we have yet to find any other problems with REPLACE.

CROSS-REFERENCE

NEW_NAME is very similar to REPLACE but the parameters are passed as strings. This has the advantage
that NEW_NAME can take variable parameters, REPLACE would replace the variable for the variable
name. Compare ALIAS.

25.28 REPLY

Syntax REPLY [([#wind,] keys$)]
Location BTool

The function REPLY reads a character from the keyboard (with the text cursor in a window enabled).

If keys$ was specified, then REPLY will only stop if the pressed key was listed in keys$, this is case-
sensitive so <a> and <SHIFT><A> are different.

The return of REPLY is the position of the pressed key in keys$. REPLY behaves very differently if there
is no keys$ supplied. The return will be the code of the pressed key, just like CODE(INKEY$(-1)) except
that combinations of <ALT> and any other key are recognised - if <ALT> was held and any other key
pressed, REPLY returns 256 minus the code of that key.

Example

Another version of the game also shown at ASK:

100 CLS: x1 = 0: x2 = 100
110 PRINT "I am going to find out a number"
120 PRINT "from"!x1!"to"!x2!"which only you know."

(continues on next page)

25.28. REPLY 687

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

130 PRINT "Press <S> if the proposed number is too small,"
140 PRINT "<L> if it's too large or <Y> if it's the result."
150 REPeat find_out
160 x=(x1+x2) DIV 2
170 PRINT x;"? ";
180 answer = REPLY("sSlLyY")
190 SELect ON answer
200 =1,2: x1 = x + 1: PRINT "too small"
210 =3,4: x2 = x - 1: PRINT "too large"
220 =5,6: EXIT find_out
230 END SELect
240 END REPeat find_out
250 PRINT "ok"\"I am the best."

CROSS-REFERENCE

ASK , INKEY$ See CODE also.

25.29 REPORT

Syntax REPORT [#channel] or
REPORT [#channel,][error_number](Toolkit II, THOR XVI, TinyToolkit, BTool)

Loca-
tion

QL ROM (post JM), Toolkit II, TinyToolkit, THOR XVI and BTool

This command will print an error message to the given channel (default #0, the command line). The type
of error is identified by the error number. If an error number is not supplied, then the last error to have
occurred is displayed. The error message depends on the machine where the program is running, see
ERNUM for conventions. Positive error numbers have no effect.

WARNING

Toolkit II’s REPORT allows any value for the error_number, whereas TinyToolkit and BTool limit them to
-1 to -21 and report undefined error for values lower than -21. Except under SMS, with Toolkit II, negative
errors smaller than -27 may lead to undefined actions ie. printing a continuous stream of characters to
the report channel - this may never stop.

NOTE 1

TRA can be used to redefine the error messages.

NOTE 2

For the original REPORT (QL ROM), only the first version of the command can be used. Further, if
the supplied channel is not yet open, no error is reported and REPORT simply returns to BASIC as if it
had carried out its job successfully. Also, on Minerva, SMS and ST/QL Emulators with E-Init software
v1.27+, REPORT will show the line and statement number where the error occurred (rather than merely
the line number) in the form: At line <line number>;<statement number><error message>

CROSS-REFERENCE

688 Chapter 25. Keywords R

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

See ERNUM about error messages in general and TK2_EXT /TINY_EXT about updating Toolkits. Refer
to the Appendix for the different message texts in various languages.

25.30 RESAVE

Syntax RESAVE program_name
Location MutiBASIC (DIY Toolkit - Vol M)

This command is the same as UNLOAD except that if the specified program_name has already been
stored in memory, it is overwritten.

CROSS-REFERENCE

See UNLOAD!

25.31 RESERVE

Syntax RESERVE (bytes, JobID)
Location Timing Toolkit (DIY Toolkit Vol H)

This function grabs an area of memory in the Common Heap similar to ALCHP. However, the area is
not released after a new SuperBASIC program is loaded. Standard error returns are returned as values
by the function and the program can therefore include error trapping. -3 (Out of Memory) or -2 (Invalid
Job ID) are the most common errors. You can also specify a task which will own the memory, and that
memory will be removed when that task is removed. This task will normally be 0 (SuperBASIC) or -1
(the current job).

CROSS-REFERENCE

See DISCARD and LINKUP. Also see ALCHP, RESPR and GRAB.

25.32 RESERVE_HEAP

Syntax buffer = RESERVE_HEAP(length)
Location DJToolkit 1.16

This function obtains a chunk of memory for your program to use, the starting address is returned as the
result of the call. Note that the function will ask for 4 bytes more than you require, these are used to store
a flag so that calls to READ_HEADER do not crash the system by attempting to deallocate invalid areas
of memory. If you call this function, the returned address is the first byte that your program can use.

EXAMPLE

The following example shows how this function can be used to reserve a buffer for READ_HEADER,
described elsewhere.

25.30. RESAVE 689

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

1000 buffer = RESERVE_HEAP(64)
1010 IF buffer < 0
1020 PRINT 'ERROR allocating buffer, ' & buffer
1030 STOP
1040 END IF
1050 error = READ_HEADER(#3, buffer)

.....do something with buffer contents here

2040 REMark Finished with buffer
2050 RELEASE_HEAP buffer

CROSS-REFERENCE

RELEASE_HEAP, ALCHP, RECHP, ALLOCATION .

25.33 RESET

Syntax RESET [new_ramtop](Not SMSQ/E) or
RESET(SMSQ/E only)

Location TinyToolkit, Beuletools, BTool, SMSQ/E, RES

This command performs a system reset. Except under SMSQ/E, this can be used to simulate a system with
less memory or to get old games and problem software running, you can reduce the available memory
(via new_ramtop) to anything between 128K (TinyToolkit: 64K) and RAMTOP in 64K steps (RES and
BTool set a maximum of 640K).

NOTE

Do not include this command in a program without asking the user to confirm that it is OK since the
computer may be writing some essential data to disk at the time (or still have some in memory).

CROSS-REFERENCE

On Gold Cards use RES_128 and RES_SIZE for a faster reset. Minerva allows you to use CALL 390,x to
reset the system.

25.34 RESFAST

Syntax RESFAST (bytes)
Location ATARI_REXT for QVME (v2.31+)

This function allows you to grab a specified number of bytes in Atari TT FastRAM and is therefore akin to
RESPR and ALCHP. However, note that you can only use LBYTES to load data to this area or SBYTES
/ SEXEC to save data if you are loading a file from or saving a file to a RAM disk. You cannot use floppy
disks or hard disks with this area of memory.

CROSS-REFERENCE

690 Chapter 25. Keywords R

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

See FAST_FREE and RESPR.

25.35 RESPR

Syntax RESPR (bytes)
Location QL ROM

This function sets aside a chunk of resident procedure space for use by a program and returns the address
of the start of that memory. Resident procedure space is merely an area of RAM which can be used safely
by the user without fear of the system crashing if values are written to it.

When used, the RESPR function will search for an area in RAM which is currently unused and which is
at least ‘bytes’ long. If there is insufficient space in RAM, then an ‘Out of Memory’ error is reported.

Memory set aside using RESPR cannot later be released and used for other purposes (unless you have a
Minerva ROM), and thus this command is used mainly for linking in Toolkits and other system extensions
in a boot program.

Example

A simple boot program might look like this:

100 x=RESPR(10*1024): LBYTES flp1_Toolkit,x: CALL x
120 EXEC flp1_Program_obj

NOTE 1

If a task is running in memory (eg. with EXEC), when RESPR is used, the resident procedure space
cannot be accessed and the error ‘Not Complete’ is reported. However, some Toolkits, SMS and Minerva
rewrite the RESPR command so that it will access the common heap if the resident procedure space
cannot be accessed.

NOTE 2

Normally, the function RESPR(0) will return the address of ramtop, this can actually be used to find out
the size of memory attached to the QL:

PRINT RESPR(0)/1024-128.

However, this will not work on versions of the command which work when tasks are running in memory.

NOTE 3

On Minerva pre v1.96, adding machine code functions and procedures from within a SuperBASIC PRO-
Cedure or FuNction definition could cause problems after a CLEAR command.

WARNING

Several programs may try to use the same area of resident procedure space if absolute addresses are used.

CROSS-REFERENCE

Please also see ALCHP which allocates memory from the common heap, which can be accessed when
tasks are running in memory. Also see RESERVE and GRAB which are similar to ALCHP. It is also
worth looking at RESFAST .

25.35. RESPR 691

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

25.36 RESTORE

Syntax RESTORE [line_no]
Location QL ROM

In any program which uses DATA statements, it is necessary to tell the interpreter where the data begins
within the program, so that it knows where to look when it encounters a READ command. RESTORE
allows you to set the data pointer to a specific line number within a SuperBASIC program.

If line_no is not specified, then the data pointer is moved to the start of a program allowing all DATA
within a program to be READ. line_no can be either a simple reference to a line number anywhere in a
SuperBASIC program, or an expression which will be calculated by the interpreter when it reaches the
RESTORE command.

NOTE 1

The Turbo and Supercharge compilers cannot compile computed RESTOREs.

NOTE 2

The data pointer is not reset when a program is RUN and it is therefore necessary to use an implicit
RESTORE or CLEAR if you wish to read the same set of DATA each time that a program is RUN.

NOTE 3

On some implementations RESTORE with an invalid parameter will do a RESTORE 0. This is fixed on
Minerva v1.96+ and SMS which report the error.

CROSS-REFERENCE

See DATA and READ. Please also refer to RENUM.

25.37 RES_SIZE

Syntax RES_SIZE ram_top
Location Gold Card

To get the few old programs which still do not work with the Gold Card’s 1920K RAM running and to
simulate a system with less RAM for debugging, RES_SIZE resets the system and adjusts the RAMTOP
to the desired value.

If you use RES_SIZE 128, high density and extra density disks cannot be accessed until the next reset.
Secondly, the realtime clock runs by default in protected mode. Thirdly, the ramdisks cannot be accessed
by the system. This should simulate the unexpanded, original QL. Normal disk drives (DD) can still be
accessed, although this can be temperamental.

Examples

RES_SIZE 640
RES_SIZE 128
RES_SIZE 1024

692 Chapter 25. Keywords R

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE

You may find that some programs will still not work following RES_SIZE, especially if they use a line
such as:

x=RESPR(0): start=RESPR(x-131072)

This appears to happen because RESPR(0) returns the address of RAMTOP which is still over 2MB even
though only 128K is available. Minerva users should use:

CALL 390,x

instead.

WARNING

At least up to Gold Card’s firmware v2.28, RES_SIZE does not check the range of the supplied parameter.
If values lower than 56 or higher than 1920 are used, this can lead to crashes of a particularly serious
character. Either the QL hangs during or after the resets, or there will not be enough free memory to
enter any commands.

There is even a danger that a fatal crash will occur which can destroy data on hard disks, disks or micro-
drive cartridges, or the realtime clock can be affected or even combinations of these different crashes can
occur. As hard disk drives cannot be removed or protected from any malfunction of the operating system
or programs, they are in extreme danger.

It is also not advisable to use values other than multiples of 64 because software tends to expect a ramtop
which is a multiple of 64 and memory is wasted.

CROSS-REFERENCE

RES_128 is identical to RES_SIZE 128. See also RESET . See RAMTOP and FREE_MEM about available
and free memory. FLP_EXT improves the reliability of the floppy disk drives and allows RAM disks to
be used.

25.38 RES_128

Syntax RES_128
Location Gold Card, Trump Card

This command does the same as RES_SIZE 128.

CROSS-REFERENCE

FLP_EXT can be used to re-enable some functions such as ramdisks.

25.38. RES_128 693

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

25.39 RETRY

Syntax RETRY or
RETRY [line_no](Toolkit II and Minerva)

Location QL ROM, Toolkit II

The command RETRY performs the same operation as CONTINUE except that interpreting re-starts with
the statement at which the error occurred (CONTINUE re-starts the program from the next statement).

If you have Toolkit II or Minerva installed, you will be able to use the second variant of this command
which allows you to re-start processing at a specified line number to help with error trapping. If the
parameter is specified, this is exactly the same as the second variant of CONTINUE.

Example

Take the following short program:

100 REPeat loop
110 INPUT 'Enter a number: ';a
120 PRINT 'The number you entered is: ';a
130 END REPeat loop

Now, when prompted to enter a number, enter a letter, which results in the error ‘Error in Expression’.
If you were to enter the command RETRY, the program would re-start at line 110, asking you to enter
a number. However, if you entered the command CONTINUE, the program would re-start at line 120,
displaying the message:

The number you entered is: *

CROSS-REFERENCE

Please refer to CONTINUE!

25.40 RETurn

Syntax RETurn [expression]
Location QL ROM

This command has two actual uses. The main use of RETurn is to force an early return from a PROCe-
dure or FuNction definition block. A FuNction must always return a value and therefore a SuperBASIC
DEFine FuNction block must always contain a RETurn statement to return this value.

The second use of RETurn is to mark the end of a sub-routine which has been called with GO SUB. This
is implemented in SuperBASIC to make the transition from other implementations of BASIC easier.

Examples

A PROCedure to report an error more safely than REPORT:

694 Chapter 25. Keywords R

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

100 DEFine PROCedure REPORT_ERROR(errnumber)
110 IF errnumber>=0 OR errnumber<-21
120 PRINT #0,'No error'
130 RETurn
140 END IF
150 REPORT errnumber
160 END DEFine

A FuNction which returns 1 (true) if a given number is even:

100 DEFine FuNction CK_EVEN (x)
110 IF x/2=INT(x/2):RETurn 1
120 RETurn 0
130 END DEFine

CROSS-REFERENCE

See DEFine PROCedure and DEFine FuNction. Please also refer to GO SUB.

25.41 REV$

Syntax REV$ (string$)
Location REV

This function returns the supplied string in reverse order.

Example

PRINT REV$("Hello World")

shows dlroW olleH

CROSS-REFERENCE

LEN finds the length of a string. TRIM$ cuts off excess spaces from a string.

25.42 RJOB

Syntax RJOB jobname [,error] or
RJOB jobnr,tag,error or
RJOB job_id,error or
RJOB [job_id,error] (BTool only)

Loca-
tion

Toolkit II, THOR XVI, BTool

This command removes a job from memory - all of its channels are automatically closed and any memory
used by the job is freed. The error code is returned to the owner job of the removed job. The BTool

25.41. REV$ 695

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

variant of RJOB allows you to enter the command without any parameters which will kill every job
except SuperBASIC (Job 0), see KJOBS and KILL.

NOTE

If the first syntax does not work, you are using an old Toolkit version.

CROSS-REFERENCE

KJOB works similarly to RJOB. KILL, REMOVE and KJOBS remove all jobs. Have a look at JOBS,
SPJOB, AJOB, SJOB etc.

25.43 RMAR

Syntax RMAR(n) with n=0..255
Location Beuletools

This function returns the control codes needed to set the right margin to n characters (from the left side)
on EPSON compatible printers. If the right margin is smaller than the left margin, the printer will ignore
this setting and print to the greatest possible right margin:

PRINT #ch,RMAR

is the same as:

PRINT #ch,CHR$(27) & 'Q' & CHR$(n)

CROSS-REFERENCE

NORM, BLD, EL, DBL, ENL, PRO, SI , NRM, UNL, ALT , ESC, FF, LMAR, PAGDIS, PAGLEN .

25.44 RMODE

Syntax RMODE [(screen)]
Location Fn

The function RMODE returns the current screen mode (of the screen belonging to the job which executes
RMODE if the Window Manager is present).

If Minerva or Amiga QDOS v3.23 is present and is in dual screen mode, then PRINT RMODE(1) will
show the current screen mode for the Other Screen (see MODE). If Minerva and Amiga QDOS is not
present, (or dual screen mode is not active), then RMODE(1) will return -19 (for ‘Not Implemented’).
Both RMODE and RMODE(0) return the mode of the Default Screen on all ROMs:

RMODE Min Resolution Colours
2 640 x 400 2
4 512 x 256 4
8 256 x 256 8
12 256 x 256 16

696 Chapter 25. Keywords R

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Example

If a program is written to operate in one of these modes, it has to change to that mode at the very beginning.
A simple MODE 4 will do, if high resolution is needed. But the MODE is executed even if the screen was
already in the correct mode. It looks better if MODE is only done if the mode really has to be changed.
CHANGE_MODE should be used instead of MODE:

100 DEFine PROCedure CHANGE_MODE (mode%)
110 IF RMODE(0)<> mode%
120 MODE mode%
130 END IF
140 END DEFine CHANGE_MODE

CROSS-REFERENCE

MODE sets the mode. QFLIM returns the screen resolution. TTMODE% is similar.

25.45 RND

Syntax RND [([min TO] max)]
Location QL ROM

This function produces a (pseudo) random number. When used without parameters it returns a floating
point number between 0 and 1, otherwise an integer number lying between the two parameters (including
the parameters) will be returned.

Expression Results
x=RND 0 < x < 1
x=RND(max) where max >= 0 0, 1, 2, 3, . . . , max
x=RND(min TO max) where max >= min min, min+1, . . . , max-1, max

Example

100 CLS: PRINT "RND Statistics"
110 n = 1000: m = 10: DIM h%(m)
120 FOR i=1 TO n
130 k = RND(1 TO m)
140 h%(k) = h%(k)+ 1
150 AT 2,5: PRINT i
160 END FOR i
170 PRINT: avdiff = 0
180 FOR k = 1 TO m
190 diff = n / m - h%(k)
200 PRINT k; TO 6; h%(k); TO 12; INT(diff)
210 avdiff = avdiff + ABS(diff / n * m)
220 END FOR k
230 PRINT\"average difference:" ! INT(100 * avdiff / m);"%"

25.45. RND 697

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE

If a range is specified {eg. RND(x TO y)} the second number must not be less than the first (ie. y>=x).
If only one parameter is specified, this is taken to be the top of the range, with the bottom of the range
being 0. Therefore, if only one parameter is specified, this must not be negative.

CROSS-REFERENCE

The results of RND can be influenced with RANDOMISE. See also MATRND.

25.46 ROM

Syntax ROM (n)
Location TinyToolkit

This function returns the address in memory where additional ROMs can be placed. The parameter
specifies the number of the slot you wish to look at (it must be in the range 0. . . 16). The possible values
are:

n ROM(n)
0 49152 (EPROM-Port)
1 786432
2 802816
3 819200
4 835584
5 851968
6 868352
7 884736
8 901120
9 917504
10 933888
11 950272
12 966656
13 983040
14 999424
15 1015808
16 1032192

CROSS-REFERENCE

ROM_TEST checks if a piece of code can be placed into a ROM. EPROM_LOAD allows you to load an
EPROM on an emulator.

698 Chapter 25. Keywords R

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

25.47 ROM_EXT

Syntax ROM_EXT
Location ATARI_REXT

This command activates any EPROMs in a standard QL format which have been plugged into the ROM
port on the Atari ST. The code contained in the EPROMs is initialised just as it would be on the QL.

NOTE

This can only be used on code which is stored on EPROM chips, as a QL EPROM cartridge cannot be
plugged into the Atari ST.

CROSS-REFERENCE

See also ROM_LOAD and EPROM_LOAD which allows you to transport code across from QL EPROM
cartridges.

25.48 ROM_LOAD

Syntax ROM_LOAD device_file
Location ATARI_REXT (pre v1.21 only)

On later versions of the Emulator, this has been renamed EPROM_LOAD.

25.49 ROMs

Syntax ROMs [#ch]
Location Beuletools

This command lists all ROM headers of plugged in ROMs to the given channel (default #1), provided
the ROMs conform to the Sinclair standard. This will recognise, for example, Trumpcard, Atari QL-
Emulator and anything plugged into the QL’s ROMport.

CROSS-REFERENCE

ROM returns the start address of a ROM slot.

25.47. ROM_EXT 699

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

25.50 RTP_R

Syntax RTP_R (imag, real)
Location PTRRTP

The function RTP_R takes a given rectangular co-ordinate and returns the so-called module (ie. the
radius in polar co-ordinates). The result of RTP_R is always strictly positive and is not affected by the
sign of the imag and real parameters, because of the symmetries of a circle.

Example 1

Draw a rectangular pattern in green and the corresponding polar pattern again displayed as rectangular
co-ordinates in white:

100 SCALE 10,-5,-5: PAPER 0: CLS
110 FOR x = -3 TO 3 STEP .4
120 FOR y = -3 TO 3 STEP 5E-2
130 INK 4: POINT x, y
140 INK 7: POINT RTP_R(x,y), RTP_T(x,y)
150 END FOR y
160 END FOR x

Example 2

The same as the above example but the polar co-ordinates are treated even more unusually. If you correct
the program and exchange a and b in line 140 then the two patterns will match exactly - this reveals what
the RTP_. . . functions are actually doing:

100 SCALE 10,-5,-5: PAPER 0: CLS
110 FOR x = -3 TO 3 STEP .4
120 FOR y = -3 TO 3 STEP 2E-2
130 INK 4: POINT x, y
140 a = RTP_R(x,y): b = RTP_T(x,y)
145 INK 7: POINT b * COS(a), b * SIN(a)
150 END FOR y
160 END FOR x

CROSS-REFERENCE

Polar co-ordinates also need an angle, this is calculated with RTP_T . The PTR_X and PTR_Y pair of
functions are complementary to RTP_R and RTP_T .

700 Chapter 25. Keywords R

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

25.51 RTP_T

Syntax RTP_T (imag, real)
Location PTRRTP

The function RTP_T takes rectangular co-ordinates and returns the corresponding argument, (the angle
used in polar co-ordinates) in radians. See RTP_R for further information.

25.52 RUN

Syntax RUN [line]
Location QL ROM

There is one command which can be found in any BASIC language:

RUN

Issuing RUN may actually be a little closer to the truth than you like to admit, but you should be happy
with BASIC. Assembly language is much more terrifying, and if you have not yet reached that point of
knowledge and understanding which it is most frustrating to reach. . . However:

RUN line

is identical to:

GOTO line

and:

RUN

without a parameter, could be replaced by GOTO 1.

Unlike some implementations of BASIC, the variables and the DATA pointer are not reset when you
enter RUN.

NOTE

Jobs cannot be started with RUN but have to loaded and executed with EX, EXEC_W,. . . or a file man-
ager/desktop. RUN will work okay from inside compiled jobs to enable them to re-start themselves.

CROSS-REFERENCE

See GO TO or even better, REPeat and FOR loops.

25.51. RTP_T 701

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

702 Chapter 25. Keywords R

CHAPTER

TWENTYSIX

KEYWORDS S

26.1 SAR

Syntax SAR file, array
Location ARRAY

The command SAR allows you to save a given array quickly (so that it can later be reloaded) as a whole
to a specified file. The Toolkit II default data device for the file name is supported, although an existing
file is not overwritten (use SARO) - the error ‘Already exists’ will be generated instead. array is stored
in an internal coded but portable format, which makes it extremely fast to save and load arrays when
compared to storage by writing and reading each individual element of an array.

The file format is quite simple, it is basically the same as the way in which SuperBASIC itself would store
the array. The first four bytes of the stored array are the characters WLAF. SAR will identify dimensions
and the type of array on its own and accordingly store it.

Sub-arrays are handled, but please note that, since stored data can only be reloaded into a readily di-
mensioned array (see LAR), it is important to remember the dimensions and type of the array before
loading.

Example

Save and load an array:

100 DIM a%(1000)
110 SAR file$, a%
120 LAR file$, a%

NOTE

SAR’s file format is not compatible with that used by Toolkit 3 (a commercial Toolkit which has nothing
to do with the famous Toolkit II), produced with SARRAY.

CROSS-REFERENCE

SARO and LAR. DIM sets-up an array while DIMN and NDIM read the dimensions.

703

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

26.2 SARO

Syntax SARO file, array
Location ARRAY

SARO is almost the same as SAR except that it overwrites an existing file without reporting an error.

26.3 SAUTO

Syntax SAUTO seconds
Location Ecran Manager

This is yet another screen saver. . . . It is activated by specifying how many seconds the computer should
wait for a key to be pressed before it turns the screen blank. Once the screen is blank, any key will display
the screen again. Negative seconds deactivate this most useful of all computer utilities.

Example

SAUTO 180

blanks the display if no key is pressed for three minutes.

NOTE 1

If seconds = 0 then an annoying flashing screen results, so avoid it.

NOTE 2

See SSAVE.

CROSS-REFERENCE

SCRON , SCROF, MODE

26.4 SAVE

Syntax SAVE device_filename *[,range]* or
SAVE [device_] filename *[,range]*(Toolkit II only) or
SAVE(SMS only)

Loca-
tion

QL ROM, Toolkit II

If no line range is given, this command saves the whole of the currently loaded SuperBASIC program
to the given directory device, under the given filename. However, a range of lines can be given (as with
LIST), in which case only the given lines will be saved. If the filename already exists on that device,
the error ‘Already Exists’ is reported, unless you have Toolkit II present, in which case, a prompt will
be printed in #0 asking you whether it is okay to overwrite that file. If the device is already full, the

704 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

‘Device Full’ error is reported, however, the effects should the drive become full during the actual SAVE
command, depends upon the implementation (see below).

The file is saved in pure ASCII format, which means that it can be COPYed to the screen or a printer (using
COPY_N). The Toolkit II variant of the command will add the data default directory to the filename if it
cannot find the given device, or no device is specified.

Examples

Save the whole of the current program to microdrive 1 with the filename BOOT:

SAVE mdv1_BOOT

Save the whole of the current program to the current data default directory with the filename prog_bas:

SAVE prog_bas

Save lines 1, 100 to 150 (inclusive) and 300 to the end of the program to the current data default directory
with the filename cut_bas:

SAVE cut_bas,1,100 TO 150,300 TO

NOTE 1

SAVE can lead to incomplete files if the Break key is pressed or the device fills up during access, although
Toolkit II (v2.13+) will report any file errors during output (other than the Break key being pressed),
leaving the incomplete file on the device.

NOTE 2

Minerva (pre v1.80) deleted the file if SAVE was aborted for any reason.

NOTE 3

If you try to SAVE a file on top of a sub-directory name, Toolkit II will repeatedly ask if it is OK to
overwrite that file until you answer <N> (for No).

SMS NOTES

The third variant of the command will allow you to SAVE the program in memory under the same file-
name as when LOAD or QLOAD was last used (with the _BAS suffix appended if necessary). If the
original filename used when the program was LOADed ended in _SAV, then SAVE will alter this to be
the _BAS suffix. This variant will also take the version number of the file when it was LOADed (or
QLOADed) and then increase this by one.

If you SAVE a file on a disk, then use DELETE to remove that file, and then change the disk before
issuing the SAVE command without a filename being specified, SMSQ/E fails to recognise that the disk
has been swapped and repeatedly tries to write out the file using the old directory map. Further, if you
enter SAVE without a parameter and no disk is in the drive - SMSQ/E asks if it is OK to overwrite the
file!!

CROSS-REFERENCE

LOAD loads a saved file from the given device into memory. SAVE_O is another variant of this command.
See also QSAVE for a different means of SAVEing a SuperBASIC program.

26.4. SAVE 705

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

26.5 SAVE_O

Syn-
tax

SAVE_O device_filename *[,range]*(THOR XVI) or
SAVE_O [device_] filename *[,range]*(Toolkit II) or
SAVE_O (SMS only)

Loca-
tion

THOR XVI, Toolkit II

This command operates in exactly the same manner as SAVE, except that the file is automatically over-
written if it already exists.

NOTE

This will not overwrite a sub-directory file and will create the same problem as SAVE.

CROSS-REFERENCE

See SAVE!

26.6 SAVEPIC

Syntax SAVEPIC file$
Location PICEXT

This command saves the screen contents (from $20000) to the specified file, which has to be given as a
string and must include the full filename. The file which will be created is 32K long.

SBYTES file$, SCREEN, 32768

does exactly the same.

NOTE

SAVEPIC makes the same assumptions and suffers from the same compatibility problems as LOADPIC.

CROSS-REFERENCE

LOADPIC displays the saved screen file.

26.7 SB_THING

Syntax SB_THING
Location SMSQ

This command is found in versions of SMSQ which do not have the Hotkey System II built in (most QXL
versions of SMSQ). It is used to create the SBASIC Executable Thing so that you can start SBASIC up
from a Hotkey or by using the EXEC set of commands.

NOTE

706 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

You must only use this command after the file HOT_REXT has been loaded, for example with LRESPR
flp1_HOT_REXT.

CROSS-REFERENCE

Please refer to EW and SBASIC. Also see the Appendix on Multiple BASICs.

26.8 SBASIC

Syntax SBASIC [pos] or
SBASIC pos$

Location SMS

This command is used to start up a Multiple SBASIC interpreter, which is nearly an exact copy of the main
interpreter (Job 0) and will contain a copy of all of the toolkit commands used by the parent Job when
this command is invoked. Any toolkits subsequently loaded into the new SBASIC interpreter cannot be
used by its parent and vice versa. In its simplest form:

SBASIC

a new Interpreter will be started up which has windows #0,#1 and #2 open as per Job 0.

You can however pass either a one or two digit number (either as a numeric pos or a string pos$), in
which case only #0 will be opened and its position will depend upon the number which has been passed
as a parameter. This enables you to start up a new SBASIC Interpreter without its windows overlapping
existing programs.

If only one digit is passed, this is taken to be the SBASIC row number. Row 0 is at the top of the screen,
Row 1 is 64 pixels from the top, Row 2 128 pixels from the top and so on. . .

If two digits are passed, the first digit is taken to be the SBASIC column number, the second becomes
the SBASIC row number (see above).

The column number is calculated as, Column 0 being the left hand side of the screen, Column 1 is 256
pixels from the left, Column 2 512 pixels from the left and so on. . . .

Example

The following examples should make it clear:

1000 REMark Opens three channels, #0, #1 and #2 over the top of, and the
1005 REMark same size as the existing windows in SuperBASIC;
1010 SBASIC
1015 :
1020 REMark Opens one channel, #0, as con_256x62a0x128;
1025 SBASIC 2: REMark Or SBASIC '2'
1030 :
1035 REMark Opens one channel, #0, as con_256x62a0x192;
1040 SBASIC 3: REMark Or SBASIC '3'
1045 :
1050 REMark Opens one channel, #0, as con_256x62a256x64;
1055 SBASIC 11: REMark Or SBASIC '11'

(continues on next page)

26.8. SBASIC 707

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

1060 :
1065 REMark Opens one channel, #0, as con_256x62a256x128;
1070 SBASIC 12: REMark Or SBASIC '12'
1075 :
1080 REMark Opens one channel, #0, as con_256x62a768x128;
1085 SBASIC 32: REMark Or SBASIC '32'

CROSS-REFERENCE

See MB and EW for other ways of starting up additional interpreters. In addition SMS users can use
EXEP SBASIC or even use the Exec button from QPAC II and Minerva users can use EX PIPEP. WMON
and WTV can be used to reposition the SBASIC windows. Also see the appendix on Multiple BASICs.
JOB_NAME can be used to alter the name of a SBASIC Job.

26.9 SBYTES

Syn-
tax

SBYTES device_file,start,length or
SBYTES device_file,start[,length[,data[,extra[,type]]] (Minerva v1.80+) or
SBYTES [device_]file,start,length(Toolkit II) or
SBYTES #channel,start,length(SMS only)

Lo-
ca-
tion

QL ROM, Toolkit II

It can sometimes be useful to save part of the QL’s memory to a file so that it can be loaded back into the
computer at a later date. The area of memory saved may for example, contain a program, some machine
code or some data.

The command SBYTES allows you to save length number of bytes from the QL’s memory, starting from
the specified start address. The area of memory is saved to the specified file which must include the name
of the device to be used, unless Toolkit II is present, in which case the default data device is supported.
The Toolkit II variant will also provide you with the option of overwriting the file if it already exists.

Example

To save the currently displayed screen on a standard QL, use the command:

SBYTES flp1_Example_scr,SCREEN,32768

Or under SMS, you can save any size screen using:

SBYTES flp1_Example_scr, SCR_BASE, SCR_LLEN * SCR_YLIM

The start of a program which was protected by a password could be written along the lines of this:

100 a=ALCHP(100)
110 IF FTEST(flp1_pass)=0
120 LBYTES flp1_pass,a
130 END IF

(continues on next page)

708 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

140 pass$=''
150 PAPER#0,0:CLS#0:INK#0,7
160 PRINT #0,'Enter Password :';
170 FOR letter=1 TO 4
180 pass$=pass$&INKEY$(-1)
190 PRINT#0,'*';
200 END FOR letter
210 PRINT #0
220 IF PEEK(a)=0
230 offset=RND(1 TO 50)
240 POKE a,offset
250 FOR i=1 TO 4
260 POKE a+i,CODE(pass$(i))+i+offset
270 END FOR i
280 FOR i=5 TO 100:POKE a+i,RND(100)
290 SBYTES flp1_pass,a,100
300 ELSE
310 offset=PEEK(a)
320 FOR i=1 TO 4
330 IF CODE(pass$(i))<>PEEK(a+i)-i-offset
340 PRINT 'Access Denied':RECHP a:STOP
350 END IF
360 END FOR i
370 END IF
380 PRINT 'Access Granted' 390 RECHP a

NOTE 1

On Minerva ROMs (pre v1.80), if SBYTES was aborted for some reason whilst writing to a file, the file
would be deleted. On later versions of Minerva and all other QL ROMs, the incomplete file is kept and
on Toolkit II, the error ‘Medium Full’ is reported.

NOTE 2

On Minerva ROMs (pre v1.83) SBYTES set the wrong file type.

NOTE 3

The Minerva variant is unfortunately overwritten by the Toolkit II version of this command.

MINERVA NOTES

On Minerva v1.80 (or later) the commands SBYTES and SEXEC have practically become interchange-
able, as both support exactly the same parameters. All of the parameters except for the start address and
device_file where the data is to be stored, are optional and will default to 0 if not specified.

These additional parameters have the following uses:

• Extra This sets the value which is normally returned with FXTRA (which would normally have to
be altered with SetHEAD).

• Type This allows you to set two file attributes:

– the file type - this is normally 0 for data, or 1 for executable programs. This is calculated by
PRINT type && 255.

26.9. SBYTES 709

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

– the file access key - it is generally used by Toolkits such as QL-System to store various file
attributes (such as whether a file is read-only). This is calculated by PRINT type DIV 256.

The only problem with using this extended version of SBYTES instead of using SEXEC is that you must
remember to specify a file type of 1 if the file is later to be EXECuted (as this defaults to 0 in the case of
SBYTES!).

For example, both of these are the same:

SBYTES ram1_test_exe, code_start, 20000, 500, 0, 1
SEXEC ram1_test_exe, code_start, 20000, 500

SMS NOTE

The fourth variant of the command allows you to save the bytes to an existing channel which is already
OPEN to a file, thus allowing you to work more efficiently. You can use the following to error trap the
saving routine:

100 REPeat loop
110 ch=FOP_NEW (ram1_test_bin)
120 IF ch<0
130 REPORT ch
140 PRINT "Press <y> to retry, <n> to stop"
150 REPeat kLoop
160 key$=INKEY$(-1)
170 IF key$ INSTR 'yn':EXIT kLoop
180 END REPeat kLoop
190 IF key$=='y':NEXT loop
200 STOP
210 END IF
220 SBYTES #ch,131072,32768
230 EXIT loop
240 END REPeat loop
250 CLOSE #ch

CROSS-REFERENCE

SBYTES_O and SEXEC are very similar. DATA_USE allows you to alter the current default data device.
LBYTES allows you to load in a block of code which has been saved with SBYTES or SEXEC.

26.10 SBYTES_O

Syn-
tax

SBYTES_O [device_]file,start,length(Toolkit II only) or
SBYTES_O device_file,start,length (THOR XVI) or
SBYTES_O #channel,start,length (SMS only)

Lo-
ca-
tion

Toolkit II, THOR XVI

This command is exactly the same as SBYTES except that it will automatically overwrite an existing file
of the same name.

710 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE

The Toolkit II version of the command supports the default data device.

CROSS-REFERENCE

See SBYTES.

26.11 SCALE

Syntax SCALE [#ch,] size,x,y or
SCALE [#ch,] -size,x,y (Minerva v1.76+)

Location QL ROM

Many of the QL’s graphics commands rely upon the graphics co-ordinate system to dictate whereabouts
in a window they should appear. The command SCALE allows you to set the graphics scale in a specified
window (default #1).

Size dictates the graphics scale for that window by representing the length of a line which would be drawn
from the bottom left hand corner of a window to the top left hand corner, hence the larger the size, the
more information which can appear on screen (although this is somewhat limited by the actual resolution
of the screen!). The default size is 100.

The co-ordinates x,y specify the co-ordinate which appears in the bottom left hand corner of the screen.
When a window is opened, the scale is reset with the equivalent of SCALE #ch,100,0,0.

Although a line drawn up the side of a window will be size units long, the length required to draw a line
along the whole of the bottom of the window, not only depends on the value of size, but also on the screen
resolution and the shape of the given window.

size|
Y |

|
|
|
|
|__________________________________
(0,0) size*factor

X

Example

The following short program will draw a diagonal cross through the middle of any given size of window,
on any given screen resolution:

100 INPUT 'Screen Resolution Width :'!ScreenX
110 INPUT 'Screen Resolution Height :'!ScreenY
120 INPUT 'Window Width : ';wid
130 INPUT 'Window Height : ';hi
140 INPUT 'Scale : ';size
150 WINDOW wid,hi,32,16
160 PAPER 2:INK 7:CLS

(continues on next page)

26.11. SCALE 711

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

170 SCALE size,0,0
180 Xratio=ScreenX/512:Yratio=ScreenY/256
190 line_diff=(101*Yratio/hi)*wid/('135.5041505'*Xratio)
200 LINE 0,0 TO size*line_diff,size
210 LINE 0,size TO size*line_diff,0

NOTE 1

Graphics drawn using the QL graphics co-ordinate system will appear in the same place on screen in any
screen MODE.

NOTE 2

Due to the QL’s arithmetic routines, the maximum length of a line which can be drawn upwards in a
window is slightly larger than size.

NOTE 3

On JSU ROMs, the screen ratio is different to other ROMs, presumably due to the different number of
lines on American TVs - you would need to change line 190 in the above example to read:

90 line_diff=(101*Yratio/hi)*wid/('159.593001'*Xratio)

MINERVA NOTES

Minerva ROMs (v1.76 or later) allow you to use a negative SCALE, so that you may easily draw a picture
upside down without altering all of the different drawing commands. This is achieved by using the second
syntax of the SCALE command. Before trying to use this new variant of the command, you will have to
give your drawing some careful thought.

For instance, when designing a screen, it is best to draw this using the normal SCALE command, and
then to use Minerva’s new syntax at that stage. For example, take the following short demonstration
drawing:

100 MODE 8
110 WINDOW 448,200,32,16
120 SCALE 100,0,0:PAPER 0:CLS
130 INK 2:FILL 1
140 LINE 0,0 TO 0,10
150 LINE 0,10 TO 40,30 TO 60,27
160 LINE 60,27 TO 40,24 TO 10,0 TO 0,0
170 FILL 1
180 LINE 166,0 TO 166,10
190 LINE 166,10 TO 126,30 TO 106,27
200 LINE 106,27 TO 126,24 TO 156,0 TO 166,0
210 INK 4,3
220 FILL 1:CIRCLE 83,50,32:FILL 0

Now, to turn it upside down on Minerva, try changing line 120 to read:

120 SCALE -100,0,0:PAPER 0:CLS

If you now try running the program, you will find that your picture no longer appears!

712 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

This is because instead of Minerva moving the graphics origin to the top right hand corner of the window
(as you might have expected), Minerva has in effect turned the graphics output around by 180 degrees
about the graphics origin (ie. the bottom left hand corner of the window).

This means that to get your picture to re-appear on screen, you will need to redefine the graphics origin
so that it has the same values as you would expect to be in the top right hand corner of the screen before
it was turned around. Thus, the following diagram will explain the current layout of the screen:

-size|
Y |

|
|
|
|
|_____________________________
(0,0) -size*factor

-X

In other words, in the above example, you will need to alter line 120 to read:

120 SCALE -100,166,100:PAPER 0:CLS

The program will now display the picture upside down, having now altered the orientation of the display
to the following diagram:

X
______________________________________(0,0)

size| |
| |
| |
| |
| |
| | Y
|______________________________________|
(166,100) size*factor

CROSS-REFERENCE

CIRCLE, ARC, LINE and POINT all rely on the current SCALE.

26.12 SCLR

Syntax SCLR colour
Location Fast PLOT/DRAW Toolkit

This command causes the screen (pointed to by SCRBASE) to be cleared with the given colour. This
colour ranges from 0 (black) to 7 (white). There is no default.

Example

26.12. SCLR 713

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Run this small program and watch how your screen seems to change size. The greater the difference
in apparent size, the worse your monitor (there are more intelligent criteria as to the capability of your
monitor, for example radiance):

100 MODE 4:SCRBASE
110 REPeat screen_test
120 FOR n=0,2,4,6: SCLR n
130 END REPeat screen_test

NOTE

See REFRESH !

WARNING

Never use SCLR without a parameter! The system will crash!

CROSS-REFERENCE

PLOT , DRAW , REFRESH and SCRBASE are the other commands connected with this one.

26.13 SCRBASE

Syntax SCRBASE [adress]
Location Fast PLOT/DRAW Toolkit

All commands belonging to the fast graphics Toolkit use the specified parameter set with this command
as the base address for their operations: SCLR, PLOT, DRAW and REFRESH. This is intended to allow
background drawing. The default address is the address of the visible screen, SCREEN.

Example 1

A simple demonstration and an animated version:

100 SCRBASE ALCHP(32768): SCLR 0
110 FOR t=0 TO 2*PI STEP PI/32
120 x1=188*SIN(t)+255: y1=127*COS(t)+127
130 x2=188*SIN(t+PI)+255: y2=127*SIN(t+PI)+127
140 DRAW x1,y1 TO x2,y2 ,7
150 END FOR t
160 REFRESH: CLCHP

100 Pics=INT((FREE_MEM-4096)/32768)
110 DIM base(Pics)
120 FOR c=2*PI/Pics TO 2*PI STEP 2*PI/Pics
130 base(c/2/PI*Pics)=ALCHP(32768)
140 SCRBASE base(c/2/PI*Pics): SCLR 0
150 FOR t=0 TO 2*PI STEP PI/4
160 x1=188*SIN(t)+255: y1=127*COS(t)+127
170 x2=188*SIN(t+c)+255: y2=127*SIN(t+c)+127
180 DRAW x1,y1 TO x2,y2 ,7

(continues on next page)

714 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

190 END FOR t
200 END FOR c
210 :
220 REPeat Animation
230 FOR c=1 TO Pics: SCRBASE base(c): REFRESH
240 IF KEYROW(1)=8 THEN EXIT Animation
250 END REPeat Animation
260 CLCHP

Example 2

Varying the base address by steps equal to the value of SCRINC (normally 128) simulates vertical
scrolling. The first program views memory, the other one loads an uncompressed 32K screen and then
‘scrolls it in’.

100 FOR A=0 TO 786432 STEP 128
110 SCRBASE A
120 REFRESH
130 END FOR A

The second program appears on the next page.

100 SCRFILE$="MDV1_SCREEN_SCR"
110 SCROLLSPEED=4 120 :
130 ADR=ALCHP(65536)
140 LBYTES SCRFILE$,ADR+32768
150 POKE$ ADR,FILL$(CHR$(0),32767): POKE SCREEN+32766,0
160 FOR A=ADR TO ADR+32768 STEP SCROLLSPEED*SCRINC
170 SCRBASE A
180 REFRESH
190 END FOR A
200 RECHP ADR

CROSS-REFERENCE

See SCLR, PLOT , DRAW and REFRESH for fast background drawing. SCR_STORE and
SCR_REFRESH are ideal to create and display animated displays. Compare SCR_BASE!

26.14 SCREEN

Syntax SCREEN or
SCREEN [(#ch)] (FN Toolkit only)

Location Beuletools, Fn

The visible screen on a standard QL is actually 32K of memory. The start address of the screen is
normally 131072, but can change on Minerva and higher resolution implementations of the QL, so the
start address should be determined before accessing the screen directly. The function SCREEN returns
that start address.

26.14. SCREEN 715

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE

The FN Toolkit version allows you to specify a channel - if the channel is specified, then the start address
for the screen on which that channel is open is returned. This is mainly only of use to Minerva and Amiga
QDOS users who can have windows open on either the Default Screen or the Other Screen (provided their
dual screen mode is active). Thus SCREEN(#3) can be used to find the start address of the second screen
if that is where #3 is located.

CROSS-REFERENCE

See SCR_BASE.

26.15 SCREEN_BASE

Syntax screen = SCREEN_BASE(#channel)
Location DJToolkit 1.16

This function is handy for Minerva users, who have 2 screens to play with. The function returns the
address of the start of the screen memory for the appropriate channel.

If the returned address is negative, consider it to be a QDOS error code. (-6 means channel not open &
-15 means not a SCR_ or CON_ channel.)

SCREEN_BASE allows you to write programs that need not make guesses about the whereabouts of the
screen memory, or assume that if VER$ gives a certain result, that a Minerva ROM is being used, this
may not always be the case. Regardless of the ROM in use, this function will always return the screen
address for the given channel.

EXAMPLE

PRINT HEX$(SCREEN_BASE(#0), 24)

26.16 SCREEN_MODE

Syntax current_mode = SCREEN_MODE
Location DJToolkit 1.16

This function can help in your programs where you need to be in a specific mode. If you call this function
you can find out if a mode change needs to be made or not. As the MODE call changes the mode for
every program running in the QL, use this function before setting the appropriate mode.

The value returned can be 4 or 8 for normal QLs, 2 for Atari ST/QL Extended mode 4 or any other value
deemed appropriate by the hardware being used. Never assume that your programs will only be run on a
QL!

EXAMPLE

716 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

1000 REMark Requires MODE 4 for best results so ...
1010 IF SCREEN_MODE <> 4
1020 MODE 4
1030 END IF
1040 :
1050 REMark Rest of program

CROSS-REFERENCE

MODE.

26.17 SCRINC

Syntax SCRINC [(#ch)]
Location Fn

The screen width is not fixed on QDOS computers, QL Emulators and future hardware expansions
(graphic cards) offer different screen modes with different resolutions. The function SCRINC returns
the screen width relating to the screen upon which the given channel (default #0) is located. The width
is returned as the number of bytes needed to store a line of pixels.

The standard QL mode 4 and mode 8 always return 128 = 512/4.

However, it is not always true that the number of bytes required to store a line of pixels is equal to the
number of pixels DIV 4 and you should therefore use this function or similar.

Example

See the second listing at the second example for SCRBASE.

CROSS-REFERENCE

SCREEN returns the start address of the screen. See also SCR_LLEN

26.18 SCROLL

Syntax SCROLL [#ch,] distance [,area]
Location QL ROM

This command allows you to move the contents of a given window (default #1) up or down by a specified
number of pixels (distance).

A positive value for distance will move the contents of the window downwards, whereas a negative
distance will move them upwards.

As the contents are moved, if they move outside of the limits of the window, they will be lost. The space
left by the movement of the window’s contents, will be filled with the current PAPER colour.

If you use the third parameter (area), you can specify that only part of the window is to be moved, by
using the following values:

26.17. SCRINC 717

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• 0 This is the default - move whole window.

• 1 Move the area above the text cursor line.

• 2 Move the area below the text cursor line.

If you wish to move other areas of a window, the easiest method is to open another window over that part
of the window which you want to move, and then use SCROLL and/or PAN on that new window (see
example below).

Example

A short demonstration routine of SCROLL and PAN:

100 MODE 4
110 WINDOW 440,200,32,16: PAPER 2: CLS
120 INK 7: CSIZE 3,1
130 AT 0,6: PRINT 'QL KEYWORD MANUAL'
140 OPEN #3,scr_448x200a32x16: PAPER#3,2
150 AT 5,6: PRINT 'QL KEYWORD MANUAL'
160 FOR i=1 TO 37
170 WINDOW #3,40,200,432,16
180 SCROLL #3,20
190 PAUSE 5
200 WINDOW #3,440,20,32,16
210 PAN #3,40
220 PAUSE 5
230 WINDOW #3,40,200,32,16
240 SCROLL #3,-20
250 PAUSE 5
260 WINDOW #3,440,20,32,196
270 PAN #3,-40
280 PAUSE 5
290 END FOR i
300 CSIZE 0,0

NOTE

QL ROMs (other than v6.41 of THOR XVI, SMS and v1.63/v1.64 of Minerva) allow SCROLL to be
used to access various direct TRAP #3 calls to the operating system (as with PAN and CLS).

The first parameter to be supplied represents the D1 parameter in machine code, whereas the second
parameter represents D0. In any case, both parameters must be integers (ie. in the range -32768..32767).

Normally to find out number to give D0, take the routine’s D0 value and subtract 24 (eg. IOG.DOT=48,
48-24=24). However, if the routine’s value is 24 or less, subtract 24 and then add this negative value to
128.

Some useful routines which can be accessed are:

• SCROLL #3,0,121 moves the cursor to column 0 in #3 (IOW.SCOL, D0=$11)

• SCROLL 0,24 has the same effect as CLS 16, ie. it calls (IOG.DOT - D0=$30), which effectively
carries out the command POINT 0,0.

• SCROLL x,17 sets the ink colour to x (IOW.SINK,D0=$29)

• SCROLL #3,n%,42 sets the file pointer in #3 to n% (IOF.POSA,D0=$42)

718 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• SCROLL #3,n%,43 should move the file pointer in #3 on n% places (IOF.POSR,D0=$43)

Unfortunately, not all values for both parameters will work on all ROMs and this is a hit and miss way of
programming the QL. Luckily, the wealth of Toolkits available should mean that there is a legal means
of accessing these routines, using Toolkit keywords, including MTRAP and QTRAP.

CROSS-REFERENCE

PAN allows you to move the contents of a window sideways. WINDOW allows you to specify the area of
the screen which a window covers. IO_TRAP allows you to access machine code routines directly. See
also QTRAP, BTRAP and MTRAP.

26.19 SCROF

Syntax SCROF
Location Ecran Manager

This command forces the current screen to become invisible - the effect of SCROF lasts until the next
task switch under the Pointer Environment or until one of the standard MODE commands (ie. not dealing
with dual screen mode) or NEW are issued.

Example

SCROF

NOTE

See SSAVE.

CROSS-REFERENCE

SCRON switches the screen to visible.

26.20 SCRON

Syntax SCRON
Location Ecran Manager

The SCRON command makes the screen visible once again after it has been disabled with SCROF.

Example

SCRON

NOTE

See SSAVE.

CROSS-REFERENCE

SCROF.

26.19. SCROF 719

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

26.21 SCR2DIS

Syntax SCR2DIS
Location Super Gold Card

Some programs make use of the QL’s ability to support a second screen (on a standard QL this is normally
stored at $28000 (hex) - it overwrites the system variables which are moved to another area in memory).
You can therefore see why it is important never to make assumptions about the location of the screen or
system variables in memory (use SCREEN or SYS_BASE instead).

Minerva extends this second screen even further, allowing you to operate the computer in two-screen
mode, with programs being started up on one of two screens (thus allowing you to have completely
different displays on each screen) see MODE. The main problem with this second screen is that it slows
down the operation of the computer and therefore if you do not intend to use the second screen, you may
wish to disable it.

You can disable the second screen with the command SCR2DIS - this setting will be stored in memory
by the Gold Card and the second screen will henceforth always be disabled.

WARNING

Some programs (mainly games) will not work properly with the second screen disabled.

CROSS-REFERENCE

SCR2EN re-enables the second screen again.

26.22 SCR2EN

Syntax SCR2EN
Location Super Gold Card

This command is the complementary command to SCR2DIS - it enables the QL’s second screen and is
also memorised by the Super Gold Card so that the second screen will always be available for use by
programs.

NOTE

In order to make proper use of the second screen, you will still need to startup Minerva in dual screen
mode and use the appropriate MODE commands. Non-Minerva QLs can still use the second screen by
using various machine code techniques.

CROSS-REFERENCE

See SCR2DIS for more information.

720 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

26.23 SCR_BASE

Syntax SCR_BASE [(#ch)]
Location ATARI_REXT (v2.25+), SMSQ/E

This function returns the base address of the screen linked to the specified channel (default #0), this is
normally 131072 on standard QLs but can alter on other resolutions or if dual screen mode is supported.
On machines which support higher resolutions, the screen base will only be at the standard address of
131072 if you configure the machine to start up in 512x256 and even here there is no guarantee - see the
documentation for the particular QL resolution you are using.

NOTE

If the specified channel is not open then Invalid Channel ID will be reported. However, if no channel is
specified and #0 is not open, then a special window will be opened for #0 on screen, which may destroy
what is already on screen.

CROSS-REFERENCE

SCREEN is similar. See also SCR_XLIM, SCR_YLIM and SCR_LLEN . A_OLDSCR can help some older
software to work. You can also use PRINT CHAN_L%(#1,50) instead of SCR_BASE.

26.24 SCR_LLEN

Syntax SCR_LLEN [(#ch)]
Location ATARI_REXT (v2.25+), SMSQ/E

This function returns the number of bytes required to hold one line of pixels on the current screen resolu-
tion attached to the specified channel (default #0). On a standard QL 512x256 resolution, this is normally
128 bytes but can alter on other resolutions.

NOTE

As with SCR_BASE, if the specified channel is not open then Invalid Channel ID will be reported.
However, if no channel is specified and #0 is not open, then a special window will be opened for #0 on
screen, which may destroy what is already on screen.

WARNING

You should never assume that the number of bytes required to store a line is the number of pixels DIV 4
- always use this function instead.

CROSS-REFERENCE

SCRINC is similar. See also SCR_XLIM, SCR_YLIM and SCR_BASE. On QL ROMs after JM, you can
also use PRINT CHAN_B%(#1,104).

26.23. SCR_BASE 721

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

26.25 SCR_REFRESH

Syntax SCR_REFRESH address
Location SuperWindow Toolkit

This command copies a screen (or a portion of a screen) which has been saved in memory at the specified
address using SCR_STORE back to the same position on the visible display screen.

NOTE

It is unknown at present whether these commands check for the start address of the screen and its dimen-
sions and therefore they may not work on some higher resolutions. Unfortunately, we do not have access
to the toolkit at present.

CROSS-REFERENCE

SCR_STORE stores a window or rectangle taken from the display. See also W_SHOW and REFRESH.

26.26 SCR_SAVE

Syntax SCR_SAVE flag
Location MutiBASIC v4.0+ (DIY Toolkit - Vol M)

This command is used to specify whether the current screen display and mode should be stored along
with the program when the UNLOAD or RESAVE commands are used. The setting depends on the value
of flag:

• 0 Do not store the screen display and mode.

• 1 (This is the default). Store the screen display and mode so that it is redisplayed when RELOAD
is used.

• -1 This tells RELOAD to ignore the screen details (if any) stored with the program - use SCR_SAVE
1 if you want to see them.

NOTE

Beware that this toolkit only supports 512x256 resolution and expects the screen base to be at 131072.

CROSS-REFERENCE

UNLOAD contains more details about this toolkit.

722 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

26.27 SCR_SIZE

Syntax SCR_SIZE [(#channel)] or
SCR_SIZE (width_x,width_y [[,pos_x],pos_y])

Location SuperWindow Toolkit

This function will return the space in bytes, a window (default #1) or rectangle on the screen, needs to
be stored with SCR_STORE. Windows are specified just by reference to their channel number, whereas
rectangles by their width and height. Naturally, the size of any shape is independent from its position but
the co-ordinates may be also added as parameters without invoking an error message - or influencing the
result of SCR_SIZE.

WARNING

SCR_SIZE with a channel number will not work correctly if the Window Manager is present because of
the different window definition blocks. Use either the second syntax or on a standard QL calculate the
size yourself: size=8+width_x*width_y/4

CROSS-REFERENCE

SCR_STORE stores a part of the screen in RAM and SCR_REFRESH copies it back. See also WMAN$.
CHAN_W% is much more flexible.

26.28 SCR_STORE

Syntax SCR_STORE [#channel,] address or
SCR_STORE width,height,x,y TO address

Location SuperWindow Toolkit

This command allows you to store a part of the screen at the given address in RAM. The section of the
screen to be stored can be either a window channel number (default #1) or the dimensions of a rectangle.
The amount of memory SCR_STORE needs is returned by SCR_SIZE. SCR_STORE needs eight bytes
plus the actual amount of space taken up by the section of the screen. These four words (one word consists
of two bytes) are kept at the start of the storage area and contain the size and position of the screen part as
passed by the second syntax above. They can easily be read like this: width = PEEK_W (adress) height
= PEEK_W (adress+2) x = PEEK_W (adress+4) y = PEEK_W (adress+6)

Example

The SCR_STORE and SCR_REFRESH commands are ideal tools to create and show animations. The
actual speed of SCR_REFRESH is independent from the contents of the screen, so it does not matter
how long it took to create the pictures. . . Enjoy it.

100 wx=70: wy=70: px=100: py=100
110 OPEN#3,"scr_" & wx & "x" & wy & "a" & px & "x" & py: CLS#3
120 size=SCR_SIZE(wx, wy): DIM adr(20)
130 bx=2: by=2: pmax=10
140 :
150 FOR p=1 TO pmax

(continues on next page)

26.27. SCR_SIZE 723

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

160 adr(p)=ALCHP(size)
170 FOR x=0 TO wx-bx STEP bx
180 a=2*SQRT(p)*x/wx-SQRT(p)
190 FOR y=0 TO wy-by STEP by
200 b=2*SQRT(p)*y/wy-SQRT(p)
210 z=((a*a+b*b)^^(a*b-b*b)) MOD 7
220 BLOCK#3,bx,by,x,y,z
230 END FOR y
240 END FOR x
250 SCR_STORE wx,wy,px,py TO adr(p)
260 END FOR p
270 :
280 REPeat Animation
290 FOR p=1 TO pmax: SCR_REFRESH adr(p)
300 FOR p=pmax-1 TO 2 STEP -1: SCR_REFRESH adr(p)
310 IF KEYROW(1)=8 THEN EXIT Animation
320 END REPeat Animation
330 CLCHP

CROSS-REFERENCE

See SCR_REFRESH and SCR_SIZE. See also W_STORE and W_CRUNCH. Use ALCHP to set aside
some memory to hold the copy of the window. Use RECHP to remove that memory definition.

26.29 SCR_XLIM

Syntax SCR_XLIM [(#ch)]
Location SMSQ/E

This function is the same as QFLIM(#ch,0) except that the channel parameter is optional (it defaults to
#0).

NOTE

As with SCR_BASE, if the specified channel is not open then Invalid Channel ID will be reported.
However, if no channel is specified and #0 is not open, then a special window will be opened for #0 on
screen, which may destroy what is already on screen.

CROSS-REFERENCE

QFLIM and XLIM are similar. See also DISP_SIZE and SCR_YLIM

724 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

26.30 SCR_YLIM

Syntax SCR_YLIM [(#ch)]
Location SMSQ/E

This function is the same as QFLIM(#ch,1) except that the channel parameter is optional (it defaults to
#0).

NOTE

As with SCR_BASE, if the specified channel is not open then Invalid Channel ID will be reported.
However, if no channel is specified and #0 is not open, then a special window will be opened for #0 on
screen, which may destroy what is already on screen.

CROSS-REFERENCE

QFLIM and YLIM are similar. See also SCR_XLIM, SCR_BASE and SCR_LLEN .

26.31 SDATE

Syn-
tax

SDATE year,month,day,hours,minutes,seconds
SDATE year,month,day,hours,minutes (SMS v2.57+)
SDATE time (Minerva, SMS) or
SDATE TO time (THOR XVI)

Lo-
ca-
tion

QL ROM

The QL has an internal clock which contains the current date and time. Unfortunately, this clock is
corrupted every time that the QL is switched on and off (and even in some cases when the QL is reset).
This means that the clock has to be set manually every time that the system is re-booted. Because of
this, various battery-backed clocks have appeared on the market which retain the time whilst the QL is
turned off and then the QL clock is generally reset to the same time as the battery backed clock when it
is switched back on.

This command allows you to set the internal QL clock to a specified date and time. Each parameter in
the first syntax must be a numeric value.

The second syntax is similar to the first, but is only supported on later versions of SMS. This variant
accepts just five parameters and assumes that the seconds is to be set to zero.

The third and fourth syntaxes allow you to set the time and date by the number of seconds since Midnight
on 1st January 1961. This thus allows you to copy the date from one QL to another very simply over the
Network:

100 temp_file$='n1_ram1_temp'
110 er=FOP_NEW(temp_file$)
120 IF er>0
130 CLOSE #er:SDATE TO FUPDT(\temp_file$)

(continues on next page)

26.30. SCR_YLIM 725

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

140 DELETE temp_file$
150 END IF

Example

SDATE 1993,1,1,0,0,0

sets the internal clock to the start of 1993.

NOTE 1

This may also affect battery backed clocks - see their instructions. In particular on the THOR XVI the
battery backed clock is automatically reset, whereas on earlier THORs the command SET_CLOCK was
needed.

NOTE 2

Unfortunately, current versions of Minerva and SMS will not accept the THOR’s syntax, nor vice versa.

NOTE 3

On the QXL, before v2.57 of SMS the time would not be set correctly if seconds=0 or seconds=1. The
clock could still be wrong by 1 second until v2.73 which fixed this problem on MOST PCs.

CROSS-REFERENCE

PROT_DATE allows you to prevent SDATE from altering a battery backed clock. ADATE allows you to
alter the time by a specified number of seconds. DATE lets you read the current date and time as a single
figure. DATE$ and DAY$ return various details about the current date and time. These functions can also
be used to find out details concerning a given date without having to use SDATE beforehand to change
the system date. A_SDATE and SET_CLOCK alter the battery backed clocks on the ST/QL Emulator
and THOR respectively.

26.32 SDP_DEV

Syntax SDP_DEV device
Location Gold Card, Trump Card, SDUMP_REXT, ST/QL

The command SDP_DEV allows you to dictate where output from the SDUMP device should be sent.
Initially, all output is sent to ser, however you may wish to alter this. Under SMS, you will need to
LRESPR SDUMP_REXT provided on the distribution disk.

Example

SDP_DEV n1_flp1_Dump will cause all future output from the SDUMP device to be sent to a file
flp1_Dump on the machine with NetID=1 in the Network.

CROSS-REFERENCE

SDUMP allows you to send output to the specified device from SuperBASIC.

726 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

26.33 SDP_KEY

Syntax SDP_KEY [key$]
Location Gold Card, Trump Card, SDUMP_REXT, ST/QL

In order to facilitate easy screen dumps, the command SDP_KEY will set up a hotkey which when pressed
together with <ALT> will cause the whole of the screen starting at $20000 to be sent to the SDUMP
device. Under SMS, you will first need to LRESPR SDUMP_REXT provided on the distribution disk
to use this command. As with ALTKEY, if the specified key$ is in upper case, you will need to press
<ALT><SHIFT> together with the key, or <ALT> with the key if capslock is on. SDP_KEY without any
parameters inhibits the hotkey.

Example

SDP_KEY p

will cause the screen to be dumped each time that <ALT><P> is pressed.

CROSS-REFERENCE

SDP_DEV allows you to alter where the output is to go. See SDP_SET and SDUMP.

26.34 SDP_SET

Syntax SDP_SET printer [,scale [,inverse [,random]]]
Location Gold Card, Trump Card, SDUMP_REXT, ST/QL

SDP_SET allows you to choose the type of printer attached to the output device, together with how
the output is to appear. Under SMS, you will first need to LRESPR SDUMP_REXT provided on the
distribution disk to use this command. There are currently 23 types of printer supported, numbered
1. . . 23.

You can also specify the print scale to be used and whether or not the screen is to be printed in inverse
colours (by setting the inverse parameter to 1). You can even specify that a random element is to be
taken into account in converting the colours to gray shades on the printer (again by setting the random
parameter to 1).

The effects of these different parameters all depend upon the printer attached to the output port and the
size and shape of the area being dumped. The scale will affect the density of the dots on the printed page.
Unfortunately, this does mean that at some of the lower densities, not all of the screen can be printed on
an 80 column printer (See the columns headed Max Width in the table below).

If any one of the parameters is not specified, that particular setting will remain unchanged. If you do not
have one of the printers currently supported, try out the various dump routines to see which one best suits
your needs. For example, users of the Epson Inkjet range of printers will find that the Epson LQ2500 24
pin colour driver is very effective. The range of printers and scales currently supported are detailed in
the following tables.

Note: In the original manual, this was a single table covering both Mode 4 and Mode 8 screens. Due to
the width of a PDF page, the table is far too wide and I’ve split it into two tables, one for Mode 4 and the
other for Mode 8.

26.33. SDP_KEY 727

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Mode 4 Screens

Printer
Scale

Dots
Per In

Lines
Per In

Dot

Ratio

Max

Width
Ratio

1 Epson MX 80 or similar 1
2
3

120
60
120

72
72
72

1x1
1x2
2x2

512
480
480

1.23
1.23
1.23

2 Epson FX80 additional formats 1
2
3

90
90
90

72
72
72

1x1
1x1
2x2

512
512
360

0.92
0.92
0.92

3 Epson FX100 wide carriage 1
2
3

90
90
90

72
72
72

1x1
1x1
2x2

512
512
512

0.92
0.92
0.92

4 Epson JX80 1
2
3

90
90
90

72
72
72

1x1
1x1
2x2

512
512
512

0.92
0.92
0.92

5 Epson LQ2500 8 pin 1
2
3

80
120
80

60
60
60

1x1
2x1
2x2

512
512
512

0.99
0.74
0.99

6 Epson LQ2500 24 pin 1
2
3

120
180
180

180
180
180

1x2
2x3
3x4

512
512
512

0.99
1.11
0.99

7 Epson LQ2500 8 pin colour 1
2
3

80
120
80

60
60
60

1x1
2x1
2x2

512
512
512

0.99
0.74
0.99

8 Epson LQ2500 24 pin colour 1
2
3

120
180
180

180
180
180

1x2
2x3
3x4

512
512
512

0.99
1.11
0.99

continues on next page

728 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table 1 – continued from previous page
Mode 4 Screens

Printer
Scale

Dots
Per In

Lines
Per In

Dot

Ratio

Max

Width
Ratio

9 Brother HR4 2
3

60
120

72
72

1x2
2x2

480
480

1.23
1.23

10 Olivetti JP101 1
2
3

110
110
110

72
108
72

1x1
1x1
2x2

512
512
440

1.13
0.75
1.13

11 Seikosha GP-100A 1
2

60
60

63
63

1x1
1x2

480
480

0.70
1.41

12 Seikosha GP-250X 1
2

60
60

72
72

1x1
1x2

480
480

0.61
1.23

13 Seikosha GP-700A 1
2
3

80
80
80

80
80
80

1x1
1x2
1x2

512
512
512

0.74
1.48
1.48

14 Canon PJ 1080A 1
2
3

80
80
80

80
80
80

1x1
1x2
1x2

512
512
512

0.74
1.48
1.48

15 Centronics 739 1
2
3

75
75
75

72
72
72

1x1
1x1
2x2

512
512
300

0.77
0.77
0.77

16 C.Itoh 7500 1
2
3

120
160
120

72
72
72

1x1
2x1
2x2

512
512
480

1.23
0.82
1.23

continues on next page

26.34. SDP_SET 729

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table 1 – continued from previous page
Mode 4 Screens

Printer
Scale

Dots
Per In

Lines
Per In

Dot

Ratio

Max

Width
Ratio

17 Toshiba TH2100H 24 pin 1
2
3

180
180
180

180
180
180

1x2
2x3
3x4

512
512
512

1.48
1.11
0.99

18 Brother 8056 1
2
3

70
70
70

72
72
72

1x1
1x1
2x2

512
512
280

0.72
0.72
0.72

19 Epson MX100 or similar 1
2
3

120
60
120

72
72
72

1x1
1x2
2x2

512
512
512

1.23
1.23
1.23

20 Tandy DMP 105 1
2
3

100
60
100

72
72
72

1x1
1x2
2x2

512
512
400

1.03
1.23
1.03

21 OKI Microline 82/84 OK writer 1
2
3

100
100
100

66
66
66

1x1
1x1
2x2

512
512
400

1.12
1.12
1.12

22 Fastext 80 1
2
3

72
60
72

72
72
72

1x1
1x2
2x3

512
480
288

0.74
1.23
1.11

23 MT-80 1
2
3

85
170
170

82
82
82

1x1
2x1
3x3

512
512
425

0.77
0.77
1.02

730 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Mode 8 Screens

Printer
Scale

Dots
Per In

Lines
Per In

Dot

Ratio

Max

Width
Ratio

1 Epson MX 80 or similar 1
2
3

60
60
120

72
72
72

1x1
2x2
4x2

256
240
240

1.23
1.23
1.23

2 Epson FX80 additional formats 1
2
3

60
90
90

72
72
72

1x1
2x1
4x2

256
256
180

1.23
0.92
0.92

3 Epson FX100 wide carriage 1
2
3

60
90
90

72
72
72

1x1
2x1
4x2

256
256
256

1.23
0.92
0.92

4 Epson JX80 1
2
3

60
90
90

72
72
72

1x1
2x1
4x2

256
256
256

1.23
0.92
0.92

5 Epson LQ2500 1 60 60 1x1 256 1.48

5 Epson LQ2500 8 pin 2
3

80
80

60
60

2x1
4x2

256
256

0.99
0.99

6 Epson LQ2500 24 pin 1
2
3

120
180
180

180
180
180

1x1
3x3
6x4

256
256
256

0.99
0.99
0.99

7 Epson LQ2500 8 pin colour 1
2
3

60
80
80

60
60
60

1x1
2x1
4x2

256
256
256

1.48
0.99
0.99

continues on next page

26.34. SDP_SET 731

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table 2 – continued from previous page
Mode 8 Screens

Printer
Scale

Dots
Per In

Lines
Per In

Dot

Ratio

Max

Width
Ratio

8 Epson LQ2500 24 pin colour 1
2
3

120
180
180

180
180
180

1x1
3x3
6x4

256
256
256

0.99
0.99
0.99

9 Brother HR4 1
1
2
3

120
60
60
120

72
72
72
72

1x1
1x1
2x2
4x2

512
256
240
240

1.23
1.23
1.23
1.23

10 Olivetti JP101 1
2
3

110
110
110

108
108
72

1x1
3x3
4x2

256
256
220

0.75
1.00
1.13

11 Seikosha GP-100A 1
2

60
60

63
63

1x1
2x2

256
240

1.41
1.41

12 Seikosha GP-250X 1
2

60
60

72
72

1x1
2x2

256
240

1.23
1.23

13 Seikosha GP-700A 1
2
3

80
80
80

80
80
80

1x1
2x2
3x3

256
256
212

1.48
1.48
0.99

14 Canon PJ 1080A 1
2
3

80
80
80

80
80
80

1x1
2x2
3x3

256
256
212

1.48
1.48
0.99

15 Centronics 739 1
2
3

75
75
75

72
72
72

1x1
2x1
3x3

256
256
200

1.42
0.77
1.03

continues on next page

732 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table 2 – continued from previous page
Mode 8 Screens

Printer
Scale

Dots
Per In

Lines
Per In

Dot

Ratio

Max

Width
Ratio

16 C.Itoh 7500 1
2
3

60
120
120

72
72
72

1x1
2x1
4x2

256
256
240

1.23
1.23
1.23

17 Toshiba TH2100H 24 pin 1
2
3

180
180
180

180
180
180

2x2
3x3
6x4

256
256
256

1.48
0.72
0.99

18 Brother 8056 1
2
3

70
70
70

72
72
72

1x1
2x1
3x3

256
256
186

1.44
0.72
0.96

19 Epson MX100 or similar 1
2
3

60
60
120

72
72
72

1x1
2x2
4x2

256
256
256

1.23
1.23
1.23

20 Tandy DMP 105 1
2
3

60
100
100

72
72
72

1x1
2x1
4x2

256
256
200

1.23
1.03
1.03

21 OKI Microline 82/84 OK Writer 1
2
3

60
100
100

66
66
66

1x1
2x1
4x2

256
256
200

1.35
1.12
1.12

22 Fastext 80 1
2
3

60
60
72

72
72
72

1x1
2x2
3x3

256
240
192

1.23
1.23
0.99

23 MT-80 1
2
3

85
170
170

82
82
82

1x1
3x1
6x2

256
256
212

1.53
1.02
1.02

26.34. SDP_SET 733

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

The resultant dump will depend both on the current screen mode and the chosen scale. The dot ratio
column shown above represents the size of the resultant picture as a ratio of the original. For example,
if the Dot ratio is 1x1 and you are outputting a screen of 512x256 pixels at 120 dots per inch and 72
lines per inch, you can expect the resultant picture to be 512/120 inches across by 256/72 inches down.
If however, the Dot ratio was 1x2 (with the same number of dots per inch and lines per inch as above),
then the resultant picture will be 512/120 inches across by 2*256/72 inches down.

The ratio column in the above table shows the resultant ratio between the vertical size/horizontal size.
The nearer that this ratio is to 1.00, the more circular your screen circles will appear on paper. The default
is printer 1, scale 1, inverse 1, random 0.

NOTE

There is no check on the parameters, other than to ensure that there are the correct number of parameters.

CROSS-REFERENCE

SDUMP actually prints the screen using the chosen format.

26.35 SDUMP

Syntax SDUMP #ch or
SDUMP [width,height,xpos,ypos] or
SDUMP [{address | address,width,height,xpos,ypos}]

Loca-
tion

Gold Card, Trump Card, SDUMP_REXT, ST/QL

The command SDUMP allows you to dump a screen (or part of a screen) to a printer (or a file), using
one of the in-built formats (one of which will hopefully work on your printer!) - see SDP_SET.

Under SMS, you will first need to LRESPR SDUMP_REXT provided on the distribution disk to use this
command.

The first variant is the simplest, it will dump the whole of the contents of the specified window #ch
to the printer. If the second variant is used, SDUMP will dump the whole of the screen defined by
widthXheightAxposXypos (using absolute pixel co-ordinates).

If no parameters are supplied, SDUMP will dump the whole screen. The third variant of the command is
intended to dump a screen which has been stored under the Pointer Environment’s PSAVE function. The
address returned by PSAVE should be used as the first parameter of the SDUMP command. If no further
parameters are specified, the whole area stored at the specified address will be dumped, otherwise you
can specify the area of that buffer to be dumped in much the same way that you can specify an area of
the screen to be dumped.

Example

OPEN #3,scr_448x200a32x16:SDUMP #3:CLOSE #3

and:

SDUMP 448,200,32,16

are the same.

734 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE 1

Some early versions of SDUMP expect the screen to start at 131072 and be 512x256 pixels in size and can
therefore get very confused in dual screen mode on Minerva and Amiga QDOS. However, later versions
supplied with SMS check the screen size and base when the toolkit is linked into memory and expect it
to remain the same afterwards!

NOTE 2

SDUMP does not work on Minerva, unless you have v2.23 (or later) of the Trump Card / Gold Card. If
you have an earlier version of Toolkit II and want to use SDUMP, you have to ensure that another Job
(such as FSERVE) is running when SDUMP is issued.

NOTE 3

Once SDUMP has started its work, it is not easy to abort it early - any further attempt to use the serial
port will result in the error ‘In Use’.

NOTE 4

If you have directed the output to a file, the file will be automatically overwritten if necessary.

CROSS-REFERENCE

SDP_SET allows you to alter the printer format. SDP_KEY allows you to set up a hotkey to dump the
screen. SDP_DEV allows you to alter the device where the dump is to be sent.

26.36 SEARCH

Syntax SEARCH (add1 TO add2, tofind$) or
SEARCH (add1 TO add2, tofind$ [!])(BTool only)

Loca-
tion

TinyToolkit, BTool

This function scans RAM memory from address add1 to add2 for the given string tofind$ and returns the
address of its first occurrence or zero if it was not found. The search is not case-dependent in the Tiny-
Toolkit version whilst BTool introduces an optional switch: a ‘!’ after tofind$ disables case-sensitivity
and reduces speed.

Example

The following small program will scan the whole memory, ROM included, from adr onwards for string$.
Tiny-Toolkit SEARCH is assumed, PHYSTOP is also necessary:

100 string$="dev v" : REMark what we are looking for
110 add=0 : REMark start address
120 MODE 4: CSIZE 0,0: PAPER 0: INK 5: CLS
130 REPeat searching
140 add=SEARCH(add+1,PHYSTOP-add,string$)
150 IF NOT add THEN EXIT searching
160 PRINT \"Address ="!add
170 PRINT PEEK$(add-20,19);
180 INK 7: PRINT PEEK$(add,LEN(string$));

(continues on next page)

26.36. SEARCH 735

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

190 INK 5: PRINT PEEK$(add+LEN(string$),20)
200 END REPeat searching
210 PRINT "That's all."

NOTE

The search string tofind$ will always be found at least twice in memory because tofind$ itself needs to
be stored somewhere.

CROSS-REFERENCE

PEEK$, DEV_USE. See other implementation of SEARCH. See MSEARCH, SEARCH_MEM and
TTFINDM also.

26.37 SEARCH

Syntax SEARCH (array$, tofind$, start, compare [,row])
Location ARRAY

The function SEARCH searches in a two or three-dimensional string array array$ for the string tofind$.
The search is not case-sensitive but nevertheless very fast (as the example shows). SEARCH will always
look at one row only - there is just one if the array is two-dimensional but for three-dimensional string
arrays (where there are in fact two-dimensions of strings because the third dimension is the maximum
string length) the optional row parameter which defaults to the first row can be used to select a certain
row. The start parameter allows you to tell SEARCH from which element in the row onwards it should
look (remember that the first element is indexed with 0). Compare specifies the number of characters at
the start of each entry to ignore, so 0 will search the whole entry for tofind$. The search stops if tofind$
was found in an entry but not if the entry and tofind$ are identical.

SEARCH returns the entry index or -1 if no suitable entry was found.

Example

Lines 100 to 170 of the following example initialise the name$ array with n (here 1000) random strings of
varying length, from four to 10 characters; this can take a while. After that, the whole array is scanned for
the string QL and all occurrences are listed. If you want to check out the tremendous speed of SEARCH,
amend line 100, set n to 10000 and assure that at least 100K of memory is free for the huge array: you
will be surprised, even the 10000 entries are searched in next to no time!

100 n = 1000: DIM name$(n,10)
110 FOR i = 1 TO n
120 name$(i) = ""
130 FOR j = 1 TO 10
140 name$(i) = name$(i) & CHR$(RND(65 TO 90))
150 IF j > 3 AND NOT RND(5) THEN EXIT j
160 END FOR j
170 END FOR i
180 :
190 first = 1

(continues on next page)

736 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

200 REPeat loop
210 found = SEARCH(name$, "QL", first, 0)
220 IF found < 0 THEN EXIT loop
230 PRINT name$(found)
240 IF found = n THEN EXIT loop: ELSE first = found + 1
250 END REPeat loop

Minerva and SMS users can use integers for n, i, j, first and found to speed up things, so replace them by
n%, i%, j%, first% and found%.

CROSS-REFERENCE

Use INSTR to locate a sub-string in a string. INARRAY% is similar. See the other implementation of
SEARCH.

26.38 SEARCH_C

Syntax address = SEARCH_C(start, length, what_for$)
Location DJToolkit 1.16

See SEARCH_I for details.

CROSS-REFERENCE

SEARCH_I .

26.39 SEARCH_I

Syntax address = SEARCH_I(start, length, what_for$)
Location DJToolkit 1.16

This function, and SEARCH_C above, search through memory looking for the given string. SEARCH_C
searches for an EXACT match whereas SEARCH_I ignores the difference between lower & UPPER case
letters.

If the address returned is zero, the string was not found, otherwise it is the address where the first character
of what_for$ was found, or negative for any errors that may have occurred.

If the string being searched for is empty (“”) then zero will be returned, if the length of the buffer is
negative or 0, you will get a ‘bad parameter’ error (-15). The address is considered to be unsigned,
so negative addresses will be considered to be very large positive addresses, this allows for any future
enhancements which will allow the QL to use a lot more memory than it does now!

EXAMPLE

1000 PRINT SEARCH_C(0, 48 * 1024, 'sinclair')
1010 PRINT SEARCH_I(0, 48 * 1024, 'sinclair')
1020 PRINT

(continues on next page)

26.38. SEARCH_C 737

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

1030 PRINT SEARCH_C(0, 48 * 1024, 'Sinclair')
1040 PRINT SEARCH_I(0, 48 * 1024, 'Sinclair')

The above fragment, on my Gold Card JS QL, prints:

0
47314

47314
47314

Looking into the ROM at that address using

PEEK_STRING(47314, 21)

gives:

Sinclair Research Ltd

which is part of the copyright notice that comes up when you switch on your QL. The reason for zero in
line 1000 is because the ‘s’ is lower case, case is significant and the ROM has a capital ‘S’, so the text
was not found in the ROM.

CROSS-REFERENCE

SEARCH_C.

26.40 SEARCH_MEM

Syntax SEARCH_MEM (add1 TO add2, tofind$)
Location MSEARCH (DIY Toolkit - Vol X)

This function is very similar to the main MSEARCH function provided by this toolkit. It is however
limited to case-dependent searches and therefore is even quicker than MSEARCH.

CROSS-REFERENCE

See SEARCH and TTFINDM also. MSEARCH is a variant on this version.

26.41 SELect

Syntax SELect
Location QL ROM

This keyword forms an integral part of the SELect ON structure identifier and has no use on its own. If
you try to enter it on its own, the error ‘Bad Name’ will be generated.

CROSS-REFERENCE

738 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Please see SELect ON!

26.42 SELect ON

Syntax SELect ON var
Location QL ROM

This command is used to mark the start of a SuperBASIC structure which is an extremely quick means
of testing for various values of a variable and taking a different course of action in a program according
to those values. Unfortunately, the standard form of this command only allows you to test for different
values of a numeric variable (eg. SELect ON a$ is not allowed).

There are actually two forms of the SuperBASIC structure:

SELect ON var=range: statement *[:statement]**[:=range:statement *[:statement]*]*

or

SELect ON var *[[ON var] = range:statement *[:statement]*]* .. END SELect

Range can be any one, or mixtures of, the following:

• Expression

• Expression TO Expression

• REMAINDER

The first of these two SELect variants (in this and all SuperBASIC structures) is known as an in-line
structure, as the entire structure appears on the same program line. This does not need END SELect to
mark the end of the structure.

After the main SELect ON var statement, the interpreter looks for a list of possible values, and then if the
value of the given variable falls within the range of possible values, the program takes action according
to the statements which follow that value in the list.

The interpreter will use the first range of values into which it can fit the variable and once found, all
statements up until (but excluding) the next range in the list will be treated as applying to that range
(whether they appear on the same line or not). Once all of the statements applying to that range have
been executed, control passes to the statement following the END SELect statement (or if the in-line
form of the structure is used, and END SELect does not appear on that line, then control passes to the
next line).

The way in which matches are made when checking whether a value falls within a range depends on
whether range is a single number eg:

ON var = 100

or various values eg:

ON var = 90 TO 100

If the former, the value need only be approximately equal to range (ie. to within 1 part in 107, for instance:
100.0000045==100!). However, if the latter format is used, a match will only be found if the given value
is within the absolute range (eg. in the above example, 100.0000045 would not be matched!).

26.42. SELect ON 739

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

If the long form of the structure is used, and ON var is used within the body of the structure, this must
be the same variable as that used in the initial SELect ON statement.

Example 1

10 SELect ON x=1,10 TO 100,500:PRINT 'x'

Example 2

100 SELect ON test
110 = 0,2,4,6,8,10: PRINT 'Even Number'
120 = REMAINDER: PRINT 'Odd Number'
130 END SELect

Example 3

A re-write of the example given for ON. . .GO SUB:

100 no_of_locations=3
110 start=0
120 PRINT_LOC 2
125 :
130 DEFine PROCedure PRINT_LOC(xa)
135 xa=xa+start
140 SELect ON xa
150 = 1: PRINT 'This is location 1'
160 =2
165 PRINT 'This is location 2'
170 =3: PRINT 'This is location 3'
180 = REMAINDER: PRINT 'Undefined Location'
185 RETurn
190 END SELect
200 PRINT 'What now?:RETurn
210 END DEFine

NOTE 1

Pre JS ROMs and SMS allow you to enter string and integer variables into the SELect statement, but they
will not work unless you used a SuperBASIC compiler. Later ROMs, report a ‘bad line’ error unless you
have Minerva.

NOTE 2

On JS ROMs, you cannot use a parameter passed to a PROCedure or FuNction as the variable in a SELect
ON statement unless it appears as the last parameter in the list in the definition line. If you do try to break
this rule, you will end up with a ‘bad name’ error. The answer is to copy the parameter to a temporary
variable.

NOTE 3

As you may have noticed, unlike other SuperBASIC structures which will expand a command typed into
the full structure name if you type just the capital letters (eg. DEFPROC becomes DEFine PROCedure),
SELON will not be expanded to SELect ON. You will need to type SEL ON instead.

NOTE 4

740 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

To maximise the speed of the SELect ON command, ensure that the most common matches appear at the
start of the definition block.

NOTE 5

Except under SMS, SELect ON can only cope with simple variables, for example:

SELect ON a

is acceptable. Compare:

SELect ON a(2)
SELect ON s*10
SELect ON CODE(a$)

All of these are acceptable on SMS but cannot currently be compiled.

Although lines such as:

SELect ON CODE

and:

SELect ON INKEY$

might be accepted by the interpreter, the lines contained within the block will be ignored (other than
=REMAINDER matches). On SMS both of these give an ‘error in expression’ when RUN.

MINERVA NOTES

Minerva supports string and variables in SELect ON statements. The check for characters is normally
case independent. For example:

SELect ON a$: ='hello'

will find both a$=’HeLLo’ and a$=’hello’. If however, you want the match to be exact (case dependent),
then something along the lines of:

SELect ON a$: ='hello' TO 'hello'

must be used. Unfortunately, you still cannot SELect ON machine code functions (for example,
INKEY$), which will have no effect, or slice the string, which will cause a ‘bad line’ error. A short
example of the additional flexibility is a check for a response to a simple question {eg. Overwrite (y/n)?}:

100 REPeat loop
110 A$=INKEY$(-1)
120 SELect ON A$
130 ='yn'&chr$(27):EXIT loop
140 END SELect
150 END REPeat loop

is the same as:

100 REPeat loop
110 A=CODE(INKEY$(-1))

(continues on next page)

26.42. SELect ON 741

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

120 SELect ON A:
130 =89,121,78,110,27:EXIT loop
140 END SELect
150 END REPeat loop

Minerva also supports integer variables, such as:

SELect ON a%

This is an extremely fast means of testing a condition. However, due to the nature of integers, tests will
only match the integer part of range.

SMS NOTE

This has greatly extended the flexibility of SELect ON - see in particular Note 5 above. It will also allow
integer variables as the SELect, but unfortunately not string SELect variables at present. If you try to do
so, the error ‘Incorrectly structured SELect clause’ will be reported. It will however, even support things
like:

SELect ON CODE(INKEY$(#1))

Unfortunately, SMS pre v2.90 had problems in dealing with in-line SELect ON statements. Prior to
v2.89 an error would be generated if an END SELect statement did not appear in an in-line definition,
and v2.89 reported an error if END SELect did appear!!

CROSS-REFERENCE

A slower means of testing for values is the structure IF . . . END IF. END SELect ends a SELect ON
structure.

26.43 SEND_EVENT

Syntax SEND_EVENT {jobname$ | jobID | jobnr,tag }, event
Location SMSQ/E v2.71+

With v1.51 of the Window Manager (and v2.71 of SMSQ/E), the possibility of Job Events was introduced.
This is basically a simple way of making one program wait until it receives notification from another Job
that up to eight different events has occurred.

The events are undefined and simply represented by the eight numbers : 1, 2, 4, 8, 16, 32, 64, 128. This
command allows you to tell a specified job that those events have occurred - several events may be notified
by adding together the various values of event. The job to be notified can be represented by either its:

1. Jobname (eg. ‘SBASIC’)

2. Job ID number (returned by OJOB for example).

3. Job number and Job Tag (returned by JOBS).

Example

742 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

SEND_EVENT OJOB(1), 2+8

Notifies the current job’s owner that events 2 and 8 have occured.

CROSS-REFERENCE

A job can test to see if an event has occured with WAIT_EVENT .

26.44 SERMAWS

Syntax SERMAWS acc%, wup%
Location SERMouse

This command is used to set two parameters which control the effect that moving the serial mouse has
on the on-screen pointer under the Pointer Environment. The first parameter sets the speed at which the
pointer will accelerate across the screen (this can be any value in the range 0. . . 9). A standard value is 6.
The second parameter sets the initial speed of the pointer. A standard value is 3. The values can also be
set by configuring the SERMouse file.

CROSS-REFERENCE

SERMPTR makes the mouse driver affect the Pointer only. Qpac 2 allows you to set the same parameters
from the Sysdef menu. Also refer toSERMSPEED and SERMON . See the appendix on Mouse Drivers
for more information.

26.45 SERMCUR

Syntax SERMCUR
Location SERMouse

The SERMouse driver allows you to use a Mouse to control either the Pointer (under the Pointer Envi-
ronment) or the Basic cursor (used in INPUT commands or similar). This command forces the mouse to
control the Basic cursor provided that the following condition is met: There is a channel currently open
which is awaiting for screen input with a visible cursor. If you switch to a program which is reading the
pointer (ie. a program which uses the pointer interface) then the command SERMPTR is automatically
called.

CROSS-REFERENCE

SERMPTR switches to Pointer Mode. See also SERMSPEED. You can also switch to cursor mode by
hitting the left hand mouse button twice in quick succession.

26.44. SERMAWS 743

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

26.46 SERMOFF

Syntax SERMOFF
Location SERMouse

This command removes the Serial Mouse Driver.

CROSS-REFERENCE

SERMON will reactivate the Driver. Compare SERMWAIT

26.47 SERMON

Syntax SERMON
Location SERMouse

The serial mouse driver must always be loaded into Resident Procedure Space (for example with RESPR
or LRESPR) before any Jobs are EXECuted. However, if you have Hermes or SuperHermes fitted, you
can configure the Serial Mouse driver so that it does not automatically start up after being linked into
BASIC.

This command can be used to initialise and startup the driver either following a SERMOFF command or
if you have configured the driver not to automatically start up after being linked into BASIC. SERMON
should also be used to reactivate the driver following a SERMWAIT command.

CROSS-REFERENCE

SERMOFF and SERMWAIT are complementary functions. See the Appendix on Mouse Drivers for
further details.

26.48 SERMPTR

Syntax SERMPTR
Location SERMouse

This command switches the Serial Mouse Driver into Pointer Mode, so that the movements of the Serial
Mouse affect the Pointer on screen, allowing you to control programs which make use of the Pointer
Environment. This is the default mode following loading the driver or a SERMON command.

CROSS-REFERENCE

See also SERMCUR.

744 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

26.49 SERMRESET

Syntax SERMRESET
Location SERMouse

This command should never really be needed, particularly if you are using the Serial Mouse with Her-
mes or SuperHermes. This command resets the chip which controls the serial ports and should only be
necessary if you notice the Pointer or Cursor moving on screen uncontrollably.

CROSS-REFERENCE

Other causes of this problem may be the wrong speed settings - see SERMAWS, SERMSPEED and BAUD.

26.50 SERMSPEED

Syntax SERMSPEED mul%, div%, acc% [,cursormul%, cursordiv%]
Location SERMouse

This command allows you to set various parameters to dictate the speed and resolution of the mouse. As
a mouse moves, it sends a stream of data to the computer containing details of the direction moved and
the distance moved. These details are sent every few microseconds and converted by the driver to x,y
coordinates on screen. The speed at which these details are sent is known as the resolution of the mouse.

This command allows you to alter the resolution of the mouse so that you do not have to move the mouse
as far to get the pointer (or cursor) on screen to move across the whole screen.

The mul% and div% parameters can be in the range 0..127 (with 0 disabling this feature - the default).

The distance sent by the mouse is multiplied by the mul% factor and divided by the div% factor - with
these both set to 0, only two-thirds of the distance moved by the mouse is passed to the Pointer Interface
to be translated into movements of the Pointer.

The acc% parameter can be in the range (0. . . 8) and defaults to 4 - this is used to calculate an acceleration
factor, so that the faster that the mouse is moved the quicker the details sent by the mouse are passed on
to the Pointer Interface (thus making the Pointer move in bigger and bigger steps).

The last two parameters are optional and are only relevant when the Mouse Driver is used in Cursor Mode
(see SERMCUR). These two parameters affect the resolution of the mouse when being used to move the
Basic Cursor - the standard values are both 1.

CROSS-REFERENCE

SERMAWS works in conjunction with this command. All of these parameters can be configured in the
SERMouse file. See also SERMCUR and SERMPTR.

26.49. SERMRESET 745

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

26.51 SERMWAIT

Syntax SERMWAIT
Location SERMouse

This command can be used to suspend the Serial Mouse Driver. You may wish to do this for example,
if your system does not support dual BAUD rates and you need to change the baud rate for a Modem or
Printer.

CROSS-REFERENCE

SERMON re-activates the Driver. Again, the Driver can be configured to automatically be suspended
when the baudrate is altered.

26.52 SERNET

Syntax SERNET
Location SMSQ/E, ATARI Emulators

A file SERNET_rext is provided with SMSQ/E, QXL and the Emulators for the Atari computers which
allows you to set up a Network using the Serial ports provided. Once the Network has been set up with
the necessary leads, and SERNET_rext been loaded on all computers in the Network, the command
SERNET should be issued to start up the fileserver Job on each computer. This creates a background Job
called ‘SERNET’ which is similar to the ‘Server’ Job created by FSERVE.

The two fileservers are very similar in operation in that they both allow other computers to access the
resources of the Master machine over the Network. As with MIDINET, SERNET has built-in protection
for files which can prevent other users in a Network accessing sensitive files. Refer to MIDINET for
details.

CROSS-REFERENCE

SNET is needed to control the Network. See also FSERVE and MIDINET . See the Appendix on Networks
for further details.

26.53 SER_ABORT

Syntax SER_ABORT [port]
Location ST/QL, SMSQ/E

This command is similar to PAR_ABORT except that it clears out all of the closed SER buffers and then
sends an ‘aborted’ message, to the SER device. If port is specified, on machines which support more
than one serial port, this allows you to specify the port number to be affected (default SER1).

CROSS-REFERENCE

See PAR_ABORT .

746 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

26.54 SER_BUFF

Syntax SER_BUFF [port,] output_size [,input_size]
Location ST/QL, SMSQ/E

Used with one parameter, this is the same as PAR_BUFF except that it sets the size of the output buffer at-
tached to each SER channel. The input buffer is normally a dynamic buffer, unless input_size is specified.
The output buffer should be a minimum of 5 to avoid confusion with the port number.

You can also use SER_BUFF to alter the size of the input buffer, by using the form:

SER_BUFF output_size, input_size

Although you will need to specify the output_size, you can set this to 0 to enable a dynamic output buffer.
You can also specify which serial port number is to be used to allow this command to work on machines
with more than one serial port (this defaults to SER1).

Examples

SER_BUFF 200

Set the output buffer size to 200 bytes, with a dynamic input buffer.

SER_BUFF 200,500

Have an output buffer of 200 bytes, with an input buffer of 500 bytes.

NOTE 1

The actual usable input buffer will be calculated by the value set by SER_BUFF less the value set by
SER_ROOM.

NOTE 2

In version E-17 of the device drivers for the Atari Emulator (and later implementations of this command,
including SMSQ/E), whenever you use this command, the value set by SER_ROOM

is re-calculated so that it is set to one quarter of the input buffer size. Earlier versions may (after
Level B09) would report an error if the input buffer was not at least twice the size of the value set by
SER_ROOM.

CROSS-REFERENCE

See PAR_BUFF! You should also refer to SER_ROOM.

26.54. SER_BUFF 747

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

26.55 SER_CDEOF

Syntax SER_CDEOF [port,] time
Location ST/QL (Level D00 +), SMSQ/E

Serial ports are able to both send and receive data. It is therefore imperative that the System can detect
when data is no longer being sent to a port which is being used to receive the data. Normally, the System
will wait until it receives an End Of File character (CTRL Z or EOF). However, it can be useful to specify
a time limit, whereby if no data is received during that time, the System assumes End Of File.

The command SER_CDEOF time allows you to specify the number of frames for which the System will
wait for more data. If time equals 0, then the System will wait indefinitely until it receives an explicit
End Of File character.

The time should be more than 5 in order to distinguish it from the port number. For machines with more
than one serial port, you can specify the number of the serial port this command is to apply to (default
SER1).

NOTE 1

This command has no effect on a QL, QPC or QXL.

NOTE 2

This command would not work properly on SCC ports on the Atari Mega STE or TT until v2.73+.

CROSS-REFERENCE

EOF and EOFW allow you to detect an EOF character.

26.56 SER_CLEAR

Syntax SER_CLEAR [port]
Location ST/QL, SMSQ/E

This is similar to PAR_CLEAR except that it clears out all current SER buffers. For machines with more
than one serial port, you can specify the number of the serial port to be affected (default SER1).

CROSS-REFERENCE

See PAR_CLEAR!

748 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

26.57 SER_FLOW

Syntax SER_FLOW [port,] flow
Location ST/QL, SMSQ/E

Because of the variety of equipment which can be connected to a QL system through a serial port, the
System has to support several types of handshaking. Handshaking is basically a means of checking if the
data received through a serial port is the same as the data which has been sent. Normally, handshaking
can be specified when a port is opened (see the Appendix concerning device drivers). However, it can
also be useful to preset the handshaking by using the command SER_FLOW. flow can have one of three
values:

• h Enable handshaking

• i Ignore handshaking - do not bother to check data

• x XON/XOFF detection.

To enable flexibility on machines with more than one serial port, you can also specify the number of the
serial port to be affected by this command (default SER1).

CROSS-REFERENCE

Please refer to the Appendix on device drivers for more information.

26.58 SER_GETPORT$

Syntax com$ = SER_GETPORT$(port%)
Location SMSQ/E for QPC

Returns the device the SER port is connected to, for example “COM1”.

CROSS-REFERENCE

See SER_SETPORT .

26.59 SER_PAUSE

Syntax SER_PAUSE [port,] time
Location SMSQ/E for Gold Card

On standard QL serial ports, you may find that some characters which are sent by the QL through the
serial ports get lost or the device to which they are sent (for example a printer) prints undefined characters.

This problem may be caused by the fact that the stop bit which is sent by the QL serial ports may be too
short for the device at the other end.

The SER_PAUSE command allows you to set the length of the stop bit in microseconds - it effectively
causes a short pause between each character sent through the serial ports. If port is not specified, this

26.57. SER_FLOW 749

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

command will affect both serial ports, otherwise it will only affect the specified serial port. The higher
the value of time, the longer the stop bit will be and hence the slower the serial transfer rate.

CROSS-REFERENCE

If you are using serial ports to receive data, you may need to set SER_ROOM. BAUD also affects the
serial transfer rate. Please also refer to the Appendix on device drivers for more information.

26.60 SER_ROOM

Syntax SER_ROOM [port,] bytes
Location ST/QL, SMSQ/E

Although handshaking should ensure that serial input is safe, unfortunately some devices carry on sending
data even though they have been told to stop. This may be caused by a buffer attached between the
sending and receiving equipment, for example. This is known as ‘serial overrun’ and can have unfortunate
consequences, as the receiving equipment may not have room to store the additional information.

Where the system is acting as the receiver, you can use the command SER_ROOM to specify a minimum
amount of memory which must be left in the input buffer when the System uses handshaking to check
on the validity of the data received. SER_ROOM sets aside bytes in the input buffer which can be used
to store information received after the System has told the sending equipment to stop.

If you still find that some data is lost due to serial overrun, try increasing the amount of space. For
machines with more than one serial port, you can specify the number of the serial port to be affected by
this command (default SER1).

NOTE

The default room is 32 bytes.

CROSS-REFERENCE

SER_BUFF allows you to alter the size of the input buffer and affects the value set by this command.
You should also look at SER_PAUSE.

26.61 SER_SETPORT

Syntax SER_SETPORT port%, com$
Location SMSQ/E for QPC

Sets the COM port a SER port should be connected with. The change will take effect on the next open
of the specified serial port.

Example

SER_SETPORT 4,"COM32"

Will associate SER4 with COM32.

CROSS-REFERENCE

750 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

See SER_GETPORT$.

26.62 SER_USE

Syntax SER_USE [device]
Location ST/QL, SMSQ/E

As with PAR_USE, this command allows the SER port to emulate the parallel printer port. Any three
letter extension is allowed, you are not restricted to SER or PAR.

CROSS-REFERENCE

See PAR_USE

26.63 SET

Syntax SET x, y, col
Location HCO

SET does the same as PLOT with SCRBASE 131072 set, ie. it does not support virtual screens. x ranges
from 0 to 511, y from 0 to 255. The colour (col) is specified by an integer from 0 to 3, representing the
four colours available in MODE 4: 0 . . . black 1 . . . red 2 . . . green 3

NOTE

Although SET is not designed to, it does work in MODE 8 but the colours appear differently: Colour 1
is not red but magenta for example.

WARNING 1

SET writes directly into screen memory and assumes that it starts at 131072, so SET may crash the
machine if the screen is located at another position in memory. SET also assumes a resolution of 512 x
256 pixels.

WARNING 2

SET does not check for the existence of the parameters (this means for example that it will not report
‘bad parameter’ for SET x, y), it may crash if any of the parameters are omitted.

CROSS-REFERENCE

PLOT . We highly recommend that you use the QDOS inbuilt window relative graphic routine, POINT
in this case. COL finds the colour of a screen pixel. See the other implementation of SET also.

26.62. SER_USE 751

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

26.64 SET

Syntax SET [#]variable TO value
Location SET, ALTER (DIY Toolkit - Vol U)

This command allows you to set up various universal constants which allow programs to read various
values which are set by other programs. This is similar to creating machine code functions which return
constant values.

The constants to be set up appear as ‘variable’ in the command syntax above.

They can be string, floating point or integer but must not have previously been used in the program
(otherwise the error ‘In Use’ will be reported). They must also not appear in quotes. The constants should
be SET from SuperBASIC Job 0, otherwise they do not seem to work (at least on Minerva). However,
other programs can use ALTER to change the value of the constants and also read the constants as if they
were predefined variables.

As an added bonus, if the variable is prefixed by a hash sign, then this is taken to be a pointer to a system
variable, which will always point to that system variable even if the system variables move. For example
to read the Network number, you could use:

SET #NET_ID TO HEX('37')
PRINT PEEK (NET_ID)

instead of:

SET NET_ID TO HEX('37')
PRINT PEEK (SYS_VARS + NET_ID)

Example

Set the following from SuperBASIC:

10 SET FALSE TO 0 : SET TRUE TO 1
20 SET YES$ TO 'Yy' : SET NO$ TO 'Nn'
30 SET DEF_DRIVE$ TO 'flp1_'

Any other program can then just use lines such as:

IF INKEY$(1) INSTR YES$: PRINT 'Yes has been selected'

and:

LBYTES DEF_DRIVE$ & 'prog_data', space

NOTE 1

SET does not work on SMS.

NOTE 2

SET #value does not appear to work on Minerva v1.97 (at least in versions up to v1.66 of the toolkit).

NOTE 3

752 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Any attempt to use SET from within a multiple BASIC will have no effect.

CROSS-REFERENCE

See ALTER. TRUE%, FALSE% and PI are predefined constants.

26.65 SetHEAD

Syntax SetHEAD #ch, adr
Location HEADER (DIY Toolkit - Vol F)

The command SetHEAD is the counterpart of GetHEAD and is normally used in conjunction with it. So
please refer to GetHEAD for further information about the syntax and usage. There is just one difference
you must keep in mind: whilst GetHEAD does not care in which mode (read only or read and write) a
file was opened, SetHEAD does. It expects that the channel was opened with OPEN, FOPEN etc but not
with OPEN_IN or FOP_IN.

CROSS-REFERENCE

See GetHEAD.

26.66 SET_HEADER

Syntax error = SET_HEADER(#channel, buffer)
Location DJToolkit 1.16

This function returns the error code that occurred when trying to set the header of the file on the given
channel, to the contents of the 64 byte buffer stored at the given address. If the result is zero then you
can assume that it worked ok, otherwise the result will be a negative QDOS error code. On normal QLs,
the three dates at the end of a file header cannot be set.

EXAMPLE

See the example for READ_HEADER.

CROSS-REFERENCE

READ_HEADER.

26.67 SET_CLOCK

Syntax SET_CLOCK
Location THOR range

This command sets the THOR’s battery backed clock to the current system time (set with SDATE).

NOTE

26.65. SetHEAD 753

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

This is not actually necessary on the THOR XVI as this automatically alters the battery backed clock
when the system clock is altered with SDATE or ADATE.

CROSS-REFERENCE

SDATE and ADATE alter the system clock. A_SDATE is similar on the ST/QL Emulator.

26.68 SET_FBKDT

Syntax SET_FBKDT #channel [,time] or
SET_FBKDT \file [,time]

Location Level-2 drivers

The command SET_FBKDT sets the date when a file was last backed-up. The time specified, must be in
the number of seconds since 1st January 1961, ie. the number returned by DATE. If time is not specified
or is 0, then the current DATE setting is used. If time=1 this has no effect on the file. Normally the
backup date is not set unless you do so using SET_FBKDT. This command supports the data default
directory (set with DATA_USE).

Example

SET_FBKDT \BOOT, DATE

sets the backup date on the file BOOT in the current data default directory to the current time and date.

CROSS-REFERENCE

FBKDT . See FGETH$ for the structure of a file header, especially which byte is modified when the
backup date is changed.

26.69 SET_FUPDT

Syntax SET_FUPDT #channel [,time] or
SET_FUPDT \file [,time]

Location Level-2 drivers

The command SET_FUPDT sets the date on which a file was last altered. This is always set to the current
system DATE when a file is SAVEd, or CLOSEd after having been written to. If time is not specified (or
is 0), then the current DATE is used. If time is set to 1, then this command will have no effect on the file.
COPY sets the update time on the file being created to the current DATE. For a SuperBASIC ‘backup’
function which gives the newly created file the same update time as the original and alters the backup
time, see FBKDT. This command supports the current default data directory (see DATAD$).

NOTE

If you use SET_FUPDT to alter the update time of a file OPENed to the specified channel, closing that
channel later in the program will not affect the update time.

CROSS-REFERENCE

754 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

FUPDT . See FGETH$ for the structure of a file header, especially which byte is modified when the
update time is set.

26.70 SET_FVERS

Syntax SET_FVERS #channel [,version] or
SET_FVERS \file [,version]

Location Level-2 drivers

The command SET_FVERS sets the version number of a file - versions higher than 65535 or smaller
than 0 are regarded as version MOD 65536, version=0 (or if version is omitted) means that the version
number will not be updated when the channel to that file is closed. This command supports the current
default data directory (see DATAD$).

Example

SET_FVERS \BOOT, 13

CROSS-REFERENCE

FVERS. See FGETH$ for the structure of a file header, especially which byte is modified when the version
is changed. The version number may be updated by SAVE and QSAVE on SMS.

26.71 SET_GREEN

Syntax SET_GREEN #channel, operation
Location Windows (DIY Toolkit - Vol W)

This command allows you to change the colours used within a specified window channel very quickly.
In order to use this, you really need a good understanding of the way in which the QL display works - see
the QL Display Appendix for some details. The effect that this command has on the specified window
depends upon the value of operation:

Operation Effect
0 Clear all Green bits (remove any Green from the screen).
1 Set all Green bits.
-1 If the Red bit for a pixel is set, Set the Green bit, otherwise clear it.

NOTE 1

This command will only work on screen resolutions of 512x256 pixels.

NOTE 2

This command should not really be used in MODE 8.

CROSS-REFERENCE

26.70. SET_FVERS 755

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

SET_RED is similar. See RECOL. W_SWAP can also be used to recolour a window. Refer to the QL
Display Appendix.

26.72 SET_RED

Syntax SET_RED #channel, operation
Location Windows (DIY Toolkit - Vol W)

This command is similar to SET_GREEN - the only difference is that instead of affecting green bits, it
alters the red bits. The effect that this command has on the specified window depends upon the value of
operation:

Operation Effect
0 Clear all Red bits (remove any Red from the screen).
1 Set all Red bits.
-1 If the Green bit for a pixel is set, Set the Red bit, otherwise clear it.

CROSS-REFERENCE

See SET_GREEN !

26.73 SET_LANGUAGE

Syntax SET_LANGUAGE country$ or
SET_LANGUAGE [country$] (THOR XVI v6.41 only)

Location THOR range

The command SET_LANGUAGE takes a string or name parameter and attempts to change the keyboard
layout to the first one with a name of which the given parameter is an abbreviation (this comparison
is case-independent). If the parameter is an empty string (or not specified), the next keyboard layout
is selected. Ideally, in a program, the full name of the layout would be used for clarity. The search is
circular which means that for example, if SET_LANGUAGE d was used, the Danish (Dansk) keyboard
layout would be adopted rather than the German (Deutsch) layout, unless the Danish layout was already
selected. The current keyboard layouts are supported:

Number Country$ Language
1 International None specific
2 British English
3 Dansk Danish
4 Deutsch German
5 Espanol Spanish (v4.20+ only)
6 Français French
7 HELLAS Greek
8 Suisse Swiss
9 Svensk Swedish (v4.20+ only)

756 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Examples

SET_LANGUAGE ""

jump to next keyboard layout in list.

SET_LANGUAGE 'Esp'

set layout to Spanish layout.

NOTE 1

Connected with each keyboard layout, there is also a national translation table, which you will need to
install by using the command TRA 1.

NOTE 2

On THOR’s equipped with a JS ROM, Français must be enclosed in quotation marks as it is an invalid
variable name.

NOTE 3

The second variant of the command should not really be used as it is only supported on the v6.41 ROM
for the THOR XVI. This has the same effect as:

SET_LANGUAGE "".

CROSS-REFERENCE

LANGUAGE$ returns the name of the current keyboard layout in use. Before v6.41 of the THOR XVI,
the keys <ALT><SYSREQ> had the same effect as SET_LANGUAGE. On v6.41, this keying was altered
to call a Job called Alt_SysReq (Case dependent). LANG_USE allows SMS to use different languages
for messages and errors. See also KBD_TABLE.

26.74 SET_XINC

Syntax SET_XINC #channel, increment
Location DJToolkit 1.16

See SET_YINC, below, for details.

26.75 SET_YINC

Syntax SET_YINC #channel, increment
Location DJToolkit 1.16

These two functions change the spacing between characters horizontally, SET_XINC, or vertically,
SET_YINC. This allows slightly more information to be displayed on the screen. SET_XINC allows
adjacent characters on a line of the screen to be positioned closer or further apart as desired. SET_YINC
varies the spacing between the current line of characters and the next.

26.74. SET_XINC 757

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

By choosing silly values, you can have a real messy screen, but try experimenting with OVER as well
to see what happens. Use of the MODE or CSIZE commands in SuperBasic will overwrite your new
values.

EXAMPLE

SET_XINC #2, 22
SET_YINC #2, 16
PRINT #2, "This is a line of text"
PRINT #2, "This is another line of text"
PRINT #2, "This is yet another!"

CROSS-REFERENCE

SET_XINC.

26.76 SEXEC

Syn-
tax

SEXEC device_file,start,length,data or
SEXEC device_file,start[,length[,data[,extra[,type]]] (Minerva v1.80+) or
SEXEC [device_]file,start,length,data (Toolkit II) or
SEXEC #channel,start,length,data (SMS only)

Lo-
ca-
tion

QL ROM, Toolkit II

In order for a program to be stored as an executable Job, it is necessary to store the machine code in a
specified format on disk. The command SEXEC allows you to do this, taking a specified amount of code
from memory and storing it in the specified file in a form which can later be EXECuted.

You will need to specify the start address of the machine code, the length of the code to be stored and
the amount of data space to be given to the program when it is loaded back into memory (the data space
represents the amount of working memory which is linked with the program when it is loaded, either
for storing data at the end of the program or for the user stack - see a good QL machine code book for
more details). The specified file name must include the name of the device to be used, unless Toolkit
II is present, in which case the default program device is supported. If Toolkit II is present and the file
already exists, you will be given the option of overwriting the file.

Example

To amend a given executable program, you may need to do the following:

100 length=FLEN(\example_exe)
110 datasp=FDAT(\example_exe)
120 start=RESPR(length)
130 LBYTES example_exe, start
140 POKE start + 1024, 100
150 SEXEC flp1_example_exe, start, length, datasp

NOTE 1

758 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

On Minerva ROMs (pre v1.80), if SEXEC was aborted for some reason whilst writing to a file, the file
would be deleted. On later versions of Minerva and all other QL ROMs, the incomplete file is kept.
Toolkit II reports Medium Full if this is the case.

NOTE 2

The Minerva variant is overwritten by the Toolkit II version of this command.

NOTE 3

On Minerva pre v1.83, SEXEC set the wrong file type!

MINERVA NOTE

On Minerva v1.80 (or later) the command SEXEC is practically the same as SBYTES. The only difference
is the type parameter which defaults to 1 as opposed to 0 with SBYTES.

SMS NOTE

The fourth variant of this command allows you to save the data to an already existing channel which is
OPEN to a file, thus cutting down on the number of times you need to access the file for error trapping
(for example). See SBYTES for an example.

WARNING

Saving part of the QL’s memory with SEXEC does not make it into EXECutable code - you must ensure
that the program concerned has a proper Job header and conforms with the normal QDOS rules for
EXECutable programs.

CROSS-REFERENCE

SEXEC_O is very similar. EXEC and EXEC_W allow you to load a program saved with SEXEC.

26.77 SEXEC_O

Syn-
tax

SEXEC_O [device_]file,start,length(Toolkit II) or
SEXEC_O device_file,start,length (THOR XVI) or
SEXEC_O #channel,start,length (SMS only)

Lo-
ca-
tion

Toolkit II, THOR XVI

This command is exactly the same as SEXEC except that it will automatically overwrite an existing file
of the same name.

NOTE

The Toolkit II version of SEXEC_O supports the default data device.

CROSS-REFERENCE

See SEXEC.

26.77. SEXEC_O 759

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

26.78 SGN

Syntax SGN (x) and
SGN% (x)

Location Math Package (SGN) and SGN (SGN%)

Both functions work identically and return the sign of any valid number. The sign is defined as 1 for
positive numbers, -1 for negative and 0 if the number is zero. Any number is allowed as a parameter.

CROSS-REFERENCE

SIGN is the same.

26.79 SGN%

See SGN above.

26.80 SHOOT

Syntax SHOOT
Location ST/QL, QSound

This command produces the sound of single gun shot.

CROSS-REFERENCE

SND_EXT , BELL, EXPLODE.

26.81 SI

Syntax SI
Location Beuletools

This function contains the control codes needed to switch on condensed print on an EPSON compatible
printer:

PRINT SI

is the same as:

PRINT CHR$(15)

CROSS-REFERENCE

NORM, BLD, EL, DBL, ENL, PRO, NRM, UNL, ALT , ESC, FF, LMAR, RMAR, PAGDIS, PAGLEN .

760 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

26.82 SIGN

Syntax SIGN (x)
Location BTool

See :ref`sgn`.

26.83 SIN

Syntax SIN (angle)
Location QL ROM

This function returns the sine of the given angle (in radians ranging from -PI/2 to PI/2). In a right-angled
triangle, the sine is the ratio of the length of the side opposite to the angle, to the length of the hypotenuse.
A negative angle indicates that the hypotenuse appears below the base line.

Example

A procedure to draw a sector of a circle with the centre at x,y and radius r.

• A is the angle between the first straight side of the sector and a vertical line on the screen,

• B is the angle between the two straight sides.

• Both angles have to be given in radians, b should be between 0 and 2*PI.

• Ch specifies the window to be used and cannot be omitted.

100 DEFine PROCedure SECTOR (ch, x, y, r, a, b)
110 LOCal x1, x2, y1, y2
120 x1 = x + r * SIN(a): x2 = x + r *SIN(a + b)
130 y1 = y + r * COS(a): y2 = y + r *COS(a + b)
140 LINE# ch, x1, y1 TO x, y TO x2, y2
150 ARC# ch, x2, y2 TO x1, y1 ,b
160 END DEFine SECTOR

SECTOR #1, 50, 50, 10, PI/4, PI/2

NOTE 1

SIN (PI)==0 (approximately zero) on all ROMs. This should in fact equal zero - only the Lightning maths
package and SMS get this right.

NOTE 2

On Minerva v1.96+ SIN with very large values for radian return 0. On other implementations it returns
an overflow error. You should therefore check the range of the angle parameter.

CROSS-REFERENCE

See COS, TAN , RAD, ASIN , ACOS, ATAN , DEG. See also SINH. Please also refer to the Mathematics
section of the Appendix.

26.82. SIGN 761

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

26.84 SINH

Syntax SINH (x)
Location Hyper, Hyperbola

This function returns the hyperbolic sine (sinus hyperbolicus). The function is equivalent to: (EXP(x) -
EXP(-x)) / 2 where the angle x (in fact a ratio) is a small floating point value.

Example

Draw a hyperbola and its asymptotes:

100 SCALE 10, -7, -5: PAPER 0: CLS: INK 3
110 LINE -4, -4 TO 4, 4, -4, 4 TO 4, -4: INK 7
120 FOR t = -2 TO 2 STEP 2E-2
130 x = COSH(t): y = SINH(t)
140 POINT x, y, -x, y
150 END FOR t

CROSS-REFERENCE

COSH, TANH, ARSINH

26.85 SINT

Syntax SINT (x) where x=0..65535
Location BTool

The range of SuperBASIC integers is -32768 to 32767 - these are called signed integers because they
can be negative. This compares to unsigned integers which have a different range, from 0 to 65535. The
function SINT converts unsigned integers to signed integers, which is not a very difficult task apart from
the need to check the valid range:

signed% = unsigned - 2^16

or:

signed% = SINT(unsigned)

CROSS-REFERENCE

UINT converts in the other direction.

762 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

26.86 SIZE

Syntax SIZE (array [{% | $}]) or
SIZE (variable [{% | $}]) or
SIZE (value)

Location Math Package

The function SIZE can take any kind of variable, array or constant. The returned value depends very
much on the type of parameter: If a simple variable was passed, the function returns either 0 or 1, 1 if the
variable points to any value or 0 if it does not, ie. if PRINT variable would show an asterisk to show that
variable is not yet defined. Note that even though on SMS an unset variable does not show an asterisk
when you use PRINT variable, this does not prevent this function from returning the correct value.

The return for a constant parameter such as:

PRINT SIZE(-22.3)

or:

PRINT SIZE("QL")

is always 1.

The return for arrays is entirely different. Passing an array tells SIZE to count its elements. Note the
existence of a zero element, for example:

DIM a(2,2)

gives a nine elements in all:

a(0,0) a(0,1) a(0,2)
a(1,0) a(1,1) a(1,2)
a(2,0) a(2,1) a(2,2)

SIZE handles string arrays differently in that it returns the number of strings, not the number of characters,
eg. for DIM a$(2,2), SIZE(a$) will not give 3*3 = 9 but 3.

Generally the return value of SIZE does not depend on the actual contents of the passed object. SIZE
recognises if part of an object (especially strings and arrays) was passed.

Examples

DIM numbers(1,2,3,4,5)
PRINT SIZE(numbers)

returns 2*3*4*5*6=720.

yippie$="what a wonderful world"
PRINT SIZE(yippie$)

returns 1.

26.86. SIZE 763

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CLEAR PRINT SIZE(eeek)

returns 0

DIM string$(12,7,10)
PRINT SIZE(string$)

returns 13*8=104

PRINT SIZE(string$(1 TO))

returns 12*8=96.

NOTE 1

String arrays also contain numeric values - the first element (which is character zero) of a string contains
the size of the string. For instance, take the above string$ array and then enter:

string$(4,4) = "knocking"

Now:

PRINT string$(4,4)

and you will see ‘knocking’ in #1.

PRINT string$(4,4,5)

gives the fifth character of knocking, the k, and:

PRINT string$(4,4,1)

the first one, again a k. And:

PRINT string$(4,4,0)

There is no character before the first, instead you will get the integer number 8 because:

LEN(string$(4,4))=8

This is tricky and not really necessary to know about as you can use LEN. . . just in case you come across
the phenomenon and have wondered about it. See also DIM for a further explanation of strings.

NOTE 2

Before v2.06, this function may refuse to work on some implementations, giving ‘Bad Parameter’ error
or returning the wrong value for string arrays.

NOTE 3

If the parameter is a single dimension string array, for example:

DIM a$(10)
PRINT SIZE (a$)

764 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

the value returned is 0. It is hoped that this will be fixed in a future version so that the value returned is
1.

CROSS-REFERENCE

DIMN and NDIM return other information about an array, eg: PRINT SIZE(a$) * DIMN(a$,NDIM(a$))
gives the total number of characters which can be stored in a string array a$. LEN returns the length of
a string. FREE_MEM allows you to check how much memory an array uses.

26.87 SJOB

Syntax SJOB jobnr,timeout or
SJOB jobname,timeout

Location TinyToolkit

There are three ways in which a job can be made to do nothing:

1. Remove the job;

2. Set the job’s priority to 0;

3. Suspend the job.

This command suspends the specified job for a specified period of time, which can be identified either
by its jobnr (see JOBS) or by -1 (meaning the current job) or by its name (which need not be in quotes).
Although suspending a job does not alter its priority, a suspended job will have no effect upon the speed
of the QL. A positive timeout will stop the Job for timeout/50 seconds, whereas any negative number
will suspend the job forever (ie. it can only be re-activated by an express command such as REL_JOB).
The highest positive timeout is 32768 frames which is approximately 9 minutes, 6 seconds.

Example 1

SJOB "Quill", -1

will suspend Quill indefinitely.

SJOB Quill,-1

is the same even if there is a variable called Quill.

SJOB -1, 100

will suspend the current job for approx. 2 seconds.

SJOB 10, 100

will suspend Job number 10 for approx. 2 seconds

Example 2

A background Job which carries out work which is not time consuming, should not slow the whole system
down, otherwise it is a complete waste of the computer’s available time. Unfortunately, a priority of 1 is
too high for a simple action such as checking the clock or updating key macros (See ALTKEY).

26.87. SJOB 765

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

SJOB is useful to slow this job down to the desired speed. SJOB is also useful for setting PAUSEs
independently of the machine’s speed. The following program demonstrates both uses of SJOB and has
to be compiled and executed as a multitasking job (ie. EXEC).

The priority of the job does not really matter, because the job only wakes up once a minute, looks at the
clock and then drops off again.

100 REPeat Tower
110 d$=DATE$: minute=d$(16 TO 17)
120 SELect ON minute
130 =30:BEEP 20000,0,100,1000,0
140 =0:hour=d$(13 TO 14) MOD 12:IF hour=0:hour=12
150 FOR h=1 to hour: BEEP 10000,h,10,100,1: SJOB Q_MYJOB,65
160 =15:BEEP 5000,0,10,20,5000
170 END SELect
180 SJOB Q_MYJOB,3000
190 END REPeat Tower

This example needs Qliberator’s Q_MYJOB function.

NOTE

As from v1.11, jobnr can be -1, so in the above example 2, you could use SJOB -1,65 and SJOB -1,3000
instead of the similar commands in lines 150 and 180 respectively. Earlier versions would also not accept
a variable as the parameter for the job number.

CROSS-REFERENCE

REL_JOB releases a suspended job. JOBS lists all current jobs. SUSJOB and TTSUS are almost the
same as SJOB.

26.88 SLOAD

Syntax SLOAD adr
Location Ecran Manager

This command takes part of a screen which has been saved with SSAVE and copies it to the visible screen,
removing it from memory. SLOAD works like SSHOW with the sole difference that it can only be called
once.

NOTE

This has the same problems as SSAVE.

CROSS-REFERENCE

SSHOW

766 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

26.89 SLUG

Syntax SLUG msecs
Location Gold Card (v2.24+), SMS

A disadvantage of the speed improvements by Gold Card (and later expansion boards) is that most games
become simply too fast. The command SLUG can slow down the whole system by advising the operating
system to read the keyboard less often (other solutions install background interrupts but some games
suspend these). The parameter specifies the delay in milliseconds. The higher msecs, the slower the
general operating speed will be. SLUG 5 to SLUG 10 on a Gold Card gives roughly the speed of a
normal QL, but this depends very much on the software. Programs which do not spend a lot of time
waiting for keyboard input such as interactive games, will not slow down so much. Only keyboard access
is slowed down.

Example

100 FOR n=0 to 1000 STEP 10 110 SLUG n 120 PRINT n 130 dummy=KEYROW(0) 140
END FOR n

NOTE

Since SLUG only slows down keyboard access (this is especially designed for arcade games), the above
example would not be affected without line 130. All other lines run at maximum speed; the advantage is
that screen output, which is a limiting factor for arcade games, is not affected by SLUG.

CROSS-REFERENCE

SCR2DIS and CACHE_ON can be used to speed up the computer’s speed.

26.90 SMOVE

Syntax SMOVE scrno, adr [,xpos, ypos]
Location Ecran Manager

The command SMOVE will copy a stored screen (saved with SSAVE, where adr comes from) to the first
(scrno=0) or second screen (scrno=1) - the latter is only possible if your system supports a dual screen
mode.

Optionally, it is possible to specify a location where the screen part’s upper left corner (absolute co-
ordinates) should be placed; SMOVE will correct the xpos and ypos automatically if the restored picture
would exceed the screen borders.

NOTE

See SSAVE.

CROSS-REFERENCE

SSHOW , SLOAD

26.89. SLUG 767

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

26.91 SND_EXT

Syntax SND_EXT
Location ATARI_REXT (v1.24 to v2.15)

The ST-QL Emulators contain new extensions (based upon the QSound device) to enable programs to
use the ST’s sound facilities. Unfortunately, these extensions clash with the Turbo SuperBASIC com-
piler from Digital Precision. When the Emulator is started up, these sound extensions are switched off.
SND_EXT will switch them back on. This command was replaced in v2.15 by ATARI_EXT.

You can test if the QSOUND interface (or these commands) are present by using:

PEEK_L(!! HEX('164'))

which will be 0 unless the commands are present (Turbo may also alter this figure whilst it is compiling
a program).

WARNING

The sound extensions may crash the hardware.

CROSS-REFERENCE

Some of the available extensions for sound are PLAY , RELEASE, BELL, SHOOT , EXPLODE.

26.92 SNET

Syntax SNET no
Location SMSQ/E, ATARI Emulators

This command is similar to the NET command in that it sets the Network Station number of the machine
on which it is issued. The only difference is that here it sets the station number for the SERNET Network
(as opposed to the QNet Network).

CROSS-REFERENCE

See SNET%, SNET_USE and NET . Also please see SERNET , MIDINET and FSERVE.

26.93 SNET%

Syntax SNET%
Location SMSQ/E, ATARI Emulators

This function returns the current station number of the computer as set with SNET .

CROSS-REFERENCE

See SNET . NET_ID is similar.

768 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

26.94 SNET_ROPEN

Syntax SNET_ROPEN
Location SMSQ/E, ATARI Emulators

This command reopens the serial ports for use by the SERNET driver in case they have been closed by
other programs.

CROSS-REFERENCE

See SERNET .

26.95 SNET_S%

Syntax SNET_S% (station)
Location SMSQ/E, ATARI Emulators

This function enables you to check whether a machine with the specified station number is connected to
the SERNET . This can be useful to prevent the problem of the Network re-trying several times before
failing when asked to send or read data from a Network station which does not exist.

CROSS-REFERENCE

See SNET .

26.96 SNET_USE

Syntax SNET_USE id
Location SMSQ/E, ATARI Emulators

Due to the fact that SERNET Networks can be run on computers alongside MIDINET Networks and
even QNET Networks, it may be necessary to alter the identification letter used to access facilties on
other computers in the Network. The default letter id is s, but this can be set to any other single letter by
using this command. However, you should avoid letters which already appear as the first letter in another
device driver (see DEVLIST).

Example

SNET_USE c
DEV_USE 3,c2_win1_

Redefine DEV3_ so that it refers to win1_ on station number 2 in the SERNET Network. This can
be useful to allow some programs to access data over the Network. However note the file protection
implemented in SERNET and MIDINET.

NOTE

26.94. SNET_ROPEN 769

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Before v2.28 of Toolkit II, the various wildcard commands did not accept any single letter other than n
as representing a Network.

CROSS-REFERENCE

See SNET and SERNET . Refer also to SNET_S%. MNET_USE is similar. See also NFS_USE.

26.97 SORT

Syntax SORT array$, offset [,row]
Location ARRAY

The SORT command takes a two or three-dimensional string array and sorts it in ascending order. offset
is an even number which allows you to apply different sort criteria by telling SORT to compare the
sub-strings to the right of position offset+1. The third, optional parameter is only necessary for three-
dimensional arrays: it selects the row to be sorted.

Example

CAT lists a sorted directory, including deleted files, to window #1. Sorting the directory in fact requires
just one line here (390), the entries are sorted by file length because the format of each entry is as follows:

1 10 20 30 37 45
|--------|--------|---------|-------|-------|
filename length

Changing the SORT in line 390 to:

390 SORT entry$, 0

will sort the list alphabetically. The other parts of the example PROCedure are written to require only
Toolkit II, that makes reading the directory (the j loop from line 240 to 280) quite slow. If you are
wondering why the file header is stored twice, both as a string (header$) and for direct memory access
(header), this is for getting the best out of basic QL facilities, namely PEEK_W, PEEK_L and string
slicing (line 310).

100 DEFine PROCedure CAT (dir$)
110 LOCal ch%, entries%, header, header$(64)
120 LOCal c%, l%, i
130 PRINT "Directory of"!dir$;": ";
140 ch% = FOP_DIR(dir$)
150 IF ch% < 0 THEN
160 PRINT \"Cannot open directory,"\"because ";
170 REPORT#1, ch%: RETurn
180 END IF
190 entries% = FLEN(#ch%) / 64
200 DIM entry$(entries%, 45)
210 header = ALCHP(64)
220 FOR i = 0 TO entries% - 1
230 header$ = ""

(continues on next page)

770 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

240 FOR j = 0 TO 63
250 BGET#ch%, c%
260 POKE header+j, c%
270 header$ = header$ & CHR$(c%)
280 END FOR j
290 l% = PEEK_W(header + 14)
300 IF l% THEN
310 entry$(i) = header$(17 TO 16 + l%) & FILL$(" ", 37 - l%)
320 entry$(i) = entry$(i) & (PEEK_L(header) - 64)
330 ELSE
340 entry$(i) = "(deleted)" & FILL$(" ", 28) & "n.a."
350 END IF
360 PRINT ".";
370 END FOR i
380 CLOSE#ch%: RECHP header: PRINT
390 SORT entry$, 36
400 FOR i = 0 TO entries% - 1
410 PRINT entry$(i)
420 END FOR i
430 END DEFine CAT

CROSS-REFERENCE

SEARCH searches string arrays.

26.98 SOUNDEX

Syntax SOUNDEX (word$)
Location Ähnlichkeiten

This function returns an integer which represents the word contained in the string passed as a parameter,
in such a way that for two English words which sound similar, the same results are returned. Internally,
each character is replaced by a cipher and then all double (triple etc) ciphers are removed.

Examples

SOUNDEX ("user"): REMark 26
SOUNDEX ("looser"): REMark 426
SOUNDEX ("l'user"): REMark 426

NOTE

The difference between two SOUNDEX results is not proportional to the phonetic difference between
the parameters.

CROSS-REFERENCE

WLD calculates such a difference, PHONEM is similar to SOUNDEX.

26.98. SOUNDEX 771

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

26.99 SPJOB

Syn-
tax

SPJOB jobname,priority (Toolkit II, TinyToolkit pre v1.10 and THOR only) or
SPJOB jobnr,tag,priority (Toolkit II and THOR only) or
SPJOB jobID,priority or
SPJOB jobnr,priority(TinyToolkit pre v1.10)

Lo-
ca-
tion

Toolkit II, THOR XVI, TinyToolkit (pre v1.10), BTool

The specified job (described by either its jobname, its job number and tag, or its job identification number)
is set to the given priority (which should be in the range 0 to 127 to maintain compatibility with Minerva).
A priority of zero will ensure that the job waits until it is given a higher priority by another job.

NOTE 1

It is possible that only the second syntax works. Get an update!

NOTE 2

Before v1.10 of TinyToolkit, this toolkit included the same command but with an incompatible syntax -
this version has been renamed SP_JOB.

MINERVA NOTES

Although on other ROMs, a priority higher than 127 can be assigned to a job, on Minerva, the permitted
priority range is actually -128. . . 127 (if a priority is stated to be higher than 127, you must subtract the
difference between this number and 256 from 0 to get the negative priority).

The idea behind these negative priorities is that they are for ‘background tasks’ which will only run
when no tasks with a positive priority are running. However, the effect is slightly more complex because
these negative priorities are split into eight levels, each of which can have jobs running with priorities
equivalent to -1 to -15. A job in one level will not run whilst a job in a higher level is running, however
within each level each job will get a different amount of processor time depending on their priorities {a
job with a lower priority (eg. -15) will get more processing time than a job with a higher priority (eg.
-1)}.

Level Priority Range Overall Value
0 -1 . . . -15 -1 . . . -15
1 -1 . . . -15 -16 . . . -31
2 -1 . . . -15 -32 . . . -47
3 -1 . . . -15 -48 . . . -63
4 -1 . . . -15 -64 . . . -79
5 -1 . . . -15 -80 . . . -95
6 -1 . . . -15 -96 . . . -111
7 -1 . . . -15 -112 . . . -127

WARNING

The supplied parameters are not checked to see what you are trying to do, which means that you can use
this command to set the priority of SuperBASIC to zero, preventing further command entry.

CROSS-REFERENCE

772 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

SJOB suspends a job, REL_JOB releases it. RJOB and KJOB remove a specific job, KILL and KJOBS
remove all jobs except the main SuperBASIC interpreter. See also SP_JOB, PRIO, PRIORITISE.

26.100 SPL

Syntax SPL {input | #ch} [TO {output | #ch}]
Location Toolkit II, THOR XVI

It can sometimes be useful to copy a file in the background. The command SPL sets up a small Job which
runs at a low priority and acts as a print spooler, reading the whole of the input data from the given input
device as quickly as possible and then just outputting the data when it can. Although control is returned
to the calling program quite quickly, both the input and output files are left open until SPL has completed
its job.

SPL is mainly for outputting files to a printer in the background (allowing you to carry on other work in
the meantime).

If however, a file is specified as the output, the SPL command acts like COPY_O, except in the back-
ground. If output is not specified, the SPL command uses the default destination device. Existing channel
numbers may also be specified as the input and output names, provided that both channels are already
open for input and output respectively.

Examples

SPL flp1_Example_txt TO SER

prints the file flp1_Example_txt in the background.

SPL_USE SER:
SPL flp1_Example_txt

this is the same as example 1.

WARNING

If the default destination device is a directory device and you do not specify a file for output, the SPL job
may never complete its task and leave files open.

CROSS-REFERENCE

See COPY_O and SPLF. SPL_USE and DEST_USE allow you to alter the default destination device.

26.101 SPLF

Syntax SPLF {input | #ch} [TO {output | #ch}]
Location Toolkit II, THOR XVI

This is exactly the same as SPL except that at the end of sending the output, a form feed symbol, CHR$(12)
is sent. SPLF is obviously intended for use with printers.

26.100. SPL 773

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE

See SPL.

26.102 SPL_USE

Syntax SPL_USE name
Location Toolkit II, THOR XVI

This command sets the default destination device and therefore has a similar effect to DEST_USE. How-
ever, this command is slightly improved, in that if the supplied name does not end in an underscore, this
is taken to be an external device port (such as SER) and no underscore is added.

Examples

DEST_USE flp2_Quill: COPY ram2_Letter_doc

will copy the file ram2_letter_doc to flp2_Quill_letter_doc.

SPL_USE ser: COPY ram2_Letter_txt

will copy the file ram2_Letter_txt to the serial port, ser.

NOTE

SPL_USE will overwrite the default destination device set with DEST_USE.

CROSS-REFERENCE

DESTD$ returns the current default destination device. Also see PROG_USE, DLIST , DATA_USE,
DEST_USE, DDOWN , DUP, and DNEXT .

26.103 SP_JOB

Syntax SP_JOB jobname, priority or SP_JOB jobnr, priority
Location TinyToolkit (v1.10+)

Acts just like SPJOB.

NOTE

As from v1.11, the jobnr may be -1 to mean the current job. Earlier versions would not allow jobnr to be
a variable either.

CROSS-REFERENCE

See SPJOB.

JBASE contains details of the different parameters jobname and jobnr.

774 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

26.104 SQR

Syntax SQR (x)
Location Math Package

See SQRT below!

26.105 SQRT

Syntax SQRT (x)
Location QL ROM

This function returns the square root of the given parameter. The opposite of this function is x^2. The
given parameter can be zero or any positive value.

Example

PRINT SQRT(32768*2) will return 256.

NOTE 1

The version of SQRT implemented on Minerva v1.90 (or later) is the fastest version of this command
which we have seen anywhere!

NOTE 2

On Minerva pre v1.96:

SQRT(4^x*(12^31))

was returning the negative square root. It now returns the positive square root.

CROSS-REFERENCE

ABS will return the absolute value of the given parameter.

26.106 SSAVE

Syntax SSAVE (scrno, xpos, ypos, xsiz, ysiz)
Location Ecran Manager

The function SSAVE reserves memory and saves a part of the screen to it, the saved block’s left upper
corner is the point (xpos,ypos) in absolute co-ordinates, the width is xsiz and the height ysiz. xpos may
range from 0 to 511 and ypos from 0 to 255, so SSAVE is not suitable for resolutions other than 512x256
pixels. The reserved memory can only be released with SLOAD. The first parameter scrno can be either
0 or 1 - it is used under dual screen mode to select the first or second screen, scrno=1 is only available
under dual screen mode, on other machines SSAVE will break with the ‘not found’ (-7) error. The value
returned represents the address where the screen is stored in memory.

26.104. SQR 775

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE

If you wish to link the Ecran Manager Toolkit to a QLiberated program, you must not use the ECMAN
but the ECMANcp version.

CROSS-REFERENCE

Saved pictures can be reloaded with SSHOW .

26.107 SSHOW

Syntax SSHOW adr
Location Ecran Manager

This command restores a screen part saved with SSAVE, therefore the parameter adr must be the value
returned by the SSAVE function. The memory area where the picture is saved is unaffected, so SSHOW
can be executed any number of times.

NOTE

See SSAVE.

CROSS-REFERENCE

SLOAD displays a saved screen part and frees the memory used, SMOVE allows you to view such a saved
screen part at a different location or on a different screen.

26.108 SSTAT

Syntax SSTAT
Location Ecran Manager

The function SSTAT returns either 0 or 1, corresponding to the first or second screen. The function is
used to find out which of these screens is currently the visible screen. Unless you have Minerva or Amiga
QDOS set up in dual screen mode, this is always 0.

Example

Force the second screen to be displayed (this only works in Minerva or Amiga QDOS):

IF SSTAT = 0 THEN MODE 80,-1

NOTE

See SSAVE.

CROSS-REFERENCE

DEFAULT_SCR, SCRON , SCROF, MODE

776 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

26.109 SSTEP

Syntax SSTEP [{#ch | device_file}] [; [first] [TO [last]]]
Location Minerva (TRACE)

Minerva is supplied with a very simple trace routine on the utility disk supplied with Minerva, stored in
the file trace_bin. Before using the trace function, you will need to link in trace_bin with the line:

LRESPR flp1_trace_bin

or something similar. Having done this, you can turn on the tracing function with SSTEP which will
print to the given channel (default #0) or file, each line number and statement just before it is performed
in the format: line_no : statement_no.

You can also supply the trace function with a line range, so that it will only report on statements being
executed within the given line range. The line range defaults to: 1 TO 32767.

Whilst the trace function is enabled and the program is running within the given range, the interpreter will
wait for a key to be pressed between each statement. As each command in each statement is executed,
a single character is shown by the trace routine to represent the type of the command to be executed.
However, the meaning of these symbols has never been revealed. In single-step mode, you need to press
a key between each command!!

NOTE

This trace toolkit will only work on Minerva.

CROSS-REFERENCE

See TRON and TROFF.

26.110 STAMP

Syntax STAMP string$
Location STAMP

This command is the same as FORCE_TYPE !

26.111 STAT

Syntax STAT [#channel,] [device] or
STAT \file [,device]

Location Toolkit II, THOR XVI

This command prints the name of a medium inserted into the given device and the available sectors to
the given channel (default #1), or file. The device must be a directory device, such as FLP1_ (but not
PAR or CON). If no device is stated, then the default data device is used.

26.109. SSTEP 777

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Examples

STAT STAT ram1_
STAT n2_win1_
STAT #3,flp2_
STAT #0 STAT \mdv2_
STAT _dat
STAT \ram5_TMP,mdv1_

CROSS-REFERENCE

DLIST shows the default devices, DATAD$ holds the default data device. Change default devices with
DATA_USE, PROG_USE and SPL_USE. DIR and WSTAT provide other information about directory
devices.

26.112 STEP

Syntax . . . STEP stepwidth
Location QL ROM

This keyword forms part of the FOR structure and has no meaning on its own. Any attempt to enter it on
its own will result in a ‘Bad Line’ error.

CROSS-REFERENCE

See FOR!

26.113 STOP

Syntax STOP
Location QL ROM, Toolkit II

This command forces an interpreted program to be terminated at the position where STOP appears in
the listing. The program can then be continued (provided that the message ‘PROC/FN cleared’ has not
appeared) by using the command CONTINUE. Compiled programs terminate and remove themselves
when STOP is encountered.

Example

This program will print 1 and 2 to channel #1 and stop at line 120. If it runs under the interpreter,
CONTINUE will restart at line 130 (after STOP) and print 3 and 4. RETRY does not continue here
because it tries to re-run line 120 and stops again.

100 PRINT 1
110 PRINT 2
120 STOP
130 PRINT 3
140 PRINT 4

778 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE

If Toolkit II is installed, STOP clears WHEN ERRor definitions.

CROSS-REFERENCE

RUN starts a program and GO TO jumps to a specified line. See CONTINUE, RETRY . Also see QUIT .

26.114 STRIP

Syntax STRIP [#ch,] colour
Location QL ROM

Whenever a character is printed to the QL screen, it is made up of two components - the character itself
which appears in the current INK colour, and the rectangular block on which the character has been
formed. The latter is known as the ‘strip’ of the character and the size of this strip depends on the current
character size and spacing (see CSIZE).

Normally, when you set the PAPER colour of a window, the character STRIP is set to the same colour.
However, you may wish to print characters on a different background colour in order to make them stand
out. STRIP allows you to alter the colour of the character background in the specified window (default #1)
to a given colour (or composite colour). However, if you want to print characters in a window without
using this character background (ie. forming a transparent strip), you will need to use the commands
OVER 0 or OVER -1 (see OVER for more details).

Example

A simple routine for printing out a Title on screen:

10 WINDOW 512, 256, 0, 0: PAPER 4
20 MODE 4: CLS
30 TITLE #1,'This is a Title', 120, 95
40 :
100 DEFine PROCedure TITLE(ch,text$,x,y)
110 CSIZE 2,1: OVER 0
120 CURSOR #ch,x-2,y+1
130 STRIP #ch,0: PRINT #ch,FILL$(' ',LEN(text$))
140 CURSOR #ch,x,y
150 STRIP #ch,2: INK #ch,7
160 PRINT #ch,text$
170 CURSOR #ch,x-2,y+1
180 OVER 1: INK#ch,0
190 PRINT #ch,text$
200 END DEFine

NOTE

The STRIP colour is automatically reset to the same as the PAPER colour following a PAPER command.

CROSS-REFERENCE

PAPER also sets the STRIP colour. Compare IO_TRAP. CSIZE and CHAR_INC allow you to alter the
spacing between characters. INK contains details of standard and composite colours. See also INVERSE

26.114. STRIP 779

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

which can also prove useful.

26.115 SUB

Syntax . . . SUB line
Location QL ROM

This keyword forms part of the SuperBASIC keyword GO SUB and has no purpose on its own. Any
attempt to use it on its own will cause a ‘Bad Line’ error.

CROSS-REFERENCE

See GO SUB!

26.116 SUSJOB

Syntax SUSJOB jobId,timeout
Location BTool

See SJOB.

26.117 SWAP

Syntax SWAP var1,var2 or
SWAP var1$,var2$

Location SWAP, Math Package

This command exchanges the values of the two variables. The parameters can be either numeric variables
(integer and floating point) or strings. Arrays are not allowed and both variables have to be the same type:
SWAP a$,b is illegal, even if a$ contained a valid number. Also, constant expressions such as SWAP
a%,3 are not allowed, since this would not make any sense. Unfortunately, it is not possible to SWAP
two elements of an array, the example shows why this would be practicable. The Math Package variant
also allows you to swap whole arrays.

Example

In most kinds of sorting routines, a lot of swapping is necessary and an assembler routine which takes
over this work makes the process quicker. Here is a Quicksort algorithm as a general subroutine. field$
is sorted from the left element to the right.

100 DEFine PROCedure QSort (field$,left,right)
110 LOCal i,j,last$
120 i=left: j=right: last$=field$(j)
130 REPeat SortLoop1
140 REPeat SortLoop2:IF field$(i)<last$:i=i+1:ELSE EXIT SortLoop2

(continues on next page)

780 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

150 REPeat SortLoop2:IF field$(j)>last$:j=j-1:ELSE EXIT SortLoop2
160 IF i<=j THEN
170 f1$=field$(i): f2$=field$(j): SWAP f1$,f2$
180 field$(i)=f1$: field$(j)=f2$
190 i=i+1: j=j-1
200 END IF
210 IF i>j THEN EXIT SortLoop1
220 END REPeat SortLoop1
230 IF left<j THEN QSort field$,left,j
240 IF right>i THEN QSort field$,i,right
250 END DEFine QSort

Compilers have a fixed stack size - you might have to raise this because this procedure iterates (ie. calls
itself), which is something which eats up the stack very quickly. The SuperBASIC interpreter uses a
flexible stack.

CROSS-REFERENCE

LET

26.118 SXTRAS

Syntax SXTRAS [#channel,] [character]
Location TinyToolkit

This command lists all machine code SuperBASIC extensions in alphabetic order to the given channel
(default #1). If a character is specified, then only those commands which appear later alphabetically will
be listed - if character is longer than one character, only the first character is recognised.

Example

SXTRAS s

CROSS-REFERENCE

EXTRAS and TXTRAS do not sort the keywords. Also look at VOCAB.

26.119 SYNCH%

Syntax SYNCH%
Location KMOUSE, MOUSE (DIY Toolkit - Vol I)

This function is only used to debug the DIY Toolkit mouse drivers. It returns a value which is in the
range 1. . . 3 for a two button mouse and 1. . . 5 for a three button mouse. The value indicates which byte
of the mouse message is due next and therefore when being used, you should see it circling between the
upper and lower limits of the range. However, if the byte is corrupt or lost, then the value returned by
this function will be zero. This can indicate problems with either your serial port or the interface to the
mouse - if the former, you should consider getting Hermes for your computer.

26.118. SXTRAS 781

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE

See PTR_ON and PTR_FN%.

26.120 SYSBASE

Syntax SYSBASE
Location QBASE (DIY Toolkit - Vol Q)

The function SYSBASE is identical to SYS_BASE, see below. Don’t forget: never assume that the System
Variables are located at 163840 ($28000). They can move!!

26.121 SYS_BASE

Syntax SYS_BASE
Location SYSBASE, Fn

The function SYS_BASE returns the base address of the system variables.

Example

POKE_W SYS_BASE+140,8
POKE_W SYS_BASE+142,3

Sets the key repeat delay.

NOTE 1

Users peeking and poking in the System Variables should know what they are doing!

NOTE 2

Minerva and SMS offer another technique to read and alter system variables but these are specific to
Minerva and SMS whilst SYS_BASE works an every ROM. It is generally not advisable to access fixed
addresses in memory as virtually everything can move around.

CROSS-REFERENCE

SYSBASE, WIN_BASE, PEEK , POKE, SCREEN , SYS_VARS, VER$

26.122 SYS_VARS

Syntax SYS_VARS
Location THOR (all models)

The function SYS_VARS returns the base address of the system variables, which can move around on
the THOR range of computers, in much the same way as they can move on other implementations - it

782 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

is therefore imperative that any program which uses the system variables works relative to the address
returned by this function.

Example

POKE SYS_VARS+133,-1

switches off the THOR XVI’s windowing facilities for windows opened after this command.

CROSS-REFERENCE

VER$(-2) on Minerva ROMs and on SMS returns the base address of the system variables, as do
SYS_BASE and SYSBASE.

26.123 S_FONT

Syntax S_FONT [#channel,] font1, font2
Location FONTS

This command is exactly the same as CHAR_USE.

CROSS-REFERENCE

See CHAR_USE and CHAR_DEF. See also the Appendix on Fonts.

26.124 S_LOAD

Syntax S_LOAD adr
Location TinyToolkit

S_LOAD takes an address (adr) returned by S_SAVE and displays the saved screen just like S_SHOW
does. Additionally, the reserved memory to which adr points is released so that it can be used for other
purposes. S_LOAD therefore only works once on a given address.

NOTE 1

Under odd conditions S_LOAD will load and show more than had been stored with S_SAVE. The Win. . .
set of commands replace the S_. . . set and get around these problems.

NOTE 2

S_LOAD assumes that it needs to copy the stored screen to $20000 and that will not therefore work
on Minerva’s second screen. It also assumes the screen is 512x256 pixels and will not work on higher
resolutions or under dual screen mode.

WARNING

A wrong address leads to crashes!

26.123. S_FONT 783

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

26.125 S_SAVE

Syntax S_SAVE (#wind)
Location TinyToolkit

This function causes the contents of the window #wind to be stored in memory and the address is then
returned. Do not forget the return value! #wind must be a window or a bad parameter error (-15) is
reported.

Example

100 CLS
110 PRINT PEEK$(0,1000)
120 adr1 = S_SAVE(#1)
130 CLS
140 PRINT PEEK$(100,1000)
150 adr2 = S_SAVE(#1)
160 FOR n=1 TO 20: S_SHOW adr1: S_SHOW adr2
170 S_LOAD adr1: S_LOAD adr2

NOTE

Although S_SAVE will save a window stored on the second screen provided by Minerva and Amiga
QDOS, it assumes the screen resolution is 512x256 pixels and cannot work with higher resolutions.

CROSS-REFERENCE

S_LOAD and S_SHOW view the saved screen part. Memory taken by S_SAVE cannot be freed with
RECHP or CLCHP, only with S_LOAD. See also SCR_STORE and SAVEPIC for alternatives.

26.126 S_SHOW

Syntax S_SHOW adr
Location TinyToolkit

Adr must be a value returned by S_SAVE: the command S_SHOW displays the screen information stored
by S_SAVE. The screen is however retained in memory for future access.

NOTE

This command suffers with the same problems as S_LOAD.

WARNING

A wrong address leads to serious crashes.

CROSS-REFERENCE

S_SAVE

784 Chapter 26. Keywords S

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

26.127 SYSTEM_VARIABLES

Syntax sys_vars = SYSTEM_VARIABLES
Location DJToolkit 1.16

This function returns the current address of the QL’s system variables. For most purposes, this will be hex
28000, decimal 163840, but Minerva users will probably get a different value due to the double screen.
Do not assume that all QLs, current or future, will have their system variables at a fixed point in memory,
this need not be the case.

EXAMPLE

PRINT SYSTEM_VARIABLES

26.127. SYSTEM_VARIABLES 785

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

786 Chapter 26. Keywords S

CHAPTER

TWENTYSEVEN

KEYWORDS T

27.1 TAN

Syntax TAN (angle) angle <> (2n+1) * PI/2 (n=0,1,2,. . .)
Location QL ROM

This function calculates the tangent of an angle given in radians. The solution of TAN(PI/2) is not
actually defined because the definition of TAN is TAN(x)=SIN(x)/COS(x) and COS(PI/2)=0. In practice,
most ROM implementations will return a value of about 1E10 instead of an error because they calculate
COS(PI/2)<>0. Due to the periodic nature of this function function, values for angle should really be in
the range -PI/2 < angle < PI/2.

Example

100 WINDOW 448,200,32,16: PAPER 3: CLS
110 SCALE 8,-.2,-.2: INK 7
120 INPUT "Angle (0..90):"!angle
130 INPUT "Speed (..11 m/s):"!speed
140 angle=RAD(angle): c1=TAN(angle)
150 c2=9.81 / 2 / speed^2 / COS(angle)^2
160 :
170 FOR x=0 TO c1/c2 STEP c1/c2/20
180 y=c1 * x - c2 * x^2
190 FILL 1: CIRCLE x,y,.2: FILL 0
200 END FOR x

NOTE 1

TAN(PI)==0 on all implementations - this should be zero. Only SMS currently corrects this.

NOTE 2

On Minerva v1.96+ large values of angle return 0. On other ROMs it produces an overflow error.

CROSS-REFERENCE

SIN , COS, COT , ASIN , ACOS, ATAN and ACOT are other common trigonometrical functions. RAD
converts degrees into radians, DEG vice-versa. Please also refer to the Mathematics section of the Ap-
pendix.

787

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

27.2 TANH

Syntax TANH (x)
Location Hyper, Hyperbola

This function is analogous to the tangent (TAN) - the hyperbolic tangent (TANH) is the hyperbolic sine
divided by the hyperbolic cosine:

TANH(x) = SINH(x) / COSH(x)

resulting in the following formula (if SINH and COSH are replaced by their definitions):

TANH(x) = (EXP(x) - EXP(-x)) / (EXP(x) + EXP(-x))

CROSS-REFERENCE

ARTANH is the inverse function of TANH, COTH a complementary function to TANH.

27.3 TCA

Syntax TCA (i,n)
Location Toolfin

The function TCA returns the value of: i/(1-(1+i)-n) where i and n can be any floating point numbers (see
MT for error handling).

CROSS-REFERENCE

MT , VA, VFR, VAR, TNC, TEE, RAE, RAFE

27.4 TCONNECT

Syntax TCONNECT #pipechan TO #anychan
Location TinyToolkit

Pipes are serial devices for buffered data transfer, they have two sides:

• The input pipe which puts any data into the buffer until it’s full and;

• the output pipe which reads the data from the buffer:

input pipe ---> buffer ---> output pipe

There are two kinds of pipes on the QL:

• Standard pipes are part of the original QL ROM, the input pipe device name is pipe_<buffer>
where <buffer> is the buffer size in bytes (1..32767). It is necessary to know the CHANID of the
input pipe to open the output pipe, see FILE_OPEN.

788 Chapter 27. Keywords T

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• The second type are named pipes which have the same concept except that the output pipe can be
identified by name: The input pipe is pipe_<name>_<buffer> and the output pipe pipe_<name>.
See the Appendix on Device Drivers regarding Pipes for more information.

TCONNECT makes standard pipes useable: the command expects two opened channels where the first,
#pipechan, must be an input pipe and the second, #anychan can be anything. TCONNECT changes the
internal meaning of #anychan so that it becomes an output pipe connected to the input pipe #pipechan:

Before TCONNECT:

#pipechan -> input pipe -> buffer scr_2x2 <- #anychan

After TCONNECT:

#pipechan -> input pipe -> buffer -> output pipe -> #anychan

Example

DEVLIST$ returns the devices listed by DEVLIST in a string, separated by spaces. ISDEVICE takes a
device and checks with the help of DEVLIST$ if it is a legal device:

100 DEFine FuNction DEVLIST$
110 LOCal list$,dev$: list$=""
120 OPEN#3,pipe_80
130 OPEN#4,scr_
140 TCONNECT #3 TO #4
150 DEVLIST#3
160 INPUT#4,dev\dev
170 REPeat read_devs
180 IF NOT PEND(#4) THEN EXIT read_devs
190 INPUT#4,dev$
200 list$=list$&" "&dev$
210 END REPeat read_devs
220 CLOSE#3: CLOSE#4
230 RETurn list$
240 END DEFine DEVLIST$

A legal drive device consists of three letters (the device name), a drive number (1..8) and an underscore:

250 :
260 DEFine FuNction ISDEVICE(dev$)
270 IF LEN(dev$)<>5 THEN RETurn 0
280 IF dev$(5)<>"_" THEN RETurn 0
290 IF dev$(4)<"1" OR dev$(4)>"8" THEN RETurn 0
300 IF NOT (dev$(1 TO 3) INSTR DEVLIST$) THEN RETurn 0
310 RETurn 1
320 END DEFine ISDEVICE

CROSS-REFERENCE

See FILE_OPEN , CHANID, pipes and especially PEND. Some more examples appear at FILE_LEN and
FUPDT . QLINK is the same. Qliberator gives the QCONNECT command which is the same.

27.4. TCONNECT 789

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

27.5 TEE

Syntax TEE (i,n)
Location Toolfin

The function TEE returns the value of (1+(i/n)n-1) where i and n can be any floating point numbers (see
MT for error handling).

CROSS-REFERENCE

MT , VA, VFR, VAR, TCA, TNC, RAE, RAFE

27.6 THEN

Syntax THEN [statement] *[:statement]*

Location QL ROM

This keyword is optional and is used as part of the IF..END IF structure. It has no use on its own.

CROSS-REFERENCE

See IF.

27.7 THING

Syntax THING (thingname$)
Location Fn

This function is used to check whether a Thing is present in memory (ie. whether a given item appears
on the Thing list). If the Thing is present, then the function will return 0, otherwise it will return -7 (not
found).

Examples

PRINT THING('Button_sleep')
PRINT THING('HOTKEY')

NOTE

In versions earlier than v1.02, this function may sometimes return a value greater than zero if the Thing
exists.

CROSS-REFERENCE

TH_VER$ explains what Things are.

790 Chapter 27. Keywords T

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

27.8 TH_FIX

Syntax TH_FIX
Location SMSQ/E and ST/QL Level B-11 drivers onwards

This command fixes some programs which were written before the current Thing List was standardised
(in the Level B-10 drivers for the ST/QL Emulator) and allows them to work under current versions by
adopting the old style Thing List. You should really update the problem program.

27.9 TH_VER$

Syntax TH_VER$ (thingname$)
Location Fn

Things in QDOS terms refer to an extension of QDOS which was introduced by the Thing System pro-
vided by Qjump’s Extended Pointer Interface and was also implemented (although slightly differently)
on the THOR XVI computer. It is an universal storage method for named resources.

A Thing List is created by the Thing System which lists all of these named resources, which can range
from a piece of machine code to a printer driver (and much more). The idea is that any program which
wants to access a specified utility or driver need only search in this list to see if the Thing is installed
in the current system, and then pointers contained in this list allows the program to access the Thing (if
available).

Each Thing can be usable by several users at the same time or can be restricted so that it can only be
accessed if nothing else is using it. Things are identified by their name and have a version number which
is returned by the function TH_VER$. The version number of a Thing can be something like 1.03, or
it can actually be representative of the functions provided in this version (eg. 1001100) - although it is
not certain if this second type of ‘version number’ will be correctly returned by the current version of
TH_VER$, since at the time of writing we have not come across anything which uses this.

If a Thing was not found in memory or another error occurred, TH_VER$ will return the standard error
code (see ERNUM).

Example

The Hotkey System (HOT_REXT), a part of the Extended Pointer Environment (regarded as standard
today), is installed as a Thing. Get its version with:

PRINT TH_VER$ ("HOTKEY")

NOTE 1

In versions prior to version 1.02, this function could return the wrong value for some Things.

NOTE 2

The current version of this command will not work on a THOR XVI computer.

CROSS-REFERENCE

THING, TH_FIX.

27.8. TH_FIX 791

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

27.10 TINY_EXT

Syntax TINY_EXT
Location TinyToolkit

This command installs/updates the extensions provided by the Tiny Toolkit. TinyToolkit and Toolkit II
have some commands in common (eg. REPORT). If you prefer to use Toolkit II’s REPORT command
you will generally need to install TK2_EXT after TINY_EXT (on post JM ROMs the Toolkit which was
installed second will have priority!). Prior to JS ROMs, the first version of a command loaded as a toolkit
has priority.

NOTE

Updating TinyToolkit is different from updating other Toolkits with _EXT type commands, in that Tiny-
Toolkit simply adds its commands’ names to the name list and does not check to see if they were already
present. SXTRAS and EXTRAS will list commands twice (or more) and each time that TINY_EXT
is issued, memory will be used up (max. 1 KB). Actually, the Toolkit is only present in one place in
memory because duplicated commands are stored at the same place in RAM. This problem can be cured
with TINY_RMV.

CROSS-REFERENCE

TK2_EXT updates Toolkit II, Beule_EXT the Beule Toolkit. TINY_RMV removes most extensions of
TinyToolkit from the name list.

27.11 TINY_RMV

Syntax TINY_RMV
Location TinyToolkit

This command removes most of TinyToolkit’s commands.

NOTE

You should not really use TINY_RMV because the extensions are not removed from the Name List but
overwritten with undefined strings. Depending on the operating system and programming environment
it may not be possible to re-activate TinyToolkit and internal system conflicts are possible.

CROSS-REFERENCE

Re-activate the Toolkit with TINY_EXT .

792 Chapter 27. Keywords T

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

27.12 TK2_EXT

Syntax TK2_EXT
Location Toolkit II

As with other Toolkits, Toolkit II has to be linked into the computer (except on the ST/QL Emulator
and under SMSQ/E where it is automatically linked in when the computer is started). This command
forces all of the Toolkit II commands to link themselves into the operating system, overwriting existing
definitions of any commands with the same name.

NOTE

TK2_EXT contains special code to enable Toolkit II commands to be used on JM (and earlier) ROMs in
the same program as the TK2_EXT command.

CROSS-REFERENCE

See TINY_EXT .

27.13 TK_VER$

Syntax TK_VER$
Location Turbo Toolkit

This function returns the version ID of the Turbo Toolkit, eg. 3e27

NOTE

Before v3.00 the Turbo Toolkit did not install properly under Minerva and SMS.

27.14 TNC

Syntax TNC (i,n)
Location Toolfin

The function TNC returns the value of: n*((1+i)1/n-1) where i and n can be any floating point numbers
(see MT for error handling).

CROSS-REFERENCE

MT , VA, VFR, VAR, TCA, TEE, RAE, RAFE

27.12. TK2_EXT 793

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

27.15 TO

Syntax . . . TO line (GO TO) or
TO column (Separator)

Location QL ROM

This keyword has two uses. The first syntax operates as part of the keyword GO TO. The second syntax
is used as a separator in the commands PRINT and INPUT (and also in some toolkit extensions). We
shall only deal with the use of TO for PRINT and INPUT here.

As a separator, TO can be very useful for placing data into columns. Its effect is to place the text cursor
onto the specified column, or if the text cursor is already at or past that column, then the text cursor is
moved one column to the right. This means for instance that:

PRINT TO 0

will always leave the leftmost column blank!

TO is also affected by the WIDTH setting on non-screen devices. If the specified column is greater than
the WIDTH value, the text cursor will be placed onto the next line. On screen devices, if the specified
column is too great to fit in the window, the text cursor is placed onto the next line rather than causing
an error - note however, that TO carries on counting!!.

TO has no meaning on its own and will cause the error ‘Bad Line’ if entered on its own.

NOTE

On the THOR XVI, if the cursor is already at or past the given column, the text cursor is not moved, in
contrast to all other implementations. Programs compiled with Turbo will however display the text as
per the standard QL implementation.

CROSS-REFERENCE

See GO TO and PRINT , INPUT . AT and CURSOR allow you to position the text cursor more precisely.

27.16 TOP_WINDOW

Syntax TOP_WINDOW [#ch]
Location all THORs

This command is similar to the PICK command provided by Qjump’s QPTR package on the QL. This
command brings the specified window (default #1) to the top of the display pile. Under the THOR’s
windowing system (when this is enabled), as with the Pointer Environment, a program cannot access
a window which is partly or fully hidden from view. This command allows the program to force the
given window to the top of the pile, thus allowing it to be seen on screen and therefore open to access.
If possible, the keyboard queue is also connected to the window, so it is as if the Job has been ‘picked’
using the keys CTRL C.

CROSS-REFERENCE

794 Chapter 27. Keywords T

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

WINDOW allows you to re-position a window. PIE_ON allows programs to continue even though their
windows are buried under the Pointer Interface. PICK% is similar. POKE SYS_VARS+133 allows you
to enable / disable the THOR’s windowing system.

27.17 TPFree

Syntax TPFree
Location BTool

The function TPFree returns a slightly larger or equal value than FREE and FREE_MEM. The reported
free memory is available for new jobs.

27.18 TRA

Syntax TRA table1 [,table2] or
TRA [table1] ,table2

Location QL ROM (post JM Version)

This command allows you to perform various translations on data that is passing through the serial ports.
It is however one of the most difficult commands in SuperBASIC to use.

The use of TRA will (on non-SMS implementations) affect all data which is sent through the serial ports
after the command has been issued, translating bytes whether they are screen dumps, printer control
codes, or letters of the alphabet.

The two parameters are addresses of two tables, table1 which contains details of translations to be carried
out on both incoming and outgoing data and table2 which contains details of various messages used by
the system. Both tables are recognised by the word 19195 ($4AFB) at their start. If either parameter is
not specified, then the default value of -1 is assumed, which tells QDOS to leave that translation table
alone.

When QDOS is first initiated translation is not enabled, which means that data passing through the serial
ports is unaffected. You can revert to this situation by using the command TRA 0. You can also revert to
the original error messages with TRA ,1 (use TRA 0,1 to reset both to their original status). The English
character set is used in all ROM implementations of the QL (no matter which country the machine is set
up for). However, you can select to use the ‘local’ character set for serial communication purposes if you
wish by using the command TRA 1 which tells QDOS to use the ‘local’ translation table (this has no
effect on UK ROMs).

The two translation tables have different formats and uses, depending on whether the serial ports are
being used for transmission or receipt of data. We therefore deal with each table separately. Note that
TRA is implemented differently on THORs and SMS see the separate notes on the make up of their
translation tables.

Table 1

Table 1 is actually split into two lists:

• Transa contains a list of single character conversions;

27.17. TPFree 795

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• Transb which contains a list of multiple character conversions.

As to which list is used depends on whether the channel is sending or receiving data:

1. If the channel is sending data, the outgoing character is first translated according to Transa, using
the character code as an index. If the resulting value is a zero, Transb is scanned for the proper
entry. However, if the resulting value is non-zero, then this is used as a replacement for the byte to
be sent.

2. When receiving, only Transa is used. The table is scanned cyclically starting at the received char-
acter’s position until a position is found containing the received value. The translated value will
be this position index. If the received value is not found in the table, the value itself is used.

The physical format of table1 is as follows:

Table1 Word 19195
Word Offset of Transa from Table1 (Transa-Table1)
Word Offset of Transb from Table1 (Transb-Table1)

Transa 256 bytes (see below)
Transb Byte Number of multiple translations or 0 x bytes(see below)

Transa is a 256 byte list of character substitute codes for each character code from 0 to 255. If you wish
to use multiple translates for a given character, then you will need to insert 0 in the appropriate place in
this list.

Transb is a table of multiple translations (which can only be used in transmit mode). It is made up of four
bytes for each translate, being the code to be translated, followed by three replacement codes. If you do
not need three replacement codes, the unused ones should be zero. Unfortunately, you cannot combine
the effects of these various translations (see the second example below).

Table 2

Table 2 allows you to set the various system and error messages used by QDOS (for example to implement
other languages). The format of Table2 is even more complex:

Table2 Word 19195
Word Offset of error1 from Table2 (error1-Table2)
Word Offset of error2 from Table2 (error2-Table2)
....
Word Offset of error20 from Table2 (error20-Table2)
Word Offset of error21 from Table2 (error21-Table2)
Word Offset of mess1 from Table2 (mess1-Table2)
Word Offset of mess2 from Table2 (mess2-Table2)
....
Word Offset of mess7 from Table2 (mess7-Table2)
Word Offset of mess8 from Table2 (mess8-Table2)

error1 Word Length of string
Bytes String forming message for 'not complete'

error2 Word Length of string
Bytes String forming message for 'invalid job'

(continues on next page)

796 Chapter 27. Keywords T

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

....

error21 Word Length of string
Bytes String forming message for 'Bad Line'

mess1 Word Length of string
Bytes String to replace 'At line ' (***)

mess2 Word Length of string
Bytes String to replace ' sectors'

mess3 Word Length of string
Bytes String to replace 'F1 .. monitor F2 .. TV ' (***)

mess4 Word Length of string
Bytes String to replace '© 1983 Sinclair Research Ltd' (***)

mess5 Word Length of string
Bytes String to replace 'during WHEN processing'

mess6 Word Length of string
Bytes String to replace 'PROC/FN cleared'

mess7 Bytes String to replace 'SunMonTueWedThuFriSat' (***)

mess8 Bytes String to replace 'JanFebMarAprMayJunJulAugSepOctNovDec'␣
→˓(***)

Please note that all strings other than those marked (***) must end with a newline, CHR$(10).

Also please also note the differing format of mess7 and mess8.

Although the THOR computers support both of the above table formats, the THOR has extended the
usefulness of TRA in order to allow you to send longer strings of characters for each translation. On the
other hand, SMS has implemented a different way of amending the messages generated by the operating
system (see below). Examples of the standard format follow:

Example 1

A program to change all of the error messages to more meaningful messages:

100 Chk$=VER$
105 IF Chk$='AH' OR Chk$='JM': PRINT'Not supported'
110 table2=ALCHP(1024)
120 RESTORE
130 POKE_W table2,19195
140 mess_add=table2+30*2
150 FOR errx=1 TO 29
160 POKE_W table2+errx*2,mess_add-table2
170 READ mess$
180 IF errx<28
190 SELect ON errx: =1 TO 21,23,26 TO 27: mess$=mess$&CHR$(10)

(continues on next page)

27.18. TRA 797

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

200 POKE_W mess_add,LEN(mess$): mess_add=mess_add+2
210 END IF
220 FOR move_mess=1 TO LEN(mess$)
230 POKE mess_add,CODE(mess$(move_mess)): mess_add=mess_add+1
240 END FOR move_mess
250 overf=mess_add/2:IF overf<>INT(overf): mess_add=mess_add+1
260 END FOR errx
270 TRA 0,table2
280 DATA 'Operation Not Complete'
290 DATA 'Job Does Not Exist'
300 DATA 'Insufficient Memory'
310 DATA 'Parameter Outside Permitted Range'
320 DATA 'Buffer Full'
330 DATA 'Channel Not Open'
340 DATA 'File or Device Not Found'
350 DATA 'File Already Exists'
360 DATA 'File or Device In Use'
370 DATA 'End of File'
380 DATA 'Drive Full'
390 DATA 'Invalid File or Device Name'
400 DATA 'Transmit Error'
410 DATA 'Format Failed'
420 DATA 'Invalid Parameter'
430 DATA 'Filing System Medium Check Failed'
440 DATA 'Invalid Expression'
450 DATA 'Maths Overflow'
460 DATA 'Operation Not Implemented'
470 DATA 'Read Only Device'
480 DATA 'Invalid Syntax'
490 DATA 'At line '
500 DATA ' sectors'
510 DATA 'F1 .. monitor'&CHR$(10)&'F2 .. TV'
520 DATA '©1983 Sinclair Research Ltd.'
530 DATA 'During WHEN processing'
540 DATA 'PROC/FN Definition Cleared'
550 DATA 'SunMonTueWedThuFriSat'
560 DATA 'JanFebMarAprMayJunJulAugSepOctNovDec'

Example 2

A short program to allow you to print pound signs (£) from SuperBASIC (this assumes an Epson com-
patible printer which is set up in US ASCII mode):

100 table1=ALCHP(1024)
110 POKE_W table1,19195
120 Transa=table1+6
130 Transb=Transa+256
140 FOR i=0 TO 255:POKE Transa+i,i
150 POKE_W table1+2,Transa-table1
160 POKE_W table1+4,Transb-table1

(continues on next page)

798 Chapter 27. Keywords T

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

170 POKE Transb,3
175 POKE Transa+128,0: POKE Transa+129,0: POKE Transa+CODE('£'),0
180 POKE Transb+1,128
190 POKE Transb+2,27: POKE Transb+3,CODE('R'): POKE Transb+4,3
200 POKE Transb+5,129
210 POKE Transb+6,27: POKE Transb+7,CODE('R'): POKE Transb+8,0
215 POKE Transb+9,CODE('£')
216 POKE Transb+10,128: POKE Transb+11,CODE('#'): POKE Transb+12,129
220 TRA table1,0

Unfortunately, despite lines 215 and 216, the command:

OPEN #3,ser1: PRINT #3,'£'

will still fail to produce a pound sign on your printer (you will get a single quote mark normally).

This demonstrates the fact that you cannot link translates. To get a pound sign, you will need to use the
line:

OPEN #3,ser1: PRINT#3,CHR$(128) & '£' & CHR$(129)

Indeed, because of the nature of the translation tables, the following has exactly the same effect as the
above program:

100 table1=ALCHP(1024)
110 POKE_W table1,19195
120 Transa=table1+6
130 Transb=Transa+256
140 FOR i=0 TO 255:POKE Transa+i,i
150 POKE_W table1+2,Transa-table1
160 POKE_W table1+4,Transb-table1
170 POKE Transb,2
180 POKE Transa+128,0:POKE Transa+129,0
190 POKE Transa+CODE('£'),CODE('#')
200 POKE Transb+1,128
210 POKE Transb+2,27: POKE Transb+3,CODE('R'):POKE Transb+4,3
220 POKE Transb+5,129
230 POKE Transb+6,27: POKE Transb+7,CODE('R'):POKE Transb+8,0
240 TRA table1,0

NOTE 1

An extended serial driver is available in the public domain which enables Minerva machines and Amiga
QDOS to use a translation table the same as the extended translation table provided on the THOR XVI.

NOTE 2

On Minerva ROMs (v1.83 or earlier), there are problems when using TRA with only one parameter.

NOTE 3

JS ROMs have problems in translating characters above CHR$(127)

SMS NOTES

27.18. TRA 799

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

SMS supports the standard format table1. However, the messages cannot be altered using table2 - use
LANG_USE for this. As with the original version, if table1 is specified to be 0, this will deactivate the
translation. However, it does not smash the pointer to a user-defined translation routine which can then
be re-activated with TRA 1 (compare the original version where you would need to re-run the program
setting up the user-defined translation table).

SMS also allows you to have language dependent translation tables (linked to one of the languages cur-
rently loaded - see LANG_USE). To enable these, use the command:

TRA 1,lang

where lang is the Car Registration Code or Language code of the country.

TRA 0,lang

will set up the relevant translation table, ready to be enabled with TRA 1.

There are also several in-built language independent translate tables which are accessed by setting table1
to small values. The dip-switches on your printer need to be set to USA. Currently there are only two
language independent translate tables supported (so far as we are aware):

• The command TRA 3 will enable IBM Graphics translation table:

– QDOS CHR$(HEX(‘C0’)) to CHR$(HEX(‘DF’)) and CHR$(HEX(‘F0’)) to
CHR$(HEX(‘FF’)) are passed through the channel unchanged.

– CHR$(HEX(‘E0’)) to CHR$(HEX(‘EF’)) are translated to represent CHR$(HEX(‘B0’)) to
CHR$(HEX(‘BF’)) respectively.

– As from v2.50, the paragraph sign, CHR$(HEX(‘15’)) is also passed through unaffected.

• The command TRA 5 will enable GEM VDI translation table:

– Here QDOS CHR$(HEX(‘C0’)) to CHR$(HEX(‘FF’)) are passed through the port un-
changed.

Also please note that under SMS, TRA will only affect channels which are OPENed after the TRA
command, or channels which have already been OPENed with TRA active. In any case, TRA 0 never
affects OPEN channels. TRA address will also not affect OPEN channels which have been affected by
TRA 0. Note however that changing the BAUD rate will affect the translate on ALL channels.

SMS Example

TRA 1: REMark Enable translate table for Country set up by default.
TRA 1,F: REMark Enable French Translation table.
TRA 0: REMark Disable Translate Tables.
TRA 1: REMark Re-enable French Translation Table

THOR XVI NOTES

The THOR XVI supports both the standard translation format above and also an expanded Translation
Table, which replaces Table1 by a larger table in the following format:

Thor Table1

The format of the new expanded Translation Table is:

800 Chapter 27. Keywords T

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table1 Longword $4AFB0001 Distinguishes the new table from the old one.
Word Offset of Transa from table1 (Transa-table1)
Word Offset of Transb from table1 (Transb-table1)
Longword Offset of Pream from table1 (Pream-table1)
Longword Offset of Post from table1 (Post-table1)

Transa 256 Bytes (See below)
Transbx Bytes (See below)
Pream Word Length of preamble string

Bytes String to be sent when channel is opened
Post Word Length of postamble string

Bytes String to be sent when channel is closed

The format of Transa and Transb is slightly different from the standard translation table:

Transa is a 256 byte list of one character conversions, with an entry of zero if Transb is to be used.

Transb is however much more complex as each entry is made up of the following (allowing a string of
up to 255 characters to be sent as a replacement for the given character):

Transb Byte Character to be replaced
Byte Length of a string to replace character x
Bytes A string (up to 255 characters long) to replace the given␣

→˓character.

The last entry in this list must be 0,1,0 to allow nul characters to be sent.

Transb is generally therefore in the following format:

Transb x Bytes ch1,len1,'text1'
x Bytes ch2,len2,'text2'
....
x Bytes chn,lenn,'textn'
x Bytes 0,1,0

THOR Example

For example, following upon our earlier example, one entry in Transb would allow for trouble-free trans-
lation of the pound sign. This could therefore be achieved by the program listed below:

100 table1=ALCHP(1024)
110 POKE_L table1,HEX('4AFB0001')
120 Transa=table1+16
130 Transb=Transa+256
140 FOR i=0 TO 255: POKE Transa+i,i
150 POKE_W table1+4,Transa-table1
160 POKE_W table1+6,Transb-table1
170 POKE_L table1+8,0
180 POKE_L table1+12,0
190 POKE Transa+CODE('£'),0
200 POKE Transb,CODE('£')
210 POKE Transb+1,7
220 POKE Transb+2,27: POKE Transb+3,CODE('R'): POKE Transb+4,3

(continues on next page)

27.18. TRA 801

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

230 POKE Transb+5,CODE('#')
240 POKE Transb+6,27: POKE Transb+7,CODE('R'): POKE Transb+8,0
250 POKE Transb+9,0: POKE Transb+10,1: POKE Transb+11,0
260 TRA table1,0

The preamble and postamble entries allow you to set up the printer when the channel is opened or closed.
These can both be up to 32767 characters long.

From version 6.41, the TRA command has been enhanced to make extra use of the various different
character sets supplied as standard on this QDOS implementation. The Russian, Russisk and Greek
language set-ups now use a table converting $80 . . . $BF to $60 . . . $DF to allow use with down-loaded
character sets or Brother/HP Laser Jet + laser printers, where codes $80 . . . $9F are often treated as
control codes.

The default translate table (TRA 1) now works reasonably with ISO codes, allowing printers to be set
in the appropriate language range. This works okay with the French, Danish, Spanish, Japanese, and
German set-ups (except for the paragraph character in German). On the Swedish language set-up, only
U/u umlaut (Ü/ü) does not work and the Italian language set-up fails on e grave (é), u and a acute (ú and
á), due to the conflict with French.

A special extended translation table will always be required for the Russisk, Russian and Greek language
set-ups, depending on the type of printer connected to the system.

CROSS-REFERENCE

Please refer to the Appendix concerning serial and parallel device drivers.

27.19 TRIM$

Syntax TRIM$ (string$)
Location TRIM

The function strips off all preceding and appended spaces from a string and returns the result of this. Any
string can be used as a parameter.

Examples

TRIM$(" Hello World"): REMark = "Hello World"
TRIM$("second try "): REMark = "second try"
TRIM$(" "): REMark = ""
TRIM$(""): REMark = ""
TRIM$(CHR$(27)): REMark = CHR$(27)

CROSS-REFERENCE

LEN returns the length of a string.

802 Chapter 27. Keywords T

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

27.20 TRINT

Syntax TRINT (x)
Location TRIPRODRO

The function TRINT gives the integer part of a floating point number, it differs from INT for negative
numbers only: INT always returns the next lowest integer, this is the same as the integer part for positive
numbers; however below zero INT always returns one less than TRINT. For example:

INT(-PI)

will return -4 and:

TRINT(-PI)

will return -3.

CROSS-REFERENCE

The fact that:

x = TRINT(x) + FRACT(x)

can be exploited to substitute one of the two functions by the other, for example:

100 DEFine FuNction MYTRINT(x)
110 RETurn x - FRACT(x)
120 END DEFine MYTRINT

If you want to round numbers, refer to DROUND and PROUND.

27.21 TROFF

Syntax TROFF
Location Minerva (TRACE)

This command turns off the trace function and closes any file associated with the trace output.

CROSS-REFERENCE

TRON and SSTEP turn the trace function on.

27.20. TRINT 803

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

27.22 TRON

Syntax TRON [{#ch | device_file}] [; [first] [TO [last]]]
Location Minerva (TRACE)

This command is very similar to SSTEP except that it does not wait for a key to be pressed before each
statement is executed.

NOTE

Minerva’s TRACE Toolkit is quite useful but is still just a simple demonstration of an extension which
has been internally added to the SuperBASIC code.

CROSS-REFERENCE

See TROFF and SSTEP.

27.23 TRUE%

Syntax TRUE%
Location TRUFA

TRUE% is the constant 1. It is used to write programs which are more legible or which adopt habits from
the PASCAL language.

Example

IF QuATARI=TRUE% THEN ...

is the same as:

IF QuATARI THEN ...

CROSS-REFERENCE

FALSE% is 0. SET can be used to create constants as resident keywords.

27.24 TRUNCATE

Syntax TRUNCATE #channel [\position] or
TRUNCATE

Location Toolkit II, THOR XVI

Every file has a certain length, measured in bytes, which can be reduced with the command TRUNCATE.
If TRUNCATE is used without the position parameter, the end of the file will be moved to the current
file pointer position, meaning that for most purposes, the last byte of the file is the byte which was being
pointed to.

804 Chapter 27. Keywords T

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

If you supply a second parameter, then the file pointer is set to the given position before the file is TRUN-
CATEd. Note that any data after the new ‘end of file’ will be lost.

TRUNCATE returns error -15 (invalid parameter) if the specified channel is not actually linked to a
file. A position greater than the actual file length, such as position>=FLEN(#channel) has no effect.
TRUNCATE without any parameters uses #3 as the default channel and is therefore the same as:

TRUNCATE #3

NOTE

The syntax TRUNCATE \position is not valid, error -17 (error in expression) will be reported. You have
to specify a channel number if you intend to set the file pointer before truncating the file.

CROSS-REFERENCE

FLEN and FILE_LEN return the length of a file, FPOS and FILE_POS the current file pointer position,
FILE_PTRA and FILE_PTRR move the file pointer as do GET , PUT , BGET and BPUT .

27.25 TTALL

Syntax TTALL (space [,jobid])
Location QView Tiny Toolkit

This function is the same as ALCHP but memory allocated with TTALL cannot be cleared with CLCHP
or RECHP: TTREL must be used on the return value of TTALL; see TTFINDM for an example.

CROSS-REFERENCE

TTREL See also RESERVE.

27.26 TTEDELETE

Syntax TTEDELETE (file$)
Location QView Tiny Toolkit

This is a function analogous to the command DELETE - it will return the QDOS error code. The default
device is not supported, ie. the file name must be specified absolutely.

NOTE

In contrast to DELETE, TTEDELETE will return the value -7 if the file did not exist.

CROSS-REFERENCE

DELETE of course.

27.25. TTALL 805

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

27.27 TTEFP

Syntax TTEFP (floatvar, floatstr$)
Location QView Tiny Toolkit

This function tries to convert the string given as the second parameter into a floating point number and
assign this value to the floating point variable given as the first argument. There is no difference to the
assignment:

floatvar = floatstr$

except where an error occurs, ie. if floatstr$ cannot be converted to a float. Whereas the assignment above
will break with an error, TTEFP will allow you to track that down by checking its return; the number
returned by TTEFP is the QDOS error code (or 0 if the assignment was successful).

Example

A piece of code which asks for the age of the user would look similar to this:

100 CLS
110 REPeat question
120 INPUT "How old are you?"!age$
130 ec = TTEFP(age, age$)
140 SELect ON ec
150 = 0: IF age < 13 OR age > 100 THEN
160 PRINT "You're surely kidding!!"
170 ELSE EXIT question
180 END IF
190 = -17: PRINT "Digits, not letters, ok?"
200 = -18: PRINT "Reasonable numbers, please."
210 = REMAINDER : PRINT "What's this about?"
220 END SELect
230 END REPeat question
240 PRINT "So you are"!age!"years old... :-)"

CROSS-REFERENCE

CHECK%, CHECKF.

27.28 TTEOPEN

Syntax TTEOPEN (#channel [,openmode], device$)
Location QView Tiny Toolkit

The TTEOPEN function opens the specified #channel to any device given as a string. The type of
open is optional and ranges from 0 to 4 - the meaning is the same as for Minerva’s extended OPEN
or FILE_OPEN. If TTEOPEN is called from the interpreter (Multiple BASICs included) then channel
must either be an existing channel number (which would be then closed by TTEOPEN prior to being

806 Chapter 27. Keywords T

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

reopened) or lower than the highest channel number currently used: TTEOPEN will break with ‘bad
parameter’ if that is not the case.

CROSS-REFERENCE

OPEN , FILE_OPEN and the various FOP_XXX keywords.

27.29 TTET3

Syntax TTET3 ([#ch,] [timeout%,] trapno%, bufadr)
Location QView Tiny Toolkit

This is a really extraordinary function because it allows you to call the TRAP #3 operating system calls
which handle screen devices, so you would not theoretically need many other commands other than this
one to manipulate windows, if the use of TTET3 were not complicated by the nature of its design.

The function TTET3 should only be used by experienced users (except for some fool-proof usages shown
in the examples), so do not worry if you do not understand the following. . . although we have tried to
keep it simple.

Let’s first turn to the syntax:

• The channel #ch (default #1) must refer to a window (con_ or scr_).

• The timeout for the machine code call trap is optional, the default is -1 (that means the operating
system will try indefinitely to execute the trap) which is fine for most purposes.

• Trapno% is a small positive integer that identifies the trap.

• Bufadr must point to a piece of memory at least 16 bytes long.

Since this toolkit provides its own buffer starting at TTV, it is recommended and safe to use this for
bufadr.

The required 16 bytes buffer is used to communicate with the processor, the registers D1, D2, A1 and A2
occupy four bytes (one longword) each within the buffer - they are copied to the processor when the trap
is executed and after the trap has finished will hold any return values and be copied back into the buffer
so that they may be read with the lines:

D1=PEEK_L(bufadr)
D2=PEEK_L(bufadr+4)
A1=PEEK_L(bufadr+8)
A2=PEEK_L(bufadr+12)

Example 1

Superfluous with CLS but:

x=TTET3(#2,32,TTV)

does a:

CLS#2.

27.29. TTET3 807

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Example 2

The procedure SD_ENQUIRE reads the window size and cursor position, the values are placed in the
passed integer variables. You can test if anything went wrong (eg. #ch does not refer to a window) by
checking if any of the values returned are negative.

The parameter what% determines the units,

• what% = 0 will have the effect that wsx% and wsy% are the window width and height in pixels
and that (cpx%, cpy%) is the position of the text cursor in screen pixels;

• what%<>0 will give the same information but in characters.

100 FOR i = 0, 1
110 SD_ENQUIRE #2, i, a%, b%, c%, d%
120 PRINT a%, b%, c%, d%
130 END FOR i
140 :
150 DEFine PROCedure SD_ENQUIRE (ch, what%, wsx%, wsy%, cpx%, cpy%)
160 LOCal trapno%
170 POKE_L TTV+8, TTV+16
180 trapno% = 10 + NOT(NOT what%)
190 IF TTET3(#ch, 100, trapno%, TTV) THEN
200 wsx% = -1: wsy% = -1: cpx% = -1: cpy% = -1
210 RETurn
220 END IF
230 wsx% = PEEK_W(TTV+16): wsy% = PEEK_W(TTV+18)
240 cpx% = PEEK_W(TTV+20): cpy% = PEEK_W(TTV+22)
250 END DEFine SD_ENQUIRE

On Minerva, you can write NOT (NOT what%) without brackets. SD_ENQUIRE is absolutely clean,
there is no danger at all that the system might crash, that it does not run on all QDOS machines or anything
like that.

All other machine code traps available through TTET3 are covered by commands in this manual, but
TTET3 can be used to avoid the need to link in a Toolkit.

CROSS-REFERENCE

Please refer to system documentation for details on each trap! See also IO_TRAP, QTRAP and MTRAP.

27.30 TTEX

Syntax TTEX file$ [;cmd$]
Location QView Tiny Toolkit

This command is analogous to EXEC - like EX, a command string can be passed to the program. How-
ever, unlike EX, default devices, pipes and channel passing are not supported.

CROSS-REFERENCE

See TTEX_W and EX.

808 Chapter 27. Keywords T

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

27.31 TTEX_W

Syntax TTEX_W file$ [;cmd$]
Location QView Tiny Toolkit

This bears the same relation to EXEC_W and EW as TTEX does to EXEC and EX.

CROSS-REFERENCE

See TTEX and EW .

27.32 TTFINDM

Syntax TTFINDM (addr, length, tosearch$)
Location QView Tiny Toolkit

This function will search for a given string in memory, see SEARCH, MSEARCH and BLOOK. Memory
is scanned from address addr for length bytes onwards. The search is case-sensitive. TTFINDM returns
zero if the string was not found or the positive relative address plus one where the string first occurs.

Example

Old or badly written programs and Toolkits require the screen located at address $20000 and the System
Variables at $28000, this causes great problems an Minerva in Dual Screen Mode and other advanced
systems as well.

Our demonstration for TTFINDM loads a file into memory and scans it for the occurrence of the two
mentioned numbers in their internal format. This method of checking code is pretty reliable for hand-
written machine code. The problem$ values have been computed with:

MKL$(HEX("20000"))

and

MKL$(HEX("28000"))

100 file$ = "flp2_tool_shape_cde"
110 length = FLEN(\file$)
120 DIM problem$(2,4)
130 problem$(1) = CHR$(0)&CHR$(2)&CHR$(0)&CHR$(0)
140 problem$(2) = CHR$(0)&CHR$(2)&CHR$(128)&CHR$(0)
150 :
160 PAPER 3: CLS: INK 7
170 PRINT "Allocating memory...";
180 adr = TTALL(length): PRINT "done"
190 IF adr = 0 THEN PRINT "No memory.": STOP
200 PRINT "Loading"!file$;"...";
210 LBYTES file$ TO adr: PRINT "done"
220 FOR test = 1 TO DIMN(problem$)

(continues on next page)

27.31. TTEX_W 809

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

230 PRINT "Test"!test;"...";
240 found = TTFINDM(adr, length, problem$(test))
250 IF found THEN
260 PRINT "failed"
270 DUMPIT adr+found-1, 4, 20
280 ELSE PRINT "ok"
290 END IF
300 END FOR test
310 PRINT "Releasing memory...";
320 TTREL adr: PRINT "done"
330 :
340 DEFine PROCedure DUMPIT (adr, length%, surr%)
350 INK 4: PRINT TTPEEK$(adr-surr%, surr%);
360 INK 7: PRINT TTPEEK$(adr, length%);
370 INK 4: PRINT TTPEEK$(adr+length%, surr%): INK 7
380 END DEFine DUMPIT

CROSS-REFERENCE

SEARCH, BLOOK , MSEARCH are all similar.

27.33 TTINC

Syntax TTINC #ch, xsp%, ysp%
Location QView Tiny Toolkit

This command is identical to CHAR_INC.

27.34 TTME%

Syntax TTME%
Location QView Tiny Toolkit

This function gives the job number of the current job.

CROSS-REFERENCE

See JOBS for information about TTME%’s return.

810 Chapter 27. Keywords T

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

27.35 TTMODE%

Syntax TTMODE%
Location QView Tiny Toolkit

This is the same as RMODE.

27.36 TTPEEK$

Syntax TTPEEK$ (adr, length)
Location QView Tiny Toolkit

See PEEK$.

Example

PRINT TTPEEK$(TTV-2,2)

always shows the letters QV.

27.37 TTPOKEM

Syntax TTPOKEM adr2 { , | ! | TO } adr1, bytes
Location QView Tiny Toolkit

The command TTPOKEM moves any amount of bytes in memory from address adr1 to adr2. The choice
of the separator only makes a difference if the source memory area overlaps with the destination. The
separator has the following effects:

• Comma (,) : the move is non-destructive, meaning that the memory area from adr1 has been copied
to adr2 so that it is identical to the area which was previously located at adr1 (the area at adr1 has
changed of course if the areas overlap).

• ! or TO : The move is destructive and the overlapping parts of or both blocks will be messed up,
that is because the first few bytes stored at adr1 will be stored at adr2 onwards, thus overwriting
the last few bytes of adr1 which should have been copied.

CROSS-REFERENCE

BMOVE, COPY_B, COPY_L, COPY_W

27.35. TTMODE% 811

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

27.38 TTPOKE$

Syntax TTPOKE$ adr, string$
Location QView Tiny Toolkit

This is the same as POKE$.

27.39 TTREL

Syntax TTREL adr
Location QView Tiny Toolkit

This is similar to the RECHP command, except that it will only remove areas set aside with TTALL.

CROSS-REFERENCE

TTALL. See also DISCARD.

27.40 TTRENAME

Syntax TTRENAME file1$, file2$
Location QView Tiny Toolkit

This command is similar to RENAME except that no default devices are supported. Toolkit II (which
apart from providing the SuperBASIC keyword RENAME adds an operating system extension to rename
files) is not required.

27.41 TTSUS

Syntax TTSUS frames
Location QView Tiny Toolkit

The command TTSUS will cause the current job to be suspended for frames/50 seconds (frames/60 on
some QLs), ie. the job will wait at the TTSUS command for the specified time and then continue with
the next command. It is suggested that TTSUS is used as an alternative to the PAUSE command (same
parameter) because it does not require an open channel - it’s a good idea, but please take into account
that pressing a key will not break the pause generated by TTSUS.

CROSS-REFERENCE

SJOB, PRIO, PAUSE

812 Chapter 27. Keywords T

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

27.42 TTV

Syntax TTV [(x1 *[,xi]*)]
Location QView Tiny Toolkit

The function TTV returns the address of the QView Toolkit workspace, which is a piece of shared mem-
ory of 176 bytes which can be accessed from any job. The idea is that this workspace is used for commu-
nication between different parts of the same program. By default, these bytes are set to zero, so that you
can freely POKE to them without the danger of crashes. Note that the value of TTV is the same for all
jobs. The parameters are (more or less) just for fun, their sum is added to the start address of the QView
Toolkit workspace before that address is returned. So:

TTV = TTV(0)
TTV(10) = TTV+10 = TTV(3,3,3,1)

Example

The workspace is preceded by 64 bytes for QView Toolkit’s internal use. There is however one value that
is interesting to look at:

PEEK_L(TTV-64)

is a very precise counter, it increases once every frame. This is ideal for checking program speed with-
out the need for long lasting benchmarks, the following programs demonstrates the difference in speed
between some different types of FOR constructions:

100 TIMER_START
110 FOR i = 1 TO 10000
120 REMark
130 END FOR i
140 TIMER_STOP
150 :
160 TIMER_START
170 FOR i = 1 TO 10000: REMark
180 TIMER_STOP
190 :
200 TIMER_START
210 FOR i% = 1 TO 10000: REMark
220 TIMER_STOP
230 :
240 :
250 DEFine PROCedure TIMER_START
260 POKE_L TTV(-64),0
270 END DEFine TIMER_START
280 :
290 DEFine PROCedure TIMER_STOP
300 LOCal count
310 count = PEEK_L(TTV-64)
320 PRINT INT (count/5) /10;"s"
330 END DEFine TIMER_STOP

27.42. TTV 813

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

The third test (lines 200 to 220) works on Minerva and SMS only, and is the fastest: 78% faster than the
first test! Some QLs (mainly those in the UK using TV’s) will need to amend line 320 to read:

320 PRINT INT (count/6)/10;'s'

CROSS-REFERENCE

See T_ON , T_OFF, T_START and T_STOP

27.43 TT$

Syntax TT$
Location QView Tiny Toolkit

This function returns the version ID of the QView Tiny Toolkit, eg. QVTK1.3

27.44 TURBO_diags

Syntax TURBO_diags “ [d | i | o] “
Location Turbo Toolkit v3.00+

This is a directive for the TURBO compiler and should be located at the start of your program before
any active program lines. A program can be compiled with line numbers included, which increases the
amount of memory and dataspace required by a program, but does mean that if an error occurs, the
line number will be displayed. If you do not include line numbers, any errors will report ‘at line 0’
and ERLIN% will return 0. This directive accepts a single character string which should be one of the
following values:

• d: Display line numbers during compilation process but do not include them in final code.

• i: Include line numbers in final code.

• o: Omit line numbers all together.

As with other compiler directives, this value can be changed by configuring the parser_task program or
by entering a different value on the Parser’s front panel.

Example

5 TURBO_diags "i"

CROSS-REFERENCE

See TURBO_F,TURBO_locstr, TURBO_model, TURBO_objdat, TURBO_objdat,TURBO_objfil,
TURBO_optim,TURBO_repfil, TURBO_struct, TURBO_taskn and TURBO_window for other directives

814 Chapter 27. Keywords T

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

27.45 TURBO_F

Syntax TURBO_F
Location Turbo Toolkit v3.00+

This directive forms part of the EXTERNAL and GLOBAL Turbo directives and is used to specify the
names of FuNctions contained in another compiled module for a program where that program is loaded
as several linked modules (using LINK_LOAD) rather than one huge program.

NOTE

Before v3.00, this directive was called FUNCTION which caused problems with installing Turbo Toolkit
under Minerva and SMS.

CROSS-REFERENCE

See TURBO_locstr and TURBO_P for other directives Refer to EXTERNAL for more information. Use
TK_VER$ to check on the version of TURBO toolkit.

27.46 TURBO_locstr

Syntax TURBO_locstr “ [i | r | c] “
Location Turbo Toolkit v3.00+

This is a directive for the TURBO compiler and should be located at the start of your program before
any active program lines. All strings used within a compiled program should be dimensioned so that
the compiler knows the maximum amount of memory which needs to be set aside to store a string. Any
attempt to assign a longer value to the string than that set with a DIM or LOCal command will be cut to
the appropriate length.

If TURBO has to automatically DIMension a string, it assumes a length of 100 characters (unless con-
figured otherwise).

The TURBO_locstr directive relates to the way in which TURBO should deal with LOCal strings or
string parameters. It accepts a single character string which should be one of the following values:

• i: Ignore any strings which are used in the program but not dimensioned. TURBO assumes that
you know what you are doing with them.

• r: Report any undimensioned strings - do nothing with them.

• c: Create a DIM statement for any undimensioned strings, making them global sizes for the whole
program.

As with other compiler directives, this value can be changed by configuring the parser_task program or
by entering a different value on the Parser’s front panel.

Example

5 TURBO_locstr "c"

27.45. TURBO_F 815

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE

See TURBO_diags, TURBO_model, TURBO_objdat,TURBO_objfil, TURBO_optim, TURBO_repfil,
TURBO_struct, TURBO_taskn and TURBO_window for other directives

27.47 TURBO_model

Syntax TURBO_model “ [< | >] “
Location Turbo Toolkit v3.00+

This is a directive for the TURBO compiler and should be located at the start of your program before any
active program lines. The TURBO compiler is able to generate code using either 16 bit addressing or
32 bit addressing. The former produces more compact and slightly faster code than the latter, but runs
into problems if the compiled version of your program (excluding dataspace) is larger than 64K. You
should therefore experiment with this setting - if your program is too large to be compiled with 16 bit
addressing, the TURBO compiler will report an error during the code generation stage to the effect that
the program is ‘too large for optimisation’. This does not overcome the problem with running TURBO
compiled programs on systems which have a lot of memory or which do not have the system variables
stored at $28000. To cover these programs, it is necessary to run them through the TurboPatch program
supplied with later versions of the TURBO toolkit.

The TURBO_model directive accepts a single character string which should be one of the following
values:

• <: Generate code using 16-bit addressing (shown as <64K on screen).

• >: Generate code using 32-bit addressing.

As with other compiler directives, this value can be changed by configuring the parser_task program or
by entering a different value on the Parser’s front panel.

Example

5 TURBO_model "<"

CROSS-REFERENCE

See TURBO_diags, TURBO_locstr, TURBO_objdat, TURBO_objfil, TURBO_optim, TURBO_repfil,
TURBO_struct, TURBO_taskn and TURBO_window for other directives

27.48 TURBO_objdat

Syntax TURBO_objdat sizesize=0. . . 850
Location Turbo Toolkit v3.00+

This directive is exactly the same as DATA_AREA.

NOTE

This setting will override a previous DATA_AREA directive in the same program. It will also be over-
ridden by a later DATA_AREA directive in the same program.

816 Chapter 27. Keywords T

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE

See TURBO_diags, TURBO_locstr, TURBO_model, TURBO_objfil, TURBO_optim, TURBO_repfil,
TURBO_struct, TURBO_taskn and TURBO_window for other directives

27.49 TURBO_objfil

Syntax TURBO_objfil filename$
Location Turbo Toolkit v3.00+

This is a directive for the TURBO compiler and should be located at the start of your program before
any active program lines. This directive expects you to specify a string which will form the filename of
the compiled program produced by TURBO. The full filename (including device) should be specified in
quote marks. As with other compiler directives, this value can be changed by configuring the parser_task
program or by entering a different value on the Parser’s front panel.

Example

5 TURBO_objfil "ram1_CT_exe"

CROSS-REFERENCE

See TURBO_diags, TURBO_locstr, TURBO_model, TURBO_objdat, TURBO_optim, TURBO_repfil,
TURBO_struct, TURBO_taskn and TURBO_window for other directives

27.50 TURBO_optim

Syntax TURBO_optim “ [b | r | f] “
Location Turbo Toolkit v3.00+

This is a directive for the TURBO compiler and should be located at the start of your program before any
active program lines. The way in which TURBO compiles a program can be optimised using a trade off
between speed and code size.

The TURBO_optim directive allows you to dictate how the compiled program is to be optimised and
accepts a single character string which should be one of the following values:

• b: Generate BRIEF code, which ensures that the program uses as little memory as possible. This
generates the slowest programs.

• r: Optimise code according to REMarks in the program. Normally this will generate BRIEF code
unless you include a line containing REMark + in your program which tells TURBO to switch
to FAST code. The code will then be optimised for speed until a line containing REMark - is
encountered.

• f: Generate FAST code, which ensures that the program runs as quickly as possible. This may
however cause the program to need a lot more memory. As with other compiler directives, this
value can be changed by configuring the parser_task program or by entering a different value on
the Parser’s front panel.

27.49. TURBO_objfil 817

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Example

5 TURBO_optim "b"

CROSS-REFERENCE

See TURBO_diags, TURBO_locstr, TURBO_model, TURBO_objdat, TURBO_objfil, TURBO_repfil,
TURBO_struct, TURBO_taskn and TURBO_window for other directives

27.51 TURBO_P

Syntax TURBO_P
Location Turbo Toolkit v3.00+

This directive forms part of the EXTERNAL and GLOBAL Turbo directives and is used to specify the
names of PROCedures contained in another compiled module for a program where that program is loaded
as several linked modules (using LINK_LOAD) rather than one huge program.

NOTE

Before version 3.00 of the Turbo Toolkit, this directive was called PROCEDURE which would cause
problems with installing the Turbo Toolkit under Minerva and SMS.

CROSS-REFERENCE

See TURBO_locstr and TURBO_F for other directives Refer to EXTERNAL for more information. Use
TK_VER$ to check on the version of TURBO toolkit.

27.52 TURBO_repfil

Syntax TURBO_repfil filename$
Location Turbo Toolkit v3.00+

This is a directive for the TURBO compiler and should be located at the start of your program before any
active program lines. This directive expects you to specify a filename as a string. TURBO will use this
file to produce a report on the compilation process, which can be useful to track down compilation errors
and warnings. If no filename is specified, then all errors and warnings are merely shown on screen. The
full filename (including device) should be specified in quote marks. As with other compiler directives,
this value can be changed by configuring the parser_task program or by entering a different value on the
Parser’s front panel.

Example

5 TURBO_repfil "ram2_CT_report"

CROSS-REFERENCE

See TURBO_diags, TURBO_locstr, TURBO_model, TURBO_objdat, TURBO_objfil, TURBO_optim,
TURBO_struct, TURBO_taskn and TURBO_window for other directives

818 Chapter 27. Keywords T

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

27.53 TURBO_struct

Syntax TURBO_struct “ [s | f] “
Location Turbo Toolkit v3.00+

This is a directive for the TURBO compiler and should be located at the start of your program before any
active program lines. TURBO is able to compile a wide variety of programs. However, if the program
does not follow strict programming rules, it will take longer to compile and will run more slowly (even
if TURBO can manage to compile it).

Programs which follow the programming rules are known as Structured. These programming rules are
set out below:

1. The main section of the program must appear at the start and not contain any PROCedure or FuNc-
tion definitions.

2. At the end of the main section appears only PROCedure and FuNction definitions without any
other lines between the end of one definition and start of another except for REMarks.

3. All FOR, REPeat, IF, SELect ON, WHEN, structures are contained within each section (either
the main section or a PROCedure / FuNction definition) of the program and not referenced from
outside that section.

All other programs are known as Freeform.

The TURBO_struct directive allows you to specify the type of programming style used in the program
which is to be compiled. It accepts a single character string which should be one of the following values:

• f: The program is Freeform.

• s: The program is Structured.

As with other compiler directives, this value can be changed by configuring the parser_task program or
by entering a different value on the Parser’s front panel.

Example

5 TURBO_struct "s"

CROSS-REFERENCE

See TURBO_diags, TURBO_locstr, TURBO_model, TURBO_objdat, TURBO_objfil, TURBO_optim,
TURBO_repfil, TURBO_taskn and TURBO_window for other directives

27.54 TURBO_taskn

Syntax TURBO_taskn name$
Location Turbo Toolkit v3.00+

This is a directive for the TURBO compiler and should be located at the start of your program before any
active program lines. This directive allows you to specify the name for the compiled program which will
appear in its header and appear when JOBS is used for example. The full name should be specified in
quote marks.

27.53. TURBO_struct 819

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

As with other compiler directives, this value can be changed by configuring the parser_task program or
by entering a different value on the Parser’s front panel.

Example

5 TURBO_taskn "Main v1.2"

CROSS-REFERENCE

See TURBO_diags, TURBO_locstr, TURBO_model, TURBO_objdat, TURBO_objfil, TURBO_optim,
TURBO_repfil, TURBO_struct and TURBO_window for other directives

27.55 TURBO_window

Syntax TURBO_window number
Location Turbo Toolkit v3.00+

This is a directive for the TURBO compiler and should be located at the start of your program before any
active program lines. This tells the TURBO parser to copy across number windows from the existing
channel structure into the compiled program. If number=1 only window #1 will appear in the compiled
program. Any greater value for number will copy window #0 also. It is usually better to ensure that your
compiled program opens all of its own windows, using commands such as:

100 OPEN #1,'con_448x200a32x16'

This reduces the amount of memory used up by each channel and also ensures that your program only
opens the windows which it actually needs to work. As with other compiler directives, this value can
be changed by configuring the parser_task program or by entering a different value on the Parser’s front
panel.

Example

5 TURBO_window 0

NOTE

Only the active area of a window is copied across to the compiled program, so if a BORDER has been
specified, this will not appear in the compiled program (only the area inside the border will be copied
across). If your compiled program then defines its own BORDER on that window, the size of the window
will be further reduced.

CROSS-REFERENCE

See TURBO_diags,TURBO_locstr, TURBO_model, TURBO_objdat, TURBO_objdat, TURBO_objfil,
TURBO_optim,TURBO_repfil, TURBO_struct, and TURBO_taskn for other directives

820 Chapter 27. Keywords T

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

27.56 TURN

Syntax TURN [#ch,] degrees
Location QL ROM

This command is part of the QL’s turtle graphics set and alters the current direction of the turtle in the
specified window (default #1). When a window is first opened, the turtle will be facing the right hand
side of the window (this is zero degrees).

TURN will force the turtle to turn anti-clockwise by the specified number of degrees (note that this does
not work in radians!). If a negative number of degrees is specified, the turtle will be turned in a clockwise
direction.

CROSS-REFERENCE

TURNTO forces the turtle to face in an absolute direction. Please also see MOVE.

27.57 TURNTO

Syntax TURNTO [#ch,] angle
Location QL ROM

This command, in contrast to TURN forces the turtle in the specified window (default #1) to face in the
direction specified by angle. If angle=0, the turtle will face the right hand edge of the window, whereas
an angle of 90 will force the turtle to point towards the top of the window. A negative value of angle will
cause the turtle to turn clockwise, so that angle=-90 is the same as angle=270.

CROSS-REFERENCE

Please refer to MOVE and TURN .

27.58 TXTRAS

Syntax TXTRAS [#ch]
Location TinyToolkit

This command lists extensions to SuperBASIC in the specified channel #ch (default #1). Apart from
printing the mere keyword name, it will also report the type, ie. whether it is a function or command.

Example

TXTRAS might print:

Proc RUN
Proc STOP
Proc OPEN
Proc CLOSE

27.56. TURN 821

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE

On pre 1.10 versions of TinyToolkit, TXTRAS was named EXTRAS.

CROSS-REFERENCE

EXTRAS, SXTRAS and VOCAB are all similar.

27.59 TYPE

Syntax TYPE (name$)
Location TinyToolkit, BTool

The function TYPE returns the internal identification number of any variable, device name, keyword,
command, function etc. as a decimal number. Each type corresponds to a certain number:

Hex Dec Type Example
0001 1 undefined string Name$
0002 2 undefined floating point Size
0003 3 undefined integer Age%
0201 513 string variable Name$=”Smith”
0202 514 floating point number Size=1.85
0203 515 integer number Age%=38
0301 769 string array DIM a$(10,20)
0302 770 floating point array DIM a(221)
0303 771 integer array DIM a%(10000)
0400 1024 BASIC PROCedure DEFine PROCedure QUIT
0501 1281 BASIC string FuNction DEFine FuNction Who$
0502 1282 BASIC floating point FuNction DEFine FuNction Tm(day)
0503 1283 BASIC integer FuNction DEFine FuNction Age%
0602 1538 REPeat loop name REPeat forever
0702 1794 FOR loop name FOR i=1 TO n
0800 2048 machine code procedure RUN, ED, NEW
0900 2304 machine code function QDOS$, VER$, FILL$

NOTE 1

Parameters must be given in quotes if you want to find out the type of the actual name, eg:

PRINT TYPE ('RUN')

If quote marks are not used, then the value of the parameter is passed instead - eg:

name$="RUN"
PRINT TYPE(name$)

will not return the type of name$ but the type of RUN.

NOTE 2

TYPE can also take any kind of expression, whether or not they are valid.

822 Chapter 27. Keywords T

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE

KEY_ADD and ELIS return the address where a machine code keyword is stored. DEFINED checks if a
variable is set.

27.60 TYPE_IN

Syntax TYPE_IN string$
Location BTool

Same as FORCE_TYPE.

27.61 T_COUNT

Syntax T_COUNT [(watch)]
Location Timings (DIY Toolkit - Vol H)

This function reads the time elapsed on the specified stop- watch (default 1). If the watch has not been
started, the value 2,147,483,647 is returned by this function.

CROSS-REFERENCE

See T_START and T_STOP. T_ON contains a general description of the stop-watches.

27.62 T_OFF

Syntax T_OFF
Location Timings (DIY Toolkit - Vol H)

This command removes all of the stop-watches from memory, although they can be re-enabled with
T_ON.

NOTE

None of the times on the stop-watches are reset and can therefore be continued once T_ON has been
used.

CROSS-REFERENCE

See T_ON .

27.60. TYPE_IN 823

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

27.63 T_ON

Syntax T_ON
Location Timings (DIY Toolkit - Vol H)

This toolkit provides the QL with five independent stop-watches which can be used to make accurate
timings (more accurate than using DATE).

The stop-watches are linked into the QL’s ‘polled list’ of small routines which are run every frame on
the computer (1/50 second on a British QL, 1/60 on most foreign QLs). There is a slight disadvantage
in using the polled interrupts in that they are sometimes disabled by machine code routines, for example
when accessing microdrives and disks.

Because of this, these commands are not much for timing programs which depend heavily on external
hardware. These stop-watches are however very useful for comparing the speed of various program
routines without having to make thousands of loops in order to show any difference in speed.

This command enables all the stop-watches. This must be issued before T_START can be used.

CROSS-REFERENCE

See TTV , T_START , T_STOP, T_RESTART

27.64 T_RESTART

Syntax T_RESTART [watch]
Location Timings (DIY Toolkit - Vol H)

This command restarts a specified stop-watch (default 1) once it has been stopped, without resetting the
initial time to zero. This command can have spurious effects if the stop-watch has not previously been
used.

CROSS-REFERENCE

T_STOP stops a stop watch. See T_START also.

27.65 T_START

Syntax T_START [watch]
Location Timings (DIY Toolkit - Vol H)

This command starts the specified stop-watch (default 1), setting the initial time to zero.

CROSS-REFERENCE

You need to have used T_ON before T_START can be used. See also T_STOP and T_RESTART .

824 Chapter 27. Keywords T

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

27.66 T_STOP

Syntax T_STOP [watch]
Location Timings (DIY Toolkit - Vol H)

This command stops the specified stop-watch (default 1) from running.

CROSS-REFERENCE

T_RESTART restarts a stop-watch. T_START starts a stop-watch from afresh.

27.66. T_STOP 825

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

826 Chapter 27. Keywords T

CHAPTER

TWENTYEIGHT

KEYWORDS U

28.1 UINT

Syntax UINT (x%)
Location BTool

The function UINT returns the unsigned value of a (signed) integer:

unsigned = signed% + 2^16

or:

unsigned = UINT(signed%)

CROSS-REFERENCE

SINT

28.2 UNDER

Syntax UNDER [#ch,] switch
Location QL ROM

This command switches underlining in the specified window (default #1) either on or off. Underlining is
enabled if switch=1 or disabled if switch=0. Other values of switch will return a ‘bad parameter’ error.

If underlining is enabled, whenever anything is PRINTed, a line will be drawn in the current INK colour
in the bottom but one row of the character.

If FLASH is enabled, although the character will continue to flash, the underline itself will not. MODE
will disable underlining.

Example 1

UNDER 1: PRINT 'Title:'!: UNDER 0: PRINT !'QL SuperBASIC'

Example 2

827

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

If you don’t like the line which is drawn by underline than you can use OVER to draw your own line with
a different colour. Note however that this line ought to be drawn before the underlined text since the line
should not overlap letters like g, p, q and j.

100 DEFine PROCedure PRNT_UNDL (ch, x, y, text$, col1, col2)
110 AT#ch,x,y: INK#ch,col2: OVER#ch,0
120 PRINT#ch,FILL$("_",LEN(text$))
130 AT#ch,x,y: INK#ch,col1: OVER#ch,1
140 PRINT#ch,text$
150 OVER#ch,0
160 END DEFine PRNT_UNDL

PAPER 3: CLS
PRNT_UNDL #1,3,3,"Looking good.",7,0

NOTE

MODE will reset the current underline mode in all windows.

CROSS-REFERENCE

INK sets the current ink colour for the specified channel, PRINT prints out characters.

28.3 UNJOB

Syntax UNJOB drive_filename
Location UNJOB

This command sets the file type of the given file (the full filename must be supplied) to zero. The reason
for this command is that certain assemblers and tools set the file type to 1 (executable file) even though the
file cannot be started as a job. Since commands like EX or EXEC check the file type to decide whether a
file can be executed, they will try to start such a file and crash the system in most cases. A simple UNJOB
prevents this in the long term.

NOTE

v1.00 of this command did not work on most QL ROM versions, giving a bad parameter error.

CROSS-REFERENCE

Each file has a file type which can be found with the FTYP and FILE_TYPE functions or directly by
looking at the file header (HEADR). It is also possible to set the file type by rewriting the whole file
header with HEADS; alternatively, UNJOB does the same.

828 Chapter 28. Keywords U

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

28.4 UNL

Syntax UNL
Location Beuletools

This function returns the control codes needed to switch on underline printing on an EPSON compatible
printer, PRINT UNL is the same as:

PRINT CHR$(27) & "-" & CHR$(1)

CROSS-REFERENCE

NORM, BLD, EL, DBL, ENL, PRO, SI , NRM, ALT , ESC, FF, LMAR, RMAR, PAGDIS, PAGLEN .

28.5 UNLOAD

Syntax UNLOAD program_name
Location MutiBASIC (DIY Toolkit - Vol M)

Despite the name, this toolkit is completely different to the MultiBASICs which are provided on Minerva
ROMs. This toolkit actually provides a quick means of saving and loading programs in memory - this
allows you to load a program which you are working on, store it in memory and then alter the program.
If the new alterations to the program do not work out as planned and you want to revert to the original
version, you can simply RELOAD the original version from program in a matter of seconds (rather than
the minutes which it would take to LOAD the original version from disk).

This can be very useful for program development, or, for example, if you have a SuperBASIC utility
program which you use a lot.

This command allows you to store the currently loaded SuperBASIC program in memory. You have to
supply a name for the program (similar to the name which you could use with the SAVE command, except
there is no need for a device name and the program name can be up to 127 characters long). The program
is then stored - details of the programs which have been stored with this command are available from the
jobs list (see JOBS). When the program is stored in memory, the contents of all variables and pointers
are also stored, which makes certain that if you UNLOAD a program whilst it is RUNning, you can later
RELOAD it and re-start it from the same place (with CONTINUE).

Version 4.0+ of the toolkit, allows you to store the current screen display and mode along with the pro-
gram, so that when the program is RELOADed, the display is in a known layout. To further extend the
usefulness of this toolkit, any commands which appear after UNLOAD will be automatically executed
when the program is RELOADed, for example:

UNLOAD test: RUN

will always RUN the program when you:

RELOAD test

NOTE 1

28.4. UNL 829

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

The toolkit expects the display to be located at 131072 and be 512x256 pixels and so you should switch
off the screen storage facility if you are using a higher resolution display or a dual screen system.

NOTE 2

If a job already exists with the name which you have given to the program, ‘Already Exists’ will be
reported.

NOTE 3

Although the toolkit can be used to store programs from a Minerva MultiBASIC, you cannot load the
toolkit from a Multiple BASIC - an ‘incomplete’ error is reported.

NOTE 4

The current channel details are not stored when you use UNLOAD - you may therefore need to re-open
the channels when the program is RELOADed, or use something akin to:

UNLOAD 'watch': OPEN #3,con_448x200a32x16

which will always ensure that #3 is OPEN whenever the program is RELOADed.

NOTE 5

If a program uses ALCHP to grab some memory, unless you intend to always RUN the program from
the start when you RELOAD it, do not use any command which will release this area of common heap
memory before you RELOAD the program. Commands which do this include:

CLCHP
CLEAR
NEW
LOAD

WARNING 1

This toolkit does not work on SMSQ/E and can crash the computer.

WARNING 2

Unfortunately, attempts to use this toolkit to UNLOAD files from one interpreter and then RELOAD the
files into another Multiple BASIC will crash that Multiple BASIC (or have other various undesirable
effects).

CROSS-REFERENCE

SCR_SAVE allows you to dictate whether the screen display and mode should be stored together with
the program. RESAVE is similar. REMOVE allows you to remove a program stored in memory with this
command. See also RELOAD and QSAVE.

830 Chapter 28. Keywords U

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

28.6 UNLOCK

Syntax UNLOCK file,code$,code
Location CRYPTAGE

See LOCK .

Example

UNLOCK ram1_secret_txt,"Phew",7241

28.7 UNSET

Syntax UNSET (variable)
Location PARAMS (DIY Toolkit - Vol P)

This is the same as DEFINED and suffers from the same problem!

28.8 UPC$

Syntax UPC$ (string$)
Location LWCUPC

This is the same as UPPER$.

28.9 UPPER$

Syntax UPPER$ (string$)
Location TinyToolkit, Function (DIY Toolkit - Vol R)

This function takes the given string and converts any lower case letters to capitals and then returns the
whole string. Normally, only the ASCII alphabet is catered for, which means that no national characters
are converted, ie. the function only works with A..Z and a..z.

The DIY Toolkit version will cope with accented characters, but you may have to modify the source code
in order for this function to work with some international character sets which use an extended alphabet.

Example

This is not quite an example for UPPER$ but a replacement which converts all characters where an upper
character is available:

28.6. UNLOCK 831

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

100 DEFine FuNction UPPER_$ (string$)
110 LOCal i,c,u,u$: u$=""
120 FOR i=1 TO LEN(string$)
130 c=CODE(string$(i)): u=c
140 SELect ON c=97 TO 122: u=c-32:=128 TO 139: u=c+32
150 u$=u$ & CHR$(u)
160 END FOR i
170 RETurn u$
180 END DEFine UPPER_$

CROSS-REFERENCE

UPC$ returns the same as UPPER$. See also ConvCASE$ and LOWER$.

28.10 UPUT

Syntax UPUT [#ch\position,] [item *[,itemi]* ..] or
UPUT [#ch,] [item *[,itemi]* ..]

Location SMSQ/E v2.55+

This command is the same as BPUT, except that any bytes sent by it to the specified channel (default
#3) are not affected by the TRA command. This command is therefore useful for sending printer control
codes.

CROSS-REFERENCE

See BPUT , WPUT and LPUT .

28.11 USE

Syntax USE [#channel]
Location USE (DIY Toolkit - Vol C)

Many commands and functions which are described in this manual, expect a channel number to be passed
to them and if one is not supplied, will default to a specific channel. This command can be used to re-
direct all machine code commands and functions which normally default to #1.

After using this command, if a channel parameter is not specified, the commands and functions will then
default to the channel specified by USE instead of #1. Also, even if you explicitly pass a channel number
#1 as a parameter to a command or function, then the command or function will still be re-directed to
the channel specified by USE. If no parameter is specified, then this is equivalent to USE #1.

Example

PRINT 'This is channel #1': USE #2: PRINT 'This is using Channel #2'
PRINT #1, 'This is still channel #2' USE: PRINT 'This is channel #1 again!'

832 Chapter 28. Keywords U

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE

There is a slight difficulty in using this command in that when you USE #1 some of the information used
by SuperBASIC for the channel which you have been using as the default will be lost. This is the last
graphics co-ordinates, turtle graphics direction, pen status, character position on line and line width for
files (set with WIDTH) will be lost. You will also lose the original values for these offsets for channel #1
(ie. the values which were in use prior to the USE #ch command). Instead, the values are set to pen up,
position 0,0, width 80, direction left-to-right. You can use:

PEEK_W(\48\chan*40+offset)

to store these values before the USE call and then restore them with POKE. Refer to QDOS/SMS Refer-
ence Manual Section 18.4.1 to find out how these values are stored.

WARNING

If used from within a SMS SBASIC, v0.2 (at least) of this command will crash the computer when output
is redirected to #1 using either USE or USE#1. The problem only occurs when you try to send output to
#1.

CROSS-REFERENCE

PRINT ,CSIZE,INK ,PAPER andSTRIP are just a few of the commands which default to #1 and are there-
fore affected by this command.

28.12 USE_FONT

Syntax USE_FONT #channel, font1_address, font2_address
Location DJToolkit 1.16

This is a procedure that will allow your programs to use a character set that is different from the standard
QL fonts. The following example will suffice as a full description.

EXAMPLE

1000 REMark Change the character set for channel #1
1010 :
1020 REMark Reserve space for the font file
1030 size = FILE_LENGTH('flp1_font_file')
1040 IF size < 0
1050 PRINT 'Font file error ' & size
1060 STOP
1070 END IF
1080 :
1090 REMark Reserve space to load font into
1200 font_address = RESERVE_HEAP(size)
1210 IF font_address < 0
1220 PRINT 'Heap error ' & font_address
1230 STOP
1240 END IF
1250 :

(continues on next page)

28.12. USE_FONT 833

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

1260 REMark Load the font
1270 LBYTES flp1_font_file, font_address
1280 :
1290 REMark Now use the new font
1300 USE_FONT #1, font_address, 0

.......Rest of program

9000 REMark Reset channel #1 fonts
9010 USE_FONT #1, 0, 0
9020 :
9030 REMark Release the storage space
9040 RELEASE_HEAP font_address

834 Chapter 28. Keywords U

CHAPTER

TWENTYNINE

KEYWORDS V

29.1 VA

Syntax VA (i,n)
Location Toolfin

The function VA returns the value of (1+i)-n = 1/MT(i,n) where i and n can be any floating point numbers
(see MT for error handling).

Example

VA allows you to find out about base capital which will grow to a certain higher (i>0) capital at the
interest rate i over n periods. Assume that you want to buy an expensive car for $80000 in two years and
your investment returns an annual gain of 10% (not bad), then you need to invest 80000 * VA(1/10, 2) =
66115.7

CROSS-REFERENCE

You can check the result of the above example with: 66115.7 * MT (1/10,2) = 80000.

See also VFR, VAR, TCA, TNC, TEE, RAE, RAFE.

29.2 VAR

Syntax VAR (i,n)
Location Toolfin

The function VAR returns the value of: ((1+i)n-1) / (i* (1+i)n) where i and n can be any floating point
numbers (see MT for error handling).

CROSS-REFERENCE

MT , VA, VFR, TCA, TNC, TEE, RAE, RAFE

835

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

29.3 VER$

Syntax VER$ or
VER$ [(n)] with n=1, 0, -1, -2(Minerva and SMS only)

Location QL ROM

The function VER$, which is the same as VER$(0) returns a short identification code for the version of
the current system ROM. Here are most of the possible values (in order of development):

Original ROMs

VER$ Explanation

FB
This is the first ROM sold in April 1984, QDOS version 1.00. It comes with a ‘Dongle’ - a
board which needed to be plugged into the QL’s ROM port. It is very unreliable and should be
replaced!!

PM
EL
TB

These three ROMs were developed during the following two months. (May, June & July 1984.)

AH
Released as the “definitive” version in June 1984.

JM
British QL, QDOS v1.03, the first version which was exported.

JS
Released in spring 1985, QDOS v1.10. Also found on early Thors and patched in ST/QL and
early Amiga Emulators.

JSU
American QL.

The following versions were only sold in their respective countries. All are QDOS v1.03.
continues on next page

836 Chapter 29. Keywords V

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table 1 – continued from previous page
VER$ Explanation

MGD

MGE

MGF

MGG
MGI

MGN

MGS

MGB

MGY

MG$
$FP

Danish
Spanish
French
German
Italian
Norwegian
Swedish
Swedish
Finish
Greek
Greek

Patches

VER$ Explanation
MGUK A version of the MGx ROM produced independently for the UK market.
MG Another patched version, mainly distributed in Germany.
MGUS Out of the three patches, this is the only legal one and was produced for the United States.

New developments

VER$ Explanation
CS
PT
PO

Different ROMs used on the THOR XVI.

JSL1 QL with Minerva ROM, a very much debugged and enhanced version of the JS ROM, available
in all languages for all kinds of QLs.

HBA Either the SMSQ or SMSQ/E replacement operating system for QXLs, Atari ST/STE and TT
series computers and the Miracle Gold Card family of add-on cards.

NOTE 1

VER$ can be used to write flexible programs which adapt themselves to specific features of computers
and ROM implementations. However, if you intend to test VER$, for example:

29.3. VER$ 837

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

IF VER$= 'JM'

to retain compatibility with the different ROM versions, you must first assign the contents of VER$ to a
variable:

100 a$=VER$
110 IF a$(1 TO 2)='MG': PRINT 'MG ROM'

NOTE 2

The names of the original ROMs were derived from names of Clive Sinclair’s secretaries, taxi drivers he
met and so on. (Just in case you are looking for any sense behind the abbreviations.)

MINERVA NOTES

On Minerva, VER$ accepts a parameter:

• VER$(0)as per above VER$.

• VER$(-2) returns the base address of the system variables (normally $28000 = 163840 on a stan-
dard QL).

• VER$(-1)returns the current job identification number.

• VER$(1)returns the version of QDOS (see also QDOS$).

SMS NOTES

VER$ has been amended to provide the same facilities as on Minerva.

WARNING

If you fail to assign VER$ to a variable before testing its value, then you can crash a JS (or JSU) ROM.
This will also happen on Minerva ROMs (pre v1.77) with Minerva’s extended variant VER$(n).

CROSS-REFERENCE

QDOS$ returns the version number of QDOS in the same way as VER$(1). See also MACHINE and
PROCESSOR.

29.4 VFR

Syntax VFR (i,n)
Location Toolfin

The function VFR returns the value of: ((1+i)n-1)/i where i and n can be any floating point numbers (see
MT for error handling).

CROSS-REFERENCE

MT , VA, VAR, TCA, TNC, TEE, RAE, RAFE

838 Chapter 29. Keywords V

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

29.5 VG_HOCH

Syntax VG_HOCH (fontnr) fontnr=0..15
Location BGI

This function returns the maximum height of the specified font (fontnr=0..15) in pixels if printed with
the current size settings of VG_PARA.

CROSS-REFERENCE

VG_PARA and VG_LOAD.

29.6 VG_LOAD

Syntax VG_LOAD fontnr, file$ fontnr=0..15
Location BGI

This toolkit allows the QL to use BGI vector fonts (common on the PC) to draw on the screen. There are
now numerous fonts available in this format for the QL, being the same format as used by the PROWESS
programming system from PROGS.

The advantage of vector fonts is that they can be drawn on screen at any size and angle without affecting
the legibility. Each character is not made up by a bit-map (as with the original QL fonts), but by a
description of how each line is drawn to make up a character.

This command forces a BGI font file$ to be loaded from a file into memory. Fontnr is the number of the
font Up to 16 fonts can be loaded at the same time; Fontnr may range from 0 to 15. The file$ can be any
font in standard BGI format, for example those which are delivered with Turbo Pascal and Turbo C by
Borland. The format used on the QL with this Toolkit is binary compatible.

If VG_LOAD fails to load a file for external reasons (eg. if the file is not found), the font which was
previously attached to fontnr will have been lost.

Example

VG_LOAD 1, "flp1_goth_chr"

WARNING

You have to ensure that file is actually a BGI font. Otherwise your machine will almost surely crash.

CROSS-REFERENCE

See VG_PRINT about displaying text using a vector font and the other VG_XXX commands.

29.5. VG_HOCH 839

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

29.7 VG_PARA

Syntax VG_PARA col, xsize, ysize, angle, qlibm, italic, bold
Location BGI

The use of the command VG_PARA is easier than the large parameter list may suggest. VG_PARA
specifies how text should look when printed with VG_PRINT. The colour col does not allow strips and
textures, col may only range from 0 to 7, other values are modulated appropriately. xsize and ysize
determine the size of the font (not in pixels!), they can be freely chosen from any non-negative values,
but sizes smaller than three are usually not readable.

Angle is the angle (0..359º) by which the text should be rotated. This is different from italics because the
angle parameter rotates the text around the origin point of the text whilst italics slopes each character.
The effect of italics is not linear, values between -10 and 10 give all kinds of slope; negative italics slope
to the left and positive to the right.

The effect of bold on the other hand is easily described: bold refers to the thickness of the characters’
lines which are bold+1 pixels.

Qlibm is a switch: any non-negative value will make VG_PRINT try to find the character which matches
best to the one given in the text to be printed; this works for IBM fonts only, see VG_PRINT for further
explanation of this point. The default setting is VG_PARA 7,8,8,0,0,0,0 ie. white colour, 8x8 size, no
italics, bold, rotation or conversion.

Examples

Both examples assume a BGI font loaded to font number 0 and the default VG_WIND settings
(VG_WIND 0,511,0,255). The screen should be emptied with:

WIPE

or:

WINDOW 512,256,0,0: CLS

100 FOR size=1 TO 25
110 bold = (size=25)
120 VG_PARA 5.5*size/25,size,size,0,0,-3,bold
130 VG_PRINT 70-2*size,150-size,0,"Sinclair QL"
140 END FOR size

100 FOR angle=0 TO 3000 STEP 12
110 xsize=4*SIN(RAD(angle))+8
120 VG_PARA 7,xsize,10,angle,0,0,0
130 VG_PRINT 200,120,0,"Yippie"
140 VG_PARA RND(0 TO 2),xsize,10,angle,0,0,0
150 VG_PRINT 200,120,0,"Yippie"
160 END FOR angle

WARNING

A negative bold parameter will cause VG_PRINT to fall into an infinite loop. This hangs the job which
called VG_PRINT indefinitely.

840 Chapter 29. Keywords V

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE

Negative sizes lead to strange output but do no harm. BGI fonts come in different sizes so that the size
settings of VG_PARA do not necessarily reflect the actual size that text will be; check with VG_HOCH
for every font.

CROSS-REFERENCE

VG_HOCH is a function which returns the text sizes.

29.8 VG_PRINT

Syntax VG_PRINT x, y, fontnr, text$
Location BGI

The command VG_PRINT prints text$ at the absolute position x, y on the screen. The font which has
been applied to fontnr with VG_LOAD will be used; there will be no output if the font number has not
been used yet. If x and y are not inside the area defined with VG_WIND or the text is too high to fit,
again there will be no output. VG_PRINT works only in high resolution mode (MODE 4).

Example

VG_LOAD 1,flp1_goth_chr
VG_WIND 0,511,0,255
VG_PRINT 100,100,1,"Hello World"

NOTE

Since the BGI fonts will usually originate from another computer system which uses a different char-
acter set, text$ and the actual output may differ dramatically if text$ contains characters which are not
standardised in ASCII, especially national characters (umlauts, acutes). The following program lists the
complete character set of a BGI font:

100 VG_LOAD 0,"flp1_goth_chr"
110 VG_WIND 0,511,0,255
120 WINDOW 512,256,0,0: PAPER 0: CLS
130 VG_PARA 7,5,5,0,0,0,0
140 FOR c=0 TO 255
150 VG_PRINT 20*(c MOD 20)+50,20*(c DIV 20),0,CHR$(c)
160 END FOR c

CROSS-REFERENCE

VG_PARA offers a switch to approximate an identity between text$ and display as far as possible. Modify
line 130 in the above listing so that it looks like this now:

130 VG_PARA 7,5,5,0,1,0,0

Running the program again shows you VG_PRINT ’s attempts to correct the problem. See also the other
VG_XXX keywords!

29.8. VG_PRINT 841

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

29.9 VG_RESO

Syntax VG_RESO scradr, xres, yres
Location BGI

This command defines the screen base address and the screen size for printing the BGI fonts. The default
is:

VG_RESO 131072,512,256

This will need to be changed if the screen offset is not 131072. A fixed screen address should never be
assumed. VG_RESO can also be used to write to the second screen on a dual screen system.

CROSS-REFERENCE

The settings of VG_WIND are dependent on VG_RESO’s. See SCRBASE, PEEK and MODE.

29.10 VG_WIND

Syntax VG_WIND x1, x2, y1, y2
Location BGI

This command defines a rectangular area of the screen. Only text printed inside this window with
VG_PRINT (it’s not a window in SuperBASIC terms) will be visible:

0 511
0 +-------------------------+

| |
| x1 x2 |
| y1+---------+ |
	BGI Text	
y2+---------+		

55+-------------------------+

It is strongly recommended that you specify a window inside the physical screen, so: 0 <= x1 < x2 <=
511 and 0 <= y1 < y2 <= 255 (assuming a standard 512x256 pixel screen - replace the upper bounds if
you have a better graphics card, eg. QVME). Note that VG_WIND does not check the parameters (this
is impossible without the Window Manager).

Default settings are x1=0, x2=511, y1=0, y2=255.

Example

VG_WIND 0,511,0,255

restores these defaults.

CROSS-REFERENCE

842 Chapter 29. Keywords V

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

See also the other VG_XXX keywords. QFLIM can be used to find out about about the size of the screen
if the Window Manager is loaded.

29.11 VIEW

Syntax VIEW [#channel,] text_file or
VIEW \channel, text_file

Location Toolkit II, THOR XVI

This command reads the contents of the given text_file line by line and prints it to the given channel
(default #1). If a line is longer than the window, it is not split and continued in the next line (as PRINT
would do) but truncated. The second syntax allows you to open a temporary channel to which the output
will be sent, for example you could use:

VIEW \con,text_file

or:

VIEW \ram1_test,flp1_text_file

Note that the latter is the same as:

COPY flp1_text_file TO ram1_test

Lines in a text file are separated by line feed characters <LF>, ie. CHR$(10). If output is sent to a
window, then when a window page is full, VIEW generates a <CTRL><F5>, and waits for a keypress to
continue VIEWing. Sub-directories and default directories are supported by this command, which will
look on the default data directory for the given file if necessary (see DATAD$).

NOTE

If the final line in the file being VIEWed does not contain a line feed, it will not appear on screen.

WARNING

There is a possibility that if a file is longer than 32767 characters and does not include a newline character,
the system may crash!

CROSS-REFERENCE

SPL file TO #1 copies all kinds of files to a window, for example without truncating lines.

Compare COPY and MORE.

29.11. VIEW 843

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

29.12 VOCAB

Syntax VOCAB [#channel,] type or
VOCAB [#channel] [,type]

Location VOCAB (DIY Toolkit, Vol X)

This command lists all of the names which fall into a given category and are recognised by the Super-
BASIC interpreter in the given channel (default #1). If type is not specified, then it is assumed to be
type=8.

The names are listed in columns, calculated by reference to the width of the specified channel (set by
WIDTH for non-window devices). Once all of the names of the given type have been listed, a line feed
is printed to end the list. The values for type are:

Type Category of names listed
0 Unset Names
2 Simple Variables
3 Dimensioned Variables
4 SuperBASIC PROCedures
5 SuperBASIC FuNctions
6 Used REPeat loops
7 Used FOR loops
8 Machine code Procedures
9 Machine code Functions

Other values or type=1 will report an error or may cause junk to appear on screen.

NOTE 1

For some reason, under SMS, VOCAB 2 will report rubbish on screen unless a program has been RUN
already and even then, the last entry may not be an actual variable. No such problems seem to occur on
Minerva or other ROMs.

NOTE 2

VOCAB 6 and VOCAB 7 only list those REPeat and FOR loop names which have actually been used in
the program when it has been RUN.

CROSS-REFERENCE

Use SXTRAS if you have a lot of extensions in memory and you are looking for a specific one.

See also TXTRAS, EXTRAS and TYPE.

844 Chapter 29. Keywords V

CHAPTER

THIRTY

KEYWORDS W

30.1 WAIT_EVENT

Syntax WAIT_EVENT (event [,timeout])
Location SMSQ/E v2.71+

This function access the Event Accumulator for the current job and checks whether the specified event
(or events) have occurred. If you want to check for the occurrence of several events, you merely need to
add together the numbers of the events. If any one of the specified events has already occurred then the
function will return the total value of the specified events which have occurred. If none of the specified
events have occurred, then this function will suspend the current program until one of those events has
occurred or the specified timeout (if any) has elapsed. If timeout is not specified then the function will
wait forever. If the reason for the function returning was that the timeout has elapsed (and none of the
specified events have occurred) then the returned value will be 0.

Example

PRINT WAIT_EVENT(12)

This wait for event numbers 4 and 8 (4+8=12). If event 8 was notified as having occurred, then the value
8 would be shown on screen.

CROSS-REFERENCE

SEND_EVENT notifies a Job’s Event Accumulator that one or more events have occurred.

30.2 WBASE

Syntax WBASE [(#channel)]
Location Tiny Toolkit

This function is exactly the same as WIN_BASE.

CROSS-REFERENCE

See WIN_BASE.

845

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

30.3 WCOPY

Syntax WCOPY [#ch,] [wild1] [TO wild2](Toolkit II) or
WCOPY [#ch,] wild1 TO wild2(THOR)

Loca-
tion

Toolkit II, THORs

The command WCOPY is intended to allow you to copy several files with a common root from one device
to another, quickly and easily.

It is however necessary to understand the way in which Toolkit II’s wildcards work, as WCOPY uses
these wildcards to find the required files. A wildcard is a means of finding several files which have
similar names.

The first thing which any wildcard command does is to look at the supplied parameter and then compare
this against each entry in the directory of the given device. If any of the filenames match exactly, or if
the parameter forms the start of any filenames, those files are marked as chosen. For example:

WCOPY flp1_D TO flp2_

would copy all files whose names are either ‘D’ or begin with the letter ‘D’ to flp2_ (the comparison is
case independent).

However, wildcards can be much more complex and wonderful on the QL. If you place two underscores
(’_’) together as part of wild1, this is taken to be a wildcard and can in fact be replaced by any string of
characters in order to match filenames with wild1. Wildcards are further complicated by the fact that if a
device name is not provided as part of wild1, then the default device will be added (which ends with an
underscore, so if wild1 begins with an underscore, you will have a wildcard symbol!!) A few examples
of wildcards (assuming default device is ‘flp1_’):

Wild1 Wild Card Name
File Matches

t flp1_t
flp1_testa
flp1_test_v1.00_bas

_t flp1__t
flp1_testa
flp1_test_v1.00_bas
flp1_old_v0.01_test_bas

flp1_old_ _flp1_old__
flp1_old_v0.01_test_bas
flp1_old_v1.00_exe
flp1_old_data

846 Chapter 30. Keywords W

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

WCOPY uses both wildcards for ascertaining the names of the files to be copied, and the files to be
created. However, both wild1 and wild2 are dealt with distinctively.

WCOPY will use the rules on wildcards to search for files which match with wild1 on the specified device,
or the default data device if no device is specified. However, the rules for determining the destination
parameter wild2 are complex:

1. If no device is given, but a filename is specified, WCOPY looks at wild1. The destination device
is then assumed to be the same as the source device (ie. the device name specified as part of wild1,
or if omitted, DATAD$).

2. If the second parameter is omitted, then again WCOPY looks at wild1. If a device is given in the
first parameter, then this is used as the destination device. On the other hand, if no device was
specified, then the default destination device will be used (see DESTD$).

3. If a second parameter is given which includes a device name, then this is used! Having decided
upon the device to which the files are to be copied, WCOPY then looks at the remainder of wild2
to ascertain what to do with the filenames it has found.

Before trying to understand how this works, it is essential to realise that there is an implicit wildcard
placed at the end of both wild1 and wild2.

WCOPY will look at wild2 and compare each filename that it has found using the wildcards in wild1 in
turn. If a wildcard in wild1 is matched by a wildcard in wild2, then that part of the source filename will
be inserted into the destination filename. However, beyond this, WCOPY will use the rest of wild2 as
the actual destination filename. Any additional sections in wild1 or wild2 will be inserted after the drive
name in the destination filename. See the examples below!

Having decided which files are to be copied and the names they are to be given on the device where they
are being copied to, WCOPY will then request confirmation in the specified channel (default #0) for each
file, by printing the following message in the channel:

source_file TO destination_file..Y/N/A/Q?

You will then need to press <Y> to copy that file across, <N> to miss that file out, <A> to copy all files
which match with wild1, or <Q> to leave WCOPY. In this instance, <ESC> and <CTRL><SPACE> both
act as <Q>.

If the destination file already exists, another prompt will be shown in the form:

OK to overwrite..Y/N/A/Q?

You will then need to press <Y> to overwrite that file, <N> to go onto the next file, <A> to overwrite
this and all other files being copied if they already exist, or <Q> to stop WCOPY. Again, <ESC> and
<CTRL><SPACE> act as <Q>.

Examples

Assuming that the default data device is flp1_ and the default destination device is ram2_:

WCOPY

Copies all files on flp1_ to ram2_

30.3. WCOPY 847

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

WCOPY flp1_test TO ram2_old

Copies:

flp1_testa to ram2_olda
flp1_test_v1.00_bas to ram2_old_v1.00_bas

WCOPY flp1_test, ram2_old_

Copies:

flp1_testa to ram2_olda
flp1_test_v1.00_bas to ram2_old_v1.00_bas

WCOPY _bas to ram2_

Copies:

ram1_test_v1.00_bas to ram2_bas
ram1_old_v0.01_test_bas to ram2_bas

WCOPY _bas, ram2__

Copies:

ram1_test_v1.00_bas to ram2_test_v1.00_bas
ram1_old_v0.01_test_bas to ram2_old_v0.01_test_bas

WCOPY old__ TO ram2_

Copies:

ram1_old_v0.01_test_bas to ram2_v0.01_test_bas
ram1_old_v1.00_exe to ram2_v1.00_exe
ram1_old_data to ram2_data

NOTE 1

The TO in the syntax can be replaced by a comma ‘,’ as per a number of the above examples.

NOTE 2

On the THOR range (v4.02+) the word ‘TO’ in the prompts is replaced by the symbol =>

NOTE 3

On the THOR range, the prompt message are altered from ‘Y/N/A/Q’ to ‘Yes/No/All/Quit’.

NOTE 4

As with COPY, WCOPY does not copy the header to serial devices (eg. ser) if this is specified as the
destination. However, the THOR variant of this command actually looks to see whether the file-type or
file dependent information fields are non-zero in which case the header is always copied.

NOTE 5

848 Chapter 30. Keywords W

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

If you have level-2 device drivers, any sub-directories in the specified source directory are ignored by
WCOPY. For example, if:

DIR flp1_

gave the following result:

Psion Disk
400/1440 sectors
QUILL->
ABACUS->

Then:

WCOPY flp1_

would have no effect. However, compare:

WCOPY flp1_QUILL_

which would copy all of the files in the sub-directory ‘QUILL’ to the current destination device.

NOTE 6

Both parameters must be supplied for the THOR variant of this command, otherwise the error ‘Bad
Parameter’ will be reported.

NOTE 7

Current versions (at least up to v2.85) of WCOPY do not work correctly with the DEV device when this
is pointing at a sub-directory (eg:

DEV_USE 1, flp1_QUILL_: WCOPY DEV1_

WCOPY will however work if the DEV device is pointing at a root directory, eg:

DEV_USE 1, flp1_.

CROSS-REFERENCE

SPL_USE and DEST_USE set the destination device. See COPY , WCOPY_F and WCOPY_O which are
all similar. WREN , WDIR, WSTAT and WDEL all use wildcards. COPY and SPL allow you to copy
specific files.

30.4 WCOPY_F

Syntax WCOPY_F [#ch,] wild1 TO wild2
Location THORs

This command works in a similar way to WCOPY. However, although it lists the files being copied to the
given channel (default #0), the user is not prompted to confirm that each file should be copied. The user
will however be asked to confirm should the destination filename already exist.

30.4. WCOPY_F 849

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE

See WCOPY .

30.5 WCOPY_O

Syntax WCOPY_O [#ch,] wild1 TO wild2
Location THORs

WCOPY_O is the same as WCOPY_F except that any existing files are automatically overwritten without
any prompting.

CROSS-REFERENCE

See WCOPY_F.

30.6 WDEL

Syntax WDEL [#ch,] [wild]
Location Toolkit II, THORs

WDEL allows you to delete several files which match the given wildcard at the same time. If wild contains
a device name, then each file on that device is checked to see if its name matches the wildcard, otherwise
the files on the default data directory are checked.

If any files are found which match the wildcard, a prompt will appear in the specified window (default
#0) to the effect:

filename..Y/N/A/Q?

You must then either press <Y> to delete the offered file, <N> to leave that file, <A> to delete that file
and all other files which match the wildcard, or <Q> to stop WDEL. <ESC> and <CTRL><SPACE> will
have the same effect as <Q>.

Example

WDEL win1_v1_

will delete all files in the sub-directory v1.

NOTE 1

The THOR variant of WDEL has amended the prompt to read: ‘Yes/No/All/Quit’

NOTE 2

Current versions of WDEL (at least up to v2.88) do not work with the DEV device when this is pointing
to a sub-directory. Even if you can persuade WDEL to offer you the filename for deletion, when you
press <Y> or <A>, WDEL fails to delete the file!

NOTE 3

850 Chapter 30. Keywords W

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

If you try to use WDEL on a write protected disk, it will ask you whether you want to delete each file in
turn reporting for each filename that the disk is write-protected, rather than stopping altogether.

CROSS-REFERENCE

WCOPY provides details about wildcards. DELETE allows you to delete single files.

30.7 WDEL_F

Syntax WDEL_F [#ch,] [wild]
Location THORs

WDEL_F is exactly the same as WDEL except no prompts or information about the files being deleted
is shown on screen.

CROSS-REFERENCE

See WDEL.

30.8 WDIR

Syntax WDIR [#ch,] [wild] or
WDIR \file [,wild] (Toolkit II only)

Location Toolkit II, THORs

WDIR allows you to produce a list of all of the filenames on a given medium which match with the
specified wildcard. If wild contains a device name, then a list of all of the files on that device which
match with the wildcard is printed out to the specified channel (default #1). If however, a device is not
specified, the default data device is used.

The second variant is only supported by Toolkit II and allows you to send the results to the specified file
instead of sending it to a channel. If file does not include a valid device, the default data device is used,
and if the file already exists, you will be asked whether or not you wish to overwrite it. The file is then
opened by the WDIR command, the list of files written to it and then closed again.

Examples

WDIR \ser1, flp1___scr

will produce a list of all of the files on flp1_ whose names end with _scr.

WDIR my

lists all files in the current directory which start with my.

WDIR _my

lists files which start with my or contain _my somewhere.

CROSS-REFERENCE

30.7. WDEL_F 851

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

DIR will produce a list of all of the files on a given medium. WCOPY contains details of how wildcards
operate.

30.9 WEEKDAY%

Syntax WEEKDAY% [datestamp]
Location SMSQ/E

This function complements the DATE and DATE$ functions, by returning the day of the week as a number
starting from 0 for Sunday corresponding to the given datestamp, or current date, if no datestamp was
given.

Examples

PRINT WEEKDAY% (0)

will print the month part of the QL’s epoch, 0 for Sunday, January 1st, 1961

PRINT WEEKDAY%

will print the current weekday number, (0. . . 6 for Sunday to Saturday).

CROSS-REFERENCE

See DATE, YEAR%, MONTH%, DAY%.

30.10 WGET

Syntax WGET [#ch\position,] [item *[,itemi]* ..] or
Syntax WGET [#ch,] [item *[,itemi]* ..]
Location SMSQ/E

This command is very similar to BGET, except that this fetches a word (in the range 0..65535) from the
given channel (default #3).

CROSS-REFERENCE

See WPUT and BGET .

30.11 WHEN condition

Syntax WHEN condition
Location QL ROM (post JM), THOR XVI, Not SMSQ/E

WHEN is used to identify the start of a SuperBASIC structure which is used to surround lines of Su-
perBASIC code which should be executed whenever the given condition is met. The condition is not
checked when a variable is READ, or INPUT.

852 Chapter 30. Keywords W

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

The syntax of the SuperBASIC structure can take two forms:

WHEN condition:statement:sup:*[:statement]*

or

WHEN condition *[statements]* .. END WHEN

The condition can be anything which is accepted by the IF command, provided that it begins with the
name of a variable (for example, WHEN a-10=b is acceptable, but WHEN 10-a=b is not). The variable
cannot be an array.

When a program is run, the interpreter will make a note of the variable being tested and then jump to the
statement following the END WHEN statement (unless the in-line format is used when control jumps to
the next line if END WHEN does not appear on that line). Great care must however, be taken where the
condition refers to more than one variable, as an ‘error in expression’ will be reported if a variable is not
defined when the condition is tested, for example, the following stops with ‘error in expression’ at line 4:

4 WHEN x>1 AND y>1
5 x=x+1:PRINT 'hello'
6 END WHEN
7 PRINT 'Start'
8 :
100 FOR x=1 TO 2
110 FOR y=1 TO 2
120 PRINT x,y;' ';
130 END FOR y
140 END FOR x

This is because when line 100 is processed, the interpreter jumps to the WHEN clause. At this stage, y
is undefined, hence the error. The program will work if you add the line:

1 y=0

Although blocks can be specified which check for various conditions of the same variable, if the condi-
tions overlap, there is no guarantee as to which WHEN statement will be executed first. Blocks cannot
be mixed together. In the following example, although if a$=’me’ the messages ‘hello’ and ‘who’ will
be printed, and if a=2 the only message which will be printed is ‘A is 2’ - when the program is RUN,
the first END WHEN command is matched with line 1, thus the message ‘who’ is also printed when the
program is run (it is extremely bad programming practice in any event to mix program structures of this
sort).

1 WHEN a$='me'
2 PRINT 'hello'
3 WHEN a=2
4 PRINT 'A is 2'
5 END WHEN
6 PRINT 'Who'
7 END WHEN

WHEN processing is turned off by the command WHEN anything, and also when the NEW, CLEAR,
LOAD, LRUN, MERGE, and MRUN commands are issued. You can also switch off WHEN processing
on a given variable (eg. b) by the command WHEN b (in the following example).

Example

30.11. WHEN condition 853

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

110 WHEN a>100 AND a<1000: PRINT 'A is now in the range 100-1000': a=a+100
120 WHEN b=a
130 PRINT 'B is now the same as A ': PRINT B,A: A=A+50
140 END WHEN
150 WHEN b MOD 100=0: b=b+200
155 :
160 LET a=100: b=a
170 a=10
180 REPeat Loop
190 a=a+1: b=b-1
200 AT 0,0: PRINT 'A='!a\\'B='!b
210 END REPeat Loop

NOTE 1

This command does not work reliably on any QL versions other than Minerva v1.77 or later: although
Toolkit II improves the reliability, problems include calling the block more than once, and reporting ‘bad
name’ when the block is called. WHEN clauses will also remain in force despite NEW, CLEAR, LRUN,
LOAD, MERGE and MRUN, unless Toolkit II is present.

NOTE 2

A WHEN clause will not be called if it is already active, even though the program may have jumped out
of the actual WHEN clause. For example:

100 WHEN a=100: PRINT 'A=100': GOTO 400
115 :
110 a=10
120 REPeat loop
130 a=a+10: PRINT a
140 END REPeat loop
150 STOP
160 :
400 FOR a=10 TO 200 STEP 30
410 PRINT a
420 END FOR a

NOTE 3

On JS MG and THOR XVI ROMs, a maximum of 20 WHEN clauses can be active at any time.

CROSS-REFERENCE

Other SuperBASIC structures are WHEN ERRor, SELect ON and IF..END IF.

END WHEN defines the end of a WHEN XXX structure.

854 Chapter 30. Keywords W

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

30.12 WHEN ERRor

Syntax WHEN ERRor
Location QL ROM (post JM), THOR XVI

This command marks the beginning of the SuperBASIC structure which is used to surround lines of
SuperBASIC code which should be executed whenever an error is generated whilst error trapping is
active. Error trapping is activated as soon as the interpreter reads a line containing WHEN ERRor. It
is therefore not activated by a WHEN ERRor command being entered into the command window (#0)
- indeed this has a special purpose (see below). The syntax of the SuperBASIC structure can take two
forms:

WHEN ERROR: statement *[:statement]*

or

WHEN ERROR *[statements]* .. END WHEN

In the normal course of progress, the WHEN ERRor block would appear at the start of a SuperBASIC
program, and error trapping would therefore be enabled as soon as a program is RUN. Once error trapping
is enabled, whenever an error is generated, control is passed to the WHEN ERRor clause, allowing you
to specify how it the error to be dealt with.

It must however be borne in mind that whilst active, errors will trigger the WHEN ERRor clause whether
they are generated whilst the program is being RUN or at some other stage (eg. if a direct command
causes an error). If the interpreter comes across more than one WHEN ERRor block, then the latest one
is used to trap errors.

Errors generated within the WHEN ERRor block itself are reported as normal, although the message
‘during WHEN processing’ is displayed along with the error message. Unless you include a STOP state-
ment in the WHEN ERRor clause, after going through all of the lines within the clause, the program will
continue running from the statement following the one which caused the error.

You can force this to happen with CONTINUE, whereas RETRY can be used to re-execute the command
which caused the error. Error trapping is turned off by the command WHEN ERRor (when entered as
a direct command), and also when the NEW, CLEAR, LOAD, LRUN, MERGE, and MRUN commands
are issued.

Example

A program which provides a fully error trapped educational aid:

100 WHEN ERRor
110 STRIP#0,2
120 IF ERR_XP
130 PRINT#0,'Please enter a number!'\'Press a key'
140 PAUSE:STRIP #0,0:RETRY 320
150 END IF
160 IF ERR_OV
170 PRINT#0,'Divide by zero is undefined!'\'Press a key'
180 PAUSE:STRIP #0,0:RETRY 320
190 END IF
200 STRIP #0,0

(continues on next page)

30.12. WHEN ERRor 855

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

210 PRINT #0,'At line: ';ERLIN:REPORT:STOP
220 END WHEN
225 :
230 MODE 8
240 WINDOW 448,200,32,16:PAPER 0:INK 6:CLS
250 WINDOW #0,448,40,32,216:PAPER#0,0:INK#0,7:CLS#0
260 CSIZE 2,0:AT 8,8:PRINT 'Maths Division Tutor'
270 CSIZE 1,0
280 REPeat loop
290 y=RND(1 TO 10):x=RND(1 TO 10)*y
300 IF y>x:ya=x:x=y:y=ya
310 IF RND>.9:x=0:y=0
320 REPeat answer
330 AT 10,0:CLS 2:AT 11,0:CLS#0
340 INPUT 'Enter number to divide'!(x)!'by to give'!(y)!': ';a
350 IF x/a=y THEN EXIT answer
360 PRINT \\'Wrong - Please try again'\'Press a key'
370 PAUSE
380 END REPeat answer
390 PRINT \\'Correct - Another one...'\'Press a key'
400 PAUSE
410 END REPeat loop

NOTE 1

This SuperBASIC structure does not work very reliably on any QL versions other than Minerva v1.77 (or
later), SMS or the THOR XVI: although Toolkit II improves the reliability, problems include crashing the
machine if an error is generated inside a function whilst error trapping is enabled {eg. PRINT SQRT(-
1)}, or if you try to carry out INKEY$ at the end of a file. WHEN ERRor clauses will also remain in
force despite NEW, CLEAR, LRUN, LOAD, MERGE and MRUN.

NOTE 2

WHEN ERRor cannot trap the Break key <CTRL><SPACE> (and <ESC> on Minerva), which will con-
tinue to stop a SuperBASIC program.

NOTE 3

You should not try to nest several WHEN ERRor clauses - under SMS the error ‘WHEN clauses may not
be nested’ is reported.

SMS NOTE

Even in the in-line version of WHEN ERRor it is imperative that END WHEN is specified, otherwise
the error ‘Incomplete WHEN clause’ will be reported.

CROSS-REFERENCE

ERLIN returns the line number on which the error occurred. ERNUM returns the error number it-
self. There are several functions in the form ERR_XX which return 1 if the given error has occurred.
BREAK_OFF allows you to turn the Break key off. END WHEN defines the end of the error handling
block.

856 Chapter 30. Keywords W

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

30.13 WHERE_FONTS

Syntax address = WHERE_FONTS(#channel, 1_or_2)
Location DJToolkit 1.16

This function returns a value that corresponds to the address of the fonts in use on the specified channel.
The second parameter must be 1 for the first font address or 2 for the second, there are two fonts used on
each channel. If the result is negative then it will be a normal QDOS error code. The channel must be a
CON_ or a SCR_ channel to avoid errors.

EXAMPLE

The following example will report on the two fonts used in any given channel, and will display the
character set defined in that font:

4480 DEFine PROCedure REPORT_ON_FONTS (channel)
4485 LOCal address, lowest, number, b
4490 REMark show details of channel's fonts
4495 CLS
4500 FOR a = 1,2
4505 address = WHERE_FONTS(#channel, a)
4510 lowest = PEEK(address)
4515 number = PEEK(address + 1)
4520 PRINT '#'; channel; ' font '; a; ' at address '; address
4525 PRINT 'Lowest character code = '; lowest
4530 PRINT 'Number of characters = '; number + 1
4535 REMark print all but default characters
4540 PRINT : REMark blank line
4545 FOR b = lowest + 1 TO lowest + number :PRINT CHR$(b);
4550 PRINT \\\ : REMark 2 blank lines
4555 END FOR a
4560 END DEFine REPORT_ON_FONTS

30.14 WIDTH

Syntax WIDTH [#channel,] x
Location QL ROM

The WIDTH command is an output formatting command which allows the user to specify the width of
a device which is being used by the QL for output (such as a printer) on the given channel (default #1).
This can only be used on non-screen (ie. not scr_ or con_) channels and only has any effect if you use
one of the separators exclamation mark (!); comma (,) or TO when PRINTing.

The value of x should represent the number of characters wide which the output device is to use (the
default is 80 characters).

Example

30.13. WHERE_FONTS 857

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

A short procedure to output text to a non-screen device of a given width without chopping off any words
at the end of each line:

100 :
110 t$ = 'The way in which the WIDTH command works is very particular to the␣
→˓QL '
120 t$ = t$ & 'and is really only suited for specific types of work. If you␣
→˓do not '
130 t$ = t$ & 'use the separators ! or , then the text will still be output␣
→˓at the '
140 t$ = t$ & 'default width of 80'
115 :
200 OPEN_NEW #3,ram2_junk
210 DUMP_TEXT #3, t$, 80
220 DUMP_TEXT #3, t$, 40
230 :
240 CLOSE#3
250 :
260 :
1000 DEFine PROCedure DUMP_TEXT(chan,str$,wid)
1010 LOCal word$
1020 WIDTH #chan,wid
1030 IF str$="" THEN RETurn
1040 word_start=1
1050 REPeat word_loop
1060 word_end=(' ' INSTR str$)-1
1070 IF word_end>=word_start
1080 word$=str$(word_start TO word_end)
1090 ELSE
1100 word$=str$(word_start TO)
1110 END IF
1120 PRINT #chan;!word$!:PRINT !word$!:PAUSE
1130 IF word_end+2>LEN(str$) OR word_end=-1:EXIT word_loop
1140 str$=str$(word_end+2 TO)
1150 END REPeat word_loop
1160 END DEFine

CROSS-REFERENCE

See OPEN and PRINT .

30.15 WINDOW

Syntax WINDOW [#ch,] x, y, posx, posy or
WINDOW [#ch,] x, y, posx, posy [\border] (Minerva v1.79+, THOR XVI)

Loca-
tion

QL ROM, Minerva, THOR XVI

This command redefines the given screen window (default #1) by specifying the new size and position

858 Chapter 30. Keywords W

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

of the window. The values must all be calculated in the pixel co-ordinate system, which means that x and
posx can be in the range 0. . .XLIM (in both MODE 4 and MODE 8), provided that x+posx<=XLIM and
y and posy can be in the range 0..YLIM, provided that y+posy<=YLIM.

On a standard QL resolution screen (ie. 512x256 pixels), due to the shape of the screen, a window which
measures 100x100 pixels will not appear square. You will need to use a size of 137x100 pixels instead!
The Minerva and THOR XVI variants allow you to specify a border to be drawn around the window
at the same time, by the addition of up to a further four parameters in the form: [\border_size [,colour
[,colour2 [,stipple]]]] This therefore allows you to combine the WINDOW and BORDER commands.
For example:

WINDOW 448,200,32,16\2,2

is the same as:

WINDOW 448,200,32,16:cBORDER 2,2.

Example

WINDOW 448,200,32,16

is similar to:

OPEN #1,CON

NOTE 1

Although the ‘\’ separator is not checked for on the Minerva and THOR XVI implementations, it is
recommended to ensure that this is present to ensure future compatibility. Older ROM versions did
not check the number of parameters, which could result in some software causing problems unless the
separator is actually checked for.

NOTE 2

You cannot have a gap of one pixel between windows, even in MODE 4 - this is to ensure compatibility
between MODE 4 and MODE 8. Any odd parameters will be rounded down.

MINERVA NOTE

In a MultiBasic, both channel #0 and #1 are inextricably linked. Unfortunately, this means that in certain
cases both channel #0 and channel #1 must have the same size and position: any attempt to re-size #0
will re-size #1 and vice versa. See the MultiBasic appendix for further details.

CROSS-REFERENCE

OPEN allows you to open a window ready for use. BORDER allows you to set an implicit border.

30.15. WINDOW 859

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

30.16 WINF$

Syntax WINF$
Location Fn

This is the same as WMAN$.

30.17 WIN2

Syntax WIN2 directory
Location Gold Card, THOR XVI and ST/QL (Level C-19+)

This command simulates the drive win2_ if only one hard disk (win1_) is present. All access to win2_
will be redirected to directory.

Example

WIN2 system: DIR win2

will produce a listing of the files held in the sub-directory win1_system. This is equivalent to:

DIR win1_system

NOTE

Do not specify the device as part of directory.

CROSS-REFERENCE

DEV_USE is much more flexible.

30.18 WIN_BASE

Syntax WIN_BASE [(#channel)]
Location Fn

This function returns the start address of the definition block for the specified window (default #1). If an
error occurs WIN_BASE returns the appropriate QDOS error code, eg. -15 if the channel does not apply
to a window or -6 if the channel is not open.

Example

Some information about the internal structure of QDOS is necessary to make use of WIN_BASE from
SuperBASIC. This function returns the PAPER background colour of a window:

100 DEFine FuNction GET_PAPER (winchan)
110 IF WIN_BASE(#winchan)<0 THEN
120 PRINT#0,"GET_PAPER: ";: REPORT #0, WIN_BASE(#winchan)

(continues on next page)

860 Chapter 30. Keywords W

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

130 PAUSE 800: STOP
140 END IF
150 RETurn PEEK(WIN_BASE(#winchan)+68)
160 END DEFine GET_PAPER

NOTE

The Window Manager changes the structure of window definition blocks.

CROSS-REFERENCE

SYS_BASE, SET

30.19 WIN_DRIVE

Syn-
tax

WIN_DRIVE driveno [, unit, disk] or
WIN_DRIVE driveno, unit [,disk] [,partition](SMSQ/E only) or
WIN_DRIVE driveno, path$(QPC & QXL SMSQ/E only)

Lo-
ca-
tion

ST/QL, SMSQ/E for Atari and QXL / QPC

It is possible not only to have several hard disk units attached to the Atari ST, but each hard disk unit
can also have more than one drive in it (for example, you might own a hard disk unit which has both a
standard hard disk and a changeable hard disk inside).

The normal chain of events is that each WIN drive would attach itself to the equivalent hard disk unit, for
example, WIN1_ would be connected to hard disk unit 0, WIN2_ to hard disk unit 1 and so on. However,
so that you may link the WIN drives to specific disks within each unit, the WIN_DRIVE command exists.

WIN_DRIVE takes the WIN drive number supplied by driveno and will attach this to the specified disk
which is housed in the specified unit.

Driveno must be in the range 1. . . 8 - this corresponds to the number which will be attached to WIN to
refer to the relevant drive (eg. WIN4_). If a unit and disk are not specified, this command will remove
the definition attached to the specified driveno.

Unit should be in the range 0. . . 7 and represents the number of the disk drive controller. An internal disk
drive controller is normally unit 0, but external controller unit numbers will depend upon the setting of
the switches on the back of the box.

If you are running SMSQ/E on the TT and wish to access a SCSI disk controller, then you will need to
add 8 to the value of unit.

Disk can be in the range 0. . . 7 and represents the number of the disk drive actually addressed by the given
controller. It is however rare in the Atari world to have more than one disk drive per controller and so
this value is normally either 0 or 1. The default is 0.

Finally, each disk can be partitioned, so that an area of each disk is set aside for specific uses (eg. for
QDOS or for GEM). You therefore need to specify the number of the partition. Default is 0. Although
you can configure SMSQ/E to start from a specific drive and partition, it normally looks for a BOOT file

30.19. WIN_DRIVE 861

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

in any partition on unit 0 (on the TT it will look at SCSI unit 0 and then ASCI unit 0). If found, WIN1_
will be set to this partition.

In current versions of SMSQ/E WIN2_ will not be linked to anything until you use the WIN_DRIVE
command.

Example

Assume that you have two hard disk units plugged into the Atari ST, the first one of which (unit 0) contains
a normal hard disk unit (disk 0) and a changeable hard disk unit (disk 1).

On starting the Emulator, WIN1_ would refer to the normal hard disk in unit 0 and WIN2_ would be
undefined. You could not therefore access the changeable hard disk from the Emulator. To avoid this,
use the commands:

WIN_DRIVE 2,0,1,0
WIN_DRIVE 3,1,0,2

This will link WIN2_ to the changeable hard disk (this is disk number 1 in unit 0, partition 0) and WIN3_
would then point to the hard disk in the second unit (disk 0 in unit 1, partition 2).

NOTE

Disk must be specified unless it is 0. - this means that if three parameters are specified, the third parameter
is taken to be the partition number.

QPC / QXL NOTE

From v2.89 of SMSQ/E, WIN_DRIVE is implemented slightly differently on these emulators. For each
driveno, you can specify a PC related path for the hard disk (the hard disk under QPC and QXL is
implemented as a single file stored on the PC’s hard disks). For example, use:

WIN_DRIVE 2,'D:\qxl.win'

to make win2_ on the QL emulator look use the file qxl.win on the PC’s D: drive. In this way, CD-ROMs
and DVD-RAMs can be used on the PC as a hard drive for the QL emulator. Although QPC allows you
to have several QL hard disk files on each PC device, QXL only allows one qxl.win file per PC device!!

WARNING 1

You must not make the QDOS WIN drive point to another physical drive if that WIN device has been
accessed already. For example, if you wanted to follow the above example, but had just loaded a program
from WIN2_ you must not use:

WIN_DRIVE 2,0,1.

WARNING 2

Do not attempt to make two WIN drives point to the same physical drive!

CROSS-REFERENCE

WIN_DRIVE$ returns the parameters already associated with a WIN drive. WIN_FORMAT allows you
to format a hard disk.

862 Chapter 30. Keywords W

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

30.20 WIN_DRIVE$

Syntax WIN_DRIVE$ (drive)
Location SMSQ/E for Atari and QXL / QPC

On SMSQ/E for the Atari, this function returns a string containing the unit, disk and partition numbers
addressed by the specified WIN drive.

Under SMSQ/E for the QXL and QPC (v2.89+), this function will return a string indicating the file on
the PC which is used as that hard drive.

If the specified drive has not been linked to any particular hard disk partition, an empty string is returned.

Atari Examples

WIN_DRIVE 2,0,1,0
PRINT WIN_DRIVE$(2): REMark Will print 0,1,0

QXL / QPC Examples

WIN_DRIVE 2,'C:\qxlback.win'
PRINT WIN_DRIVE$(2): REMark will print C:\qxlback.win

CROSS-REFERENCE

See WIN_DRIVE.

30.21 WIN_FORMAT

Syntax WIN_FORMAT drive [,protect]
Location SMSQ/E (v2.73+) for Atari and QXL / QPC

In order to prevent you from accidentally formatting your hard disk (or a partition of your hard disk) and
overwriting important information, SMSQ/E has implemented a form of protection. Before formatting
a QDOS partition, you will first of all need to create that partition using either the Atari’s or the PC’s
operating system (see the SMSQ/E documentation for details). You must then use the WIN_DRIVE
command, followed by WIN_FORMAT to allow the FORMAT command to work on the hard disk.

Protect is a flag - if it is omitted, this removes the protection from the partition pointed to by the specified
WIN drive. protect=1 sets the protection again after FORMATting.

Example

To format a QDOS partition called PROGS, pointed to by WIN2 on unit 1, partition 1:

WIN_DRIVE 2,1,1
WIN_FORMAT 2
FORMAT win2_PROGS
WIN_FORMAT 2,1

30.20. WIN_DRIVE$ 863

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE

Earlier versions of SMSQ/E did not include this command and the FORMAT command would work once
WIN_DRIVE had been used to set up the WIN drive name.

CROSS-REFERENCE

See FORMAT and WIN_DRIVE.

30.22 WIN_REMV

Syntax WIN_REMV driveno, flag (SMSQ/E & ST/QL Level C-24+) or
WIN_REMV driveno

Location ST/QL (Level C-20+), SMSQ/E for Atari, QXL / QPC

The advent of changeable hard disk drives caused a lot of problems, since it is just about feasible that you
might try to remove the hard disk unit whilst it is being accessed, which can cause serious damage to the
drive unit. Although the drives attempt to warn the computer when they are and are not removable, it is
next to impossible to ensure that when the drive says it can be removed, it is not actually powering up or
down.

The command WIN_REMV tells the system that the drive connected to the specified port is a removable
hard disk drive - the door on the unit will then remain firmly locked as long as any files on the hard disk
are open.

Note that driveno must be in the range 1. . . 8. SMSQ/E allows the first variant - flag can be omitted which
is equivalent to 1 (signifies a removable hard disk). It can also be one of the following values:

• 0: Clear the removable flag from the drive

• V: Mark the drive as being a VORTEX drive

Example

WIN_REMV 2

denotes win2_ as a removable disk drive.

NOTE

It is essential that WIN_REMV is used as early as possible - either before the drive is first accessed or as
the first line of your boot program if the Emulator is being booted from the hard disk in question.

SMSQ/E NOTE

SMSQ/E manages to detect removable hard disks 100% on SCSI ports. It is also normally successful in
detecting removable hard disks connected to ASCI ports unless you configure it to ignore them, therefore
this command is only really needed on ASCI drives.

QPC NOTE

You need v1.43+ of QPC to use removable drives.

WARNING

Never try to remove a hard disk (removable or otherwise!) whilst it is running.

864 Chapter 30. Keywords W

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE

WIN_STOP will park the head on the drive prior to removal. DMEDIUM_REMOVE can tell you if the
given device is a removable hard disk.

30.23 WIN_SLUG

Syntax WIN_SLUG x
Location ST/QL, SMSQ/E for Atari

Some winchester (hard disk) ASCI drives, in particular the Megafile and Vortex drives, need a special
parameter to be passed to them before they can be accessed by the QL due to timing faults in their
controllers. WIN_SLUG allows you to set this parameter.

The value of x will depend upon the drive being used, and can be anything in the range 0. . . 255. It is
measured in units which are 0.8ms. This parameter sets the minimum time that must elapse between
operations on the ASCI bus. Most controllers work with the default setting of 30 (which equates to a
time of 2.5ms). Refer to the disk documentation for further details.

30.24 WIN_START

Syntax WIN_START driveno
Location ST/QL, SMSQ/E for Atari and QPC / QXL

After the head on a changeable hard disk drive has been parked, it is necessary to tell it to release its head
before you can access the drive. WIN_START issues the command to do this. The parameter driveno is
the number of the hard disk to be told to release the head. Driveno must be in the range 1. . . 8.

Example

WIN_START 1

releases the head on win1_.

NOTE

Some hard disk drives will not release the head even after WIN_START unless the power to the drive is
switched off and back on.

CROSS-REFERENCE

See also WIN_DRIVE and WIN_STOP.

30.23. WIN_SLUG 865

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

30.25 WIN_STOP

Syntax WIN_STOP driveno
Location ST/QL, SMSQ/E for Atari and QPC / QXL

If you are going to move a computer around, or swap over a changeable hard disk drive, it is essential
that you make sure that the head on the hard disk drive is parked. This basically means that the drive
locks the head away and ensures that it cannot be banged onto the surface of the hard disk drive.

Some hard disk interfaces (such as the Miracle Hard Disk system for the QL) automatically park the
head if the drive has not been accessed for a while. However, on other systems, it is necessary to do this
explicitly. WIN_STOP tells the hard disk in the specified drive to park its head. driveno must be in the
range 1. . . 8.

Example

WIN_STOP 2

will park the head in win2_.

WARNING 1

Never move a hard disk about unless its head is parked as this can cause permanent damage to the drive.

WARNING 2

Some hard disk drives require that you park the head before disconnecting the power to the drive. Refer
to the instructions for the hard disk which you are using.

WARNING 3

You may find that some drives will refuse to respond to access calls if stopped accidentally, or when
using this command. If WIN_START does not revive them, then unfortunately the only thing to do is to
reset the system (switching the power back and back on).

CROSS-REFERENCE

WIN_START releases the head so that the drive can be used again.

30.26 WIN_USE

Syntax WIN_USE [device]
Location THOR XVI, ST/QL, Hard disk driver, SMSQ/E for Atari and QXL / QPC

As with FLP_USE this allows you to assign another three letter description to the WIN device driver, so
that it can be accessed by programs which do not allow you to alter their devices. If no device is specified,
then the device name is returned to the default win.

Example

WIN_USE mdv

866 Chapter 30. Keywords W

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

will ensure that any further attempt to access mdv1_ will actually access win1_. If you later use the
command:

WIN_USE

or:

WIN_USE win

then you will once again be able to use the microdrives as well as win1_.

NOTE

The QL’s operating system tests for directory device drivers in a fixed order: DEV, FLP, RAM, WIN and
MDV. This means that if you rename a driver to three letters which refer to a device driver earlier in the
list, that original device driver will be used in preference. For example:

WIN_USE flp

will not work (attempts to read a file from flp1_ will still try to read floppy disk drive number one) - you
will need to also rename the floppy disk driver:

FLP_USE flp

CROSS-REFERENCE

FLP_USE, RAM_USE, DEV_USE are similar. DMEDIUM_TYPE can be used to find out the type of
device which a name actually refers to. DMEDIUM_NAME$ will return the default name of a device.

30.27 WIN_WP

Syntax WIN_WP drive, protect
Location SMSQ/E for Atari and QXL / QPC

This command allows you to mark a specified WIN drive as read only protect=1 will write protect the
hard disk. protect=0 (the default) will remove the write protection.

CROSS-REFERENCE

DMEDIUM_RDONLY will tell you if a device is read only. See also WIN_REMV and WIN_FORMAT
for other types of protection.

30.28 WIPE

Syntax WIPE
Location BeuleTools, WIPE

This command clears the whole screen so that it is completely black.

WIPE is an alternative to:

30.27. WIN_WP 867

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

OPEN#11,scr_512x256a0x0:
CLS#11:
CLOSE#11

or:

SCRBASE SCREEN: SCLR 0

NOTE

This command presumes that the screen starts at 131072 and measures 512x256 - it will therefore not
work on higher resolutions.

CROSS-REFERENCE

CLS clears a window in its current paper colour, SCLR the (background) screen in a given colour. CLS_A
is a global CLS.

30.29 WLD

Syntax WLD (word1$, word2$ [,dummy]) or
WLD (word1$, word2$, w1, w2, w3 [,dummy])

Location Ähnlichkeiten

This function calculates the weighted Levenstein phonetic distance between two strings: the smaller the
result, the more that the two strings are phonetically similar.

If two strings are found to be identical, then 0 is returned, otherwise a positive integer is returned.

The value of the dummy parameter does not actually matter - if it is present then the function will not
distinguish between upper and lower case characters.

The three additional parameters of the second syntax allow you to alter the importance of three possible
factors used to calculate the difference between the strings - each parameter should have a positive value:

• w1: wrong letters

• w2: strings too short

• W3: strings too long

Example

100 a$="Sinclair QL": b$="IBM PC": CLS
110 PRINT a$;" <-> ";b$
120 PRINT\WLD(a$,b$), WLD(a$,b$,0)
130 PRINT WLD(a$,b$,1,1,1), WLD(a$,b$,1,1,1,0)
140 PRINT WLD(a$,b$,0,0,0)
150 PRINT WLD(a$,b$,1,2,3), WLD(a$,b$,3,2,1)

CROSS-REFERENCE

SOUNDEX, PHONEM.

868 Chapter 30. Keywords W

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

30.30 WM

Syntax WM
Location WM

QPAC2 uses a Button Frame which is normally situated across the top of the screen. The command WM
sets up the three basic windows #0, #1 and #2 so that there is space for two rows of buttons. At the same
time, the window attributes are reset to the status they would have been in had you reset the system and
pressed <F1> for monitor mode. The current screen resolution mode is not affected.

NOTE

QPAC2 and the Pointer Environment are not necessary to use WM.

CROSS-REFERENCE

WMON restores the original monitor windows and WTV the TV mode. Use INK , PAPER, BORDER and
STRIP to change window attributes.

30.31 WM_BLOCK

Syntax WM_BLOCK [#channel,] width, height, x, y, palette_index
Location SMSQ/E >= 3.00

Newer Window Managers maintain a table of colour settings for programs to use as “standard colours”.
This is called the System Palette, also known as a ‘colour theme’. Four system palette tables, or themes,
are supplied with the operating system.

The list is sorted by usage rather than colour and includes colour values to be used for display items
such as window background, border, loose items and so on. The items are referenced by a 4-digit hex
number (16-bit value) as per the list under the entry for WM_INK , or the decimal number equivalent.
These numbers should not be used in standard INK , PAPER and BORDER statements – they are not
colour values, merely an index to an entry in a list of colour values. They should be used with the WM_x
equivalent commands, which will look up the colour values to be used for the item numbers in the list.

WM_BLOCK draws a block in the channel indicated using the colour for the specified item number from
the system palette.

Example

WM_BLOCK #1,100, 40, 0, 0, $201

Draws a block 100 pixels wide and 40 pixels high to #1 in the current system palette’s window background
colour.

CROSS-REFERENCE

See WM_INK , WM_PAPER, WM_BORDER, WM_STRIP.

30.30. WM 869

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

30.32 WM_BORDER

Syntax WM_BORDER [#channel,] palette_index
Location SMSQ/E >= 3.00

Newer Window Managers maintain a table of colour settings for programs to use as “standard colours”.
This is called the System Palette, also known as a ‘colour theme’. Four system palette tables, or themes,
are supplied with the operating system.

The list is sorted by usage rather than colour and includes colour values to be used for display items
such as window background, border, loose items and so on. The items are referenced by a 4-digit hex
number (16-bit value) as per the list under the entry for WM_INK , or the decimal number equivalent.
These numbers should not be used in standard INK , PAPER and BORDER statements – they are not
colour values, merely an index to an entry in a list of colour values. They should be used with the WM_x
equivalent commands, which will look up the colour values to be used for the item numbers in the list.

WM_BORDER sets the border colour for the channel indicated to the colour for the specified item number
from the system palette.

Example

WM_BORDER #1,$20e

Sets the border colour in #1 to the information window border colour from the current system palette.

CROSS-REFERENCE

See WM_INK , WM_PAPER, WM_STRIP, WM_BLOCK .

30.33 WM_INK

Syntax WM_INK [#channel,] palette_index
Location SMSQ/E >= 3.00

Newer Window Managers maintain a table of colour settings for programs to use as “standard colours”.
This is called the System Palette, also known as a ‘colour theme’. Four system palette tables, or themes,
are supplied with the operating system.

The list is sorted by usage rather than colour and includes colour values to be used for display items such
as window background, border, loose items and so on. The items are referenced by a 4-digit hex number
(16-bit value) as per the list below, or the decimal number equivalent. These numbers should not be used
in standard INK , PAPER and BORDER statements – they are not colour values, merely an index to an
entry in a list of colour values. They should be used with the WM_x equivalent commands, which will
look up the colour values to be used for the item numbers in the list.

WMINK sets the ink colour for the channel indicated to the colour for the specified item number from
the system palette.

Number Meaning
continues on next page

870 Chapter 30. Keywords W

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table 2 – continued from previous page
$0200 Window border
$0201 Window background
$0202 Window foreground
$0203 Window middleground
$0204 Title background
$0205 Title text background
$0206 Title foreground
$0207 Loose item highlight
$0208 Loose item available background
$0209 Loose item available foreground
$020a Loose item selected background
$020b Loose item selected foreground
$020c Loose item unavailable background
$020d Loose item unavailable foreground
$020e Information window border
$020f Information window background
$0210 Information window foreground
$0211 Information window middleground
$0212 Subsidiary information window border
$0213 Subsidiary information window background
$0214 Subsidiary information window foreground
$0215 Subsidiary information window middleground
$0216 Application window border
$0217 Application window background
$0218 Application window foreground
$0219 Application window middleground
$021a Application window item highlight
$021b Application window item available background
$021c Application window item available foreground
$021d Application window item selected background
$021e Application window item selected foreground
$021f Application window item unavailable background
$0220 Application window item unavailable foreground
$0221 Pan/scroll bar
$0222 Pan/scroll bar section
$0223 Pan/scroll bar arrow
$0224 Button highlight
$0225 Button border
$0226 Button background
$0227 Button foreground
$0228 Hint border
$0229 Hint background
$022a Hint foreground
$022b Hint middleground
$022c Error message background
$022d Error message foreground
$022e Error message middleground
$022f Shaded area
$0230 Dark 3D border shade

continues on next page

30.33. WM_INK 871

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table 2 – continued from previous page
$0231 Light 3D border shade
$0232 Vertical area fill
$0233 Subtitle background
$0234 Subtitle text background
$0235 Subtitle foreground
$0236 Menu index background
$0237 Menu index foreground
$0238 Separator lines etc.

Example

WM_INK #1,$206

Sets the foreground colour in #1 to the title window foreground.

CROSS-REFERENCE

See WM_PAPER, WM_STRIP, WM_BORDER, WM_BLOCK .

30.34 WM_MOVEMODE

Syntax WM_MOVEMODE mode
Location SMSQ/E >= 3.01

Sets the mode in which windows are moved.

Modern window managers allow moving a window about the screen in various ways:

0 - the “classic” way - the pointer changes to the “move window” sprite which is moved about the screen.

1 - “Outline”: click on the move icon with the MOUSE - keep holding the button down -, an outline of
the window will appear which you can move around and position where you want it. Release the mouse
button and the window positions itself correctly.

2 - “Full window”. This is the same as 1 above, but instead of an outline, the entire window contents will
be displayed during the movement. For Q40/Q60 users, switching on the Cache is advisable. . .

3 - “Full window with transparency” (implemented in SMSQ/E v. 3.16). This is the same as 2 above,
but the window to be moved is made “transparent” : one can “see through” it. This is done via “alpha
blending”. Alpha blending requires a lot of computing power. So, even if your machine can theoretically
handle this type of move, in practice it might not be feasible. For Q40/Q60 users, switching on the Cache
is advisable.

Example

WM_MOVEMODE 0

Sets the window move mode to “classic”, i.e. moving with the move icon.

NOTE 1 In any but move mode 0 windows cannot be moved by the keyboard and strictly require a
mouse. When moving windows with the keyboard, the move falls back to the “classic” icon move for
this operation.

872 Chapter 30. Keywords W

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE 2 “Move with transparency” (mode 3) is only implemented for display modes where alpha blend-
ing actually makes sense, i.e. modes 16, 32 and 33. In other display modes, such as the QL screen modes,
or Atari mono modes, this will be redirected to move mode 2.

NOTE 3 The move modes are configured on a system-wide basis - you cannot have one job moving in
mode 0 and the other in mode 1.

NOTE 4 The window move mode can be configured in the operating system config blocks.

30.35 WM_PAPER

Syntax WM_PAPER [#channel,] palette_index
Location SMSQ/E >= 3.00

Newer Window Managers maintain a table of colour settings for programs to use as “standard colours”.
This is called the System Palette, also known as a ‘colour theme’. Four system palette tables, or themes,
are supplied with the operating system.

The list is sorted by usage rather than colour and includes colour values to be used for display items
such as window background, border, loose items and so on. The items are referenced by a 4-digit hex
number (16-bit value) as per the list under the entry for WM_INK , or the decimal number equivalent.
These numbers should not be used in standard INK , PAPER and BORDER statements – they are not
colour values, merely an index to an entry in a list of colour values. They should be used with the WM_x
equivalent commands, which will look up the colour values to be used for the item numbers in the list.

WM_PAPER sets the paper colour for the channel indicated to the colour for the specified item number
from the system palette.

Example

WM_PAPER #1,$204

Sets the paper colour in #1 to the title window background colour from the current system palette.

CROSS-REFERENCE

See WM_INK , WM_STRIP, WM_BORDER, WM_BLOCK .

30.36 WM_STRIP

Syntax WM_STRIP [#channel,] palette_index
Location SMSQ/E >= 3.00

Newer Window Managers maintain a table of colour settings for programs to use as “standard colours”.
This is called the System Palette, also known as a ‘colour theme’. Four system palette tables, or themes,
are supplied with the operating system.

The list is sorted by usage rather than colour and includes colour values to be used for display items
such as window background, border, loose items and so on. The items are referenced by a 4-digit hex
number (16-bit value) as per the list under the entry for WM_INK , or the decimal number equivalent.

30.35. WM_PAPER 873

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

These numbers should not be used in standard INK , PAPER and BORDER statements – they are not
colour values, merely an index to an entry in a list of colour values. They should be used with the WM_x
equivalent commands, which will look up the colour values to be used for the item numbers in the list.

WM_STRIP sets the strip colour for the channel indicated to the colour for the specified item number
from the system palette.

Example

WM_STRIP #1,$204

Sets the strip colour in #1 to the title window background colour from the current system palette.

CROSS-REFERENCE

See WM_INK , WM_PAPER, WM_BORDER, WM_BLOCK .

30.37 WMAN$

Syntax WMAN$
Location TinyToolkit, BTool

This function returns the version number of the Window Manager. If no Window Manager is present,
WMAN$ returns an empty string.

Example 1

SCR_SIZE is incompatible with the Window Manager because the channel definition blocks for windows
are different from those used when no Window Manager is present, causing SCR_SIZE to return wrong
values or produce errors. But calculating the result of SCR_SIZE is so simple that it can be replaced by a
BASIC procedure to be used whenever the Window Manager is detected. w_width and w_height define
the window size.

100 IF LEN(WMAN$) THEN
110 size=8+w_width*w_height/8
120 ELSE size=SCR_SIZE
130 END IF

Example 2

Non-destructible windows can be simulated by programs if there is no Window Manager present to take
over that work.

100 OPEN#3,con_200x50a100x50
110 IF WMAN$="" THEN ScrTmp=S_SAVE(#3)
120 BORDER#3,1,4: PAPER#3,3: CLS#3

...... (main program using #3) ...

800 CLOSE#3
810 IF WMAN$="" THEN S_LOAD ScrTmp
820 STOP

874 Chapter 30. Keywords W

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE

QRAM$ returns the version number of the Pointer Interface.

30.38 WMON

Syntax WMON [mode] or
WMON [mode] [, xoff] [, yoff](SMS Only)

Location THOR 8, THOR XVI, Toolkit II

When the QL is first started up in Monitor mode, the windows #0, #1 and #2 are opened in the following
sizes and positions, with the following borders:-

• #0 is con_512x50a0x206 (no border)

• #1 is con_256x202a256x0 (BORDER #1,1,7,0)

• #2 is con_256x202a0x0 (BORDER #2,1,7,0)

As with WTV, this command resets the three default windows to the above sizes, positions and borders.
If one parameter is passed, this will alter the screen MODE.

The second variant allows you to move the SuperBASIC windows, by specifying an offset which will
be used to calculate the top left hand position of the windows. If only one parameter (other than the
MODE) is specified, then this will be taken to be both the x and y offset, otherwise you can specify
both. This will only work on higher resolution displays. Also, if the second variant is used, if an outline
has previously been defined (for example with OUTLN), then the contents of the three windows will be
retained and moved to the new position - this is equivalent to following the WMON command with an
OUTLN command with the details of the new position and size.

Example

WMON 4

Will reset standard windows and set MODE 4.

WMON , 50

Resets the standard windows, in current MODE. The windows are set as follows:

• #0 is con_512x50a50x256(BORDER #0,1,7,0)

• #1 is con_256x202a306x50(BORDER #1,1,7,0)

• #2 is con_256x202a50x50(BORDER #2,1,7,0)

WMON 4,50,50

Is the same except it forces MODE 4.

NOTE 1

WMON does not reset the PAPER and INK colours of the three windows.

NOTE 2

30.38. WMON 875

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

On some versions of Minerva (pre v1.78) and Toolkit II, if you do not specify the mode, this command
will have no effect.

NOTE 3

On versions of the THOR 8 (pre v4.01) #0 appeared one pixel too far up the screen following WMON.

NOTE 4

On SMS prior to v2.53 WMON would set an OUTLN if one had not already been set.

SMS NOTE

As well as adding the second variant, SMS adds a border to #0 (see example above). v2.67+ has also
fixed various problems with this command.

CROSS-REFERENCE

Also see WTV , WM, WSET , WMOV and MODE.

30.39 WMOV

Syntax WMOV [#] channel [!]
Location PEX (v20+)

This command allows you to interactively alter the size and position of the specified Window channel by
using the following keys:

• <cursor keys> Move the Origin.

• <SHIFT><cursors> Alter the size of the Window. (See below)

• <ESC> Leave the procedure - do not alter Window size and position.

• <ENTER> Accept the new size and position.

Note that <ALT> plus the <cursor keys> or <SHIFT><cursors> allows you to move more quickly.

You can use this command to re-size a specified BASIC window (use # before channel) or a window used
by another Job. If you wish to do the latter, then you will need to omit the # and channel must be the
QDOS Channel number (see CHANNELS). PEX22 onwards ensured that when you use this command to
alter the size and position of the primary window of a job (set with OUTL), the sizes and relative origins
of all secondary windows are preserved. PEX22 onwards also allows you to place an exclamation mark
(!) after the channel number, in which case the window sizes cannot be altered - only their position.

WARNING

Do not press <CTRL><C> or change Jobs whilst using this command - it can crash the system!!

CROSS-REFERENCE

Also see WTV , WMON , PICK%, and OUTL.

876 Chapter 30. Keywords W

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

30.40 WPUT

Syntax WPUT [#ch\position,] [item *[,itemi]* ..] or
WPUT [#ch,] [item *[,itemi]* ..]

Location SMSQ/E

This command is very similar to BPUT, except that this sends a word (in the range 0..65535) to the given
channel (default #3).

CROSS-REFERENCE

See WGET and BPUT .

30.41 WREN

Syntax WREN [#ch,] [wild1] [TO wild2]
Location Toolkit II

This command allows you to rename several files at the same time. It allows wildcards on both the source
and destination parameters. If the source parameter (wild1) does not include a valid device, the default
data device will be used. However, the way in which wild2 is calculated, is even more complex than
normal:

1. If wild2 is not specified, rename each file using the default destination directory.

2. If wild2 is specified and contains a device, use that device.

3. If wild2 does not include a device, use the same device as for wild1 (ie. the device specified as
part of wild1 or DATAD$).

Beyond this, WREN acts in a similar way to WCOPY, listing each file that is being renamed to the
specified channel (default #0). However, instead of moving the old file, the header is merely amended to
reflect the new name.

Examples

WREN flp1_QUILL_ TO flp1_

could be used to take all of the Quill files out of a sub-directory into the main directory, by deleting the
sub-directory prefix.

DEST_USE flp1_QUILL_
DATA_USE flp1_
WREN

would have the opposite effect.

NOTE

Any attempt to rename a file across to a different device will report the error ‘Bad Name’.

CROSS-REFERENCE

30.40. WPUT 877

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

RENAME renames one file at a time. WCOPY contains details of wildcards.

30.42 WSET

Syntax WSET type [,mode]
Location ATARI_REXT

This command resets the windows #0, #1, and #2 to a pre-defined size and position. There are a set of
eight definitions built into the Emulator, which can be chosen by setting type to a value in the range 0. . . 7.

WSET -1

will reset the three windows to the size and positions specified with the WSET_DEF command. If the
optional parameter mode is supplied, this will alter the display mode to that specified, otherwise, the
screen mode remains unchanged.

CROSS-REFERENCE

WMON and WTV are similar commands under Toolkit II. Normally, you would use MODE to alter the
screen mode only. See also WSET_DEF.

30.43 WSET_DEF

Syntax WSET_DEF x0,y0,a0,b0, x1,y1,a1,b1, x2,y2,a2,b2
Location ATARI_REXT

The command WSET_DEF allows you to set up a user-defined size and position for each of the three
default windows, #0, #1 and #2. Each set of four parameters is used to specify the size x,y and position
(a,b) of each window.

Example

WSET_DEF 448,40,32,216, 448,200,32,16, 448,200,32,16
WSET -1,8

is the same as WTV 8

CROSS-REFERENCE

See WSET .

878 Chapter 30. Keywords W

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

30.44 WSTAT

Syntax WSTAT [#ch,] [wild] or
WSTAT \file [,wild] (Toolkit II only)

Location Toolkit II, THORs

The command WSTAT works in a very similar way to WDIR except that alongside the filenames, it lists
the length of each file and the update time.

Example

WSTAT QUILL_

will produce a list of all of the files on the data device which are in the QUILL sub-directory.

NOTE

In current versions of Toolkit II (up to v2.85 at least), WSTAT cannot cope with the DEV device where
this is pointing to a sub-directory.

CROSS-REFERENCE

DIR will produce a list of all of the files on a given medium. WCOPY contains details of how wildcards
operate.

30.45 WTV

Syntax WTV [mode] or
WTV [mode] [, xoff] [, yoff](SMS Only)

Location THOR 8 (v4.20+), THOR XVI, Toolkit II

When the QL is first started up in TV mode, the windows #0, #1 and #2 are opened in the following sizes
and positions, without any borders:-

• #0 is 448x40a32x216

• #1 is 448x200a32x16

• #2 is 448x200a32x16

Whilst testing programs, it is all too easy for these three windows to be redefined (especially #1 which is
the default window). The command WTV allows you to easily set those three windows to their default
size and position as well as taking an additional parameter for setting the mode in the same way as the
MODE command (default MODE 4).

Any border attached to each window is switched off, except under SMS (see below). Also, if the second
variant is used, if an outline has previously been defined (for example with OUTLN), then the contents
of the three windows will be retained and moved to the new position - this is equivalent to following the
WTV command with an OUTLN command with the details of the new position and size.

NOTE 1

WTV does not reset the PAPER and INK colours of the three windows.

30.44. WSTAT 879

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE 2

On some versions of Minerva (pre v1.78) and Toolkit II, if you do not specify the mode, this command
will have no effect.

NOTE 3

On SMS prior to v2.53 WTV would create an OUTLN if one does not exist.

SMS NOTE

The SMS version of the command adds a border to #0, #1 and #2 (as with WMON) and also allows you
to reposition the main windows (see WMON). v2.67+ also fixed several problems with this command.

CROSS-REFERENCE

Also see WMON .

30.46 W_CRUNCH

Syntax W_CRUNCH (#channel, colour)
Location Windows (DIY Toolkit - Vol W)

This toolkit is designed (like the SuperWindow Toolkit) to provide you with facilities for storing parts
of the QL’s screen in memory so that you can recall them at a later date, thus providing the QL with
non-destructible windows inside programs.

Whilst the Pointer Environment provides programs with non- destructible windows, this only ensures
that when a program ends, the area of the screen which was occupied by that program is restored so that
it looks the same as when the program started. Also, when you switch to another program, the whole
of that program’s display area appears on screen, overwriting anything else (see OUTLN) - the display
covered by the newly activated program is then stored in memory to be recalled at a later date. However,
unless you use specific functions (for example those supplied as part of the Qptr Toolkit, or supplied with
this toolkit), if a program OPENs one window over the top of another window owned by that program,
when that second window is CLOSEd, the area underneath is not restored (see the example below).

This function allows you to store the area under a specified window channel in memory in a compressed
form. Ideally the window should be a number of pixels wide which is divisible by eight and also have
its left boundary (after taking any BORDER into account) on a pixel which is divisible by eight (if not
then this function will store a slightly larger area of the screen than that covered by the window). This
function compresses the screen by reference to the colour parameter - this should either be 4 to store the
green pixels or 2 to store the red pixels.

The function is therefore only really of use in MODE 4 since other MODEs may use a lot more colours.
Other pixels are ignored and will therefore not be copied back onto the screen with W_SHOW. Since
most screens have text in one colour on top of another background, this function is ideal for those cir-
cumstances. This function is also very useful for storing Icons and other symbols, since the image, once
stored with this function, can be copied back to the screen with W_SHOW again and again. The value
returned by W_CRUNCH is the address of the area in memory where the copy of the screen is stored -
you will need to keep this address for use by the other functions in the toolkit.

Example

Try the short program which follows and note how when you press <ENTER> to close the temporary
window, the display does not alter:

880 Chapter 30. Keywords W

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

100 OPEN #2,con_448x200a32x16: PAPER #2,0: CLS #2: INK #2,2
110 FOR i=1 TO 15
120 PRINT #2, 'This is window #2 - Line number '; i
130 END FOR i
140 INK #2,4: PRINT #2,'PRESS A KEY TO OPEN TEMPORARY WINDOW'
150 PAUSE
160 OPEN #3,con_230x40a80x100: PAPER #3,2: CLS #3
170 INK #3,7: PRINT #3, 'This is a temporary window'
180 INPUT #3, 'Press <ENTER> to close this window ';a$
190 CLOSE #3

Instead, you can use W_CRUNCH to store #2 and then restore it once #3 has been closed - add the
following lines:

155 base=W_CRUNCH(#2,2)
200 CLS #2
210 W_SHOW #2,base

Note how only the characters which were printed in Red Ink were stored. You could have just stored the
area under the temporary window by taking the original example and adding the lines:

160 OPEN #3,con_230x40a80x100: PAPER #3,2
165 base = W_CRUNCH(#3,2): CLS #3
185 PAPER #3,0: CLS #3
187 W_SHOW #3,base

Note the need to store the contents of the window with W_CRUNCH before it is cleared with CLS !!.

NOTE 1

This function will only work on screen resolutions of 512x256 pixels.

NOTE 2

The memory used by the function will be reclaimed by CLCHP, or LOAD, LRUN or NEW. You can
also use DISCARD address or RECHP address+4 to remove it specifically (although note the different
address requirement for RECHP).

CROSS-REFERENCE

See SCR_REFRESH and SCR_STORE. See also W_STORE, W_SHOW . W_SWAP, SET_RED and
SET_GREEN allow you to recolour windows.

30.47 W_SHOW

Syntax W_SHOW #channel, address
Location Windows (DIY Toolkit - Vol W)

This command takes an image stored at the specified address using either the W_CRUNCH or W_STORE
functions and then copies it across to the specified window channel.

NOTE 1

30.47. W_SHOW 881

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

This command will only work on screen resolutions of 512x256 pixels.

NOTE 2

The memory used by W_CRUNCH or W_STORE is not released, so that you can re-display the screen
again in the future.

NOTE 3

An out of range error will be reported if the stored image will not fit within the specified window.

CROSS-REFERENCE

See SCR_REFRESH and SCR_STORE. See also W_STORE, W_CRUNCH. W_SWOP, SET_RED and
SET_GREEN allow you to recolour windows.

30.48 W_STORE

Syntax W_STORE (#channel)
Location Windows (DIY Toolkit - Vol W)

This function is very similar to W_CRUNCH except that it stores the whole of the contents of the specified
window (not in compressed form). It also stores all of the colours, not just green or red.

NOTE

Refer to the notes for W_CRUNCH.

CROSS-REFERENCE

See W_CRUNCH!

30.49 W_SWAP

Syntax W_SWAP #channel
Location Windows (DIY Toolkit - Vol W)

This command looks at the specified window channel and swaps over red and green bits on the display,
effectively changing the colours on screen.

NOTE 1

This command will only work on screen resolutions of 512x256 pixels.

NOTE 2

This command should not really be used in MODE 8.

CROSS-REFERENCE

W_SWOP is exactly the same. RECOL, SET_RED and SET_GREEN also allow you to recolour a window.
Refer to the QL display Appendix.

882 Chapter 30. Keywords W

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

30.50 W_SWOP

Syntax W_SWOP #channel
Location Windows (DIY Toolkit - Vol W)

This command is exactly the same as W_SWAP.

30.50. W_SWOP 883

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

884 Chapter 30. Keywords W

CHAPTER

THIRTYONE

KEYWORDS X

31.1 XCHANGE

Syntax XCHANGE (a1 TO a2, c1 TO c2)
Location BTool

The function XCHANGE replaces all occurrences of byte c1 by c2 from memory locations a1 to a2
inclusive. The function counts the exchanged bytes and returns the sum.

Example

Provided that you have enough free memory, this small program replaces line-feed characters CHR$(10)
by carriage returns CHR$(13) in ram1_test_txt as quickly as possible:

100 ch=FILE_OPEN("ram1_test_txt",0)
110 IF ch<0 THEN REPORT ch: STOP
120 length=FLEN(#3)
130 memory=ALCHP(length)
140 IF NOT memory THEN REPORT -3: STOP
150 x=LOAD_FILE(#ch,memory,length)
160 IF XCHANGE(memory,memory+length-1,13,10) THEN
170 GET#ch\0
180 SAVE_FILE#ch,memory,x
190 TRUNCATE#ch
200 END IF
210 CLOSE#ch: RECHP memory

CROSS-REFERENCE

SEARCH, COPY_B, COPY_W , COPY_L

885

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

31.2 XDRAW

Syntax XDRAW x1,y1 TO x2,y2
Location HCO

The command XDRAW draws lines, just like LDRAW, but it draws the lines in white ink, using the XOR
mode; so drawing the same line will remove it again without changing the background.

Example

100 REPeat scan 110 w% = RND(1 TO 200)
120 FOR x% = 0 TO 511 + w%
130 IF x% < 512 THEN
140 XDRAW x%,0 TO x%,255
150 END IF
160 IF x% > w% - 1 THEN
170 XDRAW x%-w%,0 TO x%-w%,255
180 END IF
190 IF KEYROW(1)&&8 THEN EXIT scan
200 END FOR x%
210 END REPeat scan

CROSS-REFERENCE

LDRAW , LINE with OVER.

31.3 XLIM

Syntax XLIM or
XLIM #ch (v2.08+)

Location ATARI_REXT (v1.29+)

This function returns the horizontal size of the screen in pixels. It can therefore be used to ascertain if
the Extended Mode-4 is present, and if so, the size of the screen available to the program (ie. 512x256,
768x280 or larger!). The second variant makes this function the same as SCR_XLIM.

Example

A program may wish to use the whole of the screen for its output, adapting itself accordingly:

100 MAX_WIDTH=XLIM
110 MAX_HEIGHT=YLIM
120 OPEN #1,'CON_' & MAX_WIDTH & 'x' & MAX_HEIGHT & 'a0x0'

NOTE

The Pointer Interface must be present in order for XLIM to work.

CROSS-REFERENCE

886 Chapter 31. Keywords X

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

YLIM returns the maximum screen height. QFLIM and SCR_XLIM are very similar. Use QRAM$ or
WMAN$ to see if the Pointer Environment is available.

31.4 XOR

Syntax condition1 XOR condition2
Location QL ROM

This combination operator combines two condition tests together and will have the value 0 if both con-
dition1 and condition2 are true or both are false or 1 if either condition1 or condition2 are true (but not
both).

Please note the difference between this and the bitwise XOR operator: x^^y, which compares x and y bit
by bit.

Examples

PRINT 1 XOR 0: REMark Returns 1.
PRINT 2 XOR 10 REMark Returns 0.

Compare:

PRINT 2^^10

which returns 8.

10 FOR x=1 TO 5
20 FOR y=1 TO 5
30 IF x=3 XOR y >1 AND y<3:PRINT x;'=>';y,
40 END FOR y
50 END FOR x

produces the following output:

1=>2 2=>2 3=>1 3=>3 3=>4 3=>5 4=>2 5=>2

CROSS-REFERENCE

AND, OR and NOT are the other combination operators.

31.5 X_PTR%

Syntax X_PTR%
Location KMOUSE, MOUSE (DIY Toolkit - Vol I), Amiga QDOS v3.20+

This function will return the x co-ordinate of the pointer which is controlled by the mouse. The value is
given in absolute pixel co-ordinates, with the point 0,0 being the top left hand corner of the screen.

CROSS-REFERENCE

31.4. XOR 887

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

See PTR_LIMITS and PTR_ON . Y_PTR% reads the y co-ordinate.

888 Chapter 31. Keywords X

CHAPTER

THIRTYTWO

KEYWORDS Y

32.1 YEAR%

Syntax YEAR% [datestamp]
Location SMSQ/E

This function complements the DATE and DATE$ functions, by returning the year number corresponding
to the given datestamp, or current date, if no datestamp was given.

Examples

PRINT YEAR% (0)

will print the year part of the QL’s epoch, 1961

PRINT YEAR%

will print the current year number.

CROSS-REFERENCE

See DATE, MONTH%.

32.2 YLIM

Syntax YLIM or
YLIM #ch (v2.08+)

Location ATARI_REXT (v1.29+)

This function returns the vertical size of the screen in pixels. The second variant makes this function the
same as SCR_YLIM.

NOTE

The Pointer Interface must be present for this function to work.

CROSS-REFERENCE

See XLIM for details.

889

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

32.3 Y_PTR%

Syntax Y_PTR%
Location KMOUSE, MOUSE (DIY Toolkit - Vol I), Amiga QDOS v3.20+

This function will return the y co-ordinate of the pointer which is controlled by the mouse. The value is
given in absolute pixel co-ordinates, with the point 0,0 being the top left hand corner of the screen.

CROSS-REFERENCE

See PTR_POS and PTR_MAX. X_PTR% reads the x co-ordinate.

890 Chapter 32. Keywords Y

CHAPTER

THIRTYTHREE

KEYWORDS Z

33.1 ZAP

Syntax ZAP keyword$
Location TinyToolkit

This command removes a given keyword from the name table so that SuperBASIC is no longer aware
of its existence. The code remains in memory so no memory is freed. A ZAPped keyword cannot be
recovered without re-loading the code or resetting the system.

Example

You try to run a SuperBASIC program but it stops at the following line:

1120 er=2: es=.9: ET=1.4: eu=0

with error -17. The author used et as a variable because the ET command was not present when (s)he
wrote that program. The more resident keywords that are present, the more it is likely that such collisions
may occur. ZAP “ET” and re-loading the program will cure the problem.

NOTE

It is okay to ZAP incompatible and bug-ridden keywords, but removing essential keywords like ED,
EDIT, AUTO, LIST to stop the user from editing a program will decrease the QL’s multitasking abilities.
Yes, multitasking depends on this general rule: the more a program influences the whole system and may
affect other programs, the less the computer can multitask.

CROSS-REFERENCE

Keywords can be renamed with NEW_NAME. KEY_RMV works in the same way as ZAP. See also
TINY_RMV .

891

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

892 Chapter 33. Keywords Z

CHAPTER

THIRTYFOUR

KEYWORDS OTHER

34.1 _DEF%

Syntax _DEF% [(#channel)]
Location DEFS (DIY Toolkit - Vol A)

This function creates a table of all of the SuperBASIC PROCedures and FuNctions used within the
program currently in memory. The table appears in the specified CONsole channel, if any (default #2).
You can use the cursor keys to highlight the required PROCedure or FuNction name and then press
<ENTER>, in which case the function will return the line number of the program line which contains the
relevant DEFine PROCedure or DEFine FuNction. If you press the <ESC> key an ‘Incomplete’ error is
caused. If no PROCedures or FuNctions are defined, then a ‘Not Found’ error is reported.

Example

ED _DEF%

CROSS-REFERENCE

_DEF$ and _NAME$ are similar. CODEVEC returns the machine code base address of a Machine Code
Procedure or Function.

34.2 _DEF$

Syntax _DEF$ [(#channel)]
Location DEFS (DIY Toolkit - Vol A)

This function is similar to _DEF% in that it creates a table of all of the SuperBASIC PROCedures and
FuNctions used within the program currently in memory. The table appears in the specified CONsole
channel (if any - default #2). You can use the cursor keys to highlight the required PROCedure or FuNc-
tion name and then press <ENTER>, in which case the function will return the selected name of the
PROCedure or FuNction. If you press the <ESC> key an ‘Incomplete’ error is caused. If no PROCe-
dures or FuNctions are defined, then a ‘Not Found’ error is reported.

CROSS-REFERENCE

See _DEF%

893

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

34.3 _NAME$

Syntax _NAME$(offset)
Location DEFS (DIY Toolkit - Vol A)

This function can be used to examine the SuperBASIC name list, which contains the names of all machine
code Procedures, Functions, variables, SuperBASIC PROCedures and SuperBASIC FuNctions which are
available to SuperBASIC.

Example

A program to print out the full name list (this only works on Minerva and SMSQ/E):

100 nlist_start=PEEK_L (\\ HEX('20'))
110 nlist_end=PEEK_L (\\ HEX('24'))
120 nlist_len=nlist_end-nlist_start
125 names=0
130 FOR i=0 TO nlist_len
140 x$=_NAME$(i)
150 names=names+1+LEN(x$)
155 IF names>nlist_len: EXIT i
160 PRINT i,x$
165 PAUSE
170 END FOR i

CROSS-REFERENCE

The name list can be tidied up with CLEAR. EXTRAS will list all the machine code Procedures and
Functions. See also LOOKUP%.

894 Chapter 34. Keywords Other

CHAPTER

THIRTYFIVE

APPENDICES INTRODUCTION

This section provides a brief introduction to each Appendix, explaining the background. Each heading
is preceded by the number of the Appendix in square brackets.

[1] A1. Minerva

This is an introduction to the Minerva ROM replacement which not only corrects many bugs contained
in the original Sinclair ROMs, but additionally introduces completely new features to SuperBASIC and
in general as well as speeding up the operation of the QL.

It is worth noting that the QDOS operating system had relatively few bugs, whereas in the early QL days,
hackers competed to find as many bugs in the SuperBASIC interpreter as possible.

[2] A2 SMSQ/E

This is an introduction to the SMSQ/E replacement operating system which is available for several dif-
ferent hardware platforms, from the standard QL to QPC, a software emulator for PCs.

This is a massive extension to the original QDOS operating system with several new keywords and fixes
of existing bugs.

[3] A3 Emulators

This gives general information about the range of emulators which are available to allow QL software to
run on other computers.

[4] A4 Thor Computers

This provides some information on using SuperBASIC on the THOR range of computers.

[5] A5 Expansion Boards

This section gives a general introduction to the main expansion boards currently available for the Sinclair
QL. Various older add-on boards are available second-hand which really only added Toolkit II, extra
memory and possibly disk access to the QL. The boards listed here actually replace parts of the original
QL, increasing speed and adding a host of other features.

[6] A6 Compatibility

This section provides basic and some expert background information on software and hardware compat-
ibility across the range of different QL machines available.

[7] A7 Multiple Basics

This section provides details of the various QL implementations which allow you to run several BASIC
programs at the same time, as well as detailing how multiple BASICs should be used.

[8] A8 Error Messages

895

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

This section lists the QDOS error messages on the different ROMs, or at least those where we could get
hold of the text. The main section will usually refer to the error code, so this appendix allows you to find
out about how this is represented on your ROM as well as giving some general advice concerning what
may have caused the problem.

[9] A9 Character Set, Keyboard

This lists the character set and informs you about the different keys needed to achieve the same character
code on the different QDOS computers. Again, this may be incomplete, but it helps the programmer
recognise foreign keyboard layouts.

[10] A10 Designing New Character Sets (Fonts)

This section explains how you can create and link new fonts into the QL.

[11] A11 Mathematics

This section gives some necessary background to the QL mathematics package to make certain keywords
easier to use. Do not worry, it is understandable (we hope!).

[12] A12 Device Drivers

This forms an introduction to device drivers in general and also provides numerous detail about the
different drivers and hardware on different machines.

[13] A13 Extended Pointer Environment

This section provides a short introduction to the Pointer Environment and explains what it has to offer.

[14] A14 Coercion

This provides some brief details as to how the QL converts strings to numbers if necessary.

[15] A15 Mouse Drivers

This section provides details of the various ways of linking a Mouse to the various QL implementations.

[16] A16 The QL Display

This section provides various details concerning how the QL’s display is arranged in memory and how
to ensure that programs are able to work on all the various display resolutions available to the QL.

[17] A17 Networks

This section details the various options which are available to allow the QL to connect to other computers
over Networks as well as setting out various details about how networks work and how to ensure greater
reliability over data sent.

[18] 18 Configuring Programs

This section covers the use of the CONFIG utility to configure a program with suitable default settings.

896 Chapter 35. Appendices Introduction

CHAPTER

THIRTYSIX

A1. MINERVA

36.1 A1.1 INTRODUCTION

Minerva is a brand new operating system which has been designed for the QL by QView, parts of which
are already incorporated in QDOS emulators.

Based upon the existing QL Roms, it has now developed into a system which does not rely upon any of
the existing code and thereby side-steps problems with copyright. However, due to the new coding, there
are bound to be one or two slightly grey areas where compatibility must meet with compromise. From
the SuperBASIC point of view, there are no real problems with using programs written for earlier ROMs
(possibly excluding FB Roms which insisted on using AT y,x instead of AT x,y), and Minerva merely
enhances this superb programming language to provide the SuperBASIC programmer with one of the
most flexible and quickest implementations of BASIC ever devised.

However, there are one or two enhancements made by Minerva which are unavailable on earlier ROMs,
which of course will limit the portability of programs which use these advanced features (unless the
SuperBASIC program is compiled with QLiberator or Turbo).

The idea of this section is therefore just to point out some of the possible pitfalls with which programmers
will be faced when writing SuperBASIC which is specifically designed to run on all versions of Minerva.

WARNING:

v1.98 of Minerva caused more problems than it solved and you should therefore obtain v1.97 if you have
this version of the operating system.

36.2 A1.2 Windows and Closing Windows

A problem exists with some versions of Minerva and Lightning SE. The problem appears to be that if
Lightning is switched on, and then windows are opened on screen, unless they are closed in the reverse
order to which they were opened, they will remain visible on screen despite NEW or MODE commands
until another window with the same channel number is opened.

Example:

100 OPEN#3,scr_448x200a32x16: PAPER#3,2: CLS#3
110 OPEN#4,scr_448x200a32x56: PAPER#4,4: CLS#4
120 CLOSE#3: CLOSE#4

This program will cause the problem and you will be unable to remove either #3 or #4 from the screen
until they are re-opened!

897

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

To avoid the problem, alter line 120 to read:

120 CLOSE#4: CLOSE#3

QJump’s Pointer Environment prevents this problem occurring and this can be regarded as a standard
system addition.

36.3 A1.3 Dual Screen Mode

Perhaps the greatest problem with programs written on earlier ROMs is that they (or machine code exten-
sions used by them) tend to assume that the screen display will always begin at 131072 ($20000) and that
the system variables will begin at 163840 ($28000). When Minerva is started-up, the user can opt to run
in Dual Screen Mode, which makes two screens available to the programmer, the first of which is located
at the standard display address (131072 - $20000 in hexadecimal) and the second of which is located
on top of the old system variables address (163840 - $28000 in hexadecimal) - the system variables are
moved out of the way. Programs can run on either of the screens and should be written so that they make
no assumptions about the start address of the screen.

Minerva allows the user to alter which screen a program will run on before the program is actually loaded,
by using the command MODE 96,-1, and therefore the programmer has no control in general over which
screen will be used.

This problem can also exist with the THOR XVI which allows several screens to be in operation at any
one time.

Various functions exist to find the start address of the current screen (eg. SCREEN) and also to find
the start address of the system variables, (eg. SYS_BASE). These functions should be used whenever
possible.

The other main problem is that in current versions of Minerva, when a window is opened on screen,
Minerva attempts to open it in the MODE of the currently displayed screen, rather than the mode of the
screen on which it will be open. This can lead to various problems, such as illegible writing and flashing
on screen. The answer to this is to ensure that the current screen when the program is started is also the
displayed screen - see MODE.

Other problems exist when using the dual screen mode with both Lightning and the Pointer Environment,
which can make it extremely difficult to change MODEs on only one screen in the dual screen mode. At
the moment there is no answer to this, other than to pester Digital Precision and Qjump to produce
compatible products. There may also be similar problems with Speedscreen, but we have been unable to
test this.

The other remaining problem is that current versions of Turbo and Supercharge do not support Minerva’s
dual screen mode, and programs compiled with either of these packages will not run in the dual screen
mode.

A problem which users with printers may or may not have noticed, is that Minerva tends to lose characters
on their way to the printer when in dual screen mode.

898 Chapter 36. A1. Minerva

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

36.4 A1.4 Border

On some early Minerva ROMs (and on one or two of the THOR ROMs), the BORDER command will
not work correctly unless a parameter is supplied.

The original ROM accepted BORDER on its own to switch off the border on #1 (although this was not
pointed out by the QL Manual). It is therefore essential that to retain compatibility BORDER 0 is used.

36.5 A1.5 Empty Brackets

An empty bracket is always regarded as a syntax error by original QL ROMs whereas Minerva tolerates
them, for example to indicate that a function is called with a parameter, eg. DATE(). If a program should
be portable than you have to avoid this style because all ROMs other than Minerva and SMS mark such
lines with a MISTake:

100 MISTake PRINT DATE()

Since DATE() and VER$() are effectively the same as DATE and VER$, it is recommended to use the
latter syntax.

A1.6 INTEGER TOKENISATION

From v1.79 onwards, Minerva has tidied up the storage of numbers in SuperBASIC programs, in that
if integer tokenisation is enabled, any numbers contained in a program are stored in as few bytes as
possible. Although programs which are LOADed are unaffected by this since the interpreter converts the
ASCII characters into the internal format as the program is loaded, certain utilities are unable to cope
with integer tokenisation. In particular, the Supercharge compiler and early versions of the Turbo (pre
v4.3) and QLiberator (pre v3.32) compilers are unable to compile such programs.

If you use the QLOAD utility from Liberation Software, this stores a program in its internal format so
that it can be loaded very quickly. Unfortunately, this does mean that programs which are QSAVEd on
Minerva whilst integer tokenisation means that if when the program is QLOADed with integer QSAVEd,
you can end up with a mixture of integer tokens and floating point tokens within the same program.

To convert a program under Minerva which has been written with Integer Tokenisation enabled so that
it may be compiled with Supercharge or early versions of Turbo, or even QLOADed on a different ROM
version, you will need to use something along the lines of:-

SAVE ram1_convert_bas
POKE \\212,128
LOAD ram1_convert_bas

If you try to QLOAD a program which has been QSAVEd with Integer Tokenisation enabled, on a dif-
ferent ROM, you will notice that various numbers have disappeared from the listing.

36.4. A1.4 Border 899

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

36.6 A1.7 MultiBASICs

Minerva allows you to have several BASIC interpreters which can all multitask. Essentially, you retain
the original SuperBASIC interpreter together with several copies of that interpreter, each of which is
known as a MultiBASIC.

A MultiBASIC will in fact operate in the same way as SuperBASIC, and you can link different toolkits
with each copy of the interpreter, knowing that they will not be available to the other existing interpreters.

The only problem is that many toolkits have been written with only the original SuperBASIC interpreter
in mind, and some commands are therefore unable to access the MultiBASIC’s variables. Fortunately,
the majority of commands and functions do in fact still work with MultiBASICs, unless used from within
a compiled program.

36.7 A1.8 Strings

Minerva has altered the way in which strings are handled, in much the same way as SMSQ/E - please
refer to DIM for an explanation of the way in which dimensioned and undimensioned strings are dealt
with on the various QL implementations.

There was however a problem prior to v1.98 of Minerva in that if you concatenated two strings together
to make a string longer than 32764 characters, this could corrupt BASIC. An example of concatenation
is:

a$ = 'Hello' & b$

900 Chapter 36. A1. Minerva

CHAPTER

THIRTYSEVEN

A2 SMSQ/E

(Versions 2.78 - 2.95 tested.)

37.1 A2.1 Introduction

SMSQ/E is a brand new operating system written by Tony Tebby which has been designed for the QL and
emulators. It is currently available for standard QLs, AURORA, QPC (a PC emulator), ST/QL emulators,
QXL and QXL2, the Q40 qnd Q60 computers and also the ATARI ST, STE and TT range of computers.

You must take care not to confuse this operating system with some of the earlier forms which have been
released, namely SMS2 (a plug in add-on for Ataris) and SMSQ (supplied with the QXL and QXL2
boards) - see the Emulators Appendix for further details.

SMSQ/E is a complete re-write of the original operating system avoiding any copyright problems. How-
ever, to run on the original QL, SMSQ/E still requires that a QL operating system (eg. JM or JS) is
installed on the chips inside the QL plus a disk drive and a Gold Card (at the minimum). This is because
SMSQ/E is disk based, rather than being supplied on ROM chips - you therefore need a means of starting
up the QL and loading SMSQ/E from disk. This does not apply to the QXL, QPC and Atari versions
which have to load their operating systems from disk anyway.

If you are using SMSQ/E on the Gold Card or Super Gold Card, you should normally use the LRESPR
command to start up the copy of SMSQ/E - if this is used in a boot program, if SMSQ/E is already
loaded when the LRESPR command to load SMSQ/E is read, then it is ignored. If you use RESPR and
LBYTES, then the boot would get into a loop - continually loading the operating system (unless you
check VER$=’HBA’, although this will not work on QXL as SMSQ also reports VER$=’HBA’).

SMSQ/E also incorporates all of the features of the following (which are available as add on packages to
the original QL operating system):

• Toolkit 2

• Pointer Interface

• Qjump’s Window Manager

• Hotkey System II

• DEV device driver

• QLOAD / QSAVE from Liberation Software

• OUTLN command.

901

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

As an added bonus, Gold Card and Super Gold Card users (including AURORA users) also get the Serial
Mouse Driver from Albin Hessler Software which can be loaded into SMSQ/E and allows you to use a
mouse plugged into the serial port.

QXL, QPC, Q40/Q60 and Atari users are able to use the mice supplied for their computers (provided that
you load in a driver for that computer, eg. the DOS Mouse Driver for IBM Compatible PCs).

SMSQ/E also offers other in-built features:

• Named pipes and a history device

• Improved serial and parallel device drivers

• Level-3 device drivers which allow you to access disks from IBM compatible PCs and Ataris.

• Hi-resolution displays and enhanced colours - refer to Appendix 16

SMSQ/E also includes the SBAS/QD F10 Thing, which allows you to automatically run SuperBASIC
programs which are being edited under the QD Editor by pressing F10 (this initiates a Multiple SBASIC
which then LRUN’s the program). The FileInfo II Thing is also included which allows SuperBASIC
programs with filenames ending in _BAS or _SAV to be Executed directly from the Qpac II Files Menu.

Unfortunately, due to the new coding, there are bound to be one or two slightly grey areas where com-
patibility must meet with compromise.

From the SuperBASIC point of view, there are no real problems with using programs written for earlier
operating systems (possibly excluding FB Roms which insisted on using AT y,x instead of AT x,y), and
SMSQ/E merely enhances this superb programming language to provide the SuperBASIC programmer
with the most flexible and quickest implementations of BASIC ever devised (it is nearly as quick as
SuperBASIC compiled with Qliberator).

Some of the enhancements made by SMSQ/E are not available on other operating systems and it is likely
that in the future SMSQ/E is the only operating system which will continue to be upgraded. With free
upgrades at present there is no reason why you should be using anything but the latest version!

The idea of this section is therefore just to point out some of the possible pitfalls with which programmers
will be faced when writing SuperBASIC which is specifically designed to run on SMSQ/E and possibly
also on earlier operating systems.

WARNING:

Some versions of SMSQ/E appear to have been released in a hurry and are unreliable - most notably,
v2.93 and v2.95 which should be avoided.

37.2 A2.2 The EOF Function

On early versions of SMSQ/E (pre v2.55) EOF was implemented differently to the original SuperBASIC
version, in that it would wait until either data or an end of file code was received from the associated
channel. The original would return 1 if no data was waiting in the queue. This version of EOF has now
been renamed EOFW.

902 Chapter 37. A2 SMSQ/E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

37.3 A2.3 Empty Brackets

An empty bracket is always regarded as a syntax error by original QL ROMs whereas SMSQ/E (in com-
mon with Minerva) tolerates them, for example to indicate that a function is called with a parameter, eg.
DATE(). If a program should be portable than you have to avoid this style because all other implemen-
tations (other than Minerva) mark such lines with a MISTake:

100 MISTake PRINT DATE()

Since DATE() and VER$() are effectively the same as DATE and VER$, it is recommended to use the
latter syntax.

37.4 A2.4 Multiple Sbasics

SMSQ/E (in common with Minerva) allows you to have several BASIC interpreters which can all mul-
titask. Essentially, you retain the original SuperBASIC interpreter together with several copies of that
interpreter, each of which is known as a SBASIC.

A SBASIC will in fact operate in the same way as SuperBASIC, and you can link different toolkits with
each copy of the interpreter, knowing that they will not be available to the other existing interpreters.

The only problem is that many toolkits have been written with only the original SuperBASIC interpreter
in mind, and some commands are therefore unable to access the SBASIC’s variables. Fortunately, the
majority of commands and functions do in fact still work with SBASICs, unless used from within a
compiled program.

See Appendix 1 for more details of Multiple BASICs.

37.5 A2.5 Improved Interpreter

Unlike the original SuperBASIC, SMSQ/E will look at a program to ensure that all of the structures
are validly constructed before it allows you to SAVE or RUN the program. Although this can pick up
common programming mistakes (such as forgetting to add END FOR or END DEFine), this can mean
that some SuperBASIC programs will now refuse to RUN, reporting an Incomplete Definition. This is
especially problematic as SMSQ/E (prior to v2.89) will not allow a single-line PROCedure or FuNction
to exist without END DEFine appearing on the line.

Further checks are carried out before a program is RUN or SAVEd and a wide range of error messages
have been added to the Interpreter, which may be reported. These error messages are listed in the Errors
Appendix.

37.3. A2.3 Empty Brackets 903

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

37.6 A2.6 Numbers in Programs

SMSQ/E has extended SuperBASIC by allowing programs to contain both hexadecimal and binary num-
bers explicitly in the code, such as a=%10 (or a=$02) is the same as a=2. These constructs will result in
a MIStake being shown on other implementations (refer to the Mathematics Appendix).

Programs which use this feature can only be compiled using Turbo v4.3 or later.

37.7 A2.7 Inbuilt Pointer Environment

SMSQ/E incorporates the Pointer Environment (the files ptr_gen, wman and Hot_rext form part of the
operating system and therefore cannot be loaded separately). This means that some programs which
could not be run under the Pointer Environment previously, cannot be run under SMSQ/E. As far as we
are aware, there are very few programs which cause a problem.

37.8 A2.8 Undefined Variables

SMSQ/E differs from all other implementations of SuperBASIC in that it gives values to variables which
have not yet been defined. Whereas on other implementations, if you do not have a program in memory
(eg. after NEW), and enter the following line:

PRINT a,a$: PRINT a/10 you would see the display:

* *

on screen, and then the error ‘At 0,2 : Error in Expression’ would be shown.

Under SMSQ/E, you would see the display:

0

0

as an undefined numeric variable is given the value 0 and an undefined string is given the value of an
empty string (the second 0 is the result of a/10 where a=0). No error would be reported.

37.9 A2.9 Extended Display

There are very few programs which will not work under SMSQ/E, these are mainly programs (or toolkits)
which make assumptions about:

904 Chapter 37. A2 SMSQ/E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

37.9.1 A2.9.1 Extra Colours

SMSQ/E v2.98 implements a different display driver for many systems, including 65536 colours on the
QXL, QPC and Q40 - see Appendix 16. Because the format of the display is different to the original QL,
this may cause incompatibility problems with many of the drawing commands covered in this book which
assume the original QL screen format. This can however be overcome by only using these commands or
programs which cause problems in the original display configuration of 512x256 pixels, with MODE 4
or MODE 8 colours. Use RMODE to check which colour system is currently in use.

People have also noticed that various programs appear in various multiple colours (not intended by the
original author). This tends to be due to the fact that the authors have assumed that non-standard colours
will be converted by MODE 4 (for example INK 3 under MODE 4 produces red) or into stipples.

37.9.2 A2.9.2 Hi-resolution Displays

Unless you are using an original QL motherboard, SMSQ/E supports higher resolution displays, up to
1600x1200 pixels. This may cause further problems for software and commands which assume the
original resolution of 512x256 pixels.

37.10 A2.10 Problems

There are very few programs which will not work under SMSQ/E, these are mainly programs (or toolkits)
which make assumptions about:

• The location of the screen or system variables

• The size of the QL’s screen

• The fact that you cannot overwrite the QL’s ROM (and therefore there is no need to ensure that
POKE commands are not trying to overwrite part of the ROM

• The location of various parts of the operating system (including machine code routines)

Most of these programs will also have difficulty running on anything other than a standard QL (even Gold
Cards mean that programs will face problems if they try to overwrite the QL’s ROM).

37.10.1 A2.10.1 Lightning/Speedscreen

These two programs cannot be used with SMSQ/E. However, SMSQ/E’s screen driver is just as quick.

37.10.2 A2.10.2 Toolkit III and System Toolkit

Neither of these toolkits will work with SMSQ/E, but then they do not really add very much to the system!

37.10. A2.10 Problems 905

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

37.10.3 A2.10.3 Serial to Parallel Converters

SMSQ/E has speeded up the serial ports somewhat (making them meet the design specifications) and
unfortunately this means that some serial to parallel converters work too slowly and some characters are
lost. Try SER_PAUSE or a newer converter (or if your computer has a built-in parallel interface, use
that!).

37.10.4 A2.10.4 Aurora

Aurora users will really need to use at least v2a.85 of SMSQ/E.

37.10.5 A2.10.5 Disk Access

There appears to be problems accessing DD disks (double density) under SMSQ/E after v2.91, in that
later versions often report file errors or fail to format these disks. This is a major problem which will
hopefully be resolved in later versions.

See also FLP_DENSITY.

906 Chapter 37. A2 SMSQ/E

CHAPTER

THIRTYEIGHT

A3 EMULATORS

38.1 A3.1 Introduction

Not only are there replacement operating systems for the QL (namely QDOS and Minerva), as well as
replacement computers (AURORA, Q40 and THOR {no longer available}), but there have been several
emulators produced which allow programs written for the QL to run on various other computers.

When Emulators access the hard disk on the host computer, you do not have to worry about the fact that
the hard disk is not in QDOS format - the Emulators cope with this in one of two ways:

• The hard disk has to be partitioned, and one (or more) partitions are set aside for the QL files
(FORMAT will only affect the specified partitions), or

• The Emulator creates a large single file on the hard- disk (for example called QXL.WIN) which is
equal in size to the size specified with the FORMAT command and then QL files are stored within
this huge file. The host computer will only see the one QXL.WIN file. This method is used by
QXL and QPC.

It doesn’t really matter which of these methods is used, as both protect the PC files from being over-written
by QL files.

Currently, there are emulators available for the following computers (see the relevant section of this
Appendix):

• Apple Macintosh (Power PCs and 68000 Macs)

• PCs(any with a spare ISA slot, otherwise 486 and Pentiums only)

• ATARI(All models except the Falcon)

• Any computer with an UNIX operating system

The main problem with using emulators is that some emulators (QLAY and Q-Emulator) require a copy
of the QL operating system. You can use a copy of Minerva with these emulators (obtainable from TF
Services - specify that you need it on disk for use with an emulator) or a copy of the original QDOS ROM.
Apart from North America, the copyright on the original QDOS ROM is vested in Amstrad plc. who
have stated that it can be supplied with emulators so long as their copyright notice appears and also an
acknowledgement is included in the manual. In North America, the copyright is not owned by Amstrad
plc. QLAY (at least) includes a copy of the JS QDOS ROM, otherwise, can make your own copy of the
QL’s operating system (from a standard QL) by using the command:

SBYTES flp1_OSROM,0,49152

Note that you cannot do this with a Gold Card or Super Gold Card plugged in as these alter the operating
system.

907

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

38.2 A3.2 Apple Macintosh

38.2.1 A3.2.1 Q-Emulator

A commercial software emulator available from Daniele Terdina which comes in two versions (v3.0 - for
68000 Macs and v2.1 - for Power PCs). A version which runs on IBM compatible PC’s is also available.

Minimum requirements are MacOS v7.0, 4Mb of memory, a colour monitor, a 1.44Mb floppy drive and
a copy of the QL’s operating system.

The speed of the Emulator is really dependent upon the machine on which it is used - the Power PC
version is said to nearly equal the speed of a QXL when used on a MacIntosh with a 100 Mhz RISC chip.

Unfortunately, SMSQ/E will not currently work with the Emulator.

You may also want to obtain a copy of Toolkit II on disk to use on the Emulator.

This emulator provides you with a QL with up to 4Mb of memory, which can multitask alongside MAC
programs. However there is currently no support for Level-2 Device Drivers, Network ports or the
FLASH / TRA commands. You can read and write to QL floppy disks (DD and HD) and also use the
Mac’s own hard-disk as a QL hard-disk. Minerva’s dual screen mode is also supported, but at present
only the standard 512x256 pixel resolution display can be used.

The Emulator has an in-built static and dynamic RAM disk and allows you to use the MAC’s serial
ports (all standard QL BAUD rates are supported, although it is recommended that you use hardware
handshaking).

Some difficulties exist due to the different MAC keyboard - for example an OPTION button is used instead
of <ALT> and most MAC’s will not recognise more than two keys pressed down at a time.

38.3 A3.3 IBM Compatible PCs

38.3.1 A3.3.1 QPC and QPC2

Commercial software emulators available from Q Branch and Jochen Merz Software.

QPC and QPC2 both need a 486 processor or better (a 486 SX- 25 minimum is recommended, although
a Pentium is better!), 4MB RAM, EGA graphics and DOS 6.xx. Although both programs will work with
Windows95, only QPC2 will work in a window under Windows95 (or Windows98 / NT). However, the
PC needs to be configured not to use any extended memory handling devices and therefore the user will
need to amend the PC’s AUTOEXEC.BAT and CONFIG.SYS files.

It allows between 1Mb and 16Mb of memory to be used by the QL operating system and supports res-
olutions of at least the same standard as QXL (v1.40 allows up to 1600x1200 and MODE 8). QPC2
will even stretch the QL screen resolution to fit the PC screen, which can make the QL characters appear
much larger than usual.

These emulators are quick (current versions are as fast as the QXL) and have faster disk, serial and parallel
port access than the QXL. They do however lack some of the QXL’s extra hardware facilities, namely
QL compatible Network ports (although users can use SERNET to connect to the QL).

One of the main problems is that the more memory allocated to the Emulator, the slower its disk access
- this is because of the slave blocks used to store the contents of files so that if you load a file a second
time, it loads much more quickly (see DEL_DEFB). As the QL uses all unused memory as slave blocks,
this can slow down initial disk access (where the file has not been read before).

908 Chapter 38. A3 Emulators

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Compared with QXL, QPC and QPC2 do have their advantages also, including the ability to access the
PC’s colour palette (and thereby dictate which colours may be used in the QL modes), although this will
hopefully not come into the equation when the new colour drivers are released for SMSQ/E. Also, both
versions include commands to access the PC’s CD ROM drive, although at present only audio CDs are
supported (see CD_PLAY and related commands).

QPC and QPC2 also allow you to have more than one QL ‘hard disk’ on the same PC hard disk, by using
a different filename for the QL hard disk (other than QXL.WIN as mentioned above).

Both programs also come complete with the SERNET driver to allow you to use the PC’s serial (COM)
ports as Network devices - this is however somewhat limited as most PC’s only have two such ports (and
one is used for the Mouse)! If you need more serial ports for a PC, please contact us, as we have boards
which can link up to 198 serial ports to a PC!!

The main problem with earlier versions of the emulator is with loading screen images direct - see
LBYTES.

WARNING

Do not allocate the whole of the PC’s memory to QPC as this can cause a disaster!!

38.3.2 A3.3.2 QXL II

This is a plug-in emulator (hardware) now available from Q Branch. QXL II is based on a cut-down
version of the 68040 chip which is extremely quick and because it only uses the PC for access to display,
keyboard and disk drives, it can co- exist with other PC programs and its speed is not dependent on the
main processor speed of the PC.

There was an earlier, slower version of QXL sold by Miracle Systems Ltd. which can have between 1M
and 8M of memory.

The QXL boards simply plug into a standard 8 or 16 bit ISA slot on the PC and are one of the fastest
versions of the QL currently available (including the original!!). They have 8M RAM in-built and run
completely independently from the PC, just using the PC’s keyboard, display and disk facilities. QXL
even has QL compatible Network ports.

Unfortunately, there are few portable IBM compatible computers with ISA slots and therefore if you wish
to use an Emulator on a portable, you will probably need to use one of the two software Emulators.

The main problem with the QXL is that it is fairly slow when accessing the PC’s floppy disk drives and
serial / parallel ports. Also, users have reported that the mouse response and screen re-draw are fairly
sluggish if you run the QXL in a DOS Window under Windows95. It is therefore recommended that you
only use QXL under a standard DOS window.

Although the QXL has its own QL compatible Network ports (SMSQ/E users can also use SERNET),
some QXL II boards display a few problems and you may need to configure the QXL operating system
to change the speed of the network (some machines need it turned down to 24Mhz, others need it turned
up to 26Mhz). The Network unfortunately did not work on v2.25 of the QXL software!!

When QXL was first released the software was still undergoing development, and only supported a lim-
ited range of commands, lacking a full implementation of SuperBASIC and programs compiled with
either Turbo or Supercharge would not run. The majority of programs compiled with Qliberator also had
problems. If you have one of these very early versions, you should upgrade - the full version of SMSQ
was released for QXLs in March 1995.

38.3. A3.3 IBM Compatible PCs 909

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

QXL comes with its own operating system (SMSQ), but the much improved operating system (SMSQ/E)
is now also available for QXLs. SMSQ/E will be needed if you wish to use more than the standard QL’s
8 colours on the QXL.

SMSQ as supplied with QXLs comes complete with a copy of Toolkit II (you still need to use TK2_EXT
to install the toolkit) and Level-2 Device Drivers. SMSQ can handle three different display resolutions in
addition to the standard QL 512x256 screen, if your PC has EGA or VGA graphics. These are 630x350
in EGA mode, 640x480 in VGA mode and 800x600 on most SVGA monitors. These display modes must
be configured before the emulator is used - compare SMSQ/E which allows you to change the display at
any time using the DISP_SIZE command.

SMSQ adopted a different approach to SMSQ/E in that its main aim was to be as compatible as possible
with the original QL, whilst at the same time being quicker than QDOS and incorporating an improved
SuperBASIC interpreter (it is very similar to SMSQ/E so far as the interpreter goes). In fact, in the main
keywords section of this book, we have referred to SMS meaning both SMSQ and SMSQ/E.

For compatibility reasons, it is not possible for SMSQ to adopt the more advanced drivers or an integrated
Pointer Environment such as appear in SMSQ/E. It can however work with the standard PTR_GEN,
WMAN and HOT_REXT files which are supplied with most Pointer Environment software and therefore
can use the Pointer Environment. In order to have SBASIC set up as an Executable Thing, you will need
to enter the command SB_THING on SMSQ after the HOT_REXT file has been loaded.

SMSQ also includes facilities to access IBM compatible disks and the hard-disk on a PC. There were
however problems with earlier versions which could not create more than one QL partition on each PC
hard-disk and limited each partition to 63 Megabytes (see FORMAT). Even in current versions, if your
PC does not support partitioning of hard-disks, you can only have one QL ‘hard-disk’ on each DOS
device - normally C:.

You can overcome this limitation by simply using DOS to rename the QL ‘hard-disk’ file (QXL.WIN)
to something else and then create another QXL.WIN file if you wish to have access to several QL ‘hard-
disks’. If you do this however, you will need to use DEL_DEFB from the QXL to ensure that it recognises
that a new QXL.WIN file is being used.

There were also problems on early versions of SMSQ in recognising when a PC format disk had been
swapped for another one and you may get the same DIR listing for both disks. This was however fixed
by using either DEL_DEFB or reading the directory of a QL format disk before inserting the second PC
format disk.

Lightning and Speedscreen must not be used with QXL, but the screen driver supplied with SMSQ and
SMSQ/E is nearly the same speed anyway.

QXL’s incorporate an easy means of switching between the QL and the PC - simply press
<CTRL><SCROLL-LOCK> to switch out of QL mode and into DOS. This is somewhat limited however,
as the PC’s display sometimes gets distorted.

One of the problems which remains with QXL is that some users have reported difficulties in FORMAT-
ting and writing to QL format HD disks - the problems seem to vary from user to user, and it seems that
this may in fact be a problem related to the PC’s own hardware.

910 Chapter 38. A3 Emulators

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

38.3.3 A3.3.3 QLAY

This is a freeware software emulator in its very early stages of development which works on most PCs
and will run under either DOS or Linux or even Windows95 (v0.84+). It needs a minimum of a 486
processor running at 66Mhz with 8 Mb of memory in order to work. This is not really a competitor to
the two products listed above and may be difficult to use if you’ve never seen a QL - it is however free
and available from the Web on:

http://www.inter.nl.net/hcc/A.Jaw.Venema (This link no lonegr works. NDunbar)

A copy of the JS QDOS ROM is supplied as part of this emulator.

From v0.84+, this emulator will actually allow you to use the QL inside a window under Windows 95
(although this version will not support QL ALTkeys) - all other PC emulators, except for Q-Emulator and
QPC2, currently insist on you using a DOS window.

At present it has a few problems in that it has poor error detection and reporting. QLAY cannot currently
work with a Mouse and early versions only allowed the standard QL resolution display. From v0.85b
(the Windows version), various resolutions up to 1024x768 are supported, with the window being scaled
accordingly to fill the PC’s screen. Early versions (at least v0.7) did not support QL floppy disks, the
PC’s serial ports or Networks - it is unknown whether these have yet been added.

QLAY does however allow you to use Microdrives - what it actually does is use a file on either a PC
format disk or the PC’s hard disk which is identified as a QL microdrive by the extension .MDV - you
create a new ‘Microdrive’ by copying from DOS the file EMPTYDSK.MDV onto the required medium
and give it a new name, such as QUILL.MDV. When you start up QLAY (from DOS), you can pass it
the names of the two microdrive files it is to use as MDV1_ and MDV2_ and then any files which are
SAVEd to MDV1_ (or MDV2_) will be stored as part of the DOS file. For example:

QLAY -1QUILL.MDV -2DATA.MDV

will allow you to enter the command (inside QLAY) SAVE MDV2_TEST_bas which will then create the
QDOS file test_bas inside the DOS file DATA.MDV.

You can also specify whether QLAY is to use up to 8Mb of memory for the QL (although you will need
to use Minerva to cope with more than 768K) and even whether microdrives are to be write-protected.

Unfortunately, early versions of QLAY provided no means of getting QL files across to the PC to store
in these microdrive files. There is now a separate program (QLAYT) supplied to allow you to do this. A
ramdisk is also supplied.

38.3.4 A3.3.4 Q-Emulator for Windows95

This is intended to be a shareware Emulator, which again, is in its early stages of development. It is
based upon the Emulator of the same name for the Apple MacIntosh and works only under Windows95.
It requires a 486 computer at least and supports both QDOS and Minerva (although as with QLAY, you
need to obtain a copy of the QL ROM). The Emulator provides the user with up to 4M of memory and
the current Alpha version supports the PAR device, QDOS disks and host files.

This Emulator is currently limited to supporting the standard QL display (512x256 pixels); and supports
the PC’s mouse, and QL BEEP commands (provided that you have PC DirectX drivers). It can use any
PC BAUD rate up to 256,000 as well as those supported by the QL.

The TRA command is not supported.

A copy of this Emulator and further details can be obtained from:

38.3. A3.3 IBM Compatible PCs 911

http://www.inter.nl.net/hcc/A.Jaw.Venema

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

http://www.geocities.com/SiliconValley/Heights/1296/winql.html (This link no lonegr works. NDun-
bar)

38.4 A3.4 Atari Computers

There are several hardware based Emulators which are referred to in this book collectively as ‘ST/QL
Emulator’ (excluding SMS2). There is also one software Emulator (SMSQ/E).

38.5 A3.4.1 The ST/QL Emulator

This in fact relates to three different QL Emulators which can be fitted to the Atari range of computers.
The type of Emulator needed depends upon the Atari computer being used and also when the Emulator
was purchased.

All later versions of the Emulators come complete with Atari_rext and AtariDOS toolkits.

38.5.1 (a) Atari-QL Emulator

A commercial hardware emulator made by Futura Datasenter in Norway for MEGA ST and 520/1040
machines - this has not been available for some time. Some versions of the emulator supported MODE 8,
some did not - it is impossible to check if it does. This only supported the original QL screen resolutions.

38.5.2 (b) Extended4-Emulator

A commercial hardware emulator for all ST machines (268,520,1040 but not STE), including STF, STFM
and MEGA ST models. It will however not work on the Falcon 030. This may still be available from
Jochen Merz Software.

Although this has its own operating system built in, you can upgrade it to SMSQ/E if you wish.

38.5.3 (c) QVME

A plug in commercial hardware emulator for Mega STEs and TTs that plugs into the VME slot. It
unfortunately will not work with the Falcon 030. This is available from Jochen Merz Software and
current versions come complete with SMSQ/E.

This supports a wide range of screen resolutions up to 1024x780 pixels (or theoretically, if you can
obtain a monitor, 1024x1024 pixels) are supported. You are also able to choose at runtime (unlike the
QL-emulator Extended4) the resolution in which you wish to work, using the DISP_SIZE command -
this is only limited by the capabilities of your monitor.

912 Chapter 38. A3 Emulators

http://www.geocities.com/SiliconValley/Heights/1296/winql.html

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

38.5.4 In General

Both of the first two hardware emulators must be fitted inside an Atari ST computer and needed a bit of
careful soldering to make them work. The QVME simply plugs into the Atari ST.

Once fitted, all of these hardware emulators are based on a JS ROM (unless you have installed SMSQ/E
on the QVME emulator); indeed a slightly patched copy of a JS ROM is loaded as the basis for the
emulator’s operating system; these patches are not documented. The operating system may be loaded
from either disk, harddisk or EPROM.

Once loaded, you are presented with the normal QL start-up screen, although later versions of the emu-
lator allow you to start-up by pressing the following:

• F1. . . MODE 4 + Monitor

• F2. . . MODE 4 + TV

• F3. . . Extended MODE 4 + Monitor

• F4. . . Extended MODE 4 + TV

(On the QVME, only the first two options are displayed).

Together with the image of a JS ROM, the emulator loads in its own set of drivers - please see the section
on Drivers. In the latest versions of the emulator software (E-level), the window drivers are almost as
fast as with Lightning.

Unfortunately, in the Extended MODE4, the parameters of CON and SCR devices are not recognised by
early versions of Qpac2, which will display them merely as SCR_ or CON_.

Also present as standard on Level-E drivers (and later) of the Emulators is the Pointer Environment,
Toolkit II, the OUTLN command, a RAM disk driver and the Hotkey System II.

38.5.5 Microdrives

The emulator cannot support microdrives and if you try to access the microdrive, error -7 (not found)
will be reported. If a program has been written for microdrives, either use

EXCHG flp1_file,'mdv','flp'

or

FLP_USE 'mdv'.

38.5.6 BEEP

The emulator cannot support QL sound and therefore this command usually has no effect.

38.5. A3.4.1 The ST/QL Emulator 913

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

38.5.7 MODE 8

This is not supported (except on some versions of the original QL-Emulator). Any attempt to access
MODE 8 will have no effect, and displays in MODE 8 have the same effect as trying to load a MODE 8
screen in MODE 4.

All software will however run happily on the emulator (although see below if you are trying to use the
Extended resolutions), although it will look a little odd.

38.5.8 MODE 4

Current versions of the emulator support a much enhanced screen resolution. This is known as Extended
Resolution and on the Extended Mode 4 Emulator is chosen from the start-up screen (see above). On
QVME, you can configure the size of the screen resolution or even alter it whilst the Emulator is being
used.

This extended resolution mode has the same four colours as normal MODE 4, except that instead of dis-
playing 512x256 pixels, the resolution of the screen is 768x280 pixels on the QL-Emulator EXTENDED4
and anything between 512x256 pixels and 1024x1024 pixels on the QVME (this can be any value in the
range in steps of 8 or 16 pixels, provided that you have a powerful enough monitor).

Well written software must therefore not assume the resolution of the screen, and if writers wish to
access these higher resolutions, the functions QFLIM, XLIM and YLIM have to be used. The logical
consequence is that higher resolutions can only be supported with the help of the Pointer Environment,
thus underlining that this extension is absolutely obligatory.

Unfortunately some software writes directly to the screen and assumes that the screen will be 512x256
pixels and start at address $20000. This will cause untold havoc in Extended MODE 4, although such
software will run happily in normal MODE 4 on the emulator. Interestingly, this odd kind of software
runs happily on QVME, because this has its own screen memory on-board and leaves the 32k RAM
from $20000 upwards untouched; so it does no harm if software writes directly into memory. . . you will
simply not see the effect of this.

38.5.9 ROM Memory

The QL ROM on the emulator is actually stored in RAM, which means that if software tries to write to
addresses in the range 0. . . 65535, the Emulator is likely to crash. On a standard QL, writing to ROM has
no effect. This should be avoided in all cases!

You can plug QL-ROM cartridges into the Atari ST with the help of special hardware.

38.5.10 Network

The Emulator cannot access the QL Network which was always very particular to Sinclair. This is really
a pity. There does however now exist a means of communicating via the MIDI port to other STs (the
MIDINET driver) and even the serial ports (the SERNET driver). See the separate Appendix concerning
Networking.

914 Chapter 38. A3 Emulators

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

38.5.11 Devices

The following devices are supported on the ST/QL emulators: flp, win, ram, dev, ser, par, prt, nulf, nulz,
null, nulp, pipe_<length> pipe, pipe_name/pipe_name_<length>, sdump; where flp, win and ram are at
‘Level-2’.

38.5.12 Lightning/Speedscreen

Neither Lightning nor Speedscreen can be used with current versions of the Emulator. Lightning could
be used with drivers before Level-E, but you needed a special Atari version.

38.5.13 Qliberator

You will need to use v3.22a of the Runtimes at least on these Emulators.

38.6 A3.4.2 SMSQ/E

This is a commercial software emulator which can run on all ST models (but not the Falcon). It is fast and
very flexible - in fact it is the operating system now sold with QVME, Extended4, and QPC emulators.
This is available from Q-Branch, or from Jochen Merz Software. Note that there are several ST versions,
call the supplier before ordering.

SMSQ/E is to be the new standard operating system for future QL developments and is also available for
QXL II, AURORA, Q40 and QLs with either a Gold Card or Super Gold Card attached.

38.6.1 Lightning/Speedscreen

Neither Lightning nor Speedscreen can be used with SMSQ/E.

38.6.2 Qliberator

You will need to use v3.22a of the Runtimes at least on SMSQ/E.

Please refer to the SMSQ/E Appendix for more details.

NOTE:

The emulator is RAM based and you can therefore expect some problems with software which tries to
write to the original QL ROM (in the range 0. . . 65535).

38.6. A3.4.2 SMSQ/E 915

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

38.7 A3.4.3 SMS2

This is a board which plugs into the side of the Atari ST computers, which was marketed by Furst Ltd.
It is no longer available. SMS2 was not marketed as being an emulator for the QL, but as an add-on
enhancement for the Atari’s native operating system.

It includes a version of the Pointer Environment including QPac 2, and can run a fair amount of QL
software. The main problem with SMS2 is that it does not provide a version of SuperBASIC, although it
is possible to create programs under SMS2 using the in-built version of the QD editor (© Jochen Merz
Software) and the in-built Qliberator compiler (© Liberation Software).

Unfortunately, the use of this board is restricted, since it only worked on Atari ST computers. It would
also work on Atari STE computers however, provided that the QVME board was plugged in also!

The way in which SMS2 loads programs is very different to other implementations of SuperBASIC due
to the lack of an interpreter. We feel that this is beyond the scope of this book.

SMS2 provides the following facilities as well as being able to run various QL software:

• Access to Atari serial and parallel ports (details of ports unknown)

• Access to Atari floppy disks and SCSI hard drives (presumably it can handle QL disks)

• Network facilities are available for SMS2 via the MIDINET extension (now provided with
SMSQ/E).

• Built in ram disks

• Supports Atari mouse and Atari monochrome display (640x400 pixels)

38.8 A3.5 Commodore Amigas

38.8.1 A3.5.1 Amiga QDOS

This is a public domain software emulator available for Amiga computers. It was distributed together
with a load of public domain QL software on a CD cover disk on the Amiga Format magazine (published
by Future Publishing of Bath) in September 1996. It is also available from Qubbesoft P/D.

Details about the emulator are on the Web at:

http://www.emulnews.com/aer/articles/af (This link no longer works. NDunbar)

The program loads the operating system from disk and basically simulates a JS ROM QL with a few
additions in later versions. Although a public domain toolkit is included with the package that contains
many of the commands added by Toolkit II, you really could do with a copy of Toolkit II on disk to load
into the Emulator (with LBYTES flp1_Toolkit2_cde,49152).

There is no need for the EPROM_LOAD command on this Emulator since, once any toolkits have been
loaded into the Amiga’s memory (as with Toolkit II above), you can do a warm reset of the system by
pressing <CTRL><SHIFT><ALT><TAB> which will not wipe out any code previously loaded into the
QL’s EPROM area.

The emulator has been (and is still being) improved independently by several people; making it impossible
to be certain of which versions have which bugs in them.

It is recommended that you get at least v3.23 which had the following enhancements over earlier versions:

916 Chapter 38. A3 Emulators

http://www.emulnews.com/aer/articles/af

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• Supports the full range of Motorola processors (68000, 68010, 68020, 68030, 68040 and 68060).

• MODE 8 support (excluding FLASH)

• Authentic BEEP sounds which are the same as on the original QL.

• QL compatible disk handling, including the ability to use QL HD disks and sub-directories.

• The system variable SYS_PTYP (at offset $A1) is supported, allowing you to test the type of
processor on which Amiga QDOS is running.

• Support for dual screen display MODE.

This emulator is also available in the form of QDOS Classic, which has been released for use on the Q40.

NOTES:

Memory The emulator is RAM based and you can therefore expect some problems with software which
tries to write to the original QL ROM (in the range 0. . . 65535).

38.8.2 ROM Cartridges

These cannot be connected to the Amiga.

38.8.3 Network & Microdrives

As with the ST/QL Emulator, none of these are supported.

38.8.4 MODE 8

Before v3.23 this was not supported and any attempt to use this will result in MODE 4.

38.8.5 BEEP

Before v3.23 this was not supported.

38.8.6 MODE 4

Because of the way in which the Amiga’s display works, some displays can cause flickering of the screen,
or even a scrolling screen. This has to be controlled by altering the speed at which the Amiga’s Blitter
chip updates the screen (on early versions of the emulator, this was achieved by using POKE 164082,x).
In v3.20+ SCR_PRIORITY was added to perform this task.

You can actually alter the four colours available in MODE 4 if you wish, by POKEing the hardware. To do
this, you will need to POKE_W a new word value (up to 4095) into one of the following addresses, each
one representing one of the QL’s standard 4 colours (note the need for quote marks around the address
due to the limitations of QL maths):

POKE_W '14676352', black
POKE_W '14676354', red
POKE_W '14676356', green
POKE_W '14676358', white

38.8. A3.5 Commodore Amigas 917

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Beware that you should not try to read the values at these addresses (for example with PEEK_W) as this
is likely to alter the contents!

38.8.7 DEVICES

The standard QL devices (except MDV) are all supported without any alterations. However, the Qjump
static RAM disk supplied as RAMPRT does not work. Unfortunately, disk access is somewhat slower
than on the QL in all current versions of the emulator.

In v3.10 the serial port could successfully receive data from the QL at up to 9600 BAUD. v3.20 managed
to send data to the QL at up to 1200 BAUD and to the Apple Macintosh at up to 19200 BAUD. We do
not know at present whether later versions have improved these figures.

Disk formatting was also exceptionally slow prior to v3.23 and before v3.10, if Amiga-QDOS wrote to
a disk, it could not be read on a standard QL.

38.8.8 TAS INSTRUCTIONS

The main area of incompatibility with the Amiga QL Emulator is the fact that the machine code TAS
instruction, which is used to test and set a byte in one command, does not work properly on the Amiga.
However, there is a small program supplied with the emulator which patches these instructions in any
given program. All programs compiled with Turbo and SuperCHARGE need to be altered in this way.
If a program has been compiled with Qliberator, you will need to patch the runtimes in this way.

Note that this incompatibility has been completely cured on certain versions.

38.9 A3.6 Unix Systems

38.9.1 A3.6.1 UQLX

This is a shareware software emulator by Richard Zidlicky, still in an early development stage.

In order to work it requires Unix or a Unix-like operating system plus both gcc and Xwindows. It will
however work on at least 5 types of processor: HP-PA, INTEL (486 or better), MIPS, PPC and SPARC.
If you use Linux on the Q40, this emulator can be used as another method to allow the Q40 to boot up
as either a Linux machine or a QL!!

Current versions support JS ROMs (or Minerva), Toolkit II and MODE 4 displays. You can access the
floppy disks and up to 4MB of RAM. You can also create and access UNIX directories using Level-2
Device Drivers.

If you use Minerva, you can use higher resolution display modes (up to 8192x4096 pixels) and access
16MB of RAM.

The main incompatibility problem with this emulator is due to the case sensitive names used by Unix (ie.
filenames).

918 Chapter 38. A3 Emulators

CHAPTER

THIRTYNINE

A4 THOR COMPUTERS

39.1 A4.1 Introduction

Although we do not have direct access to a THOR XVI computer, we are able to report on one or two
comments passed onto us by users.

The THOR XVI was the last in a line of various QL compatible computers originally produced by CST
in the United Kingdom, and more latterly produced in Denmark by Dansoft.

This computer was a very nice package, with much improved hardware and also improvements to the
operating system ARGOS. Unfortunately, not many of these computers seem to have been produced and
the constant changes to ARGOS have made it very difficult to know where the current problems lie. There
now seems little prospect of this computer ever taking off again, and it is highly unlikely that programs
will be altered to suit this computer.

v6.40 of the THOR ROM contained various disastrous bugs and it is recommended that users alter their
ROMs to either v6.39 or v6.41 (the last ROM version to be produced). However, with the apparent demise
of Dansoft, you will need to try and contact other THOR members to see if they will let you use their
ROMs to re-blow your chips.

ARGOS is generally based on an MG ROM with parts of Toolkit II added on - this helps to explain why
only some of the THOR’s commands support default directories. Although some of the bugs are fixed,
many are left well alone, and (at least on some versions of ARGOS) new ones are introduced, which
can make some programs unreliable on the THOR. We have attempted to highlight many of the known
problems in the main body of this manual, but this section contains one or two further sticking points.

39.2 A4.2 KEYROW

The main problem with the THOR range of computers has always been their handling of the KEYROW
function, which is not supported on all of the range. This was partially implemented on the THOR XVI
to try and retain compatibility but programs which use KEYROW cannot be guaranteed to run on the
THOR.

919

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

39.3 A4.3 MODE

The THOR XVI introduced a new MODE 12 which provides the same resolution as MODE 8 (256x256
pixels), but replaces the FLASH bit by an intensity bit which enables the THOR XVI to display 16 colours
on screen.

39.4 A4.4 The Thor Windowing System

There has never been a version of the Pointer Environment which will run happily on the THOR XVI
- instead Dansoft produced its own windowing environment which moves the system variables and the
start address of the screen with all of the inherent problems faced by Minerva users.

This can however be turned off on start-up by using:

CLOSE
POKE SYS_VARS+133,-1
OPEN #1,con_
OPEN #2,con_
OPEN #0,con_
WMON 4

39.5 A4.5 BEEP

Although implemented on the THOR XVI, this is unlikely to match with the sounds produced on the QL.

920 Chapter 39. A4 Thor Computers

CHAPTER

FORTY

A5 EXPANSION BOARDS

In this section, we give a brief description of the more common expansion boards which are available
for the standard QL which go further than merely increasing the memory of the machine or adding the
ability to read disk drives (or hard disks), normally improving the speed of the machine and providing
additional toolkit facilities.

40.1 A5.1 GOLD CARD

This expansion card, unlike other memory and disk expansion cards for the Sinclair QL provides a mas-
sive increase of memory (a total of 1920K) for the QL as well as increasing the speed of the QL by about
4 times.

Gold Card also provides Level-2 device drivers as standard and allows the QL to access up to three
Double Density (DD), High Density (HD) or Extra-High Density (ED) disk drives. Toolkit II and a
battery backed clock is also in-built.

The main problem which may be encountered by users and software authors alike, is that it copies the
QL’s ROM into RAM, which means that like the emulators, any programs which try to write to addresses
in the range 0..65535 are likely to crash the computer.

It should also be noted that some combinations of Gold Cards and QLs allow POKE 114796,0 to force
the Gold Card to run at 24MHz (it normally runs at 16MHz compared to the QL’s 12MHz). The circum-
stances where this works are undefined at the moment, but see below. Some users have however reported
problems with some software running at this speed, and in particular the network and microdrives are
unusable. The Gold Card can be returned to normal with POKE 114796,255.

The so-called Gold Card Go-Faster POKE works on a certain series of Gold Cards, in connection with
random effects only. We highly dis-recommend the use of this POKE, it may overheat the processor and
damage your Gold Card. Please, forget about it.

Gold Cards will support the SMSQ/E operating system if you wish to use this. A Gold Card is the
minimum expansion board required to run an AURORA.

921

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

40.2 A5.2 SUPER GOLD CARD

This board provides the same facilities as the Gold Card plus much more. It is much faster, being ap-
proximately 3 times quicker than a Gold Card. It uses a 68020 chip and provides 3986K of memory.

It suffers from the same problem as the Gold Card in that it copies the operating system into RAM.

This card also allows you to set a flag (using AUTO_TK2F1, AUTO_TK2F2 and AUTO_DIS) to say
whether the QL should automatically start up in either Monitor or TV mode and with or without Toolkit
II present.

Other additions include an in-built parallel port and the ability to use four disk drives. There is also a
cache on- board the processor which can make programs run much quicker (although you may need to
use CACHE_OFF to disable this to make some programs work).

You can also automatically disable or enable the second screen (see SCR2DIS) which is provided by Min-
erva and also used by some software - this can therefore cause problems with some programs, especially
games.

Again, this card can be used to with SMSQ/E and AURORA.

40.3 A5.3 AURORA

AURORA allows the QL to display much higher resolutions on Monitors (up to 1024x768 pixels) and
also speeds up the operation of the QL. It is no longer available as new, but may be obtained second hand.
Aurora is a replacement for the QL motherboard, and needs a Gold Card or Super Gold Card to work,
together with various chips from the original QL board (including an operating system).

You would normally use this board to build a replacement QL in a PC tower case (although it is just about
possible to use the original QL case). You will also need some floppy disk drives (the microdrives are
not supported), a Qplane (to let you plug the various boards together), a keyboard interface, an SVGA
or QL monitor and cables. The BraQuet from Q Branch and the MPlane from TF Services are also
recommended to ease the assembly of the system (the latter is a substitute for Qplane).

If you intend using Minerva with AURORA, you will need at least v1.86. It is also recommended that
you use AURORA with a Super Gold Card as the standard Gold Card limits what you can do with the
enhanced graphics capabilities.

Although any QL operating system can be used with AURORA, you will need SMSQ/E to make use of
the higher graphics resolutions.

Several programs have difficulty working under Aurora and SMSQ/E v2.75+ (these later versions allow
the use of the higher resolution screens). The reason for this is that even if SMSQ/E is configured to start
in 512x256 resolution mode, Aurora uses a fixed screen width of 256 bytes (instead of the normal 128
bytes in this mode) and therefore has to also move the screen from the normal base address.

To try and overcome this problem, Aurora copies anything written to the old screen address (131072)
across to the top left hand corner of the new screen. However, this is not a two-way process and therefore
if Aurora’s screen is altered (for example by BASIC PRINT commands), this alteration will not appear
on the picture stored at the old screen address, making a mockery of hand-written machine code pan /
scroll routines for example.

Luckily, anyone using Aurora will have access to a second operating system which can be used to run the
programs successfully. After all, it is this second operating system which is used to load in SMSQ/E!!

922 Chapter 40. A5 Expansion Boards

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

40.4 A5.4 Q40

Q40 is a replacement motherboard for the QL. It is supplied with 16Mb RAM (although it will support
up to 32Mb) and an I/O card. You will need to add a tower case, a keyboard, floppy and hard disk drives,
a standard PC monitor and mouse. The Q40 even has the ability to drive stereo sound, using an in-built
digital to analogue converter which can be used with either speakers or headphones. All drivers and
equipment to connect these items to the motherboard are built in.

The Q40 is a full-blown 68040 processor at 40Mhz with a maths co-processor. This makes it an extremely
quick version of the QL. It is hoped that later versions with a 68060 processor will be available in due
course.

You can use either Linux, SMSQ/E or Classic QDOS (developed from the Amiga QDOS Emulator) as the
main operating system with the board. These will all make the most of the Motorola processor, making
the Q40 a good competitor to a standard PC. There is also the added benefit that with Linux working on
the machine, the Q40 has the ability to access the internet.

Although Q40 supports the original QL screen (at base 131072), it also allows the QL to display much
higher resolutions on Monitors (up to 1024x768 pixels).

Further, there is the added bonus that with SMSQ/E, the Q40 now supports enhanced colour modes,
including a 256 colour mode and a 24 bit full colour mode, which can vary fom program to program.
Background wallpapers can also be loaded, meaning that this is a very flexible QL successor indeed.

The Q40 is available from QBranch.

40.5 A5.5 HERMES / SuperHERMES

Hermes is a replacement board for one of the QL’s microchips (the 8049), which is also used on the
AURORA replacement mother board - Hermes is available from TF Services. Hermes provides the QL
with much more reliable serial port communications, improved sound and keyboard.

Hermes fixes some of the problems inherent in the original QL, including supporting independent input
BAUD rates for each serial port (not necessarily the same as the output BAUD rates), together with full
support for input BAUD rates of 19200. Problems with the QL’s BEEP command are also fixed, meaning
the pitch of the sound does not affect its duration.

SuperHERMES is an improved version which also adds an additional high speed serial port (up to 57600
bps), three low speed serial ports (30 bps to 1200 bps) which can be used for a serial mouse or a graphics
tablet. This also includes a keyboard interface (to allow you to use a full size serial IBM AT keyboard),
a capslock/scrollock LED connector and 1.5K of RAM which can store data whilst the QL is switched
off. Unfortunately at present, without a special public domain program written specifically for use with
SMSQ/E, you cannot use a keyboard linked to SuperHERMES to reset the computer (for example with
the soft-reset provided with Minerva or SMSQ/E).

If you want to use independent BAUD rates, you will need SMSQ/E or Minerva as well as Her-
mes/SuperHERMES.

40.4. A5.4 Q40 923

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

40.6 A5.6 QuBIDE

QuBIDE is a board which provides the QL with access to modern PC Hard Disks and is no longer
available new. If you intend using this board, you will need expanded memory (expansion cards can be
plugged into the QuBIDE interface).

Early versions of QuBIDE will work with most IDE standard Hard Disks and contain WIN_DRIVE,
WIN_USE and MAKE_DIR commands similar to those listed in the manual. However, the MAKE_DIR
command will not work if any files already exist which would be inside the sub-directory (unlike the
standard implementation of this command).

There is also a v2.xx ROM available for QuBIDE, which allows access to a wider range of Hard Disks
(ATAPI/IDE standard). You can also specify that MAKE_DIR will work as per the standard implemen-
tation. A trashcan facility is also added, where deleted files are simply moved to the ‘trashcan’ and have
to be specifically removed at a later date (similar to the Recycle Bin on Windows 95).

Unfortunately, problems have been reported with the Trashcan facility which makes it unreliable.

924 Chapter 40. A5 Expansion Boards

CHAPTER

FORTYONE

A6 COMPATIBILITY

Most QL software is well written, and provided that you use standard SuperBASIC commands and make
no assumptions such as about addresses in memory, or the size and location of the screen, it would appear
to work happily on all different QL and QDOS compatible set-ups. Unfortunately, as always, there are
some exceptions to this rule, and the areas which appear in the following sections would appear to cause
the greatest problems:

41.1 A6.1 Addressing

As the QL was developed, the designers tried to leave everything open-ended so that nothing could be
taken for granted. However, towards the end of 1984 (the first year of the QL’s long history) things
appeared to have settled down with the JS ROM in the UK and USA, and MG ROM version elsewhere.
Without any later ROMs in sight, software writers got very lazy and rather than write a few lines of
machine code to check for the address for various things (such as the start of the screen): they assumed
that it would always remain where it had been, and so started to use absolute addressing.

Likewise, programmers assumed that the QL’s operating system would always appear in ROM and they
could therefore write routines which tried to overwrite parts of memory, regardless of whether they were
pointing to ROM or RAM - after all, it could not harm the operating system as you cannot write to ROM,
can you (!).

Another problem are programs which use RESPR to reserve memory for themselves at a particular place
- the boot programs typically include lines such as:

10 Addr=273102
20 A=RESPR(0):A=RESPR(A-Addr)
30 LBYTES flp1_Program_cde,Addr:CALL Addr

Unfortunately, later developments in the QL world, namely emulators and the Gold Card (for example),
have moved the QL’s operating system into RAM, meaning that it can be overwritten, thus crashing the
whole machine. Parts of memory are moved around freely, making use of the calls incorporated into
QDOS by the QL’s designers and even the speed of the QL has altered. Despite the best attempts of
the manufacturers of the Gold Card and emulators, this has resulted in one or two incontestabilities with
older software.

925

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

41.2 A6.2 Speed

Both QDOS emulators and the Gold Card have greatly increased the speed at which the QL works, making
some programs unusable. Luckily the effects of this are limited by various commands which slow the
operating speed of emulators and the Gold Card down.

41.3 A6.3 The Operating System

Some software in the market was written with specific versions of the QL ROM in mind. For example,
one program which was quite a useful SuperBASIC utility, would appear to only work on JS and MG
ROMs. This software can only become redundant as more and more users upgrade their systems to take
advantage of the latest developments in the QDOS operating system.

41.4 A6.4 Memory

Some older software is not address independent, which means that it has to be loaded at a specific place in
memory. This can prove impossible on machines with expanded memory, but luckily commands do exist
to reduce the memory size. We have however come across one program, which although it is address
independent, refuses to work correctly whenever the system on which it is running has anything more
than the QL’s original 128K (even if only 128K is set aside for use by the program).

41.5 A6.5 The Stack Pointer

As any machine code programmer will be aware, the processor’s address register a7 is used by the op-
erating system as the stack pointer. Some software attempts to set this to an absolute address when the
program begins (even though there is no need for this). If such a program is not executed as a task, then
it is likely to fall over on Minerva and SMSQ/E.

41.6 A6.6 Compilers

SuperBASIC compilers are an excellent means of getting the best of two worlds: the flexibility and clarity
of a SuperBASIC program, but with the speed of machine code. Unfortunately, although the SuperBASIC
compilers have mainly kept pace with the development of QDOS, some software originally compiled with
earlier versions of compilers has not been upgraded, meaning that it may not be compatible with the latest
ROM versions.

There are two types of SuperBASIC compiler which have been produced for the QL, namely true com-
pilers (Turbo and Supercharge) which produce independent machine code, not relying in any way on Su-
perBASIC structures (and the code produced is therefore much more portable between different QDOS
machines) and so-called pseudo compilers (Qliberator) which produce machine code which still uses
SuperBASIC structures and calls.

Although the former produce much quicker code, they are not as versatile as the latter as they expect
SuperBASIC commands to be used in a certain manner and cannot therefore recognise the enhancements
introduced to SuperBASIC commands by Minerva SMSQ/E and emulators.

926 Chapter 41. A6 Compatibility

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

There is also a problem in that programs compiled with Turbo will not work on versions 2.25 - 2.31 of
SMSQ. You will also find that some Turbo compiled programs will not work if started from a copy of
BASIC other than Job 0 (on both SMS and Minerva) and also neither compiler can currently compile a
program which from within a multiple copy of BASIC.

Patch programs have been released which enable Turbo compiled programs to be used on a system which
has a large amount of memory (such as the Q40). Later versions of the Turbo Toolkit (v3d27 and later)
are also required for better compatibility.

However, one of the remaining problems with SMSQ/E which is displayed by Turbo compiled programs
is the failure of the in- built Integer to ASCII conversion routine to cope with negative integers. This
means that Turbo compiled programs remain unreliable on current versions of SMSQ/E - refer to PRINT
for an example.

41.7 A6.7 High Resolution Displays

More and more QL implementations are now able to use much higher screen resolutions than the original
512x256 pixels (or 256x256 pixels in MODE 8). Unfortunately many programs were written before this
facility was available and therefore will not work correctly on higher resolution displays. Even if they do
work, the program may be confined to a small section of the screen, normally the top left hand corner,
and use fonts which are much too small to read.

The only answer to this (unless a new version of the program is released) is to use a lower resolution
screen (see DISP_SIZE) or to put up with the slight inconvenience. Aurora has other problems too - see
Appendix 5.3 for more details.

You should however be aware that on some monitors, a lower resolution screen may still not fill up the
whole area shown by the monitor - this does not cause a problem in itself and there is nothing you can do
about it - it is due to the difference in ratio between 512x256 pixel displays and standard PC (or ATARI
/ MAC / UNIX . . .) displays.

Appendix 16.4 is also of interest in connection with High Resolution Displays.

41.8 A6.8 String Lengths

The maximum length of strings varies on each QL implementation (even though you can use DIM to
dimension a string up to 32767 characters, this does not mean that you will be able to use all of those
characters!!). SMSQ/E allows a maximum string length of 32765 characters, whilst Minerva allows a
maximum string length of 32764. QDOS ROMs allow a maximum of 32766 characters. On the other
hand FILL$ is allowed to be used to create slightly different string lengths - on SMSQ/E this is 32764
characters, on Minerva 32767 (except on v1.98 where a limit of 32764 characters was implemented) and
on QDOS ROMs, FILL$ can produce strings up to 32767 characters long.

The outcome of this is that the maximum length that should be used for a string should be 32764 characters
which is the limit imposed by the Turbo compiler.

41.7. A6.7 High Resolution Displays 927

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

41.9 A6.9 Later Processors & Gold Cards

Various QL implementations use a chip as the main processor which is not a 68008 chip (the chip that the
QL was originally designed to use). These later chips have various facilities, such as caches which can
cause problems with some software (see CACHE_OFF). You may also note that some leisure software
does not work on a GOLD CARD QL - this is normally where the command SCR2DIS has been issued
- some leisure software insists that the second screen is enabled!!

41.10 A6.10 Finally

Specific points to watch out for on the different QDOS implementations are covered in the appendices
dealing with each one.

There are also various points explained in the main keywords section of this book.

928 Chapter 41. A6 Compatibility

CHAPTER

FORTYTWO

A7 MULTIPLE BASICS

The Sinclair QL is one of a few computers which allow you to run several BASIC programs in memory
at the same time, multitasking them as if they were machine code programs.

The QL implementation of this is more flexible than most other implementations and certainly a lot
cheaper, requiring only a standard QL with Minerva ROM (or a QL with Gold Card and SMSQ/E) at the
least.

Both Minerva and SMS provide the ability to use several SuperBASIC interpreters at the same time,
allowing you to work on more than one BASIC program at a time and run them alongside other BASIC
programs.

There is not really a great deal of difference between the two implementations and so we shall first of
all describe the Minerva implementation (known as MultiBASICs) and then describe the differences in
SMS’s implementation (known as Multiple SBASICs).

42.1 A7.1 MINERVA MultiBASICS

A MultiBasic on Minerva is very similar to the standard QL’s SuperBasic interpreter. This means that
once a MultiBasic has been created, you can use it in practically the same way as you would normal Su-
perBasic (that is to say that you can enter programs, load and run programs using the standard commands
set out in this manual).

There are several advantages in using MultiBasics, but the main advantages are:

• You can have several programs running at the same time (one program under each MultiBasic,
and one under the standard SuperBasic interpreter) in much the same way as you can have several
machine code programs

• You can tell a MultiBasic to ignore any machine code extensions other than the standard ROM
keywords (letting you test programs on semi-clean machines)

• If a program ‘locks up the QL’, provided that it is running in a MultiBasic, it will only lock up that
interpreter and you should be able to return to the standard SuperBasic interpreter.

A Multibasic can be created in one of three ways:

EXEC ‘flp1_multib_exe’ *[,filex]* [;cmd$]

or:

MB

or:

929

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

EXEC pipep *[,filex]* [; cmd$]

The first two methods are for use on Minerva ROMs pre v1.93 (the file multib_exe is contained on the
disk supplied with the Minerva ROM). The second method is for use on later versions of Minerva which
have the relevant machine code built into the ROM.

42.1.1 A7.1.1 Channels OPENed automatically in MultiBASICs

When one of the above commands is entered, Minerva will examine the parameters passed using the
command. It first of all has to decide how to set up the standard channels (#0 - the primary command
channel and #1 - the primary output channel).

If neither a file nor cmd$ is supplied, for example:

EXEC pipep

then a single window is opened on screen which is used by both #0 and #1. #2 is not opened. The actual
position of this window on the screen cannot be set by the user and is dictated by how many MultiBasics
are already running (you can of course redefine #0 and #1 from within the MultiBasic by using WINDOW,
although as both #0 and #1 use the same window, any attempt to redefine #0 will affect #1 and vice versa).

If however, cmd$ is supplied, for example:

EXEC pipep;'This is a Command String'

channels #0, #1 and #2 will all be set up as in the standard SuperBasic interpreter. You can then CLOSE
#1 or CLOSE #2 without removing the MultiBasic. Sections A7.1.2 to A7.1.4 explain how the command
string is dealt with.

If one file (or channel) is supplied, for example:

EXEC pipep,flp1_inputfile

Minerva will open both #0 and #1 to access that file, whereas if two files are supplied, #0 is opened to
access file1 and #1 is opened to access file2. If three or more files are supplied, then #0 is opened to
access file1, #1 to access file2, #3 to access file3 and so on (#2 is omitted).

42.1.2 A7.1.2 Starting a MultiBASIC with the Original QL ROM Commands only

cmd$ is used to pass different parameters to a MultiBasic. If the last character is an exclamation mark (!)
then this is taken to be the ROM marker, and the MultiBasic will start up recognising only the original
keywords contained in the Minerva ROM.

930 Chapter 42. A7 Multiple Basics

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

42.1.3 A7.1.3 Multitasking a MultiBASIC Program

In order to run a BASIC program as a multitasking program, it is necessary to start a MultiBASIC in-
terpreter and pass the name of the program to be run as part of cmd$ passed to the MultiBASIC by the
start-up command.

If cmd$ contains the file marker (>), the characters in the string before that marker are taken to represent
a file name which will be opened to read commands from (similar to a stream device). The MultiBasic
will open both #0 and #1 to this filename and will read the characters from the file and try to interpret
them as a program.

If the program does not open any screen windows and print to them, this will allow a SuperBasic program
to run in the background, for example, as a filter.

You will be unable to redefine #0 from within the program, as this will stop the MultiBasic from accessing
the command file. This could for example, be used to test programs:

EXEC pipep;'flp1_boot>'

42.1.4 A7.1.4 What Happens to the Rest of the Command String?

Having stripped all of the information needed in Section A7.1.2 and A7.1.3 from cmd$, any characters
left in the string supplied can then be read from within a MultiBasic itself by simply accessing CMD$.
For example:

PRINT 'Your Name is :'!CMD$

42.1.5 A7.1.5 Loading Toolkits into a MultiBASIC

Any toolkits which are LRESPR’d from within a MultiBASIC are defined as local to that MultiBASIC
and will not be recognised from any other interpreter (unless you start yet another MultiBASIC from
within that MultiBASIC interpreter). They will therefore be removed when you remove the MultiBASIC
interpreter which loaded the extensions.

For this reason, MultiBASICs should not be used to link in system extensions (such as BTOOL which
adds new device drivers).

42.2 A7.2 SMS Multiple SBASICs

These are extremely similar to Minerva MultiBASICs and can be used in much the same way as Multi-
BASICs and have the same advantages (except that you cannot at present tell SMS to start up an SBASIC
with only the standard QL ROM keywords).

On versions of SMSQ which do not incorporate the Hotkey System II automatically (and therefore need
the file HOT_REXT to be loaded), you will need to enter the command SB_THING to create the SBASIC
Thing (see below).

A Multiple SBASIC can be created in one of several ways. The more usual methods are:

EXEC ‘flp1_program_bas’ *[,filex]* [;cmd$]

or:

42.2. A7.2 SMS Multiple SBASICs 931

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

SBASIC [offset]

or:

EXEP ‘SBASIC’;cmd$

The first method allows you to automatically load a BASIC program to run under an SBASIC interpreter
multitasking alongside the normal SuperBASIC interpreter (Job 0). This allows you to start a program
up from within Qpac 2’s File Menu.

The second method merely starts up an SBASIC interpreter.

Because SBASIC is implemented as a Thing under the Hotkey System II, you can also set start an SBASIC
Interpreter using the third method, or even from Qpac 2’s Exec Menu. You can even set up a hotkey to
start an SBASIC interpreter. For example:

ERT HOT_THING ('L','SBASIC')

will start up a new SBASIC interpreter whenever <ALT><L> is pressed.

42.2.1 A7.2.1 Channels OPENed automatically in SBASICs

If you use the command SBASIC to start an Interpreter, the initial windows which will be OPEN depends
upon whether an offset parameter is passed:

• If no offset is passed then all the standard Windows #0,#1 and #2 will be OPENed (as per WMON)

• If offset is specified, only #0 will be opened and the offset is used to determine the location on
screen of that window.

If you use the third method of invoking SBASIC, or Qpac 2’s Exec Menu or a Hot Key to start an
Interpreter, then it depends upon whether you pass a string as a parameter:

• If no string is passed, then the standard windows #0, #1 and #2 are OPENed.

• If you pass a string to the interpreter, then no windows are OPENed and the string is treated as a
command as if it had been entered in the command line (see Section A7.2.7 below!). For example:

EXEP 'SBASIC';'LRUN flp1_PROG_Bas'

is the same as:

EXEC flp1_PROG_bas

If you instead use a command such as EXEC to start up a program under a SBASIC interpreter, then no
windows will be OPENed by default and the program will need to OPEN all of its own channels.

However, if any files (or open channels) are specified then (as with MultiBASICs) these are OPENed as
#0, #1 onwards (#2 is not omitted in this case).

We would refer you to the explanation of EW about setting up Filters by making use of these facilities.

932 Chapter 42. A7 Multiple Basics

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

42.2.2 A7.2.2 The Command String

The effect of the command string depends upon the circumstances.

If the SBASIC Interpreter is started using the EXEC command (or similar) then SMS does nothing with
the command string and it can merely be read from within the SBASIC Interpreter with the function
CMD$.

If however, SBASIC is started using the Thing System, then the command string is executed as if it were
a direct command (see Section A7.2.1).

42.2.3 A7.2.3 Starting an SBASIC with the Original QL ROM Commands only

This is currently not possible.

42.2.4 A7.2.4 Multitasking an SBASIC Program

This is much easier than under MultiBASIC and the standard form for doing this is to use a command
such as:

EXEC flp1_program_bas

Provided that the name of the program ends in _bas or _sav, then this BASIC program will be started as
a separate multitasking program running under an SBASIC Interpreter.

You can also use SBASIC’s characteristics as a Thing to start a BASIC program - see Section A7.2.1.

42.2.5 A7.2.5 Loading Toolkits into an SBASIC

This follows exactly the same rules as on a MultiBASIC.

42.2.6 A7.2.6 Defining the Name of an SBASIC

You can do this by using the command JOB_NAME from within the SBASIC Interpreter.

If you start an SBASIC using the HOT_THING command, you can also use this to define the name of
the Job, for example:

ERT HOT_THING('L','SBASIC','INT 1')

However, all future SBASICs started from the hot key will still be given the same name!!

42.2. A7.2 SMS Multiple SBASICs 933

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

42.2.7 A7.2.7 Channel #0, #1 and #2

Channel #0, #1 and #2 are dealt with differently under an SBASIC Interpreter than under the main Su-
perBASIC Interpreter (due to the fact that they may not be OPEN - see Section A7.2.1).

• All standard QL ROM and Toolkit II commands which would normally default to #1 or #2 will
access #0 if the relevant default channel is not OPEN.

• If a standard keyword tries to access #0 by default (or as in the previous paragraph), if #0 is not
OPEN already, then a small default #0 will be OPENed automatically.

• If you have RUN a program under SBASIC (for example used EXEC flp1_PROG_BAS) and on
completion of the program #0 is not OPEN, the SBASIC Interpreter will be removed.

• If an error occurs and #0 is not OPEN, a small default #0 will be OPENed automatically to report
the error.

42.2.8 A7.2.8 Removing an SBASIC

CLOSE #0 will remove an SBASIC if a program is not RUNning. However, it is better to use the explicit
command QUIT.

42.2.9 A7.2.9 Keywords Which are Useful in SBASICs

Reference should be made to SEND_EVENT and WAIT_EVENT.

DEVTYPE allows you to find out if a channel is OPEN.

QUIT and JOB_NAME are only of any relevance from within an SBASIC.

WMON and WTV allow you to move the SBASIC windows.

934 Chapter 42. A7 Multiple Basics

CHAPTER

FORTYTHREE

A8 ERROR MESSAGES

The QDOS error code is a negative integer between -1 and -21 and is often referred to instead of the
relative error message. You can either refer to the following tables to find the message text or use the
various toolkit implementations of the command REPORT to display the representation on your machine.

On some implementations, REPORT also accepts parameters between -22 and -27 which represent strings
used by the operating system, but which are not strictly error messages. The text can be freely changed
with the TRA and LANG_USE commands.

The instances where such error messages will be reported is actually dependent upon the task which was
being performed at the time.

43.1 A8.1 Standard English Error Messages

A very general explanation of each message is given below, according to the error number. For each
message both the original English QDOS error message is given as well as the new English SMS error
message:

-1 NOT COMPLETE (QDOS)-INCOMPLETE (SMS)

This message is generally issued when the Break key <CTRL><SPACE> is pressed, and signifies that a
task being carried out by the QL has been interrupted.

This message will also appear if you try to use the standard version of RESPR when a Job is loaded into
the QL.

-2 INVALID JOB (QDOS)-INVALID JOB ID (SMS)

This message is issued by all Job-related commands when the Job identification number / Job name / Job
tag supplied as a parameter to the command does not relate to a Job resident in the QL’s memory.

-3 OUT OF MEMORY (QDOS)-INSUFFICIENT MEMORY (SMS)

This message is quite self-explanatory. It is issued when you try to do something which requires more
memory than is currently available. This can however be due to heap fragmentation, and it may therefore
be useful to try the command DEL_DEFB.

-4 OUT OF RANGE (QDOS)-VALUE OUT OF RANGE (SMS)

This generally occurs when a parameter supplied to a machine code Function or Procedure cannot be
handled by that machine code routine. The best example of this is trying to open a window which cannot
fit on the screen, eg:

OPEN #3,SCR_10000x500a0x0

935

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

-5 BUFFER FULL (QDOS & SMS)

This error generally occurs if SuperBasic’s input buffer becomes full. On pre-JS ROMs, you are likely
to see this error quite often, especially if you try to INPUT a line greater than 128 characters.

-6 CHANNEL NOT OPEN (QDOS) - INVALID CHANNEL ID (SMS)

This will be generated by all well-written machine code Procedures and Functions if you pass a channel
parameter (#ch) which points to a channel which is not actually open.

-7 NOT FOUND (QDOS & SMS)

This error message is generally issued by file-related commands (eg. LOAD) if either the supplied device
name or file name do not exist.

-8 ALREADY EXISTS (QDOS & SMS)

This error is returned by commands such as SAVE to indicate that a file already exists with the specified
name on the specified device. If Toolkit II is available, you will generally be asked whether or not you
wish to overwrite the file.

-9 IN USE (QDOS)-IS IN USE (SMS)

This message is normally generated by file-related commands where you try to access a file which has an
exclusive channel open to it, or for example, if you try to DELETE a file which has a channel open to it.
This message is also printed by commands such as WSTAT where a channel is open to a file, allowing
further data to be written to that file.

You will also see this message if you try to open a channel to one of the serial ports when there is already
a channel open to that port.

-10 END OF FILE (QDOS & SMS)

You will see this message if you try to input data from a file when the file pointer is at the end of the file.

This also occurs if you try to READ DATA from within a program and there is no more DATA in the
program to be READ. Note however, on SMS, that this error is altered to:

End of DATA

in this instance.

EOF or EOFW should be used to overcome this error.

-11 DRIVE FULL (QDOS)-MEDIUM IS FULL (SMS)

This error message is normally generated when you try to write to a medium and there is not enough
room on the medium. Unfortunately, with many commands, unless you have Toolkit II installed, the
error message will only be generated if there is no room left on the medium when you first try to open
the new file. Without Toolkit II, if the medium becomes full whilst the file is actually being written, no
error will be reported and an incomplete file will be left on the medium.

-12 BAD NAME (QDOS)-INVALID NAME (SMS)

This error is generated when you try to use an undefined name as a command in a program. It generally
reveals typing errors in programs, such as 10 PRIT ‘Title’.

-13 XMIT ERROR (QDOS)-TRANSMISSION ERROR (SMS)

This is generated when you are trying to read data over the Network, or serial ports. This error normally
occurs when there is an error in the parity of the data which has been read.

-14 FORMAT FAILED (QDOS & SMS)

936 Chapter 43. A8 Error Messages

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

This error will appear when you try to FORMAT a medium. It generally shows that there is something
dreadfully wrong with that medium, however, you may find that if you try to FORMAT the same medium
in another drive, or clean the drive heads, this may prevent this error.

-15 BAD PARAMETER (QDOS)-INVALID PARAMETER (SMS)

This message is generated by machine code Procedures and Functions where the wrong type of parameter
has been used in the calling statement. This may for example occur if you try to pass a string when a
number is required.

-16 BAD OR CHANGED MEDIUM(QDOS) - MEDIUM CHECK FAILED(SMS)

This message occurs when you try to read or write to a medium and an error occurs when the computer
tries to verify the data being read or written.

When trying to write to microdrives, it will also signify when a microdrive is read only, due to a bug in
the QL’s hardware.

-17 ERROR IN EXPRESSION (QODS & SMS)

This error is normally generated when part of an expression does not make sense, for example: DIM
a(10,10):PRINT a/10. Look for the use of undefined variables, or possibly arrays where a simple variable
is needed (or vice versa).

-18 OVERFLOW (QDOS)-ARITHMETIC OVERFLOW (SMS)

This occurs when you have used an expression which cannot be handled by the QL’s maths package, for
example divide by zero, or where you try to assign a value to an integer which is greater than 32767.

-19 NOT IMPLEMENTED YET (QDOS) - NOT IMPLEMENTED (SMS)

This message generally appears when you try to do something which the QL cannot currently do, but
which it is hoped may be implemented in the future. For example, DIM a$(10,10), z$(10,10): z$=a$.

-20 READ ONLY (QDOS)-WRITE PROTECTED (SMS)

This message is normally generated when you are trying to open a channel to a file for the output of data
and the medium has been write-protected. Unfortunately, this does not work on microdrives!

-21 BAD LINE (QDOS)-INVALID SYNTAX (SMS)

This error message appears if you try to enter a SuperBASIC command which does not make sense. It
is in fact a Syntax error - the line will be represented for editing, and if Minerva or SMS is present, the
cursor will be (hopefully) placed on top of the offending character.

-22 IN LINE (QDOS) *

This message forms part of the error sequence and is used to notify you of the line at which the error
occurred (eg. IN LINE 100). This has been modified on Minerva and SMS so that the number of the
statement on that line where the error occurred is also shown (eg. IN LINE 100;3).

-22 UNKNOWN MESSAGE (SMS)

This error is reported if you try to use REPORT with a number parameter which does not point to an
existing message in the computer.

-23 SECTORS (QDOS) *

This message is used by commands such as DIR and STAT to signify the number of used sectors/the
number of available sectors on the given medium. FORMAT actually uses this to signify the number of
available sectors/the number of sectors on the medium.

43.1. A8.1 Standard English Error Messages 937

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

-23 ACCESS DENIED (SMS)

This error message has been implemented for when you try to access files over the network which are
protected on the system of the other computer - see SERNET and MIDINET for a further explanation.

-24, -25 Various messages (QDOS) *

These messages only appear on the start up screen, to tell you which keys are available to start the QL
in different modes. Message -25 is the copyright message explaining who designed the current ROM
version. See below.

-26 DURING WHEN PROCESSING (QDOS) *

This message is generated after an error message to show that the error has actually occurred within a
WHEN definition block.

-27 PROC/FN CLEARED (QDOS) *

This message is generated after an error which has occured whilst the interpreter was in the middle of a
DEFine PROCedure or DEFine FuNction block. After this message has appeared, any attempt to RETRY
or CONTINUE will fail. Also any LOCal variables (or parameters passed to the definition block) will
be reset.

Those error messages marked with an asterisk above exist on SMS, but cannot be shown using the RE-
PORT command as they are message groups rather than errors. The equivalents on SMS appear below.

43.2 A8.2 Foreign Error Messages

In the following tables, we have tried to list as many of the different language implementations as possible
(thanks to QView for this information), although there are bound to be some languages which are not
covered here (for example the Russian languages supported on the THOR XVI).

If you can supply any further error messages supported on the QL or its derivatives, then please contact
us with a full print-out of the error messages (and preferably, a file on disk with containing the error
messages supported).

Under QDOS the error messages are as follows:-

938 Chapter 43. A8 Error Messages

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

ER-
NUM

English German French

-1 NOT COMPLETE ABGEBROCHEN OPERATION NON TER-
MINÉE

-2 INVALID JOB FEHLERHAFTER JOB TACHE INVALIDE
-3 OUT OF MEMORY SPEICHERUEBERLAUF HORS CAPACITÉE MEM-

OIRE
-4 OUT OF RANGE BEREICHSUEBERLAUF SORTIE DES LIMITES
-5 BUFFER FULL PUFFER VOLL TAMPON PLEIN
-6 CHANNEL NOT OPEN KANAL NICHT

EROEFFNET
CANAL NON OUVERT

-7 NOT FOUND NICHT GEFUNDEN NON TROUVÉE
-8 ALREADY EXISTS EXISTIERT BEREITS EXISTE DÉJÀ
-9 IN USE IN BEARBEITUNG EN USAGE
-10 END OF FILE DATEIENDE FIN DE FICHIER
-11 DRIVE FULL DATENTRAEGER VOLL LECTEUR PLEIN
-12 BAD NAME UNGUELTIGE BEZEICH-

NUNG
NOM INCORRECT

-13 XMIT ERROR UEBERTRAGUNGS-
FEHLER

ERREUR DE TRANSMIS-
SION

-14 FORMAT FAILED FORMATFEHLER DEFAILLANCE DANS LE
FORMATAGE

-15 BAD PARAMETER UNGUELTIGER PARAME-
TER

MAUVAIS PARAMèTRE

-16 BAD OR CHANGED
MEDIUM

FEHLERHAFTER DATEN-
TRAEGER

ERREUR DE SUPPORT

-17 ERROR IN EXPRES-
SION

FEHLER IM AUSDRUCK ERREUR DANS
L’EXPRESSION

-18 OVERFLOW UEBERLAUF DÉPASSEMENT DE CAPAC-
ITÉ

-19 NOT IMPLEMENTED
YET

NICHT IMPLEMENTIERT COMMANDE NON REPER-
TORIE . . .

-20 READ ONLY NUR LESEN LECTURE UNIQUEMENT
-21 BAD LINE SYNTAX-FEHLER LIGNE INCORRECTE
-22 IN LINE IN ZEILE A LA LIGNE NO
-23 SECTORS SEKTOREN SECTEURS
-26 DURING WHEN PRO-

CESSING
VERARBEITUNG LÄUFT PENDANT L’EXECUTION DE

WHEN
-27 PROC/FN CLEARED PROC/FN GELOESCHT PROC/FN EFFACÉES

43.2. A8.2 Foreign Error Messages 939

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

ERNUM Swedish Finnish Danish
-1 ej färdig epätäydellinen ikke fullf|rt
-2 fel i jobb epäkelpo työ ugyldig Job
-3 minne slut muisti lopussa arbeidslager fullt
-4 utom område ulkopuolella område overskredet
-5 buffer full puskuri täynnä buffer fullt
-6 oöppnad kanal kanava avaamatta kanal ikke åpen
-7 hittar ej ei löydy ikke funnet
-8 finns redan jo olemassa allerede oprettet
-9 används redan varattu optatt
-10 fil slut tiedosto lopussa filens slutning nådd(EOF)
-11 full kassett asema täynnä lagermedie fullt
-12 namnfel huono nimi ukjent navn
-13 RS-232 fel siirtovirhe transmissjonsfejl
-14 ej formaterbar alustusvirhe mislykket formatering
-15 parameterfel huono parametri ulovlig parameter
-16 mediafel huono väline lese/skrive feil
-17 fel i uttryck lausekevirhe feil i utryk
-18 för stort tal ylitys numerisk overl|p
-19 används ej ei käytössä . . . ikke innf|rt
-20 endast läsning vain luku kun lesning tillatt
-21 fel form huono rivi feil i linje
-22 På rad Rivillä I linje
-23 sektorer sektoria sektorer
-26 WHEN under bearbetning WHEN - rutiinin aikanaved WHENovervågning
-27 PROC/FN raderad PROC/FN nollattu PROC/FN renset

43.3 A8.3 Dates

When defining a new language for use by the computer, not only is it necessary to re-define the error
messages, but also the codes used for representing the days of the week and the months of the year.

Days of the Week

UK+Finland:Sun Mon Tue Wed Thu Fri Sat

Germany:Son Mon Die Mit Don Fre Sam

France:Dim Lun Mar Mer Jeu Ven Sam

Sweden: Sön Mån Tis Ons Tor Fre Lör

Denmark: Søn Man Tir Ons Tor Fre Lør

Months of the Year

UK+Finland:Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Germany:Jan Feb Mär Apr Mai Jun Jul Aug Sep Okt Nov Dez

France: Jan Fév Mar Avr Mai Jun Jul Aoú Sep Oct Nov Déc

Sweden: Jan Feb Mar Apr Maj Jun Jul Aug Sep Okt Nov Dec

940 Chapter 43. A8 Error Messages

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Denmark:Jan Feb Mar Apr Mai Jun Jul Aug Sep Okt Nov Des

43.4 A8.4 SMS Messages

Under SMS, the equivalent in-built foreign error messages are as follows:

ERNUM German French
-1 unterbrochen opération incomplète
-2 ungültige Job ID ID Job non valable
-3 zu wenig freier Speicher hors capacité mémoire
-4 Wert auáerhalb Bereich valeur hors limites
-5 puffer voll tampon plein
-6 ungültige Kanal ID ID canal non valable
-7 nicht gefunden est introuvable
-8 existiert bereits existe déja
-9 wird schon benutztest utilisé par ailleurs
-10 Datei-Ende fin de fichier
-11 Medium ist voll disque plein
-12 ungültiger Name nom inadmissible
-13 Übertragungs-Fehler erreur de transmission
-14 Formatier-Fehler erreur dans le formatage
-15 ungültiger Parameter paramètre non valable
-16 fehlerhafter Datenträger erreur de support
-17 Fehler im Ausdruck erreur dans l’expression
-18 arithmetischer Überlauf débordement arithmétique
-19 nicht implementiert ça n’existe pas
-20 schreibgeschützt protection en écriture
-21 Syntax-Fehler syntaxe non valable
-22 unbekannte Meldung message inconnu
-23 Zugriff verweigert accès interdit

SMS also incorporates an improved Interpreter, and as a result, has a long list of further errors which
can appear either before a program is RUN or whilst a program is RUNning. These errors do not affect
ERNUM and do not have an error code as such. Each error is given in English, German and French.

In many instances, these errors replace the QDOS ‘Bad Line’ error, which left the user to guess why the
line had been rejected.

Many of these problems would also be reported if you try to compile the program.

The SBASIC interpreter works in three stages:

PARSING

This occurs whenever a new line is entered either from the keyboard as a direct command or using EDIT
for example, or when a program is LOADed.

PRE-COMPILING

This occurs whenever the command RUN or GO TO is entered - the interpreter runs through the whole
of the program to check that structures are correctly defined. It is this stage which has been added to the
original QDOS SuperBASIC interpreter and allows SBASIC to be so much quicker than the original.

43.4. A8.4 SMS Messages 941

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

RUNNING

This is the interpreter’s job as the program is being RUN - keeping track of variables and program lines,
as well as carrying out the actual instructions contained in the program.

Different errors are produced at each stage of the Interpretation process.

SYNTAX ERROR IN EXPRESSION

(ENGLISH)

Syntax-Fehler im Ausdruck

(German)

erreur de syntaxe dans l’expression

(French)

This is reported during PARSING - it normally occurs where you have made a typing error when entering
a line and placed two operators together when this is not allowed (or meaningless). For example, the
following line will cause this error:

x = x ++ 1

MISSING LEFT PARENTHESIS

(ENGLISH)

Linke Klammer fehlt

(German)

manque parenthèse gauche

(French)

This error is generated during PARSING - it indicates that there are more closing brackets on a line, than
opening brackets. You either need to insert another opening bracket somewhere or delete a closing one.

However, the interpreter reports this error very infrequently - normally ‘Invalid Syntax’ is reported.

MISSING RIGHT PARENTHESIS

(ENGLISH)

Rechte Klammer fehlt

(German)

manque parenthèse droite

(French)

This message is generated during PARSING - it appears when a program line has more opening brackets
than closing brackets.

For example:

PRINT CHR$ ((HEX (‘d2’))

ERROR IN LINE NUMBER

(ENGLISH)

fehlerhafte Zeilennummer

942 Chapter 43. A8 Error Messages

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(German)

erreur à la ligne numéro

(French)

This message appears during PARSING - it should be caused whenever you try to enter a line number
outside the range 1. . . 32767. However, line numbers which exceed 32767 are merely ignored on current
implementations of SMS, causing the program line to be executed as if it had been entered without a line
number.

BAD STRING: MISSING DELIMITER

(ENGLISH)

String-Begrenzer fehlt

(German)

manque marqueur limite de chaîne

(French)

This error is reported during PARSING whenever a program line is entered which contains a string within
quote marks (either single or double) and one of those quote marks is missing.

Example:

PRINT ‘Hello “There”

INCORRECT PROCEDURE OR FUNCTION DEFINITION

(ENGLISH)

falsche Definition einer Prozedur oder Funktion

(German)

mauvaise définition d’une procédure ou fonction

(French)

This message is reported during PARSING and indicates that there is something amiss with a program
line containing DEFine PROCedure or DEFine FuNction, for example where one of the end brackets is
missing around the parameter definition list, or one of the parameters appears in the definition as just a
comma or empty quotes:

1 DEFine PROCedure TEST (a,””)

and:

1 DEFine PROCedure TEST (a,)

both produce this error.

Other problems may be indicated by the error ‘Invalid Syntax’, such as no opening bracket appearing
before the list of parameters.

PROCEDURE OR FUNCTION DEFINITION NOT ALLOWED HERE

(ENGLISH)

Prozedur- oder Funktion-Definition hier nicht erlaubt

(German)

43.4. A8.4 SMS Messages 943

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

définition d’une fonction ou procédure non permise ici

(French)

This message is reported during PARSING and occurs if you try to enter a line containing the DEFine
PROCedure or DEFine FuNction structure as a direct command (rather than as a program line).

DEFINES MAY NOT BE WITHIN OTHER CLAUSES

(ENGLISH)

DEFines dürfen nicht innerhalb Strukturen stehen

(German)

DEFines ne peuvent se trouver dans d’autres structures

(French)

This message is reported during PRE-COMPILING if the program includes a line containing DEFine
PROCedure or DEFine FuNction inside another structure, such as another DEFine . . . END DEFine
clause, or SELect . . . END SELect structure, IF . . . END IF, WHEN . . . END WHEN.

Unfortunately, a lot of very early SuperBASIC programs written for the Sinclair QL fall foul of this rule.
The old style interpreter would jump the rogue DEFine structure, sometimes falling out of the program
because the problem was actually a missing END DEFine statement.

MISPLACED END DEFINE

(ENGLISH)

END DEFine darf hier nicht stehen

(German)

END DEFine n’est pas à sa place ici

(French)

This error is reported during PRE-COMPILING if a program line contains END DEFine without a rel-
ative DEFine PROCedure or DEFine FuNction.

MISPLACED LOCAL

(ENGLISH)

LOCal darf hier nicht stehen

(German)

LOCal n’est pas à sa place ici

(French)

This message is reported during PRE-COMPILING if the program contains a LOCal statement other
than as the first active program line after a DEFine PROCedure or DEFine FuNction statement.

RETURN NOT IN PROCEDURE OR FUNCTION

(ENGLISH)

RETurn ist nicht innerhalb Prozedur oder Funktion

(German)

RETurn ne se trouve pas dans une fonction ou procédure

944 Chapter 43. A8 Error Messages

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(French)

This message is generated during RUNNING if the interpreter tries to execute a RETurn command outside
of a DEFine PROCedure or DEFine FuNction structure.

It will also be reported during RUNNING if the interpreter is executing a DEFine FuNction structure, but
meets an END DEFine statement - in other words, the RETurn command is missing from the structure.

WHEN CLAUSES MAY NOT BE NESTED

(ENGLISH)

WHEN Strukturen dürfen nicht verschachtelt sein

(German)

des structures WHEN ne peuvent être emboîtées

(French)

This error is generated during PRE-COMPILING if a program contains a WHEN ERRor (or WHEN
variable, if implemented) structure inside another one.

MISPLACED END WHEN

(ENGLISH)

END WHEN darf hier nicht stehen

(German)

END WHEN n’est pas à sa place ici

(French)

This error is generated during PRE-COMPILING if the program contains an END WHEN statement
without a corresponding WHEN ERRor or WHEN variable statement.

MISPLACED ELSE

(ENGLISH)

ELSE darf hier nicht stehen

(German)

ELSE n’est pas à sa place ici

(French)

This error is generated during PRE-COMPILING if the program contains an ELSE statement without a
corresponding IF statement.

MISPLACED END IF

(ENGLISH)

END IF darf hier nicht stehen

(German)

END IF n’est pas à sa place ici

(French)

43.4. A8.4 SMS Messages 945

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

This error is generated during PRE-COMPILING if the program contains an END IF statement without
a corresponding IF statement.

PROGRAM STRUCTURES NESTED TOO DEEPLY, MY BRAIN ACHES

(ENGLISH)

Strukturen zu tief verschachtelt

(German)

les structures sont trop emboîtées, ça me fait mal au crÀne

(French)

This message will rarely appear - it will be generated during RUNNING if the program uses PROCedures
or FuNctions which call themselves too many times.

You are in fact more likely to run out of memory or crash the machine than see this message!!

INCOMPLETE IF CLAUSE

(ENGLISH)

unvollständige IF Struktur

(German)

structure IF incomplète

(French)

This error is generated during PRE-COMPILING if the program contains an IF statement without a
corresponding END IF statement.

NOTE that in-line IF structures do not necessarily need a corresponding END IF statement.

INCOMPLETE SELECT CLAUSE

(ENGLISH)

unvollständige SELect Struktur

(German)

structure SELECT incomplète

(French)

This error is generated during PRE-COMPILING if the program contains a SELect ON statement without
a corresponding END SELect statement.

NOTE that in-line SELect ON structures do not necessarily need a corresponding END SELect statement.

INCOMPLETE DEFINE

(ENGLISH)

unvollständiges DEFine

(German)

structure DEFINE incomplète

(French)

946 Chapter 43. A8 Error Messages

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

This error is generated during PRE-COMPILING if the program contains a DEFine PROCedure state-
ment or a DEFine FuNction statement without a corresponding END DEFine statement.

INCOMPLETE WHEN CLAUSE

(ENGLISH)

unvollständige WHEN Struktur

(German)

structure WHEN incomplète

(French)

This error is generated during PRE-COMPILING if the program contains a WHEN ERRor statement (or
WHEN variable when supported) without a corresponding END WHEN statement.

UNACCEPTABLE LOOP VARIABLE

(ENGLISH)

unerlaubte Schleifen-Variable

(German)

variable de contrôle boucle inacceptable

(French)

This message appears during the PARSING stage if a program line contains a FOR loop with a string
loop identifier (compare Minerva), such as:

FOR a$=’a’ TO ‘z’

UNABLE TO FIND AN OPEN LOOP

(ENGLISH)

kann keine offene Schleife finden

(German)

aucune boucle ouverte ne peut être trouvée

(French)

This message appears during the PRE-COMPILING phase if a program contains an EXIT, NEXT, END
FOR or END REPeat statement which does not have a loop control variable specified (compare ‘Un-
defined Loop Control Variable’) and the Interpreter is unable to find a corresponding FOR or REPeat
statement.

UNDEFINED LOOP CONTROL VARIABLE

(ENGLISH)

undefinierte Schleifen-Variable

(German)

la variable de contrôle boucle est indéfinie

(French)

43.4. A8.4 SMS Messages 947

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

This message is similar to ‘Unable to Find an Open Loop’ except that it appears during RUNNING if a
program contains an EXIT, NEXT, END FOR or END REPeat statement which includes the name of a
loop control variable and the Interpreter is unable to find a corresponding FOR or REPeat statement.

This will also happen if the loop control variable has been re-defined before the EXIT, NEXT, END FOR
or END REPeat statement is executed, for example:

FOR x=1 to 100
...
...
DIM x(100)
...
...
END FOR x

MISPLACED END SELECT

(ENGLISH)

END SELect darf hier nicht stehen

(German) (French)

END SELect n’est pas à sa place ici

(French)

This message appears during PRE-COMPILING if a program contains an END SELect statement without
a corresponding SELect ON statement.

DATA IN COMMAND LINE HAS NO MEANING

(ENGLISH)

DATA in Befehlszeige wird ignoriert

(German)

DATA dans une ligne de commande n’a pas de sens

(French)

This message appears during PARSING if a line containing a DATA statement is entered as a direct
command.

INCORRECTLY STRUCTURED SELECT CLAUSE

(ENGLISH)

falsch strukturiertes SELect

(German)

SELECT mal structuré

(French)

This message is generated during PRE-COMPILING in one of two cases:

• a SELect ON statement appears without any comparison values, such as:

948 Chapter 43. A8 Error Messages

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10 SELect ON x
20 PRINT 'Hello'
30 END SELect

• the comparison values appear in a program outside of a SELect ON structure, for example:

10 SELect ON x
20 =10 : PRINT 'x=10'
30 END SELect
40 =20 : PRINT 'x=20'

UNACCEPTABLE PARAMETERS FOR READ

(ENGLISH)

unerlaubte Parameter für READ

(German)

paramètre inacceptable pour READ

(German) (French)

This message appears during PRE-COMPILING if a READ statement has meaningless parameters, for
example:

READ 'x'
READ s,s1,s*1
READ 1,1,2

Note however, that no error is caused by the READ statement without any parameters.

Compare also:

READ PRINT

which causes an error during RUNNING - assignment can only be a variable or array element.

END OF DATA

(ENGLISH)

Ende von DATA

(German)

fin de DATA

(French)

This message is generated during RUNNING if a program is trying to READ DATA statements but has
run out of DATA to read - use RESTORE or add check that all of the required DATA is contained in the
program.

SBASIC CANNOT PERFORM READS WITHIN DATA EXPRESSIONS

(ENGLISH)

SBASIC kann keine READs innerhalb DATAs ausführen

(German)

43.4. A8.4 SMS Messages 949

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

SBASIC ne peut effectuer des READs dans des expressions DATA

(French)

We are uncertain when this error appears, not having been able to create a situation which causes this
error to be reported.

If a DATA statement contains a procedure name, such as:

DATA 1,1,READ

or:

DATA 1,1,PRINT

then during RUNNING, when the program tries to read the data parameter ‘READ’, the error ‘unknown
function or array’ is produced.

UNKNOWN PROCEDURE

(ENGLISH)

unbekannte Prozedur

(German)

procédure inconnue

(French)

This message is displayed during RUNNING if a procedure name is used which has not been defined -
this normally suggests one of three problems:

• a typing error

• a machine code toolkit has not been linked in properly

• a SuperBasic DEFine PROCedure structure is missing.

UNKNOWN FUNCTION OR ARRAY

(ENGLISH)

unbekannte Funktion oder Feld

(German)

fonction ou tableau inconnus

(French)

This message is displayed during RUNNING if a Procedure name has been used as a function, variable
or array descriptor. This normally suggests that a program uses the same name for a variable as a toolkit
which has been linked in.

ONLY ARRAYS MAY BE DIMENSIONED

(ENGLISH)

nur Felder dürfen dimensioniert werden

(German)

on ne peut dimensionner que des tableaux

(French)

950 Chapter 43. A8 Error Messages

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

This message is displayed during RUNNING if a Procedure name has been used as an array name in a
DIM statement. This normally suggests that a program uses the same name for a variable as a toolkit
which has been linked in.

This error is also reported if you try to DIMension the name of a parameter passed to a PROCedure or
FuNction, such as:

100 DEFine PROCedure TEST(x)
110 DIM x(100)
120 END DEFine

• Use LOCal instead, such as:

110 LOCal x(100)

(although why you would want to do this, is anyone’s guess!!)

PROCEDURE AND FUNCTION PARAMETERS MAY NOT BE DIMENSIONED

(ENGLISH)

Prozedur- oder Funktion-Parameter dürfen nicht dimensioniert werden

(German)

les paramètres des procédures et fonctions ne peuvent être dimensionnés

(French)

This error is intended to trap the second example for ‘Only Arrays May be Dimensioned’ - see description
of DIM for an example and the difference between these two errors.

SBASIC CANNOT PUT UP WITH NEGATIVE DIMENSIONS

(ENGLISH)

SBASIC mag keine negativen Dimensionen

(German)

SBASIC ne sait comment traiter des dimensions négatives

(French)

This error is reported during RUNNING if you try to DIMension an array with a negative index, such as:

DIM x(-100)

Note that if you try to use a negative index in other situations, such as:

x(-100)=32

the error ‘Array Index out of Range’ will be reported.

DIMENSIONAL OVERFLOW - YOU CANNOT BE SERIOUS!

(ENGLISH)

Dimensions-Überlauf

(German)

dépassement de dimension - soyons sérieux!

43.4. A8.4 SMS Messages 951

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(French)

This message appears during RUNNING if you try to DIMension an array with too many indices - this
appears to happen after around 7 indices). For example, the error will be caused by the following line:

DIM x(1,2,3,4,5,6,7,8)

NOTE the warning listed below!!

ERROR IN INDEX LIST

(ENGLISH)

Fehler in Index-Liste

(German)

erreur dans la liste d’indexage

(French)

We are uncertain when this error appears, not having been able to create a situation which causes this
error to be reported.

TOO MANY INDEXES

(ENGLISH)

zu viele Indizes

(German)

trop d’indices

(French)

We are uncertain when this error appears, not having been able to create a situation which causes this
error to be reported.

CANNOT ASSIGN TO SUB-ARRAY

(ENGLISH)

kann nicht auf Teil-Feld zuweisen

(German)

impossible d’assigner à un sous-tableau

(French)

We are uncertain when this error appears, not having been able to create a situation which causes this
error to be reported.

UNACCEPTABLE ARRAY INDEX LIST

(ENGLISH)

fehlerhafte Feld-Index-Liste

(German)

liste d’indices dans tableau inacceptab (French)le

(French)

952 Chapter 43. A8 Error Messages

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

This message is generated during RUNNING if you try to use an array with more indices that it was
DIMensioned with, for example:

DIM x(100,100)
x(10,10,10)=52

The error can also be generated when you try to assign a value across several array elements at a time
(this should possibly cause the error ‘Cannot Assign to a Sub-Array’), for example:

DIM x(10,10)
x(3,4 TO 5)=100

Beware of the dangers here - see below

WARNINGS:

In current versions of SMSQ/E, if you DIMension an array with the maximum number of indices and
use two more indices in the reference that this maximum, you can crash the computer, for example:

DIM x(1,2,3,4,5,6,7)
x(1,2,3,4,5,6,7,8,9)=52

You can also crash the computer if you miss out array indexes:

x(1„1)=100

Another way of crashing the computer is when trying to assign a value across several array elements, for
example:

x(1 TO 3,10)=52

ARRAY INDEX OUT OF RANGE

(ENGLISH)

Feld-Index auáerhalb Bereich

(German)

indice tableau hors limites

(French)

This message is generated during RUNNING if the value of an index specified in an array is higher than
that specified when the array was DIMensioned, for example:

DIM x(10,10)
x(10,12)=52

Note however, that if you try to use an index which exceeds 32767, the error ‘Error in Expression’ is
generated.

ONLY ARRAYS OR STRINGS MAY BE INDEXED

(ENGLISH)

nur Felder oder Strings dürfen indiziert werden

(German)

on peut indexer uniquement des tableaux ou chaînes

43.4. A8.4 SMS Messages 953

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(French)

This message is generated during RUNNING if you try to reference an array which has not yet been
DIMensioned, for example:

CLEAR

x(100)=52

Compare the situation where you try to index a name which is in fact defined as a Procedure - the index
is ignored and the Procedure executed as normal, for example

PRINT (100)=32 displays 32 on the screen.

On the other hand, if you try to index a name which is defined as a Function, the error ‘Unknown Proce-
dure’ is generated instead.

In both cases, compare what happens when an index is not specified (the next error listed here is gener-
ated).

ASSIGNMENT CAN ONLY BE TO A VARIABLE OR ARRAY ELEMENT

(ENGLISH)

Zuweisungen nur an Variable oder Feld-Element

(German)

assignation uniquement vers une variable ou un élément d’un tableau

(French)

This error is generated during RUNNING when a program tries to assign a value to a variable which is
actually defined as a Procedure or Function already (this suggests that a toolkit may have re-defined a
variable name).

MISTAKE IN PROGRAM

(ENGLISH)

MISTake - Fehler im Programm

(German)

MISTake - Erreur de programmation

(French)

This message is generated during PRE-COMPILING - whilst a program is being LOADed (or
QLOADed), if a line has generated an error during PARSING, the word MISTake is inserted in the
relevant line in the program. This message is generated if you try to RUN the program without altering
the offending line.

DURING WHEN PROCESSING

(ENGLISH)

während WHEN-Bearbeitung

(German)

pendant le traitement de when

(French)

954 Chapter 43. A8 Error Messages

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

This message is generated during RUNNING if an error occurs whilst the program was executing a
WHEN ERRor (or WHEN variable when it is implemented) structure. You should enter WHEN ERRor
as a direct command to switch off the WHEN ERRor trapping.

PROC/FN CLEARED

(ENGLISH)

PROC/FN gelöscht

(German)

PROC/FN effacée

(French)

If an error is generated whilst the program is executing a DEFine PROCedure or DEFine FuNction struc-
ture, this error will be generated when you EDIT the program, or enter CONTINUE. Unlike earlier ROMs,
this does not seem to prevent you from using CONTINUE to carry on with RUNning the program from
the place the error occurred.

At line

(ENGLISH)

In Zeile

(German)

A la ligne

(French)

This is merely the message used to generate part of all error messages, signifying the line number and
statement number where the error occurred.

FATAL ERROR IN SBASIC INTERPRETER

(ENGLISH)

schwerwiegender Fehler im SBASIC-Interpreter

(German)

erreur fatale dans l’interpréteur SBASIC

(French)

This message should hopefully never happen - it means that the interpreter has become corrupt. If a
multiple SBASIC interpreter, it will be removed from the system when you press a key.

One instance where this error will occur is if you try to RUN a program which has been QLOADed and
the original file was created using QSAVE on a Minerva ROM with integer tokenisation enabled.

43.4. A8.4 SMS Messages 955

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

956 Chapter 43. A8 Error Messages

CHAPTER

FORTYFOUR

A9 CHARACTER SET, KEYBOARD

This Appendix deals with the QL character set and keyboard.

44.1 A9.1 The Character Set

The codes from 0 to 31 (except 10) and 192 to 254 are not standardised - they are undefined on standard
QLs (a checkerboard square) but Minerva sets them to the characters listed below. The keying required
for many of the characters seems to differ on every type of machine, which is very annoying for the
programmer.

Some of the keyings will also be different on new replacement keyboards, although these normally only
add to the standard set.

We have supplied the keyings on standard British and German QLs so that you can see where problems
may occur in different keyings. We recommend that you make your program fully configurable if these
differences appear to be a problem.

The full character set is:

Code Character Keys to press
0 NUL <CTRL> <£> British <CTRL> <

ESC> German

1 F1 <CTRL> <A>
2 F2 <CTRL>
3 F3 <CTRL> <C>
4 F4 <CTRL> <D>
5 F5 <CTRL> <E>
6 AK <CTRL> <F>
7 minim <CTRL> <G>
8 BS <CTRL> <H>
9 HT <CTRL> <I> <TAB>
10 NL <CTRL> <J> <ENTER>
11 VT <CTRL><K>
12 FF <CTRL><L>
13 CR <CTRL><M>
14 SO <CTRL><N>
15 SI <CTRL><O>
16 0 (small 0) <CTRL><P>
17 1 (small 1) <CTRL><Q>

continues on next page

957

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table 1 – continued from previous page
Code Character Keys to press
18 2 (small 2) <CTRL><R>
19 3 (small 3) <CTRL><S>
20 4 (small 4) <CTRL><T>
21 5 (small 5) <CTRL><U>
22 6 (small 6) <CTRL><V>
23 7 (small 7) <CTRL><W>
24 8 (small 8) <CTRL><X>
25 9 (small 9) <CTRL><Y>
26 A (small A) <CTRL><Z>
27 B (small B) <ESC>, <CTRL><SHIFT><[>

British <CTRL><SHIFT><Ü>
German

28 C (small C) <CTRL><SHIFT><\> British

<CTRL><SHIFT><<> German

29 D (small D) <CTRL><SHIFT><]> British

<CTRL><SHIFT><+> German

30 E (small E) <CTRL><SHIFT><£> British

<CTRL><SHIFT><\> German

31 F (small F) <CTRL><SHIFT><ESC>
32 (space) <SPACE>
33 ! (exclamation) <SHIFT><1>
34 “ (speech mark) <SHIFT><’> British

<SHIFT><2> German

35 # (hash) <SHIFT><3> British <#> German

36 $ (dollar) <SHIFT><4>
37 % (percent) <SHIFT><5>
38 & (ampersand) <SHIFT><7> British

<SHIFT><6> German

39 ‘ (quote) <’> British <SHIFT><#> German

40 ((bracket) <SHIFT><9> British

<SHIFT><8> German

41) (bracket) <SHIFT><0> British

<SHIFT><9> German

42 * (asterisk) <SHIFT><8> British

<SHIFT><+> German

43
• (plus)

<SHIFT><=> British <+> German

44 , (comma) <,>
45

• (minus/hyphen)
<->

46 . (fullstop) <.>
47 / (stroke) </> British <SHIFT><7> German

48 0 <0>
49 1 <1>
50 2 <2>
51 3 <3>

continues on next page

958 Chapter 44. A9 Character Set, Keyboard

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table 1 – continued from previous page
Code Character Keys to press
52 4 <4>
53 5 <5>
54 6 <6>
55 7 <7>
56 8 <8>
57 9 <9>
58 : (colon) <SHIFT><;> British

<SHIFT><.> German

59 ; (semicolon) <;> British <SHIFT><,> German

60 < (less than) <SHIFT><,> British < < >German

61 = (equal) <=> British <SHIFT><=> German

62 > (greater) <SHIFT><.> British <SHIFT><
< >German

63 ? (question mark) <SHIFT></> British

<SHIFT><á> German

64 @ (address symbol) <SHIFT><2> British

<CTRL><\> German

65 A <SHIFT><A>
66 B <SHIFT>
67 C <SHIFT><C>
68 D <SHIFT><D>
69 E <SHIFT><E>
70 F <SHIFT><F>
71 G <SHIFT><G>
72 H <SHIFT><H>
73 I <SHIFT><I>
74 J <SHIFT><J>
75 K <SHIFT><K>
76 L <SHIFT><L>
77 M <SHIFT><M>
78 N <SHIFT><N>
79 O <SHIFT><O>
80 P <SHIFT><P>
81 Q <SHIFT><Q>
82 R <SHIFT><R>
83 S <SHIFT><S>
84 T <SHIFT><T>
85 U <SHIFT><U>
86 V <SHIFT><V>
87 W <SHIFT><W>
88 X <SHIFT><X>
89 Y <SHIFT><Y>
90 Z <SHIFT><Z>
91 [(square bracket) <[> British <CTRL><9> German

92 \ (backslash) <\>
93] (square bracket) <]> British <CTRL><0> German

94 ^ (circumflex) <SHIFT><6> British

<SHIFT><\> German

continues on next page

44.1. A9.1 The Character Set 959

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table 1 – continued from previous page
Code Character Keys to press
95 _ (underscore) <SHIFT><->
96 £ (pound) <£> British <CTRL><7> German

97 a <A>
98 b
99 c <C>
100 d <D>
101 e <E>
102 f <F>
103 g <G>
104 h <H>
105 i <I>
106 j <J>
107 k <K>
108 l <L>
109 m <M>
110 n <N>
111 o <O>
112 p <P>
113 q <Q>
114 r <R>
115 s <S>
116 t <T>
117 u <U>
118 v <V>
119 w <W>
120 x <X>
121 y <Y>
122 z <Z>
123 { (brace) <SHIFT><[> British

<CTRL><á> German

124 | (vertical line) <SHIFT><\> British

<CTRL><8> German

125 } (brace) <SHIFT><]> British

<CTRL><#> German

126 ~ (tilde) <SHIFT><£> British

<CTRL><#> German

127 copyright <SHIFT><ESC>
128 a umlaut <CTRL><ESC> British <Ä>

German

129 a tilde <CTRL><SHIFT><1>
130 a circle <CTRL><SHIFT><’> British

<CTRL><SHIFT><Ä> German

131 e acute <CTRL><SHIFT><3>
132 o umlaut <CTRL><SHIFT><4> British

<Ö> German

133 o tilde <CTRL><SHIFT><5>
134 o bar <CTRL><SHIFT><7>
135 u umlaut <CTRL><’> British <Ü> German

continues on next page

960 Chapter 44. A9 Character Set, Keyboard

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table 1 – continued from previous page
Code Character Keys to press
136 c cedilla <CTRL><SHIFT><9>
137 n tilde <CTRL><SHIFT><0>
138 ae diphthong <CTRL><SHIFT><8>
139 oe diphthong <CTRL><SHIFT><=> British

<CTRL><SHIFT><#> German

140 a acute <CTRL><,>
141 a grave <CTRL><-> British

<CTRL><SHIFT><4> German

142 a circumflex <CTRL><.>
143 e umlaut <CTRL></> British <CTRL><->

German

144 e grave <CTRL><0> British

<CTRL><SHIFT><V> German

145 e circumflex <CTRL><1>
146 i umlaut <CTRL><2>
147 i acute <CTRL><3>
148 i grave <CTRL><4>
149 i circumflex <CTRL><5>
150 o acute <CTRL><6>
151 o grave <CTRL><7> British

<CTRL><SHIFT><,> German

152 o circumflex <CTRL><8> British

<CTRL><SHIFT><D> German

153 u acute <CTRL><9> British

<CTRL><Ä> German

154 u grave <CTRL><SHIFT><;> British

<CTRL><SHIFT><Ö> German

155 u circumflex <CTRL><;> British

<CTRL><Ö> German

156 á (beta/sz) <CTRL><SHIFT><,> British

<á> German

157 cent symbol <CTRL><=> British

<CTRL><SHIFT><G> German

158 yen symbol <CTRL><SHIFT><.>
159 backquote <CTRL><SHIFT></> British

<CTRL><SHIFT><-> German

160 A umlaut <CTRL><SHIFT><2> British

<SHIFT><Ä> German

161 A tilde <CTRL><SHIFT><A>
162 A circle <CTRL><SHIFT>
163 E acute <CTRL><SHIFT><C>
164 O umlaut <CTRL><SHIFT><D> British

<SHIFT><Ö> German

165 O tilde <CTRL><SHIFT><E>
166 O bar <CTRL><SHIFT><F>
167 U umlaut <CTRL><SHIFT><G> British

<SHIFT><Ü> German

168 C cedilla <CTRL><SHIFT><H>
continues on next page

44.1. A9.1 The Character Set 961

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table 1 – continued from previous page
Code Character Keys to press
169 N tilde <CTRL><SHIFT><I>
170 AE diphthong <CTRL><SHIFT><J>
171 OE diphthong <CTRL><SHIFT><K>
172 lower alpha <CTRL><SHIFT><L>
173 lower delta <CTRL><SHIFT><M>
174 upper theta <CTRL><SHIFT><N>
175 lower lambda <CTRL><SHIFT><O>
176 lower mu <CTRL><SHIFT><P>
177 lower pi <CTRL><SHIFT><Q>
178 upper phi <CTRL><SHIFT><R>
179 inverse ! <CTRL><SHIFT><S>
180 inverse ? <CTRL><SHIFT><T>
181 script mark <CTRL><SHIFT><U>
182 section symbol <CTRL><SHIFT>(V):sup:British

<SHIFT><3> German

183 cross-circle <CTRL><SHIFT><W>
184 French quote <CTRL><SHIFT><X>
185 French quote <CTRL><SHIFT><Y> British

<CTRL><SHIFT><Z> German

186 ø (degree) <CTRL><SHIFT><Z> British

<CTRL><SHIFT><Y> German

187 division <CTRL><[> British

<CTRL><Ü> German

188 left arrow <CTRL><\> British

<CTRL><SHIFT><2> German

189 right arrow <CTRL><]> British

<CTRL><+> German

190 up arrow <CTRL><SHIFT><6>
191 down arrow <CTRL><SHIFT><-> British

<CTRL><SHIFT><á> German

192 up-left arrow <LEFT>
193 up-right arrow <ALT><LEFT>
194 down-left arrow <CTRL><LEFT>
195 down-right arrow <CTRL><ALT><LEFT>
196 upper delta <SHIFT><LEFT>
197 small eta <ALT><SHIFT><LEFT>
198 large upper phi <CTRL><SHIFT><LEFT>
199 upper gamma <ALT><CTRL><SHIFT><LEFT>
200 spades <RIGHT>
201 hearts <ALT><RIGHT>
202 diamonds <CTRL><RIGHT>
203 clubs <ALT><CTRL><RIGHT>
204 upper lambda <SHIFT><RIGHT>
205 inverse upper delta <ALT><SHIFT><RIGHT>
206 infinity <CTRL><SHIFT><RIGHT>
207 upper omega <ALT><CTRL><SHIFT><RIGHT>
208 upper pi <UP>
209 upper psi <ALT><UP>

continues on next page

962 Chapter 44. A9 Character Set, Keyboard

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table 1 – continued from previous page
Code Character Keys to press
210 registered <CTRL><UP>
211 upper sigma <ALT><CTRL><UP>
212 upper theta <SHIFT><UP>
213 upper upsilon <ALT><SHIFT><UP>
214 dagger <CTRL><SHIFT><UP>
215 double dagger <ALT><CTRL><SHIFT><UP>
216 upper xi <DOWN>
217 plus minus <ALT><DOWN>
218 [unknown] <CTRL><DOWN>
219 exactly equal <ALT><CTRL><DOWN>
220 less or equal <SHIFT><DOWN>
221 not equal <ALT><SHIFT><DOWN>
222 greater or equal <CTRL><SHIFT><DOWN>
223 approximately equal <ALT><CTRL><SHIFT><DOWN>
224 empty square <CAPS>
225 filled square <ALT><CAPS>
226 filled circle <CTRL><CAPS>
227 lower chi <ALT><CTRL><CAPS>
228 differential/del <SHIFT><CAPS>
229 element-of <ALT><SHIFT><CAPS>
230 FR (French Francs) <CTRL><SHIFT><CAPS>
231 lower gamma <ALT><CTRL><SHIFT><CAPS>
232 upper kappa <F1>
233 lower iota <CTRL><F1>
234 vertical line <SHIFT><F1>
235 lower kappa <CTRL><SHIFT><F1>
236 one-quarter <F2>
237 one-half <CTRL><F2>
238 three-quarters <SHIFT><F2>
239 lower omega <CTRL><SHIFT><F2>
240 lower psi <F3>
241 => (conclusion) <CTRL><F3>
242 lower rho <SHIFT><F3>
243 lower sigma <CTRL><SHIFT><F3>
244 lower tau <F4>
245 lower upsilon <CTRL><F4>
246 square root <SHIFT><F4>
247 cubic root <CTRL><SHIFT><F4>
248 lower xi <F5>
249 . . . (three dots) <CTRL><F5>
250 lower zeta <SHIFT><F5>
251 integral head <CTRL><SHIFT><F5>
252 integral middle <SHIFT><SPACE>
253 integral foot <SHIFT><TAB>
254 random pattern <SHIFT><ENTER>
255 regular pattern (<ALT>)

*) Yes, there are in fact three kinds of phi!

44.1. A9.1 The Character Set 963

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Note that CHR$(255) is used whenever a character code is undefined.

To make matters worse, the JS ROM makes a distinction between <CTRL><ESC> with and without caps
lock (the former is equivalent to <CTRL><SHIFT><ESC>.

To see Minerva’s pattern character assigned to CHR$(255), try the following lines. Changing the
CHAR_INC parameters is fun, or add OVER 1 at line 100. . .

100 CHAR_INC 6,9: CLS
110 FOR i=1 TO 10: PRINT FILL$(CHR$(255),30)

If you are designing a program which should work (without annoying the user) on all QLs and keyboards
then avoid all of the above codes which are shown as being different on British and German QLs. Al-
ternatively, you could make your program fully configurable for these keys, or store all of the different
keyboard layouts in your program so that it will adapt itself to the machine on which it is working - the
latter is however much work.

44.2 A9.2 Keyboard Layouts

As more and more QL Emulators appear as well as keyboard interfaces, it becomes increasingly difficult
to list the standard keyboard layouts which will be available to a QL user. Instead, we have listed here
the layouts used in the most common countries on a standard QL machine (as supplied by Sinclair).

44.2.1 British QL

F1 ESC 1 2 3 4 5 6 7 8 9 0 - = £ \
F2 TAB Q W E R T Y U I O P []
F3 CAPS A S D F G H J K L ; ' ENTER
F4 SHIFT Z X C V B N M , . / SHIFT
F5 CTRL LEFT RIGHT SPACE UP DOWN ALT

44.2.2 German QL

F1 ESC 1 2 3 4 5 6 7 8 9 0 á # \ <
F2 TAB Q W E R T Z U I O P Ü +
F3 CAPS A S D F G H J K L Ö Ä ENTER
F4 SHIFT Y X C V B N M , . - SHIFT
F5 CTRL LEFT RIGHT SPACE UP DOWN ALT

964 Chapter 44. A9 Character Set, Keyboard

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

44.2.3 French QL

F1 ESC 1 2 3 4 5 6 7 8 9 0 - = ^ ù
F2 TAB A Z E R T Y U I O P é è
F3 CAPS Q S D F G H J K L M à ENTER
F4 SHIFT W X C V B N , . ; ç SHIFT
F5 CTRL LEFT RIGHT SPACE UP DOWN ALT

44.2.4 Swedish QL

F1 ESC 1 2 3 4 5 6 7 8 9 0 + ' | <
F2 TAB Q W E R T Y U I O P Å *
F3 CAPS A S D F G H J K L Ö Ä ENTER
F4 SHIFT Z X C V B N M , . - SHIFT
F5 CTRL LEFT RIGHT SPACE UP DOWN ALT

44.2.5 Finnish QL

F1 ESC 1 2 3 4 5 6 7 8 9 0 + ' | <
F2 TAB Q W E R T Y U I O P Å ^
F3 LUKITUS A S D F G H J K L Ö Ä ENTER
F4 VAIHTO Z X C V B N M , . - VAIHTO
F5 OHJAUS LEFT RIGHT SPACE UP DOWN SIIRTO

44.2.6 Danish QL

F1 ESC 1 2 3 4 5 6 7 8 9 0 = + / DEL
F2 TAB Q W E R T Y U I O P Å "
F3 LOCK A S D F G H J K L ’ \ ENTER
F4 SHIFT Z X C V B N M , . - SHIFT
F5 CTRL LEFT RIGHT SPACE UP DOWN ALT

44.2.7 Spanish QL

F1 ESC 1 2 3 4 5 6 7 8 9 0 - = []
F2 TAB Q W E R T Y U I O P " ^
F3 CAPS A S D F G H J K L Ñ ; ENTER
F4 SHIFT Z X C V B N M , . < SHIFT
F5 CTRL LEFT RIGHT SPACE UP DOWN ALT

44.2. A9.2 Keyboard Layouts 965

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

966 Chapter 44. A9 Character Set, Keyboard

CHAPTER

FORTYFIVE

A10 DESIGNING NEW CHARACTER SETS (FONTS)

A font is a character set used by the computer to display characters (normally letters and numbers) on
screen. A wide range of fonts can be used, which allow you to make letters appear differently on screen
for different programs.

45.1 A10.1 Fonts on the QL

On the QL, each window can have two fonts attached. There are actually two default fonts, the first of
which defines the characters from 32 to 127 and the second of which defines the characters from 127 to
255.

The reason that CHR$(127) is defined twice is that the definition in the first font is the definition used for
the copyright symbol, whereas the definition in the second font is that used if a character is undefined,
such as CHR$(2).

Normally this is not noticeable and when you open a new window (scr_ or con_), the standard QL fonts
are attached to that channel.

Minerva users can use the commands:

POKE_L !124!40, font1

and:

POKE_L !124!44, font2

to alter these default fonts and thereby attach user-defined fonts to every single window that is opened
after this command.

SMSQ/E users can use the command CHAR_DEF to achieve a similar result.

45.2 A10.2 Changing Fonts in Programs

When a character is PRINTed, the QL looks up the code in the first font to find the binary definition of
the character (see below). If the code is found in this first font then it is PRINTed, otherwise, the QL
looks for the code in the second font and if found PRINTs this out.

If however the character is still not found, then the first character of the second font is printed out.

This therefore means that although substitute fonts need not have the same range as the QL standard fonts,
it is important that a font contains all of the characters which will be used by a program!

967

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

On a QL, a font is stored in the following format:

Offset Value
$0 Byte giving code of first character defined in the font
$1 Byte giving the number of characters defined (minus 1)
$2. . . $A Nine bytes defining the first character
$B. . . Nine bytes for each subsequent character. . .

Each character contained in the font is designed on a grid 8 pixels wide by 9 pixels high, and therefore
the easiest way of calculating the nine bytes which make up each character is to design the character on
a sheet of graph paper (if you do not have a font design program) and then each row must be converted
from binary to decimal.

Each square in the grid which contains a 1 will be shown as a pixel in the current INK colour when
PRINTed to the screen. For instance, this is the binary representation of the character k:

| BIT 7 6 5 4 3 2 1 0
--+-------------------------------

|0 0 1 0 0 0 0 0 0 = 64
|1 0 1 0 0 0 0 0 0 = 64
|2 0 1 0 0 0 1 0 0 = 68

R |3 0 1 0 0 1 0 0 0 = 72
O |4 0 1 1 1 0 0 0 0 = 112
W |5 0 1 0 0 1 0 0 0 = 72

|6 0 1 0 0 0 1 0 0 = 68
|7 0 0 0 0 0 0 0 0 = 0
|8 0 0 0 0 0 0 0 0 = 0

--+-------------------------------

Therefore a small program to set the character ‘a’ to the same as the character ‘k’ in channel #1 would
be:

10 a=RESPR(11)
20 POKE a,97 : REMark 97=CODE('a') - first character in font
30 POKE a+1,0: REMark Only one character is being redefined
40 RESTORE
50 FOR i=0 TO 8:READ bit:POKE a+2+i,bit
60 DATA 64,64,68,72,112,72,68,0,0
70 CHAR_USE #1,a,0

Note that unfortunately no other characters will be printed correctly! This is because, when re-designing
a font, it needs to include all of the characters which may be used in the window to which the font is
attached.

When designing fonts for use on the QL, it is important that certain rules are followed to ensure that
when characters are PRINTed on screen, they have the desired appearance in all screen modes. The QL
converts a given character into the desired mode by doubling up various rows or columns (depending on
the size set using the CSIZE command). If you intend to re-design letters, the rightmost two columns
(bits 0 and 1) should always be left empty as these are ignored in current versions of the QL ROM.

The leftmost column (bit 7) is normally left blank to ensure a gap between adjacent characters, however,
should you want to use this column also, you must be wary of the fact that pre-JS ROMs cannot display

968 Chapter 45. A10 Designing New Character Sets (Fonts)

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

fonts correctly which use this column (bit 7) and so this should always be left blank unless you know that
your font is going to be used specifically on later ROMs (see CSIZE).

In fact, if you are clever, you can use this bit 7 to obtain interesting effects on pre-JS ROMs, whilst still
retaining the full 8 pixel wide characters (the effects vary depending on the ROM version and cannot be
guaranteed!).

You should also be aware of the fact that an extra blank row is generally left between each line of char-
acters. Toolkit II users can however prevent this by using CHAR_INC.

45.2. A10.2 Changing Fonts in Programs 969

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

970 Chapter 45. A10 Designing New Character Sets (Fonts)

CHAPTER

FORTYSIX

A11 MATHEMATICS

46.1 A11.1 Degrees and Radians

Normally an angle is expressed in so many degrees, for example 90 degrees is a right angle, 180 degrees
is a straight line and 360 degrees is a circle. Unfortunately for those of us mortals out there, the QL works
in a system of angles known as radians whereby a full circle measures 2*PI radians.

The diagrams make clear why 360 degrees and its multiples (720, 1080, . . .) are identified with zero
degrees.

degrees: 0 90 180 270 360
radians: 0 PI/2 PI (3*PI)/2 2*PI

| | | |
diagram: | | | |

+ +----- -----+----- ----+ +

A programming hint: If you are calculating angles and receive values for them where you have no guar-
antee that they are properly ranged, then use the remainder from the full circle angle instead. Since MOD
finds the remainder for integers, you have simply to add a line such as:

degrees = degrees MOD 360

or:

degrees = MOD(degrees,360) (Math Package MOD)

for degrees, or:

radians = radians-2 *PI *INT(radians/2/PI)

for radians.

Note however that every function and command dealing with angles performs the same conversion inter-
nally or implicitly.

Just to make matters more confusing an angle in radians can be a maximum of 2*PI (which forms a
circle). Thus PI is a straight line and PI/2 is a right angle. The relation between degrees and radians is:

radians = PI * degrees / 180

or:

971

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

radians = RAD(degrees)

degrees = 180 * radians / PI

or:

degrees = DEG(radians)

The QL does include the functions DEG and RAD which enable you to convert radians into degrees and
degrees into radians (respectively). Unfortunately, however, all of the QL mathematical functions expect
angles to be supplied in radians and therefore you must ensure that you are working in the correct system
if you are to track down errors.

46.2 A11.2 Triangles and Trigonometrics

In order to explain some of the mathematical functions, you will need to envisage a right-angled triangle
whose height is y and whose base length is x. Assuming that x is a line from the origin, the length of the
line between the points (0,0) and (x,y) (the hypotenuse) is h. The angle formed between this line and the
base line is theta radians. The maximum value of theta is 90 degrees (PI/2).

/+ (x, y)
/ |

/ |
/ |
/ |

h/ | y
/ |
/ |
/ theta |
+---------+-----+

(0,0) x (x,0)

The following rules will give you an idea of the relationship between the various lengths and angles:

h^2 = x^2 + y^2

or:

h = SQRT(x*x + y*y)

or:

h = ABS(x,y): REMark Minvera only.
x = h * COS(theta)
y = h * SIN(theta)
theta = ATAN (y/x)

or:

theta = ATAN (x,y): REMark Minerva and SMS only.
theta = ACOT (x/y)

972 Chapter 46. A11 Mathematics

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

or:

theta = ACOT (y,x): REMark Minerva only.
y = x * TAN(theta)
x = y * COT(theta)
theta = ACOS (x/h)
theta = ASIN (y/h)

See the explanations of the keywords for details!

46.3 A11.3 Boolean Logic

The QL supports boolean logic which can be used in order to avoid lots of IF..END IF and SELect
ON. . .END SELect structures. The idea behind boolean logic is that a statement is used to calculate an
expression, which itself contains various logic operators and conditions. Please refer to the Operators
section of this appendix for the order in which operators are calculated.

This can for example allow the following:

100 start_timer = 10: timer=start_timer: max_timer=100
110 REPeat loop
120 timer = timer + (timer < max_timer) - (timer + 1 - start_timer) *␣
→˓(timer = max_timer)
130 PRINT timer
140 END REPeat loop

This program provides a timing counter, which counts from 10 up to 100 by one each pass of the loop
and then re-starts at 10. Without boolean logic, this would have to be re-written:

100 start_timer = 10: timer = start_timer: max_timer=100
110 REPeat loop
120 timer = timer + 1
130 PRINT timer
140 IF timer = max_timer: timer = start_timer-1
150 END REPeat loop

This works because boolean logic works through an expression using the order of precedence (see the
section on Operators). Whenever a comparison is found, this is evaluated to either 1 (true) or 0 (false)
and then the rest of the expression evaluated. For example, x=y=0 will not, as some users may think, set
both x and y to 0, but will set x to 1 if y=0 and x to 0 if y<>0. Therefore looking at line 120 in the first
example, the following is carried out by the interpreter:

1. timer =. . . Note that we are assigning the final result to timer.

2. . . . timer. . . Stack current value of timer.

3. . . . +(timer < max_timer) . . .Calculate whether or not timer is less than max_timer. If true, add
1 to current value of timer, else add 0.

4. . . . -(timer - start_timer) . . . Stack the minus sign and then calculate the difference between the
current value of timer and start_timer (this is the amount which will need to be deducted from
timer to make it equal to start_timer).

46.3. A11.3 Boolean Logic 973

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

5. . . . *(timer=max_timer) Calculate whether or not timer is equal to max_timer. If true, multiply
the difference (from step 4) by 1, otherwise multiply it by 0.

6. Retrieve minus sign from stack and deduct value calculated in step 5 from the current value of
timer. Assign current value to actual variable timer.

46.4 A11.4 Operators

Operators provide the QL (and any other computer) with a means of calculating an expression. An
expression is always in the form:

term *[operator term]*

A list of available operators is set out below in order of precedence, that is to say that when the interpreter
comes to calculate the value of an expression, which parts of the expression get calculated first. The order
of precedence may be over-ridden by using parenthesis (brackets) - anything within a set of parenthesis
gets calculated first, this is known as a sub-expression. For example, take the following expression:

x*y+(120-100-(50-20))

The interpreter will first of all calculate the value 50-20 which gives 30. Next, the interpreter needs to
calculate 120-100-(30). As each operator is the same, this is carried out in an order from left to right,
giving the value 20-30, in other words, -10.

This then leaves the interpreter with the expression x*y+(-10) to calculate. The multiplication operator
takes precedence here, so the interpreter calculates the value x*y and then adds -10 to the result. This
means for example, that if x is 20 and y is 5, this expression will return the value 90.

A term may be one of the following types:

• variable

• array element

• FuNctions

• strings

• values

• sub-expressions

A term may also be preceded by a Monadic Operator, which can be one of the following:-

• + this is a positive floating point. This can be omitted.

• - negate this floating point. eg. -x will if x=10 force this term to be equal to -10. However, if
x=-10, this will force this term to be equal to 10.

• NOT perform logical NOT on this floating point - eg. NOT xwill, if x=0 force this term to be equal
to 1. If however, x<>0, this term will be equal to 0.

• ~~ perform binary not on this integer - eg. ~~BIN(‘1001’) will force this term to be equal to
BIN(‘0110’).

NOTE 1

On non-Minerva ROMs, monadic operators may only occur singly, which prevented expressions such as
x=- NOT x. Minerva now allows this, for example, x%=-~~x% is the same as x%=x%+1 (this does not
work with floating point numbers as ~~ can only work on integer values).

974 Chapter 46. A11 Mathematics

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE 2

On non-Minerva ROMs, negative values (eg. x=-1) are stored as a monadic positive operator, followed
by a monadic negative operator. This no longer works on Minerva which stores negative numbers as
merely a monadic negative operator.

Order of precedence of commands:

• + monadic operator - positive number eg: ++100 is the same as +100

• - monadic operator - negative number eg: +-100 is the same as -100

• & concatenates two strings together eg: ‘Hello’&’World’ => ‘Hello World’ (see Appendix 6.8)

• INSTR returns position of one string inside another (this is normally case independent, but see
INSTR_CASE). Eg: ‘world’ INSTR ‘Hello World’ = 7

• ^ raise a floating point to the power of another floating point eg: 2^3=8

• * multiply a floating point by another floating point eg: 2*3=6

• / divide one floating point by another eg:10/5=2

• MOD return one integer modulus another integer, eg: 11 MOD 5=1

• DIV return the integer part of one integer divided by another eg:11 DIV 5=2

• + add two floating point numbers eg: 2+3=5

• - deduct a floating point from another eg: 2-5=-3

• > compare two values - is the first greater than the second? eg:x>2 for all values of x greater than
2

• >= compare two values - is the first greater than or equal to the second? eg:x>=2 for all values of
x which are not less than 2

• = compare two values - is the first equal to the second? eg:’Hello’=’HeLLo’ is false

• == compare two values - is the first approximately equal to the second? (numeric values are ap-
proximately equal if they are equal to one part in 1E-7, whereas string variables are approximately
equal if all of the characters are the same {ignoring case}). However, do note that nothing can
ever be ==0, ie. x==0 will never be true (unless x is exactly equal to zero (ie. x=0). Instead, try
x+1==1. Examples: ‘Hello’==’HeLLo’ is true ‘1.000000032’==1 is true

• <> compare two values - is the first value different from the second? eg:’Hello’<>’HeLLo’ is true

• <= compare two values - is the first less than or equal to the second? eg:x<=2 for all values of x
which are not greater than 2

• < compare two values - is the first less than the second? eg: x<2 for all values of x which are less
than 2

• NOT monadic operator - logical not (see above)

• ~~ monadic operator - bitwise not (see above)

• AND logical and - are two floating point expressions true? eg:x=1 AND y=1 is true if both x and
y are 1.

• && bitwise and - alter an integer value dependent upon a comparison bit by bit with the second
integer value. eg:BIN(‘10001’)&&BIN(‘111’) returns BIN(‘00001’)

46.4. A11.4 Operators 975

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• OR logical or - are either one or the other of two floating point expressions true? eg: x=1 OR y=1
is true if either x or y are 1.

• || bitwise or - alter an integer value dependent upon a comparison bit by bit with the second integer
value. eg: BIN(‘10001’)||BIN(‘111’) returns BIN(‘10111’)

• XOR logical exclusive or - are either one or the other of two floating point expressions true (but
not both)? eg: x=1 XOR y=1 is true if either x or y are 1, but false if both are 1 or some other
value.

• ^^ bitwise exclusive or - alter an integer value dependent upon a comparison bit by bit with the
second integer value. eg:BIN(‘10001’)^^BIN(‘111’) returns BIN(‘10110’)

46.5 A11.5 Hexadecimal and Binary Numbers

The original QL ROM could only work with decimal numbers which could cause some confusion when
trying to work with machine code or using the bitwise operators to compare two values.

Toolkit II alleviated this somewhat with the introduction of the HEX, HEX$, BIN and BIN$ functions.

SMS and ST/QL Emulators (v1.27 of E-Init) have taken this one step further, by allowing hexadecimal
and binary numbers to appear directly in SuperBASIC programs.

Hexadecimal numbers should be prefixed by the $ symbol, for example:

x=$4AFB is the same as x=19195

Binary numbers should be prefixed by the % symbol, for example:

x=%1010 is the same as x=10

NOTE

You need to process QREF_BIN to work with these new number types.

MasterBasic v1.46+ and Turbo v4.3+ can also cope with them.

46.6 A11.6 Integers

QLs have always been able to understand and use integer arithmetic, sometimes to speed up programs.

Minerva and SMS have extended the usefulness of the FOR and REPeat loops to allow them to use integer
loop identifiers, which can be much quicker than using floating point identifiers (especially where the
identifier is used to address an array).

Minerva has also introduced Integer Tokenisation which (when enabled) affects the way in which numbers
are stored internally. This can both reduce memory requirements (and the size of a compiled program
under Qliberator) as well as speed up programs. This can however cause problems - see QLOAD and
POKE.

NOTE

Prior to v2.66 of SMS a=b%*c% would produce an overflow error where the result exceeded 32768.

Problems also existed where a=i%+j% and a<0 prior to v2.74.

There were also some other problems with integer arithmetic in versions prior to v2.31.

976 Chapter 46. A11 Mathematics

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

46.7 A11.7 Faster Mathematics

There are several ways of speeding up the QL’s mathematics routines, such as using a faster processor
(including some emulators and the THOR 21 Computer), SMSQ/E, Minerva or Lightning (a program by
Digital Precision). You can even mix these together to get more improvement.

However, you can also use any maths co-processor which may be attached to your computer (see PRO-
CESSOR) to speed up the routines substantially.

In order to do this, you will need to obtain the FPSAVE public domain toolkit together with an appropriate
FPSP file (and also have a maths co-processor present - this is in-built on full 68040 and 68060 chips).
You cannot use a maths co- processor with the original QL or with a Gold Card. If you have a QXL
you will need to upgrade the 68040 chip to the full-blown model. However, the Atari TT and Falcon
machines, the THOR 21 and 32 bit Amiga machines have either built in maths co-processors or sockets
to take them.

The FPSAVE toolkit includes a set of functions which will replace the QL’s native maths routines by
faster ones which use the co-processor as well as another file containing the same functions prefixed with
the letter F so that you can use both if you so wish. Unfortunately there are currently problems with using
this toolkit on the Atari computers and you should use a copy of FPSAVE v1.17 at least to ensure that no
other problems are encountered.

The functions which are speeded up by FPSAVE are:

ACOS, ACOT, ASIN, ATAN, COS, COT, EXP, LOG10, LN, SIN, SQRT, TAN

46.8 A11.8 Precision

The main problem with the QL’s mathematics routines is the limited precision which is used by the
native mathematics routines. Although the internal routines use a precision of at least 9 decimal places
to calculate results, the Basic interpreter and PRINT commands will only accept figures six digits long for
integers and seven digits long for floating point numbers. Any greater numbers are converted by PRINT
and the interpreter to exponential notation, which means that the whole number is not stored.

To overcome this problem, you can either use Turbo or Supercharge to compile the program (these allow
up to nine digits) or, if the number is to be stored within a BASIC program, place it in quote marks (as
with the first example for the SCALE command).

46.7. A11.7 Faster Mathematics 977

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

978 Chapter 46. A11 Mathematics

CHAPTER

FORTYSEVEN

A12 DEVICE DRIVERS

47.1 A12.1 Devices in General

This chapter informs you about the usage of the various devices available on the QL and its compatibles.
The QL’s operating system QDOS is what is known as device independent meaning that a program can
be written to use any device without having to actually know its details (an exception to this rule is in the
use of standard pipes). Programs should be written so that (at least) all of these devices can be accessed
by the user as required.

Device Drivers are programs which usually create a connection between hardware devices and software,
in that they install a QDOS device to interface from software to the hardware. For example a printer is
obviously hardware but you do not have to POKE around in memory to get something printed, you can
simply open a SER or PAR channel, dump your text to that channel and voila it appears on the paper. All
communication with drivers must go through channels, whose name is very well chosen: they take data
from the program and transport it to the device driver.

• The program opens channel and writes or reads data to/from that channel. . .

• The channel forwards the data (also instructions) to the device drivers. . .

• The driver is a kind of translator which understands the language of the hardware. . .

• A hardware interface translates computer codes into electrical signals. . .

• The hardware performs physical actions, eg. printing or reading from a floppy disk.

But devices can be used for all kind of connections, there are even general devices for communication
between jobs (PIPE and HISTORY) and devices which interface in a special way to other devices (DEV
and PTH). So the last two steps in the above figure are not obligatory, they can be different, ie. non-
hardware.

Devices fall into two categories, directory devices (such as FLP) and non-directory devices. The latter
may also be further sub-divided into window devices (devices which access the screen, such as scr) and
other devices. All devices (other than window devices) accept the WIDTH command.

all devices
/ \
/ \

directory devices non-directory devices
/ \
/ \

window devices other devices

979

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Further, if Toolkit II is present, or you are using a THOR XVI, certain commands will support default
devices and also sub-directories on Level-2 directory devices.

Remember that device names can be in either upper or lower case, or even mixed case, that does not
matter at all. Device independent programs should be fully configurable with regard to device names
(eg. printer) and offer up to 42 characters for each device name. However, the . . . _USE style commands
and the DEV device help to overcome problems in this respect.

47.2 A12.2 Directory Device Drivers

Data in the form of files can be stored on various different directory device drivers, some of which allow
data to be stored when the computer is switched off (such as Microdrives and disks) and others which
lose their contents when the QL is reset or switched off (such as ramdisks).

Such media must be FORMATted prior to use in order to prepare them for use by the computer.

In order to speed up reading of these devices, unused parts of the computer’s memory are set aside to act
as slave blocks which store copies of as much of the contents of the device as possible. Then, when that
same information is requested again, the computer need only check that the data held in the slave blocks
is the same as on the device, and will then access the data from the slave blocks. This can however slow
down the initial access times (see DEL_DEFB).

Each device contains a main directory which is made up of a copy of the 64-byte file header for each
file which is (or has been) stored on the device. This main directory is then examined by commands
such as DIR to produce a list of the files contained on that device. The file headers contain a host of
different information about each file, including the name of the file, its type and the length of the file (see
FGETH$).

When a file is accessed, various details (such as date-stamping creation and update dates) are updated.

The way in which information is stored on a directory device really depends upon the Level of device
driver installed (see Sections A12.6 - A12.8 below).

Details of the types of Directory Devices follow:

47.2.1 Microdrive (MDV)

Syntax MDVn_file (QL ROM) or [MDVn_]file (Toolkit II only)
Location QL ROM, THOR XVI

This is the only standard directory device driver.

Microdrive cartridges are a continuous loop of video tape which store data in packets of 512 bytes (known
as sectors). There is a theoretical maximum of 255 sectors on a Microdrive cartridge, although in practice
the formatted number of sectors tends to be around 210 to 220.

The tape has to be searched serially in order to find the desired information which causes delay as the
whole tape may have to be wound through in order to find the information. This is where slave blocks
save a lot of time.

The standard QL supports two Microdrives (the slots to the right of the keyboard) into which Microdrive
cartridges can be inserted on which the data is to be stored. However, up to a maximum of eight Micro-

980 Chapter 47. A12 Device Drivers

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

drive ports can actually be recognised, if additional Microdrives are added by means of the Microdrive
expansion port which is situated in the right hand side of the QL by the reset button.

The THOR XVI, and QL emulators do not possess any Microdrives, although the THOR does still recog-
nise the device name, as it was originally envisaged that a separate Microdrive might be made to link up
with the THOR in order to retain compatibility. The QL emulators will simply not find any Microdrive
device like MDV1_, error -7 is produced. SMSQ/E also does not recognise the Microdrives.

Unfortunately, unless you have Toolkit II or Minerva, Microdrive files are not date-stamped with the
creation and update dates.

Unless you have Toolkit II, the first syntax of this driver must be used, which specifies the number of
the Microdrive port to access (n), which must be in the range 1. . . 8, followed by the name of the file or
device to access (file). If neither or these are specified, you are likely to receive the error ‘Not Found’
(-7), although whether or not the file has to be specified depends upon the command being executed.

If however, Toolkit II is present, the default devices are supported.

Examples

LOAD mdv1_boot

DIR mdv2_

Microdrives will allow you to create a file with a null name, which will not be revealed on a directory
listing, but which will operate in much the same way as any other file. For example, the following two
lines are both acceptable:

SAVE mdv1_Myprog_bas
SAVE mdv1_

Note that Microdrives do not possess Level-2 drivers and sub-directories are therefore not supported. For
example creating a directory with:

MAKE_DIR mdv1_test_

will produce error -15 and leave the file test on mdv1_.

47.2.2 Floppy Disk (FLP)

Syntax FLPn_file or [FLPn_]file (Toolkit II only)
Location Disk expansion boards, THOR XVI, QL Emulators

This driver is for what are commonly known as floppy disks. These come in various sizes, ranging from
3” to 8”, although the QL standard is now 3.5” double sided disks with either double (720k) or extra
density (3.2 MB).

The amount of space on a disk depends on the number of tracks on the disk, the number of sides which can
be used and the disk density. However, all of the drivers meet with a standard Sinclair format, ensuring
compatibility between different manufacturers.

The drivers allow the same syntax as the MDV driver, although most disk expansion boards will support
the second variant, as Toolkit II (or at least part of it) has become standard on disk interfaces.

47.2. A12.2 Directory Device Drivers 981

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Examples

MERGE flp1_Simple_bas

DATA_USE flp1_Quill

Some boards (such as the Gold Card, QXL, Atari Emulators and SMSQ/E) support Level-2 commands
and therefore sub-directories. Other expansion boards can be fitted with these new drivers by updating a
ROM chip. Level-2 drivers store the directory details in a separate file for simplicity. Unfortunately, the
main directory is stored in a file with a null name which will automatically overwrite any earlier file with
a null name. To see the main directory file, use:

COPY flp1_ TO scr

Sub-directories are stored in files with the name of the sub-directory. Such files have a file type of 255 and
cannot be deleted or renamed until all of the files contained within that sub-directory have been removed.

Level-1 drivers supported files with null names in the same way as Microdrives (see above). On some
old drivers FLP may be replaced by FDK.

47.2.3 RAMdisk (RAM)

Syn-
tax

RAMn_file or [RAMn_]file (Toolkit II only)

Loca-
tion

QJump RAMPRT, Expansion Boards, THOR XVI, ST/QL Emulators, SMSQ/E, QXL, QPC,
Amiga QDOS Emulator

This driver is used to set up areas of memory which can be used in much the same way as a floppy disk.
Anything stored in a RAMdisk is lost when the QL is reset or switched off.

There are actually two types of RAMdisks: a dynamic RAMdisk and a fixed RAMdisk.

A fixed Ram disk is allocated a size when the FORMAT command is used, and can contain anything
between 3 sectors and the whole of free memory. Some fixed Ram disks (most notably the Qjump ram
disk which is a standard) do not work on the Amiga- QDOS emulator - a slower public domain Ram disk
which does work is supplied with the Emulator.

By contrast, a dynamic RAMdisk does not have a fixed size and is created when anything is written to it
(do not use FORMAT) - it then expands and contracts to fit the size of the files contained in the RAMdisk.

Dynamic RAMdisks (optionally fixed) are supplied as standard on most QL systems. The RAMdisk
drivers allow exactly the same syntax to the FLP driver, but the Miracle drivers (eg. Gold Card and
Trump Card) support an extra syntax to format a RAMdisk to 255 sectors and copy a whole Microdrive
cartridge into them, eg. FORMAT ram1_mdv1.

Example

WCOPY flp1_, ram2_

Level-2 drivers commands and sub-directories are also supported for the QJump RAMdisk driver, eg. on
Gold Cards and ST/QL Emulators.

982 Chapter 47. A12 Device Drivers

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

47.2.4 Hard Disk (WIN)

Syntax WINn_file or [WINn_]file
Location Hard disk Interfaces, THOR XVI, QL Emulators

This device driver allows you to access a hard disk drive (including removable hard disks). This operates
a lot more quickly than a floppy disk (but not as quickly as a ram disk) and can store several megabytes
of data.

Hard disks are built into nearly every system that can run a QL Emulator and are available as add-ons for
a standard QL and AURORA system.

Please refer to the original manuals because the hard disk drivers all differ in FORMATting.

Accessing a WIN device from a program is just like accessing a FLP or RAM device.

47.2.5 QL ROMDisq (ROM)

Syntax ROM1_file or [ROM1_]file (Toolkit II only)
Location QLROMDisq board

This is a board which plugs into the QL’s ROM Cartridge port and provides a fixed ram disk of either 2
or 8 Megabytes. It is similar to a RAM disk in that it is very quick when loading files, but it has three
main differences:

• It retains its contents after the QL is switched off.

• You can only write data to it a limited number of times (100,000).

• It is fairly slow when you write files to it (with SAVE, SEXEC or SBYTES).

Because of these limits, this device is only really intended for storing files which will not change very
often and are needed when the QL is started up (for example a new keyboard and language driver). A
boot file stored on this device will be loaded when the QL is started up in preference to similar files on
hard disks, floppy disks and microdrive cartridges.

The other main benefit of this device is that you can transfer whole set-ups across to another QL (instead
of using lots of floppy disks or microdrives).

47.3 A12.3 Window Device Drivers

There are two types of window drivers, CON and SCR. The former (CON) is linked with a keyboard
queue and can therefore accept input, as well as echoing any characters typed on screen. The latter
(SCR) on the other hand is for output only to the screen.

Any channels opened using these screen drivers are known as windows, and may have a cursor attached
to them. If a cursor is attached, then it will normally appear as a red blob on screen (the size and shape
of the cursor may be redefined under Minerva v1.77+), and will flash when it is active (ie. when it will
accept input).

When you press <CTRL><C>, QDOS cycles through all of the current cursors, allowing you to access
different Jobs. If you are using Minerva in its two screen mode, then each channel is also attached to a

47.3. A12.3 Window Device Drivers 983

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

screen, which means that if you open a channel on scr0, then all output to that channel will appear on
scr0 whether or not that is the currently Displayed Screen (see MODE).

Also, when you press <CTRL><C> on Minerva, it will switch to the screen attached to the newly activated
channel (unfortunately in current versions of Minerva, this does not quite work as expected, since if the
active cursor is on the non-Displayed Screen when you press <CTRL><C> to move to a channel on the
Displayed Screen, Minerva still switches screens, meaning that you are still not looking at the screen with
the active cursor).

Whenever a new window is opened, it is opened with black paper and green ink. The specified pixel
parameters are also rounded up to make them even (if necessary) to ensure that they can be correctly
displayed in any screen mode. The smallest possible window is two pixels wide and one pixel high.

47.3.1 Console (CON)

Syntax CON[<size>][<position>][<buffer>]
Location QL ROM

This type of screen device is used for both output to the screen and reading the keyboard via a queue
attached to that window. Depending on the command being executed, characters typed on the keyboard
may be echoed on screen. This type of channel must be opened if you wish to use INPUT or INKEY$.

There are various problems with OPENing CONsole devices over the Network (see FSERVE).

When the computer is first started, there are three CONsole channels open, #0, #1 and #2; none of which
should be CLOSEd or OPENed, this is especially true for #0!

When opening a channel, you can specify the size and position of the window and also the length of the
type-ahead buffer attached to that window. These can have the following values:

<size>This sets the size of the window in pixel co-ordinates. It should be specified in the form:

[_WIDTH][xHEIGHT]

where WIDTH can have any value in the range 0. . .SCR_XLIM; and HEIGHT can have any value in the
range 0. . .SCR_YLIM. The maximum values are however also dependent on <position>.

The default value for <size> is _448x200.

<position>This specifies the co-ordinates of the top left hand corner of the window and is in the form:

a[X][xY]

where X and Y can both be in the same range as WIDTH and HEIGHT (used in the <size>). However,
both WIDTH+X and HEIGHT+Y must also be within the ranges, otherwise an ‘Out of Range’ error will
be reported.

The default <position> is a32x16.

<buffer>This part of the device name specifies the size of the input buffer associated with the window,
which is in the form _N bytes. This value affects how many characters can be stored in the channel’s
buffer before the keyboard has to be read again (this is known as the type-ahead buffer). Although this
can have any value, a value of 128 bytes tends to be large enough for most tasks, and in fact this is the
default.

Default Device:

984 Chapter 47. A12 Device Drivers

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CON_448x200a32x16_128

Examples

OPEN #3,con_200: REMark Open channel #3 as CON_200x200a32x16_128
OPEN #3,con__10: REMark Open channel #3 as CON_448x200a32x16_10
OPEN #3,cona12: REMark Open channel #3 as CON_448x200a12x16_128
OPEN #3,conax20_50: REMark Open channel #3 as CON_448x200a32x20_50

The STE/QL emulator (QVME) and also other other hardware support much higher resolutions than
512x256, eg. QVME can go up to 1024x1024 pixels. However, programs should be written so that they
still work with all other resolutions. This can be achieved by reading the possible screen size from system
variables (the Pointer Environment must be used) and by not accessing screen memory directly.

47.3.2 Screen (SCR)

Syntax SCR[<size>][<position>]
Location QL ROM

This is very similar to the CONsole driver, except that SCR channels are for output to the screen only.
No buffer size is required. Trying to read input from a SCR channel will give a ‘Bad Parameter’ (-15)
error.

Please see the CON Window Driver.

Default Device:

SCR_448x200a32x16

47.4 A12.4 Other Device Drivers

In the following, LF is the line feed (or newline) character CHR$(10), CR is the carriage return character
(13, $0D) and FF is the form feed character CHR$(12). In some applications <CTRL><Z> is used as an
end of text character, CHR$(26).

Both parallel and serial ports are means for the QL to access other hardware in the outside world (such
as printers, modems and scanners). Serial ports are so called because data is sent serially, one byte at a
time. On the other hand, parallel ports allow several bytes to be sent at the same time and are therefore
quicker.

Many printers are set up to accept parallel input and QL users may find that they need to purchase a serial
to parallel converter (also known as a Centronics interface) in order to use a printer.

Each driver accepts various parameters which are used to match the output with the type expected by the
device connected to the port. The main parameter deals with the parity of the byte to be sent. If no parity
is specified, then all eight bits of the given byte will be sent, otherwise bit 7 of the byte will be altered
according to the parity (this is best set according to what the hardware attached to the port requires).

You can also specify whether handshake is to be enabled, which tells the computer whether to wait for
confirmation from the external hardware that the data has been received safely. If handshake is enabled,

47.4. A12.4 Other Device Drivers 985

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

then if no acknowledgement is received, or the external hardware reports an error then the computer will
try again.

Finally, you can specify whether the data is to be converted as it passes through the port. The standard
code for ending a record or a line is CR, however, the QL is non-standard in that it uses the code LF,
which therefore may need to be converted prior to transmitting.

Also, you may wish to send the character <CTRL><Z> as the last character in order to tell the external
hardware that there is no more data.

47.4.1 Parallel Port (PAR)

Syntax PAR<new_line><trns><ff><buf> (THOR XVI) or
PAR<port><translate><convert><eof> (SMSQ/E, ST Emulators, Super Gold Card) or
PAR (AMIGA QDOS)

Location THOR XVI, ST Emulators, SMSQ/E, Super Gold Card, Amiga QDOS Emulator

Various QL implementations now come equipped with a parallel device driver for use with their parallel
port. Parallel ports can be used for transmitting data only and are therefore normally used to connect
parallel printers to the computer. Although there are various other expansion boards which also provide
the standard QL with a PAR device, we do not currently have details of their syntax.

Note that even with SMSQ/E the PAR device does not exist on a Gold Card - there is no parallel printer
port!!

The syntax of this device is quite complex, allowing different types of translations and buffers to be used.
We shall therefore examine each variant in turn.

47.4.2 THOR XVI

The values of each part of the device name are as follows:

<new_line>This dictates how end of line (LFs) and end of text markers are to be treated. The following
values are available:

• n - This converts LF to CR,LF and sends <CTRL><Z> at the end of the file. This is the default.

• c -This converts LF to CR and also sends <CTRL><Z> at the end of the file.

• r -This sends the text as it is - no conversions are carried out.

• z - This does not convert LF, but sends <CTRL><Z> at the end of the file.

The following table may be of use:

EOL EOF Use This
CR,LF CTRL-Z n
CR CTRL-Z c
- - r
LF CTRL-Z z

<trns> This tells the THOR XVI whether or not to use its translation tables (set with TRA). This can
have the following values:

986 Chapter 47. A12 Device Drivers

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• t -Use the translation table. This is the default if <new_line> is specified but not raw.

• p -Do not use translation table. This is the default if <new_line> is not specified or is raw.

<ff> This says whether or not to send FF at the end of the file. The default depends on <new_line>. By
default, a FF will be sent if <new_line> is set to n or c and the last character is not FF. The default can
be overridden by setting <ff> to f which tells the THOR not to send FF unless of course there is already
a FF at the end of the text!

<buf> This sets the size of the output buffer in bytes, and must be in the form _n, where n is the size of
the buffer. If you add ‘k’ after the value of n, the value of n will be multiplied by 1024, for example _2K
sets an output buffer of 2048 bytes.

The default is _127.

Examples

par_90k

Conversion of LF to CR, LF; translation table used; FF sent at end; buffer length 90 kilobytes.

parrt

No conversion; translation table used; no FF sent.

Note the coupling between the <New_line> and <trns> arguments. This means that par is equal to parnt,
whereas parr is equal to parrp. The translation table used is the one set with TRA.

Default Device:

PARnt_128

47.4.3 ST Emulators, Super Gold Card AND SMSQ/E

These allow output through the parallel ports to be buffered dynamically, whereby a buffer is allocated
up to all of the available free memory or (except on the Super Gold Card without SMSQ/E) can be set to
a specific amount of space (thus allowing printing to continue in the background). Several channels may
be open to one output port at any time, in which case the data is buffered and sent through the parallel
port in the order in which the channels are opened.

Commands are implemented to allow you to set a specific output buffer or input buffer size (PAR_BUFF),
as well as aborting output to a parallel port (PAR_ABORT) or clearing an output buffer (PARR_CLEAR).

The values of each part of the device name are as follows:

<port>This is provided for future compatibility. It represents the number of the parallel port to use. It
can be either 1 or 2, although any attempt to use par2 is currently ignored and par1 used. The default is
therefore 1.

<translate>This, like the THOR XVI’s <trans> parameter specifies the type of translation to be carried
out on the data. This can have the following values:

• d - No translation is performed.

• t - Translate according to the translate table. This is the default.

• <convert>This specifies how LF is to be treated. It can have the values:

47.4. A12.4 Other Device Drivers 987

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

– c - This converts LF to CR.

– r - No conversion, this is the default.

– a -Insert CR,LF at end of line. Insert CR,FF at end of page (added to ST/QL drivers in Level
D-05).

• <eof>This specifies how the end of the file is to be treated. It can be the default (do nothing) or
have one of the following values:

– f - Print FF at end of file

– z - Print CTRL-Z at end of file

Example

PAR1cz is the same as the THOR’s PARn

Default Device:

PAR1tr

47.4.4 AMIGA-QDOS

This is the simplest form of parallel device driver, in that it does not accept any parameters (at least in
v1.03 of the parallel driver). Any characters are sent straight through the Amiga’s parallel port without
being altered in any way.

47.4.5 Serial Ports (SER)

Syntax SER<prt><par><handshake><protocol>(QL only) or
SER<prt><par><hand><translate><convert><eof> (ST Emulators, SMSQ/E) or
SER<prt><par><bits><hds><bpso><bpsi><nl><trns><ff><buf> (THOR XVI only) or

Location QL ROM, ST/QL, THOR XVI

The QL, and THOR XVI are each equipped with two serial ports, marked SER1 and SER2 on the rear
panel. Other implementations of the QL can in fact have access to up to four serial ports (even the
standard QL can use additional serial ports built into SuperHermes for example).

If only one serial port is available (as on some STs), any attempt to use SER2 is treated as SER1.

The Amiga-QL emulator adopts a serial driver based on the JS version of the QL driver. It can be used to
access either of the Amiga’s two serial ports. It is however, unknown if current versions of the emulator’s
driver (v1.03) support CTRL Z.

Both ports on the British QL use non-standard British Telecom connectors and are actually wired up
differently to each other (although they still use the same device driver). The other types of serial port
tend to use standard 9-pin trapezium connectors.

On the standard QL, both ports conform with the RS-232-C standard, although the port marked SER1
is configured as a data communication equipment (DCE) port, which is normally used to drive printers;
whereas the port marked SER2 is set up as a data terminal equipment (DTE) port, which is more suited
towards accepting input from other devices (such as a modem). Refer to the QL User Guide manual,
Concepts section, for further details of the hardware.

988 Chapter 47. A12 Device Drivers

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

The rate at which data can be passed through the ports is known as the Baud rate which is set with the
command BAUD from SuperBasic (or with a corresponding machine code trap call). This is supposed to
be the number of bits per second, but due to the limitations of the QL’s hardware, the rate of data transfer
actually falls somewhat short of these rates (unless you have a THOR XVI, or use Minerva or SMSQ/E
which has speeded up the rate of data transfer considerably).

Unfortunately, the 8049 IPC which controls input from both serial ports on the QL cannot handle different
baud rates for the two ports. On the other hand, the THOR XVI does support different baud rates, although
not via the BAUD command which sets the baud rate on both ports to the same. Hermes is a replacement
for the QL’s 8049 chip and allows different input baud rates on each of the two serial ports. Minerva
allows different output baud rates on each port.

SMSQ/E and the ST Emulators allow you to set fully independent input and output BAUD rates on each
port (although SuperHermes is still needed if this is to work on a standard QL).

Either port may be used for input or output (subject to hardware restrictions - see above), however, only
one channel can be open to a serial port at a time, and if a channel is already open to the given port, the
error ‘In Use’ will be reported.

The actual implementation of the SER device driver is dependent upon the machine. We shall therefore
deal with each machine in turn.

47.4.6 Standard QL

This enables you to open a channel to either of the two serial ports. The action taken by the device driver
depends both upon the ROM version being used and whether data is being input or output.

Note that input through the serial ports tends to be unreliable with baud rates in excess of 1200, and in any
case, when receiving at 9600 baud, two stop bits must be issued by the transmitting device. Receiving at
19200 baud is not possible.

Unfortunately, problems in the 8049 mean that incoming data can be lost due to a delay in notification
of the fact that the receive queue is full. Also, input channels can actually suffer from ‘serial overrun’
where some characters are held up in the 8049, and then released only when a new character is read from
the serial port. This can sometimes happen with modems, making serial input unuseable.

There exists a replacement for the 8049 (called HERMES and its bigger brother SuperHERMES) which
fixes these problems, as well as allowing separate baud rates for input and output channels, and which
even supports different input rates on SER1 and SER2. This replacement also makes input at the higher
baud rates much more reliable (including input at 19200 baud), without needing two stop bits at any rate.

The handling of both input and output is also dependent upon the ROM version being used:

(a) Output SERial devices

Pre-JS ROMs

If the C protocol has been chosen, then if the byte is a LF it is converted into a CR. Bit 7 of the byte is
then adjusted to suit the parity and the byte then placed into the queue for the 8302 chip to read, deal
with the handshaking and send through the channel. When the whole of the data has been sent, once the
8302 has emptied the queue, CTRL-Z is sent (if required).

Unfortunately, this meant that the protocol could just about be altered before the CTRL-Z had actually
been sent, resulting in a failure by the QL to send any CTRL-Z’s. This could happen for instance, if a
series of small CTRL-Z files was sent to the serial channel and then the channel was re-opened as SERr.

47.4. A12.4 Other Device Drivers 989

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Another problem with the handling of CTRL-Z’s was that the parity (if required) was not always correct
on this final byte.

JS and MG ROMs

The serial driver followed the same pattern, except that if enabled by a TRA command (or the appropriate
machine code call) the byte was translated according to the specified translation table after it had been
adjusted to suit the parity (if required). This meant that bytes above CHR$(127) could not always be
translated. The problems with CTRL-Z persisted.

Minerva ROMs

The serial driver is much improved, in that if the protocol is C, then LF is swapped with CR (and vice-
versa). The byte is then translated according to the translation table (if required) and only then is it altered
according to the parity setting.

The byte is then put into the queue to be sent to the 8302 and handshaking is then dealt with, leaving the
8302 to actually output the byte.

The problems with CTRL-Z have mainly been dealt with, although to overcome the problem of changing
protocols, a channel structure linked to SERz or SERc cannot be discarded until all of the data in the
transmit queue has been sent (meaning that the channel structure may not ever be discarded if handshaking
forces the computer to keep trying to send the data). The main remaining problem is that in Minerva’s
two screen mode, characters may be lost on output.

(b) Input SERial devices

Pre-JS ROMs

The 8302 deals with handshaking and then puts the byte which it has read into the receive queue. The
device driver then reads the byte from the receive queue and checks the parity of the byte; reporting Xmit
error if the check fails.

If the C protocol is chosen, then any CRs are converted into LFs and the byte returned to the user. Parity
is completely ignored on CTRL-Z.

JS and MG ROMs

These both still suffer from CTRL-Z.

If enabled, a simple (one to one) translate is performed on the incoming byte as soon as it is fetched from
the receive queue (see TRA). The parity is then altered as required, CRs converted into LFs (if necessary)
and the byte passed onto the user.

Minerva ROMs

This checks the parity on CTRL-Z if required, along with the parity on any other data as soon as each byte
is fetched from the receive queue. The byte is then translated (if necessary) according to the simple (one
to one) translation table, CRs and LFs exchanged (unless protocol R chosen) and the byte then passed
onto the user.

990 Chapter 47. A12 Device Drivers

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(c) The Standard QL Device Driver

The parts of the device driver are made up of the following:

<prt> This specifies which serial port is to be used, and can be 1 or any higher number.

The default is ser1.

<par> This sets the type of parity to be used. The default is none, which allows all 8 bits of the characters
to be sent. <par> may however be specified for one of the following values:

• e - Even

• o - Odd

• m - Mark

• s - Space

If a parity setting is used, then only seven bits of each code sent to the serial port are used, the last eighth
bit is used to specify the parity.

If the parity is wrong when data is received through a port then the error ‘Xmit Error’ is reported.

<handshake>This specifies whether handshaking should be used. It may have the values:

• i - Ignore Handshaking

• h - Handshaking on. This is the default.

Handshaking is used to ensure that data is only sent through the serial port when the machine connected
to the other end of the lead has sent a signal to say that it is ready to receive data.

<protocol>This specifies the type of conversion to be used. It may have one of the following values:

• r - No conversion carried out. This is the default.

• z - Use CTRL-Z for end of file flag.

• c - Convert LF to CR (or vice versa on input) and use CTRL-Z as end of file flag. Note: on Minerva,
swap LF with CR on both input and output.

Default Device:

SER1hr

47.4.7 ST Emulators and SMSQ/E

These support a slightly enhanced variant of the device found in JS and MG ROM QLs (but with different
bugs). Output through the serial ports can be buffered dynamically, whereby a buffer is allocated up to all
of the available free memory or can be set to specific amount of space (thus allowing printing to continue
in the background). Several channels may be open to one output port at any time, in which case the data
is buffered and sent through the serial port in the order in which the channels are opened.

Commands are implemented to allow you to set a specific output buffer or input buffer size (SER_BUFF
and SER_ROOM), as well as aborting output to a serial port (SER_ABORT) or clearing an output buffer
(SER_CLEAR). Even the default handshaking can be set with SER_FLOW.

Serial ports may even be joined together to form a Network (SERNET).

47.4. A12.4 Other Device Drivers 991

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

When using SMSQ/E on standard QL serial ports hardware, there are several ways to improve the relia-
bility:

• Use STX instead of SER to open output only ports.

• Use the command SER_PAUSE to alter the length of the stop bits on the serial ports.

• Fit Hermes (or SuperHERMES) - this is especially important for using higher BAUD rates and can
improve the XON / XOFF protocol which can normally fail when trying to read data on the QL at
over 2400 BAUD or trying to send data at over 4800 BAUD. Hermes is also needed to receive data
at a different BAUD rate on each port and also at a different rate to the transmission rate.

• Change your serial to parallel converter - SMSQ/E is now so fast on the QL that some older con-
verters no longer work correctly.

The SER device supports the various settings detailed on the following page. The default is ser1htr

<prt> This is the same as on the QL.

<par> This is also the same as on the QL.

<hand> This specifies whether or not to use handshaking, and if so which type is to be used. It can take
the following values:

• h - Hardware Handshaking on - the default.

• i - Ignore handshaking

• x - XON/XOFF; no handshaking (see SER_ROOM).

Hardware Handshaking can only be used with a five-wire serial connector, as it uses one of the lines as
a signal line to signify when the machine is ready to receive data.

XON/XOFF was added to ST/QL Emulators in Level D-00 drivers and also exists in SMSQ/E - it is
software based handshaking and can be used with three-wire serial connectors. An XOFF character is
sent to the other machine when there are only 32 characters left in the receive buffer (or other figure set
with SER_ROOM), telling that other machine to stop sending data. Once there is room in the receive
buffer for twice this number of characters an XON character is sent to the other machine which tells that
machine to re- start data transmission.

SER_FLOW also affects this parameter.

<translate> This specifies the type of translation to be carried out on the data. This can have the following
values:

• d - No translation is performed.

• t - Translate according to the translation table. This is the default.

The TRA command sets up translation tables.

<convert> This specifies how LF is to be treated. It can have the values:

• c - This converts LF to CR.

• r - No conversion, this is the default.

• a -Automatic insertion of CR,LF at end of line and CR,FF at end of page. This was added to ST/QL
Drivers in Level D-05.

<eof> This specifies how the end of the file is to be treated. It can be the default (do nothing) or have one
of the following values:

992 Chapter 47. A12 Device Drivers

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• f - Print FF at end of file

• z - Print CTRL-Z at end of file

47.4.8 THOR XVI

The serial ports provided on the THOR XVI use a much enhanced variant of the original JS device driver.
The new serial device syntax is upwardly compatible with the original, ie. the old syntax described above
is still accepted but additional parameters are allowed. The THOR also supports an enhanced translate
table (see TRA).

The following parameters are now accepted by the device driver:

<prt> This is the same as on the standard QL driver.

<par> Again, as per the standard QL.

<bits> This digit sets the number of bits per byte to be sent. It can be 5, 6, 7 or 8. The default is 7 if
parity is set, otherwise 8 for no parity.

<hds> This letter sets handshaking:

• h - on (default).

• i - ignore.

• x - XON/XOFF with handshaking.

• y - XON/XOFF without handshaking.

<bpso> This sets the current output baud rate and is specified as the number is preceded by a B. Valid
parameters are: B75, B110, B134.5, B150, B300, B600, B1200, B1800, B2400, B4800, B9600, B19200.

The system BAUD setting is the default. See BAUD.

<bpsi> This sets the input baud rate as above. A THOR XVI can send and receive data at different speeds.
The default input baud rate is the current output baud rate.

<nl> This letter specifies how the end of line (EOL) and end of file (EOF) codes should be converted.
This is the same as <new_line> in the THOR’s PAR driver, except that the default here is r (raw).

<trns> This tells the THOR XVI whether or not to use its translation tables (set with TRA). This can
have the following values:

• t - Use the translation table. This is the default if <nl> is not specified.

• p - Do not use translation table. This is the default if <nl> is specified.

<ff> This says whether or not to send FF at the end of the file. The default depends on <nl>. By default,
a FF will be sent if <nl> is set to n or c and the last character is not FF. The default can be overridden by
setting <ff> to f which tells the THOR not to send FF unless of course there is already a FF at the end of
the text!

<buf> This sets the size of the output buffer in bytes, and must be in the form _n, where n is the size of
the buffer. If you add ‘k’ after the value of n, the value of n will be multiplied by 1024, for example _2K
sets an output buffer of 2048 bytes.

The default is _127.

Example 1

47.4. A12.4 Other Device Drivers 993

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

ser2exb75b1200cf

ser2 with even parity, send 7 bits per byte, XON/XOFF with handshake on, set output baud rate at 75 bps
and input baud rate at 1200 bps, newline conversion to CR and use translate table, no form feed at end of
file, use an output buffer of 127 bytes.

Example 2

ser7b1200

ser1 with no parity, send 7 bits per byte, normal handshake, both output and input baud rate set at 1200,
no newline conversion (raw data) but use translate table, send form feed at end of file, use output buffer
of 127 bytes.

Default Device:

ser18hrt_127

Note the coupling between the <nl> and <trns> arguments. This means that ‘ser1’ is equal to ‘ser1rt’,
whereas ‘ser1r’ is equal to ‘ser1rp’. The translation table used is the one set with TRA.

47.4.9 Serial Ports (SRX)

Syntax SRX<prt><par><hand><translate><convert><eof>
Location ST Emulators, SMSQ/E

This is a dedicated input only serial device, which has the same syntax as the ST Emulator’s SER device.

Default Device:

SRX1htr

47.4.10 Serial Ports (STX)

Syntax STX<prt><par><hand><translate><convert><eof>
Location ST Emulators, SMSQ/E

This is a dedicated output only serial device, which has the same syntax as the ST Emulator’s SER device.

It is recommended that if your program only needs to be able to send data out of the serial ports, this
device is used, as this will enable other programs to open input devices (SRX) to the same serial port.

NOTE

On a standard QL, the same hardware is used for both serial ports, and therefore if you are using one port
for input and one for output you should use the STX device on the output only port (instead of SER). If
you use SER to open both ports then the speed of the input port will be unduly affected even though the
other port is being used for output only. STX gets around this problem.

Default Device:

994 Chapter 47. A12 Device Drivers

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

STX1htr

47.4.11 Printer Ports (PRT)

Syntax PRT
Location Qjump RAMPRT, ST Emulators, SMSQ/E, QXL, Gold Card, Trump Card

This is an unusual device driver which comes in two forms. However, in both forms, the idea is that a
user will set up this device to point to the port which connects to his printer, so that a program merely
needs to OPEN prt. In practice however, it is more advisable to allow the user to configure the program
with the details of the port to be used for printing.

47.4.12 Qjump RAMPRT, Trump Card, QXL and Gold Cards

These allow the PRT device to be used to add buffers to serial and parallel ports (see PRT_USE).

ST Emulators and SMSQ/E

On these implementations, the PRT device can be used to emulate either SER or PAR, but does not
necessarily have a buffer attached. See PRT_USE.

Memory Driver (MEM)

Syntax MEM_[adr1[_adr2]] (IODev) or
MEM[bufnr][_buflen{p|t}] (DIY Toolkit)

Location MEM device (DIY Toolkit Vol N), IODev (System)

The memory device allows you to access RAM memory directly via a device. This is functionally the
same as PEEKing the values with any of PEEK’s available variants (PEEK$, PEEK_F etc), but the latter
only allows you to access the memory of the local machine.

The MEM device on the other hand can be installed on a different machine connected via the Toolkit
II fileserver, which allows you to use any device driver on a host machine through the n<nr>_ fileserver
interface (see below).

Data can be read and written through a MEM device to memory with all commands and functions that
work on files as well, so that memory becomes a file.

The DIY MEM device supports up to eight buffers of buflen bytes in size for data transfer between
program and memory. A buffer is specified by bufnr, each buffer can be either temporary (t suffix to
buffer length) or permanent (p). The file pointer needs to be explicitly set to the address location which
you want to read from or write to.

IODev’s MEM device has a much different syntax. The two modifiers adr1 and adr2 are numbers which
indicate the start address (offset zero): 1024*adr1+adr2.

adr1 and adr2 are assumed zero if omitted.

47.4. A12.4 Other Device Drivers 995

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Example

The classical demonstration for the MEM device is copying

the screen from one machine to another:

(1) IODev Variant

This can be easily done with:

SBYTES n2_mem_128,131072,32768

provided that the screen address is located at 131072 (128 * 1024 = 131072) on both machines and that
both screens are 32k long. The above command copies the screen of the current machine to Network
station number 2 (which must be running FSERVE).

(2) DIY Toolkit variant

This is defined differently and needs you to set the file pointer accordingly:

100 SBYTES_O ram1_q,131072,32768
110 OPEN#3,n2_mem_
120 GET#3\131072
130 SPL ram1_q TO #3

You will have noticed that both variants of MEM have an incompatible syntax. Fortunately however, it
is still possible to write portable programs for both devices. Just use the most basic syntax; both MEMs
will then behave identically and start at the absolute address zero.

This means that the above DIY Toolkit example will also work on the IODev variant (however ensure
that the final underscore appears in line 110 to maintain DIY Toolkit compatability.

This example can be much improved by avoiding the need for a temporary file and extra code to check if
SPL has finished (ignored here) by using FWRITE.

NOTE

MEM could have problems on Minerva pre v1.78.

WARNING

The use of the MEM device is not recommended because it uses absolute addresses on another machine.
QDOS tends to move around all kinds of area of memory, so that even very sophisticated communication
between the network partners cannot provide enough safety to avoid crashes.

Imagine the following (horror) scenario: Machine 1 tells machine 2 where its screen memory is located.
Machine 2 starts to send its own screen to machine 1 but during the upload QDOS moves the screen on
machine 1 to another location. . . BANG! The use of MEM must be declared as dirty or at least most
dangerous. There are always alternatives which avoid MEM.

996 Chapter 47. A12 Device Drivers

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

47.4.13 Network Drivers (NET)

Syntax NET<direction><station>(QL ROM) or
NET<direction><station>_<buffer>(Toolkit II, THOR XVI)

Location QL ROM, Toolkit II, THOR XVI

These device drivers are explained separately in the Networks appendix.

47.4.14 Communication Drivers (PIPE)

Syntax PIPE_length(standard drivers) or
PIPE[IDin]{X | P | T}IDout[_[length]][K](Minerva v1.97+) or
PIPE_name[_length] (named drivers, SMS)

Location QL ROM, named pipe drivers, SMS

These are basically areas of memory which are set aside to act as communication queues. In theory,
output data can be placed into the queue by a Job through one channel and the data can then be read by
another Job (or the same Job) through another channel. The Job which is outputting data will be told
when the pipe is full and will have to wait for something else to read some of the data before any more
can be placed into the pipe.

Data is read out of a pipe in the order in which it is placed into it. This is known as First In First Out
(FIFO).

Pipes can only be one way (either output or input). Any attempt to send data through an input pipe (or to
read data from an output pipe) will cause a ‘Bad Parameter’ error. For compatibility reasons, you should
open output pipes with OPEN_NEW and open input pipes with OPEN_IN.

A channel which is open to an input pipe cannot detect the end of data held within the pipe with the EOF
command (unless the output channel has been closed) - instead, you will need to use the PEND or EOFW
command to check if there is any more data waiting in the pipe. If you do not do this, then commands
accessing the input pipe will merely wait around until they timeout (or wait indefinitely if the timeout is
negative!).

More recently, the concept of Named Pipes has been introduced to QDOS which make the handling of
pipes much easier, as you only need supply the name of the pipe to the input channel.

Again, we need to look at the various implementations of pipes:

Standard QL ROM

(1) Output Pipes

It is easy to open an output pipe, with the syntax:

PIPE_length

where:

length Defines the length of the pipe, this is the number of bytes which can be stored in the queue at any
one time. This cannot be extended at a later date (at least not very easily without losing all of the data).

47.4. A12.4 Other Device Drivers 997

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

length must be in the range 2. . . 32767.

There is no default.

(2) Input Pipes

The problem comes when you try to link an input channel to this pipe. To do this, you need to open a
channel to PIPE_0 with the channel ID of the first pipe in the machine code register D3.

Unfortunately there is no easy way of doing this in SuperBASIC, unless you have Minerva v1.82+ (see
OPEN) or use a toolkit command such as QLINK which connects an existing channel to the given pipe.

WARNING

More than one input pipe may be connected to the same output pipe inadvertently, and you could even
connect one input pipe to another. Both of these will eventually crash the system.

Minerva ROM

This allows pipes to be created which are the same as on the standard QL ROM, except that length can
have the letter K appended to multiply it by 1024. However, it is easier to link up input pipes to existing
output pipes by using the extended OPEN commands implemented on Minerva v1.82+.

Example

Open a pipe between two programs, with a buffer of 10K

100 PCHAN=3
110 OPEN_NEW #PCHAN,pipe_10K
120 pipeID=PEEK_W(\48\PCHAN*40+2)

then in another program, having transferred the pipeID from the above program (by example using a
temporary file):

130 OPEN_IN #5,pipe_,pipeID

However, a more flexible type of pipe has been implemented in Minerva v1.93+, with the syntax:

PIPE[IDin]{X | P | T}IDout[_[length]][K]

Pipes are identified by ID numbers (IDin) and (IDout), both of which can be any integer number in the
range -32768 to 32767. The effect of omitting either ID numbers depends on the circumstances (see
below).

In keeping with the other pipe drivers, length can be any integer between 0 ans 32767, appended by K if
you want to multiply it by 1024. If omitted, it defaults to 0.

This sets up a system of pipes which are very similar to named pipes and channels can actually be opened
to pipes which can both read from and output data to that pipe. The first channel to open a pipe to a
particular IDin or IDout will need to specify the buffer length - any future channel which tries to specify
a buffer length for the same pipe IDin or IDout will have no effect on the buffer.

The effect of the pipe depends on the values of IDin, IDout and whether the X, P or T parameter is
specified.

• If IDin is omitted then the channel opened to the pipe will be write-only. IDin defaults to zero.

998 Chapter 47. A12 Device Drivers

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• If IDout is omitted or a negative number, and IDin is specified together with the X, P or T parameter
then it will default to the same as IDin. - see (3) below. However, If IDout is omitted and the above
paragraph does not apply, IDout is taken to be zero (or if IDout is specified to be zero) then the
channel opened to the pipe will be read-only (you will need to specify X, P or T parameter if
Minerva is to recognise IDout whether it is there or not).

• If both IDin and IDout are non-zero (or IDout was made to be the same as IDin under (2) above),
then the channel opened to the pipe will read data from IDin and send data to IDout. If IDin and
IDout are the same then this will form a circular queue.

• If both IDin and IDout are omitted and the X, P or T parameter is not specified, then you have
created a standard QL pipe! If you specify the P or T parameter in this instance, see note 1 and
note 2 below. PIPEX has no meaning!

• If a P parameter is specified, then this pipe will be marked as permanent and will retain its data
even if no channels are open to it.

• A T parameter marks a pipe as temporary and can be used to remove a permanent pipe, eg: OPEN
#3,’pipe1p2’Open a permanent input pipe (ID=1) and a permanent output pipe (ID=2). OPEN
#3,’pipet2’:CLOSE #3 Remove the pipe (ID=2) once all information has been read from it.

• An X parameter is used to merely separate IDin and IDout - this will create a temporary pipe
which will mark the end of the data ‘End of File’ when the last channel which can output data to
the specified pipe ID has been closed. When there are no channels at all left open to that pipe ID
then any data in that pipe is lost and the memory released.

Examples

OPEN #3,pipe3x_100: REMark Open a read only pipe with a 100 byte buffer.
OPEN #3,pipex3_100: REMark Open the write only end of the above pipe.

Any easy way to transfer data between two programs:

From SuperBASIC enter the program:

100 OPEN #3,pipe1t3_300
110 REPeat wait_loop
120 INPUT #3,info$
130 IF info$='PROG 2 IS READY - SEND'
140 INPUT #3,datan,dummy$
150 EXIT wait_loop
160 END IF
170 END REPeat wait_loop
180 FOR i=1 TO datan
190 INPUT 'Enter Data Entry ';(i);': ';a$
200 PRINT #3,a$
210 END FOR i
220 REPeat end_WAIT
230 INPUT #3,a$
240 IF a$='THANKYOU':PRINT 'DATA SENT SUCCESSFULLY':EXIT end_WAIT
250 END REPeat end_WAIT
260 CLOSE #3

Use EX pipep to start a MultiBASIC and enter the program:

47.4. A12.4 Other Device Drivers 999

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

100 OPEN #3,pipe3t1_300
110 space=10
120 DIM rd$(space,100)
130 PRINT #3,'PROG 2 IS READY - SEND'
140 PRINT #3,space
150 PRINT #3,'DATA'
160 FOR i=1 TO space
170 INPUT #3,rd$(i)
180 END FOR i
190 PRINT #3,'THANKYOU'
200 CLOSE #3

Now RUN the program in the MultiBASIC, <CTRL><C> to SuperBASIC and enter RUN. Any data you
enter into the SuperBASIC program will then be sent to the MultiBASIC program. Both programs can
be RUN in either order!!

NOTE 1

PIPEP without any other parameters was implemented to automatically start up a MultiBasic, by using
for example: EX pipep

see EW for details.

NOTE 2

PIPET opens a pipe similar to a NUL device - any attempt to read data from it will always report ‘End
of File’, whereas any data sent to it will be thrown away.

NOTE 3

In v1.97 PIPEP and PIPET were the wrong way around when opened as an input pipe. You will therefore
need to use a line such as:

IF VER$(1)='1.97': OPEN_IN #3, PIPEP2: ELSE: OPEN_IN #3, PIPET2

NOTE 4

It is recommended that in order to overcome problems with multitasking jobs trying to access the same
pipe IDs inadvertantly, a Job should use its own Job number*100 plus the pipe ID number. This can be
calculated with:

jobID = VER$(-1): JobNr = JobID - INT(JobID/65536)*65536
JobID = (PEEK_L(!!100) - PEEK_L(!!104)) DIV 4

47.4.15 Named Pipe Drivers, SMS

SMS, the ST/QL Emulators (Level D-00 onwards) and various other utilities implement named pipe
drivers.

Named pipes solve many of the problems associated with QDOS’s native pipes, in that there is no need
to know the channel ID of the output pipe in order to open the input pipe.

Most versions will also allow you to open the input side before opening the output side, but oddly enough
some non- standard versions will lose any data stored in a pipe if there is neither an output nor an input
channel associated with it.

1000 Chapter 47. A12 Device Drivers

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Input and output pipes can be closed in any order - information contained in them will not be lost, so you
can close both the input and output pipes, but if there is still information contained in the pipe, you can
then open a new input pipe to read this remaining data.

SMS v2.79 has further extended the concept of named pipes, allowing you to DELETE and DIR pipes.

DIR pipe

will list all named pipes which exist

DELETE pipe_name

will delete the specified pipe.

You can also:

VIEW pipe_name

In current drivers, a maximum of 15 or 16 named pipes can be open at any one time. The syntax of this
driver is:

PIPE_name_length

for an output pipe, or:

PIPE_name

for an input pipe.

where:

name The name of the pipe (up to 32766 characters long), which must be in the standard name format
(ie. the first character must be a letter or ‘_’ symbol, with any other characters following).

There is no default.

length The length of the queue associated with the pipe (ie. how many characters can be stored in the
pipe at a time). This must be in the range 2. . . 32767. If a length of zero is given, this is taken to be an
input pipe.

Default is 0.

NOTE 1

As there is no guarantee when you open an input channel to a pipe that it is empty (or contains only
the information which you expect - for example another copy of your program may already be in use!!),
it is normal for the first information to be sent by a program through a pipe to be some identification
information (see the Minerva examples).

Examples

OPEN_NEW #3,PIPE_100

Open a standard output pipe which can hold up to 100 characters at a time.

OPEN_NEW #4,PIPE_xover_50

Open an output pipe named xover which can hold up to 50 characters at a time.

47.4. A12.4 Other Device Drivers 1001

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

OPEN_IN #5,PIPE_xover

Open an input channel to the pipe xover.

OPEN_NEW #2,PIPE_quill_exp_100

Open an output pipe named quill_exp with a buffer for 100 characters.

PIPE_0

Open a general input channel to a pipe - see standard QL version above!

NOTE 2

Before Level D-06 of the ST/QL Drivers, PIPE_ or PIPE_0 could cause problems with TURBO compiled
programs.

WARNING

When using SMSQ/E’s named pipes, if you try to DELETE a pipe but a channel is OPEN to that pipe,
then the error ‘in use’ is reported. However, when all channels to that pipe are CLOSEd, the pipe will
immediately be DELETEd.

47.4.16 Communication Drivers (HISTORY)

Syntax HISTORY_name[_length] or
HISTORY[_length]

Location SMSQ/E

The first syntax to this device creates a Public History Device - this is similar to the named pipes driver
on the SMSQ/E except that it works as a Last In First Out (LIFO) device, so that information read from
a HISTORY appears in the opposite order to which it was placed in the HISTORY and can be read from
any program. Also if a HISTORY device becomes full, the oldest message is thrown away. Messages are
separated by NewLine characters.

Note that the name should not be a single character to allow for future improvements to this device.

The second syntax creates a Private History Device, which still stores messages so that they are fetched
out of the History in the reverse order to how they were stored. However, no other program will be able
to open a channel to this History and therefore it can only be read by the program which has opened it.

In both versions, if length is not specified, then it is presumed to be 1024 bytes.

As with Named Pipes, as from v2.79 of SMSQ/E, you can use DIR, VIEW and DELETE to get a directory
of Public Histories, look at one of them and Delete them.

Example

Grab the name of the last file on a disk:

OPEN_NEW #4,HISTORY_FILE_10000
DIR #4,flp1_

VIEW HISTORY_file: REMark Just a quick look at the contents - it does not ␣
(continues on next page)

1002 Chapter 47. A12 Device Drivers

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

→˓alter the contents of the HISTORY

INPUT #4,name$
CLOSE #4
DIR HISTORY
DELETE HISTORY_file

47.4.17 Nul Driver (NUL)

Syntax NUL or NULZ or NULF or NULL or NULP
Location ST/QL Emulators and SMS

A nul device is generally just an empty input only device that can consume anything put into it at great
speed. It enables you to write software which can easily turn off its normal output by merely re-opening
its output channel to a nul device should the user choose to do so.

All nul drivers are added by additional hardware and software. The standard device name is NUL, but
there are also NULZ, NULF, NULL and NULP.

Input

The only real difference is if you try to read one of the nul drivers.

• NUL - This is an output only device, and returns bad parameter if you try to read information from
it. Any attempt to read window information will return a zero parameter. Any attempt to read
pointer information will return an invalid parameter.

• NULF - This emulates a null file - the EOF function will always be true on this channel. If you
read the file header (with HGET for example) then a 14 byte header full of zeros is returned. Any
attempt to read window information or pointer information has the same result as on NUL.

• NULL - This emulates a file filled with Line Feed characters CHR$(10). The file position can
be set anywhere and the file header is 14 zero bytes. Any attempt to read window information or
pointer information has the same result as on NUL.

• NULZ - This emulates a file full of zeros. You can set the file position to any value, but reading
the header or data from the file will always return zeros. Any attempt to read window information
or pointer information has the same result as on NUL.

• NULP - This will force the program to wait forever (or until any specified timeout has elapsed).

47.4. A12.4 Other Device Drivers 1003

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Output

There is no difference when writing - all of the drivers just forget any data sent to them (eating it up at
very high speeds).

47.5 A12.5 DIRECT SECTOR ACCESS

All standard directory device drivers (WIN, FLP, MDV and RAM) support direct sector access. This
allow you to access the contents of a directory device without having to rely on the directory itself - it
can therefore be used to rescue corrupt disks and even change the formatting of a disk (for example one
utility uses this feature to squeeze extra room onto a normal Double Density floppy disk).

To use direct sector access, it is necessary to OPEN a channel to a special filename, in the form:

DRIVEn_*Dsd

Where:

DRIVEn_ This should be the name of the device followed by the drive number, for example FLP1_

*D This is the direct access identifier and must remain the same.

s This is a number which represents the length of a sector. s should be one of the following numbers:

• 0 = 128 bytes

• 1 = 256 bytes

• 2 = 512 bytes (DD and HD disks)

• 3 = 1024 bytes

• 4 = 2048 bytes (ED disks)

The value of 4 is only supported on Super Gold Cards. Values other than 2 are only supported on SMSQ/E
and ST/QL Drivers from Level D-05 onwards.

d This is a letter in lower case which represents the density of the device, and should be:

• d - Double Density

• h - High Density

• e - Extra High Density

Once this file is OPENed, the file pointer is positioned at the start of the first sector of side 0 track 0 on
the disk. Except on the ST/QL Drivers (pre D-04), no other file can be OPEN on the disk if this access is
to work. For further details on how data is stored on a directory device, please refer to the documentation
of the device driver.

Example

Read the name of a HD disk inserted in flp1_

100 OPEN_IN #3,'flp1_*D2h'
110 GET #3\1+ 0*256 + 0*2^16,sector$
120 CLOSE #3
130 PRINT 'The First Sector of the disk is;'sector$

(continues on next page)

1004 Chapter 47. A12 Device Drivers

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

140 PRINT 'The name of the disk appears in this sector - it is ';sector$(5 to␣
→˓14)

NOTE 1

Some older floppy disk interfaces do not support this.

NOTE 2

MIDINET and SERNET include code to stop you using this facility over the Network to access protected
files.

47.6 A12.6 Level-1 Device Drivers

These were the first Directory Device Drivers provided with the QL (and early QL floppy / hard disk
controllers) and allowed the QL to access files on microdrives, ram disk, floppy disk and hard disk rel-
atively easily. Hard disks introduced their own system of storing a directory of the files (and also some
introduced their own non-standard sub-directory filing system).

DIR would produce a list of all files present on the device (normally) in the order in which they were
created. You could even have files with no names (for example flp1_).

The main problem with these drives was when you had a hard disk (or even a floppy disk) containing
hundreds of files, it could be very difficult to find the required file.

The drivers could also not read files which had been placed in sub-directories on disks created by Level-2
Device Drivers.

47.7 A12.7 Level-2 Device Drivers

Level-2 device drivers were first introduced for the ST/QL emulator but are now available on several
emulators and QL expansion boards. These allow the user to define sub-directories of sets of files on
certain directory devices.

Sub-directories are identified by grouping together all files which have the same prefix. The main direc-
tory will only recognise the name of the sub-directory and you will then need to look at the sub-directory
to obtain details of that set of files. For example, DIR flp1_ may produce the following output:-

Example1
870/1440 sectors
boot
PSION->

This would show that the disk in flp1_ had the medium name ‘Example1’ (see FORMAT), had a maxi-
mum of 1440 sectors (720K) of which 870 remain unused, a boot file and a sub-directory called ‘PSION’
(see MAKE_DIR). You could then use:

DIR flp1_PSION

to produce the following:

47.6. A12.6 Level-1 Device Drivers 1005

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Example1
870/1440 sectors
PSION_boot
PSION_Quill

This still provides the same information about the disk, but goes on to show that the sub-directory
‘PSION’ contains the files ‘PSION_boot’ and ‘PSION_Quill’.

The use of sub-directories help to make the finding of files much more easy, especially on devices like
hard disk drives where there could be several thousand file names to sort through.

47.8 A12.8 Level-3 Device Drivers

These device drivers provide all of the facilities of earlier device drivers (allowing you to create sub-
directories on Hard Disks, RAM Disks and Floppy Disks), plus giving you the ability to read from and
write to PC and Atari TOS disks.

The DIR command prints the type of the disk in the specified device.

Unfortunately, there are limited means of formatting PC and ATARI disks under the QL operating system
and you have to use one of the various public domain utility programs to do so (or use the commands
AFORMAT and IFORMAT if available).

If you try to write to an ATARI or PC format disk, then the filing system will look at the file name which
you are using and if it is an invalid ATARI / PC filename (namely eight characters followed by a dot and a
three letter extension) then a Not Found error may be reported. You are allowed to create sub-directories
(up to four letters long) on an ATARI or PC disk with MAKE_DIR and also save filenames without an
extension (up to a maximum of 8 characters still).

Oddly, however, if you try to precede the three letter filename extension by an underscore (as would
normally be the case on the QL), this is not translated to a dot, instead, this underscore is counted as one
of the 8 characters in the filename.

A slight inconsistency (possibly in the way in which PCs handle sub-directories) is that if you make a
sub-directory with the command:

MAKE_DIR flp1_TEST
SAVE flp1_TEST.BAS

will not actually place this file in the sub-directory - compare SAVE flp1_TEST_TEST.BAS. You must
also be aware that in keeping with PCs, you must create a sub-directory on DOS or TOS disks before you
try to store a file in that sub-directory.

Until v2.52 of SMSQ/E, the filename needed to be in quote marks if it was to include a dot.

There is also a problem in that if you read some information from a DOS or TOS disk (for example with
LOAD) and then remove that disk from the drive and alter it on another computer, replacing the disk in
the original computer’s disk drive (not having used another disk in the mean time), it is impossible to tell
that the disk has been modified, so any further attempt to access that disk may render it unusable. If you
must insist on doing this, use DEL_DEFB before trying to access the disk a second time.

One more difficulty that has been rectified from version 2.87 of SMSQ/E, is that on earlier versions you
could not use EXEC or EXEC_W (or similar command) to execute a file from a DOS or TOS disk - this

1006 Chapter 47. A12 Device Drivers

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

is because the file type will not be 1. You needed to copy the file from the DOS or TOS disk to RAM
disk and then use commands such as:

OPEN #3,ram1_File_exe
HGET #3,length
HPUT #3,length,0,1,exdat
CLOSE #3

exdat will depend upon the file itself (it is the extra information which can be stored in a QDOS file
header) - you will need to read this from the original QDOS version of the file when it was created.

You will also find that some programs will not be able to use PC formatted disks - for example the Psion
programs (such as Quill and QL-Xchange) which will both add a three letter extension preceded by an
underscore if one does not exist (such as _doc).

47.9 A12.9 Using Alien Format Disks

QL Emulators which run on non-QL based hardware normally have a means of creating a section of the
hard-disk connected to a computer which can be used for storage of QL files.

QPC also includes commands to allow you to access CD-ROM drives (see CD_PLAY).

However, the problem comes when you need to try and read data from (or save data to) a floppy disk
which is not in standard QDOS format.

There are several Public Domain and Commercial utilities which allow you to convert files from or to IBM
or Atari Format disks into a QDOS format. Included amongst these utilities is the toolkit ATARIDOS
(see IQCONVERT for example). Other good examples are the public domain IBMDISK program, the
commercial program XOVER (by Digital Precision) and the shareware program MultiDISCOVER (by
Dave Walker).

However, if you want really flexible access to such disks, then you will need an operating system which
includes Level-3 Device Drivers (see above).

47.9. A12.9 Using Alien Format Disks 1007

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

1008 Chapter 47. A12 Device Drivers

CHAPTER

FORTYEIGHT

A13 EXTENDED POINTER ENVIRONMENT

It would appear likely that future QDOS compatible operating systems will be written by Tony Tebby,
the original designer of QDOS, and the author of the Extended Pointer Environment. The Extended
Environment is supplied built-in with the Atari-QL Emulators, the QXL, and SMSQ/E, and is provided
with various software packages for the Sinclair QL and other emulators (the only QDOS compatible
computer it will not work on successfully is the Thor XVI).

When supplied with software, the user will receive a copy of the Pointer Interface (called ptr_gen), the
Window Manager (called wman) and the Hotkey System II (called hot_rext). These system extensions
are backwardly compatible and therefore you should only ever need to install the latest version of each
package once to be able to run all software written with the Pointer Environment in mind (although see
TH_FIX).

SMSQ/E comes complete with its own version of the Pointer Environment files built in and therefore these
files should not be loaded into a computer with SMSQ/E - if the version of the Pointer Environment built
into SMSQ/E is not recent enough for the software you are using (an error will be generated), you need
to update your copy of SMSQ/E.

The Pointer Interface provides sensible control of the QL’s multitasking abilities, ensuring that whenever
part of a program’s windows are covered by another program, that program is hidden and cannot try to
access the screen (if you think of all of the programs’ windows as tiles on the screen, only those tiles
which are at the top of the pile can be accessed). It also provides you with a pointer which can be moved
around the screen with either the cursor keys or a mouse in order to select different options or programs.

The Window Manager provides various utilities which enable programs to make use of the Pointer In-
terface, allowing them to generate menus which can be accessed by using the pointer, and which provide
programs a similar feel - making it easier for a user new to the program to become accustomed to how to
operate the program.

The Hotkey System II provides both a Hotkey System and a Thing System (both are independent of each
other).

The Hotkey System allows you to set up various keys which (in combination with <ALT>) will provide
direct access to different programs, as well as allowing you to stuff strings into the keyboard queue, pass
information from one program to another and to recall the last line to have been typed. This facility is
known as either ALTkeys or Hotkeys.

The Thing System is a means of providing QDOS with a list of named resources which can be accessed
by different programs, which merely need to check if the resources they require are present.

Some general notes about writing programs which will work under the Pointer Environment appear in
Section 4.

NOTE 1

1009

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

If you have Hotkey System II installed, then you will need to use the command HOT_GO before any of
the ALTkeys will work.

NOTE 2

Programs such as PIE and PEX affect the way in which the Pointer Environment works - see PIE_ON
and PEON.

1010 Chapter 48. A13 Extended Pointer Environment

CHAPTER

FORTYNINE

A14 COERCION

The QL can coerce strings to transform them into numbers.

Unfortunately, the QL uses different rules on different ROMs and even different rules according to
whether you are comparing two strings or whether you are assigning a value.

The following results have been obtained when testing a JM ROM and Minerva v1.93-v1.97:

PRINT '1'='1.': REMark returns 1
PRINT '.'='0': REMark returns 0
PRINT '.0'='0': REMark returns 1
PRINT '1'=' 1': REMark returns 0
PRINT '1'='1 ': REMark returns 0
PRINT '.0'(1)='.': REMark returns 1

x='1.': REMark is equivalent to x=1
x='.': REMark gives 'error in expression'
x=' 1': REMark is equivalent to x=1
x='.0': REMark is equivalent to x=0
x='1 ': REMark is equivalent to x=1

On SMSQ/E, the same results are obtained except that:

PRINT '1'='1.': REMark returns 0
PRINT '.0'='0': REMark returns 0

NOTE

x=’.’ is accepted on AH ROMs - becomes x=0

1011

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

1012 Chapter 49. A14 Coercion

CHAPTER

FIFTY

A15 MOUSE DRIVERS

A mouse in computing terms is a small box which can be pushed around the desk and as it moves, it
is translated by the computer into cursor key movements and hence moves the cursor (or a pointer) on
screen instead of using the keyboard.

Depending on the implementation, a mouse can make it very easy to use programs, providing a quick
means of moving the pointer on screen.

The type of mouse which can be used and how you need to link it to the computer depends upon the QL
implementation being used.

Many other devices have been created which send the same information as a PC mouse and should
therefore work with drivers which support PC mice. This includes, trackerballs and bitpads.

50.1 A15.1 A Mouse for the Standard QL

There have been several types of mouse which have been produced over the years to be linked to a Sinclair
QL. However, there are now only really three types of mouse commonly used with the QL and its various
guises.

50.1.1 A15.1.1 Quanta Mouse (or QIMI Mouse)

This mouse is linked into a hardware interface which needs to be plugged into the computer - fitting
involves opening up the QL case, carefully removing one of the microchips from its socket and plugging
in the interface (plugging the microchip back into the top of the interface). A long lead is attached to the
interface into which you plug the mouse.

The mouse needs to be an Atari-style 2 button mouse. Limited cursor key emulation is provided by
holding down the left hand mouse button as the mouse is moved around.

This mouse will not work with some older versions of the Pointer Interface files (PTR_GEN and WMAN)
- upgrade them if you notice a problem.

1013

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

50.1.2 A15.1.2 AURORA Mouse Interface

The AURORA replacement motherboard, includes a socket into which a QIMI compatible mouse may
be plugged - this emulates the QIMI Mouse Interface described above.

50.1.3 A15.1.3 Serial Mouse

This consists of a small wire connector which plugs into the QL’s serial port and allows a standard PC
serial mouse to be plugged in. This in itself will have no effect on the QL and you will also need to link in
a serial mouse driver which will need to be set up for either a two-button mouse or a three button mouse
(depending on which you have plugged into the serial port).

The main problem with using Serial Mice is that they tend to need the serial port set to BAUD 1200
which can be problematic if you need to use a printer for example, on the other serial port running at
BAUD 9600. However, the serial mouse drivers can cope with this, generally suspending the mouse
driver whenever the baud rate is altered, or if the other serial port is open (with a different Baud rate).

Another problem with Serial Mice is that they do not work very well with communications software (such
as mail-box programs); unless the Modem (or mouse) is run through SuperHERMES. The problem is
due to the original QL design of the serial ports - a link between the serial ports mean that if you move
the mouse whilst using communications software, it will corrupt data.

You can also have problems of the serial ports holding onto the information sent by the mouse and then
releasing it all at once (particularly with three-button mice).

Although a serial mouse can therefore be used on a standard QL, you should consider obtaining Hermes
or SuperHermes which allow you to set independent BAUD rates for each port and thereby avoids this
problem altogether (allowing you to still use the mouse whilst a channel is open to a modem for example).
SuperHermes also provides additional serial ports which would allow you to use a Modem, Printer and
Serial Mouse at the same time for example.

Another problem with serial mice is that the 3-button mice can be difficult to set up - some will auto-
matically power up in 2-button mode unless you hold down a mouse key when you switch on the QL.
Others have switches which force the mouse signals on a PC to generate straight vertical or horizontal
movements. It is therefore recommended that you buy a suitable mouse from the supplier at the same
time as buying the serial mouse driver!!

There are three Serial Mouse drivers available for the standard QL:

SERMouse (by Albin Hessler Software)

This is provided with SMSQ/E for the Gold Card family.

It is ideally for use under the Pointer Environment, although you can use it to control the cursor as well
if you prefer - see SERMCUR and SERMPTR. It will handle both 2 and 3- button mice.

If you want to be able to read the position of the pointer (as controlled by the mouse), you will need to
use either EasyPTR or Qptr commands. There are however, several commands added to SuperBASIC to
control the mouse - see SEMSPEED.

1014 Chapter 50. A15 Mouse Drivers

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

DIY Toolkit Serial Mouse (Vol I)

This is a cardware version of a mouse driver, which comes with several versions, allowing use of 2 and 3-
button mice and also versions which will only move a mouse pointer around the screen and ones which
will also emulate the cursor keys and various buttons on the keyboard. You also have to load a version
which is set up for the serial port which you intend to plug the serial mouse into.

Note that current versions do not currently move the Pointer in the Pointer Environment, although a
commercial version of this driver is available (called ms_mus) which contains the same commands as
SERMouse and can be used to control the Pointer, although this driver appears to be a little more selective
over the serial mice which can be used with it.

Several commands are added to SuperBASIC to allow you to read the position of the mouse and control
the mouse - see X_PTR% and PTR_ON.

SuperHERMES

This includes a low speed serial interface into which a PC- style serial mouse can be plugged, in much
the same way as the Albin Hessler SERMouse.

It emulates the QIMI Mouse Interface (see above).

50.2 A15.2 A Mouse for QPC / QXL

You cannot use a QL mouse driver with these emulators and will need instead to set up the system to
load a DOS mouse driver before QPC or QXL is initiated. If the mouse does not have a PS/2 style mouse
connector, you will also need to configure SMS so that it does not connect a serial port to the COM port
to which the mouse is connected.

PS/2 style mice work with later versions of QPC (and all versions of QXL) without having to disable
either serial port.

Having done this, the DOS mouse normally used with the PC can be used from within QPC and QXL to
control programs written for the Pointer Environment.

Some early versions of SMSQ/E had problems if you disabled one of the serial ports (neither of them
worked!) - you had to disable both serial ports for the mouse to work!!

50.3 A15.3 A Mouse for ATARIs

You cannot use a QL mouse driver with these emulators.

You can however use the Atari’s mouse as soon as the file ATARI_xxx file is loaded which allows the
Pointer Environment to work correctly with the mouse.

50.2. A15.2 A Mouse for QPC / QXL 1015

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

50.4 A15.4 A Mouse for Unix and Macintoshes

The QL emulators for these computers simply recognise the mouse which is normally used by the com-
puter - do not try loading a QL mouse driver.

On the MacIntosh, you will need at least v2.1 of the Q- Emulator program if the mouse is to work with
the Emulator.

You can however use the Atari’s mouse as soon as the file ATARI_xxx file is loaded which allows the
Pointer Environment to work correctly with the mouse.

50.5 A15.5 A Mouse for the Amiga

You cannot use a QL mouse driver with this computer.

Amiga QDOS has been able to use the Amiga’s own mouse to control its software since v3.20. Various
functions and commands have been added to SuperBASIC to control the mouse, as with the DIY Toolkit
version (see PTR_ON).

1016 Chapter 50. A15 Mouse Drivers

CHAPTER

FIFTYONE

A16 THE QL DISPLAY

The way in which the QL display is made up is fairly complex, and alters in different MODEs and on
different resolutions. The extended display under SMSQ/E has also completely re-written the way in
which the screen is addressed, causing some incompatibility problems.

The QL screen is in fact an area of the QL’s memory which can be altered using PEEK and POKE
(or similar commands) as well as the more usual display commands such as INK, PRINT, RECOL and
INPUT. However, direct access to the screen should be avoided wherever possible, except via the machine
code IOW.XTOP TRAP #3 routine (D0=$09).

In order to retain compatibility with older software, the Aurora motherboard, Q40/Q60 and QPC2 v3.00+
emulators all copy data stored at the standard QL screen address across to the correct display area. How-
ever, this in itself can lead to problems unless the computer is set up to start in 512x256 mode, since the
software does not copy changes on the main screen (for example made with PRINT back to the original
QL display area).

51.1 A16.1 The Screen Address

On a standard QL the screen is 32768 bytes long and stored in memory starting with the address 131072
($20000 in Hexadecimal).

In dual screen mode, another QL screen is also stored in memory, normally at the address $28000 (in
Hexadecimal) onwards.

However, in higher resolutions, this screen address has to move in order to make room for a larger screen
size.

It is therefore imperative that programs and toolkit commands do not make assumptions about where the
QL screen is stored - use SCR_BASE, SCREEN or similar functions to find the start address.

As the size of the screen alters, so does the amount of memory which the screen takes up - to find the
number of bytes used to store a screen, use the formula:

screen_size = SCR_LLEN * SCR_YLIM

1017

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

51.2 A16.2 The Screen Size

On a standard QL, the display normally supports 256x256 pixels in MODE 8 and 512x256 pixels in
MODE 4.

However, if the QL implementation you are using allows you to alter the size of the QL’s display (which
can be anything up to 1600x1600 pixels), you can either configure the operating system to start up in a
higher resolution or use a command such as SCR_SIZE.

Due to the differences in the possible displays, you should use the functions SCR_XLIM and SCR_YLIM
to find out the maximum size of the screen which can be addressed by your program.

Another factor to be taken into account is the number of pixels which are used to contain the values of one
pixel line of the display. On a standard QL this is 128 bytes and many programs assumed that this would
never change. However, higher resolutions and extended colour drivers demand more storage space, so
you should use SCR_LLEN to find out this number.

51.3 A16.3 On-Screen Colours

The QL screen is actually an area of memory which is specifically set aside to hold these details (the
display memory). One of the QL’s chips looks at this memory 50 times per second (60 times per second
in the sK) and uses the values stored there to calculate the colour of the pixels which you see on the screen
of your Monitor or TV. Emulators copy this screen to the area of memory used by the display card on the
native machine.

The display memory starts at SCR_BASE which represents the top left hand corner of your Monitor’s
screen and the size of the memory in bytes is calculated by the formula:

SCR_YLIM * SCR_LLEN

As you will see from the information set out below, you can easily presume that if you know the number
of pixels that a display size can show, you should be able to calculate SCR_LLEN (and vice-versa) and
in fact some software does just this. However, this is not always so - some QL implementations use a
fixed number of bytes to contain the displayed pixels (no matter what the screen resolution) and so you
should use both SCR_LLEN and SCR_XLIM. See the examples below as to how programs should be
written to take account of both of these factors.

The way in which the display memory is organised depends upon the screen mode being used, with more
complex organisation methods for screen modes which display more colours.

Under SMSQ/E v2.98+. you are able to use either the Standard QL Colour Drivers, or the Enhanced
Colour Drivers. If the latter is used, you need to specify for each program which colour scheme is to be
used with the following commands:

COLOUR_QL use standard QL MODE 4 / MODE 8 colour definitions (this is the default scheme).
COLOUR_PAL use 8 bit (256 colour) palette definition.
COLOUR_24 use the 24 bit true colour definition.
COLOUR_NATIVE use the native colour definition (dependent on the hardware itself).

You can also specify that a different colour palette is to be used to represent each of the INK colours,
using the commands:

1018 Chapter 51. A16 The QL Display

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

PALETTE_QL Specify different palette for standard MODE 4/MODE 8 colours
PALETTE_8 Specify different palette for 8 bit colours

The MODE will always remain the same once a program is using the Enhanced Colour Drivers and the
colour parameters expected by commands such as INK, PAPER, STRIP, BORDER and BLOCK will
depend upon the following tables.

To use these tables, look up the hardware the program is to be used on and then find the colour you need
(this will need to be specified as a PAL value, Native Colour Value or 24 Bit Colour Value depending on
which COLOUR_xx command has been used) - see COLOUR_PAL for an example of how to make a
program adopt to the different hardware.

51.3.1 Standard QL Colour Drivers

MODE 4

This is one of the standard display modes supported on the QL and compatibles, with a lot of non-leisure
software expecting this MODE - this is because it provides a minimum display area of 512 x 256 pixels.

On a standard QL colour scheme, every two bytes (a word) represent eight pixels on the Monitor’s screen
calculated by looking at the status of each of the corresponding eight binary bits in each byte. The first
bit of the first byte is combined with the first bit of the second byte to represent the colour of the first
pixel. The second bit of the first byte is combined with the second bit of the second byte to represent the
colour of the second pixel.

For example, if the first two bytes stored at SCR_BASE are represented in binary as:

0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 0
} |_______________}_|
} 2nd pixel }
}_________________}

1st pixel

The two bits are then placed side by side to create the colour combination, meaning that the first pixel is
represented as 00 and the second pixel is represented as 10.

This provides us with the following colours:

Bits Colour
00 BLACK
01 RED
10 GREEN
11 WHITE

Therefore in the above example, the first eight pixels of the display become:

00 10 11 01 00 10 11 00

which equates to the following colours:

BLACK, GREEN, WHITE, RED, BLACK, GREEN, WHITE, BLACK

51.3. A16.3 On-Screen Colours 1019

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Example

The following program will fill the screen with black and white vertical stripes:

100 MODE 4
110 FOR x=0 TO SCR_YLIM-1
120 FOR y=0 TO (SCR_XLIM-1)/4 STEP 2
130 POKE SCR_BASE+ (x*SCR_LLEN) + y, BIN ('01010101')
135 POKE SCR_BASE+ (x*SCR_LLEN) + y+1, BIN ('01010101')
140 END FOR y
150 END FOR x

MODE 8

This was one of the standard display modes but is only fully supported on a limited number of QL
implementations. A lot of leisure software expects this MODE - this is because it provides more colours
and the possibility of flashing pixels on screen. However, if this mode is not available, fear not, since the
programs will still run quite happily in other screen modes, although the screen may be a little different.

This mode provides a standard display area of 256 x 256 pixels.

On a standard QL colour scheme, every two bytes (a word) represent four pixels on the Monitor’s screen
calculated by looking at the status of each set of two corresponding binary bits in each byte. The first
two bits of the first byte are combined with the first two bits of the second byte to represent the colour of
the first pixel. The second two bits of the first byte are combined with the second two bits of the second
byte to represent the colour of the second pixel.

For example, if the first two bytes stored at SCR_BASE are represented in binary as:

0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 0
} } |__|__________}_}_|_|
} } 2nd pixel } }
} }_______________} }

1st pixel

The four bits are then placed side by side to define the pixel. The second bit specifies whether Flash is
to be set (bit=1) - if flash is enabled by setting this bit, then this will affect all other pixels on that same
line until another flash bit is set (disabling the Flash function).

The other three bits are combined to create the colour, meaning that the first pixel is represented as 0100
and the second pixel is represented as 1011.

This provides us with the following colours (excluding the flash bit which is represented here by an x):

Bits Colour
0x00 BLACK
0x01 BLUE
0x10 RED
0x11 MAGENTA
1x00 GREEN
1x01 CYAN
1x10 YELLOW
1x11 WHITE

1020 Chapter 51. A16 The QL Display

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Therefore in the above example, the first four pixels of the display become:

PIXEL BITS EFFECT
0 0100 BLACK (Turn Flash On at this Pixel)
1 1011 WHITE (Flashing)
2 0100 BLACK (Turn Flash Off after this Pixel)
3 1010 YELLOW

Example

The following program will fill the screen with magenta and cyan flashing vertical stripes:

100 MODE 8
110 FOR x=0 TO SCR_YLIM-1
120 FOR y=0 TO (SCR_XLIM-1)/4 STEP 2
130 POKE SCR_BASE+ (x*SCR_LLEN) + y, BIN ('01100110')
135 POKE SCR_BASE+ (x*SCR_LLEN) + y+1, BIN ('11011101')
140 END FOR y
150 END FOR x

Note that only one in two cyan pixels flash, this is because the effect of each pass of the y loop is to set
the following pixels:

PIXEL BITS EFFECT
0 0111 MAGENTA (Turn Flash On at this Pixel)
1 1001 CYAN (Flashing)
2 0111 BLACK (Turn Flash Off after this Pixel)
3 1001 CYAN (Not Flashing)

SMSQ/E NOTES

Under the Enhanced Colour Drivers, available under SMSQ/E v2.98+, COLOUR_QL can be used to
make a program resemble the original MODE 4 or MODE 8, generating the same colours.

However, as explained in the description of the INK command, all 8 colours available to MODE 8 are
actually available whether a program is attempting to run in MODE 4 or MODE 8. As a result, programs
written for the original standard QL MODE 4 may show slight colour corruption.

It is possible to alter the set of 8 colours available if a different palette is specified with PALETTE_QL.

SMSQ/E can be forced to overcome any incompatibility problems by configuring it to load the Standard
QL Colour Drivers; using DISP_COLOUR; or using PALETTE_QL.

51.3. A16.3 On-Screen Colours 1021

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

51.3.2 Aurora Enhanced Colour Drivers

At present, a version of SMSQ/E which provides the Enhanced Colour Drivers for Aurora has not been
released. The way in which these colour schemes are therefore used is subject to possible change.

Although this can be used for testing software, unfortunately, if an Enhanced Colour Mode is enabled on
Aurora, the display is corrupted by pixels being split across the screen, effectively causing the screen to
be repeated horizontally. Programs such as the Photon JPEG viewer overcome this by clearing the screen
and only altering the display memory directly (not attempting to use any standard commands/ machine
code operating system calls). See the examples below as to how this may be achieved.

The display mode may be changed directly by altering the value stored at address $18043 in memory
(this is write only and cannot be read). The write-only Master Control Register at $18063 remains as on
the standard QL for compatibility. Attempting to read the byte stored at $18043 will actually return the
value of the Monitor Preset Register - see below.

51.3.3 The Master Control Register ($18063)

A write-only register where the following bits can be used:

Bit
0

- Blank Screen if set.

Bit
3

- Use MODE 4 if clear, MODE 8 if set.

Bit
7

- Display SCR0 if clear, SCR1 if set. Keep this bit clear if using non-standard QL display
modes and resolutions.

All other bits should be left clear.

As can be seen, Minerva’s extended MODE calls alter this register and should be used where available.

51.3.4 The Enhanced Mode Control Register ($18043)

A write-only register where the following bits can be used:

Bits 0 & 1 - Control display resolution as per following table:

Bit 1 Bit 0 Horizontal resolution
0 0 512 pixels
0 1 640 pixels
1 0 768 pixels
1 1 1024 pixels

Bits 3 & 4 - Control colour mode as per following table:

1022 Chapter 51. A16 The QL Display

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Bit 4 Bit 3 Mode
0 0 4 Colour Mode (MODE 4)
0 1 8 Colour Mode (MODE 8)
1 0 16 Colour Mode
1 1 256 Colour Mode

Bit 7 - Control aspect ratio (which controls how the vertical resolution is calculated by reference to the
horizontal resolution) as per following table:

Bit 7 Aspect Ratio
0 2:1 (QL Style pixels); vertical res. = horizontal res. * 1/2
1 4:3 (Square pixels); vertical res. = horizontal res. * 3/4

All other bits should be left clear.

IMPORTANT

The actual resolution displayed will depend on the monitor preset, which can be read from the Monitor
Preset Register (see below) and the mode selected (for reasons of limited high-resolution screen memory).

The resolution selected in the Enhanced Mode Control Register ($18043) in principle does NOT depend
on the mode, except in MODE 8, where the resolution selected refers to MODE 4, but the number of
pixels in one line is halved, as per the standard QL MODE 8 (this is to maintain compatibility), and by
limit of the high-resolution screen memory.

Because the high-resolution screen memory is fixed at 240K, the resolutions in modes with more colours
will be limited. In particular:

MODE 4: No limits (high-resolution screen memory is larger than maximum resolution of
1024 x 768 pixels).

16 Colour Mode: Maximum vertical resolution is limited to 480 lines.
256 Colour Mode: Horizontal resolution is limited to 512 pixels, and maximum vertical resolution is

limited to 480 lines.

Additional limits may apply depending on the monitor preset values.

The limiting logic is simple - if the resolution chosen is higher than a limit, the limit is used instead.
Limits apply independently for x and y directions. The maximum x and y coordinates have to be adjusted
according to these limits for every given resolution and monitor preset setting.

51.3. A16.3 On-Screen Colours 1023

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

51.3.5 The Monitor Preset Register ($18043)

This is a read-only register where the following bits can be used:

Bit 0 - Interlace Enable Bit (IE)
Bit 2 (MT1) Bit 4 (MT0) } } - General Type of Monitor Selected

The maximum vertical resolutions is calculated as per the following table (where NI means Not Interlaced
and I means Interlaced):

MT1 MT0 IE Monitor type Max. vert. resolution
0 0 0 QL standard NI 288 lines
0 0 1 QL standard I 576 lines
0 1 0 VGA I 576 lines
0 1 1 VGA I 768 lines
1 0 0 SVGA NI 576 lines
1 0 1 SVGA I 768 lines
1 1 0 Multisynch I 768 lines
1 1 1 Multisynch diag. 960 lines*

* This is a special diagnostic mode which displays a 1024x960 interlaced picture on a multisynch monitor
when 1024x768 is selected, hence displaying the contents of the whole high-res screen area. Whether
the software will support this is optional - this combination of MT and IE bits is not used in normal
operation.

51.3.6 16 Colour Mode

It is planned that under the Enhanced Colour Drivers available in SMSQ/E v2.98+, this mode will be
available as MODE 8 and support up to 1024x480 resolution. It is not yet implemented and may be
forced using the command:

POKE $18043,144 (144=%10010000) - 512 pixels x 480 pixels
POKE $18043,146 (146=%10010010) - 768 pixels x 480 pixels
POKE $18043,147 (147=%10010011) - 1024 pixels x 480 pixels

(See above for details)

A different set of colours can be used by specifying a different palette with PALETTE_QL.

Actually writing to the screen directly causes some problems, since SCR_LLEN returns 256 bytes, al-
though in actual fact, the screen is 512 bytes wide in this mode.

Under the Enhanced Colour Drivers, this mode uses a byte to store the colours of 2 pixels. Here, the four
adjacent bits represent the same pixel.

The four bits are stored in the format IRGB, where:

• I is intensity

• G is Green

1024 Chapter 51. A16 The QL Display

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

• R is Red

• B is Blue

It is uncertain how this will be implemented - However, the following table details the Native Values to be
used when POKEing directly to the screen (in machine code for example) and the probable corresponding
INK parameter to use to achieve that colour (NOTE this is not the same as the original QL colour scheme).
Conversion of the values to binary gives a clue as to how this colour scheme works:

IRGB
Ink Value Colour Name Value Decimal Value Hex Value Binary
0 Black 0 $00 0000
1 White 15 $0F 1111
2 Red 12 $0C 1100
3 Green 10 $0A 1010
4 Blue 9 $09 1001
5 Magenta 13 $0D 1101
6 Yellow 14 $0E 1110
7 Cyan 11 $0B 1011
10 Dark Grey 8 $08 1000
11 Grey 7 $07 0111
14 Dark Red 4 $04 0100
17 Green 2 $02 0010
19 Blue 1 $01 0001
?? Dark Magenta 5 $05 0101
?? Dark Yellow 6 $06 0110
?? Dark Cyan 3 $03 0011

Example

The following program for SMSQ/E will show the MODE 8 (16 colours) available on Aurora. Note the
need to explicitly wipe the screen - this is because MODE would normally do this for you.

100 MODE 4
110 POKE $18043,144 : REMark force switch to MODE 8:COLOUR_PAL (512␣
→˓resolution)
120 scr_offset=SCR_BASE(#1)
130 scr_len=512:REMark SCR_LLEN reports the wrong value in this mode
140 :
150 REMark Blank out screen
160 col=0
170 FOR i%=0 TO 479
180 FOR j%=0 TO 508 STEP 4
190 POKE_L scr_offset+i%*scr_len+j%,col
200 END FOR j%
210 END FOR i%
220 :
230 REMark Draw Colours
240 yoff=20
250 FOR i=0 TO 1
260 xoff=0

(continues on next page)

51.3. A16.3 On-Screen Colours 1025

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

270 FOR j=0 TO 15
280 col=j+j*2^4:REMark Set two pixels at a time.
290 scr_offset=yoff*scr_len+xoff+SCR_BASE(#1)
300 FOR a=0 TO 10
310 FOR b=0 TO 10
320 POKE scr_offset+a*scr_len+b,col
330 END FOR b
340 END FOR a
350 xoff=xoff+12
360 END FOR j
370 yoff=yoff+12
380 END FOR i

51.3.7 256 Colour Mode

It is planned that under the Enhanced Colour Drivers available in SMSQ/E v2.98+, this mode will be
available as MODE 16. There is a fixed resolution available of 512x480 pixels. It is not yet implemented
and may be forced using the command:

POKE $18043,154 (See above for details)

Here, every byte represents one pixel on the Monitor’s screen, calculated by looking at the status of each
of the binary bits in each byte.

Actually writing to the screen directly causes some problems, since SCR_LLEN returns 256 bytes, al-
though in actual fact, the screen is 512 bytes wide in this mode.

The bits are combined to represent the amount of GREEN, RED and BLUE to be used for each pixel, in
the format GRBGRBGX, where:

• G is Green

• R is Red

• B is Blue

• X is Red/Blue

The colours are hard to describe due to the range and therefore require experimentation to obtain the
correct colours. However, the following table details the PAL colour which should be used as the INK
parameter (

NOTE

this does not correspond with the original QL colour scheme!) and the corresponding Native Values to
be used when POKEing directly to the screen (in machine code for example). It is not possible to list all
256 colours, therefore we have tried to list the most widely used ones (INK 0 to INK 63) grouped into the
different colours. Conversion of the values to binary gives a clue as to how this colour scheme works:

GRBGRBGX
PAL Colour Value Colour Name Native Value (Decimal) Native Value (Hex) Native Value (Binary)
0 Black 0 $00 00000000
1 White 255 $FF 11111111

continues on next page

1026 Chapter 51. A16 The QL Display

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table 4 – continued from previous page
GRBGRBGX

PAL Colour Value Colour Name Native Value (Decimal) Native Value (Hex) Native Value (Binary)
8 Dark Slate 3 $03 00000011
9 Slate Grey 28 $1C 00011100
10 Dark Grey 31 $1F 00011111
11 Grey 224 $E0 11100000
12 Light Grey 227 $E3 11100011
13 Ash Grey 252 $FC 11111100
58 Cerise 68 $44 01000100
14 Dark Red 64 $40 01000000
2 Red 73 $49 01001001
63 Deep Purple 40 $28 00101000
51 Plum 15 $0F 00001111
20 Purple 96 $60 01100000
26 Mauve 100 $64 01100100
57 Faded Purple 112 $70 01110000
52 Dusky Pink 113 $71 01110001
5 Magenta 109 $6D 01101101
21 Shocking Pink 105 $69 01101001
45 Dull Pink 115 $73 01110011
31 Rose Pink 239 $EF 11101111
39 Pastel Rose 253 $FD 11111101
27 Peach 235 $EB 11101011
50 Midnight Blue 7 $07 00000111
19 Dark Blue 32 $20 00100000
4 Blue 36 $24 00100100
62 Ultramarine 48 $30 00110000
49 Dusky Blue 23 $17 00010111
44 Steel Blue 59 $3B 00111011
18 Sea Blue 160 $A0 10100000
25 Bright Blue 164 $A4 10100100
56 Dull Blue 168 $A8 10101000
43 Dull Cyan 171 $AB 10101011
7 Cyan 182 $B6 10110110
29 Light Blue 247 $F7 11110111
30 Sky Blue 231 $E7 11100111
48 Dusky Green 19 $13 00010011
60 Grass Green 136 $88 10001000
17 Dark Green 128 $80 10000000
54 Avocado 198 $C6 11000110
61 Sea Green 132 $84 10000100
42 Dull Green 143 $8F 10001111
3 Green 146 $92 10010010
23 Lime Green 210 $D2 11010010
24 Apple Green 178 $B2 10110010
55 Dull Turquoise 170 $AA 10101010
41 Light Khaki 199 $C7 11000111
15 Light Green 243 $F3 11110011
36 Pastel Green 254 $FE 11111110

continues on next page

51.3. A16.3 On-Screen Colours 1027

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table 4 – continued from previous page
GRBGRBGX

PAL Colour Value Colour Name Native Value (Decimal) Native Value (Hex) Native Value (Binary)
46 Brown 11 $0B 00001011
59 Tan 80 $50 01010000
6 Yellow 219 $DB 11011011
22 Orange 201 $C9 11001001
16 Mustard 192 $C0 11000000
47 Khaki 27 $1B 00011011
53 Buff 197 $C5 11000101
40 Brick 87 $57 01010111
33 Beige 249 $F9 11111001
28 Light Yellow 251 $FB 11111011

It is unknown how PAL colours 32, 34, 35, 37 and 38 will be mapped as these relate to the same values
as PAL colours 31, 33, 36, 13 and 13 respectively.

The remainder of the colours are mapped as grbgrbgx (we would welcome names for each of these
colours):

GRBGRBGX
PAL Colour Value Native Value (Decimal) Native Value (Hex) Native Value (Binary)
64 4 $04 00000100
65 1 $01 00000001
66 5 $05 00000101
67 33 $21 00100001
68 37 $25 00100101
69 8 $08 00001000
70 12 $0C 00001100
71 44 $2C 00101100
72 9 $09 00001001
73 13 $0D 00001101
74 41 $29 00101001
75 45 $2D 00101101
76 65 $41 01000001
77 69 $45 01000101
78 97 $61 01100001
79 101 $65 01100101
80 72 $48 01001000
81 76 $4C 01001100
82 104 $68 01101000
83 108 $6C 01101100
84 77 $4D 01001101
85 2 $02 00000010
86 6 $06 00000110
87 34 $22 00100010
88 38 $26 00100110
89 35 $23 00100011
90 39 $27 00100111

continues on next page

1028 Chapter 51. A16 The QL Display

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table 5 – continued from previous page
GRBGRBGX

PAL Colour Value Native Value (Decimal) Native Value (Hex) Native Value (Binary)
91 10 $0A 00001010
92 14 $0E 00001110
93 42 $2A 00101010
94 46 $2E 00101110
95 43 $2B 00101011
96 47 $2F 00101111
97 66 $42 01000010
98 70 $46 01000110
99 98 $62 01100010
100 102 $66 01100110
101 67 $43 01000011
102 71 $47 01000111
103 99 $63 01100011
104 103 $67 01100111
105 74 $4A 01001010
106 78 $4E 01001110
107 106 $6A 01101010
108 110 $6E 01101110
109 75 $4B 01001011
110 79 $4F 01001111
111 107 $6B 01101011
112 95 $5F 01011111
113 16 $10 00010000
114 20 $14 00010100
115 52 $34 00110100
116 17 $11 00010001
117 21 $15 00010101
118 49 $31 00110001
119 53 $35 00110101
120 24 $18 00011000
121 56 $38 00111000
122 60 $3C 00111100
123 25 $19 00011001
124 29 $1D 00011101
125 57 $39 00111001
126 61 $3D 00111101
127 84 $54 01010100
128 116 $74 01110100
129 81 $51 01010001
130 85 $55 01010101
131 117 $75 01110101
132 88 $58 01011000
133 92 $5C 01011100
134 120 $78 01111000
135 124 $7C 01111100
136 89 $59 01011001
137 93 $5D 01011101

continues on next page

51.3. A16.3 On-Screen Colours 1029

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table 5 – continued from previous page
GRBGRBGX

PAL Colour Value Native Value (Decimal) Native Value (Hex) Native Value (Binary)
138 121 $79 01111001
139 125 $7D 01111101
140 18 $12 00010010
141 22 $16 00010110
142 50 $32 00110010
143 54 $36 00110110
144 51 $33 00110011
145 55 $37 00110111
146 26 $1A 00011010
147 30 $1E 00011110
148 58 $3A 00111010
149 62 $3E 00111110
150 63 $3F 00111111
151 82 $52 01010010
152 86 $56 01010110
153 114 $72 01110010
154 118 $76 01110110
155 83 $53 01010011
156 119 $77 01110111
157 90 $5A 01011010
158 94 $5E 01011110
159 122 $7A 01111010
160 126 $7E 01111110
161 91 $5B 01011011
162 95 $5F 01011111
163 123 $7B 01111011
164 127 $7F 01111111
165 129 $81 10000001
166 133 $85 10000101
167 161 $A1 10100001
168 165 $A5 10100101
169 140 $8C 10001100
170 172 $AC 10101100
171 137 $89 10001001
172 141 $8D 10001101
173 169 $A9 10101001
174 173 $AD 10101101
175 196 $C4 11000100
176 228 $E4 11100100
177 193 $C1 11000001
178 225 $E1 11100001
179 229 $E5 11100101
180 200 $C8 11001000
181 204 $CC 11001100
182 232 $E8 11101000
183 236 $EC 11101100
184 205 $CD 11001101

continues on next page

1030 Chapter 51. A16 The QL Display

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table 5 – continued from previous page
GRBGRBGX

PAL Colour Value Native Value (Decimal) Native Value (Hex) Native Value (Binary)
185 233 $E9 11101001
186 237 $ED 11101101
187 130 $82 10000010
188 134 $86 10000110
189 162 $A2 10100010
190 166 $A6 10100110
191 131 $83 10000011
192 135 $87 10000111
193 163 $A3 10100011
194 167 $A7 10100111
195 138 $8A 10001010
196 142 $8E 10001110
197 174 $AE 10101110
198 139 $8B 10001011
199 175 $AF 10101111
200 194 $C2 11000010
201 226 $E2 11100010
202 230 $E6 11100110
203 195 $C3 11000011
204 202 $CA 11001010
205 206 $CE 11001110
206 234 $EA 11101010
207 238 $EE 11101110
208 203 $CB 11001011
209 207 $CF 11001111
210 144 $90 10010000
211 148 $94 10010100
212 176 $B0 10110000
213 180 $B4 10110100
214 145 $91 10010001
215 149 $95 10010101
216 177 $B1 10110001
217 181 $B5 10110101
218 152 $98 10011000
219 156 $9C 10011100
220 184 $B8 10111000
221 188 $BC 10111100
222 153 $99 10011001
223 157 $9D 10011101
224 185 $B9 10111001
225 189 $BD 10111101
226 208 $D0 11010000
227 212 $D4 11010100
228 240 $F0 11110000
229 244 $F4 11110100
230 209 $D1 11010001
231 213 $D5 11010101

continues on next page

51.3. A16.3 On-Screen Colours 1031

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table 5 – continued from previous page
GRBGRBGX

PAL Colour Value Native Value (Decimal) Native Value (Hex) Native Value (Binary)
232 241 $F1 11110001
233 245 $F5 11110101
234 220 $DC 11011100
235 248 $F8 11111000
236 221 $DD 11011101
237 150 $96 10010110
238 151 $97 10010111
239 179 $B3 10110011
240 154 $9A 10011010
241 158 $9E 10011110
242 186 $BA 10111010
243 190 $BE 10111110
244 155 $9B 10011011
245 159 $9F 10011111
246 187 $BB 10111011
247 191 $BF 10111111
248 214 $D6 11010110
249 242 $F2 11110010
250 246 $F6 11110110
251 211 $D3 11010011
252 215 $D7 11010111
253 222 $DE 11011110
254 250 $FA 11111010
255 223 $DF 11011111

Example

The following program for SMSQ/E will show the full range of colours available on Aurora. Note the
need to explicitly wipe the screen - this is because MODE would normally do this for you.

100 MODE 4
110 POKE $18043,156 : REMark force switch to MODE 256:COLOUR_PAL
120 :
130 scr_offset=SCR_BASE(#1)
140 scr_len=512:REMark SCR_LLEN returns the wrong figure in this mode
150 :
160 REMark Blank out screen
170 col=0
180 FOR i%=0 TO 479
190 FOR j%=0 TO 508 STEP 4
200 POKE_L scr_offset+i%*scr_len+j%,col
210 END FOR j%
220 END FOR i%
230 :
240 REMark Draw Colours
250 yoff=20
260 FOR i=0 TO 15

(continues on next page)

1032 Chapter 51. A16 The QL Display

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

270 xoff=0
280 FOR j=0 TO 15
290 col=i*16+j
300 scr_offset=yoff*scr_len+xoff+SCR_BASE(#1)
310 FOR a=0 TO 10
320 FOR b=0 TO 10
330 POKE scr_offset+a*scr_len+b,col
340 END FOR b
350 END FOR a
360 xoff=xoff+12
370 END FOR j
380 yoff=yoff+12
390 END FOR i

51.3.8 QPC/QXL Enhanced Colour Drivers

SMSQ/E v2.98+ provides various colour modes for QPC2 and the QXL card. You can configure SMSQ/E
to start with either the Standard QL Colour Drivers or the Enhanced Colour Drivers. If the Enhanced
Colour Drivers are loaded, RMODE will return 32.

The Enhanced Colour Drivers support a QL 8 colour mode (selected with COLOUR_QL), a PAL Colour
Mode providing 256 colours (selected with COLOUR_PAL), a Native Colour Mode providing 65536
colours (select with COLOUR_NATIVE) and a 24 bit colour mode providing over 16 million colours
(select with COLOUR_24).

51.3.9 QL Colour Mode (COLOUR_QL)

This is similar to MODE 4 under the Standard QL Colour Drivers and is provided for compatability.
However all 8 standard MODE 8 colours are actually available. See INK for a list of the standard MODE
8 colours.

51.3.10 PAL Colour Mode (COLOUR_PAL)

This allows programs to use 256 colours - it is the simplest mode to use, since a standard PAL Colour
Value is used by any standard colour commands, such as INK, to describe all 256 colours on all imple-
mentations (including Aurora).

The table on the following pages describes all 256 colours with the PAL Colour Value and their Native
Colour Value in decimal, hexadecimal and binary (see below).

You can use PALETTE_8 to change the 256 colours available.

51.3. A16.3 On-Screen Colours 1033

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

51.3.11 Native Colour Mode (COLOUR_NATIVE)

As with the Q40/Q60, this allows programs to use 65536 colours. However, the Native Colour Values
required for INK, STRIP, PAPER etc. depend upon the hardware (ie. they are different to Q40/Q60
values). The colour is described by the actual value which would be POKEd into the video memory,
hence two bytes (a word) represent the colour of one pixel on the Monitor’s screen. It is therefore easier
to use Hexadecimal values to represent each colour.

The bits in the word represent the amount of GREEN, RED and BLUE to be used for each pixel, in the
format RRRRRGGG GGGBBBBB, where:

• G is Green (6 bits)

• R is Red (5 bits)

• B is Blue (5 bits)

The table on the following pages describes the first 256 colours with the PAL Colour Value and their
Native Colour Value in decimal, hexadecimal and binary (see below).

NOTE: When the values are entered direct into memory with a POKE command or machine code routine,
due to the organisation of memory on a PC, it is necessary to enter the low byte before the high byte. As a
result, the value for red, in binary 11111000 00000000 (INK $F800) is entered as POKE address,$00F8.

51.3.12 24 Bit Colour Mode (COLOUR_24)

This is supported only on PCs with 24 bit graphics cards. However, it is essential to understand this mode
as commands such as PALETTE_8 and PALETTE_QL expect colours to be described in this format. The
details appear later in this Appendix.

Colour Table

Due to the range of colours available, it is hard to describe each colour; therefore it will require exper-
imentation to obtain the correct colours. The following table details the PAL Colour Value and Native
Colour Value for each colour which need to be used for INK and similar commands.

NOTE This does not correspond with the orignal QL colour scheme!.

We have tried to list the most widely used ones (INK 0 to INK 63 under COLOUR_PAL) grouped into
the different colours followed by the values for the remainder of the first 256 colours. Conversion of the
values to binary gives a clue as to how this colour scheme works:

RRRRRGGG GGGBBBBB
PAL Colour Value Colour Name Native Value (Hex) Native Value (Binary)
0 Black $0000 00000000 00000000
1 White $FFFF 11111111 11111111
8 Dark Slate $2124 00100001 00100100
9 Slate Grey $4A49 01001010 01001001
10 Dark Grey $6B6D 01101011 01101101
11 Grey $9492 10010100 10010010
12 Light Grey $B5B6 10110101 10110110
13 Ash Grey $DEDB 11011110 11011011
58 Cerise $9009 10010000 00001001
14 Dark Red $9000 10010000 00000000

continues on next page

1034 Chapter 51. A16 The QL Display

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table 6 – continued from previous page
RRRRRGGG GGGBBBBB

PAL Colour Value Colour Name Native Value (Hex) Native Value (Binary)
2 Red $F800 11111000 00000000
63 Deep Purple $4812 01001000 00010010
51 Plum $692D 01101001 00101101
20 Purple $9012 10010000 00010010
26 Mauve $901F 10010000 00011111
57 Faded Purple $9256 10010010 01010110
52 Dusky Pink $B252 10110010 01010010
5 Magenta $F81F 11111000 00011111
21 Shocking Pink $F812 11111000 00010010
45 Dull Pink $B376 10110011 01110110
32 Pink $FDBB 11111101 10111011
31 Rose Pink $FDBF 11111101 10111111
34 Pastel Pink $FEDB 11111110 11011011
39 Pastel Rose $FEDF 11111110 11011111
27 Peach $FDB6 11111101 10110110
50 Midnight Blue $212D 00100001 00101101
19 Dark Blue $0012 00000000 00010010
4 Blue $001F 00000000 00011111
62 Ultramarine $0252 00000010 01010010
49 Dusky Blue $236D 00100011 01101101
44 Steel Blue $6B76 01101011 01110110
18 Sea Blue $0492 00000100 10010010
25 Bright Blue $049F 00000100 10011111
56 Dull Blue $4C96 01001100 10010110
43 Dull Cyan $6DB6 01101101 10110110
7 Cyan $07FF 00000111 11111111
29 Light Blue $B7FF 10110111 11111111
30 Sky Blue $B5BF 10110101 10111111
38 Pastel Blue $DEDF 11011110 11011111
37 Pastel Cyan $DFFF 11011111 11111111
48 Dusky Green $2364 00100011 01100100
60 Grass Green $4C80 01001100 10000000
17 Dark Green $0480 00000100 10000000
54 Avocado $95A9 10010101 10101001
61 Sea Green $0489 00000100 10001001
42 Dull Green $6DAD 01101101 10101101
3 Green $07E0 00000111 11100000
23 Lime Green $97E0 10010111 11100000
24 Apple Green $07F2 00000111 11110010
55 Dull Turquoise $4DB2 01001101 10110010
41 Light Khaki $B5AD 10110101 10101101
15 Light Green $B7F6 10110111 11110110
36 Pastel Green $DFFB 11011111 11111011
46 Brown $6924 01101001 00100100
59 Tan $9240 10010010 01000000
6 Yellow $FFE0 11111111 11100000
22 Orange $FC80 11111100 10000000

continues on next page

51.3. A16.3 On-Screen Colours 1035

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table 6 – continued from previous page
RRRRRGGG GGGBBBBB

PAL Colour Value Colour Name Native Value (Hex) Native Value (Binary)
16 Mustard $9480 10010100 10000000
47 Khaki $6B64 01101011 01100100
53 Buff $B489 10110100 10001001
40 Brick $B36D 10110011 01101101
33 Beige $FED6 11111110 11010110
28 Light Yellow $FFF6 11111111 11110110
35 Pastel Yellow $FFFB 11111111 11111011

The remainder of the first 256 colours are mapped as follows (we would welcome names for each of these
colours):

RRRRRGGG GGGBBBBB
PAL Colour Value Native Value (Hex) Native Value (Binary)
64 $0009 00000000 00001001
65 $2004 00100000 00000100
66 $200D 00100000 00001101
67 $2016 00100000 00010110
68 $201F 00100000 00011111
69 $4800 01001000 00000000
70 $4809 01001000 00001001
71 $481B 01001000 00011011
72 $6804 01101000 00000100
73 $680D 01101000 00001101
74 $6816 01101000 00010110
75 $681F 01101000 00011111
76 $B004 10110000 00000100
77 $B00D 10110000 00001101
78 $B016 10110000 00010110
79 $B01F 10110000 00011111
80 $D800 11011000 00000000
81 $D809 11011000 00001001
82 $D812 11011000 00010010
83 $D81B 11011000 00011011
84 $F80D 11111000 00001101
85 $0120 00000001 00100000
86 $0129 00000001 00101001
87 $0132 00000001 00110010
88 $013B 00000001 00111011
89 $2136 00100001 00110110
90 $213F 00100001 00111111
91 $4920 01001001 00100000
92 $4929 01001001 00101001
93 $4932 01001001 00110010
94 $493B 01001001 00111011
95 $6936 01101001 00110110

continues on next page

1036 Chapter 51. A16 The QL Display

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table 7 – continued from previous page
RRRRRGGG GGGBBBBB

PAL Colour Value Native Value (Hex) Native Value (Binary)
96 $693F 01101001 00111111
97 $9120 10010001 00100000
98 $9129 10010001 00101001
99 $9132 10010001 00110010
100 $913B 10010001 00111011
101 $B124 10110001 00100100
102 $B12D 10110001 00101101
103 $B136 10110001 00110110
104 $B13F 10110001 00111111
105 $D920 11011001 00100000
106 $D929 11011001 00101001
107 $D932 11011001 00110010
108 $D93B 11011001 00111011
109 $F924 11111001 00100100
110 $F92D 11111001 00101101
111 $F936 11111001 00110110
112 $F93F 11111001 00111111
113 $0240 00000010 01000000
114 $0249 00000010 01001001
115 $025B 00000010 01011011
116 $2244 00100010 01000100
117 $224D 00100010 01001101
118 $2256 00100010 01010110
119 $225F 00100010 01011111
120 $4A40 01001010 01000000
121 $4A52 01001010 01010010
122 $4A5B 01001010 01011011
123 $6A44 01101010 01000100
124 $6A4D 01101010 01001101
125 $6456 01100100 01010110
126 $6A5F 01101010 01011111
127 $9249 10010010 01001001
128 $925B 10010010 01011011
129 $B244 10110010 01000100
130 $B24D 10110010 01001101
131 $B25F 10110010 01011111
132 $DA40 11011010 01000000
133 $DA49 11011010 01001001
134 $DA52 11011010 01010010
135 $DA5B 11011010 01011011
136 $FA44 11111010 01000100
137 $FA4D 11111010 01001101
138 $FA56 11111010 01010110
139 $FA5F 11111010 01011111
140 $0360 00000011 01100000
141 $0369 00000011 01101001
142 $0372 00000011 01110010

continues on next page

51.3. A16.3 On-Screen Colours 1037

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table 7 – continued from previous page
RRRRRGGG GGGBBBBB

PAL Colour Value Native Value (Hex) Native Value (Binary)
143 $037B 00000011 01111011
144 $2376 00100011 01110110
145 $237F 00100011 01111111
146 $4B60 01001011 01100000
147 $4B69 01001011 01101001
148 $4B72 01001011 01110010
149 $4B7B 01001011 01111011
150 $6B7F 01101011 01111111
151 $9360 10010011 01100000
152 $9369 10010011 01101001
153 $9372 10010011 01110010
154 $937B 10010011 01111011
155 $B364 10110011 01100100
156 $B37F 10110011 01111111
157 $DB60 11011011 01100000
158 $DB69 11011011 01101001
159 $DB72 11011011 01110010
160 $DB7B 11011011 01111011
161 $FB64 11111011 01100100
162 $FB6D 11111011 01101101
163 $FB76 11111011 01110110
164 $FB7F 11111011 01111111
165 $2484 00100100 10000100
166 $248D 00100100 10001101
167 $2496 00100100 10010110
168 $249F 00100100 10011111
169 $4C89 01001100 10001001
170 $4C9B 01001100 10011011
171 $6C84 01101100 10000100
172 $6C8D 01101100 10001101
173 $6C96 01101100 10010110
174 $6C9F 01101100 10011111
175 $9489 10010100 10001001
176 $948B 10010100 10001011
177 $B484 10110100 10000100
178 $B496 10110100 10010110
179 $B49F 10110100 10011111
180 $DC80 11011100 10000000
181 $DC89 11011100 10001001
182 $DC92 11011100 10010010
183 $DC9B 11011100 10011011
184 $FC8D 11111100 10001101
185 $FC96 11111100 10010110
186 $FC9F 11111100 10011111
187 $05A0 00000101 10100000
188 $05A9 00000101 10101001
189 $05B2 00000101 10110010

continues on next page

1038 Chapter 51. A16 The QL Display

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table 7 – continued from previous page
RRRRRGGG GGGBBBBB

PAL Colour Value Native Value (Hex) Native Value (Binary)
190 $05BB 00000101 10111011
191 $25A4 00100101 10100100
192 $25AD 00100101 10101101
193 $25B6 00100101 10110110
194 $25BF 00100101 10111111
195 $4DA0 01001101 10100000
196 $4DA9 01001101 10101001
197 $4DBB 01001101 10111011
198 $6DA4 01101101 10100100
199 $6DBF 01101101 10111111
200 $95A0 10010101 10100000
201 $95B2 10010101 10110010
202 $95BB 10010101 10111011
203 $B5A4 10110101 10100100
204 $DDA0 11011101 10100000
205 $DDA9 11011101 10101001
206 $DDB2 11011101 10110010
207 $DDBB 11011101 10111011
208 $FDA4 11111101 10100100
209 $FDAD 11111101 10101101
210 $06C0 00000110 11000000
211 $06C9 00000110 11001001
212 $06D2 00000110 11010010
213 $06DB 00000110 11011011
214 $26C4 00100110 11000100
215 $26CD 00100110 11001101
216 $26D6 00100110 11010110
217 $26DF 00100110 11011111
218 $4EC0 01001110 11000000
219 $4EC9 01001110 11001001
220 $4ED2 01001110 11010010
221 $4EDB 01001110 11011011
222 $6EC4 01101110 11000100
223 $6ECD 01101110 11001101
224 $6ED6 01101110 11010110
225 $6EDF 01101110 11011111
226 $96C0 10010110 11000000
227 $96C9 10010110 11001001
228 $96D2 10010110 11010010
229 $96DB 10010110 11011011
230 $B6C4 10110110 11000100
231 $B6CD 10110110 11001101
232 $B6D6 10110110 11010110
233 $B6DF 10110110 11011111
234 $DEC9 11011110 11001001
235 $DED2 11011110 11010010
236 $FECD 11111110 11001101

continues on next page

51.3. A16.3 On-Screen Colours 1039

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table 7 – continued from previous page
RRRRRGGG GGGBBBBB

PAL Colour Value Native Value (Hex) Native Value (Binary)
237 $07E9 00000111 11101001
238 $27ED 00100111 11101101
239 $27F6 00100111 11110110
240 $4FE0 01001111 11100000
241 $4FE9 01001111 11101001
242 $4FF2 01001111 11110010
243 $4FFB 01001111 11111011
244 $6FE4 01101111 11100100
245 $6FED 01101111 11101101
246 $6FF6 01101111 11110110
247 $6FFF 01101111 11111111
248 $97E9 10010111 11101001
249 $97F2 10010111 11110010
250 $97FB 10010111 11111011
251 $B7E4 10110111 11100100
252 $B7ED 10110111 11101101
253 $DFE9 11011111 11101001
254 $DFF2 11011111 11110010
255 $FFED 11111111 11101101

51.3.13 Q40/Q60 Enhanced Colour Drivers

SMSQ/E v2.98+ provides various colour modes for the Q40 and Q60 computers. You can configure
SMSQ/E to start with either the Standard QL Colour Drivers or the Enhanced Colour Drivers. If the
Enhanced Colour Drivers are loaded, RMODE will return 33.

The Enhanced Colour Drivers support a QL 8 colour mode (selected with COLOUR_QL), a PAL Colour
Mode providing 256 colours (selected with COLOUR_PAL) and a Native Colour Mode providing 65536
colours (select with COLOUR_NATIVE). As with the other implementations, 24 bit colours are used by
commands such as PALETTE_8, although there is no 24 bit colour mode due to the limitations of the
hardware.

1040 Chapter 51. A16 The QL Display

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

51.3.14 QL Colour Mode (COLOUR_QL)

This is similar to MODE 4 under the Standard QL Colour Drivers and is provided for compatibility.
However all 8 standard MODE 8 colours are actually available. See INK for a list of the standard MODE
8 colours.

51.3.15 PAL Colour Mode (COLOUR_PAL)

This allows programs to use 256 colours - it is the simplest mode to use, since a standard PAL Colour
Value is used by any standard colour commands, such as INK, to describe all 256 colours on all imple-
mentations (including Aurora).

The table on the following pages describes all 256 colours with the PAL Colour Value and their Native
Colour Value in decimal, hexadecimal and binary (see below).

You can use PALETTE_8 to change the 256 colours available.

51.3.16 Native Colour Mode (COLOUR_NATIVE)

As with QXL and QPC2, this allows programs to use 65536 colours. However, the Native Colour Values
required for INK, STRIP, PAPER etc. depend upon the hardware (ie. they are different to the QPC2/QXL
values). The colour is described by the actual value which would be POKEd into the video memory, hence
two bytes (a word) represent the colour of one pixel on the Monitor’s screen. It is therefore easier to use
Hexadecimal values to represent each colour.

The bits in the word represent the amount of GREEN, RED and BLUE to be used for each pixel, in the
format GGGGGRRR RRBBBBBW, where:

• G is Green (5 bits)

• R Red (5 bits)

• B Blue (5 bits)

• W White

The table on the following pages describes the first 256 colours with the PAL Colour Value and their
Native Colour Value in decimal, hexadecimal and binary (see below).

Colour Table

Due to the range of colours available, it is hard to describe each colour; therefore it will require exper-
imentation to obtain the correct colours. The following table details the PAL Colour Value and Native
Colour Value for each colour which need to be used for INK and similar commands (NOTE this does
not correspond with the original QL colour scheme!). We have tried to list the most widely used ones
(INK 0 to INK 63 under COLOUR_PAL) grouped into the different colours followed by the values for
the remainder of the first 256 colours. Conversion of the values to binary gives a clue as to how this
colour scheme works:

GGGGGRRR RRBBBBBW
PAL Colour Value Colour Name Native Value Hex Native Value Binary
0 Black $0000 00000000 00000000
1 White $FFFF 11111111 11111111

continues on next page

51.3. A16.3 On-Screen Colours 1041

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table 8 – continued from previous page
GGGGGRRR RRBBBBBW

PAL Colour Value Colour Name Native Value Hex Native Value Binary
8 Dark Slate $2108 00100001 00001000
9 Slate Grey $4A53 01001010 01010011
10 Dark Grey $6B5B 01101011 01011011
11 Grey $94A4 10010100 10100100
12 Light Grey $B5AC 10110101 10101100
13 Ash Grey $DEF7 11011110 11110111
58 Cerise $0492 00000100 10010010
14 Dark Red $0480 00000100 10000000
2 Red $07C0 00000111 11000000
63 Deep Purple $0264 00000010 01100100
51 Plum $235B 00100011 01011011
20 Purple $04A4 00000100 10100100
26 Mauve $04BE 00000100 10111110
57 Faded Purple $4CAC 01001100 10101100
52 Dusky Pink $4DA4 01001101 10100100
5 Magenta $07FF 00000111 11111111
21 Shocking Pink $07E4 00000111 11100100
45 Dull Pink $6DAC 01101101 10101100
32 Pink $B7F7 10110111 11110111
31 Rose Pink $B7FF 10110111 11111111
34 Pastel Pink $DFF7 11011111 11110111
39 Pastel Rose $DFFF 11011111 11111111
27 Peach $B7EC 10110111 11101100
50 Midnight Blue $211A 00100001 00011010
19 Dark Blue $0024 00000000 00100100
4 Blue $003E 00000000 00111110
62 Ultramarine $4824 01001000 00100100
49 Dusky Blue $691B 01101001 00011011
44 Steel Blue $6B6D 01101011 01101101
18 Sea Blue $9024 10010000 00100100
25 Bright Blue $903E 10010000 00111110
56 Dull Blue $926C 10010010 01101100
43 Dull Cyan $B36C 10110011 01101100
7 Cyan $F83F 11111000 00111111
29 Light Blue $FDBF 11111101 10111111
30 Sky Blue $B5BE 10110101 10111110
38 Pastel Blue $DEFF 11011110 11111111
37 Pastel Cyan $FEFF 11111110 11111111
48 Dusky Green $6908 01101001 00001000
60 Grass Green $9240 10010010 01000000
17 Dark Green $9000 10010000 00000000
54 Avocado $B492 10110100 10010010
61 Sea Green $9012 10010000 00010010
42 Dull Green $B35B 10110011 01011011
3 Green $F800 11111000 00000000
23 Lime Green $FC80 11111100 10000000
24 Apple Green $F824 11111000 00100100

continues on next page

1042 Chapter 51. A16 The QL Display

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table 8 – continued from previous page
GGGGGRRR RRBBBBBW

PAL Colour Value Colour Name Native Value Hex Native Value Binary
55 Dull Turquoise $B264 10110010 01100100
41 Light Khaki $B59A 10110101 10011010
15 Light Green $FDAC 11111101 10101100
36 Pastel Green $FEF7 11111110 11110111
46 Brown $2348 00100011 01001000
59 Tan $4C80 01001100 10000000
6 Yellow $FFC1 11111111 11000001
22 Orange $97C0 10010111 11000000
16 Mustard $9480 10010100 10000000
47 Khaki $6B49 01101011 01001001
53 Buff $9592 10010101 10010010
40 Brick $6D9B 01101101 10011011
33 Beige $DFED 11011111 11101101
28 Light Yellow $FFED 11111111 11101101
35 Pastel Yellow $FFF7 11111111 11110111

The remainder of the first 256 colours are mapped as follows (we would welcome names for each of these
colours):

GGGGGRRR RRBBBBBW
PAL Colour Value Native Value Hex Native Value Binary
64 $0012 00000000 00010010
65 $0108 00000001 00001000
66 $011A 00000001 00011010
67 $012C 00000001 00101100
68 $013E 00000001 00111110
69 $0240 00000010 01000000
70 $0253 00000010 01010011
71 $0277 00000010 01110111
72 $0348 00000011 01001000
73 $035B 00000011 01011011
74 $036C 00000011 01101100
75 $037F 00000011 01111111
76 $0588 00000101 10001000
77 $059A 00000101 10011010
78 $05AC 00000101 10101100
79 $05BE 00000101 10111110
80 $06C0 00000110 11000000
81 $06D3 00000110 11010011
82 $06E4 00000110 11100100
83 $06F7 00000110 11110111
84 $07DB 00000111 11011011
85 $2000 00100000 00000000
86 $2012 00100000 00010010
87 $2024 00100000 00100100

continues on next page

51.3. A16.3 On-Screen Colours 1043

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table 9 – continued from previous page
GGGGGRRR RRBBBBBW

PAL Colour Value Native Value Hex Native Value Binary
88 $2036 00100000 00110110
89 $212C 00100001 00101100
90 $213E 00100001 00111110
91 $2240 00100010 01000000
92 $2253 00100010 01010011
93 $2264 00100010 01100100
94 $2277 00100010 01110111
95 $236C 00100011 01101100
96 $237F 00100011 01111111
97 $2480 00100100 10000000
98 $2492 00100100 10010010
99 $24A4 00100100 10100100
100 $24B6 00100100 10110110
101 $2588 00100101 10001000
102 $259A 00100101 10011010
103 $25AC 00100101 10101100
104 $25BE 00100101 10111110
105 $26C0 00100110 11000000
106 $26D3 00100110 11010011
107 $26E4 00100110 11100100
108 $26F7 00100110 11110111
109 $27C8 00100111 11001000
110 $27DB 00100111 11011011
111 $27EC 00100111 11101100
112 $27FF 00100111 11111111
113 $4800 01001000 00000000
114 $4813 01001000 00010011
115 $4837 01001000 00110111
116 $4908 01001001 00001000
117 $491B 01001001 00011011
118 $492C 01001001 00101100
119 $493F 01001001 00111111
120 $4A41 01001010 01000001
121 $4A65 01001010 01100101
122 $4A77 01001010 01110111
123 $4B49 01001011 01001001
124 $4B5B 01001011 01011011
125 $8B2C 10001011 00101100
126 $4B7F 01001011 01111111
127 $4C93 01001100 10010011
128 $4CB7 01001100 10110111
129 $4D88 01001101 10001000
130 $4D9B 01001101 10011011
131 $4DBF 01001101 10111111
132 $4EC1 01001110 11000001
133 $4ED3 01001110 11010011
134 $4EE5 01001110 11100101

continues on next page

1044 Chapter 51. A16 The QL Display

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table 9 – continued from previous page
GGGGGRRR RRBBBBBW

PAL Colour Value Native Value Hex Native Value Binary
135 $4EF7 01001110 11110111
136 $4FC9 01001111 11001001
137 $4FDB 01001111 11011011
138 $4FED 01001111 11101101
139 $4FFF 01001111 11111111
140 $6800 01101000 00000000
141 $6813 01101000 00010011
142 $6824 01101000 00100100
143 $6837 01101000 00110111
144 $692C 01101001 00101100
145 $693F 01101001 00111111
146 $6A41 01101010 01000001
147 $6A53 01101010 01010011
148 $6A65 01101010 01100101
149 $6A77 01101010 01110111
150 $6B7F 01101011 01111111
151 $6C80 01101100 10000000
152 $6C93 01101100 10010011
153 $6CA4 01101100 10100100
154 $6CB7 01101100 10110111
155 $6D88 01101101 10001000
156 $6DBF 01101101 10111111
157 $6EC1 01101110 11000001
158 $6ED3 01101110 11010011
159 $6EE5 01101110 11100101
160 $6EF7 01101110 11110111
161 $6FC9 01101111 11001001
162 $6FDB 01101111 11011011
163 $6FED 01101111 11101101
164 $6FFF 01101111 11111111
165 $9108 10010001 00001000
166 $911A 10010001 00011010
167 $912C 10010001 00101100
168 $913E 10010001 00111110
169 $9253 10010010 01010011
170 $9277 10010010 01110111
171 $9348 10010011 01001000
172 $935B 10010011 01011011
173 $936C 10010011 01101100
174 $937F 10010011 01111111
175 $9492 10010100 10010010
176 $9496 10010100 10010110
177 $9588 10010101 10001000
178 $95AC 10010101 10101100
179 $95BE 10010101 10111110
180 $96C0 10010110 11000000
181 $96D3 10010110 11010011

continues on next page

51.3. A16.3 On-Screen Colours 1045

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table 9 – continued from previous page
GGGGGRRR RRBBBBBW

PAL Colour Value Native Value Hex Native Value Binary
182 $96E4 10010110 11100100
183 $96F7 10010110 11110111
184 $97DB 10010111 11011011
185 $97EC 10010111 11101100
186 $97FF 10010111 11111111
187 $B000 10110000 00000000
188 $B012 10110000 00010010
189 $B024 10110000 00100100
190 $B036 10110000 00110110
191 $B108 10110001 00001000
192 $B11A 10110001 00011010
193 $B12C 10110001 00101100
194 $B13E 10110001 00111110
195 $B240 10110010 01000000
196 $B253 10110010 01010011
197 $B277 10110010 01110111
198 $B348 10110011 01001000
199 $B37F 10110011 01111111
200 $B480 10110100 10000000
201 $B4A4 10110100 10100100
202 $B4B6 10110100 10110110
203 $B588 10110101 10001000
204 $B6C0 10110110 11000000
205 $B6D3 10110110 11010011
206 $B6E4 10110110 11100100
207 $B6F7 10110110 11110111
208 $B7C8 10110111 11001000
209 $B7DB 10110111 11011011
210 $D800 11011000 00000000
211 $D813 11011000 00010011
212 $D824 11011000 00100100
213 $D837 11011000 00110111
214 $D908 11011001 00001000
215 $D91B 11011001 00011011
216 $D92C 11011001 00101100
217 $D93F 11011001 00111111
218 $DA41 11011010 01000001
219 $DA53 11011010 01010011
220 $DA65 11011010 01100101
221 $DA77 11011010 01110111
222 $DB49 11011011 01001001
223 $DB5B 11011011 01011011
224 $DB6D 11011011 01101101
225 $DB7F 11011011 01111111
226 $DC80 11011100 10000000
227 $DC93 11011100 10010011
228 $DCA4 11011100 10100100

continues on next page

1046 Chapter 51. A16 The QL Display

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table 9 – continued from previous page
GGGGGRRR RRBBBBBW

PAL Colour Value Native Value Hex Native Value Binary
229 $DCB7 11011100 10110111
230 $DD88 11011101 10001000
231 $DD9B 11011101 10011011
232 $DDAC 11011101 10101100
233 $DDBF 11011101 10111111
234 $DED3 11011110 11010011
235 $DEE5 11011110 11100101
236 $DFDB 11011111 11011011
237 $F813 11111000 00010011
238 $F91B 11111001 00011011
239 $F92C 11111001 00101100
240 $FA41 11111010 01000001
241 $FA53 11111010 01010011
242 $FA65 11111010 01100101
243 $FA77 11111010 01110111
244 $FB49 11111011 01001001
245 $FB5B 11111011 01011011
246 $FB6D 11111011 01101101
247 $FB7F 11111011 01111111
248 $FC93 11111100 10010011
249 $FCA4 11111100 10100100
250 $FCB7 11111100 10110111
251 $FD88 11111101 10001000
252 $FD9B 11111101 10011011
253 $FED3 11111110 11010011
254 $FEE5 11111110 11100101
255 $FFDB 11111111 11011011

51.3.17 24 Bit Enhanced Colour Drivers

Although only available as a Colour Mode on QPC2 and the QXL, this true colour (24 bit) mode is used
by commands such as PALETTE_QL and PALETTE_8 to describe approx 16 million colours in detail.

Here, every four bytes (a longword) represent one pixel on the Monitor’s screen.

The bits are combined to represent the amount of GREEN, RED and BLUE to be used for each pixel, in
the following format rrrrrrrr gggggggg bbbbbbbb xxxxxxxx, where:

• G is Green (8 bits)

• R is Red (8 bits)

• B is Blue (8 bits)

• X is Unused

In the table below, the colours represented by each of the first 256 PAL colours (0 to 255) closely resem-
bles those generated under the 256 Colour Mode on the Aurora, however, due to the way in which colour
is stored, it is necessary to look up the comparative Hexadecimal value for each colour which would need
to be POKEd into memory.

51.3. A16.3 On-Screen Colours 1047

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

You cannot use the PAL colour number as a parameter for INK (and other commands) due to the fact
that this is limited to 256 - use the hexadecimal 24 bit value instead.

Again, the colours are hard to describe due to the range and therefore require experimentation to obtain the
correct colours. However, the following table details the corresponding INK parameter to use to achieve
that colour (NOTE this does not correspond with the original QL colour scheme!). It is not possible to
list all of the 16 million colours, therefore we have tried to list the most widely used ones (INK 0 to INK
63) grouped into the different colours and the values for the rest of the colours in the range INK 64 to
INK 255.

PAL Colour Value Colour Name 24 bit Value (Hex)
0 Black $000000
1 White $FFFFFF
8 Dark Slate $242424
9 Slate Grey $494949
10 Dark Grey $6D6D6D
11 Grey $929292
12 Light Grey $B6B6B6
13 Ash Grey $DBDBDB
58 Cerise $920049
14 Dark Red $920000
2 Red $FF0000
63 Deep Purple $490092
51 Plum $6D246D
20 Purple $920092
26 Mauve $9200FF
57 Faded Purple $9249B6
52 Dusky Pink $B64992
5 Magenta $FF00FF
21 Shocking Pink $FF0092
45 Dull Pink $B66DB6
32 Pink $FFB6DB
31 Rose Pink $FFB6FF
34 Pastel Pink $FFDBDB
39 Pastel Rose $FFDBFF
27 Peach $FFB6B6
50 Midnight Blue $24246D
19 Dark Blue $000092
4 Blue $0000FF
62 Ultramarine $004992
49 Dusky Blue $246D6D
44 Steel Blue $6D6DB6
18 Sea Blue $009292
25 Bright Blue $0092FF
56 Dull Blue $4992B6
43 Dull Cyan $6DB6B6
7 Cyan $00FFFF
29 Light Blue $B6FFFF
30 Sky Blue $B6B6FF
38 Pastel Blue $DBDBFF

continues on next page

1048 Chapter 51. A16 The QL Display

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table 10 – continued from previous page
PAL Colour Value Colour Name 24 bit Value (Hex)
37 Pastel Cyan $DBFFFF
48 Dusky Green $246D24
60 Grass Green $499200
17 Dark Green $009200
54 Avocado $92B649
61 Sea Green $009249
42 Dull Green $6DB66D
3 Green $00FF00
23 Lime Green $92FF00
24 Apple Green $00FF92
55 Dull Turquoise $49B692
41 Light Khaki $B6B66D
15 Light Green $B6FFB6
36 Pastel Green $DBFFDB
46 Brown $6D2424
59 Tan $924900
6 Yellow $FFFF00
22 Orange $FF9200
16 Mustard $929200
47 Khaki $6D6D24
53 Buff $B69249
40 Brick $B66D6D
33 Beige $FFDBB6
28 Light Yellow $FFFFB6
35 Pastel Yellow $FFFFDB

The remainder of the first 256 colours are mapped as follows (we would welcome names for each of these
colours):

PAL Colour Value 24 bit Value (Hex)
64 $000049
65 $240024
66 $24006D
67 $2400B6
68 $2400FF
69 $490000
70 $490049
71 $4900DB
72 $6D0024
73 $6D006D
74 $6D00B6
75 $6D00FF
76 $B60024
77 $B6006D
78 $B600B6
79 $B600FF

continues on next page

51.3. A16.3 On-Screen Colours 1049

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table 11 – continued from previous page
PAL Colour Value 24 bit Value (Hex)
80 $DB0000
81 $DB0049
82 $DB0092
83 $DB00DB
84 $FF006D
85 $002400
86 $002449
87 $002492
88 $0024DB
89 $2424B6
90 $2424FF
91 $492400
92 $492449
93 $492492
94 $4924DB
95 $6D24B6
96 $6D24FF
97 $922400
98 $922449
99 $922492
100 $9224DB
101 $B62424
102 $B6246D
103 $B624B6
104 $B624FF
105 $DB2400
106 $DB2449
107 $DB2492
108 $DB246D
109 $FF2424
110 $FF246D
111 $FF24B6
112 $FF24FF
113 $004900
114 $004949
115 $0049DB
116 $244924
117 $24496D
118 $2449B6
119 $2449FF
120 $494900
121 $494992
122 $4949DB
123 $6D4924
124 $6D496D
125 $6D49B6
126 $6D49FF
127 $924949

continues on next page

1050 Chapter 51. A16 The QL Display

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table 11 – continued from previous page
PAL Colour Value 24 bit Value (Hex)
128 $9249DB
129 $B64924
130 $B6496D
131 $B649FF
132 $DB4900
133 $DB4949
134 $DB4992
135 $DB49DB
136 $FF4924
137 $FF496D
138 $FF49B6
139 $FF49FF
140 $006D00
141 $006D49
142 $006D92
143 $006DDB
144 $246DB6
145 $246DFF
146 $496D00
147 $496D49
148 $496D92
149 $496DDB
150 $6D6DFF
151 $926D00
152 $926D49
153 $926D92
154 $926DDB
155 $B66D24
156 $B66DFF
157 $DB6D00
158 $DB6D49
159 $DB6D92
160 $DB6DDB
161 $FF6D24
162 $FF6D6D
163 $FF6DB6
164 $FF6DFF
165 $249224
166 $24926D
167 $2492B6
168 $2492FF
169 $499249
170 $4992DB
171 $6D9224
172 $6D926D
173 $6D92B6
174 $6D92FF
175 $929249

continues on next page

51.3. A16.3 On-Screen Colours 1051

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table 11 – continued from previous page
PAL Colour Value 24 bit Value (Hex)
176 $9292DB
177 $B69224
178 $B692B6
179 $B692FF
180 $DB9200
181 $DB9249
182 $DB9292
183 $DB92DB
184 $FF926D
185 $FF92B6
186 $FF92FF
187 $00B600
188 $00B649
189 $00B692
190 $00B6DB
191 $24B624
192 $24B66D
193 $24B6B6
194 $24B6FF
195 $49B600
196 $49B649
197 $49B6DB
198 $6DB624
199 $6DB6FF
200 $92B600
201 $92B692
202 $92B6DB
203 $B6B624
204 $DBB600
205 $DBB649
206 $DBB692
207 $DBB6DB
208 $FFB624
209 $FFB66D
210 $00DB00
211 $00DB49
212 $00DB92
213 $00DBDB
214 $24DB24
215 $24DB6D
216 $24DBB6
217 $24DBFF
218 $49DB00
219 $49DB49
220 $49DB92
221 $49DBDB
222 $6DDB24
223 $6DDB6D

continues on next page

1052 Chapter 51. A16 The QL Display

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Table 11 – continued from previous page
PAL Colour Value 24 bit Value (Hex)
224 $6DDBB6
225 $6DDBFF
226 $92DB00
227 $92DB49
228 $92DB92
229 $92DBDB
230 $B6DB24
231 $B6DB6D
232 $B6DBN6
233 $B6DBFF
234 $DBDB49
235 $DBDB92
236 $FFDB6D
237 $00FF49
238 $24FF6D
239 $24FFB6
240 $49FF00
241 $49FF49
242 $49FF92
243 $49FFDB
244 $6DFF24
245 $6DFF6D
246 $6DFFB6
247 $6DFFFF
248 $92FF49
249 $92FF92
250 $92FFDB
251 $B6FF24
252 $B6FF6D
253 $DBFF49
254 $DBFF92
255 $FFFF6D

51.3.18 MISCELLANEOUS COLOUR MODES

MODE 2 (Monochrome Drivers)

Each byte represents eight pixels on the Monitor’s screen calculated by looking at the status of each of
the eight binary bits which make up a byte - if a bit is 1 (ON) then the corresponding pixel will be white,
otherwise it will be black.

For example, if PEEK (SCR_BASE) returns the value 85, in binary this is represented by:

0 1 0 1 0 1 0 1

Therefore the top left of the Monitor screen will be showing eight alternating pixels of black and white.

Example

The following program will fill the screen with black and white vertical stripes:

51.3. A16.3 On-Screen Colours 1053

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

100 MODE 2
110 FOR x=0 TO SCR_YLIM-1
120 FOR y=0 TO (SCR_XLIM-1)/4
130 POKE SCR_BASE+ (x*SCR_LLEN) + y,85
140 END FOR y
150 END FOR x

SMSQ/E NOTE

Under SMSQ/E v2.98+, Enhanced Colour Drivers, this becomes MODE 0.

MODE 12 (16 Colour Mode)

This is supported only by the THOR XVI and is similar to Aurora’s 16 Colour Mode under the Enhanced
Colour Drivers in that it replaces the Flash bit of MODE 8 by an Intensity bit which allows you to display
16 colours on screen at a time at a resolution of 256 x 256 pixels.

(We have no details of how this was implemented).

51.4 A16.4 USING HIGH RESOLUTION DISPLAYS

There is not much adaptation required in order to use QL screen resolutions in excess of 512x256 pixels
- all of the normal commands work as you would expect. OUTLN includes an example of how to allow
programs to re-size themselves up to the maximum resolution. However, there are some rules which you
need to observe..

First of all, refer to Appendix 6.7 (Using High Resolution Screens) about some compatibility issues.

If a user chooses to run a program on a high resolution screen, they will find that the program will only
occupy a small area of the screen. Even if the program allows you to resize it to take advantage of the
larger screen, this may not be very satisfactory. Although graphics commands which work by reference
to the graphics co-ordinates system (such as LINE) will take advantage of the larger windows provided
by the program, thus giving the effect of enlarging any on-screen graphics, other commands which work
by reference to the pixel co-ordinates system (such as BLOCK) will rely on the program to resize them
specifically for the new screen. You may therefore find that the display of some programs is corrupted,
unless the programmer has taken sufficient care.

One of the main problems is that text can still only be PRINTed on screen in the standard QL sizes,
and therefore, any text PRINTed in CSIZE 0,0 will be very hard to read on a 800x600 screen (let alone
a 1600x1200 screen), even with a 17” Monitor. Programs will therefore need to take this into account,
possibly using the resize procedure to alter the character sizes used for text, or using the ProWeSS system
from PROGS, which uses scalable fonts for output.

Refer to the SCALE command for a means of working out a relationship between graphics co-ordinates
and pixel co- ordinates.

1054 Chapter 51. A16 The QL Display

CHAPTER

FIFTYTWO

A17 NETWORKS

A Network is a means of communicating with several other computers and sharing their resources. The
way in which networks work on a QL or derivative depends upon the hardware being used.

Standard QLs and the THOR family of computers have two network ports which work in exactly the
same way, and enable up to 64 computers to be connected together serially.

Unfortunately, the protocol used for the Network is peculiar to Sinclair machines and only QLs (including
AURORA), QXLs, THORs and ZX Spectrums may be connected together in this way. This is known
as QNet. If you only need to network these machines together then you can take advantage of several
different options to get the most out of the original QNet.

To enable ATARIs and PCs to be connected together in a Network with Sinclair QLs, you will need to
use the SERNET and MIDINET drivers which allow the machines to be connected via serial ports and
MIDI ports respectively (although MIDI ports can only be connected between ATARI computers).

These networks will work alongside the standard QNet and therefore you can have several circles of
computers networked together, all controlled by one central machine, say with some linked via SERNET,
some via MIDINET and others linked via QNet.

Another option available to users wishing to join machines together in a Network is to use Amadeus
Interlink (© Di - Ren), which allows you to connect up to 255 machines in a Network. These machines
can be either QLs, THORs or PCs at present and this Network system is significantly faster than the
original QNet.

Di-Ren also produce a QL-PC Fileserver which allows you to link a QL to a PC with a cable and then this
allows the QL to use the PC’s DOS devices (including floppy disks, CD-Rom drive, hard disks, Networks
and Serial ports). This will allow you to use PC format disks and on later versions, you can even use the
PC’s screen to display the QL’s output. This is therefore similar to a small Network device.

In DIY Toolkit Volume N there is a very interesting program NETPAL which allows one computer to
completely control another computer - this works by machine 2 opening a channel on machine 1 where
the user can enter his commands, which are then executed on machine 2. This can be very useful to allow
you to use several QLs with only one Monitor (or keyboard), but unfortunately, this program does have
its limitations due to problems with sending control characters over the Network (such as CTRL C) and
also a CON device opened over the Network does not seem to delete characters from the screen properly..

1055

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

52.1 A17.1 QNet

This system allows Standard QLs, QXLs, AURORAs, THOR computers and ZX Spectrums (with In-
terface 1 attached) to be connected together in a network. However, although data can be sent to a ZX
Spectrum, the data is corrupted if the Spectrum tries to send more than one byte to another type of
machine.

Minerva, SMSQ/E and Toolkit II all improve the reliability of this Network system. if you are not using
Toolkit II, Minerva v1.96 is ideally required to ensure reliable input of data over the Network.

52.1.1 A17.1.1 Connecting Machines

To connect the machines, a cable must be used to connect one network port on each computer to one of
the ports on the next computer in line. Having chained all of the computers together in this fashion, the
Network should be completed by connecting the last computer in the chain to the first, thus completing
a circle (although this is not always necessary).

The cable need only be twin core, and it is advisable in a large Network to use low-capacitance cable (eg.
bell wire), connecting the centres of each jack to each other and the outsides to each other. The maximum
amount of cable that can be reliably used is approximately 100 metres, however, the less the better.

Unfortunately the network hardware on the standard QL is not always reliable, but if you experience
problems, it might be worth trying either a different QL or swapping the leads over. THOR XVIs should
work without any problems, however, if you intend linking several QLs together, it is advisable to install
Toolkit II on ROM (or SMSQ/E) in each of them (the memory only version of Toolkit II cannot improve
the network due to timing). Minerva or SMSQ/E on all of the machines will also improve the Network
handling.

Each computer (known as a station) must be given a separate station number so that it can be clearly
identified within the Network. This station number is given to the machine when it is turned on (this will
always be one) and so must be reset on each machine by the command NET.

52.1.2 A17.1.2 The Device Driver

Data is sent through the Network ports normally by using the NET device driver, which has the format:

NET<direction><station> (QL ROM)

NET<direction><station>_<buffer> (Toolkit II, THOR XVI)

The parameters of the NET device have the following meanings:

<direction>This is the direction in which data is to be sent. There is no default and this therefore must
be one of the following letters:

• I - This is a listening station (input only)

• O - This is a transmitting station (output only)

• <station> This is the number of the station to communicate with and is in the form _n, where n
represents the station number of the other machine you wish to communicate with.

n=0 is treated as a special case - see below.

The default is _0.

1056 Chapter 52. A17 Networks

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

This Device Driver allows data to either be transmitted to a specific machine, or broadcast to any machine
which is listening to the Network.

52.1.3 A17.1.3 Sending / Receiving Data

To broadcast data (sending it to all machines in the Network) you need to open a channel to NETO_0,
for example:

OPEN_NEW #3,NETO_0

To listen to data which is being Broadcast, the listening stations will need to open a channel NETI_0, for
example with:

OPEN_IN #4,NETI_0

If you open a net-in channel and specify your own station number, this is treated as a general listening
station, allowing you to receive any data sent to that station by any machine in the Network. For example,
you could use:

NET 12: OPEN_IN #4, NETI_12

to set up a general listening station.

If you want to open a net-in channel which will only listen for data from a specific machine in the Network,
you will need to specify the station number of that machine, for example:

On station 3, enter:

NET 3: OPEN_NEW #3, NETO_12

Then on station 12, enter:

NET 12:OPEN_IN #3, NETI_3

will set up a link between stations 3 and 12 which only those machines can use. To allow station 12 to
send data to station 3, you will also need to open a net-out channel, with:

OPEN_NEW #4, NETO_3

and to enable station 3 to listen to it, you could use on station 3:

OPEN_IN #4, NETI_3

(this allows station 3 to listen to any messages sent to it over the network by any other machine).

Each network channel can be input only or output only, thus bi-directional channels are not allowed.
However, you can open as many channels as you like onto the Network on each machine, some of which
may be output channels whilst others are input channels. If you try to send data down an input channel
(or read data from an output channel), then a ‘Bad Parameter’ error will be returned.

Due to the way in which the data being sent over the Network ports is tested, you will need to open the
output side of a Network link before the input side is opened, as otherwise, the two computers may miss
each other’s data header. If you later need to close the output port, you will need to inform the computers
which are listening for data before the port is closed, as they themselves will need to close their input

52.1. A17.1 QNet 1057

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

ports (any attempt to read any further data once the output port has been closed will result in an ‘End of
File’ error). Only once the output port has been re-opened is it safe for them to re-open the input ports.

For this reason, if you plan to write a program which may open and close the output port several times
in a session, it would be useful to have a secondary output port open at all times, which can be used to
Broadcast to the listening stations when to open and/or close their own input ports.

Data is transmitted in packets of a specified size (the size depends on the type of device driver). The size
of the packet determines the smallest amount of data that can be sent - any spare values will be set to
zero. If the amount of data is greater than the packet size, then it will be sent as several packets. However,
a packet will only be sent down the Network if it is full, therefore if some data remains to be sent which
does not completely fill a packet, the sending machine will need to CLOSE the channel, or flush the
network (this requires a specialised routine - FLUSH will not work on a network device) in order to send
the remaining pieces of data.

The NET device is greatly improved if Toolkit II is present (or a THOR XVI is being used), and we shall
deal with this separately.

52.1.4 A17.1.4 QNet without Toolkit II

Data is transmitted in packets of 255 bytes preceded by a small Network header in the following format:

Off-
set

Name Size Description

0 NET.HEDRbyte Destination station number (equivalent to NCIRIS on the Spectrum)
1 NET.SELFbyte Number of sending station
2 NET.BLKLbyte LSB of data block number
3 NET.BLKHbyte MSB of data block number (note the reverse order because of the way in which

words are stored for the Z80 on the Spectrum)
4 NET.TYPEbyte Packet type: 0 data, 1 last block (EOF)
5 NET.NBYTbyte Number of bytes in data block (0 to 255)
6 NET.DCHKbyte Data checksum
7 NET.HCHKbyte Header checksum

The effects of the header depend on whether the sending machine is Broadcasting (ie. using NETO_0),
in which case there is no handshaking, or not (in which case handshaking is enabled).

Before the packet is sent down the Network, the sending machine listens to the Network to check if it is
being used. Once it is free, the sending machine then sends the header and if handshaking is enabled,
waits for an acknowledgement from the destination machine that it is ready to receive.

Having received this acknowledgement (or if it is Broadcasting), the packet is sent. Once this is sent, if
handshaking is enabled, then the sending machine again waits for the destination machine to acknowledge
safe receipt; and if no such acknowledgement is received, tries all over again.

This means that no check is made on the data if the sending machine is Broadcasting, in which case it
makes it very unreliable to Broadcast messages of more than 255 bytes (unless you have Toolkit II, a
THOR XVI or Minerva; all of which improve the reliability, although it is still not 100%). This does also
mean that if no stations are actually listening, the whole of the data will be lost.

When receiving data through the Network, the command EOF will only detect the end of the data if there
are no more bytes to be read from the channel and the NET.TYPE in the header was set to EOF. The

1058 Chapter 52. A17 Networks

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

receiving machine will need to use the command PEND or EOFW to check if there is any data in the
channel waiting to be read, unless you wish the program to just wait around for the data to be sent.

When the channel is closed, the device will try to output one final packet of data (this means that a
minimum of one packet can be sent). If it fails to send the packet, then it will try a further 1399 times
(causing an extremely long delay), after which the QL will give up. No error message is returned to tell
the sending computer that it has failed to send the data. This means that CLOSEing a NETO channel,
even though no data has been sent through the Network, produces an extremely long delay before the
computer can do anything else (and may even crash some versions of the QL ROM if nothing has been
written to the port - see CLOSE).

Example

COPY flp1_boot TO neto_2

copies the file flp1_boot to station 2.

52.1.5 A17.1.5 QNet Under Toolkit II

This is basically the same as the standard QNet driver, except that improvements have been made to
improve handshaking and also to ensure that when an output channel is closed, whilst the driver keeps
trying to send the last packet, the Break key is also checked for on the sending machine, allowing you to
break into this early.

The Net header for the fileserver has also been improved to allow blocks of up to 1000 bytes to be sent
at a time and also to improve the checksum.

If the driver fails to send the last packet (despite retrying 1399 times), or the Break key is detected, the
message ‘Net Aborted’ is printed to #0 (although this does not stop the program), warning the user that
the Network has failed.

The syntax has been extended to include a parameter <buffer> which represents the size of a buffer to
be opened to receive bytes over the Network. It is in the form _n kilobytes and is really only applicable
where the channel is NETI_0, as it specifies the size of the buffer (in kilobytes) to store the whole of
a Broadcast message as it is transmitted. If no <buffer> is specified, it will use all but 2K of the free
memory.

Toolkit II also implements a fileserver which allows a machine to directly access resources on another
computer, by OPENing channels over the Network. Please refer to the FSERVE and NFS_USE keywords
for details about the fileserver.

The MEM device can also be used to access another machine’s resources over the Network. This is
discussed in the Appendix on Device Drivers.

52.2 A17.2 Flexynet (DIY Toolkit - VOL X)

This can be used alongside the standard and Toolkit II QNet (subject to certain limitations - see below).
The code will need to be loaded into either ROM (if you have an EPROM blower) or fast RAM (not the
QL’s internal 128K RAM - an expanded machine is therefore needed). Current versions of Flexynet will
not work on machines which do not use a 68000 or 68008 chip (such as QXLs or Super Gold Cards),
unless the cache has been disabled.

It has been implemented with a view to speeding up the transfer of data across the QNet, by allowing
you to set the speed at which the data is to be transmitted (using the NETRATE command). The speed

52.2. A17.2 Flexynet (DIY Toolkit - VOL X) 1059

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

which the Networks will support depends upon the machines which are connected to QNet, with faster
machines being able to receive data much faster than under the standard QNet (although transmission
speed depends upon the speed of the machine at the other end of the QNet).

Although this can be used alongside QNet, there are really only two commands which allow you to send
or receive multiple bytes sent over the network (NETSEND and NETREAD). There is currently no way
of specifying which machine the data is to be sent to and therefore all machines in the network will be
able to read the data sent.

You should not try to use both the standard QNet and Flexynet at the same time - we would recommend
that a message is broadcast over the Network to all of the other machines first of all specifying that
Flexynet is to be used and which machine is to receive the data and that the sending machine should
then wait to hear that all other machines have closed down their network channels and that the receiving
machine is ready to receive the data.

The commands NETBEEP and NETPOLL have also been added to allow the QL to use the Networks as
a rudimentary form of digital sampling and even to generate sounds through the Network ports.

52.3 A17.3 Midinet

This extension provided with the Atari Emulators and SMSQ/E allows you to connect several ATARI
computers in a Network by linking their MIDI ports together using suitable leads. As with QNet the
machines must be arranged to form a complete circle with the MIDI OUT port of each machine being
connected to the MIDI IN port of the next machine in the Network.

The Network will not work unless all machines are switched on (as with QNet) and unless all machines
are running the MIDINET device driver, installed with LRESPR flp1_MIDINET_REXT (although the
fileserver job need not be running except on the master machine).

Once connected, this system works very much in the same way as the QNet under Toolkit II, except that
some file protection is provided to stop other machines on the Network accessing important files (see
MIDINET).

The following commands are provided:

• MNET - Set the station number of this machine.

• MNET% - Return the station number.

• MNET_S% - Confirm whether a machine with a given station number is connected to the Network.

• MNET_ON - Switch on the device driver.

• MNET_OFF - Switch off the device driver (this allows the MIDI port to be used independently).

• MNET_USE - Change the letter which identifies the device driver (normally N).

• MIDINET - Start up the fileserver.

1060 Chapter 52. A17 Networks

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

52.4 A17.4 Sernet

This extension provided with the Atari Emulators and SMSQ/E allows you to connect several different
computers in a Network by linking their serial ports together using suitable leads.

This can therefore be used to connect all machines which currently are able to run QL software.

If you only have two machines in a Network, you can connect them by using a Null-Modem-Cable.
However, with more than two machines, as with QNet the machines must be arranged to form a complete
circle so that all of the output signals from one machine are connected to the input signals of the next
machine.

The Network will not work unless all machines are switched on (as with QNet), all machines are running
the SERNET device driver (installed with LRESPR flp1_SERNET_REXT) and SERNET has been con-
figured on each machine to inform it which serial port it is to use for communications. Also, all of the
machines must be set to the same BAUD rate before SERNET is loaded.

In order to improve the network, handshaking should be implemented on all ports, therefore to allow
SERNET to use ser3 you may configure it to use: SER3hd (presuming hardware handshaking is avail-
able). If hardware handshaking is not available to some machines on the Network, you will need to use
SER3xd on all the machines.

Once connected, this system works very much in the same way as the MIDINET.

The following commands are provided:

• SNET - Set the station number of this machine.

• SNET% - Returns the station number.

• SNET_S% - Confirm whether a machine with a given station number is connected to the Network.

• SNET_ROPEN - Re-opens the serial ports in case you have closed one from another program.

• SNET_USE - Change the letter which identifies the device driver (normally S).

• SERNET - Start up the fileserver.

52.5 A17.5 Amadeus Interlink

This is a box which can be linked to a QL or PC computer and allows you to connect up to 255 devices
to a computer - these devices can be other Amadeus-fitted computers, printers or sound interfaces. If
you use this to link computers together it provides in effect an extremely fast Network system, with more
speed the faster the computer!

We do not have details of how the Network system works at present.

52.4. A17.4 Sernet 1061

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

52.6 A17.6 QL - PC Fileserver

This is a software package which allows you (with the use of a cable which can be supplied) to link a
QL to a PC computer via a free serial port and allows you to access the various devices provided by the
PC. However, if you wish to use the package with Minerva, you will need at least v1.02 of the QL-PC
Fileserver package. The original version will not work with the Super Gold Card and these users will
need the QL-PC Fileserver II version (see below).

Basically, once the system has been set up and linked into both the QL and PC, you have to create a
fileserver task on the PC by entering a new command on the PC (QLNET) and then on the QL side,
simply set the correct BAUD rate (for the PC) and enter the command PCSERVE to inform the QL
which serial port on the QL is linked to the PC.

Having done this, you are provided with various commands to find out details of the drives connected to
the PC and can access them by simply using the device pcd, where DIR pcd1_ will provide a directory
listing of drive A: on the PC, and DIR pcd3_ will provide a directory listing of drive C: on the PC
(normally the hard disk).

Files can be saved onto the PC’s devices in QL format to be read at a later stage by any other QL. You
can also access the PC’s printer (PC_DEV ser2,lpt1 redirects all output to ser2 to the lpt1 device on the
PC) and even the PC’s screen (the device PSCR is used to signify a channel is to be OPENed on the PC’s
screen, replacing the QL’s SCR device).

Although speed is somewhat slower than using devices plugged into the QL, at least this means that you
could get away without having to buy any disk drives (floppy or hard disk) for the QL.

One other thing that this package does is allow the QL to connect into a PC network, thus opening up the
world of the PC in a cost-effective manner.

QL-PC Fileserver II is a newer version of the package which is much enhanced, allowing the QL to be
connected to the PC via Amadeus Interlink as well as the serial ports. Full QL filename lengths are
supported in this version and if you use the PC’s screen to display the QL’s output, this now supports QL
windowing, colour and CON devices.

1062 Chapter 52. A17 Networks

CHAPTER

FIFTYTHREE

18 CONFIGURING PROGRAMS

There are many different ways of allowing a user to configure a program. In this Appendix, we aim to
highlight some of the options available, together with details of their benefits and pitfalls.

53.1 CONFIG Level 1 & Level 2

Many people who have used programs written for the Pointer Environment are used to using the Con-
fig program written by Qjump, or the MenuConfig program from Jochen Merz Software to configure
programs.

These programs work by searching the program to be configured for a special ‘config block’, which has
to have a special format.

If a program is written in ‘C’ or Machine Code, it is fairly easy to create a config block following the
rules set out in the QPtr Toolkit manual.

However, many programmers find it much easier to create a program in compiled SuperBASIC. The
only way of adding these config blocks to a compiled program is to use the Public Domain program
BASCONFIG which can be linked into the program at compile time. This package creates a user defined
config block which can be read using new SuperBASIC keywords

Unfortunately, BASCONFIG cannot be used with Turbo compiled programs as this does not allow toolkits
to be linked to a compiled program.

Level 2 Config blocks allow automatic configuration of a new version of a program. The BASCONFIG
package does not support these type of config blocks.

53.2 Passing Parameter with EXEC

If only one or two configuration options are required (such as where a program should look for a specific
file), then it is sometimes easier to pass these parameters as an option string with the EXEC command
(or similar).

The problem here is that it is all too easy to forget to include this string when starting up a program and
many programs allow a long complicated list of parameters to be set in this way.

The option string can be read with functions such as OPTION_CMD$ or CMD$.

1063

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

53.3 Making the configuration part of the program.

This means that the program must be loaded to be configured and then possibly reloaded into the machine
for the configuration to take effect.

This makes the program bigger for something that may only be used once.

It is also more difficult to have several configurations of the same program.

53.4 Using a separate configuration file.

The problem here is how do you tell the main program where to load the configuration file from!

53.5 Using Environment Variables

This is OK, but user may forget to set the initial Environment Variable.

53.6 DATA_USE etc

The problem is that they can be altered externally by other programs. Only one setting at a time is
possible.

• search

1064 Chapter 53. 18 Configuring Programs

	Original Foreword
	2015 Foreword
	Online Edition Foreword

	Introduction
	Contributing Authors
	Installing Toolkits

	Credits
	Other Notices

	Structure of this Book
	Syntax
	Square Brackets ([])
	Square Brackets With Superscript Asterisks (*[]*)
	Curly Brackets ({ })
	Channels (#ch)
	Location

	Description
	Examples
	Notes
	[Implementation] Notes
	Warning
	Cross-Reference

	Writing Programs
	Compiling SuperBASIC Programs
	Writing Programs to Run Under the Pointer Environment
	Using the Pointer and Menu Facilities

	Multitasking Programs

	Keywords Introduction
	Toolkits
	Ähnlichkeiten
	ARRAY
	ATARI Emulators
	ATARIDOS
	ATARI_REXT
	ATARI_REXT - Pre v1.21
	ATARI_REXT - v1.21
	ATARI_REXT - v1.24 to v2.15
	ATARI_REXT - v1.29
	ATARI_REXT - v2.10
	ATARI_REXT - v2.12
	ATARI_REXT - v2.15
	ATARI_REXT - v2.17
	ATARI_REXT - v2.22
	ATARI_REXT - v2.25
	ATARI_REXT - v2.27
	ATARI_REXT for QVME - v2.31

	Amiga QDOS - v3.20
	BGI
	BIT
	BTool
	BeuleTools
	COMPICT
	CONCAT
	CONVERT
	CRYPTAGE
	DESPR
	DEV device
	DIY Toolkit
	Volume A - Alias
	Volume B - Basic Tools
	Volume C - Channels
	Volume E - Error Control
	Volume F - File Tools
	Volume G - Graphics
	Volume H - Heap and Horology
	Volume I - Serial Mouse
	Volume J - Jobs
	Volume M - MultiBASIC
	Volume P - Pipes and Parameters
	Volume Q - Queues and QDOS
	Volume R - Replace
	Volume S - Qlipboard
	Volume T - Traps
	Volume U - Environment Variables
	Volume V - More
	Volume W - Windows
	Volume X - MSearch and Vocab
	Volume Y - FlexyNet
	Volume Z - Array Search

	Djtoolkit v1.16
	Disk Interfaces
	ETAT
	Ecran Manager
	Environment Variables
	FACT
	FKEY
	FN
	FN v1.02 Onwards

	FONTS
	FRACT
	Fast PLOT/DRAW Toolkit
	GETSTUFF
	Gold Card
	Gold Card - v2.24
	Gold Card - v2.67

	GPOINT
	HCO
	HOTKEY II
	Hard Disk Driver
	History Device
	Hyper
	Hyperbola
	KEYMAN
	KILL
	LWCUPC
	Level-2 Device Drivers
	MINMAX2
	MULTI
	Math Package
	Minerva
	Minerva - Trace Toolkit
	Minerva Extensions Toolkit
	NDIM
	PAR/SER Interfaces
	PEX
	PEX - v20

	PICEXT
	PIE
	PRIO
	PTRRTP
	Path device
	Pointer Interface - v1.23 Onwards
	QL ROM
	QL ROM JM Onwards

	QPC / QXL
	QSOUND
	QView Tiny Toolkit
	QVME - Level E-19 Drivers onwards
	QXL
	Qjump RAMPRT
	RES
	REV
	SDUMP_REXT
	SERMouse
	SMS
	SMS - v2.31

	SMSQ
	SMSQ - 3.26

	SMSQ/E
	SMSQ/E - v2.50 Onwards
	SMSQ/E - v2.55 Onwards
	SMSQ/E - v2.58 Onwards
	SMSQ/E - v2.71 Onwards
	SMSQ/E - v2.73 Onwards
	SMSQ/E - v2.98 Onwards
	SMSQ/E - v3.00 Onwards
	SMSQ/E - v3.01 Onwards
	SMSQ/E - v3.12 Onwards
	SMSQ/E - v2.73 for Atari
	SMSQ/E for QPC

	ST/QL
	ST/QL - Pre v2.24
	ST/QL - Level B-11 Onwards
	ST/QL - Level C-17 Onwards
	ST/QL - Level C-19 Onwards
	ST/QL - Level C-20 Onwards
	ST/QL - Level D00 Onwards
	ST/QL - level D.02 Onwards

	STAMP
	SWAP
	SYSBASE
	Shape Toolkit
	Super Gold Card
	SuperQBoard
	SuperWindow Toolkit
	THOR
	THOR 8
	THOR 8 - v4.20 Onwards
	THOR XVI

	TRIM
	TRIPRODRO
	TRUFA
	TinyToolkit
	TinyToolkit - Pre v1.10
	TinyToolkit - v1.10 Onwards

	Toolfin
	Toolkit II
	Toolkit II - Hardware Version Only or SMS

	Trump Card
	Turbo Toolkit
	Turbo Toolkit - v3.00
	Turbo Toolkit - v3.20

	UNJOB
	WIPE
	WM
	XKBD

	Keywords A
	ABS
	ABS_POSITION
	ACCEL_OFF
	ACCEL_ON
	ACCEL_SET
	ACCEL_STATE
	ACOPY
	ACOS
	ACOT
	ADATE
	ADDREG
	ADELETE
	ADIR
	AFORMAT
	AJOB
	ALARM
	ALCHP
	ALIAS
	ALINE
	ALLOCATION
	ALPHA_BLEND
	ALT
	ALTER
	ALTKEY
	AND
	APOINT
	APPEND
	AQCONVERT
	ARC
	ARC_R
	ARCOSH
	ARCOTH
	ARSINH
	ARTANH
	ASIN
	ASK
	ASTAT
	AT
	ATAN
	ATARI
	ATARI_EXT
	ATN
	ATN2
	AUTO
	AUTO_DIS
	AUTO_TK2F1
	AUTO_TK2F2
	A_BLANK
	A_EMULATOR
	A_MACHINE
	A_OLDSCR
	A_PROCESSOR
	A_RDATE
	A_SDATE
	A_SPEED

	Keywords B
	BASIC
	BASICP
	BASIC_B
	BASIC_W
	BASIC_L
	BASIC_B%
	BASIC_W%
	BASIC_F
	BASIC_INDEX%
	BASIC_NAME$
	BASIC_POINTER
	BASIC_TYPE%
	BAT
	BAT$
	BAT_USE
	BAUD
	BAUDRATE
	BCLEAR
	BEEP
	BEEPING
	BELL
	Beule_EXT
	BGCOLOUR_QL
	BGCOLOUR_24
	BGET
	BGIMAGE
	BICOP
	BIN
	BIN$
	BINOM
	BIT%
	BLD
	BLOCK
	BLOOK
	BLS
	BMOVE
	BORDER
	BPEEK%
	BPEEK_W%
	BPEEK_L
	BPOKE
	BPOKE_W
	BPOKE_L
	BPUT
	BREAK_ON
	BREAK_OFF
	BREAK
	BREAK%
	BTool_EXT
	BTool_RMV
	BTRAP
	BUTTON%
	BVER$
	BYTES_FREE

	Keywords C
	CACHE_ON
	CACHE_OFF
	CALL
	CAPS
	CATNAP
	CBASE
	CCHR$
	CDEC$
	CD_ALLTIME
	CD_CLOSE
	CD_EJECT
	CD_FIRSTTRACK
	CD_HOUR
	CD_HSG2RED
	CD_INIT
	CD_ISCLOSED
	CD_ISINSERTED
	CD_ISPAUSED
	CD_ISPLAYING
	CD_LASTTRACK
	CD_LENGTH
	CD_MINUTE
	CD_PLAY
	CD_RED2HSG
	CD_RESUME
	CD_SECOND
	CD_STOP
	CD_TRACK
	CD_TRACKLENGTH
	CD_TRACKSTART
	CD_TRACKTIME
	CEIL
	CHANGE
	CHANID
	CHANNELS
	CHANNEL_ID
	CHAN_B%
	CHAN_W%
	CHAN_L%
	CHARGE
	CHAR_DEF
	CHAR_INC
	CHAR_USE
	CHBASE
	CHECK
	CHECK%
	CHECKF
	CHK_HEAP
	CHR$
	CIRCLE
	CIRCLE_R
	CKEYOFF
	CKEYON
	CLCHP
	CLEAR
	CLEAR_HOT
	CLIP%
	CLIP$
	CLOCK
	CLOSE
	CLOSE%
	CLRMDV
	CLS
	CLS_A
	CMD$
	CODE
	CODEVEC
	COL
	COLOUR_NATIVE
	COLOUR_PAL
	COLOUR_QL
	COLOUR_24
	COMMAND_LINE
	COMPILED
	COMPRESS
	CONCAT
	CONNECT
	CONTINUE
	ConvCASE$
	CONVERT
	COPY
	COPY_B
	COPY_H
	COPY_L
	COPY_N
	COPY_O
	COPY_W
	COS
	COSH
	COT
	COTH
	CSIZE
	CTAB$
	CUR
	CURDIS
	CURSEN
	CURSOR
	CURSOR%
	CURSOR_OFF
	CURSOR_ON
	CVF
	CVI%
	CVS$
	CVL

	Keywords D
	DATA
	DATAD$
	DATAREG
	DATASPACE
	DATA_AREA
	DATA_USE
	DATE
	DATE$
	DAY$
	DAY%
	DBL
	DDOWN
	DEALLOCATE
	DEBUG
	DEBUG_LEVEL
	DEFAULT
	DEFAULT%
	DEFAULT$
	DEFAULT_DEVICE
	DEFAULT_SCR
	DEFine xxx
	DEFine FuNction
	DEFine PROCedure
	DEFINED
	DEG
	DELETE
	DEL_DEFB
	DESPR
	DESTD$
	DEST_USE
	DEMO
	DET
	DEV_NAME
	DEVICE_SPACE
	DEVICE_STATUS
	DEVLIST
	DEVTYPE
	DEV_LIST
	DEV_NEXT
	DEV_USE
	DEV_USEN
	DEV_USE$
	DIM
	Numeric Arrays
	String Arrays
	Sub-Sets of Arrays
	Omitting Indices
	Un-Dimensioned Strings
	ERRORS
	EXAMPLES

	DIMN
	DIR
	DISCARD
	DISP_BLANK
	DISP_INVERSE
	DISP_RATE
	DISP_SIZE
	DISP_TYPE
	DISP_UPDATE
	DISPLAY_WIDTH
	DIV
	DIV
	DJ_OPEN
	DJ_OPEN_IN
	DJ_OPEN_NEW
	DJ_OPEN_OVER
	DJ_OPEN_DIR
	DJTK_VER$
	DLINE
	DLIST
	DMEDIUM_DENSITY
	DMEDIUM_DRIVE$
	DMEDIUM_FORMAT
	DMEDIUM_FREE
	DMEDIUM_NAME$
	DMEDIUM_RDONLY
	DMEDIUM_REMOVE
	DMEDIUM_TOTAL
	DMEDIUM_TYPE
	DNEXT
	DO
	DOS_USE
	DOS_DRIVE
	DOS_DRIVE$
	DOTLIN
	DRAW
	DRAW
	DROUND
	DUP

	Keywords E
	EASTER
	ED
	EDIT
	EDITF
	EDIT%
	EDIT$
	EDLINE$
	EL
	ELIS
	ELLIPSE
	ELLIPSE_R
	ELSE
	END
	END DEFine
	END FOR
	END IF
	END REPeat
	END SELect
	END WHEN
	END_CMD
	END_WHEN
	ENV_DEL
	ENV_LIST
	ENL
	EOF
	EOFW
	EPROM_LOAD
	EPS
	EQ$
	ERLIN
	ERLIN%
	ERNUM
	ERNUM%
	ERR_XX
	ERRor
	ERT
	ESC
	ET
	ETAB$
	ETAT
	EW
	EX
	EXCHG
	EXEC
	EXEC_W
	EXEP
	EXIT
	EXP
	EXPAND
	EXPLODE
	EXTRAS
	EXTRAS_W

	Keywords F
	FACT
	FALSE%
	FASTEXPAND
	FBKDT
	FDAT
	FDEC$
	FETCH_BYTES
	FEXP$
	FET
	FEW
	FEX
	FEX_M
	FF
	FGET%
	FGET$
	FGETB
	FGETL
	FGETF
	FGETH$
	FILE_BACKUP
	FILE_DAT
	FILE_DATASPACE
	FILE_LEN
	FILE_LENGTH
	FILE_OPEN
	FILE_POS
	FILE_POSITION
	FILE_PTRA
	FILE_PTRR
	FILE_TYPE
	FILE_UPDATE
	FILL
	FILL$
	FILLMEM_B
	FILLMEM_W
	FILLMEM_L
	FIND
	FLASH
	FLEN
	FLIS
	FLP_DENSITY
	FLP_DRIVE
	FLP_DRIVE$
	FLP_EXT
	FLP_JIGGLE
	FLP_SEC
	FLP_START
	FLP_STEP
	FLP_TRACK
	FLP_USE
	FLUSH
	FLUSH_CHANNEL
	FMAKE_DIR
	FNAME$
	FOPEN
	FOP_DIR
	FOP_IN
	FOP_NEW
	FOP_OVER
	FOR
	FORCE_TYPE
	FORMAT
	FPOS
	FPOS_A
	FPOS_R
	FPUT$
	FPUT%
	FPUTB
	FPUTF
	FPUTL
	FRACT
	FREAD
	FREAD$
	FREE
	FREE_FAST
	FREE_MEM
	FREEZE
	FREEZE%
	FSERVE
	FSETH$
	FTEST
	FTYP
	FuNction
	FUPDT
	FVERS
	FWRITE
	FWRITE$
	FXTRA

	Keywords G
	GCD
	GER_MSG
	GER_TRA
	GET
	GET_BYTE$
	GET_BYTE
	GET_FLOAT
	GET_LONG
	GET_STRING
	GET_STUFF$
	GetHEAD
	GET_WORD
	GETXY
	GO SUB
	GO TO
	GPOINT
	GRAB
	GREGOR
	GT$

	Keywords H
	HEADR
	HEADS
	HEX
	HEX$
	HGET
	HIS_SET
	HIS_SIZE
	HIS_UNSET
	HIS_USE
	HIS_USE$
	HOT
	HOT_CHP
	HOT_CHP1
	HOT_CMD
	HOT_DO
	HOT_GETSTUFF$
	HOT_GO
	HOT_KEY
	HOT_LIST
	HOT_LOAD
	HOT_LOAD1
	HOT_NAME$
	HOT_OFF
	HOT_PICK
	HOT_REMV
	HOT_RES
	HOT_RES1
	HOT_SET
	HOT_STOP
	HOT_STUFF
	HOT_THING
	HOT_THING1
	HOT_TYPE
	HOT_WAKE
	HPUT

	Keywords I
	I2C_IO
	IDEC$
	IF
	IFORMAT
	INARRAY%
	INF
	INK
	STANDARD COLOUR DRIVERS
	EXTENDED COLOUR DRIVERS

	INKEY$
	INPUT
	INPUT$
	INSTR
	INSTR_CASE
	INT
	INTMAX
	INVERSE
	INVXY
	IO_PEND%
	IO_PRIORITY
	IO_TRAP
	IQCONVERT
	IS_BASIC
	IS_PEON
	IS_PTRAP

	Keywords J
	JBASE
	JobCBS
	JOBID
	JOBS
	JOB$
	JOB_NAME

	Keywords K
	KBD_RESET
	KBD_TABLE
	KBD_USE
	KBYTES_FREE
	KEY
	KEYROW
	KEYW
	KEY_ADD
	KEY_RMV
	KILL
	KILLN
	KILL_A
	KJOB
	KJOBS

	Keywords L
	LANG_USE
	LANGUAGE
	LANGUAGE$
	LAR
	LBYTES
	LCM
	LDRAW
	LEFT
	LEN
	LET
	LEVEL2
	LGET
	LINE
	LINE_R
	LINKUP
	LINT2
	LIST
	LIST_TASKS
	LMAR
	LN
	LOAD
	LOADPIC
	LOCal
	LOCK
	LOG2
	LOG10
	LOOKUP%
	LOWER$
	LPOLL
	LPR_USE
	LPUT
	LRESFAST
	LRESPR
	LRUN
	LSCHD
	LWC$

	Keywords M
	MACHINE
	MAKE_DIR
	MATADD
	MATCOUNT
	MATCOUNT1
	MATEQU
	MATDEV
	MATIDN
	MATINPUT
	MATINV
	MATMAX
	MATMEAN
	MATMIN
	MATMULT
	MATPLOT
	MATPLOT_R
	MATPROD
	MATREAD
	MATRND
	MATSEQ
	MATSUB
	MATSUM
	MATTRN
	MAX
	MAX_CON
	MAX_DEVS
	MAXIMUM
	MAXIMUM%
	MB
	MD
	MERGE
	MIDINET
	MIN
	MINIMUM
	MINIMUM%
	MISTake
	MKF$
	MKI$
	MKL$
	MKS$
	MNET
	MNET%
	MNET_OFF
	MNET_ON
	MNET_S%
	MNET_USE
	MOD
	MOD
	MODE
	MONTH%
	MORE
	MOUSE_SPEED
	MOUSE_STUFF
	MOVE
	MOVE_MEM
	MOVE_POSITION
	MRUN
	MSEARCH
	MT
	MTRAP

	Keywords N
	NDIM
	NDIM%
	NET
	NETBEEP
	NETPOLL
	NETRATE
	NETREAD
	NETSEND
	NETVAR%
	NET_ID
	NEW
	NEWCHAN%
	NEW_NAME
	NEXT
	NFS_USE
	NIX
	NO_CLOCK
	NOCAPS
	NOKEY
	NORM
	NOR_MSG
	NOR_TRA
	NOT
	NRM
	NXJOB

	Keywords O
	ODD
	OFF
	OJOB
	ON
	ON…GO TO
	ON…GO SUB
	OPEN
	OPEN_DIR
	OPEN_IN
	OPEN_NEW
	OPEN_OVER
	OR
	OUTL
	OUTLN
	OVER

	Keywords P
	PAGDIS
	PAGLEN
	PAGLIN
	PAINT
	PALETTE_QL
	PALETTE_8
	PAN
	PAPER
	PARHASH
	PARNAM$
	PARNAME$
	PARSEPA
	PARSTR$
	PARTYP
	PARTYPE
	PARUSE
	PAR_ABORT
	PAR_BUFF
	PAR_CLEAR
	PAR_DEFAULTPRINTER$
	PAR_GETFILTER
	PAR_GETPRINTER$
	PAR_PRINTERCOUNT
	PAR_PRINTERNAME$
	PAR_PULSE
	PAR_SETFILTER
	PAR_SETPRINTER
	PAR_USE
	PAUSE
	PE_BGOFF
	PE_BGON
	PEEK
	PEEK_FLOAT
	PEEK_STRING
	PEEK_W
	PEEK_L
	PEEKS
	PEEKS_W
	PEEKS_L
	PEEK$
	PEEK_F
	PEND
	PENDOWN
	PENUP
	PEOFF
	PEON
	PEX$
	PEX_INI
	PEX_SAVE
	PEX_XTD
	PHONEM
	PI
	PICK$
	PICK%
	PIE_EX_OFF
	PIE_EX_ON
	PIE_OFF
	PIE_ON
	PIF$
	PINF$
	PIXEL%
	PJOB
	PLAY
	PLOT
	PLOT
	POINT
	POINT_R
	POKE
	POKE_FLOAT
	POKE_STRING
	POKE_W
	POKE_L
	POKES
	POKES_W
	POKES_L
	POKE$
	POKE_F
	PRINT
	PRINT_USING
	PRIO
	PRIORITISE
	PRO
	PROCESSOR
	PROCedure
	PROGD$
	PROG_USE
	PROT_DATE
	PROT_MEM
	PROUND
	PRT_ABORT
	PRT_ABT
	PRT_BUFF
	PRT_CLEAR
	PRT_USE
	PRT_USE
	PRT_USE$
	PTH_ADD
	PTH_LIST
	PTH_RMV
	PTH_USE
	PTH_USE$
	PTH$
	PTR_FN%
	PTR_INC
	PTR_KEY
	PTR_LIMITS
	PTR_MAX
	PTR_OFF
	PTR_ON
	PTR_POS
	PTR_X
	PTR_Y
	PURGE
	PUT
	PUT_BYTE
	PUT_FLOAT
	PUT_LONG
	PUT_STRING
	PUT_WORD
	PXOFF
	PXON
	PX1ST
	P_ENV

	Keywords Q
	QACONVERT
	QCOPY
	QCOUNT%
	QDOS$
	QFLIM
	QICONVERT
	QLINK
	QLOAD
	QLRUN
	QL_PEX
	QMERGE
	QMRUN
	QPC_CMDLINE$
	QPC_EXEC
	QPC_EXIT
	QPC_HOSTOS
	QPC_MAXIMIZE
	QPC_MINIMIZE
	QPC_MSPEED
	QPC_NETNAME$
	QPC_QLSCREMU
	QPC_RESTORE
	QPC_SYNCSCRAP
	QPC_VER$
	QPC_WINDOWSIZE
	QPC_WINDOWTITLE
	QPTR
	QRAM$
	QSAVE
	QSAVE_O
	QSIZE%
	QSPACE%
	QTRAP
	QuATARI
	QUEUE%
	QUIT

	Keywords R
	RAD
	RAE
	RAFE
	RAMTOP
	RAM_USE
	RAND
	RANDOMISE
	READ
	READ_HEADER
	RECHP
	RECOL
	REFRESH
	RELEASE
	RELEASE
	RELEASE_HEAP
	RELEASE_TASK
	RELJOB
	RELOAD
	REL_JOB
	REMAINDER
	REMark
	REMOVE
	REMOVE_TASK
	RENAME
	RENUM
	REPeat
	REPLACE
	REPLY
	REPORT
	RESAVE
	RESERVE
	RESERVE_HEAP
	RESET
	RESFAST
	RESPR
	RESTORE
	RES_SIZE
	RES_128
	RETRY
	RETurn
	REV$
	RJOB
	RMAR
	RMODE
	RND
	ROM
	ROM_EXT
	ROM_LOAD
	ROMs
	RTP_R
	RTP_T
	RUN

	Keywords S
	SAR
	SARO
	SAUTO
	SAVE
	SAVE_O
	SAVEPIC
	SB_THING
	SBASIC
	SBYTES
	SBYTES_O
	SCALE
	SCLR
	SCRBASE
	SCREEN
	SCREEN_BASE
	SCREEN_MODE
	SCRINC
	SCROLL
	SCROF
	SCRON
	SCR2DIS
	SCR2EN
	SCR_BASE
	SCR_LLEN
	SCR_REFRESH
	SCR_SAVE
	SCR_SIZE
	SCR_STORE
	SCR_XLIM
	SCR_YLIM
	SDATE
	SDP_DEV
	SDP_KEY
	SDP_SET
	SDUMP
	SEARCH
	SEARCH
	SEARCH_C
	SEARCH_I
	SEARCH_MEM
	SELect
	SELect ON
	SEND_EVENT
	SERMAWS
	SERMCUR
	SERMOFF
	SERMON
	SERMPTR
	SERMRESET
	SERMSPEED
	SERMWAIT
	SERNET
	SER_ABORT
	SER_BUFF
	SER_CDEOF
	SER_CLEAR
	SER_FLOW
	SER_GETPORT$
	SER_PAUSE
	SER_ROOM
	SER_SETPORT
	SER_USE
	SET
	SET
	SetHEAD
	SET_HEADER
	SET_CLOCK
	SET_FBKDT
	SET_FUPDT
	SET_FVERS
	SET_GREEN
	SET_RED
	SET_LANGUAGE
	SET_XINC
	SET_YINC
	SEXEC
	SEXEC_O
	SGN
	SGN%
	SHOOT
	SI
	SIGN
	SIN
	SINH
	SINT
	SIZE
	SJOB
	SLOAD
	SLUG
	SMOVE
	SND_EXT
	SNET
	SNET%
	SNET_ROPEN
	SNET_S%
	SNET_USE
	SORT
	SOUNDEX
	SPJOB
	SPL
	SPLF
	SPL_USE
	SP_JOB
	SQR
	SQRT
	SSAVE
	SSHOW
	SSTAT
	SSTEP
	STAMP
	STAT
	STEP
	STOP
	STRIP
	SUB
	SUSJOB
	SWAP
	SXTRAS
	SYNCH%
	SYSBASE
	SYS_BASE
	SYS_VARS
	S_FONT
	S_LOAD
	S_SAVE
	S_SHOW
	SYSTEM_VARIABLES

	Keywords T
	TAN
	TANH
	TCA
	TCONNECT
	TEE
	THEN
	THING
	TH_FIX
	TH_VER$
	TINY_EXT
	TINY_RMV
	TK2_EXT
	TK_VER$
	TNC
	TO
	TOP_WINDOW
	TPFree
	TRA
	TRIM$
	TRINT
	TROFF
	TRON
	TRUE%
	TRUNCATE
	TTALL
	TTEDELETE
	TTEFP
	TTEOPEN
	TTET3
	TTEX
	TTEX_W
	TTFINDM
	TTINC
	TTME%
	TTMODE%
	TTPEEK$
	TTPOKEM
	TTPOKE$
	TTREL
	TTRENAME
	TTSUS
	TTV
	TT$
	TURBO_diags
	TURBO_F
	TURBO_locstr
	TURBO_model
	TURBO_objdat
	TURBO_objfil
	TURBO_optim
	TURBO_P
	TURBO_repfil
	TURBO_struct
	TURBO_taskn
	TURBO_window
	TURN
	TURNTO
	TXTRAS
	TYPE
	TYPE_IN
	T_COUNT
	T_OFF
	T_ON
	T_RESTART
	T_START
	T_STOP

	Keywords U
	UINT
	UNDER
	UNJOB
	UNL
	UNLOAD
	UNLOCK
	UNSET
	UPC$
	UPPER$
	UPUT
	USE
	USE_FONT

	Keywords V
	VA
	VAR
	VER$
	VFR
	VG_HOCH
	VG_LOAD
	VG_PARA
	VG_PRINT
	VG_RESO
	VG_WIND
	VIEW
	VOCAB

	Keywords W
	WAIT_EVENT
	WBASE
	WCOPY
	WCOPY_F
	WCOPY_O
	WDEL
	WDEL_F
	WDIR
	WEEKDAY%
	WGET
	WHEN condition
	WHEN ERRor
	WHERE_FONTS
	WIDTH
	WINDOW
	WINF$
	WIN2
	WIN_BASE
	WIN_DRIVE
	WIN_DRIVE$
	WIN_FORMAT
	WIN_REMV
	WIN_SLUG
	WIN_START
	WIN_STOP
	WIN_USE
	WIN_WP
	WIPE
	WLD
	WM
	WM_BLOCK
	WM_BORDER
	WM_INK
	WM_MOVEMODE
	WM_PAPER
	WM_STRIP
	WMAN$
	WMON
	WMOV
	WPUT
	WREN
	WSET
	WSET_DEF
	WSTAT
	WTV
	W_CRUNCH
	W_SHOW
	W_STORE
	W_SWAP
	W_SWOP

	Keywords X
	XCHANGE
	XDRAW
	XLIM
	XOR
	X_PTR%

	Keywords Y
	YEAR%
	YLIM
	Y_PTR%

	Keywords Z
	ZAP

	Keywords Other
	_DEF%
	_DEF$
	_NAME$

	Appendices Introduction
	A1. Minerva
	A1.1 INTRODUCTION
	A1.2 Windows and Closing Windows
	A1.3 Dual Screen Mode
	A1.4 Border
	A1.5 Empty Brackets
	A1.7 MultiBASICs
	A1.8 Strings

	A2 SMSQ/E
	A2.1 Introduction
	A2.2 The EOF Function
	A2.3 Empty Brackets
	A2.4 Multiple Sbasics
	A2.5 Improved Interpreter
	A2.6 Numbers in Programs
	A2.7 Inbuilt Pointer Environment
	A2.8 Undefined Variables
	A2.9 Extended Display
	A2.9.1 Extra Colours
	A2.9.2 Hi-resolution Displays

	A2.10 Problems
	A2.10.1 Lightning/Speedscreen
	A2.10.2 Toolkit III and System Toolkit
	A2.10.3 Serial to Parallel Converters
	A2.10.4 Aurora
	A2.10.5 Disk Access

	A3 Emulators
	A3.1 Introduction
	A3.2 Apple Macintosh
	A3.2.1 Q-Emulator

	A3.3 IBM Compatible PCs
	A3.3.1 QPC and QPC2
	A3.3.2 QXL II
	A3.3.3 QLAY
	A3.3.4 Q-Emulator for Windows95

	A3.4 Atari Computers
	A3.4.1 The ST/QL Emulator
	(a) Atari-QL Emulator
	(b) Extended4-Emulator
	(c) QVME
	In General
	Microdrives
	BEEP
	MODE 8
	MODE 4
	ROM Memory
	Network
	Devices
	Lightning/Speedscreen
	Qliberator

	A3.4.2 SMSQ/E
	Lightning/Speedscreen
	Qliberator

	A3.4.3 SMS2
	A3.5 Commodore Amigas
	A3.5.1 Amiga QDOS
	ROM Cartridges
	Network & Microdrives
	MODE 8
	BEEP
	MODE 4
	DEVICES
	TAS INSTRUCTIONS

	A3.6 Unix Systems
	A3.6.1 UQLX

	A4 Thor Computers
	A4.1 Introduction
	A4.2 KEYROW
	A4.3 MODE
	A4.4 The Thor Windowing System
	A4.5 BEEP

	A5 Expansion Boards
	A5.1 GOLD CARD
	A5.2 SUPER GOLD CARD
	A5.3 AURORA
	A5.4 Q40
	A5.5 HERMES / SuperHERMES
	A5.6 QuBIDE

	A6 Compatibility
	A6.1 Addressing
	A6.2 Speed
	A6.3 The Operating System
	A6.4 Memory
	A6.5 The Stack Pointer
	A6.6 Compilers
	A6.7 High Resolution Displays
	A6.8 String Lengths
	A6.9 Later Processors & Gold Cards
	A6.10 Finally

	A7 Multiple Basics
	A7.1 MINERVA MultiBASICS
	A7.1.1 Channels OPENed automatically in MultiBASICs
	A7.1.2 Starting a MultiBASIC with the Original QL ROM Commands only
	A7.1.3 Multitasking a MultiBASIC Program
	A7.1.4 What Happens to the Rest of the Command String?
	A7.1.5 Loading Toolkits into a MultiBASIC

	A7.2 SMS Multiple SBASICs
	A7.2.1 Channels OPENed automatically in SBASICs
	A7.2.2 The Command String
	A7.2.3 Starting an SBASIC with the Original QL ROM Commands only
	A7.2.4 Multitasking an SBASIC Program
	A7.2.5 Loading Toolkits into an SBASIC
	A7.2.6 Defining the Name of an SBASIC
	A7.2.7 Channel #0, #1 and #2
	A7.2.8 Removing an SBASIC
	A7.2.9 Keywords Which are Useful in SBASICs

	A8 Error Messages
	A8.1 Standard English Error Messages
	A8.2 Foreign Error Messages
	A8.3 Dates
	A8.4 SMS Messages

	A9 Character Set, Keyboard
	A9.1 The Character Set
	A9.2 Keyboard Layouts
	British QL
	German QL
	French QL
	Swedish QL
	Finnish QL
	Danish QL
	Spanish QL

	A10 Designing New Character Sets (Fonts)
	A10.1 Fonts on the QL
	A10.2 Changing Fonts in Programs

	A11 Mathematics
	A11.1 Degrees and Radians
	A11.2 Triangles and Trigonometrics
	A11.3 Boolean Logic
	A11.4 Operators
	A11.5 Hexadecimal and Binary Numbers
	A11.6 Integers
	A11.7 Faster Mathematics
	A11.8 Precision

	A12 Device Drivers
	A12.1 Devices in General
	A12.2 Directory Device Drivers
	Microdrive (MDV)
	Floppy Disk (FLP)
	RAMdisk (RAM)
	Hard Disk (WIN)
	QL ROMDisq (ROM)

	A12.3 Window Device Drivers
	Console (CON)
	Screen (SCR)

	A12.4 Other Device Drivers
	Parallel Port (PAR)
	THOR XVI
	ST Emulators, Super Gold Card AND SMSQ/E
	AMIGA-QDOS
	Serial Ports (SER)
	Standard QL
	(a) Output SERial devices
	(b) Input SERial devices
	(c) The Standard QL Device Driver

	ST Emulators and SMSQ/E
	THOR XVI
	Serial Ports (SRX)
	Serial Ports (STX)
	Printer Ports (PRT)
	Qjump RAMPRT, Trump Card, QXL and Gold Cards
	ST Emulators and SMSQ/E
	Memory Driver (MEM)

	Network Drivers (NET)
	Communication Drivers (PIPE)
	Standard QL ROM
	Minerva ROM

	Named Pipe Drivers, SMS
	Communication Drivers (HISTORY)
	Nul Driver (NUL)
	Input
	Output

	A12.5 DIRECT SECTOR ACCESS
	A12.6 Level-1 Device Drivers
	A12.7 Level-2 Device Drivers
	A12.8 Level-3 Device Drivers
	A12.9 Using Alien Format Disks

	A13 Extended Pointer Environment
	A14 Coercion
	A15 Mouse Drivers
	A15.1 A Mouse for the Standard QL
	A15.1.1 Quanta Mouse (or QIMI Mouse)
	A15.1.2 AURORA Mouse Interface
	A15.1.3 Serial Mouse
	SERMouse (by Albin Hessler Software)
	DIY Toolkit Serial Mouse (Vol I)
	SuperHERMES

	A15.2 A Mouse for QPC / QXL
	A15.3 A Mouse for ATARIs
	A15.4 A Mouse for Unix and Macintoshes
	A15.5 A Mouse for the Amiga

	A16 The QL Display
	A16.1 The Screen Address
	A16.2 The Screen Size
	A16.3 On-Screen Colours
	Standard QL Colour Drivers
	MODE 4
	MODE 8

	Aurora Enhanced Colour Drivers
	The Master Control Register ($18063)
	The Enhanced Mode Control Register ($18043)
	The Monitor Preset Register ($18043)
	16 Colour Mode
	256 Colour Mode
	QPC/QXL Enhanced Colour Drivers
	QL Colour Mode (COLOUR_QL)
	PAL Colour Mode (COLOUR_PAL)
	Native Colour Mode (COLOUR_NATIVE)
	24 Bit Colour Mode (COLOUR_24)
	Q40/Q60 Enhanced Colour Drivers
	QL Colour Mode (COLOUR_QL)
	PAL Colour Mode (COLOUR_PAL)
	Native Colour Mode (COLOUR_NATIVE)
	24 Bit Enhanced Colour Drivers
	MISCELLANEOUS COLOUR MODES
	MODE 2 (Monochrome Drivers)
	MODE 12 (16 Colour Mode)

	A16.4 USING HIGH RESOLUTION DISPLAYS

	A17 Networks
	A17.1 QNet
	A17.1.1 Connecting Machines
	A17.1.2 The Device Driver
	A17.1.3 Sending / Receiving Data
	A17.1.4 QNet without Toolkit II
	A17.1.5 QNet Under Toolkit II

	A17.2 Flexynet (DIY Toolkit - VOL X)
	A17.3 Midinet
	A17.4 Sernet
	A17.5 Amadeus Interlink
	A17.6 QL - PC Fileserver

	18 Configuring Programs
	CONFIG Level 1 & Level 2
	Passing Parameter with EXEC
	Making the configuration part of the program.
	Using a separate configuration file.
	Using Environment Variables
	DATA_USE etc

