SBASIC/SuperBASIC Reference
Manual Online Documentation
Release 4.0.2

Rich Mellor

Feb 09, 2024

CONTENTS

Original Foreword 3
1.1 2015 Foreword e e e 4
1.2 Online Edition Foreword e 4
Introduction 5
2.1 Contributing Authors e e 7
2.2 Installing Toolkits L e 7
Credits 9
3.1 Other Notices o i o e e e e e 10
Structure of this Book 11
4.1 Syntax e e e e e e e e e e e e e e 11
4.2 Descriptiono e e e e e e e e 14
43 Examples e e e e e e e e e 14
44 NOES . . v v v o e e e e e e e e e e e e e e e e e e e 14
4.5 [Implementation] Notes o i e 14
4.6 Warning e e e e e e e e 15
477 Cross-Reference e 15
Writing Programs 17
5.1 Compiling SuperBASIC Programs e 17
5.2 Writing Programs to Run Under the Pointer Environment 19
5.3 Multitasking Programs 20
Keywords Introduction 21
Toolkits 23
7.1 Ahnlichkeiten 23
7.2 ARRAY . . . e e 23
7.3 ATARIEmulators e e e e e 24
7.4 ATARIDOS e e e e 24
7.5 ATARILREXT e e e 25
7.6 AmigaQDOS-v3.20 27
77 BGL . .o e 27
7.8 BIT . . o e e 27
7.9 BTool e 28
7.10 BeuleTools e e e e e e e 31
711 COMPICT e e e e e e e e e e e e e 32
7.2 CONCAT e e e e 32

7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21
7.22
7.23
7.24
7.25
7.26
7.27
7.28
7.29
7.30
7.31
7.32
7.33
7.34
7.35
7.36
7.37
7.38
7.39
7.40
7.41
7.42
7.43
7.44
7.45
7.46
7.47
7.48
7.49
7.50
7.51
7.52
7.53
7.54
7.55
7.56
7.57
7.58
7.59
7.60
7.61
7.62
7.63

CONVERT e e e 32
CRYPTAGE e e e e 33
DESPR . . . e e 33
DEV device. e e e e e 33
DIY Toolkit e e e e e 33
Djtoolkit vI.16 e e 38
Disk Interfaces e e e e e 40
ETAT e e e e 40
Ecran Manager e e e e 40
Environment Variables e 41
FACT . . . e e e e e 41
FKEY e e e 41
FN e e e e 41
FONTS . . . e e e e 42
FRACT e e e e e e e 42
Fast PLOT/DRAW Toolkit e et et 42
GETSTUFF e e e e e e e e e e e e e 42
GoldCard e e e 42
GPOINT . . . e 44
HCO . . e e e e 44
HOTKEY II e e e e e e e 44
Hard Disk Driver e e e e e e 45
History Device o e e e e e e e e 45
Hyper e e e e 46
Hyperbola e e 46
KEYMAN . . . e e e e e e e 46
KILL . . . e e e e e 46
LWCUPC e e e e e e e 46
Level-2 Device Drivers e e e e e e 47
MINMAX2 . . . e e e e e e 47
MULTI e e e e e e e e e 47
Math Package L 47
MINEIrva o o e e e e e e e e e e e e e e e 49
Minerva - Trace Toolkit e 49
Minerva Extensions Toolkit 49
NDIM . e e e e 49
PAR/SER Interfaces e e e e e e 49
PEX . . e e e 49
PICEXT e e e e e e e 50
PIE . . . e e e e 50
PRIO e e e e 51
PTRRTP e e 51
Pathdevice e 51
Pointer Interface - v1.23 Onwards e 51
QL ROM e e 51
QPC/ QXL o e e e e e e 56
QSOUND e s 57
QView Tiny Toolkit e 57
QVME - Level E-19 Driversonwards 58
QXL . e e e s 58
Qjump RAMPRT e 58

7.64 RES . . o . e 58
7.65 REV . 59
7.66 SDUMP_REXT s e e 59
7.67 SERMouSe o e e e 59
7.68 SMS . e 59
7.69 SMSQ e 61
770 SMSQ/E . . . e e 61
771 ST/IQL . . o e e 69
772 STAMP . . o e e 71
773 SWAP . . o e 71
7.74 SYSBASE . . . 72
7.75 Shape Toolkit e e e e e e 72
776 Super Gold Card e e 72
777 SuperQBoard e e e 72
7.78 SuperWindow Toolkit 72
7.79 THOR . . o . e e 72
7.80 TRIM e e 75
7.81 TRIPRODRO e e e 76
7.82 TRUFA e e 76
7.83 TinyToolkit e e e e e 76
7.84 Toolfin e e e e 78
7.85 ToolkitIl o e e 78
7.86 Trump Card. e e e e e e e e 82
7.87 Turbo Toolkit e 82
7.88 UNIJOB e e 84
7.89 WIPE e 84
790 WM . L e e 84
791 XKBD . . . e 84
Keywords A 85
8.1 ABS .. e 85
8.2 ABS_POSITION e e 86
83 ACCEL_OFF o e 87
84 ACCEL_ON e 87
85 ACCEL_SET o e 87
8.6 ACCEL_STATE e e s e 88
87 ACOPY . . . o e 88
8.8 ACOS . . . e 89
89 ACOT . . . e e 89
8.10 ADATE e e 90
8.11 ADDREG e 91
8.12 ADELETE e e e 92
8.13 ADIR e 92
8.14 AFORMAT o o e 92
.15 AJOB . . . e 93
8.16 ALARM e e 93
817 ALCHP o e 94
818 ALIAS . . . e 95
8.19 ALINE o e 97
820 ALLOCATION e e e e e e 98
821 ALPHA_BLEND e 98

822 ALT e e 99
823 ALTER e e e e 99
824 ALTKEY e e e e 100
825 AND . . . e e e e 101
826 APOINT e e e e 102
8.27 APPEND e e 102
828 AQCONVERT e e e 103
8.20 ARC e e 103
830 ARC_R e e e 105
831 ARCOSH e 105
832 ARCOTH e e e e e e e 106
833 ARSINH e e 106
834 ARTANH e e e 107
8.35 ASIN . . . e e e 107
8306 ASK . .. e e e e 108
837 ASTAT e e e e 109
838 AT . . e e e e 109
8.39 ATAN . . . e e e 110
8.40 ATARI e e e 111
841 ATARI_EXT e e e e 112
B.42 ATN . . e e 112
843 ATN2 . . . e e e 112
844 AUTO e 113
845 AUTO_DIS e e e e 114
846 AUTO_TK2FIL e e e e e 115
847 AUTO_TK2F2 e e e e e 115
848 A_BLANK e 116
849 A_EMULATOR e e e e e 116
850 A_MACHINE e 117
851 A_OLDSCR e e e e 117
852 A_PROCESSOR e 118
853 A_RDATE e 118
854 A_SDATE e e e e 118
855 A_SPEED e 119
Keywords B 121
9.1 BASIC e e 121
0.2 BASICP e 121
9.3 BASIC B e 122
9.4 BASIC_W . . . e e e 122
9.5 BASIC_L e e e e 122
9.6 BASIC_ B% e e e 123
9.7 BASIC_W% e e e e e 123
9.8 BASIC_F e e 123
9.9 BASIC_INDEX% e e e e e 124
90.10 BASIC_NAMES e 124
9.11 BASIC_POINTER e e st e s 124
9.12 BASIC_TYPE% e e e 125
0.13 BAT e 125
0.14 BATS e e 126
90.15 BAT_USE e e e 126

10

0.16 BAUD e 126
9.17 BAUDRATE e e e 130
0.18 BCLEAR e 130
9.19 BEEP e e e e 131
920 BEEPING e e 133
921 BELL e 133
022 Beule_EXT e e e 134
9.23 BGCOLOUR_QL e e e e e e e e 134
924 BGCOLOUR_24 e e e e e e e s 135
025 BGET e 135
926 BGIMAGE e e e e 136
027 BICOP e 137
028 BIN e e e e e e 137
029 BINS e 138
030 BINOM e e e e 139
031 BIT% e e e e e e e e e 140
032 BLD e e e 141
033 BLOCK. e e e e e 141
9.34 BLOOK e 142
035 BLS e e e e e 142
936 BMOVE e 143
937 BORDER e e e e 143
938 BPEEK% e 145
939 BPEEK W% e e e e e e e 145
940 BPEEK_L e 145
941 BPOKE e e e e 145
042 BPOKE_W e 145
943 BPOKE_L e e e e 145
044 BPUT e e e e e e 146
9.45 BREAK_ON e 147
946 BREAK_OFF 147
947 BREAK e 148
948 BREAK% e e e e e 148
9.49 BTool_EXT e 149
9.50 BTool_RMV e e e 149
9.51 BTRAP e 149
0.52 BUTTON% e e e e e e e e e e e e e 150
053 BVERS e 151
9.54 BYTES_FREE e 151
Keywords C 153
10.1 CACHE_ON et e e e 153
102 CACHE_OFF e e s e e e 153
10.3 CALL e e 154
104 CAPS e 156
10.5 CATNAP e e e e e 156
10.6 CBASE e 157
10.7 CCHRS e e 157
10.8 CDECS e 157
10.9 CD_ALLTIME e e 158
10.10 CD_CLOSE e e e 159

10.11 CD_EJECT o e e e 159

10.12 CD_FIRSTTRACK 159
1013 CD_HOUR e 160
10.14 CD_HSG2RED 160
1015 CD_INIT o e e 160
10.16 CD_ISCLOSED e e 161
10.17 CD_ISINSERTED e 161
10.18 CD_ISPAUSED e 162
10.19 CD_ISPLAYING e 162
10.20 CD_LASTTRACK e e 162
10.21 CD_LENGTH e 163
1022 CD_MINUTE e e 163
10.23 CD_PLAY 163
1024 CD_RED2HSG e 164
10.25 CD_RESUME 165
10.26 CD_SECOND e 165
1027 CD_STOP 165
10.28 CD_TRACK e e 166
1029 CD_TRACKLENGTH e e 166
1030 CD_TRACKSTART e 167
1031 CD_TRACKTIME e e 167
1032 CEIL e 167
1033 CHANGE o e 168
10.34 CHANID 169
10.35 CHANNELS o e 169
10.36 CHANNEL _ID 170
1037 CHAN_B% o e 170
1038 CHAN_W% 170
1039 CHAN_L% o o o e e 170
1040 CHARGE o . e e 171
10.41 CHAR_DEF e 172
10.42 CHAR_INC . . . o e 172
1043 CHAR_USE e 173
10.44 CHBASE o e 174
1045 CHECK 175
10.46 CHECK o e e 175
1047 CHECKE 176
1048 CHK_HEAP e 176
1049 CHRS e 177
1050 CIRCLE o e e 177
1051 CIRCLE_R o e e 178
10.52 CKEYOFF e 179
1053 CKEYON o e e 179
1054 CLCHP 180
1055 CLEAR . . . L o o e 180
10.56 CLEAR_HOT 181
1057 CLIP%e o o o e e e 182
1058 CLIPS e 183
10.59 CLOCK e e 183
10.60 CLOSE 184
10.61 CLOSE% o e e 186

vi

10.62 CLRMDV . . . o e 186

10.63 CLS e e 187
10.64 CLS_A e e e e 188
10.65 CMDS e e 188
10.66 CODE e e 189
10.67 CODEVEC e e e e e 190
10.68 COL e e 190
10.69 COLOUR_NATIVE e e e e s e e 191
10.70 COLOUR_PAL e e e e e e 191
10.71 COLOUR_QL e e s e e s e e 193
10.72 COLOUR_24 e e e e e e e e 193
10.73 COMMAND_LINE e 194
10.74 COMPILED e e e 194
10.75 COMPRESS e e e e 195
10.76 CONCAT e e e e e e e e 195
10.77 CONNECT e e e e e e e e s e 196
10.78 CONTINUE e e e e e e s e e 196
10.79 ConvCASES e 197
10.80 CONVERT e e e e 197
10.81 COPY . . . o e e e 198
10.82 COPY_B e e e 200
10.83 COPY_H e e e 201
10.84 COPY_L e e 201
10.85 COPY_N e e e 201
10.86 COPY_O e e e 202
10.87 COPY_W . . . o e e 202
10.88 COS . . . e e 203
10.89 COSH e e 204
10.90 COT o e 204
1091 COTH e e e e e e 206
1092 CSIZE e e e e 206
1093 CTABS e 207
10.94 CUR e e e 207
10.95 CURDIS e e e 208
10.96 CURSEN e 208
10.97 CURSOR e e e e 209
1098 CURSORY0 o o i e e e e e e e e e e e s e 210
10.99 CURSOR_OFF e e e e s e s 211
10.I00CURSOR_ON o e e e e e e s s e 211
10.10ICVE . . . e e 211
10.102CVI% . . o o e e e 212
10.103CVSS . . . e 212
10.104CVL e e e s e 213
11 Keywords D 215
I1.1 DATA . . . e e e 215
11.2 DATADS e e 216
11.3 DATAREG e e 217
11.4 DATASPACE e e e e 217
11.5 DATA_AREA e e 218
11.6 DATA_USE e e 219

vii

117 DATE o e e 220

11.8 DATES e e 221
11.9 DAYS . . . o e e 223
IT.10 DAY % . . . o e e e e e e e e e e e e e e e 224
11.11 DBL e e e e e e e 224
11.12 DDOWN . . . e e e 224
11.13 DEALLOCATE e e e e e e e e e e e 225
11.14 DEBUG e e e e e e 226
11.15 DEBUG_LEVEL e e e e e e 226
11.16 DEFAULT e e e e e e 226
11.17 DEFAULT% e e e e e e e e e e e e e e e e e e e 227
I1.I8 DEFAULTS e e e e e e e s e 227
11.19 DEFAULT_DEVICE e e e e e e e e e e e 227
11.20 DEFAULT_SCR e e e e e s e e e 228
I1.21 DEFINE XXX v v o e e e e e e e e e e e e e e e e e e 229
11.22 DEFine FuNction e e e e e e e e e 229
11.23 DEFine PROCedure e e e 234
11.24 DEFINED e e e e e 236
I1.25 DEG o e e e e e 237
11.26 DELETE e e e e e 237
11.27 DEL_DEFB e e e e e 238
11.28 DESPR e e e e 239
11.29 DESTDS e e e 239
11.30 DEST_USE e e e e e e e e 240
11.31 DEMO e e e e 240
11.32 DET . . o e e e e e e e e 241
11.33 DEV_NAME e e e e e 242
11.34 DEVICE_SPACE e e e e e e e e 243
11.35 DEVICE_STATUS e e e e e e e e e s e e 244
11.36 DEVLIST e e e e e e 245
11.37 DEVTYPE e e e 245
11.38 DEV_LIST e e e e 246
11.39 DEV_NEXT e e e e e e e e e e 246
1140 DEV_USE e e e 247
11.41 DEV_USEN e e e e 250
11.42 DEV_USES e e e 250
1143 DIM . . o e e e e e e e e 251
11.44 DIMN . . . e e e e e 260
1145 DIR e e e e e e e 261
11.46 DISCARD e e e 264
11.47 DISP_BLANK e e e e e 264
11.48 DISP_INVERSE e 265
11.49 DISP_RATE o e e e e e 266
11.50 DISP_SIZE e e e e e e e 267
11.51 DISP_TYPE e e e e 268
11.52 DISP_UPDATE e e e e e e 268
11.53 DISPLAY_WIDTH e e e e e 269
11.54 DIV . o e e e e e e e e 269
1155 DIV . o o e e e e e 270
11.56 DI_OPEN e e e e e e e 271
11.57 DI_OPEN_IN e e e e e 271

viii

11.58 DJ_OPEN_NEW e 271

11.59 DI_OPEN_OVER e 271
11.60 DI_OPEN_DIR e e 272
11.61 DITK_VERS e 273
I1.62 DLINE e 273
11.63 DLIST e e e e e e 274
11.64 DMEDIUM_DENSITY e e e e 275
11.65 DMEDIUM_DRIVES e e e 275
11.66 DMEDIUM_FORMAT et e 276
11.67 DMEDIUM_FREE e 277
11.68 DMEDIUM_NAMES$ e e 2717
11.69 DMEDIUM_RDONLY e e e 278
11.70 DMEDIUM_REMOVE e 279
11.71 DMEDIUM_TOTAL e e e e e 279
11.72 DMEDIUM_TYPE e 279
IL73 DNEXT o o e e e e 280
LL74 DO . . .o 281
1175 DOS_USE e 282
11.76 DOS_DRIVE e 282
11.77 DOS_DRIVES e 283
I1.78 DOTLIN e e e e e e e e e 283
IL79 DRAW . . . o e 284
11.80 DRAW . . . e 285
I1.81 DROUND e e e e 285
IL.82 DUP . . . e e e 286
12 Keywords E 287
12.1 EASTER e 287
122 ED . .o 288
12.3 EDIT e e e e e e e e 291
124 EDITF 293
125 EDIT% e e e e e e e e 293
12.6 EDITS e 293
12.7 EDLINES e 294
12.8 EL . . . 294
129 ELIS e e e e 295
12.I0 ELLIPSE o e 295
12.11 ELLIPSE R e 296
1212 ELSE 297
1213 END . . e 297
1214 END DEFine e e e e e e e e 297
12.IS ENDFOR 299
1216 ENDIF e e e e e e 299
1217 END REPeat e 300
1218 END SELect o o e e e e e e 301
12.19 END WHEN e 302
1220 END_CMD e e 302
1221 END_WHENo e 303
1222 ENV_DEL e 303
1223 ENV_LIST o 303
1224 ENL . . . e 304

1225 BOF . .« © o o e e 304

1226 EOFW e e e 305
1227 EPROM_LOAD e e e e e e e e e 305
1228 EPS . . o o e 306
1229 EQS e e 307
1230 ERLIN e e e e e 307
1231 ERLIN%o . . . o o o o e e e e e e e e e e e e e e e e e e 308
1232 ERNUM e e e e 308
1233 ERNUM0 . . o o o e e e e e e e e e e e e e e e e e 310
1234 ERR_XX e e e e 311
1235 ERROT o o e e e 312
1236 ERT e e e e e e e e 312
1237 ESC . . o e e 314
1238 ET . . o e e e e e e e 314
1239 ETABS o e 314
1240 ETAT . . . o o e e e e e e e e e e e e e e e e e 315
1241 EW L e e e 316
1242 EX o o e e e e e 319
1243 EXCHG e e e e e e 321
1244 EXEC o e e e 322
1245 EXEC_W e 322
1246 EXEP o e e 323
1247 EXIT . . . e e e e e e e e e e e e e e e e e e e 325
1248 EXP . . o o e e e 327
1249 EXPAND o oo e e e e 327
1250 EXPLODE o e e e e e 328
1251 EXTRAS . . . o e e 328
1252 EXTRAS_W . o o e e 329
13 Keywords F 331
13.1 FACT e e 331
13.2 FALSE% e e e e 331
13.3 FASTEXPAND e e e e 332
134 FBKDT e e e e e e 332
13.5 FDAT . . . e e 334
13.6 FDECS e e 335
13.7 FETCH_BYTES e e e e e e e 335
13.8 FEXPS e 336
139 FET e e e 336
13.10 FEW . . e 337
1311 FEX . . . o e e e e 337
1312 FEX M . . o o e e e e 338
1313 FF . . o e e 338
1314 FGET% . . . o o o o o e e e e e e e e e e e e e e 338
13.15 FGETS e e 339
I3.I6 FGETB o e e e e e e e 339
13.17 FGETL o e e e e e e e e e 340
I3.18 FGETF o e e e e e 340
13.19 FGETHS e 341
13.20 FILE_BACKUP e e e e e 342
1321 FILE_DAT o o e e e e e e e e e e e e e e e e e e e 343

13.22 FILE_DATASPACE e e 343

1323 FILE_LEN 343
1324 FILE_LENGTH e e 344
1325 FILE_OPEN 345
13.26 FILE_POS e 346
13.27 FILE_POSITION e e e e e e e 346
1328 FILE_PTRA e 347
13.29 FILE_PTRR e 347
1330 FILE_TYPE e 348
1331 FILE_UPDATE e e e 349
1332 FILL oo e e 349
1333 FILLS o o o e e e e 351
1334 FILLMEM B 352
1335 FILLMEM_W . . © . . e 352
1336 FILLMEM L. 352
1337 FIND e 353
1338 FLASH 353
1339 FLEN o e 354
13.40 FLIS .« . . o e e 355
13.41 FLP_DENSITY e 355
13.42 FLP_DRIVE e 357
1343 FLP_DRIVES e 357
13.44 FLP_EXT o . e e 358
1345 FLP_JIGGLE 358
13.46 FLP_SEC e e 359
1347 FLP_START 360
1348 FLP_STEP e e 360
1349 FLP_TRACK 361
1350 FLP_USE o . . e 361
1351 FLUSH e e 362
13.52 FLUSH_CHANNEL 362
13.53 FMAKE_DIR e 363
13.54 FNAMES e 363
13.55 FOPEN e e 364
1356 FOP_DIR 365
1357 FOP_IN e 365
I3.58 FOP_NEW 365
13.59 FOP_OVER e 366
13.60 FOR 366
13.61 FORCE_TYPE e 370
13.62 FORMAT o e e e 371
13.63 FPOS e e 377
13.64 FPOS_A e e 377
13.65 FPOS_R 377
13.66 FPUTS 378
13.67 FPUT% o e e e e 378
13.68 FPUTB o e 378
13.69 FPUTFE 379
13770 FPUTL o o e 379
I3 71 FRACT . . . o 379
13772 FREAD e 380

Xi

13.73 FREADS e 381

1374 FREE e e 381
13.75 FREE_FAST e 382
13.76 FREE_MEM e e e e e 382
13.77 FREEZE e e 382
13.78 FREEZE%0 o o e e e e e 383
13.79 FSERVE e 383
13.80 FSETHS o e 385
13.81 FTEST e e e 385
13.82 FTYP o o e e 386
13.83 FUNCHON e e e e e 387
13.84 FUPDT o e e e e e 387
13.85 FVERS e e e 389
13.86 FWRITE e 390
13.87 FWRITES e 391
13.88 FXTRA e 391
14 Keywords G 393
14.1 GCD e 393
142 GER_MSG e e 393
14.3 GER_TRA e 394
14.4 GET e e e e 394
145 GET_BYTES o e 395
14.6 GET_BYTE e e e 397
14.7 GET_FLOAT e e e e e e e 397
14.8 GET_LONG e e s s s e 397
149 GET_STRING e e s s s e 398
14.10 GET_STUFFS e s e s e 398
14.11 GetHEAD e 399
14.12 GET_WORD e e 400
14.13 GETXY o e e 400
14.14 GO SUB e 401
1415 GOTO e e e e 402
14.16 GPOINT o e e e e 403
14.17 GRAB e e e 403
14.18 GREGOR e 403
1419 GTS . . . o e 405
15 Keywords H 407
15.1 HEADR e 407
15.2 HEADS e 407
153 HEX . . . e 407
154 HEXS . . . o e e 408
15.5 HGET e e e 409
15.6 HIS_SET e 410
157 HIS_SIZE e e 411
15.8 HIS_UNSET e e e e e s e 411
159 HIS_USE e e e 412
15.10 HIS_USES e 412
15.11 HOT . . . e e e e e e 412
15,12 HOT_CHP e e e e e s s e e 413
15.13 HOT_CHPL e e e e s e s s s e 414

xii

1514 HOT_CMD o e e
I5.15 HOT_DO e
15.16 HOT_GETSTUFFS e e e
IS.17THOT_GO
IS8 HOT_KEY o o e e
1519 HOT_LIST o o e e e e e e e e e
1520 HOT_LOAD e
15.21 HOT_LOADT e e e e e e e
1522 HOT_NAMES e
1523 HOT_OFF o e s e e e e e e
1524 HOT_PICK o o e e
1525 HOT_REMYV e
15.26 HOT_RES
1527 HOT_REST o . o e
1528 HOT_SET
1529 HOT_STOP e e
1530 HOT_STUEF
1531 HOT_THING e e e e
1532 HOT_THINGI e e e e e e e e
1533 HOT_TYPE e
1534 HOT_WAKE e
1535 HPUT . . . o o e

16 Keywords I
16.1 I2C_I0O e e e e e
16.2 IDECS e
163 IF . . . e e e e
16.4 TFORMAT e e e e e e e e
16.5 INARRAY% o e e e e e e e e e
16.6 INF e e e e
1677 INK . . . e e e e
16.8 INKEYS e e e
16.9 INPUT e e e e e e e e e
16.10 INPUTS e e e e e e e e e
I6.11 INSTR e e e e
16.12 INSTR_CASE e e e e
LT6.13 INT . . o e e e e
16.14 INTMAX e e e e e e e e e
16.15 INVERSE e e
16.16 INVXY e e
16.17 IO_PEND% o e e e e e e
16.18 IO_PRIORITY e e e e e e e e e
16.19 IO_TRAP e e e e e
16.20 IQCONVERT e e e e e e e e
16.21 IS_BASIC e e e e e
16.22 IS_PEON e e e e e
16.23 IS_PTRAP e e e e

17 Keywords J
17.1 JBASE . . . e e
17.2 JobCBS . . .
173 JOBID e

429
429
431
431
434
435
436
436
439
440
446
446
447
447
448
449
449
449
450
450
451
451
452
452

455
455
457
457

xiii

17.4 JOBS e 457

17.5 JOBS . . . o e 458
17.6 JOB_NAME e 459
18 Keywords K 4601
18.1 KBD_RESET 461
182 KBD_TABLE 461
18.3 KBD_USE e e e e e 462
184 KBYTES_FREE 462
18.5 KEY e e e e e 463
18.6 KEYROW e e e 465
18.7 KEYW e e e e 468
18.8 KEY_ADD e e e e e 469
18.9 KEY_RMV e 470
I8 10 KILL . . . o o e e e e e e e 470
I8.11 KILLN e e e e e e 471
1812 KILL_A . . . o e e e e e e e 471
1813 KIOB e e e e 471
18.14 KIOBS e e 472
19 Keywords L 473
19.1 LANG_USE e e e 473
19.2 LANGUAGE 473
193 LANGUAGES e 474
194 LAR e 474
19.5 LBYTES e e 474
19.6 LCM e e e e e e e 475
19.7 LDRAW e e e e e e e 476
19.8 LEFT e e e e e e 478
19.9 LEN . . . e e e e e e e 478
1910 LET . .« « . o o e e e e e 479
19.11 LEVEL2 e e e e e 481
19.12 LGET o o e e e e 481
1913 LINE e e e e e 482
19.14 LINE_R e e e 483
1915 LINKUP e e e e 483
19.16 LINT2 . . . o o e e e e e e e e 483
1917 LIST e e e e e e e e e 484
19.18 LIST_TASKS e e 485
19.19 LMAR e e e e 485
1920 LN . o e e e e e e 485
1921 LOAD e e e e 486
19.22 LOADPIC e e e e e e e 488
1923 LOCal e e e e e e 489
1924 LOCK e e e e e e e 491
1925 LOG2 o o e e e e e 491
1926 LOGIO e e e e e e e 491
1927 LOOKUP% e e e e e e e e e e e 492
1928 LOWERS 493
1929 LPOLL e e e e e e e e 493
1930 LPR_USE e e 493
1931 LPUT . . . o o e e e e e e e 494

xiv

20

1932 LRESFAST o o e 494

1933 LRESPR o 495
1934 LRUN . . . o e e e e e e e 496
1935 LSCHD o 496
1936 LWCS e 497
Keywords M 499
20.1 MACHINE e e e e e 499
202 MAKE DIR e 502
20.3 MATADD e e e e e e 504
204 MATCOUNT o e e e e 505
20.5 MATCOUNTI oo e e e e e e e e e e e e e e 505
20.6 MATEQU e 506
20.7 MATDEV . . . e 506
20.8 MATIDN 507
209 MATINPUT e e e e 507
20.10 MATINV . . o o 508
20.11 MATMAX . . . o e e e e e 509
20.12 MATMEAN e e e e e e 510
20.13 MATMIN o e e 510
20.14 MATMULT e e e e e e e 510
20.15 MATPLOT e e 513
20.16 MATPLOT_R e e e e 514
20.17 MATPROD o 514
20.18 MATREAD o e e 515
20.19 MATRND 516
2020 MATSEQ o o e e 516
2021 MATSUB L o 517
2022 MATSUM . . . o e e 517
20.23 MATTRN e e e e e e 519
2024 MAX . . 519
20.25 MAX_CON e e e e e 520
20.26 MAX_DEVS e 521
20.27 MAXIMUM . . . e e 521
2028 MAXIMUMY %0 o oo e e e 522
2029 MB . .o 523
2030 MD . ..o e 523
2031 MERGE 523
2032 MIDINET e 525
2033 MIN . . e 526
20.34 MINIMUM e e e e e e e 526
2035 MINIMUMY %0 o o oo e e e e 527
20.36 MISTake e e e e e e e e 527
2037 MKFES . . e 528
2038 MKIS o 528
2039 MKLS . . . 528
2040 MKSS . . . 529
2041 MNET o 529
2042 MNET% o o e e e e e e e 529
2043 MNET_OFF e 530
2044 MNET_ON o e e e 530

XV

21

22

2045 MNET_S% o o o e e 530

20.46 MNET_USE e e 530
2047 MOD e 531
2048 MOD e e 532
20.49 MODE e e e 532
20.50 MONTH0 o e e e e e 537
20.51 MORE e 538
20.52 MOUSE_SPEED e e e 539
20.53 MOUSE_STUFF e e e e e s e s e 539
20.54 MOVE e e e e 540
20.55 MOVE_MEM e e 541
20.56 MOVE_POSITION e e e e e s e 541
20.57 MRUN e e e 542
2058 MSEARCH e e 542
20.59 MT . . o e e 542
20.60 MTRAP e e e 543
Keywords N 545
21.1 NDIM . . . e e e 545
21.2 NDIM% e e e e e e 545
21.3 NET . . o e e e e 546
21.4 NETBEEP e e 546
21.5 NETPOLL e e e e e e 547
21.6 NETRATE e e e e 547
21.7 NETREAD e e e e e 549
21.8 NETSEND e e 550
219 NETVARY o e e e e 550
2LLI0 NET_ID e e e e e e 550
2111 NEW . o e e 551
21.12 NEWCHAN% o o e e e e e e e e e 551
21.13 NEW_NAME e e 552
21.14 NEXT . . . o e e e e e 553
21.15 NES_USE e e e e 553
2116 NIX . . e e 555
21.17 NO_CLOCK e e e e e e e 555
21.18 NOCAPS . . . o e e 555
21.19 NOKEY o e e 556
21.20 NORM e e e 556
2121 NOR_MSG e e e e 556
2122 NOR_TRA e e 557
21.23 NOT . . o e e e e e e 557
2124 NRM . . . e e e 559
2125 NXJOB . . . o e e e e e 559
Keywords O 561
22.1 ODD e e 561
222 OFF e e 561
223 OJOB . . . e e 562
224 ON . . e 562
225 ON...GOTO. e e e e e e e 562
22.6 ON...GOSUB e e 562
227 OPEN e e e 563

XVi

23

22.8 OPEN_DIR e 567

22.9 OPEN_IN e e e e 570
22.10 OPEN_NEW e e e 571
22.11 OPEN_OVER 572
2212 0R . L e e 572
2213 OUTL . . . o e e e e e e e e e 573
22.14 OUTLN e e e e 574
2215 OVER . . . o e 577
Keywords P 579
23.1 PAGDIS e e e 579
23.2 PAGLEN e 579
23.3 PAGLIN e e e e e 580
234 PAINT e e e e e 580
23,5 PALETTE_QL e 581
23.6 PALETTE_8 e 582
237 PAN e e e e 583
23.8 PAPER e e 584
23.9 PARHASH e 585
23.10 PARNAMS o e 586
23.11 PARNAMES e 587
23.12 PARSEPA e e e e e 587
23.13 PARSTRS e 587
23.14 PARTYP e e e 589
23.15 PARTYPE e 590
23.16 PARUSE e e e 591
23.17 PAR_ABORT e 591
23.18 PAR_BUFF e e e e 592
23.19 PAR_CLEAR e e 592
23.20 PAR_DEFAULTPRINTERS e 593
23.21 PAR_GETFILTER 593
2322 PAR_GETPRINTERS e 593
23.23 PAR_PRINTERCOUNT et 593
23.24 PAR_PRINTERNAMES 594
2325 PAR_PULSE e e e 594
23.26 PAR_SETFILTER e 594
23.27 PAR_SETPRINTER 594
2328 PAR_USE e 595
2329 PAUSE e e e e e 595
2330 PE_BGOFF e e e e e 596
2331 PE_BGON e 596
2332 PEEK e e e e e e 597
2333 PEEK_FLOAT e e e e e 597
23.34 PEEK_STRING e e e 598
2335 PEEK_W e 599
2336 PEEK_L e e e 599
2337 PEEKS e e 600
2338 PEEKS_W e e e e e 600
2339 PEEKS_L e e 600
2340 PEEKS 601
2341 PEEK_F e e 602

2342 PEND o e 602

2343 PENDOWN . . . e e e e e e e e 604
2344 PENUP e e e e e 604
2345 PEOFF e e e e e 604
2346 PEON e e 605
2347 PEXS . . . o e e e 606
2348 PEX_INI o e e e e 606
2349 PEX_SAVE e e e e 606
2350 PEX_XTD e e e e e e 607
23.51 PHONEM e e e 607
23.52 PL . . o e e e 608
2353 PICKS e 608
2354 PICK Y% . . . o o o o e e e e e e e e e e e 609
2355 PIE_LEX_OFF e e e 610
23.56 PIE_EX_ON e e e e e e 611
2357 PIE_OFF e e e e e 611
2358 PIE_ON . . . e e e e e e 611
2359 PIES e 612
23.60 PINFS e 612
23.61 PIXEL% o e e e e e e e e e e 612
23.62 PIOB e e 612
23.63 PLAY . . . e e e e 613
23.64 PLOT e e 613
23.65 PLOT e e e e e e 614
23.66 POINT e e e e 615
23.67 POINT_R e e e e e e 615
23,68 POKE e e e 616
23.69 POKE_FLOAT e e e e e e e e e e e e e 616
23.70 POKE_STRING e e e e e e e e 616
2371 POKE_W e e e e e 617
2372 POKE_L e e e e e 617
2373 POKES e e e 621
23.74 POKES_W e e e e 621
2375 POKES_L e e e 621
23776 POKES e 622
2377 POKE_F e 622
2378 PRINT e e e e e e 623
2379 PRINT_USING e e e e e s e s s e e 625
23.80 PRIO e e e e e e 627
23.81 PRIORITISE e e e e e 628
23.82 PRO . . . e e e e 628
23.83 PROCESSOR e e 628
23.84 PROCedure o e e e e 629
23.85 PROGDS e 630
23.86 PROG_USE e e e 630
23.87 PROT_DATE e e e e e e e e 630
23.88 PROT_MEM e e e 631
23.89 PROUND e e e e e e 632
2390 PRT_ABORT e e e 633
2391 PRT_ABT e e e e e e e 633
2392 PRT_BUFF e e e e 633

XViii

24

2393 PRT_CLEAR e 634

2394 PRT_USE e e 634
2395 PRT_USE e 635
23.96 PRT_USES e 636
23.97 PTH_ADD e e e 636
2398 PTH_LIST e e e e e e e e 638
23.99 PTH_RMV e e 639
23.100PTH_USE e e e e e e 639
23.10IPTH_USES e 640
23.102PTHS e 640
23.103PTR_FN% e e 641
23.104PTR_INC e e 642
23.105PTR_KEY e e e 642
23.10PTR_LIMITS e e e 643
23.10PTR_MAX . . . e e e e e 643
23.108PTR_OFF e e 643
23.10PTR_ON e e 644
23.110PTR_POS . . . e e 644
23.111PTR_X . . . o e e e e e 644
23.112PTRLY . . . o e e e 645
23.113PURGE e e e e e 645
23.114PUT . . . o e e 645
23.115PUT_BYTE e e 646
23.116PUT_FLOAT e e e e e e e e e e e 647
23.11PUT_LONG e e e e e 647
23.118PUT_STRING e e e e e e e e 647
23.11PUT_WORD e e 648
23.120PXOFF e e e 648
23.12IPXON . . e e e 648
23 122PXIST . . e e e e e e 649
23.123P_ENV . . e e e 649
Keywords Q 651
24.1 QACONVERT e e 651
242 QCOPY e e e e 651
243 QCOUNTY0 . . . vt i e e e e e e e e e e e e 652
244 QDOSS e 652
245 QFLIM e e 653
24.6 QICONVERT e e e e e 654
247 QLINK e e 655
24.8 QLOAD e e e e 655
249 QLRUN e e 655
24.10 QL_PEX e e e e e 656
24.11 QMERGE e e 656
24.12 QMRUN e 656
24.13 QPC_CMDLINES e e 656
24.14 QPC_EXEC e e 657
24.15 QPC_EXIT e e e 657
24.16 QPC_HOSTOS e e e 657
24.17 QPC_MAXIMIZE e e e 658
24.18 QPC_MINIMIZE e e 658

Xix

25

2419 QPC_MSPEED e 658

2420 QPC_NETNAMES e e e 658
2421 QPC_QLSCREMU e e e e 658
2422 QPC_RESTORE e e 659
2423 QPC_SYNCSCRAP e e e 659
2424 QPC_VERS e e 660
2425 QPC_WINDOWSIZE e e 660
2426 QPC_WINDOWTITLE e e e e e e 660
2427 QPTR e e 661
2428 QRAMS . . . e 661
2429 QSAVE e 661
2430 QSAVE_O e 662
2431 QSIZE% e e e e 663
2432 QSPACE% e e 664
2433 QTRAP e 664
24.34 QuATARIL e 665
2435 QUEUE% e e e e e e 665
2436 QUIT e e 665
Keywords R 667
25.1 RAD . . . e e e e e 667
252 RAE . . . e e 667
253 RAFE e 668
254 RAMTOP e e 668
255 RAM_USE e e 668
25.6 RAND e e 669
2577 RANDOMISE e e 669
25.8 READ e e e 670
259 READ_HEADER e e 672
25,10 RECHP o e e e 673
25. 11 RECOL e e 674
25,12 REFRESH e e 675
25.13 RELEASE e e 675
25.14 RELEASE e 676
25.15 RELEASE_HEAP e e 676
25.16 RELEASE_TASK e e 677
25.17 RELJOB e e e e 677
25.18 RELOAD e 677
2519 REL_JOB e e e e e 678
25.20 REMAINDER e e 678
2521 REMark e e e e e 678
2522 REMOVE e e 679
2523 REMOVE_TASK e e e 679
2524 RENAME e e 679
2525 RENUM e 680
2526 REPeat e e e 684
2527 REPLACE e e 686
2528 REPLY e e 687
2529 REPORT e e e 688
2530 RESAVE e e e 689
2531 RESERVE e 689

XX

26

2532 RESERVE_HEAP e 689

2533 RESET e e e 690
25.34 RESFAST e e e e e e 690
2535 RESPR e e 691
2536 RESTORE e e 692
2537 RES_SIZE e e e 692
2538 RES_128 e e 693
2539 RETRY e e e e 694
2540 RETUrn e e e e 694
2541 REVS . . . o e e e 695
2542 RIOB e e 695
2543 RMAR e e e e 696
2544 RMODE e e 696
2545 RND e e e 697
2546 ROM e e e 698
2547 ROM_EXT e e 699
2548 ROM_LOAD e e e 699
2549 ROMS o o e e e 699
2550 RTP_R e e e e e e 700
2551 RTP_T e e 701
2552 RUN . . L e e e e 701
Keywords S 703
26.1 SAR . . e e 703
262 SARO e e 704
263 SAUTO e e e 704
26.4 SAVE e e e 704
26.5 SAVE_O e 706
26.6 SAVEPIC e e 706
26.7 SB_THING e e e e 706
26.8 SBASIC e 707
26.9 SBYTES e e e e 708
26.10 SBYTES_O e e 710
26.11 SCALE e 711
206.12 SCLR e e 713
26.13 SCRBASE e 714
26.14 SCREEN e e 715
26.15 SCREEN_BASE e 716
26.16 SCREEN_MODE e e 716
26.17 SCRINC e e 717
26.18 SCROLL e 717
26.19 SCROF e e 719
26.20 SCRON e e e 719
26.21 SCR2DIS e e e 720
26.22 SCR2EN e e 720
2623 SCR_BASE e e 721
26.24 SCR_LLEN e e e 721
26.25 SCR_REFRESH e 722
26.26 SCR_SAVE e e 722
2627 SCR_SIZE e e e 723
2628 SCR_STORE e e 723

xXi

2629 SCR_XLIM e e 724

2630 SCRLYLIM e 725
2031 SDATE o e 725
2632 SDP_DEV 726
2633 SDP_KEY e 727
2034 SDP_SET o o e e 727
2635 SDUMP e 734
2636 SEARCH e e 735
2637 SEARCH e e e 736
2638 SEARCH_C e 737
2639 SEARCHL I 737
26.40 SEARCH_MEM e 738
2641 SELect e e 738
26.42 SELect ON e 739
2643 SEND_EVENT 742
26.44 SERMAWS . . . o e 743
2645 SERMCUR 743
26.46 SERMOFF e 744
26.47 SERMON o e 744
2648 SERMPTR e e 744
26.49 SERMRESET e 745
26.50 SERMSPEED e 745
26.51 SERMWAIT e e 746
26.52 SERNET 746
26.53 SER_ABORT e 746
26.54 SER_BUFF 747
2655 SER_CDEQOF e 748
26.56 SER_CLEAR 748
26.57 SER_FLOW e 749
26.58 SER_GETPORTS e 749
26.59 SER_PAUSE 749
26.60 SER_ROOM e e 750
26.61 SER_SETPORT 750
26.62 SER_USE e 751
26.63 SET 751
260.64 SET o o e 752
26.65 SetHEAD 753
26.66 SET_HEADER e 753
26.67 SET_CLOCK 753
26.68 SET_FBKDT e 754
26.69 SET_FUPDT e e e 754
26.70 SET_FVERS 755
26771 SET_GREEN e 755
2672 SET_RED e e 756
26773 SET_LANGUAGE e e 756
26.74 SET_XINC e 757
26775 SET_YINC o . e 757
2676 SEXEC e 758
20777 SEXEC_O o o e 759
2678 SGN 760
26779 SGN% e 760

xXii

27

26.80 SHOOT o e 760

20.81 SI . . . L e e 760
26.82 SIGN e 761
26.83 SIN e e 761
26.84 SINH e e 762
26.85 SINT e e e e 762
20.86 SIZE e 763
26.87 SJOB . . . e e 765
26.88 SLOAD e e 766
26.80 SLUG e e e e 767
26.90 SMOVE e e e 767
26.91 SND_EXT e e e e 768
2692 SNET e e 768
2693 SNETY% o e e e 768
26.94 SNET_ROPEN e e e e 769
2695 SNET_S% o e e 769
2696 SNET_USE e e e e 769
2697 SORT e e e 770
26.98 SOUNDEX e e e 771
2699 SPIOB e 772
26.1008PL e e e 773
26.10ISPLF e e e 773
26.102SPL_USE e 774
206.1035P_JOB e e e 774
26.104SQR . . . e e 775
26.105SQRT e e 775
20.106SSAVE e e 775
26.107SSHOW e e e e 776
26.108SSTAT e e e 776
26.1098STEP e e e e e 777
20.1108TAMP e e e 777
26.11ISTAT o e 777
20.112STEP e e e 778
26.113STOP e 778
20.114STRIP e e e 779
26.115SUB e e 780
26.116SUSJOB e e e 780
20.117SWAP o e e 780
20.1188XTRAS e e 781
20.11SYNCH% e e e 781
26.1208YSBASE e e e e 782
26.12ISYS_BASE e e e 782
26.122SYS_VARS . . . e e e 782
26.1235_FONT e 783
26.124S_LOAD e 783
20.1255_SAVE . . . e e 784
26.1265_SHOW e e e 784
26.127SYSTEM_VARIABLES e 785
Keywords T 787
27.1 TAN . e e 787

272 TANH e 788

273 TCA . e e e e e 788
274 TCONNECT e e e e e e e 788
27.5 TEE e e e e e e e e e e e 790
27.6 THEN e e e e 790
2777 THING e e e e e 790
27.8 TH_FIX e e e e e e 791
279 TH_VERS e 791
2710 TINY_EXT o e e e e e e e e e e 792
27.11 TINY_RMV e e e e 792
2712 TK2_EXT . . . o e e e e e e e e e 793
27.13 TK_VERS e e 793
2714 TNC . . e e e e e 793
2715 TO . o o e e e e e e e e 794
27.16 TOP_WINDOW e e e e e e e e e e e e e 794
27.17 TPEree o o e e e e e e e e 795
2708 TRA . . o e e e e e e e e e 795
2719 TRIMS e 802
27.20 TRINT e e e e e e e e 803
2721 TROFF e e e e e 803
2722 TRON . . . e e e e 804
2723 TRUE % o e e e e e e e e e e 804
2724 TRUNCATE o e e e e e e e 804
2725 TTALL o e e e e e e e e e e e e e e 805
2726 TTEDELETE e e e e e e 805
2727 TTEFP e e e e e e e e e e 806
2728 TTEOPEN e e e e e e e e 806
2729 TTET3 . . . o e e e e e e e e e e e e e 807
2730 TTEX o e e e e e e e 808
2731 TTEX W . . o o e e e e e e e 809
2732 TTEFINDM e e e e e e e e e e e e e e e e 809
2733 TTINC . . . o e e e e e e e e e 810
2734 TTME% o o e e e e e e e e e 810
2735 TTMODE% o e e e e e e e e 811
2736 TTPEEKS e 811
27.37 TTPOKEM e e e e e e 811
2738 TTPOKES e e 812
2739 TTREL e e e e e e 812
2740 TTRENAME e e e e e e e e e e e 812
2741 TTSUS . . . o e e e e e 812
2742 TTV o e e e e e e e 813
2743 TTS . . e 814
27.44 TURBO_diags« o o i i e e e e e e e e 814
2745 TURBO_F e e e e 815
27.46 TURBO _IOCSIr o o o o e e e e e e e e e e s e e s s 815
2747 TURBO_model e e e e e e 816
27.48 TURBO_objdat e e e e e e e e e e e 816
27.49 TURBO_ObJfil e e e 817
27.50 TURBO_Optim e e e e e e e e e e e e e 817
27.51 TURBO_P e e e e e e e 818
27.52 TURBO_repfil e e e e e e e e 818

XXiv

28

29

30

27.53 TURBO _Struct o o o o e e e e e e e e e e e e s e e s s
27.54 TURBO_taskn o e e e e e e e e e e e e e
27.55 TURBO _Window o v e e e e e e e e e e s e e s e
27.56 TURN e e e e e e e e e e e
2757 TURNTO e e e e e e e e e e s e s e e
27.58 TXTRAS e e e e
2759 TYPE o e e e e
27.60 TYPE_IN e e e e
27.61 T_COUNT e e e e e e e e e e e e s e s s e e
27.62 T_OFF e e e e e e
27.63 T_ON . . . e e e e e
27.64 T_RESTART e e e e e e
27.65 T_START e e e e e
27.66 T_STOP e e e e

Keywords U

28.1 UINT o
28.2 UNDER e e e
283 UNJOB e e e e e
284 UNL . . . e
28.5 UNLOAD e e e
28.6 UNLOCK e
28.7 UNSET e e e e
288 UPCS o
289 UPPERS
2810 UPUT o o
28. 11 USE. . . . o e e e e
28.12 USE_FONT

Keywords V

20.1 VA L
202 VAR . e e
203 VERS . . . e
29.4 VFR . . o e e
295 VG_HOCH e e
20.6 VG_LOAD e
29.7 VG_PARA . . . e
29.8 VG_PRINT oo
29.9 VG_RESO e
29.10 VG_WIND o e
2011 VIEW . . o e e e e
20.12 VOCAB e

Keywords W

30.1 WAIT_EVENT e s e e e
302 WBASE . . . e
303 WCOPY .« . o o e
304 WCOPY_F o e
30.5 WCOPY_O . . . o o e e
30.6 WDEL e e
307 WDELL_F e
30.8 WDIR . . . o e e

827
827
827
828
829
829
831
831
831
831
832
832
833

835
835
835
836
838
839
839
840
841
842
842
843
844

845
845
845
846
849
850
850
851
851

XXV

31

32

309 WEEKDAY% e e 852

30.10 WGET e e e e e 852
30.11 WHEN condition e e e e e e 852
30.12 WHEN ERRor e e 855
30.13 WHERE_FONTS e e e e e 857
30.14 WIDTH e e e e e 857
30.15 WINDOW e e e 858
30.16 WINFES e 860
30.17 WIN2 . . o e 860
30.18 WIN_BASE e e e 860
30.19 WIN_DRIVE e e 861
30.20 WIN_DRIVES e 863
30.21 WIN_FORMAT e e e e e e e e 863
30.22 WIN_REMYV e e 864
30.23 WIN_SLUG o e e e e e 865
30.24 WIN_START e e 865
30.25 WIN_STOP e e e 866
30.26 WIN_USE e e 866
30.27 WIN_WP . . . e e e e 867
3028 WIPE e e 867
3020 WLD o e e e e e e 868
3030 WM . L o e e e 869
30.31 WM_BLOCK e e e 869
3032 WM_BORDER e e 870
3033 WMLINK e e e 870
30.34 WM_MOVEMODE e e e 872
30.35 WM_PAPER e e 873
3036 WM_STRIP e e 873
30.37 WMANS . . . e 874
30.38 WMON . . . L e e e e 875
30.39 WMOV . . . e e 876
3040 WPUT . . . L e e e e e 877
30.41 WREN e e 877
3042 WSET . . . o e e e 878
3043 WSET_DEF e e 878
30.44 WSTAT . . . o e e e e e e 879
3045 WTV o o e e 879
3046 W_CRUNCH e e e e s e s 880
3047 W_SHOW e e e 881
3048 W_STORE e e 882
3049 W_SWAP e e e e 882
30.50 W_SWOP e e e 883
Keywords X 885
31.1 XCHANGE e 885
31.2 XDRAW . . e e e 886
313 XLIM . . o e 886
31.4 XOR . . . e e 887
315 X PTR% o o e 887
Keywords Y 889
32.1 YEARY . . . e e e e e 889

XXVi

322 YLIM . . o e 889

323 Y_PTR% o o e e 890
33 Keywords Z 891
33.1 ZAP . . o e 891
34 Keywords Other 893
341 _DEF% e e e 893
342 _DEFS e e 893
343 _NAMES e 894
35 Appendices Introduction 895
36 Al. Minerva 897
36.1 AL1INTRODUCTION e e e e e e e e e e 897
36.2 Al.2 Windows and Closing Windows, 897
36.3 Al3DualScreenMode 898
36.4 Ald4Border e 899
36,5 AlSEmpty Brackets oL 899
36.6 AL7MultiBASICs o o 900
367 ALZStrings e 900
37 A2 SMSQ/E 901
37.1 A2 Introduction e e 901
37.2 A22The EOF Function it 902
373 A23Empty Bracketso 903
374 A24 Multiple Sbasics e e e e e 903
37.5 A2.5 Improved Interpreter L. oL e e 903
37.6 A2.6 Numbersin Programs 904
37.7 A2.7 Inbuilt Pointer Environment 904
37.8 A2.8 Undefined Variables 904
379 A29Extended Display L 904
37.10 A2.10 Problems e e 905
38 A3 Emulators 907
38.1 A3.lIntroduction e e e e e e e e 907
38.2 A3.2 AppleMacintosh oL 908
38.3 A33IBM Compatible PCs. 908
38.4 A3.4 Atari Computerso e e e e e e e e 912
38.5 A3.4.1The ST/QLEmulator 912
38.6 A342SMSQ/E e 915
387 A343SMS2 . . . e 916
38.8 A3.5 Commodore Amigas e e e 916
389 A3.6Unix SyStems e e e e e e e 918
39 A4 Thor Computers 919
390.1 Ad.dlIntroduction e e e e e e e e e e 919
392 A42KEYROW . . . o e 919
393 A43MODE . . . e 920
39.4 A4.4 The Thor Windowing System 920
305 A45BEEP . . . e 920
40 AS Expansion Boards 921

XXVii

40.1
40.2
40.3
40.4
40.5
40.6

AS5.1GOLD CARD e
AS52SUPERGOLD CARD e
AS53 AURORA . . . o e
AS4Q40 . . e
AS5.5 HERMES / SuperHERMES
AS5.6 QuBIDE

41 A6 Compatibility

41.1
41.2
41.3
41.4
41.5
41.6
41.7
41.8
41.9

AG6.1 Addressing L e e e e e e
AB.2Speed e e
A6.3 The Operating System o v vttt et e e
ABGAMEMOTY . . v v v i e e e e e e e e e
A6.5 The Stack Pointer e
A6.6 Compilers. e e e e e e e e
A6.7 High Resolution Displays
A6.8 String Lengths e
A6.9 Later Processors & Gold Cards

41.10 A6.10Finally o o

42 A7 Multiple Basics

42.1
42.2

A7.1 MINERVA MultiBASICS
A7.2 SMS Multiple SBASICs

43 A8 Error Messages

43.1
43.2
43.3
43.4

AR8.1 Standard English Error Messages,
A8.2 Foreign Error Messages o v ittt e e e e
AB3Dates e e e e
A8.4 SMS MESSAZES « « v v v e e e e e e e e e e e e e e

44 A9 Character Set, Keyboard

44.1
442

A9.1 The Character Set i
A9.2 Keyboard Layouts

45 A10 Designing New Character Sets (Fonts)

45.1
45.2

AlO0.1Fontsonthe QL e
A10.2 Changing Fonts in Programs

46 A11 Mathematics

46.1
46.2
46.3
46.4
46.5
46.6
46.7
46.8

All.1 Degreesand Radians
A11.2 Triangles and Trigonometrics
All3Boolean Logic. e
ATT4Operators o i e e e e e e e
A11.5 Hexadecimal and Binary Numbers,
ATLOINteZErs o o v o e e e e e
A11.7 Faster Mathematics
ATL8Precision

47 A12 Device Drivers

47.1
47.2
47.3
47.4
47.5

Al12.1 Devicesin General e
A12.2 Directory Device Drivers
A12.3 Window Device Drivers e
Al12.4 Other Device Drivers e e
A12.5 DIRECT SECTOR ACCESS e et

925
925
926
926
926
926
926
927
927
928
928

929
929
931

935
935
938
940
941

957
957
964

967
967
967

971
971
972
973
974
976
976
977
977

XXViii

48

49

50

51

52

53

47.6 Al2.6 Level-1 Device Drivers e 1005
47.77 Al12.7 Level-2 Device Drivers o i e e e 1005
47.8 Al2.8 Level-3 Device Drivers e 1006
479 A129 Using Alien FormatDisks oL 1007
A13 Extended Pointer Environment 1009

A14 Coercion 1011

A15 Mouse Drivers 1013

50.1 A15.1 AMouse forthe Standard QL, 1013
50.2 Al152AMouse for QPC/QXL e 1015
50.3 Al53 AMouse for ATARIs e 1015
50.4 A15.4 A Mouse for Unix and Macintoshes 1016
50.5 Al55AMouseforthe Amiga 1016
A16 The QL Display 1017

51.1 A16.1 The Screen Address o v i i i i i e e 1017
51.2 Al162TheScreen Size e e 1018
51.3 A16.30n-Screen Colours 0 i e e e 1018
51.4 A16.4 USING HIGH RESOLUTION DISPLAYS 1054
A17 Networks 1055

52.1 ATT.TQNEt. . . o o e e e e e e e e e e e 1056
52.2 Al17.2 Flexynet (DIY Toolkit- VOL X) 1059
523 ATT3Midinet e e e e e e 1060
524 ATTASernet o i e e e e e e e e 1061
52.5 Al17.5 Amadeus Interlink e 1061
52.6 A17.6 QL-PCFileserver it e 1062
18 Configuring Programs 1063

53.1 CONFIGLevel] &Level2 i e e 1063
53.2 Passing Parameter with EXEC 1063
53.3 Making the configuration part of the program. 1064
53.4 Using a separate configurationfile. 1064
53.5 Using Environment Variables 1064
53.6 DATA_USEetc e e e e e e e e 1064

XXiX

XXX

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Contents:

CONTENTS 1

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

2 CONTENTS

CHAPTER
ONE

ORIGINAL FOREWORD

We first met Rich Mellor at the QL Club International meeting in the Midlands in 1995. I had read a lot
of the articles and reviews that he had published in the, now defunct, QL World and, as is usual when
you know someone through the written word alone, I was unprepared for the man that I met.

It was not until I took down his name and address when he bought some software from us that I found out
who this young and enthusiastic QLer was. During the course of the day he sat down with and discussed
the Flashback database system which Steve Hall had been running under SMSQ/E. We were trying to get
this program adapted to run properly under SMSQ/E and Rich offered to help do that. He proved to be
a formidable associate. Having once set a target in his sights he nagged away at it until he achieved his
purpose and in the course of doing that uncovered a numbers of bugs and inconsistencies in the behaviour
of SMSQ/E.

Since we received very little co-operation from the Flashback side of things we have, sadly been unable
to bring the product back onto the market place. In the meantime, Rich has managed to vastly improve
the program and now sells this new version as an upgrade to the original Flashback SE program.

About twelve months after meeting Rich, we were offered a route finding program written in Atari Basic.
We passed the project to Rich who attacked it with his usual vigour and soon was assaulting us with
disks of Beta versions. Q-Route was born in 1997 and has proved a very popular program, with the latest
version making use of the Extended Colour Drivers available under the latest versions of SMSQ/E.

It was at this point that he first mentioned this book. The bulk of the work here is his, although there have
been contributions in the past from Franz Hermann and Peter Jaeger (both of whom have given their kind
permission for the work to be published). It became obvious as I was printing this that we could not do
it all in one volume and also that we had to provide it in loose leaf form, instead of as a bound book, so
that we could easily provide updates as they become necessary.

The book arrived at the QBranch Headquarters on floppy disks and my EPSON printer worked overtime
printing the final version. It was produced entirely using QL Software and Hardware. The copy was
generated in Text 87 plus4 on a Minerva QL / Super Gold Card running under SMSQ/E. The final copy
here was printed on an Aurora / Super Gold Card / SuperHermes / RomDisq machine to either an EPSON
Stylus 200 Inkjet or an EPSON Stylus 850 Inkjet printer and the result passed to a local printers to produce
the copy that you now hold. I hope that you will find this useful and informative and that it will inspire
you to produce some elegant programming for the QDOS / SMSQ community.

Since producing the original version of this Manual, Rich has released Q-Help together with a broad
range of other software under the guise of RWAP Services. Q-Help provides the basic detail of all of the
keywords covered in this book, together with their syntax in an easy to use program. This can be linked
with the Q-Index program which is supplied with this book to form the ultimate cross-reference guide to
the QL’s BASIC. Q-Help forms a welcome companion to this manual and is especially useful if you are
travelling. The Sinclair Spectrum is now enjoying something of a revival, following the re-release of its
games for use with the Amstrad E-m @iler phone. The future of the QL is also looking increasingly rosy

mailto:E-m@iler

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(well at least colour-wise), since the release of SMSQ/E v2.98+ which supports up to 16 million colours
on the Q40, QXL and QPC?2 systems. The day when the QL can access the internet and email is also
now at hand. We hope that this will keep people more interested in the QL and its software.

We shall attempt to keep the manual up to date as much as possible with current developments in the QL
world, as new emulators and QL compatibles are released. If you have any further information which
you feel should appear in this Manual, then please let us have full details in order that it may be of benefit
to the whole QL community.

I am sure we will hear more of Rich Mellor in the future.

Roy Wood, Q Branch HQ, Portslade, Sussex 2002.

1.1 2015 Foreword

Since the above Foreword was written, the SBASIC/SuperBASIC Reference Manual has been enhanced
through 4 different update releases, and proved a best seller despite the 2 large A4 volumes with over
1000 pages of information on the QL and its SuperBASIC.

Since then, the Manual was re-released in PDF format and has now, in recognition of the 30th Anniversary
of the launch of the Sinclair QL, been converted to HTML and put onto the internet to be updated as a
QL Community Project.

I still continue to support the Sinclair QL, its emulators and clones, ensuring a constant supply of parts
and second hand items through my own website www.rwapsoftware.co.uk' and through my own retro
and vintage computer trading website www.sellmyretro.com’

The manual appears here in all its glory, with the bulk of the conversion having been automated, but
awaiting community input to improve the layout and add new entries to the Manual.

Rich Mellor, RWAP Software, Stoke-on-Trent, 2015

1.2 Online Edition Foreword

When Rich put the HTML version online and asked for volunteers to tidy it up, maintain it etc, lots of
people didn’t step forward! I was one of the ones who did and spent many a happy lunch hour down-
loading pages, stripping out the invalid HTML, adding paragraph tags, converting listings to the correct
format etc etc. The results were uploaded by Rich and a nicer, or at least, tidier, version began to take
place.

This colourful version is the result of some playing with a product called Sphinx-doc on my Linux box.
It takes files in the format of Restructured Text - basically, a plain text file containg your data and markup
commands - and from those, builds all sorts of output such as epub, pdf and the HTML you are reading
right now.

I hope you like it. It takes a long time to get it just right.

You can see the original source for each page by clicking the link ‘View page source’ at the top right of
each page.

Norman Dunbar, Dunbar IT Consultants Ltd, Leeds, West Yorkshire, 2015/2016

! http://www.rwapsoftware.co.uk
2 http://www.sellmyretro.com

4 Chapter 1. Original Foreword

http://www.rwapsoftware.co.uk
http://www.sellmyretro.com

CHAPTER
TWO

INTRODUCTION

The Sinclair QL was officially released during 1984, and since that date, has gone through several changes
to both the hardware and the operating system. Unfortunately, when the rights to the QL were sold to
Amstrad it looked as if the end of the QL was near in view of the fact that Alan Sugar, Managing Director
of Amstrad decided that the QL should be withdrawn from the market.

Since that fateful day, several types of QL replacement have emerged, including new Hardware platforms
such as the THOR range of computers, the AURORA replacement motherboard, the ST/QL hardware
emulators (including QVME and the Mode 4 Emulator), the Q40 and the QXL, a hardware emulator that
can be plugged into a PC. Several software emulators have also been developed, allowing QL software
to run on PCs, Amigas, Apple Maclntosh and Unix based computers.

Some of these emulators are much faster than the original QL computer, which itself can be speeded up
by the use of new operating systems (SMSQ/E and Minerva) and new, faster expansion boards (Gold
Card and Super Gold Card).

The QL has also been further expanded by the ability of the emulators and the new AURORA and Q40
motherboards to handle much higher resolutions (and more colours in the case of AURORA and Q40).

The QL is different from several other more popular computers in that it has a built-in programming
language (SuperBASIC) which has survived (mainly unchanged) since the QL was first released. Various
assertions were made concerning the abilities of SuperBASIC when the QL was first launched many of
which did not exist at the time. Most of those promises have now been fulfilled by third party toolKkits.
There are now even two multitasking versions of SuperBASIC, called MultiBASIC which is built into
Minerva and SBASIC which forms part of the SMSQ/E operating system.

We, the authors of this book, think that SuperBASIC is a superb programming language for several
reasons:

* SuperBASIC is part of the QL, whose multitasking operating system QDOS (and now also
SMSQ/E) is extremely powerful even when compared with more popular (and expensive) ones.

* SuperBASIC was originally implemented as an interpreter. This makes program development very
fast. Several compilers are available which allow you to produce programs which can run easily
and quickly on all versions the QL.

* The version of SuperBASIC provided with the SMSQ/E operating system is extremely quick; in
many cases, faster than when compiled with Qliberator.

* SuperBASIC is designed to be extendible from SuperBASIC itself through user-defined PROCe-
dures and FuNctions as well as from machine code via resident toolkits.

The latter point was indeed the motivation to write this book. There are a lot of really useful toolkits
available in the public domain which can be used by a programmer in his or her programs and freely
distributed as part of it.

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Not only is there a vast range of toolkits available to the SuperBASIC programmer, but the QL’s Operating
System has also undergone various changes, and with new QL compatible computers and emulators being
released, as well as the Minerva replacement ROM and SMSQ/E replacement operating system, it is
important that any programmer should know where problems may occur in the use of each SuperBASIC
command.

We have therefore attempted to cover each command in sufficient detail, with useful examples, and a
commentary on bugs and incompatibilities. No doubt as each new implementation of SuperBASIC comes
to light, so will further problems and we will try to keep abreast of these. We would refer you in general
to the Appendix on compatibility, which contains various guidelines for ensuring that programs should
remain compatible with future operating systems. More specific detail is contained in the description for
each command where problems are known to exist.

We have covered the commands contained in the following sources:
* The standard QL ROM © Sinclair Research Limited / Amstrad plc.
e The THOR ARGOS Operating System © CST and DANSOFT
* The Minerva ROM © Minerva and TF Services
* Super Gold Card, Gold Card, QXL and Trump Card © Miracle Systems Ltd.
* SMSQ/E, SMSQ Operating Systems © Tony Tebby
* Toolkit IT and Hotkey System II © Tony Tebby
* SERMouse © Albin Hessler Software
* DIY Toolkit (sold as Cardware) © Simon Goodwin
* AtariDOS and ATARI_REXT © Jochen Merz Software
* Turbo Toolkit (freeware) © The Turbo Team, David Gilham & Mark Knight
* DJToolkit 1.16 (freeware) © Norman Dunbar & Dilwyn Jones
* QPC version 4.04 specific commands © Marcel Kilgus.
* As many Public Domain Toolkits as we can find and understand.

We have covered the Toolkit IT and Hotkey System II because it is a standard addition to a QL operating
system and included on several add-on expansion boards.

As you look at the range of toolkits already available, you will notice that several commands appear in
more than one toolkit. Unfortunately, a command with the same name in two toolkits, may in fact have
a different syntax or even a different function! It is therefore our hope that with the aid of this book, any
future toolkits will remain compatible with earlier ones, and existing toolkits will be amended to resolve
these incompatibilities.

If you do come across further incompatibilities, operating system commands or public domain toolkits
which are not noted in the manual, then please do contact us as soon as possible so that we may investigate
the situation and incorporate them in the book. We may even find ways of correcting the errors!

In the meantime enjoy SuperBASIC !

6 Chapter 2. Introduction

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

2.1 Contributing Authors

* Franz Herrmann

* Peter Jager

* Rich Mellor

* Norman Dunbar - DJToolkit 1.16 additions.
e Norman Dunbar - QPC 4.04 additions.

* (Norman Dunbar - HTML conversion, tidyup etc.)

2.2 Installing Toolkits

Most toolkits can be loaded and linked into the QL’s operating system as an addition to the existing
SuperBASIC (or SBASIC) keywords simply by using a command similar to one of the following three
examples:

[LRESPR f1p1_Toolkit_bin }

[A:RESPR(X): LBYTES flpl_Toolkit_bin, A: CALL A

[B:ALCHP(X): LBYTES flpl_Toolkit_bin, B: CALL B J

(where x is the length of the toolkit code).

Some toolkits include additional device drivers and must be loaded into the resident procedure area of
memory and therefore the third example above must not be used, and the toolkit must be linked in before
any jobs are EXECuted (or else the toolkit can crash your system). We have tried to include a reference
in this book where this is the case.

The normal sequence of events for loading toolkits and other extensions to the operating system is set
out below:

1. Link in any speed enhancements (such as Lightning or Speedscreen) <— not needed on SMSQ/E

2. Load any additional device drivers (such as Mem or History) <— check which ones are already
included in SMSQ/E

3. Link in all required toolkits (those which contain device drivers should be linked in first).
4. Load the Pointer Environment (if required) <— not needed on SMSQ/E

5. Load a secondary program to carry on setting up the system - this is because on pre-JS ROMs, any
keywords added by toolkits are not available for use in the same program which linked them in.

6. Start up any required Jobs (such as ALTKEY, FSERVE or the Buttons provided by the Pointer
Environment).

7. Use HOT_GO if you use the Hotkey System II.

However, some toolkits insist that you enter a command before you can actually use any of the other
keywords provided by that toolkit. The following toolkits need this:

2.1. Contributing Authors 7

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

* Toolkit II- You will need to enter the command TK2_EXT, unless Toolkit II is built into your oper-
ating system (such as SMSQ/E) or you have used the commands AUTO_TK2F1 or AUTO_TK2F2

¢ BeuleTools- You need to enter the command Beule_ EXT

¢ BTools- You need to enter the command BTOOL_EXT

* Tiny Toolkit- You need to enter the command TINY_EXT

¢ ATARI_REXT- You need to enter the command ATARI_EXT

* Hotkey System- You need to enter the command HOT_GO for any of the ALTKEY (or other
HOT_xxx) keywords to work.

(See the individual commands listed above for further details).

8 Chapter 2. Introduction

CHAPTER
THREE

CREDITS

A lot of the information contained in this manual has been based on the original documentation provided
with the toolkits, some authors having written extensive manuals. The QL User Guide (an excellent
introduction to programming in general and SuperBASIC), the Toolkit II, SMSQ/E and Minerva manuals
and the documentation of the Public Domain Math Package must also be explicitly mentioned for their
quality. You will seldomly - we dare say almost never - find a good program with poor documentation.

Great respect must be paid to Roy Atherton, Stephen Berry, Tony Tebby, Laurence Reeves and Helmut
Aigner.

Simon Goodwin has developed, with the help of readers, many extensions to SuperBASIC in his popular
DIY Toolkit column in the Sinclair QL World magazine. The bundled extensions are now available from
Public Domain libraries as cardware (please send Simon a postcard if you find the routines useful). We
would like to thank Richard Alexander (formerly of C.G.H. Services) for providing us with a copy of DI'Y
Toolkit and his encouraging support. Over the years, the DIY Toolkit series has inspired many people to
write their own public domain toolkits. Simon Goodwin has also revealed many bugs in the original QL
keywords in QL World articles.

Details on selected items have been received from (in alphabetical order)
* Tiago Leal,
* Thomas Menschel,
* Mike Panagiotopoulas,
¢ Peter Recktenwald,
e Laurence Reeves,
* Andreas Rudolf,
¢ Bernhard Scheffold,
e Peter Sulzer,
* Kees van der Wal,
* Dave Walker
* and more.
Thanks to Boris Jakubith who allowed the inclusion of his ingenious History Device.

Special mention must also be made of Q Branch and Jochen Merz for their support in resurrecting this
project.

This manual deals with the current versions of SuperBASIC, if you want to use machine code to extend
SuperBASIC further, we highly recommend the ‘QDOS / SMS Reference Manual’ available from Jochen

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Merz software and Q Branch. The technical details of SuperBASIC are contained in ‘QL SuperBASIC
The Definitive Handbook’ by Jan Jones, available from Quanta.

3.1

Other Notices

Minerva and Hermes are products from QView and T.F. Services. Minerva MKII and related
interfaces are also products from this source.

Sinclair, QL, QDOS, QNet, ZX81 and ZX Spectrum are trademarks of Sinclair Research Ltd.
Supercharge, Turbo, Toolkit 3, Conqueror and Solution are products from Digital Precision Ltd.
QLiberator is a product of Liberation Software.

QL World magazine was published by Arcwind Ltd.

QXL, Super Gold Card, Gold Card and Trump Card are products from Miracle Systems Ltd (now
available from Q Branch).

Extended Pointer Environment, Toolkit II, QPAC2 and Config are products from Qjump (Tony
Tebby) and Jochen Merz Software.

Atari QL-Emulators (ST/QL) and the SMSQ/E operating system are products from Jochen Merz
Software.

THOR computers were a product of Dansoft.
The word processors Perfection and Text87Plus4 have been used to write this book.

The QED public domain editor from Jan Bredenbeek and the named pipes driver from Hans Lub
(and built into SMSQ/E) have also proved to be very helpful.

DEAssembler and MasterBasic from Ergon Software were also used in the production of this book.

QLs (and compatibles) were of course entirely used.

For the online version, Linux played a big part. It was responsible for:

Downloading the original HTML files;

Cleaning them up, as much as possible, using HTMLTidy;

More automated cleaning using the wonderful sed utility;
Conversion from (clean) HTML to Restructured Text using pandoc;

Conversion of the Restructured Text files into any output format you could possibly desire, using
Sphinx-doc.

10

Chapter 3. Credits

CHAPTER
FOUR

STRUCTURE OF THIS BOOK

This book consists basically of three parts.
The first part forms those obligatory sections, from Introduction to Writing Programs.
The second part is the main part which is explained below.

Finally the Appendices make up the third part. These appendices have been added to prevent repeated
explanations in the main section, they are not a full-blown concepts section.

The main part of this book is the Keywords section. This section is sorted alphabetically and for each
keyword there will appear (at least) a description of the keyword’s syntax, where it can be found and a
short description. In most cases, you will also find examples and cross-references to other keywords, and
from time to time some notes on using the commands. You may even come across warnings.

The alphabetical list is arranged in the following order (it is not case sensitive):
ABCDEFGHIJKLMNOPQRSTUVWXYZ 0123456789 % $ _

This means for example that the keywords such as S_LLOAD appear at the end of all other keywords
beginning with S.

4.1 Syntax

Compressing all possible variations of a keyword’s syntax in usually one abstract line can be difficult for
those readers who are not familiar with syntax schemes. That’s why we want to explain our notation in
detail.

Throughout the book, almost everything that can be typed into the computer or returned by it, is written
in a different typeface (italics) so that you can always easily distinguish those parts of the text which can
be entered into the computer. We have tried to be as consistent as possible in this respect.

The syntax scheme itself contains symbols which are not to be typed in and thus appear in the normal
typeface:-

11

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

4.1.1 Square Brackets ([])

These indicate that the enclosed parts are optional. Optional parameters (ie. parameters which can be
omitted without producing an error) are always in square brackets.

Example:
DLIST [#ch]
Both DLIST and DLIST #2 are valid.

4.1.2 Square Brackets With Superscript Asterisks ([1)

These suggest that the number of optional parameters is not limited, ie. there can be any number of such
parameters. Another symbol for the same meaning are nested square brackets with three dots inside.
Example:

POINT x,y [,x2,y? [.x*,y3, ... 1]

or

POINT x,y “[,x\,y']"

Any non-zero number of co-ordinate pairs are allowed. Note that the indices are also symbols, used to
make reading easier. Of course you cannot type POINT x!,y! but just POINT x1,y1 without any subscript
characters will work.

4.1.3 Curly Brackets ({ })

These mean that the parameter can be chosen from a limited variety of types which are given in the
brackets. The options are mutually exclusive and separated by a vertical line (]).

Example:

KEYWORD ({test$ | test%}

Either KEYWORD test$ or KEYWORD test% is valid.

The vertical line (]) can also appear in square brackets. In this case, the parameter is optional and has to
be selected from one of the types listed in the brackets.

Example:
SIZE test[%]|$]
SIZE testY%
SIZE test$
SIZE test

are all valid.

We generally assume that you have some basic idea of SuperBASIC syntax because this book is not a
SuperBASIC tutorial but a reference book for toolkit keywords.

12 Chapter 4. Structure of this Book

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

4.1.4 Channels (#ch)

Many Syntax definitions refer to a channel parameter, which is normally shown as #ch or #channel.

These channels can have two main types, a channel connected to a Device (or File) and a channel con-
nected to a Window (a scr_ or con_ device). The type of a channel is specified when that channel is
OPENed - see the description of OPEN for further details.

Normally the description for each keyword will specify if the channel used by that keyword has to be of a
specific type. If no mention is made, then presume that the keyword can be used on any type of channel.

4.1.5 Location

This is just the name of the toolkit(s) where you will find the keyword.

Some locations are not separately available toolkits, eg. QL. ROM, Super Gold Card, Gold Card, Trump
Card, ST/QL and more.

Where the Location is given as QL. ROM, this means that the keyword is available on all versions of the
QL, QL compatible computers and Emulators (unless specified).

Where the Location is given as Gold Cards, this covers the whole of the Gold Card range of expansion
boards, namely Super Gold Card and Gold Card. However, note that commands given by these boards
will not be available under SMSQ/E unless specifically stated.

Some keywords are available as part of the Level-2 or Level-3 device drivers.

Level-2 device drivers are built into Gold Card, Super Gold Card and the QUBIDE disk interface, as well
as forming part of SMSQ on the QXL and the ST emulators. Level-2 device drivers are also available
separately for the Trump Card.

Level-3 device drivers are provided with SMSQ/E and incorporate all of the features of Level-2 device
drivers and more. Therefore if the location is said to be Level-2 Device Drivers, these commands will
also work on Level-3 Drivers.

SMSQV/E is a new operating system which is compatible with QDOS and incorporates all of the original
QL ROM keywords, Toolkit II, the Pointer Interface, Window Manager, Hotkey System II and Level-3
device drivers. Therefore if a keyword is listed as appearing in any of these, then it will be available to
the SuperBASIC programmer under SMSQ/E.

SMSQ is the operating system built into QXL which can be replaced by SMSQ/E. Both operating systems
are very similar in how they treat SuperBASIC keywords and we have therefore used to SMS to indicate
that a comment may apply to both SMSQ/E and SMSQ. Their individual names have been used if there
is a difference.

ST/QL refers to the full range of QL Hardware Emulators for the Atari ST (Extended Mode-4 Emulator,
QVME and the original ST-QL Emulator). Any comments which refer specifically to one of the boards
are covered separately.

Refer to the Emulators Appendix for more details on the various emulators available.

4.1. Syntax 13

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

4.2 Description

The description of the function of a keyword is usually abstract and relatively short. You may have to read
it carefully to understand it fully. Technical details are limited to the needs of a SuperBASIC programmer,
but we document the current standards in QL programming and environments.

4.3 Examples

The examples demonstrate the different syntax variations of a keyword and explain concrete usages. We
have tried to write some short example programs which make sense outside pure computer applications,
meaning that a brief explanation is seldom necessary.

All listings have been directly imported from the SuperBASIC interpreter into the word-processor via an
intermediate file or pipe. The exceptional multitasking capabilities of the QL with Tony Tebby’s Pointer
Environment allowed us to write text, try out toolkits and develop examples, all at the same time. Due to
the direct import of the latter, mistakes in the examples have been minimised. However, we are all only
human.

It is not our intention to praise a particular style of programming. Book space, layout, typefaces and
didactic considerations posed various limits. For this reason, examples or parts of examples which are
designed as modules (procedures or functions), will usually not check the supplied arguments for wrong
parameters.

All example listings are freely distributable subject to restrictions. You are allowed to develop applica-
tions from examples or make use of examples in other programs under the condition that this book and
its authors are given credit accordingly.

4.4 Notes

These (sometimes extensive) comments vary from strange side-effects of keywords to off-topic remarks.
They have been added for completeness. Very often the original documentation did not recognise all
possible implementations for practical reasons: a certain configuration did not exist at the time of writing,
the author did not expect users to exploit parameter ranges to the full, etc.

It is not necessary to know the notes but when struggling against odd phenomena, reading the notes could
clarify seeming mysteries.

4.5 [Implementation] Notes

When bringing out new implementations of the QL ROM, the authors are limited by the amount of
memory into which they have to squeeze all additions, modifications and corrections. They therefore
tend to extend the syntax instead of adding new keywords. That is why the Implementation Notes are
usually a further description of syntax and usages, possibly including examples. POKE is a good example.

The more common Implementation Notes are for Minerva, THOR and SMS. Please note that throughout
references to SMS refer to both the SMSQ and SMSQ/E operating systems (see above).

Implementation Notes may also appear for each of the different Emulators and Expansion Boards which
can be used with the QL.

14 Chapter 4. Structure of this Book

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

4.6 Warning

An absolutely obligatory section! Some commands and functions crash the machine under certain cir-
cumstances: the warnings are intended to help you avoid frustration and disappointment. Please do not
blame the authors of the toolkits for the bugs, writing a fool-proof program is very time consuming and
nobody is perfect (neither the toolkits’ authors nor the writers of this book). If we forget to mention a
dangerous situation, this is because we were not aware of it.

4.7 Cross-Reference

Keywords can be connected by a couple of links. They can do almost the same or perform similar func-
tions, in these cases we did not make use of the word-processor’s block copying facilities to artificially
enlarge the book but simply referred to another text passage. If the relationship between keywords is
emphasised by their name, cross-references may be extremely short or missing; due to the alphabetical
order of the keywords, the reference is not too far away in most cases anyway.

Cross-references may also give notice of other keywords where the relation is rather indirect, this has
been done to encourage liberally skipping through the pages.

4.6. Warning 15

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

16 Chapter 4. Structure of this Book

CHAPTER
FIVE

WRITING PROGRAMS

There have been many books and magazine articles written about how to write SuperBASIC programs,
so we do not intend to cover the basic principles here. The main section detailing the various keywords
available to the SuperBASIC programmer contains many useful examples and we suggest that you work
through those examples, making sure that you understand how they work and trying to improve them if
possible.

In this section, we look at some of the major problems which can face the SuperBASIC programmer and
hope to provide some guidance as to how you can overcome those problems and ensure that the programs
which you write can be used successfully on all implementations of the QL’s operating system.

5.1 Compiling SuperBASIC Programs

Digital Precision’s Supercharge and Turbo compilers are not able to compile some keywords™ (eg. those
which allow arrays as parameters) while Liberation Software’s QLiberator can compile every additional
keyword which makes sense in a compiled program. Although programs compiled with Qliberator will
be slower than those compiled with Turbo, the fact that Turbo has not been updated for a number of years
(and still contains certain bugs) means that Qliberator may be a better option. This is a matter of fact
which we consider worth mentioning for the benefit of Supercharge and Turbo users, it is not intended as
a hidden advertisement for QLiberator.

Note: While the above was certainly true when the first paper version of this manual was printed,
progress has been made, as the following correction from George Gwilt explains:

For versions of TURBO earlier than 4.21 machine procedures or functions that modify their parameter
values, process arrays (other than single strings), manipulate the stored program text, or rely on other
interpreter data structures (such as the name table and name list) will not work when compiled. The
majority of add-on commands do not do this, and consequently work perfectly.

For TURBO v4.21 and later none of these restrictions apply except for the reliance on the name list.

On the other hand, if you are a Minerva freak, use the Pointer Environment in your programs or want
to ensure that your programs will run on SMSQ/E, then you might just find that QLiberator is the better
compiler.

As you look through the book, you will find that many keywords act differently on the various imple-
mentations of SuperBASIC. To overcome this problem, we suggest that programs which are designed
to run on various implementations of the QL, should be compiled, as subject to the comment below,
Compilers ensure that programs will run on any system (provided that all keywords used by the program
are available on that implementation).

17

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

If you want to write programs which use built-in functions only if they are available, you will need to
use Qliberator which does not report an error until you try to use an undefined keyword (Turbo and
SuperCharge both refuse to load the program in this instance).

Together with the use of the VERS$ function, you can easily write programs which work on all implemen-
tations of the QL making use of extra facilities which may be available on some versions of the operating
system.

One thing of which you must be careful when compiling programs to run on other implementations is
the various notes and warnings given for some keywords. Some keywords cannot be compiled and others
may have bugs on various implementations which are not fixed by the compiler (refer to the compiler’s
manual to see if they rectify the bugs). One of the main culprits of this is the CURSOR command which
will reject the use of five parameters on pre-MG ROMs.

Turbo does tend to include its own code to overcome any incompatibility problems with standard QL
ROM keywords, whereas Qliberator tends to use the native routines on the operating system on which it
is running.

Another thing to bear in mind when writing programs for use with a compiler is that you should really
ensure that the program opens all of its own windows and does not assume that any channels are already
open. You will also need to remember to DIMension any strings used by the program to ensure that the
program works the same way as it does under the Interpreter when compiled (see DIM for an explanation
of the way in which strings are treated in various circumstances).

It is also useful to include your own error trapping routines in a compiled program (such as WHEN
ERRor) - most compiler error messages are very unhelpful when seen by a user of a program and in
particular, there is a problem with programs compiled with Turbo and Supercharge in that they do not
wait for the user to press a key after reporting an error before stopping the compiled program. This is
fine on a standard QL, as the final display of the program is left on screen - however, under the Pointer
Environment, unless the program is started with the command EXEP flpl_test_obj,u (or similar), then
the Pointer Environment removes every last trace of the program from the screen when it stops. Also, if
any machine code Procedures or Functions report an error, then the error may not be reported and the
program may just ‘hang’ if #0 is not open.

One of the main problems with compiled programs is the Cache provided with 68020 processors (and
faster). Caches cause problems with machine code which modifies itself (normally to enhance speed).
Whereas programs compiled with Qliberator should be okay (depending on the toolkits used within
them), TURBO compiled programs are normally self- modifying. However, provided that a program is
compiled under TURBO with the BRIEF directive then it will run provided that the cache is switched off
for the first 0.3 seconds after EXECing the program - for example, if a program causes problems, use:

10 CACHE_OFF

20 EX flpl_PROGRAM_exe
30 PAUSE 15

40 CACHE_ON

Refer to CACHE_ON and CACHE_OFF for further details.

One of the other differences between TURBO compiled programs and Qliberator compiled programs is
that the former all make assumptions about the start of the screen and system variables. However, there
is a public domain program by Davide Santachiara called Turbostart which resolves these problems by
altering compiled programs.

18 Chapter 5. Writing Programs

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

5.2 Writing Programs to Run Under the Pointer Environment

It is not as difficult as it first may seem to write programs to run under the Pointer Environment, unless
you intend your program to use the Pointer and Menu facilities provided by the Pointer Environment.

Basically, any program which has been written with the intention of multitasking will work under the
Pointer Environment. However, the program should not attempt to tie up the QL’s resources unless it is
using them (for example, do not open a printer channel until you need to send output to it) and then close
the channel once all output has been sent. It is also useful to allow the user to add their own facilities
such as a mouse through amending the boot program.

A SuperBASIC program will of course only multitask if it is compiled (see Section 4.1) or if the user has
Minerva or SMSQ/E which provide multitasking SuperBASIC interpreters.

5.2.1 Using the Pointer and Menu Facilities

If you intend to use the Pointer and Menu facilities provided by the Pointer Environment, then you will
need to use either QPTR (from Jochen Merz Software) or EasyPTR (also from Jochen Merz Software).
The latter is easier to get to grips with and use from SuperBASIC, but is less flexible than QPTR. You may
also want to use QMenu (also from Jochen Merz Software) which provides various ready made menus
which can be easily added to BASIC programs in order to provide standard facilities such as getting the
user to select an existing filename.

Your program will need to set itself an Outline (see OUTLN) and also check on the screen display size
(see SCR_XLIM and SCR_YLIM). You may also want to check that the Pointer Environment is available
(see P_ENV).

If a program does not define an OUTLN properly, then you may notice that some parts of the program’s
display disappears - the reason for this is that when the program is first loaded, the Pointer Environment
uses the OUTLN of the calling Job to define the maximum size of the windows which the program may
use - this may be too small and your own program should therefore define its own OUTLN.

If the OUTLN setting is too small, you may notice that some EasyPTR menus will not appear on screen
- this is because if you try to OPEN a window which appears partly outside the OUTLN setting, then
that window will be OPENed to be the same size and position as the OUTLN setting. If you try to use
WINDOW to position an existing window so that any part of it would fall outside of the OUTLN setting,
then an error will be reported.

Other problems will occur if you CLOSE the window which has the OUTLN defined - the OUTLN will
become the smallest area possible which encompasses all currently OPEN windows - and will become
attached to the smallest existing channel number - this unfortunately means that the contents of any
windows which have been CLOSEd where those windows (or part of them) fall outside the new OUTLN,
will disappear!! This can result in some programs losing parts of their display.

An example of this can be seen with the program:

5 OPEN #0,con

10 OUTLN #0,448,200,32,16:PAPER #0,0:CLS#0:INK #0,4:PRINT #0,'This is #0'
20 OPEN #1,con_400x160a40x40:PAPER 2:CLS:INK 7:PRINT 'This is #1'

30 OPEN #2,con_300x100a80x70:PAPER#2,7:CLS#2:INK#2,2:PRINT #2,'This is #2'
40 PAUSE #0

50 CLOSE #0

(continues on next page)

5.2. Writing Programs to Run Under the Pointer Environment 19

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

55 PAUSE #1
60 OPEN #0,con_448x200a32x16:PRINT #0,'This is #0'

Try compiling this program as flpl_test_obj and then enter the command EX flp1_test_obj - see what
happens when #0 is CLOSEd?

Compare the result if you changed line 50 to CLOSE #2.

One of the solutions to this problem is to use the G option on the EXEP command to define a Guardian
Window - try the command: EXEP flpl_test_obj,g,512,256,0,0. The other answer is to OPEN another
channel (for example #3) to be the OUTLN channel before any windows are OPENed - change line 5 and
10 thus:

5 OPEN #3,con_:OUTLN #3,448,200,32,16
10 OPEN #0,con_448x200a32x16:PAPER #0,0:CLS#0:INK #0,4:PRINT #0, This is #0'

These problems with defining OUTLN’s will become apparent if you test programs under an SBASIC
interpreter and then after the program has been compiled - if you use the SBASIC command to start up
a Multiple BASIC (or similar on Minerva) and then LRUN your BASIC program, the OUTLN is always
set to OUTLN 512,256,0,0 whereas if you EXECute a compiled program (or even if you use a command
such as EX flpl_program_bas to start up a BASIC program under SMSQ/E), the OUTLN will be that
set in the calling program (unless defined in the program itself).

5.3 Multitasking Programs

If you write a program which is to run under the Pointer Environment, it is useful to remember some
rules:

* There is no need to activate the cursor on the program - when the program is PICKed by the user,
then any open con_ channel is automatically activated. You may however, still wish to do this if
the program is to be able to run without the Pointer Environment.

* If any part of the job’s OUTLN is overlapped by other programs, then the job will not be able to
access and scr_ or con_ channels (it will wait until the program is activated). This can be overcome
with PIE_ON / PEON or by starting the program with EXEP (using the U parameter). You can
check if a program can write to a screen channel with PEND.

* As soon as the program ends (with STOP or RJOB) then all of its windows will be removed from
the screen, again unless you have used EXEP with the U parameter.

20 Chapter 5. Writing Programs

CHAPTER
SIX

KEYWORDS INTRODUCTION

The following is a general description of the various commands available to the SuperBASIC program-
mer, as provided by Public Domain toolkits, QL Emulators and SuperBASIC itself.

We have indicated which of the commands are functions (and therefore must appear in a program in the
form):

[x = FUNCTION (parameter)]
or:
[IF FUNCTION (parameter) = value }

and those which are procedures (also known as commands) which must therefore appear in a program in
the form:

[PROCEDURE parameter }

NOTE

Many toolkits insist that you initialise the toolkit before you can use the various keywords contained in
those toolkits. Refer to Section 1.1 for details.

21

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

22 Chapter 6. Keywords Introduction

CHAPTER
SEVEN

TOOLKITS

This manual covers a lot of toolkits, and there are probably many more to be added as time passes. This
page of the manual lists the known toolkits in the manual at present (so will obviously need to be updated
as times goes on) and shows simple links to the pages holding details of the commands provided by those
toolkits.

If more than one toolkit provides a command with the same name, the link will be to the first known
entry in the manual. The page linked to should contain all versions of the particular command.

7.1 Ahnlichkeiten

The commands in this toolkit are:
* PHONEM
* SOUNDEX
* WLD

7.2 ARRAY

The commands in this toolkit are:
* LAR
* SAR
* SARO

SEARCH
* SORT

23

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.3

The commands in this toolkit are:

7.4

The commands in this toolkit are:

ATARI Emulators

MIDINET
MNET

MNET _OFF
MNET_ON
MNET%
MNET _S%
MNET_USE
SERNET
SNET
SNET%
SNET_ROPEN
SNET _S%
SNET_USE

ATARIDOS

ACOPY
ADELETE
ADIR
AFORMAT
AQCONVERT
ASTAT
IQCONVERT
QACONVERT
QCOPY
QICONVERT

24

Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.5 ATARI_REXT

The commands in this toolkit are:
* A_SDATE
* A_SPEED
* EXCHG
* EXTRAS_W
* KBD_RESET
* ROM_EXT
» WSET_DEF
» WSET
* PEEKS$
* POKES$

7.5.1 ATARI_REXT - Pre v1.21

This version of the toolkit provides the following, additional, commands:

* ROM_LOAD

7.5.2 ATARI_REXT - v1.21

This version of the toolkit provides the following, additional, commands:

» EPROM_LOAD

7.5.3 ATARI_REXT - v1.24 to v2.15

This version of the toolkit provides the following, additional, commands:

* SND_EXT

7.5.4 ATARI_REXT -v1.29

This version of the toolkit provides the following, additional, commands:

o XLIM
* YLIM

7.5. ATARI_REXT

25

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.5.5 ATARI_REXT -v2.10

This version of the toolkit provides the following, additional, commands:

* A_RDATE

7.5.6 ATARI_REXT -v2.12

This version of the toolkit provides the following, additional, commands:

* OUTLN

7.5.7 ATARI_REXT - v2.15

This version of the toolkit provides the following, additional, commands:

* ATARI_EXT

7.5.8 ATARI_REXT - v2.17

This version of the toolkit provides the following, additional, commands:

* PEEKS L

7.5.9 ATARI_REXT - v2.22

This version of the toolkit provides the following, additional, commands:

* A_EMULATOR
* A_MACHINE
* A_PROCESSOR

7.5.10 ATARI_REXT -v2.25

This version of the toolkit provides the following, additional, commands:

* SCR_BASE
* SCR_LLEN

7.5.11 ATARI_REXT - v2.27

This version of the toolkit provides the following, additional, commands:

* A_OLDSCR

26

Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.5.12 ATARI_REXT for QVME - v2.31

The commands in this toolkit are:
* FREE_FAST
* LRESFAST
* RESFAST

7.6 Amiga QDOS - v3.20

The commands in this toolkit are:
e BUTTON%
e PTR LIMITS

PTR_MAX
PTR_OFF
PTR_ON

PTR_POS
* X PTR%

Y _PTR%

7.7 BGI

The commands in this toolkit are:

* VG_HOCH

VG_LOAD

VG_PARA

VG_PRINT

VG_RESO
* VG_WIND

7.8 BIT

The command in this toolkit is:

* BIT%

7.6. Amiga QDOS - v3.20 27

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.9 BTool

The commands in this toolkist are:

ALCHP
ASK

BASIC
BASIC_F
BASIC_L
BCLEAR
BREAK
BREAK%
BTool_EXT
BTool RMV
CBASE
CCHRS$
CHANID
CHANNELS
CLCHP
CLOSE
CLOSE%
CLRMDV
ConvCASE$
COPY_B
COPY_L
COPY_ W
CTAB$
CURSOR
CURSOR%
CVF

CVI%

CVL

CVS$
DEFAULT
DEFAULTS
DEFAULT%

28

Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

« DEFINED
e EQ$

« ETABS$

o EXTRAS
o FDAT

« FGETB

« FGETS$

« FGETF

« FGETH$
» FGETL

o FGET%
 FILE_OPEN
« FIND

o FLEN

« FNAME$
s FPOS

« FPOS_A
« FPOS_R
« FPUTB

« FPUTS$

« FPUTF

« FPUTL

« FPUT%
« FREADS
« FREE

« FREEZE
o FREEZE%
« FSETH$
o FTYP

« FUPDT
« FWRITES$
« FXTRA

e GTS$

« INPUTS$

7.9. BTool 29

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10_PEND%
JobCBS
KJOB
KJOBS
MKF$
MKI$
MKL$
MKS$
ODD
OFF

ON
PEEKS$
PEEK_F
POKES$
POKE_F
QDOS$
ORAM$
RECHP
RELJOB
REPLY
REPORT
RESET
RJOB
SEARCH
SIGN
SINT
SPJOB
SUSJOB
TPFree
TYPE
TYPE_IN
UINT
WMANS$
XCHANGE

30

Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.10 BeuleTools

The commands in this toolkit are:
* ALT
* ATARI
* BAT
* BATS
* BAT _USE
* BCLEAR
e Beule EXT
* BLD
* BVERS$
* CAPS
* CLS_A
* DBL
* EL
* ENL
* ESC
* FF
* KEY_ADD
* KEY RMV
* KILL
* KILL_A
* KILLN
* LINT2
* LMAR
* LPOLL
* LPR _USE
* LSCHD
s MD
* NIX
* NOCAPS
* NORM
* NRM
* PAGDIS

7.10. BeuleTools 31

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

* PAGLEN
* PAGLIN
* PRO

* QuATARI
* RAMTOP
* RESET

* RMAR

* ROMs

* SCREEN
o SI

» UNL

* WIPE

7.11 COMPICT

The commands in this toolkit are:
* COMPRESS
* EXPAND
* FASTEXPAND

7.12 CONCAT

The command in this toolkit is:

* CONCAT

7.13 CONVERT

The command in this toolkit is:

* CONVERT

32 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.14 CRYPTAGE

The commands in this toolkit are:

* LOCK
* UNLOCK

7.15 DESPR

The command in this toolkit is:

* DESPR

7.16 DEV device

The commands in this toolkit are:

* DEV_LIST
* DEV_NEXT
» DEV_USE
* DEV_USE$

7.17 DIY Toolkit

DIY Toolkit is supplied in a number of volumes, each dealing with a different area of the QL and QDOS.

The volumes known to this manual are as follows:

7.17.1 Volume A - Alias

The commands in this volume are:

» _DEF$

o _DEF%

o _NAMES$

o ALIAS
CODEVEC
INVERSE

7.14. CRYPTAGE

33

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.17.2 Volume B - Basic Tools

The commands in this volume are:
e BPEEK L
e BPOKE L

7.17.3 Volume C - Channels

The commands in this volume are:
e CHAN L%
e USE

7.17.4 Volume E - Error Control

The commands in this volume are:

* CHECKF

CHECK%

EDLINE$
PICK$
PURGE

7.17.5 Volume F - File Tools

The commands in this volume are:
e GetHEAD
e SetHEAD

7.17.6 Volume G - Graphics

The commands in this volume are:
* DRAW
* PIXEL%
* PLOT

34

Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.17.7 Volume H - Heap and Horology

The commands in this volume are:
* DISCARD
e LINKUP
* RESERVE
* T_COUNT
* T_OFF
* T_ON
* T _RESTART
o T _START
T _STOP

7.17.8 Volume | - Serial Mouse

The commands in this volume are:

* SYNCH%

* X_PTR%

* Y_PTR%

* BUTTON%
* PTR_FN%

* PTR_INC

* PTR_KEY

* PTR_LIMITS
* PTR_MAX

* PTR_OFF

* PTR_ON

* PTR_POS

7.17.9 Volume J - Jobs

The commands in this volume are:
o LIST_TASKS
* PRIORITISE
* RELEASE_TASK
* REMOVE_TASK

7.17. DIY Toolkit 35

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.17.10 Volume M - MultiBASIC

The commands in this volume are:

* RELOAD

REMOVE
RESAVE

SCR_SAVE

UNLOAD

7.17.11 Volume P - Pipes and Parameters

The commands in this volume are:

* PARHASH

PARNAMES$

PARSEPA

PARTYPE

QCOUNT%
« QLINK
« QSIZE%
 QSPACE%
« UNSET

7.17.12 Volume Q - Queues and QDOS

The commands in this volume are:
* CHBASE
* QUEUE%
* SYSBASE

7.17.13 Volume R - Replace

The commands in this volume are:
e LOOKUP%
LOWERS

NEWCHAN%

REPLACE

UPPER$

36 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.17.14 Volume S - Qlipboard

The commands in this volume are:
e CLIP$
e CLIP%

7.17.15 Volume T - Traps

The commands in this volume are:
e ADDREG
e BTRAP

DATAREG
MTRAP

« QTRAP

7.17.16 Volume U - Environment Variables

The commands in this volume are:
e ALTER
e SET

7.17.17 Volume V - More

The command in this volume is:

* MORE

7.17.18 Volume W - Windows

The commands in this volume are:

» SET_GREEN

SET_RED

W_CRUNCH

W_SHOW

W_STORE

W_SWAP

W_SWOP

7.17. DIY Toolkit 37

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.17.19 Volume X - MSearch and Vocab

The commands in this volume are:
* SEARCH_MEM
* MSEARCH
* VOCAB

7.17.20 Volume Y - FlexyNet

The commands in this volume are:

* NETBEEP

NETPOLL

NETRATE

NETREAD

NETSEND

NETVAR%

7.17.21 Volume Z - Array Search

The commands in this volume are:
e INARRAY%
e MAXIMUM

MAXIMUM %

MINIMUM

MINIMUM %

7.18 Djtoolkit v1.16

The commands in this toolkit are:
* ABS_POSITION
* BYTES_FREE
* CHECK
* DEV_NAME
» DISPLAY_WIDTH
* DJ_OPEN
* DJ_OPEN_DIR
* DJ_OPEN_IN

38 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

DJ_OPEN_NEW
DJ_OPEN_OVER
DJTK_VER$
FETCH_BYTES
FILE_BACKUP
FILE DATASPACE
FILE LENGTH
FILE _POSITION
FILE TYPE
FILE UPDATE
FILLMEM_B
FILLMEM_L
FILLMEM W
FLUSH_CHANNEL
GET BYTE
GET_FLOAT
GET_LONG
GET_STRING
GET_WORD
KBYTES_FREE
LEVEL?2
MAX_CON
MAX_DEVS
MOVE_MEM
MOVE_POSITION
PEEK_FLOAT
PEEK _STRING
POKE_FLOAT
POKE_STRING
PUT _BYTE
PUT_FLOAT
PUT_LONG
PUT_STRING
PUT_WORD

7.18.

Djtoolkit v1.16

39

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

OPTR
« READ_HEADER

« RELEASE_HEAP

« RESERVE_HEAP
 SCREEN_BASE

« SCREEN_MODE

« SEARCH_C

« SEARCH_I

« SET_HEADER

« SET_XINC

e SET_YINC

« SYSTEM_VARIABLES
e USE_FONT

* WHERE_FONTS

7.19 Disk Interfaces

The command in this toolkit is:

e FLP_STEP

7.20 ETAT

The command in this toolkit is:

» ETAT

7.21 Ecran Manager

The commands in this toolkit are:
* SAUTO
* SCROF
* SCRON
* SLOAD
* SMOVE
* SSAVE
* SSHOW
o SSTAT

40

Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.22 Environment Variables

The commands in this toolkit are:
e ENV_DEL
e ENV_LIST

7.23 FACT

The command in this toolkit is:

* FACT

7.24 FKEY

The command in this toolkit is:

* KEY

7.25 FN

The commands in this toolkit are:
* FNAME$
* KEYW
* PINF$
* ODOS$
o QFLIM
* QuATARI
* RMODE
* SCREEN
* SCRINC
* SYS_BASE
* THING
e TH_VER$
* WIN_BASE
* WINF$

7.22. Environment Variables 41

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.25.1 FN v1.02 Onwards

This toolkit adds one extra command to then list in the FN toolkit above. This is:

* DEFAULT SCR

7.26 FONTS

The command in this toolkit is:

* S FONT

7.27 FRACT

The command in this toolkit is:

* FRACT

7.28 Fast PLOT/DRAW Toolkit

The commands in this toolkit are:
* DRAW
* PLOT
* REFRESH
* SCLR

SCRBASE

7.29 GETSTUFF

The command in this toolkit is:

* GET_STUFF$

7.30 Gold Card

The commands provided by the Gold Card ROM are:

* CACHE_OFF
CACHE_ON
DEV_LIST

DEV_NEXT

DEV_USE

42

Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

* DEV_USE$
» FLP_DENSITY
» FLP EXT

* FLP_JIGGLE
» FLP_SEC

» FLP_START
s FLP_STEP

» FLP TRACK
» FLP _USE

* PAR_USE

* PROT_DATE
* PRT ABT

* PRT _USE

* RAM_USE

* RES_128

* RES_SIZE

* SCR2DIS

* SCR2EN

* SDP_DEV

* SDP_KEY

» SDP_SET

* SDUMP

* SER_PAUSE
*» WIN2

7.30.1 Gold Card - v2.24

The additional commands provided by this ROM are:
* SLUG

7.30. Gold Card 43

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.30.2 Gold Card - v2.67

The additional commands provided by this ROM are:

AUTO_DIS
AUTO_TK2F1I
AUTO_TK2F?2

7.31 GPOINT

The commands in this toolkit are:

GPOINT
POINT

7.32 HCO

The commands in this toolkit are:

BICOP
BLOOK
BMOVE
CoL
DOTLIN
GETXY
INVXY
LDRAW
PAINT
SET
XDRAW

7.33 HOTKEY I

The commands in this toolkit are:

ERT

EXEP
HOT_CHPI
HOT_CHP
HOT_CMD

44

Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.34 Hard Disk Driver

The command provided in the hard disk driver is:

7.35 History Device

The commands in this toolkit are:

HOT_DO
HOT_GO
HOT _KEY
HOT_LIST
HOT _LOADI
HOT_LOAD
HOT_NAMES$
HOT_OFF
HOT _PICK
HOT_REMV
HOT_RES1
HOT_RES
HOT_SET
HOT_STOP
HOT _STUFF
HOT _THING
HOT_TYPE
HOT_WAKE

WIN_USE

HIS SET
HIS_SIZE
HIS UNSET
HIS_USE$
HIS_USE

7.34.

Hard Disk Driver

45

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.36 Hyper

The commands in this toolkit are:

* ARCOSH
* ARCOTH
* ARSINH
* ARTANH
* COSH

» COTH

» SINH

» TANH

7.37 Hyperbola

The commands in this toolkit are:

* COSH
» SINH
» TANH

7.38 KEYMAN

The commands in this toolkit are:

* KEY
* NOKEY

7.39 KILL

The command in this toolkit is:

* KILL

7.40 LWCUPC

The commands in this toolkit are:

o LWCS$
e UPC$

46

Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.41 Level-2 Device Drivers

The commands in the Level 2 and/or Level 3 drivers are:

» FBKDT

FMAKE_DIR
FVERS

MAKE_DIR

SET_FBKDT

SET _FUPDT

SET_FVERS

7.42 MINMAX2

The commands in this toolkit are:
o MAX
e MIN

7.43 MULTI

The commands in this toolkit are:
e IS BASIC
e P ENV

7.44 Math Package

The commands in this toolkit are:

* ATN

* ATN2

* BINOM
* CEIL

* DET

* DIV

* FASTER
* EPS

* FACT

* GCD

7.41. Level-2 Device Drivers 47

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

GREGOR
INF
INTMAX
LCM

LOG2
MATADD
MATCOUNT
MATCOUNTI
MATDEV
MATEQU
MATIDN
MATINPUT
MATINV
MATMAX
MATMEAN
MATMIN
MATMULT
MATPLOT
MATPLOT R
MATPROD
MATREAD
MATRND
MATSEQ
MATSUB
MATSUM
MATTRN
MAX

MIN

MOD
NDIM

SGN

SIZE

SOR

SWAP

48

Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.45 Minerva

The commands in the Minerva ROM, over and above the standard QL. ROM are:

« CMDS$
* MB
* WINDOW

7.46 Minerva - Trace Toolkit

The commands in this toolkit are:
» SSTEP
* TROFF
e TRON

7.47 Minerva Extensions Toolkit

The command in this toolkit is:

* [2C_IO

7.48 NDIM

The command in this toolkit is:

* NDIM %

7.49 PAR/SER Interfaces

The command in the PAR/SER Interface ROM is:
e PAR USE

7.50 PEX

The commands in this toolkit are:

* IS PEON

IS_PTRAP
* MODE |

» OUTL

* PEOFF

7.45. Minerva

49

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

e PEON

« PEXS$

e PEX_INI

« PEX_SAVE
e PEX_XTD
» PICK%

« PIF$

e PXIST

» PXOFF

« PXON

OL_PEX

7.50.1 PEX -v20

This version of the PEX toolkit provides an additional command which is:

* WMOV

7.51 PICEXT

The commands in this toolkit are:
e LOADPIC
e SAVEPIC

7.52 PIE

The commands in this toolkit are:
* PIE_EX OFF
* PIE_ EX ON
* PIE_OFF
* PIE_ON

50 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.53 PRIO

The command in this toolkit is:

* PRIO

7.54 PTRRTP

The commands in this toolkit are:
* PIR X
e PIR Y
* RTP_R
* RTP_T

7.55 Path device

The commands provided by the Path device are:
* PTH_ADD
« PTH$
e PTH_LIST

PTH_RMV
PTH_USE
PTH_USE$

7.56 Pointer Interface - v1.23 Onwards

The commands in this toolkit are:
e CKEYOFF
e CKEYON

7.57 QL ROM

The commands in QL ROMs prior to version JM are:
* ABS
* ACOS
« ACOT
* ADATE
* AND

7.53. PRIO 51

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

* ARC

* ARC_R

* ASIN

* AT

* ATAN

* BAUD

* BEEP

* BEEPING
* BLOCK

* BORDER

e CALL

* CHR$

* CIRCLE

* CIRCLE_R
* CLEAR

* CLOSE

* CLS

* CODE

* CONTINUE
» COPY

* COPY_N

* COS

s COT

» CSIZE

* CURSOR

* DATA

* DATE

* DATES$

* DAYS

* DEFine FuNction
* DEFine PROCedure
* DEFine xxx
* DEG

* DELETE

52 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

* DIM

* DIMN

* DIR

* DIV

* DLINE

* EDIT

* ELLIPSE

* ELLIPSE_R
* ELSE

* END

* END DEFine
* END FOR

* END IF

* END REPeat
* END SELect
* EOF

* ERR XX

* EXEC

* EXEC_W

* EXIT

* EXP

e FILL

* FILLS

* FLASH

* FOR

* FORMAT

* FuNction

* GO SUB

* GOTO

e IF

* INK

* INKEY$

* INPUT

* INSTR

7.57. QL ROM 53

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

o INT

* KEYROW
* LBYTES
* LEN

o LET

* LINE

* LINE R

o LIST

* LN

* LOAD

* LOCal

* LOGI0

* LRUN

* MERGE
* MISTake
* MOD

* MODE

* MOVE

* MRUN

* NET

* NEW

* NEXT

* NOT

* ON...GO SUB
* OPEN

* OPEN_IN
* OPEN_NEW
* OR

* OVER

* PAN

* PAPER

* PAUSE

* PEEK L
* PENDOWN

54 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

PENUP
PI
POINT
POINT_R
POKE_L
PRINT

PROCedure

RAD

RANDOMISE

READ
RECOL

REMAINDER

REMark
RENUM
REPeat
RESPR
RESTORE
RETRY
RETurn
RND
RUN
SAVE
SBYTES
SCALE
SCROLL
SDATE
SELect
SELect ON
SEXEC
SIN
SORT
STEP
STOP
STRIP

7.57

. QL ROM

55

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

« SUB

o TAN

« THEN

. TO

o TURN

« TURNTO
« UNDER
e VERS

« WIDTH
« WINDOW
« XOR

7.57.1 QL ROM JM Onwards

The JM ROM provided the following additional commands:

e END WHEN

* ERLIN

* ERNUM

* ERRor

* REPORT

* TRA

* WHEN condition
* WHEN ERRor

7.58 QPC / QXL

The commands in the QXL ROM and QPC are:

* WIN_DRIVE

» WIN_DRIVE$
» WIN_FORMAT
* WIN_REMV

» WIN_START

» WIN_STOP

» WIN_USE

« WIN_WP

56

Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.59 QSOUND

The commands in this toolkit are:

7.60 QView Tiny Toolkit

The Qview Tiny Toolkit, not to be confused with 7inyToolkit, provides the following commands:

BELL
CHANNELS
CURDIS
CURSEN
EXPLODE
EXTRAS
LEFT
PLAY
RELEASE
SHOOT

TTALL
TT$

TTEDELETE

TTEFP
TTEOPEN
TTET3
TTEX
TTEX W
TTFINDM
TTINC
TTME%
TTMODE%
TTPEEK$
TTPOKE$
TTPOKEM
TTREL
TTRENAME
TTSUS

7.59

. QSOUND

57

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

s TTV

7.61 QVME - Level E-19 Drivers onwards

The commands in this toolkit are:

* DISP_BLANK
* DISP_RATE
* DISP_SIZE

7.62 QXL

The commands supplied in the QXL ROM are:

* DISP_UPDATE
* PRT ABT

* PRT _USE

* WIN_DRIVE

» WIN_DRIVE$
» WIN_FORMAT
* WIN_REMV

*» WIN_START

» WIN_STOP

* WIN_USE

« WIN_WP

7.63 Qjump RAMPRT

The command in this toolkit is:

* PRT _USE

7.64 RES

The command in this toolkit is:

* RESET

58

Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.65 REV

The command in this toolkit is:

7.66 SDUMP_REXT

7.67 SERMouse

The commands in this toolkit are:

REVS

BAUDRATE
BLS
SERMAWS
SERMCUR
SERMOFF
SERMON
SERMPTR
SERMRESET
SERMSPEED
SERMWAIT

7.68 SMS

The commands provided by SMS are:

CACHE_OFF
CACHE_ON
CMD$
DEV_LIST
DEV_NEXT
DEVTYPE
DEV_USE
DEV_USES$
EOFW
EPROM_LOAD
FBKDT
FLP_DENSITY

7.65.

REV

59

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.68.1 SMS - v2.31

The additional command in this version of SMS is:

FLP_SEC
FLP_START
FLP_STEP
FLP_TRACK
FLP_USE
FSERVE
I0_PRIORITY
JOB_NAME
LANGUAGE
LANGUAGES$
LANG_USE
PEEKS
POKES
PROT_DATE
QOLOAD
OLRUN
OMERGE
OMRUN
OSAVE
OSAVE_O
QUIT
RAM_USE
SBASIC
SLUG

* KBD_TABLE

60

Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.69 SMSQ

The commands in this manual for SMSQ are:

* SB_THING

7.69.1 SMSQ - 3.26

An additional command in SMSQ 3.26 onwards is:

* ALLOCATION

7.70 SMSQ/E

SMSQ/E provides the following commands:
* CD_ALLTIME
* CD_CLOSE
* CD_EJECT
* CD_FIRSTTRACK
* CD_HOUR
» CD_HSG2RED
e CD_INIT
* CD_ISCLOSED
* CD_ISINSERTED
* CD_ISPAUSED
* CD_ISPLAYING
* CD_LASTTRACK
* CD_LENGTH
* CD_MINUTE
* CD_PLAY
* CD_RED2HSG
* CD_RESUME
* CD_SECOND
*» CD_STOP
* CD_TRACK
* CD_TRACKLENGTH
* CD_TRACKSTART
e CD_TRACKTIME

7.69. SMSQ 61

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CHK_HEAP
DAY %
DEV_USEN
DISP_INVERSE
DISP_SIZE
DISP_TYPE
DISP_UPDATE
DOS_DRIVE
DOS_DRIVES$
DOS_USE
FET

FEW

FEX

FEX M
FLP_DENSITY
FLP_DRIVE
FLP_DRIVE$
FLP_SEC
FLP_STEP
FLP_USE
HGET

HOT _GETSTUFF$
HPUT

JOBID

LGET

LPUT
MACHINE
MIDINET
MONTH%
MNET
MNET_OFF
MNET_ON
MNET%

MNET _S%

62

Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

e MNET_USE

« MOUSE_SPEED

« MOUSE_STUFF

« OUTLN

« PAR_ABORT

« PAR_BUFF

« PAR_CLEAR

« PAR_DEFAULTPRINTERS
 PAR_GETFILTER
 PAR_GETPRINTER$
« PAR_PRINTERCOUNT
 PAR_PRINTERNAMES$
« PAR_PULSE
 PAR_SETFILTER
 PAR_SETPRINTER
« PAR_USE

« PEEKS_L

« POKES_L

« PROCESSOR

« PROT_MEM

« PRT_ABORT
 PRT BUFF

« PRT_CLEAR

« PRT_USE
 PRT_USES$

« QPC_CMDLINE$

« QPC_EXEC

e QPC_EXIT

« QPC_HOSTOS

« QPC_MAXIMIZE

« QPC_MINIMIZE

« QPC_MSPEED

« OPC_NETNAMES$

« OPC_QLSCREMU

7.70. SMSQ/E 63

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

« QPC_SYNCSCRAP

* QPC_WINDOWSIZE

OPC_RESTORE

QPC_VER$

QPC_WINDOWTITLE

RESET
SB_THING
SCR_BASE
SCR_LLEN
SCR_XLIM
SCR_YLIM
SER_ABORT
SER_BUFF
SER_CDEOF
SER_CLEAR
SER_FLOW
SER_GETPORTS$
SERNET
SER_PAUSE
SER_ROOM
SER_SETPORT
SER_USE
SNET

SNET%
SNET_ROPEN
SNET_S%
SNET_USE
TH_FIX
WEEKDAY%
WGET

WHEN condition
WIN_DRIVE
WIN_DRIVE$
WIN_REMYV

64

Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

» WIN_SLUG
» WIN_START
» WIN_STOP
» WIN_USE

» WIN_WP

* WPUT

* YEAR%

7.70.1 SMSQ/E - v2.50 Onwards

This version provided the following additional command(s):

* HOT THINGI

7.70.2 SMSQ/E - v2.55 Onwards

This version provided the following additional command(s):

» UPUT

7.70.3 SMSQ/E - v2.58 Onwards

This version provided the following additional command(s):

* INSTR_CASE

7.70.4 SMSQ/E - v2.71 Onwards

This version provided the following additional command(s):

* SEND_EVENT
» WAIT_EVENT

7.70.5 SMSQ/E - v2.73 Onwards

This version provided the following additional command(s):

* DMEDIUM_DENSITY
* DMEDIUM_DRIVE$

* DMEDIUM_FORMAT
* DMEDIUM_FREE

* DMEDIUM_NAMES$

* DMEDIUM_RDONLY
* DMEDIUM_REMOVE

7.70. SMSQ/E

65

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

DMEDIUM_TOTAL
DMEDIUM_TYPE

7.70.6 SMSQ/E - v2.98 Onwards

This version provided the following additional command(s):

BGCOLOUR_24
BGCOLOUR_QL
BGIMAGE
COLOUR_24
COLOUR_NATIVE
COLOUR_PAL
COLOUR_QL
PALETTE 8
PALETTE_QL

7.70.7 SMSQ/E - v3.00 Onwards

This version provided the following additional command(s):

WM_BLOCK
WM_BORDER
WM _INK
WM_PAPER
WM_STRIP

7.70.8 SMSQ/E - v3.01 Onwards

This version provided the following additional command(s):

WM_MOVEMODE

7.70.9 SMSQ/E - v3.12 Onwards

This version provided the following additional command(s):

* PE_ BGOFF

* PE BGON

66

Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.70.10 SMSQ/E - v2.73 for Atari

Additional command(s) in this version of SMSQ/E are:

SMSQ/E for Atari Additional command(s) in this version of SMSQ/E are:

SMSQV/E for Atari ST & TT Additional command(s) in this version of SMSQ/E are:

7.70.11 SMSQ/E for QPC

The commands in this toolkit are:

WIN_FORMAT

PAR_PULSE
WIN_DRIVE
WIN_DRIVE$
WIN_REMV
WIN_SLUG
WIN_START
WIN_STOP
WIN_USE
WIN_WP

DISP_INVERSE

CD_ALLTIME
CD_CLOSE
CD_EJECT

CD_FIRSTTRACK

CD_HOUR
CD_HSG2RED
CD_INIT
CD_ISCLOSED
CD_ISINSERTED
CD_ISPAUSED
CD_ISPLAYING
CD_LASTTRACK
CD_LENGTH
CD_MINUTE
CD_PLAY
CD_RED2HSG

7.70

. SMSQ/E

67

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

« OPC_NETNAMES$

CD_RESUME
CD_SECOND
CD_STOP
CD_TRACK

CD_TRACKLENGTH
CD_TRACKSTART

CD_TRACKTIME
DOS_DRIVE
DOS_DRIVES$
DOS_USE
FLP_DENSITY
FLP_DRIVE
FLP_DRIVE$
FLP_SEC
FLP_STEP
FLP_USE
MACHINE
MOUSE_SPEED
MOUSE_STUFF

PAR_DEFAULTPRINTER$

PAR_GETFILTER

PAR_GETPRINTER$
PAR_PRINTERCOUNT
PAR_PRINTERNAMES$

PAR_SETFILTER

PAR_SETPRINTER

OPC_CMDLINES$
OPC_EXEC
OPC_EXIT
QPC_HOSTOS
OPC_MAXIMIZE
OPC_MINIMIZE
OPC_MSPEED

68

Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

« QPC_QLSCREMU

« QPC_RESTORE

« QPC_SYNCSCRAP

« QPC_VERS$

« QPC_WINDOWSIZE
« QPC_WINDOWTITLE
« SER_GETPORTS$

e SER_SETPORT

7.71 ST/QL

The commands in this toolkit are:
* ACCEL_OFF
* ACCEL_ON
* ACCEL_SET
* ACCEL_STATE
* APPEND
* BELL
* DEV_LIST
* DEV_NEXT
* DEV_USE
* DEV_USE$
* EXPLODE
* FLP_TRACK
* FLP_USE
* GER_MSG
* GER_TRA
* NOR_MSG
* NOR_TRA
* PAR_ABORT
* PAR_ BUFF
* PAR_CLEAR
* PAR_PULSE
* PAR_USE
* PLAY

7.71. ST/QL 69

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

* PRT_ABORT
* PRT BUFF
* PRT CLEAR
* PRT _USE

* PRT_USES$
* RAM_USE

* RELEASE

» SDP_DEV

» SDP_KEY

* SDP_SET

* SDUMP

* SER_ABORT
* SER_BUFF
* SER_CLEAR
* SER_FLOW
* SER_ROOM
* SER USE

» SHOOT

* WIN_DRIVE
* WIN_SLUG
» WIN_START
» WIN_STOP
*» WIN_USE

7.71.1 ST/QL - Pre v2.24

This toolkit provides the following, additional, command:

* A_BLANK

7.71.2 ST/QL - Level B-11 Onwards

This toolkit provides the following, additional, command:

* TH FIX

70 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.71.3 ST/QL - Level C-17 Onwards

This toolkit provides the following, additional, command:

* KBD_TABLE

7.71.4 ST/QL - Level C-19 Onwards

This toolkit provides the following, additional, command:

* WIN2

7.71.5 ST/QL - Level C-20 Onwards

This toolkit provides the following, additional, command:

» WIN_REMV

7.71.6 ST/QL - Level D00 Onwards

This toolkit provides the following, additional, command:

* SER_CDEOF

7.71.7 ST/QL - level D.02 Onwards

This toolkit provides the following, additional, command:

o FLP_START

7.72 STAMP

The command in this toolkit is:

* STAMP

7.73 SWAP

The commands in this toolkit are:
e SWAP
e W_SWAP

7.72. STAMP 71

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.74 SYSBASE

The command in this toolkit is:

» SYS_BASE

7.75 Shape Toolkit

The commands in this toolkit are:
* ALINE
* APOINT
* DEMO

7.76 Super Gold Card

The command in the SGC ROM is:
e SLUG

7.77 SuperQBoard

The command in this toolkit is:

* PAR_USE

7.78 SuperWindow Toolkit

The commands in this toolkit are:
* SCR_REFRESH
* SCR_SIZE
* SCR_STORE

7.79 THOR

Commands provided on THOR machines are:

* CLOSE

FLP SEC

FLP_START

FLP_TRACK

FLP _USE

72

Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

* LANGUAGEY

* SET CLOCK

 SET LANGUAGE
* TOP_WINDOW
» WCOPY

» WCOPY_F

* WCOPY_O

* WDEL

* WDEL_F

* WDIR

o WSTAT

7.79.1 THOR 8

The THOR 8 added an additional command:
e WMON

7.79.2 THOR 8 - v4.20 Onwards

The additional command(s) in the version are:

* WTI'V

7.79.3 THOR XVI

Commands provided on THOR XVI machines are:
* ALCHP
* BGET
* BIN
* BIN$
* BPUT
* CDEC$
* CHAR_INC
* CHAR_USE
* CLCHP
* CLOCK
* COPY
* COPY_N

7.79. THOR 73

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

COPY_O
CURDIS
CURSEN
DATA_USE
EW

EX
EXTRAS
FDAT
FDECS$
FLEN
FOP_DIR
FOPEN
FOP_IN
FOP_NEW
FOP_OVER
FPOS
FREE_MEM
FSERVE
FTYP

GET

HEX

HEX$
IDECS
IO_TRAP
JOBS
LRESPR
MAKE_DIR
NET_ID
NFS_USE
NO_CLOCK
OPEN_DIR
OPEN_OVER
PARTYP
PARUSE

74

Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

* PROG_USE
s PUT

* RECHP

* RENAME

* REPORT

* RJOB

* SAVE_O

* SBYTES_O
* SEXEC_O
* SPJOB

* SPL

e SPLF

* SPL_USE

o STAT

» SYS_VARS
* TRUNCATE
» VIEW

* WHEN condition
* WHEN ERRor
» WIN2

» WINDOW
*» WIN_USE
* WMON

« WTV

7.80 TRIM

The command in this toolkit is:

o TRIMS

7.80. TRIM 75

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.81 TRIPRODRO

The commands in this toolkit are:

DROUND
PROUND
TRINT

7.82 TRUFA

The commands in this toolkit are:

7.83 TinyToolkit

FALSE%
TRUE%

TinyToolkit, not to be confused with QView Tiny Toolkit, provides the following commands:

BASIC_L
BASICP
BCLEAR
BREAK_OFF
CBASE
CHANGE
CHANID
CHANNELS
CLEAR_HOT
CLOSE%
CLRMDV
CUR
DEVLIST
ELIS

FILE DAT
FILE_LEN
FILE POS
FILE PTRA
FILE_PTRR
FLIS

76

Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

FORCE_TYPE
FREAD
FWRITE
GET_BYTES$
GRAB
HEADR
HEADS
HOT
JBASE
KJOB
KJOBS
NEW_NAME
ODD
PEEKS
PEND
POKE$
0DOSS$
ORAMS
RAND
RELEASE
REL_JOB
REPORT
RESET
ROM
SEARCH
SJOB
S_LOAD
S_SAVE
S_SHOW
SXTRAS
TCONNECT
TINY_EXT
TINY_RMV
TXTRAS

7.83

TinyToolkit

77

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

TYPE

UPPERS$
» WBASE
o WMANS$
« ZAP

7.83.1 TinyToolkit - Pre v1.10

The commands in versions of TinyToolkit prior to 1.10 is:

* SPJOB

7.83.2 TinyToolkit - v1.10 Onwards

The additional command provided in these versions is:

* SP_JOB

7.84 Toolfin

The commands in this toolkit are:
* MT
* RAE
* RAFE
* TCA
* TEE
* TNC
* VAR
* VAR
* VFR

7.85 Toolkit Il

The commands in this toolkit are:
* AJOB
* ALARM
* ALCHP

ALTKEY

BGET

78 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

» BIN

» BINS

« BPUT

« CDECS$

e CHAR_INC
« CHAR_USE
« CLCHP

« CLOCK

» CLOSE

* CONTINUE
« COPY

« COPY_H

* COPY_N

« COPY_O

» CURDIS

s CURSEN

« DATADS

e DATA_USE
 DDOWN

« DEL_DEFB
e DELETE

» DESTDS$

e DEST_USE
* DIR

s DLIST

« DNEXT

« DO

e DUP

s ED

« ET

« EW

o EX

o EXEC

« EXEC_W

7.85. Toolkit Il 79

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

o EXTRAS
« FDAT

« FDEC$

« FEXPS$

e FLEN

« FLUSH

« FNAME$
e FOP_DIR
« FOPEN

e FOP_IN
e FOP_NEW
« FOP_OVER
« FPOS

» FREE_MEM
o FTEST

o FTYP

« FUPDT

« FXTRA

s GET

« HEX

« HEXS

« IDECS$

« JOB$

» JOBS

« LBYTES
« LOAD

e LRESPR
s LRUN

« MERGE
e MRUN

« NEW

» NFS_USE
« NXJOB

« 0JOB

80 Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

* OPEN

* OPEN_DIR
* OPEN_IN
* OPEN_NEW
* OPEN_OVER
* PARNAMS$
* PARSTR$

* PARTYP

* PARUSE

* PJOB

* PRINT_USING
* PROGD$

* PROG_USE
« PUT

* RECHP

* RENAME

* REPORT

* RETRY

* RJOB

* SAVE

*» SAVE_O

* SBYTES

* SBYTES_O
* SEXEC

* SEXEC_O
* SPJOB

* SPL

* SPLF

* SPL_USE

o STAT

» STOP

*» TK2_EXT

* TRUNCATE
 VIEW

7.85. Toolkit Il 81

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.85.1 Toolkit Il - Hardware Version Only or SMS

WCOPY
WDEL
WDIR
WMON
WREN
WSTAT
wTV

The hardware (ROM, Disc INterface etc) and SMS versions of Toolkit II provide the following command:

FSERVE

7.86 Trump Card

The commands supplied in the Trump Card ROM are:

FLP _SEC
FLP_START
FLP_TRACK
FLP_USE
PRT_ABT
PRT _USE
RAM_USE
RES_128
SDP_DEV
SDP_KEY
SDP_SET
SDUMP

7.87 Turbo Toolkit

The commands in this toolkit are:

ALLOCATION
BASIC_F
BASIC_INDEX%
BASIC_L

82

Chapter 7. Toolkits

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

7.87.1 Turbo Toolkit - v3.00

This version of the toolkit added the following commands:

BASIC_NAMES
BASIC_POINTER
BASIC_TYPE%
CATNAP
CHANNEL_ID
CHARGE
COMMAND_LINE
COMPILED
CONNECT
CURSOR_OFF
CURSOR_ON
DATA_AREA
DATASPACE
DEALLOCATE
DEFAULT DEVICE
DEVICE_SPACE
DEVICE_STATUS
EDIT$

EDITF

EDIT%
END_CMD
END_WHEN
ERLIN%

ERNUM %
TK_VERS$

TURBO_diags
TURBO_F
TURBO_locstr
TURBO_model
TURBO_objdat
TURBO_objfil

7.87

Turbo Toolkit

83

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

e TURBO_optim
* TURBO_P

* TURBO_repfil

e TURBO_struct
e TURBO_taskn

e TURBO_window

7.87.2 Turbo Toolkit - v3.20

This version of the toolkit added the following commands:

* DEBUG
* DEBUG_LEVEL

7.88 UNJOB

The command in this toolkit is:

» UNJOB

7.89 WIPE

The command in this toolkit is:

» WIPE

7.90 WM

The command in this toolkit is:

s WM

7.91 XKBD

The command in this toolkit is:

* KBD_USE

84

Chapter 7. Toolkits

CHAPTER
EIGHT

KEYWORDS A

8.1 ABS

Syntax ABS (number) or
ABS (number] “[,number*]") (Minerva only)
Location QL ROM

This function returns the absolute value of a number - ie. the positive difference (or distance) between
zero and the number. The absolute value of a positive number (including zero) therefore, is the number
itself - negative numbers are converted to positive. This function will happily handle 32-bit integer
numbers (-INTMAX.INTMAX, roughly -1E9..1E9).

Example 1

The SIGNY% function returns 1 if the supplied parameter is positive, -1 if negative, or 0 if it is zero, for
example,

PRINT SIGNY%(-10) will print -1 on screen.

This version rounds values which are very close to zero (use = in line 110 instead of == if you want to
avoid this).

Note that line 110 is needed to avoid an error when line 120 tries to divide by zero.

100 DEFine FuNction SIGN% (number)
110 IF number==0 THEN RETurn 0
120 RETurn number/ABS (number)
130 END DEFine

Example 2

Here is a simple implementation of the cosine function. Of course, it cannot compete with the speed of
a machine code function, but it allows you to specify the precision of the result. You can optimise the
function by exploiting the symmetries of the cosine function.

100 DEFine FuNction MYCOS (x, prec)

110 LOCal fct, result, xpower, i, lagrange, sqrx
120 fct = 1: result =1

130 =xpower = 1: sqrx = xX*x

140 i = 2

150 REPeat taylor

(continues on next page)

85

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)
160 fct = fct * (i-1) * 1
170 Xpower = - Xpower * sqrx
180 result = result + xpower/fct
190 lagrange = ABS(xpower*x / fct / (i+1))
200 IF lagrange < prec THEN EXIT taylor
210 i=1+2
220 END REPeat taylor
230 RETurn result
240 END DEFine MYCOS

MINERVA NOTE

ABS can accept more than one parameter. This version of ABS will square each parameter, and return
the square root of the total of those squares, eg. ABS(X,y)=SQRT(x2+y2). This is therefore useful to
calculate the distance between two points (using pythagoras’ method).

For example, to calculate the distance between the points on screen at (10,20) and (100,75), simply type
in: PRINT ABS(100-10,75-20)

Three parameters can be used to find the distance between two points in three dimensional space. Any
more parameters take you into the realm of theoretical mathematics (we always thought that time was the
fourth dimension!).

For example, to calculate the length of a diagonal in a standard cube (length of sides = 1), use: PRINT
ABS(1,1,1)

CROSS-REFERENCE

See SGN and SGN% for similar machine code versions of our example function SIGN% demonstrated
above.

8.2 ABS_POSITION

Syntax ABS_POSITION #channel, position
Location DJToolkit 1.16

This procedure will set the file pointer to the position given for the file attached to the given channel
number. If you attempt to set the position for a screen or some other non-directory device channel, you
will get a bad parameter error, as you will if position is negative.

If the position given is 0, the file will be positioned to the start, if the position is a large number which is
greater than the current file size, the position will be set to the end of file and no error will occur.

After an ABS_POSITION command, all file accesses will take place at the new position.
EXAMPLE

1500 REMark Set position to very end, for appending data
1510 ABS_POSITION #3, 6e6
1520 ...

86 Chapter 8. Keywords A

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE
MOVE_POSITION.

8.3 ACCEL_OFF

Syntax ACCEL_OFF
Location ST/QL

See ACCEL_ON below!

8.4 ACCEL_ON

Syntax ACCEL_ON
Location ST/QL

The ST/QL Emulator supports several of the accelerator boards which can be plugged into the Atari ST
computer, thus allowing much greater operational speed. This command both enables the 16 MHz mode
on the Atari ST and tells the attached accelerator board to use its memory cache (if built in).

NOTE

This and the other ACCEL_... commands will be ignored unless you have previously used ACCEL_SET
to define the type of accelerator board attached to the Atari ST.

CROSS-REFERENCE

ACCEL_OFF turns off the 16MHz mode (if possible) and also tells the accelerator board that it should
no longer use its memory cache. Also see ACCEL_SET.

8.5 ACCEL_SET

Syntax ACCEL_SET type,option
Location ST/QL

Before the ST/QL Emulator can use an accelerator board plugged into the Atari ST, it is necessary to use
the command ACCEL_SET to tell the Emulator about the board and to activate the board.

There are currently five accelerator boards which are recognised by the Emulator. Use the following
values for type to tell the Emulator which one is attached:

* H - HyperCache (ProVME)

* A - AdSpeed (ICD)

* M - MegaSTE (ATARI)

* P - HyperCache 030 (ProVME), 68030 Board

8.3. ACCEL_OFF 87

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

* T-TT (ATARI)
If you have a 68030 board attached, the ST/QL Emulator can only use external caches with this board.

The option parameter currently only has any effect when HyperCache is attached. This can have the
value 6 or 7 (default is 6). This is used to specify which bit of the Atari’s sound chip is used to switch
HyperCache. If you have the HyperCache 030 attached, you can pass the parameter O (default) to enable
external caches only, 1 to enable the internal caches only or 2 to enable both external and internal caches.

NOTE

Unfortunately, due to the higher speed of the Atari ST with an accelerator board enabled, you may en-
counter problems with the parallel printer board - use the command PAR_PULSE.

CROSS-REFERENCE
See also ACCEL_ON,ACCEL_OFF and ACCEL_STATE.

8.6 ACCEL_STATE

Syntax ACCEL_STATE
Location ST/QL

This function returns the value 1 if the ST/QL Emulator has been told that an accelerator board is enabled.
Otherwise, it returns the value 0.

CROSS-REFERENCE

ACCEL_SET tells the Emulator that an accelerator board is enabled.

8.7 ACOPY

Syntax ACOPY filenamel,filename2
Location ATARIDOS

This command is similar to COPY except that it copies a file from a QL Format disk to an Atari Format
disk. No conversion takes place.

NOTE

You will need to pass the Atari filename in quote marks if it includes a three letter extension preceded by
adot eg:

ACOPY flpl_PROGRAM_BAS, “fip2_PROGRAM.BAS”
CROSS-REFERENCE

QCOPY copies a file from an Atari disk to a QL disk.

See AFORMAT and QACONVERT.

88 Chapter 8. Keywords A

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

8.8 ACOS

Syntax ACOS (x)
Location QL ROM

The function ACOS, is the arc-cosine function, that is to say the opposite to the cosine function (COS in
SuperBASIC). However, x must always be in the range -1...1 as the cosine of an angle can only ever be
in this range. Anything outside of this range will produce an Overflow Error.

The angle returned will be in the range 0. ..PI with ACOS(1)=0 and ACOS(-1)=PI. This means that the
maximum angle which can be found with the ACOS function is 180 degrees. It is up to you to check
whether this angle appears above or below the base line of the triangle (check the co-ordinates of the
corners).

Note that if a negative value of x is provided, the angle returned will be the obtuse angle (ie. greater than
90 degrees).

Example

To calculate the angle at which a projectile was fired which has travelled a horizontal distance of 250
metres after 10 minutes and is travelling at 3 kilometres per hour (ignoring the effects of gravity):

100 Speed=3:Distan=250/1000

110 Time_elapsed=10

120 Actual_distance=(Speed/60)*“Time_elapsed

130 PRINT 'Projectile fired at an angle of ';

140 PRINT DEG(ACOS(Distan/Actual_distance))&' degrees'

NOTE

The angle returned will be in radians - if you wish to convert this angle to degrees, use DEG (ACOS (x)
).

CROSS-REFERENCE
COS, ASIN, SIN, RAD.
Compare ARCOSH.

Also please see the Mathematics section in the Appendix.

8.9 ACOT

Syntax ACOT (x) or
ACOT (y,x) (Minerva v1.90+ only)
Location QL ROM

The function ACOT, is the arc-cotangent function, that is to say the inverse of the cotangent function
(COT in SuperBASIC): COT(ACOT(x))=x for all values of x, but due to the periodic nature of COT,
ACOT(COT(x))=x is only true for where: O<x<PL.

8.8. ACOS 89

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Note that if a negative value of x is provided, the angle returned will be the obtuse angle (ie. greater than
90 degrees).

MINERVA NOTE

ACOT can accept two parameters. If you specify two parameters then ACOT(y,x) will give the angle
from the origin to the point (x,y). This is actually the same as ACOT(x/y) although it does also cater for
when y=0 which would otherwise give an overflow error.

CROSS-REFERENCE
COT,ATAN, TAN.
Please see the Mathematics section in the Appendix.

See also ARCOTH.

8.10 ADATE

Syntax ADATE seconds
Location QL ROM

ADATE adjusts the current system clock by the given number of seconds, so ADATE 60 would advance
the internal clock by a minute and ADATE -86400 sets it back by one day.

Example

Apart from adjusting the clock relatively, ADATE can also be used to set the time and date absolutely.
This is because the function DATE contains the system time in seconds after a fictional ‘Birth Date’
(Midnight on 1 January 1961 on all ROM implementations):-

ADATE -DATE will set the clock to that Birth Date (when DATE=0)
ADATE 1E9 advances the clock by roughly 31 years and nine months.
ADATE:s can then be combined by adding values:

ADATE 1E9-DATE sets the clock to DATE$="1992 Sep 09 01:46:40”
NOTE 1

ADATE generally needs one second to execute because some ROMs (notably the THOR XVI, MG ROM
and Minerva) will wait for the next full second before amending the time (therefore do not use ADATE
1 to wind the clock on!).

NOTE 2

Any attempts to wind the system clock back to earlier than 1st Jan 1961 will actually deduct the difference
from 6th Feb 2097. However, the system clock (on implementations other than Minerva and SMS) runs
into trouble here because any date later than 3.14:07 on 19th Jan 2029 should produce a negative number
(1) whenever the function DATE is used. However, on non-Minerva ROMs and non-SMS systems, a
positive number is produced, preventing DATE from recognising later dates.

The system clock itself, does however appear able to support dates and times between 0.0:00 on 1st Jan
1961 and 6.28:15 on 6th Feb 2097.

NOTE 3

920 Chapter 8. Keywords A

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

On Minerva v1.63 and Minerva v1.98, the ADATE command did not work properly - use SDATE
DATE-+seconds instead!

WARNING

ADATE will affect the time on battery backed clocks unless they are protected in some way (see
PROT_DATE).

CROSS-REFERENCE

DATES returns the current system date and time as a string, DATE does the same but in a less readable
form - in seconds after the initial date.

SDATE sets the clock to an absolute date and time.

Battery backed clocks generally have their own methods of altering their date and time.

8.11 ADDREG

Syntax ADDREG
Location TRAPS (DIY Toolkit Vol T)

This function returns the value of the following Machine code address register following the completion
of a MTRAP, QTRAP or BTRAP command.

Command Machine Code Register Value Returned.

MTRAP A0
QTRAP Al
BTRAP Al (relative to A6) - can be used by BPEEK%.

Example

You could replace the ALCHP function with:

100 bytes=100 : REMark Number of bytes required

110 MTRAP 24,bytes,-1

120 IF DATAREG < O : REPORT DATAREG : REMark an error has occurred

130 IF DATAREG (1) < bytes : PRINT 'Requested area not allocated':STOP
140 base=ADDREG

CROSS-REFERENCE
DATAREG allows you to read machine code data registers.
See MTRAP, QTRAP and BTRAP.

8.11. ADDREG 91

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

8.12 ADELETE

Syntax ADELETE filename
Location ATARIDOS

This command is the same as the standard DELETE command, except that it works on Atari and IBM
PS/2 format disks.

NOTE

You will need to pass the filename in quote marks if it includes a three letter extension preceded by a dot
eg:

ADELETE “flpl _TEST.BAS”

CROSS-REFERENCE

See DELETE!

See ADIR, AFORMAT, QACONVERT.

8.13 ADIR

Syntax ADIR [#channel,] device
Location ATARIDOS

This command is the same as DIR except that it works on ATARI disks or IBM PS/2 Disks.
CROSS-REFERENCE

See DIR.

Other commands added are ASTAT, ADELETE, ACOPY and AFORMAT .

8.14 AFORMAT

Syntax AFORMAT device [name]
Location ATARIDOS

This command formats the specified device in Atari disk format, giving it the specified name (if any).

As with FORMAT, this will normally format a disk to the highest possible density - however, you can
force it to format a disk as single-sided by making the last character of the filename an asterisk (¥).

CROSS-REFERENCE
See FORMAT and IFORMAT .
Other commands added are ASTAT, ADELETE, ADIR and ACOPY .

92 Chapter 8. Keywords A

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

8.15 AJOB

Syntax AJOB jobname,priority or
AJOB jobnr,tag,priority or
AJOB job_id,priority
Location Toolkit II

This command forces the specified job (described by either its jobname, its job number and tag, or its
job identification number) to be re-started at the given priority (which should be in the range 0...127 to
maintain Minerva compatability - see SPJOB).

This will only work if the current priority of the given job is set to zero, in any other case, a ‘Not Complete’
(-1) error will be reported.

NOTE

It is possible that on early versions of Toolkit II, only the second syntax works.
CROSS-REFERENCE

SJOB suspends a job.

REL_JOB releases a job.

SPJOB sets the priority of a job without restarting it.

8.16 ALARM

Syntax ALARM hour,minutes
Location Toolkit IT

This command creates a Job at low priority which makes the QL sound several beeps when the alarm
time is reached and then removes itself. Naturally, this facility only works if the system clock is correct.

The hour is based on the 24-hour clock and must therefore be specified in the range 0. .. 23 and the minutes
in the range 0...59.

Example

How about a hourly alarm to remind you to switch off the cassette player and listen to the news on the
radio?

100 FOR hour=8 to 18
110 ALARM hour-1,59
120 END FOR hour

CROSS-REFERENCE
Set the system clock with SDATE, adjust it with ADATE.

Alarm jobs can be killed by using RJOB for example.

8.15. AJOB 93

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

8.17 ALCHP

Syntax ALCHP (space) or
ALCHP (space [,[jobID]]) (BTool only)
Location Toolkit II, THOR XVI, BTool

The function ALCHP allocates space bytes in the common heap and returns the start address of the
memory set aside to be altered freely. This, unlike RESPR, works even if there is a task running in
memory.

If ALCHP fails due to lack of available memory, then it will return O instead of breaking with error -3
(Out of Memory).

The BTool version of ALCHP allows an extended syntax. If space is followed by a comma °,” then the
allocated memory can only be removed with RECHP or CLCHP (unlike the other versions where this is
done automatically with NEW and CLEAR). If the jobID is specified then not only will this be done, but
the memory will also be linked to the Job identified by jobID.

Example 1
The following program loads two uncompressed screens from

disk into memory and shows them alternately:

100 adr=ALCHP(2%32768)

110 LBYTES flpl_Screenl_scr,adr

120 LBYTES flpl_Screen2_scr,adr+32768

130 REPeat Picture_Show

140 SCRBASE adr : REFRESH : PAUSE 150

150 SCRBASE adr+32768 : REFRESH : PAUSE 150
160 END REPeat Picture_Show

Example 2

This is an alternative to the LRESPR command (although see Note 2 below):

100 DEFine PROCedure LALCHP (mc_file$)
110 LOCal length,adress

120 length=FLEN(\mc_file$)

130 adress=ALCHP(length)

140 LBYTES mc_file$,adress

150 CALL adress

160 END DEFine LALCHP

NOTE 1
ALCHP reserves memory in 512 byte chunks.
NOTE 2

Memory reserved by ALCHP is indirectly cleared by NEW, CLEAR, LOAD and LRUN (this does not
apply to the Btool extended variant - see above).

WARNING 1

94 Chapter 8. Keywords A

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Never run device drivers in the common heap - this memory can be easily cleared, causing a spectacular
crash if a device driver was stored there. This is true for other machine code, too.

WARNING 2

There is no checking on the parameter for ALCHP - accordingly negative values can be supplied. These
are likely to lead to unexpected results and will probably crash the computer - for example, x=ALCHP(-
100) crashes a JM ROM. On a Minerva ROM, values below -5 will return 0. On SMS although only
values below -20 return 0, any attempt to reclaim the areas set aside with CLCHP or RECHP will crash
the system.

WARNING 3

Since ALCHP returns O if there is not enough memory, you should always check the value returned by
ALCHP for this before writing to the address. Otherwise, it is possible that you will be over-writing the
operating system. .. crash!

CROSS-REFERENCE

The reserved parts of memory can be given back to QDOS’ memory management by RECHP
base_address or CLCHP.

RESPR, TTALL, ALLOCATION and especially GRAB and RESERVE work similar to ALCHP.

See DEL_DEFB concerning heap fragmentation.

8.18 ALIAS

Syn- ALIAS old_keyword$ TO new_keyword(ALIAS_CODE) or
tax ALITAS new_keyword TO old_keyword$(SAILA_CODE)
Loca- ALIAS (DIY Toolkit - Vol A)

tion

This command is similar to NEW_NAME and REPLACE.

It allows you to assign another name to machine code Procedures and Functions which are currently
resident in memory. Both versions of the command are the same, except that the second variant expects
you to pass the two parameters in the opposite order.

We shall deal with the first variant.

The first parameter (old_keyword$) must appear as a string and is the original name of the Procedure or
Function which is to be renamed. The second parameter (new_keyword) is the new name to be used -
this must not appear as a string, but simply as the actual keyword to use.

The original definition is not lost and therefore you can still use the original name to call the machine
code procedure or function (as well as the new name).

If old_keyword$ does not contain the name of a machine code Procedure or Function, then either a ‘Not
Found’ or ‘Bad Name’ error will be reported.

Example

Try the following short program:

8.18. ALIAS 95

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10 INPUT 'Enter Your Name: '; a$

20 PRINT a$

30 ALIAS '"INPUT' TO XINPUT

40 XINPUT 'Enter My Name with XINPUT: '; s$

50 INPUT 'You can still use INPUT to Enter your Name: ';t$
60 PRINT s$ / t$

NOTE 1

Because the original definition is not lost, you can go on to assign further ‘aliases’ to the original name,
but any attempt to assign an alias to the new name (XINPUT in the above example will give a Not Found
error).

NOTE 2
You should not use ALIAS from within programs compiled with TURBO and SuperCharge.
NOTE 3

If a program compiled with TURBO or SuperCharge reports an error when you try to EXECute the
program, such as ‘SYS_VARS is Not Defined’, you could use ALIAS from SuperBASIC to circumvent
this problem, for example by using:

ALIAS ‘SYSBASE’SYS_VARS’
NOTE 4

The new alias is not converted by this command to uppercase - that is up to you (not all keywords are in
uppercase after all).

NOTE 5

You should not use all of the new names set with ALIAS in programs which are to be compiled with
TURBO or SuperCharge if you want to make the most of those compilers. In particular, ALIASes of the
following keywords will cause problems:

RESPR (unless it has been redefined to work in the common heap before you used ALIAS).

RUN, INPUT, READ, EOF, CLEAR, DIMN, STOP, NEW and various TURBO toolkit commands.
You will also lose out on optimisations on the following:

PRINT, BLOCK, CODE, CHRS, LEN, PI, PEEK, PEEK_W, PEEK_L, POKE, POKE_W and POKE_L.
NOTE 6

If you wish to use ALIAS for MODE and use Speedscreen, ensure Speedscreen is loaded and enabled
before you use ALIAS (Speedscreen redefines MODE).

If you wish to use ALIAS for mathematical functions and use the Lightning fast maths routines, again,
ensure that Lighning maths is loaded before you use ALIAS if you want the faster routines implemented
by Lightning.

NOTE 7

If you want to use this command from within a Multiple SBASIC on SMS or a MultiBASIC on Minerva,
you will need to use the variant of the command implemented in the file SAILA_CODE.

CROSS-REFERENCE
See also REPLACE and NEW_NAME.

96 Chapter 8. Keywords A

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

_NAMES allows you to look at the name table.

8.19 ALINE

Syntax ALINE x1,y1 TO x2,y2, Colour
Location Shape Toolkit

This command quickly draws a line between the specified absolute, window independent co-ordinates,
(x1,y1) and (x2,y2), on the screen. ALINE uses XOR mode, which means that the line can be removed
without destroying the contents of the screen by drawing exactly the same line again. - This does however
mean that the colour of the line as it appears on screen may not be the same as the specified parameter
(see OVER -1).

Example

The procedure HAIRCROSS x,y allows you to move a cross wire around the screen with the cursor keys,
to alter the values of x and y. Press <SPACE> to make x and y equal the new values, or press <ESC> to
keep the old values.

100 DEFine PROCedure HAIRCROSS (px,py)
110 LOCal Size,Key,Stepp,old_px,old_py
120 Size=31 : old_px=px : old_py=py
140 REPeat Move_it

150 CROSS px,py

160 REPeat Wait_for_key

170 Key=KEYROW(1): Stepp=4*(KEYROW(7))+1
180 IF Key THEN EXIT Wait_for_key
190 END REPeat Wait_for_key

200 CROSS px,py

210 IF Key&&2 THEN px=px-Stepp

220 IF Key&&16 THEN px=px+Stepp

230 IF Key&&4 THEN py=py-Stepp

240 IF Key&&128 THEN py=py-+Stepp

250 IF px<Size THEN px=Size

260 IF px>511-Size THEN px=511-Size
270 IF py<Size THEN py=Size

280 IF py>255-Size THEN py=Size

290 SELect ON Key

300 =64: EXIT Move_it
310 =8: px=old_px: py=old_py
320 EXIT Move_it

330 END SELect

340 END REPeat Move_it

350 END DEFine HAIRCROSS

360 :

370 DEFine PROCedure CROSS (ax,ay)

380 ALINE ax-Size,ay-Size TO ax+Size,ay+Size ,7
390 ALINE ax+Size,ay-Size TO ax-Size,ay+Size ,7
400 END DEFine CROSS

8.19. ALINE 97

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE 1

ALINE assumes that the screen starts at $20000 and will therefore not work on Minerva’s / Amiga
QDOS’s / QDOS Classic’s second screen or on higher resolution displays.

NOTE 2

ALINE also assumes that the screen measures 512x256 pixels and cannot therefore work on higher res-
olution screens.

NOTE 3
ALINE only works in MODE 4.
CROSS-REFERENCE

DRAW has the same syntax as ALINE but does not work in XOR mode.DRAW is also able to draw lines
on screens stored in memory.

LINE and LINE R are much more flexible.

8.20 ALLOCATION

Syntax ALLOCATION (bytes [,taskno%,tasktag%])
Location Turbo Toolkit

This function is very similar to RESERVE. It allocates an area in the common heap which may be asso-
ciated with a specified job. If taskno% and tasktag% are not specified, then the area is linked with the
current job and removed when the current job is removed.

CROSS-REFERENCE
DEALLOCATE should be used to remove the allocated area.
The taskno% and tasktag% can be found using JOBS or LIST TASKS.

8.21 ALPHA_BLEND

Syntax ALPHA_BLEND opacity%
Location SMSQ version 3.26

Alpha-blending is a method of drawing graphics whereby the resultant output is partly transparent —
overlapping shapes and text created with BLOCK, LINE, CIRCLE, PRINT etc. will be see-through to
a degree, set by a new command ALPHA_BLEND. This takes a value from O (fully transparent) to 255
(opaque), ALPHA_BLEND 128 will make all output half-transparent, for example.

In the past, we have only had the variations offered by the OVER command, now we can achieve some
pretty exciting graphical effects for use in games, for example. Here’s an example which draws three
overlapping circles which are half-transparent:

98 Chapter 8. Keywords A

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

1000 PAPER 0: CLS
1010 ALPHA_BLEND 128

1060 STOP

1020 FILL 1: INK 2: CIRCLE 40,
1030 FILL 1: INK 4: CIRCLE 65,
1040 FILL 1: INK 1: CIRCLE 50, 75, 20

1050 CSIZE 2,0: AT 10,4: INK 7: PRINT "Alpha blending!"

50, 20
50, 20

In addition to the ALPHA_BLEND command, A new trap #3 with D0=$62, d1=alpha weight 0-255,
d3.w=timeout and aO=channel ID allows the alpha-blend value to be set from assembler and other lan-

guages.

8.22 ALT

Syntax ALT
Location Beuletools

This function returns the control codes needed to switch to the alternative font (normally italics) on an

EPSON compatible printer:

[PRINT #ch,ALT

is therefore equivalent to:

[PRINT #ch, CHR$ (27)&"6"

CROSS-REFERENCE

NORM, BLD, EL, DBL, ENL, PRO, SI, NRM, UNL, ESC, FF, LMAR, RMAR, PAGDIS, PAGLEN .

8.23 ALTER

Syntax
Location

ALTER -‘variable’ TO value
ALTER (DIY Toolkit - Vol U)

This command works alongside SET from the same toolkit and allows you to re-define the universal

constants created with SET.

Unlike SET, the constant to be re-defined must appear in quotes as the first parameter (otherwise the
value of the constant is passed to be altered by the command!!). As with SET, the constant and the value

must be of the same type, otherwise an ‘error in expression’ will be reported.

If the constant has not previously been defined with SET, then if it is recognised for some other reason

an ‘In Use’ error will be reported. If it is not recognised at all, then ‘Not Found’ will be reported.

Unlike SET, you can use ALTER from any program which is being used on the QL and therefore you can

use this to update constants or possibly device names (or anything else you can invent).

8.22. ALT

99

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Example
Set the following from SuperBASIC:
10 SET DEF_DRIVES TO “fip1_’

If whilst using another program, the user re-defines the default device, that program can use a line such
as: ALTER ‘DEF_DRIVES$’ TO ‘winl_prog_’" which will then alter the default device for all programs
which read this constant.

NOTE

ALTER does not work on SMS.
CROSS-REFERENCE

See SET.

8.24 ALTKEY

Syntax ALTKEY character$,string$ [,string2$ [,string2$... 1] or
ALTKEY character$ or
ALTKEY

Loca- Toolkit II

tion

This command defines a key macro which will be typed into the computer when you press the <ALT>
key at the same time as the <character$> key. If more than one string follows the definition, then an
<ENTER> (line feed) character is inserted between each string.

ALTKEY without any parameters deletes all previously defined ALTKEY's, whereas ALTKEY charac-
ter$ will just kill the specified definition (whether there was one or not).

A line feed will not be appended to the final string unless you add a nul string to the definition.
Example 1

ALTKEY “ “”RUN”.”” types in RUN <ENTER> if <ALT><SPACE> is pressed.

ALTKEY”a”,”flpl_" types in fipl_ when <ALT><A> is pressed.

ALTKEY removes all ALTKEY definitions.

ALTKEY “a” remove definition for <ALT><A>.

ALTKEY 1,”1000” same as ALTKEY “1”,71000”

Example 2

There are many programs which do not support the Toolkit II default device names and sub-directories.

To avoid having to enter FLP1_Archive_Adresses_ in front of every file name, one could compile the
following line, then EXECute the resultant program (using EX or EXEC) with the priority set to 1.

100 PRIO 1
110 REPeat Always
120 ALTKEY "p",DATAD$

(continues on next page)

100 Chapter 8. Keywords A

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

130 ALTKEY "P",PROGD$
140 END REPeat Always

You can replace PRIO by QP QMYJOB, 1 with QLiberator or PRIORITY 1 with Turbo, or SPJOB -1,1
with Toolkit IT

NOTE 1

If character$ is an upper case letter, then you will need to press <ALT><SHIFT> and the <key> (or
<ALT><key> in CAPSLOCK) to call the macro.

NOTE 2

The combination <ALT><ENTER> is always set aside for the last line recall (ie. when these two keys are
pressed all characters typed inbetween the last two <ENTER>s are put into the keyboard buffer again).

NOTE 3

The Hotkey System is usually configured to type in the Hotkey Stuffer contents if <ALT><SPACE> is
pressed.

<ALT> <SHIFT> <SPACE> gets previous Stuffers.
WARNING

If you have Hotkey System II loaded, then ALTKEY will not have any effect until you use the HOT_GO
command.

CROSS-REFERENCE

FORCE_TYPE and STAMP allow programs to access the keyboard, KEY defines macros on function
keys.

8.25 AND

Syntax conditionl AND condition2
Location QL ROM

This combination operator combines two condition tests together and will have the value 1 if both con-
dition1 and condition?2 are true or 0 if either condition] or condition2 are false.

A value is said to be false if it is equal to zero, anything else will cause that value to be true.

Please note the difference between this and the bitwise and operator: x&&y, which compares x and y bit
by bit.

Examples

PRINT 1 AND 0 Returns 0

PRINT 12 AND 10 Returns 1

(compare PRINT 12&&10 which returns 8).

8.25. AND 101

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10 FOR x=1 TO 5
20 FOR y=1 TO 5

30 IF x=3 AND y>3 THEN PRINT x;' => ';y,
40 END FOR y
50 END FOR x

produces the following output:
3=>4 3=>5
CROSS-REFERENCE

OR, NOT and XOR are the other combination operators.

8.26 APOINT

Syntax APPOINT x,y,colour
Location Shape Toolkit

This command is similar to POINT, except that it uses absolute co-ordinates and plots the point in XOR
mode (as with ALINE).

NOTE

APOINT suffers from the same problems and limitations as ALINE.
CROSS-REFERENCE

Use POINT instead!!

8.27 APPEND

Syntax APPEND filel,file2
Location ST/QL

This command allows you to merge two files together by appending file2 to the end of filel.
NOTE

Both filel and file2 must include the device name.

CROSS-REFERENCE

The THOR XVT has a special form of COPY which is similar to this.

102 Chapter 8. Keywords A

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

8.28 AQCONVERT

Syntax AQCONVERT filename
Location ATARIDOS

This command takes a file which is stored on a QL Format disk and presumes that it was originally an
Atari format file. It will then convert special characters in that file to QL compatible characters as well
as converting any occurence of a Carriage Return character (CR) followed by a Line Feed character (LF)
to a single Line Feed character LF.

CROSS-REFERENCE
Compare I[QCONVERT and QACONVERT .
See also ACOPY and QCOPY.

8.29 ARC

Syntax ARC [#ch][,xl,yl] TO Xz,yz,angle *[[;Xi,yi] TO Xj,yj,anglej]*
Location QL ROM

ARC causes the two points at the co-ordinates (x! ,yl) and (xz,yz) to be connected with an arc. The arc is
defined as the sector of the circle formed by drawing two straight lines from the two given co-ordinates to
the centre of the circle, where angle is the angle (in radians) between those two lines. Therefore, angle=0
is a straight line and angle=P]I, half a circle.

It therefore follows that the greater ABS(angle), the more pronounced is the curve on the arc.

Multiple arcs can be draw with the same command by adding extra sets of parameters for each additional
arc. For example:

ARC 100,10 TO 120,40,3 TO 80,70,3

will actually draw two arcs, one between the points (100,10) and (120,40) with angle=3 and the second
between the points (120,40) and (80,70), also with angle=3.

When drawing multiple arcs, there is actually no need for the next arc in the series to begin at the end of
the previous arc, provided that a semicolon *;’ is inserted between each set of parameters. For example:

ARC 100,10 TO 120,40,3;30,40 TO 50,60,3

Whether the arc is drawn clockwise or anti-clockwise depends upon two factors: If y!>y? and angle>0,
then the arc will be drawn anti-clockwise. Swapping the two co-ordinates or making the angle negative
will force the arc to be drawn clockwise.

Co-ordinates refer to the window relative graphic co-ordinate system, which is relative to the graphic
origin. The size and position of the arc also depend upon the SCALE of the window. If no first point is
given then the current position of the graphic cursor is used. The graphic cursor is set to the last point of
the arc on completion of the command.

Example 1

8.28. AQCONVERT 103

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

100 WINDOW 448,200,32,16: CLS: SCALE 4,-2,-2

110 FOR t=PI/16 TO 2*PI STEP PI/16

120 ARC SIN(t),COS(t) TO COS(t),SIN(t),PI*SIN(t/2)
130 END FOR t

Example 2

100 WINDOW 448,200,32,16: CLS: SCALE 100,0,0
110 FOR x=10 TO 90 STEP 10

120 FOR y=10 TO 90 STEP 10

130 ARC x,y TO y,x,PI/2

140 END FOR y

150 END FOR x

Example 3

100 POINT #2,150,50

110 FOR x=50 TO 150 STEP 20
120 ARC #2 TO x,50,PI/2
130 END FOR x

NOTE 1

On non Minerva v1.89+ ROMs, ARC does not work properly - small angles produce rubbish, wrong
co-ordinates are used and the last pixel of the arc is not always drawn. Even SMS does not cure these
problems.

NOTE 2

An angle of 2*PI would form a complete circle and cannot be drawn, therefore the maximum value for
ABS(angle) is a value just less than 2*PI.

NOTE 3

On some ROM versions, the command does not check that the TO separator is present - however, SMSQ/E
(at least) does and therefore some programs may fail if used under SMSQ/E and they have used a comma
instead of TO.

WARNING

Some QDOS implementations of this command can corrupt the hard disk drive in some obscure circum-
stances. Get Minerva or SMSQ/E to be safe!!

CROSS-REFERENCE

ARC_R works in exactly the same way as ARC but uses a relative co-ordinate system, where the origin
is the current position of the graphic cursor.

SCALE sets the graphic origin and also the size of the window.

104 Chapter 8. Keywords A

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

8.30 ARC_R

Syntax ARC_R [#ch][,xl,yl] TO Xz,yz,angle *[[;Xi,yi] TO Xj,yj,anglej]*
Location QL ROM

This command draws an arc relative to the current graphic cursor. This means that rather than the co-
ordinates (X,y) being relative to the graphic origin, they are relative to the current graphic cursor. Arcs
are however still affected by the current SCALE.

Each set of co-ordinates used in the ARC_R command moves the graphic cursor, which means for exam-
ple that (x!,y!) is relative to the graphic cursor when ARC_R is first called, whereas (x2,y?) is relative to

xLyh.
Example 1

A short program to draw several equi-distant arcs using ARC_R:

100 WINDOW 448,200,32,16:SCALE 100,0,0
110 PAPER 0:INK 4:CLS

120 ARC 20,20 TO 90,20,PI/4

130 FOR i=1 TO 4

140 ARC_R 0,10 TO -70,0,-PI/4

150 ARCR 0,10 TO 70,0,PI/4

160 END FOR i

Example 2

The same routine, but altered to use ARC:

100 WINDOW 448,200,32,16:SCALE 100,0,0
110 PAPER 0:INK 4:CLS

120 ARC 20,20 TO 90,20,PI/4

130 FOR i=30 TO 100 STEP 10

140 ARC 20,i TO 90,i,PI/4

150 END FOR i

CROSS-REFERENCE
The graphic cursor is moved with commands such as POINT, ARC, CIRCLE and LINE.
Please also see ARC.

8.31 ARCOSH

Syntax ARCOSH (x)
Location Hyper

This function returns the arc hyperbolic cosine of the specified value, that is to say it will return the value
which must be passed to the hyperbolic cosine to return the given result, so:

8.30. ARC_R 105

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

[COSH (ARCOSH (x)) = x

The ARCOSH function can be expressed as a combination of SuperBASIC keywords: it’s the same as:

[LN(x + SQRT(x*x-1)).

CROSS-REFERENCE
See ACOS, ASIN, ACOT, ATAN, COSH,ARCOTH, ARSINH and ARTANH.

8.32 ARCOTH

Syntax ARCOTH (x)
Location Hyper

This function returns the arc hyperbolic cotangent of the specified value ie.

ARCOTH (COTH (x))=x

Or to keep it simple, it can be returned with the equivalent expression LN((x+1) / (x-1)) /2
CROSS-REFERENCE

See ACOT, ARCOSH, and ARTANH.

8.33 ARSINH

Syntax ARSINH (x)
Location Hyper

This function is the arc hyperbolic sine (ie. the complementary function to SINH).
The SuperBASIC expression:

LN(x + SQRT(x*x-1))

gives the same value.

CROSS-REFERENCE

See ASIN, ARCOSH, and ARCOTH.

106 Chapter 8. Keywords A

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

8.34 ARTANH

Syntax ARTANH (x)
Location Hyper

The function ARTANH returns the value which must be passed to TANH to give the specified result, so:
TANH (ARTANH (x)) = ARTANH (TANH (x)) =x

ARTANH(x) could be replaced by: LN((1+x) / (1-x)) /2

CROSS-REFERENCE

See ATAN, ARCOTH , and ARSINH.

8.35 ASIN

Syntax ASIN (x)
Location QL ROM

This function calculates the arc-sine (in radians) which is the opposite of the sine function, ie:
x = SIN (ASIN (x)) = ASIN (SIN (x))

The only valid values of x are in the range -1...1. This means that the range of angles supported by
this command are -PI/2...PI/2. A negative angle means that the hypotenuse appears below the base line
of the triangle (you must therefore always bear the orientation of the screen in mind when using this
command).

Example

Given that there are two points on the screen at (10,20) and (100,75), find the angle of the line between
those two points (from the horizontal):

100 PRINT CALC_ANGLE(10,20 TO 100,75)

110 STOP

120 :

200 DEFine FuNction CALC_ANGLE(x1,y1,x2,y2)
210 LOCal Distan, Radian_angle

220 Distan = SQRT((x2-x1)42 + (y2-y1)*2)
230 Radian_angle = ASIN((y2-yl) / Distan)
240 RETurn DEG(Radian_angle)

250 END DEFine

MINERVA NOTE

On a Minerva you can replace line 220 with: 220 Distan = ABS(x2-x1,y2-y1)
CROSS-REFERENCE

ACOS, ATAN, ACOT are other arc functions, SIN, COS, TAN and COTtheir relatives.

Please also see the Mathematics section of the Appendix.

8.34. ARTANH 107

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Compare ARSINH.

8.36 ASK

Syntax ASK ([#wind,] question$)
Location BTool

ASK is a function which prints the question$ (plus a question mark (?) if this was not found at the end
of the string), enables the text cursor and reads the keyboard. If the next key pressed is <Y> (for Yes),
<J> (for Ja) or <N> (for No or Nein) then ASK will disable the cursor, echo the key next to the prompt
and return 1 if either <Y> or <J> was pressed, or 0 if <N> was pressed. If any other key is pressed, ASK
will BEEP and try again.

Example

In early computer days, this was a classical game which needed a hundred lines on a (modern at the time)
programmable pocket calculator:

100 CLS: x1 = 0: x2 = 100

110 PRINT "I am going to find out a number"

120 PRINT "from"!x1l!"to"!x2!"which only you know."\\
130 REPeat find_out

140 PRINT x1;"..";x2

150 x = (x2+x1) DIV 2

160 ok = ASK("Is it "&x)

170 IF ok THEN EXIT find_out

180 IF x1 = x2 THEN PRINT "You are cheating.": STOP
190 large = ASK(x&" too large")

200 IF large THEN x2 = x-1: ELSE x1 = x+1

210 END REPeat find_out

220 PRINT "Yippee, I found it."

NOTE

ASK is set up for ‘yes’ and ‘no’ in English and ‘ja’ and ‘nein’ in German. For other languages where
‘yes’ is not usually connected with <Y>, eg. ‘oui’ in French or ‘si’ in Spanish, you will need to write
your own routine.

CROSS-REFERENCE
CUR, REPLY.

108 Chapter 8. Keywords A

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

8.37 ASTAT

Syntax ASTAT [#channel,]
Location ATARIDOS

This command is similar to ADIR except that it also provides extra information, such as the length of
each file, the update time and any marks folder.

CROSS-REFERENCE
See ADIR. WSTAT is similar on QL Format disks.
Other commands added are ADELETE, ACOPY and AFORMAT .

8.38 AT

Syntax AT [#ch,] row, column or
AT [#ch,] column,row (pre AH ROMs only)
Location QL ROM

This command sets the current print position in the given window (default #1) to the given row and
column number. The top left hand corner of any window is always the position (0,0), however, the
maximum values of the row and column numbers depends on both the size of the window and the current
character size. Anything outside of this will give the error ‘Out of Range’ (-4).

Unlike the PRINT parameter TO, this command does not print any spaces on screen, thus allowing you
to place text precisely on screen without deleting any other parts of the screen.

Unfortunately for users who learnt to program on early versions of Sinclair BASIC (on the ZX81 or
Spectrum), this command is implemented differently.

Some implementations of BASIC allow you to set the print position from within the PRINT command,
for example:

PRINT AT 3,5;’Hello’

On the QL, you would need the line:
AT 3,5: PRINT ‘Hello’

Example

A program which uses the AT command to create an interesting effect on screen. This will not work on
pre JS ROMs as it relies upon the WHEN ERRor command:

1000 WHEN ERRor

1010 IF ERR_OR THEN dirl=-dirl: y=y-2: RETRY 1070
1020 END WHEN

1025 :

1030 MODE 4:WINDOW 448,200,32,16:CSIZE 0,0

1040 x=0: dirl=1

1050 FOR y=0 TO 63

(continues on next page)

8.37. ASTAT 109

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)
1060 AT x,y:PRINT 'Sinclair QL'
1070 x=x+dirl
1080 END FOR y

NOTE

On early QL ROMs (pre AH), the parameters were mixed up meaning that the syntax was AT column,row.
This can of course create many problems in uncompiled SuperBASIC, however, there should not be many
of these machines left.

If you do have one of these early machines, it is recommended that you do update the ROM.
CROSS-REFERENCE

CSIZE sets the current character size for the given window

WINDOW alters the physical size of a given window.

CURSOR allows you to set the print position more exactly.

PRINT actually prints things on screen at the current print position.

VERS$ allows you to check the ROM version.

Also see LEFT.

8.39 ATAN

Syntax ATAN (x) or
ATAN (x,y) (Minerva and SMS only)
Location QL ROM

The function ATAN, is the arc-tangent function, that is to say the inverse of the tangent function (TAN
in SuperBASIC).

TAN (ATAN (x)) =X
for all values of x, but due to the fact that TAN works on periods; ATAN (TAN (x)) =x
is only true for where: -PI1/2 < x < PI/2.

A negative angle indicates that the hypotenuse appears below the base line of the triangle, and it is
therefore important to bear in mind the orientation of the screen when using this command.

NOTE 1

Because trigonometrical functions are calculated using polynomial approximations, large parameters can
produce small errors.

For example, on all implementations:
PRINT TAN (ATAN (123456))
gives 123461.2 instead of 123456.

The maximum error rises in direct proportion to the parameter for the above example.

110 Chapter 8. Keywords A

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE 2

There is a very obscure bug contained in the code for ATAN which means that the command may crash
on non-Minerva ROMs if used in a program which is longer than 32K.

MINERVA NOTE

ATAN can accept two parameters. If you specify two parameters then ATAN(x,y) will give the angle
from the origin to the point (x,y). This is actually the same as ATAN(y/x), although it does also cater for
when x=0 which would otherwise give an overflow error.

This variant also supports a full circle, for example the following can be used to calculate the bearing
travelled (with O degrees being north), given that you have moved x miles east (or west if x<0) and y
miles north (or south if y<0):

100 DEFine PROCedure BEARING (x,Vy)

110 direction=DEG (ATAN (y,x))

120 IF x>=0: RETurn direction: ELSE RETurn 360+direction
130 END DEFine

The need for line 120 is because the value returned by ATAN is in the range -PI ... PI (which converts
to -180 ... +180 degrees) - the value returned needs to be in the range 0 ... 360. Note that x and y are
swapped around in line 110 - this is to circumvent the problem that a bearing of 0 is north, whereas in
the mathematical functions, a zero is taken to be horizontal.

SMS NOTE

The ATAN function has been extended to be the same as on Minerva, although the range of values it
returns have been made into four quadrant results (as with ATN2), so that for ATAN(x,y) if x>0, the
result is now in the range -PI/2...PI/2 instead of the usual O...PL

CROSS-REFERENCE
TAN,ATN, ATN2 and ARTANH. Also please refer to the Mathematics section in the Appendix.

8.40 ATARI

Syntax ATARI
Location Beuletools

On the Atari QL-Emulator, this command switches to Atari mode. Naturally, on other machines, it has
no effect. It will also fail if a QL ROM was found at the start address of the ROM-TOS ($FC0000) - it is
possible to load QDOS to that address.

NOTE

The FN Toolkit (pre v1.04) contained a function of the same name which had a different effect - this has
now been renamed QuATARI (see below).

WARNING

This command will most probably fail on the latest ST/QL drivers.
CROSS-REFERENCE

See QuATARI.

8.40. ATARI 111

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

8.41 ATARI_EXT

Syntax ATARI_EXT
Location ATARI_REXT (v2.15+)

The Atari QL-Emulators come with the additional toolkits, ATARI_REXT and ATARIDOS.

This command is used to enable various commands in the ATARI_REXT toolkit as well as the sound
extensions (such as BELL).

It therefore replaced the original SND_EXT command.
WARNING

ATARI_REXT pre v2.37 may crash SMS.
CROSS-REFERENCE

See TK2 _EXT and Beule EXT.

See also SND_EXT.

8.42 ATN

Syntax ATN (x)
Location Math Package

This function is the same as the original QL ROM variant of ATAN.

NOTE

ATN has been implemented to make porting programs written in other BASIC dialects easier.
CROSS-REFERENCE

See ATAN.

8.43 ATN2

Syntax ATN2 (x,y)
Location Math Package

ATN2 calculates ATAN(x/y) but expands the result from 0...PI to -PI... PI which allows you to convert
cartesian and polar co-ordinates in both directions without loss of information.

Example

Run this graphics demonstration and you will understand the advantage of ATN2 and the difference from
ATAN:

112 Chapter 8. Keywords A

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

100 WIV 4: SCALE 4,-3,-2: INK 7

110 PAPER 0: OVER -1: CLS

120 radius=1.5: reso=128

130 FOR angle®=PI/reso TO 2*PI STEP PI/reso

140 x0=radius*COS(angle®): yO=radius*SIN(angle®)
150 anglel = ATAN(y0/x0)

160 xl=radius*COS(anglel): yl=radius*SIN(anglel)
170 angle2 = ATN2(x0,y®)

180 x2=radius*“COS(angle2): y2=radius*SIN(angle2)
190 ARRAYS: PAUSE 2: ARRAYS

200 END FOR angle®

210 :

220 DEFine PROCedure ARRAYS

230 INK 3

240 FILL 1: CIRCLE 1.25*x0,1.25*y®,5E-2: FILL O
250 IF x1==x2 AND yl==y2 THEN

260 INK 7: LINE x1/5,y1/5 TO x1,yl: INK 5

270 CURSOR x1,y1,0,0: PRINT "ATAN/ATN2"

280 ELSE

290 INK 7: LINE x1/5,y1/5 TO x1,yl: INK 5

300 CURSOR x1,y1,0,0: PRINT "ATAN"

310 INK 7: LINE x2/5,y2/5 TO x2,y2: INK 5

320 CURSOR x2,y2,0,0: PRINT "ATN2"

330 END IF

340 angle=INT(DEG(angle®))

350 CURSOR 0,0,-3*LENCangle),-5: PRINT angle

360 END DEFine ARRAYS

CROSS-REFERENCE
ATAN which is the same on Minerva and SMS.

8.44 AUTO

Syntax AUTO [start_number][,step]
Location QL ROM

This command automatically creates line numbers in the command line (#0) to assist in entering Super-
BASIC programs. It would normally only be entered as a direct command (although you can include it
in a program line, the line numbers will not be generated until the program has finished its work).

Once entered, you will be presented with the first line start_number (default 100) - if this line already
exists in the program, then the existing line will be presented. Otherwise, you will only see the current
line number. Pressing the up and down arrow keys will move you to the previous line or the next line
(respectively) in the program, although if there is no previous (or next) line, then you will exit the AUTO
mode. However, if you press the Enter key, the next line number will be generated by adding step (default
10) to the current line number.

If you wish to escape this sequence, press the Break key <CTRL><SPACE>.

8.44. AUTO 113

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Example 1

Generating program lines: AUTO 1000,10

generates lines 1000,1010,1020,1030,... AUTO 10

generates lines 10,20,30,40,.... AUTO ,5

generates lines 100,105,110,115,...

Example 2

Adding line numbers to a numberless boot program: AUTO 100,10: MERGE flp1_boot
NOTE 1

A step value of zero returns ‘Bad Parameter’ (-15). You can however achieve this by using EDIT
start_number instead.

NOTE 2
Did you realise that AUTO 200,10 is the same as EDIT 200,10 ?
NOTE 3

On non-Minerva ROMs AUTO uses the same routine as RENUM to check its parameters, which means
that you can specify a start_line and an end_line, although they do nothing. For example:

AUTO 100 TO 1000;1000,20

would create lines 1000,1020,1040,...

NOTE 4

The maximum line number is 32767 - trying to use a higher line number will cause an overflow error.
NOTE 5

If start_number and step are not integer numbers, they will be rounded either up or down to the nearest
integer (compare INT).

SMS NOTE

On current versions of SMS AUTO has been re-coded to be the same as ED, therefore it will not allow a
second parameter, and merely places you in ED mode with the cursor at the specified start line number.

CROSS-REFERENCE
Please refer to EDIT which is very similar.

DLINE allows you to delete SuperBASIC lines.

8.45 AUTO DIS

Syntax AUTO_DIS
Location Super Gold Card, Gold Card v2.67+

The Super Gold Card allows you to automatically start-up the QL (overcoming the need to press F1 or
F2 on the title screen), and also automatically start up Toolkit II.

This command switches off these features.

114 Chapter 8. Keywords A

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE 1

On Minerva these commands only dictate whether Toolkit II should automatically be started up, as Min-
erva contains its own auto-boot code.

NOTE 2

These commands have no effect under SMSQ/E which already includes Toolkit IT and does not show a
start-up screen.

CROSS-REFERENCE
SeeAUTO_TK2F1 and AUTO_TK2F?2 also.

8.46 AUTO_TK2F1

Syntax AUTO_TK2F1
Location Super Gold Card, Gold Card v2.67+

The Super Gold Card allows you to automatically boot up the machine whenever it is switched on or
reset.

This command enables this auto-booting (starting the machine up in Monitor mode) and also ensures
that Toolkit II is initialised as soon as the machine is switched on. The status set by this command is
remembered by the Super Gold Card even when the power is disconnected.

CROSS-REFERENCE
See also AUTO_DIS and AUTO _TK2F?2.

TK2 EXT is needed to initialise Toolkit II if this command has not been used.

8.47 AUTO_TK2F2

Syntax AUTO_TK2F2
Location Super Gold Card, Gold Card v2.67+

This command is the same as AUTO_TK2F I except that the machine is started up in F2 TV mode.
CROSS-REFERENCE
See AUTO_TK2F1I.

8.46. AUTO_TK2F1 115

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

8.48 A BLANK

Syntax A_BLANK [minutes]
Location ST/QL (Pre v2.24)

This command creates a small job which blanks out the screen if a key has not been pressed for a specified
number of minutes (default 5).

This command is useful, because if a very bright picture is drawn on screen (eg. a white line on black
paper), and the screen does not alter, this can lead to what is known as ‘burn in’ when the monitor screen
becomes permanently marked with the ‘ghost’ of the picture. This does not tend to happen very often
nowadays, but in the past, monitors tended to become unuseable as more and more of their screen became
covered with these ‘ghosts’.

NOTE
This command will only work within the Pointer Environment.
CROSS-REFERENCE

BLS is a similar function under SERMouse.

8.49 A_EMULATOR

Syntax A_EMULATOR
Location ATARI_REXT v2.22+

This function returns a number to signify the type of ST/QL EMulator which is being used with the Atari
computer. The value returned may be one of the following:

* 0 - QL Emulator (the original QL Emulator)

* 1 - Extended-Mode4 Emulator

¢ 2 - QVME Emulator
NOTE 1
This will only work with Level E-20 of the Drivers or later.
NOTE 2
It is impossible to tell whether the original QL Emulator supports MODE 8 or not.
NOTE 3
You can also use DISP_TYPE to find out the Emulator type.
CROSS-REFERENCE
See also PROCESSOR and MACHINE.

116 Chapter 8. Keywords A

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

8.50 A_MACHINE

Syntax A_MACHINE
Location ATARI_REXT v2.22+

This function is the same as MACHINE.
CROSS-REFERENCE
SeeMACHINE and also A_ EMULATOR.

8.51 A_OLDSCR

Syntax A_OLDSCR
Location ATARI_REXT (v2.27+)

A lot of software (mainly non-pointer driver programs), and some of the toolkits covered by this book,
written for the Sinclair QL in the past always assumed that the QL screen would appear at the memory
location 131072 ($20000 in hexadecimal).

These programs and toolkits will not work properly (if at all) on the QVME board or some higher res-
olution screens. One of the solutions to this is to use the command A_OLDSCR which forces ST/QL
Emulators to set up a Job copying the QL’s screen as stored at 131072 (onwards) to the real display screen
20 times a second. This obviously slows down the operation of the computer and thus if possible, a new
version of the software should be produced / obtained.

As from v2.30, this command will not affect the display speed as much on a machine fitted with a blitter
chip.

NOTE 1

This command cannot fix the problem with programs and toolkits which assume that the QL’s display is
512x256 pixels.

NOTE 2
This command reports ‘Not Implemented’ on other ST-QL Emulators.
NOTE 3

SuperBasic (Job 0) must be the only Job running on the machine when this command is issued, otherwise
the error ‘Not Complete’ is reported.

NOTE 4

If you try to use this command after it has already been issued, the errror ‘Already Exists’ is reported.
CROSS-REFERENCE

SCREEN can be used to find the screen address.

SCR_SIZE can be used to set the resolution of the display - much software will insist that this is set to
512x256 pixels also.

8.50. A_MACHINE 117

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

8.52 A_PROCESSOR

Syntax A_PROCESSOR
Location ATARI_REXT v2.22+

This function is the same as PROCESSOR.
CROSS-REFERENCE
See PROCESSOR!

8.53 A_RDATE

Syntax A_RDATE
Location ATARI_REXT (v2.10+)

This command sets the QL’s internal clock to the date and time contained in the battery-backed clock on
the ST (if available).

NOTE

Before v2.28, this command did not support the TT’s battery backed clock.
CROSS-REFERENCE

See A_SDATE.

8.54 A SDATE

Syntax A_SDATE year, month, day, hour, minute, second
Location ATARI_REXT

The Atari ST has a built in battery-backed clock which maintains the time whilst the machine is switched
off. This time is automatically copied across to the Emulator’s own internal clock when the Atari ST is
started up. However, it can be necessary to alter the Atari’s battery backed clock.

This is achieved by using the command A_SDATE in exactly the same way as you would use SDATE to
set the internal clock.

NOTE 1

Before v2.19 of Atari_rext (and in v2.23), this command will not alter the Emulator’s internal clock until
the Atari is reset.

NOTE 2

Before v2.29, this command did not support the TT’s battery backed clock.
CROSS-REFERENCE

See SDATE.

118 Chapter 8. Keywords A

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

A_RDATE will set the internal clock to the same date and time as the battery backed clock.

8.55 A_SPEED

Syntax A_SPEED value
Location ATARI_REXT

Due to the enhanced hardware on which the ST/QL Emulator is running, you may find that as with the
QXL, Super Gold Card and Gold Card, some programs run too quickly. The command A_SPEED allows
you to slow the Emulator down so that you can use these programs. value must be in the range 0..7.

0 allows the Emulator to run at full speed, whereas 7 makes it run very slowly.

CROSS-REFERENCE

SLUG is very similar.

8.55. A_SPEED 119

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

120 Chapter 8. Keywords A

CHAPTER
NINE

KEYWORDS B

9.1 BASIC

Syntax BASIC [(offset)]
Location BTool

The function BASIC is identical to BASICP except that if no parameter is supplied, the function BASIC
will return the base address of the SuperBASIC program area.

NOTE

Although this function is written in such a way that it can be used from within compiled programs to
access SuperBASIC variables, it cannot access MultiBASIC variables on Minerva nor SBASIC variables
on SMS and will always return a value representing the location of the equivalent SuperBASIC variable.

WARNING

You should use commands such as the extended PEEK or POKE provided by Minerva and SMS to read
or set the tables pointed to by the values returned by this function, as the SuperBASIC tables can move
when tasks are started up or removed from memory.

CROSS-REFERENCE
See BASICP and BASIC_W.

9.2 BASICP

Syntax BASICP (offset)
Location TinyToolkit

This function returns an internal pointer (address) used by the SuperBASIC interpreter. offset must be
non-negative and a multiple of 2 (up to a maximum of HEX(‘64”).

Refer to system documentation for more information.
Example
PRINT BASICP(16)

returns the start address of the current SuperBASIC program in memory.

121

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

PRINT BASICP(32)

returns the start address of the SuperBASIC name list.

NOTE

This suffers from the same problem as BASIC.

CROSS-REFERENCE

BASIC_B, BASIC_L, BASIC_W. See NEW_NAME for a useful example!

BASIC _POINTER is the same as this function.

_NAMES$ and BASIC_NAMES$ allow you to access the SuperBASIC name list safely.

9.3 BASIC_B

See BASIC L below.

9.4 BASIC_W

See BASIC L below.

9.5 BASIC L

Syntax BASIC_B (offset) and
BASIC_W (offset)
BASIC_L (offset)
Location = TinyToolkit, BTool, Turbo Toolkit (BASIC_L only)

These three functions are modified version of PEEK which return values at memory locations in the
SuperBASIC system variables, which are used for storage by the SuperBASIC interpreter.

BASIC_B returns bytes, BASIC_W words and BASIC_L long words.
Example

Although additional information about internal machine structures is necessary to make full use of these
functions, some simple tasks can be performed without this knowledge, for example:

PRINT BASIC_W (1076)

gives the first line number of a program in memory - this enables a machine code program to check if a
program is actually loaded in the machine. The value returned by this example will always be zero from
the interpreter.

100 IF NOT BASIC_W (1076) THEN
110 PRINT "No SuperBASIC program loaded"
120 END IF

122 Chapter 9. Keywords B

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE
These functions generally suffer the same problem as BASIC.

A file called TurboFix_bin can be used to allow BASIC_L to access Minerva MultiBASIC and SMS
SBASIC variables. Some early versions of TurboFix_bin have bugs in it. Beware that not all versions of
this file supports SMS SBASICs.

CROSS-REFERENCE

PEEK, PEEK_W, PEEK_L, BASICP.

BASIC_B%, BASIC_WY%, BPEEK%, BPEEK_W% and BPEEK L are similar.

See also BASIC _F and PEEK F.

The SuperBASIC variables appear in the QDOS/SMS Reference Manual (Section 18.3)

9.6 BASIC_B%

See BASIC _F below.

9.7 BASIC_W%

See BASIC _F below.

9.8 BASIC_F

Syntax BASIC_BY% (offset) and
BASIC_WY% (offset) and
BASIC_F (offset)
Location Turbo Toolkit, BTool, Turbo Toolkit (BASIC_L only)

The functions BASIC_B% and BASIC_WY% are similar to BASIC_B and BASIC_W. BASIC_F is a
further function which can be used to return a floating point number stored as six bytes starting at the
specified offset within the SuperBASIC system variables.

NOTE

A file called TurboFix_bin can be used to allow these functions to access Minerva MultiBASIC / SBASIC
variables. Some early versions of TurboFix_bin have bugs in it. Beware that not all versions of this file
supports SMS SBASICs.

CROSS-REFERENCE
Refer to BASIC B and BASIC_W. PEEK F is similar to BASIC F.

9.6. BASIC_B% 123

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

9.9 BASIC_INDEX%

Syntax BASIC_INDEX% (name$)
Location Turbo Toolkit

This function is similar to LOOKUP%, except it does not suffer with any problems under SMS.

If the specified name$ does not exist, -12 is returned. -7 is returned if there is some mismatch between
table entries.

NOTE

A file called TurboFix_bin can be used to allow BASIC_INDEX% to access the Minerva MultiBASIC
and SMS SBASIC name tables. Some early versions of TurboFix_bin have bugs in it. Beware that not
all versions of this file supports SMS SBASICs.

CROSS-REFERENCE
Refer to LOOKUP% and BASIC_NAMES.

9.10 BASIC_NAMES$

Syntax BASIC_NAMES (index)
Location Turbo Toolkit

This function is exactly the same as _NAMES.

If the specified index is greater than the maximum name table entry, a bad parameter error is returned.
If it is smaller than 0, an error may be generated, or junk may be returned.

NOTE

A file called TurboFix_bin can be used to allow BASIC_NAMES$ to access the Minerva MultiBASIC and
SMS SBASIC name tables. Some early versions of TurboFix_bin have bugs in it. Beware that not all
versions of this file supports SMS SBASICs.

CROSS-REFERENCE
Refer to NAMES$ and BASIC INDEX%.

9.11 BASIC_POINTER

Syntax BASIC_POINTER (offset)
Location Turbo Toolkit

This function is exactly the same as BASICP.
NOTE

124 Chapter 9. Keywords B

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

A file called TurboFix_bin can be used to allow BASIC_POINTER to access the Minerva MultiBASIC
and SMS SBASIC name tables. Some early versions of TurboFix_bin have bugs in it. Beware that not
all versions of this file supports SMS SBASICs.

CROSS-REFERENCE
Refer to BASICP.

9.12 BASIC_TYPE%

Syntax BASIC_TYPE% (offset)
Location Turbo Toolkit

This function looks at the entry in the SuperBASIC name table for Job 0 at the specified offset and returns
its type in accordance with the following values:

* 0.... notype

e 1....string

* 2 floating point
* 4 ... integer

If the specified offset is greater than the maximum name table entry, a bad parameter error is returned.
If it is smaller than 0, an error may be generated, or junk may be returned.

NOTE

A file called TurboFix_bin can be used to allow BASIC_TYPE% to access the Minerva MultiBASIC and
SMS SBASIC name tables. Some early versions of TurboFix_bin have bugs in it. Beware that not all
versions of this file supports SMS SBASICs.

CROSS-REFERENCE
TYPE is similar.
See also BASIC_NAMES.

9.13 BAT

Syntax BAT
Location Beuletools

This command forces the command string defined with BAT_USE to be typed into the command line
(#0). No parameters are allowed. BAT will work okay in Minerva’s MultiBASICs, SMS’s SBASICs and
even if #0 has been redefined.

CROSS-REFERENCE
See BAT _USE for an example.
Refer to TYPE _IN also.

9.12. BASIC_TYPE% 125

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

9.14 BATS

Syntax ~ BATS$
Location Beuletools

This function returns the current string (if any) which has been set up with the BAT_USE command.
CROSS-REFERENCE
See BAT USE and BAT for more details.

9.15 BAT USE

Syntax BAT_USE batch$
Location Beuletools

This command is used to specify a command string containing SuperBASIC keywords which will be
typed into the command line (#0) when the command BAT is issued. The string may be up to 128
characters long. You may add CHR$(10) to the end of the string in order to emulate an <ENTER>
keypress (as in the example below).

Example

BAT_USE “PAPER 3: INK 7: PAPER#2,3: PAPER#2,3: INK#2,7: WMON 4: BORDER 1,0: BOR-
DER#2,0” & CHR$(10)

The command BAT will now reset the standard start-up windows.
CROSS-REFERENCE

BAT executes the batch string set with BAT_USE.

See FORCE_TYPE,STAMP and TYPE_IN also.

DO allows batch files of any size to be executed.

9.16 BAUD

Syntax BAUD bps or
BAUD [port,] bps(SMS and ST/QL only)
Location QL ROM

The serial port(s) use a certain speed to communicate with printers, modems, other computers, interfaces
etc. This speed is set with BAUD. The only values allowed are set out below, any other value for bps will
produce an error. The unit of the parameter is bits per second.

BAUD will set the same output and input baud rate for both serial ports.

126 Chapter 9. Keywords B

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Bits/Sec Bytes/Sec Time/32Kb

75 9.375 58 min, 15 sec
300 37.5 14 min, 34 sec
600 75 7 min, 17 sec
1200 150 3 min, 38 sec
2400 300 1 min, 49 sec
4800 600 55 sec

9600 1200 27 sec

19200 2400 14 sec

NOTE 1

The effect of BAUD 19200 depends on the hardware. On standard QLs the serial port can only send data
at that baud rate and tends to be affected by the QL’s sound chip.

NOTE 2
On a standard QL without Minerva the actual baudrate is slightly lower than that stated above.
NOTE 3

In practice, data is compressed and transmitted with transfer protocols (to reduce transmission errors),
so the above transmission times refer to the actual speed of the hardware, not the amount of data.

NOTE 4
The standard QL cannot safely handle the input of data at baud rates greater than 1200.
NOTE 5

A modified co-processor Hermes which replaces the 8049 chip by a 8749 is available, which allows in-
dependent input baud rates and (if Minerva v1.95+ is present) independent output baud rates as well
as fixing all mentioned problems for QLs and AURORA boards. The more expensive version of Her-
mes (SuperHermes) also provides three additional low speed RS232 input ports (supporting 30 to 1200
bps) and a high speed RS232 two way serial port (supporting up to 57,600 bps, which equates to 4800
characters per second).

NOTE 6

On a QXL board without SMS v2.57+, a BAUD command would not have immediate effect if a serial
channel was open - it waited until you closed the channel.

NOTE 7

It is possible to connect a mouse to a QL through the standard serial port. Although the mouse operates
at 1200 baud, you can use the mouse alongside a printer (or modem) either with the assistance of Hermes
or by configuring the mouse software to de-activate whilst the higher baud rate is in use.

THOR XVI NOTES
The THOR XVT allows the following additional baud rates:

9.16. BAUD 127

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Bits/Sec Bytes/Sec Time/32Kb

110 13.75 39 min, 43 sec
134.5 16.8125 32 min, 29 sec
150 18.75 29 min, 08 sec
1800 225 2 min, 26 sec

Independent baud rates may also be used on output and input channels when the channel is opened by
using an extended device name.

MINERVA NOTES

Minerva v1.93+ now enables you to set different output baudrates for serl and ser2 - if you want different
input baudrates for the two ports, you will need Hermes (see above). Unfortunately, this enhancement
will only work on QLs without Hermes if both ports are output only.

If you want to disable the ability to handle different output baud rates, do so with the command: POKE
1124 149,2

In order to set the two baudrates independently, BAUD will now accept additional values in the range -1
to -128. This is calculated by looking at the following table, working out which features you will need
and adding the values accordingly to -128:

Value to Add Effect

64 Alters ser2 baudrate (serl is default)

Prevents standard BAUD command from altering baudrate on this port
Selects BAUD 75 on this port

Selects BAUD 300 on this port

Selects BAUD 600 on this port

Selects BAUD 1200 on this port

Selects BAUD 2400 on this port

Selects BAUD 4800 on this port

Selects BAUD 9600 on this port

Selects BAUD 19200 on this port

@)}

S = N WPk 0N =

Please only try to add one baud rate value!!

Minerva Examples

BAUD -128

sets the baud rate for serl output at 19200. ser2 is unaffected.

BAUD -47

fixes the baud rate for ser2 output at 9600. ser] is unaffected (-47 = -128+64+16+1).
SMSQ AND ST/QL NOTES

If BAUD is only followed by one parameter, then it sets the baud rates for both SER1 and SER2 on
the QL, AURORA and QXL boards. However, if SMSQ/E is running on an ATARI computer, or the
command is used on an ST/QL Emulator then it only sets the baud rate on SER1.

You can however supply two parameters to the command to set independent baud rates (note that on a
standard QL or Aurora, Hermes is needed for independent baud rates on each serial port). In this case,

128 Chapter 9. Keywords B

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

the first parameter is the number of the serial port to be set and the second number is the new baud rate,
for example:

BAUD 1,19200

sets the baud rate on SER1 to 19200 - any other serial ports are left unaffected. If the rate (bps) is specified
as zero, this selects the highest possible BAUD rate on that port.

Please also note that if a translate has been set up with the TRA command, changing the BAUD rate will
make that translate apply to all channels opened to the serial ports, whether or not they are already open.
See TRA for more details.

The following additional BAUD rates are also supported on the specified SMSQ/E version:
GOLD CARD & SUPER GOLD CARD
* 1275(1200 receive and 75 transmit - only works with HERMES)
* 75(75 receive and 1200 transmit - only works with HERMES)
(The standard 1200 and 75 Baud rates are not supported)
ATARI ST and TT

On these computers, the different serial ports support different baud rates. An ST/STE only has one serial
port (SER1), a Mega STE has three (SER1, SER2 and SER4), and a TT has four (SER1, SER2, SER3
and SER4).

Support for SER2, SER3 and SER4 was only added to the ST/QL Emulators in version E-37 of the
Drivers. It has always existed in SMSQ/E.

SER1
* supports all the standard baud rates from 300 to 19200, except 7200.
SER2

* supports all the standard baud rates from 300 to 19200 (including 7200) as well as 38,400, 76,800,
83,333 and 125,000 baud (1x and 2x MIDI speeds).

— If the rate specified is 0O, the rate used is 153,600.

* Note that 38,400 on the TT was implemented in v2.69. 38,400, 76,800, 83,333, 125,000 and
153,600 BAUD were implemented for the STE and TT in v2.73.

SER3
* supports the same rates as SER1.
* Hardware handshaking is not available on this port.
SER4
* supports all the standard baud rates from 300 to 38,400 plus 57,600.
* If the rate specified is 0, the rate used is 230,000.
QXL
All of the standard baud rates available to the normal QL are supported except for 75 Baud.
QPC
All of the same baud rates as the QXL implementation are supported plus 38,400 and 57,600 baud.

9.16. BAUD 129

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

QXL AND QPC NOTES

If one of the PC’s serial ports is already linked to a mouse (in DOS) then the BAUD command will not
affect that port.

CROSS-REFERENCE

The Devices Appendix supplies details about the serial device ser and parallel device par. The ser_...
and par_... commands allow you to set various other parameters for serial and parallel ports.

You can check the current baud rate setting with BAUDRATE.

9.17 BAUDRATE

Syntax BAUDRATE
Location SERMouse

This function returns the actual baud rate of the system which will be used on any newly opened serial
port channel.

CROSS-REFERENCE

The system’s baud rate is set with BAUD.

9.18 BCLEAR

Syntax BCLEAR
Location BeuleTools, TinyToolkit, BTool

Each console channel has what is known as an input queue, a small area of memory where key presses
are stored before they are read by INPUT, INKEYS etc. The command BCLEAR clears the buffer of
the current input queue so that any key presses which have not yet been processed are not seen by the
program. This is useful to prevent overrun on keys.

Examples

(1) Type this line as a direct command into the interpreter, press <ENTER> and then type some keys.
REPeat a: REMark

Now press break and all of those key presses which you performed after entering the line will be shown.
Replace REMark by BCLEAR and try the same.

Normally it is okay for all key presses to be stored in a buffer - if a program cannot cope with the typist’s
speed, no key presses will be lost. But sometimes this feature may not be welcome.

(2) Even on very good keyboards the phenomenon of key-bounce appears, where the user has pressed a
key once but the program thinks that the same key has been pressed a few times. This generally happens
with poor quality keyboards or if the user is not used to either the keyboard or program speed.

This is a queue clearing version of the GETCHARY% function shown at CUR. Dangerous inputs should
always clear the keyboard queue, for example where the program is asking the question: “Do you really
want to format that disk (y/n) ?”

130 Chapter 9. Keywords B

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

100 DEFine FuNction GETCHAR% (channel,timeout)
110 LOCal char$,dummy

120 dummy=PEND (#channel): BCLEAR

130 CUR #channel, 1

140 char$=INKEY$ (#channel, timeout)

150 CUR #channel,®

160 RETurn CODE(char$)

170 END DEFine GETCHAR%

CROSS-REFERENCE
The current keyboard queue can be selected by a dummy INKEY$ or PEND.

9.19 BEEP

Syntax BEEP length, pitch [,pitch_2, grd_x, grd_y [,wrap [,fuzz [,rndom]]]] or
BEEP
Location QL ROM

This command allows you to access the QL’s rather poor sound generation chip. It can be extremely
difficult to use this command, and a lot of trial and error will generally be needed before you can find
anything similar to the sound you are after.

BEEP without any parameters will turn off the sound altogether. You must also be aware of the fact that
as soon as a BEEP command is encountered, the QL will cancel the current sound and emit the new one
(whether or not the earlier sound had finished).

Each of the various parameters have different ranges and different effects on the sound produced:

* length This specifies the duration of the sound in 72 microsecond units (there are one million
microseconds in a second). A length of zero means emit the sound until another BEEP command
is encountered. The range is 0...32767 (a value of 32767 lasts for approximately 2.36 seconds).

» pitch This affects the tone of the sound produced. The allowable range is 0...255. A pitch of 0
is the highest which can be produced, ranging to 255 which is the deepest tone. The purity of the
sound will be affected if any other parameters are specified.

* pitch_2 This represents a second pitch level, which will have no effect if the tone is the same
(or higher) than pitch. If however, the value of this parameter is higher (the tone is lower) than
that of pitch, this specifies a range between which the sound can ‘bounce’ by use of the next two
parameters, creating a sequence of notes (the length of the sequence will depend on the length
parameter).

* grd_x Assuming that the BEEP command is now being used to produce a sequence of notes, this
parameter specifies the time interval (in 72 microsecond units) of each note in the sequence. The
permitted range is again 0...32767. Larger time intervals make each note in the sequence more
distinct (low values tend to produce just buzzing).

» grd_y This parameter specifies the step between each note in the sequence. This must be in the
range 0...15. However, this may make more sense if the correct range was said to be -7..8.

A value of zero produces no step - you are returned to a single note again.

9.19. BEEP 131

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

A value between 1 and 7 means that each note will be that many pitches below the last one (unless
that would bring the pitch below pitch_2).

A value of 8 makes the BEEP command fit as many notes into the sequence (in the range) as
possible.

Values of 9 to 15 (or -7 to -1) mean that each note will be that many pitches above the last one
(these correspond to the values 7 to 1 respectively), unless this would bring the pitch above pitch.
When the top or bottom of the range pitch to pitch_2 is reached, the step direction is reversed to
cause the sound to ‘bounce’.

* wrap If this parameter is specified, the range of notes between the two pitch parameters will be
repeated the specified number of times before the step direction is altered. The range for this
parameter is 0..15.

The last note in the range will not be sounded, but will appear as the first note in the opposite
direction.

* fuzz This affects the purity of each note, by blurring its sound. The effective range is 8...15, with
a value of 15 producing an awful buzz.

* rndom This parameter allows you to specify a certain amount of ‘randomness’ which is to be added
to each note.

The effective range is once again 8...15, with the given value being used to alter from how far
away from the original sequence the QL can pick a note. The higher the value, the more random
notes appear in the sequence.

Examples

BEEP 0,20,40,10070,2

will keep sounding every other note between 20 and 40 moving down and then up the scale.
BEEP 0,20,30,10070,2,1

will sound the notes in the following sequence 20, 22, 24, 26, 28, 20, 22, 24, 26, 28, 30, 28, 26, 24, 22,
30, 28, 26,....

NOTE 1

On all ROMs if you set a very high pitch value, the QL finds it very difficult to read the keyboard. BEEP
0,0 and BEEP 0,1 will make typing rather difficult.

NOTE 2

Unless used on a THOR X VI, BEEP does not enter the QL into supervisor mode and therefore if BASIC
is trying to use BEEP whilst a task is loaded or unloaded, then the system is likely to crash!

NOTE 3
BEEP does not do anything on ST/QLs or the Amiga-QDOS Emulator (pre v3.23).
NOTE 4

The pitch of the sound is actually shifted on QLs by different values of length, fuzz and rndom. The
length of the sound is also somewhat dependent on the pitch! Both of these problems are however fixed
by the replacement co-processor Hermes.

CROSS-REFERENCE

BEEPING allows you to check if a sound is currently being emitted.

132 Chapter 9. Keywords B

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

PAUSE allows you to specify a time interval during which the computer will wait (allowing you to play
much longer notes).

9.20 BEEPING

Syntax BEEPING
Location QL ROM

This is a simple function which returns either 1 (true) if any sound output from BEEP is still running or
0 (false) if not.

Example
BEEPING is rather useless in a formulation like: IF BEEPING THEN BEEP

because this is less efficient than BEEP on its own which has the same effect. However, where you want
to ensure that your program generates the chosen sound, because of the QL’s multi-tasking abilities, it
may be useful to use this function in case another program is executing a BEEP command when you want
to - you could then either wait or simply override that sound by using BEEP followed by your own sound
generating BEEP command. For example:

10 REPeat check_beep: IF NOT BEEPING THEN EXIT check_beep
20 BEEP 100,20

NOTE
This function did not work correctly on Minerva before v1.98.
CROSS-REFERENCE

BEEP activates the speaker.

9.21 BELL

Syntax BELL
Location ST/QL, QSound

This command produces the sound of a ringing phone.
CROSS-REFERENCE
SND_EXT, SHOOT, EXPLODE.

9.20. BEEPING 133

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

9.22 Beule EXT

Syntax Beule_EXT
Location Beuletools

This command is used to update all of the keywords which are added by the Beuletools Toolkit. The new
keywords were automatically added when the Toolkit was loaded but keywords can be overwritten by
other Toolkits, renamed or ZAPped.

Beule_EXT undoes these changes and restores the default status.
WARNING

Do not load the Beuletools toolkit into anything other than resident procedure memory (ie. do not have
any Jobs running other than Job O when the toolkit is loaded). This may crash the system.

CROSS-REFERENCE
TK2_EXT and TINY_EXT do the same for Toolkit II and TinyToolkit keywords.
See also ATARI EXT.

9.23 BGCOLOUR_QL

Syntax BGCOLOUR_QL [#ch,] colour
Location SMSQ/E v2.98+

It is possible under the latest version of SMSQ/E to set a ‘wallpaper’ - this is an image which covers the
whole of the available screen (in any resolution) and which forms a background for any programs which
may be running. Normally, this would appear as a black area of the screen.

A valid window channel must be open, default #1 (or #0 on a SBASIC with only #0 open), although
one may also be supplied as #ch. BGCOLOUR_QL allows you to specify any standard QL colour -
the parameters allowed are the same as for the INK command (in either Standard QL Colour Mode or
COLOUR_QL mode), which thus allows for you to specify composite colours as well as palette mapped
colours with PALETTE_QL.

Example

BGCOLOUR_QL 2,7 - sets a red and white checkerboard pattern.
CROSS-REFERENCE

Refer to Appendix 16 and /NK for more details on colours.
BGCOLOUR_24 is similar.

BGIMAGE may be used to set a screen image as the wallpaper.

134 Chapter 9. Keywords B

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

9.24 BGCOLOUR_24

Syntax BGCOLOUR_24 [#ch,] colour
Location SMSQ/E v2.98+

This is similar to BGCOLOUR_QL in that it allows you to set a wallpaper to cover the whole of the
available screen (in any resolution).

A valid window channel must be open, default #1 (or #0 on a SBASIC with only #0 open), although one
may also be supplied as #ch.

BGCOLOUR_24 allows you to specify any 24 Bit Colour - the parameters allowed are the same as for
the INK command (in COLOUR_24 mode), which thus allows for you to specify composite colours.

Example

BGCOLOUR_24 $920000,$ff0092,3 -sets a checkerboard pattern of Dark Red and Shocking Pink.
CROSS-REFERENCE

Refer to Appendix 16 and /NK for more details on colours.

BGCOLOUR_QL gives more detail.

BGIMAGE may be used to set a screen image as the wallpaper.

9.25 BGET

Syntax ~ BGET [#ch\position,] [item “[,item']" ..] or
BGET [#ch,] [item
Location Toolkit II, THOR XVI

This command is very similar to GET, although this only fetches one byte at a time (in the range 0..255)
from the given channel (default #3).

Each item to be fetched must therefore be either an integer or a floating point variable, for example:
BGET #3\100,byte1%,keying

If the channel specified is not a file, then the command will wait for a key to be pressed for each item,
and then set the value of each item to the character code of the key pressed.

As with GET, the items will be fetched from the current (or specified) file position, which is taken to be
an absolute distance from the start of the file. If no item is specified, then the first variant can be used
to set the current file position. position will be updated (unless it is an expression!) with the current file
position at the end of the command.

Examples

BGET #3\100 Set file pointer on #3 to position 100.

BGET a% Read the byte at the current file pointer in channel #3.
NOTE 1

9.24. BGCOLOUR_24 135

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Current versions of the Turbo and Supercharge compilers are not able to compile programs which use
BGET.

NOTE 2
Characters which are read from a channel using BGET are affected by TRA.
SMS NOTE

BGET will accept a parameter which is a sub-string of a string array to read in several bytes at once. For
example:

DIM a$(10):a$=FILLS$(’ ‘,10):BGET #3,a$(4 to 7)

This will read 4 bytes from channel #3 into the middle of a$.

Please note that a$ cannot be an empty string if this is to work since the sub-string would not be valid!!
CROSS-REFERENCE

See BPUT, PUT, GET. FPOS allows you to find out the current file position. TRUNCATE allows you
to truncate a file to the current file position. PEEK fetches one byte from memory.

OPEN_DIR contains an example of the use of BGET.

9.26 BGIMAGE

Syntax BGIMAGE [#ch,] filename
Location SMSQ/E v2.98+

This command allows you to load a screen image as a wallpaper to cover the whole of the available screen
(in any resolution).

A valid window channel must be open, default #1 (or #0 on a SBASIC with only #0 open), although one
may also be supplied as #ch.

The file will need to be a screen snapshot - the Photon JPEG viewer can be used to convert JPEG files to
screen snapshots.

Example
BGIMAGE winl_wallpapers_cats - load a wallpaper.
NOTE

The command expects the screen to have been saved in the current resolution and colour depth, therefore
any attempt to load a screen image in a different resolution or colour depth to the one in existence when
the screen was saved will result in a corrupt image.

CROSS-REFERENCE
SBYTES gives details on how to store a screen on disk.

In many ways, this command is similar to LOADPIC, except that it caters for non-standard QL resolutions
and colour depths.

BGCOLOUR_QL and BGCOLOUR_24 can be used to set a single colour wallpaper.

136 Chapter 9. Keywords B

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

9.27 BICOP

Syntax BICOP
Location HCO

This procedure will send a screen dump to the port serlhr - it is aimed at Epson compatible dot-matrix
printers and uses grey scales to represent the different colours. It is up to you to set the BAUD rate.

NOTE

It will only work on a standard 512x256 screen stored at $20000.
CROSS-REFERENCE

SDUMP is more flexible.

See also HCO and FCO.

9.28 BIN

Syntax BIN (binary$) or
BIN (binary) where binary=0..111111
Location Toolkit II, THOR XVI

This function returns the decimal value of a binary number (given as a string). For small numbers, a
floating point number can be used but will cause problems if this is not a valid binary number.

Examples
(1) PRINT BIN (‘1001”)
will print the value 9
(2) As it stands, the function BIN cannot handle binary dots

(eg. 1001.101=9.625), therefore a BASIC function to provide this facility is:

100 DEFine FuNction BINN(a$)

110 LOCal i,dot,dota,value_a,loop

120 IF a$=""' THEN RETurn 0

130 FOR i=1 TO LEN(a$): IF a$(i) INSTR '10.'=0: REPORT -17: STOP
140 dot='." INSTR a$: IF dot=0 THEN RETurn BIN(a$)

150 value_a=0:dota=0

160 IF dot>1 THEN value_a=value_a+BIN(a$(1l TO dot-1))

170 IF '.' INSTR a$(dot+1 TO): REPORT -17: STOP

180 REPeat loop

190 IF dot>=LEN(a$):EXIT loop

200 a$=a$(dot+1 TO)

210 dot="1" INSTR a$: IF NOT dot THEN EXIT loop
220 value_a=value_a+1/(2*(dot+dota)) :dota=dota+dot

230 END REPeat loop

(continues on next page)

9.27. BICOP 137

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

240 RETurn value_a
250 END DEFine BINN

NOTE
Any digit other than O or 1 will produce odd results.
CROSS-REFERENCE

BIN$ works the other way around, converting decimal numbers into their binary equivalent. See HEX
and HEXS for the hexadecimal versions. BIT% is also useful.

SMS users can achieve the same thing by using, for example PRINT%1001 instead of
PRINTBIN(‘1001").

9.29 BIN$

Syntax ~ BINS$ (decimal,digits) or
BINS$ (decimal [,digits]) (THOR only)
Location Toolkit II, THOR XVI

This function converts a signed integer decimal number to the equivalent binary number (to a specified
number of binary digits ranging from 1 to 32). Negative values are also handled correctly.

Examples
(1) BIN (BINS$ (x,4)) =x
if X is any number between 0 and 15.

(2) A short function to compare two numbers using the mathematical ‘OR’ function. Do note however
that the same function already exists on the QL, and the commands

PRINT 100]|10 and PRINT _or(100,10) have exactly the same effect, although the BASIC version below
does enable you to see what the function actually does:

100 DEFine FuNction _or(x,y)

110 a$=BIN$(x,32): b$=BIN$(y,32)

115 PRINT a$,b$

120 c$=FILL$(C'0',32)

130 FOR i=1 TO 32

140 IF a$(i)=1 OR b$(i)=1: c$(i)=1
150 END FOR i

155 PRINT c$

160 RETurn BIN(c$)

170 END DEFine _or

THOR XVINOTE

The THOR XVI version of BIN$ will accept a value of zero for digits {or even the command in the
form BINS$(decimal)}. In both of these cases the result is returned in the least number of Binary digits
necessary to store the number, for example: PRINT BINS$(10)gives the result 1010.

138 Chapter 9. Keywords B

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

THOR XVI WARNING

A second parameter of zero may crash some versions of this command other than on v6.41 of the THOR
XVI.

CROSS-REFERENCE
See BIN and HEX, HEX$. Also refer to BIT%.

9.30 BINOM

Syntax BINOM (n,k)
Location Math Package

The function BINOM returns the value of the binomial coefficient which is defined as the following
(where n >= k):

n*m-1)*m-2)%... *(n-k+1))/(1*2% .. *k)or, FACT(n) / (FACT(k) * FACT(n-k))

The binomial coefficient gives the kth coeflicient of the variables in an expanded binomial series, this is
called the binomial theorem:

(a+b)*n = BINOM(n,0) * a"n + BINOM(n,1) * a’(n-1) * b + BINOM(n,2) * a(n-2) * b2 + ... +
BINOM(n,n-1) * a * bA(n-1) + BINOM(n,n) * b*n

The binomial coefficient can also be used to calculate combinations and probabilities. As the example
shows, it is important to know the mathematical theory behind this function to make full use of it.

Example

The following program calculates 2":

100 n=10: s=0
110 FOR k=0 TO n: s=s+BINOM(n,k)
120 PRINT s,2*n

It can be optimised by exploiting the fact that:
BINOM (n,k) = BINOM (n,n-k) which saves half of the loops:

100 n=10

110 IF NOT n MOD 2 THEN s=BINOM(n,n DIV 2): ELSE s=0
120 FOR k=0 TO n DIV 2 - NOT n MOD 2

130 s=s+2*BINOM(n,k)

140 END FOR k

150 PRINT s,2%n

CROSS-REFERENCE
FACT.

9.30. BINOM 139

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

9.31 BIT%

Syntax BIT% (number%,bitnr) with bitnr=0..15
Location BIT

All numbers are internally stored as a series of values, each of which can either be 1 or O (or, if you prefer,
true or false). This is known as the binary system. The set of digits which make up a binary number are
known as a stream of bits.

The function BIT% returns the status of a specified bit of an integer number%, a value of either O or 1.
Bit 0 means the rightmost bit, whereas bit 15 would be the leftmost.

Example 1

Here is a function which converts a number to the binary system. It allows a greater range than BIN$ and
needs just one parameter. The first version needs the REV$ and LOG2 extensions, the second does not.

Version 1:

100 DEFine FuNction BIT§ (x%)

110 LOCal b$,i: b$=""

120 FOR i=0 TO LOG2(ABS(x%)):b$=b$ & BIT%(x%,i)
130 RETurn REV$(b$)

140 END DEFine BITS$

Version 2:

100 DEFine FuNction BIT$ (x%)

110 LOCal b$,i: bs=""

120 FOR i=0 TO LN(ABS(x%))/LN(2): b$=BIT%(x%,i) & b$
130 RETurn b$

140 END DEFine BIT$

Example 2

The following logical function returns 1 (true) if the given parameter was an upper case character, or
(false) if it was lower case. This function will work with all international character sets supported on the
original QL.

100 DEFine FuNction UPPER% (c$)
110 RETurn NOT BIT%(CODE(c$),5) A4 BIT%(CODE(c$),7)
120 END DEFine UPPER%

In any given character, bit 5 indicates the case and bit 7 the character set.
CROSS-REFERENCE

BINS also converts a decimal number to a binary and B/N back again. UPPERSY returns a string in upper
characters.

The length of a number x in binary form is /INT(LOG2 (ABS (x))+1) .

140 Chapter 9. Keywords B

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

9.32 BLD

Syntax BLD
Location Beuletools

This function returns the control codes needed to switch on double strike (‘bold’) on an EPSON com-
patible printer:

PRINT BLD is the same as PRINT CHR$(27)&”G”

Example

LPRINT “I “ & BLD& hate”&NRM & “ these functions.”

CROSS-REFERENCE

NORM, EL, DBL, ENL, PRO, SI, NRM, UNL, ALT, ESC, FF, LMAR, RMAR, PAGDIS, PAGLEN..

9.33 BLOCK

Syntax BLOCK [#channel,] width, height, x, y, colour
Location QL ROM

This command draws a block of size width x height at position X,y of the given colour in the specified
window (default #1). Both the position and the block size are given in absolute pixel co-ordinates, with
the maximum ranges specified by the physical size of the window.

This means that for example, in a window which is defined as 448x200a32x16, the maximum block
which can be drawn is a block of size 448 x 200 in position (0,0). You can also use OVER to produce
other effects with BLOCK.

As with other graphics commands, the colour can be made up of up to three parameters, giving the
background, contrast and stipple pattern (composite colours).

Example

A program printing out the set of numbers 1 to 100 and then quickly recolouring the two halves of the
window:

100 WINDOW 300,60,102,56

110 PAPER 0: CLS

120 FOR i=1 TO 100: PRINT !i!
130 OVER -1

140 BLOCK 150,60,0,0,7

150 BLOCK 150,60,150,0,2

160 OVER 0

NOTE 1

Some ROMs (not SMS) will allow you to specify blocks which lie partly outside of a window without
reporting the error ‘Out of Range’. However, this can also crash some ROMs!

9.32. BLD 141

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE 2

Odd values for width and x are always rounded down to an even number (eg. 23 pixels wide becomes 22
pixels). This is to ensure compatibility between MODE 4 and MODE 8. The only problem is that you
cannot specify a block one pixel wide, or even have a gap of one pixel between two blocks.

NOTE 3

Unless you have a Minerva ROM or SMS, you cannot draw a block 512 pixels wide - you need to use
two adjacent blocks instead!

NOTE 4
BLOCK provides an extremely quick way of drawing horizontal or vertical lines on screen.

MINERVA NOTE

Early versions of Minerva (pre v1.83) contained code to ensure that the given block would appear wholly
within the specified window. However, later versions had to be altered to ensure compatibility with certain
programs. These later versions allow width, height, x and y to be within the range -32768...32767 - only
that part of the block (if any) which appears in the given window will be drawn!

For example:

BLOCK 200,10,-20,255,7 has the same effect as:
BLOCK 180,1,0,255,7

CROSS-REFERENCE

INK contains information concerning composite colours.

9.34 BLOOK

Syntax BLOOK (tofind$, adrl TO adr2)
Location HCO

See SEARCH but note the different syntax. The string being looked for by BLOOK is not case-sensitive.

9.35 BLS

Syntax BLS time%
Location SERMouse

This command sets up a job which will blank the screen after a certain amount of time if a key is not
pressed or the mouse not moved. The delay depends on the value of time% (1-20 = seconds), (21-59 =
minutes).

To turn off this function, use time%=0.
Pressing a key or moving the mouse will reactivate the screen.

CROSS-REFERENCE

142 Chapter 9. Keywords B

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

See A BLANK.

9.36 BMOVE

Syntax BMOVE adrla, adrlb, adr2
Location HCO

BMOVE is a procedure which copies the whole of the memory stored between the two addresses adrla
and adr1b to the new address pointed to by adr2, so the number of bytes moved is adr1b-adrla.

Example

Dump some memory to screen (note that this only works with the screen at 131072 and at 512 x 256
resolution):

100 FOR a = 0 TO 10240 STEP 128
110 BMOVE a, a+HEX("8000") TO HEX("20000")
120 END FOR a

WARNING

Always ensure that there is sufficient available free memory at adr2 to hold the data from adrla to adrlb,
otherwise your machine is most likely to crash.

CROSS-REFERENCE

It is a good idea to check with VERS if Minerva is present and use its extremely fast MM.MOVE machine
code trap via CALL as an alternative to BMOVE; this is demonstrated by the example at LDRAW .

COPY_B, TTPOKEM, COPY_W and COPY_L also allow you to move memory.

9.37 BORDER

Syntax BORDER [#channel,] size [,colour] or
BORDER [#channel]
Location QL ROM

This command allows you to add a coloured border around the inside of the edge of the specified window
(default #1). If the second syntax is used, this will turn off the border on the specified window - this is
the same as:

BORDER [#channel,] 0

If a border is present around the window, the physical size of the window is altered, so that PRINT and
LINE commands (for instance) will not overwrite the border. Please note however, that the window is
reset to its original size prior to a BORDER command and therefore two successive border commands
only have the same effect as the second BORDER command on its own.

If the specified size is too large to fit in the given window, the error ‘Out of Range’ will be reported.

9.36. BMOVE 143

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

As with other graphics commands, colour can actually be up to three parameters forming a composite
colour.

For example: BORDER #2,2.4
has the same effect as BORDER #2,2.4,4,3
or even BORDER #2,2.4,4

If no value is given for colour a transparent border will be added to the given window. This means that a
border will be created, but anything which already appears in that border will not be affected.

Once the border has been re-drawn the cursor is automatically placed at the top left hand position (0,0)
just inside the border.

Examples
To produce a screen with a title, allowing you to scroll

text and do all sorts on the screen without affecting the title:

100 MODE 4

110 WINDOW 448,200,32,16

120 PAPER 0: BORDER 0 : CLS

130 AT 0,30: PRINT "THE TITLE PAGE"
140 BORDER 9

150 PAPER 2:CLS

To produce a ‘take-off” effect:

100 MODE 8

110 WINDOW 448,200,32,16
120 FOR i=1 TO 99

130 BORDER 1i,2

140 END FOR i

NOTE 1

If a border appears in a window, there is always a width of at least two pixels down the sides to ensure
that the border will appear in MODE 8. Take the width value and if it is odd, add one for the width down
the sides of the window.

NOTE 2

The second syntax will not work on Minerva (pre v1.79) and the THOR XVI - you will need to specify
a width of zero instead.

CROSS-REFERENCE
INK describes composite colours.

Also see WINDOW..

144 Chapter 9. Keywords B

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

9.38 BPEEK%

See BPEEK L below.

9.39 BPEEK_W%

See BPEEK L below.

9.40 BPEEK_L

Syntax BPEEKY% (offset) and
BPEEK_W% (offset) and
BPEEK_L (offset)
Location BPEEKS, BPOKE (DIY Toolkit - Vol B)

These three functions are exactly the same as BASIC_B, BASIC_W and BASIC_W, and suffer with the
same problem that they always access the SuperBASIC variables of Job 0 (SuperBASIC) and cannot
therefore be used on a Multiple BASIC interpreter.

CROSS-REFERENCE
See BASIC W and BASIC.

BPOKE and related commands allow you to alter the values of the SuperBASIC variables.

9.41 BPOKE

See BPOKE L below.

9.42 BPOKE_W

See BPOKE L below.

9.43 BPOKE_L

Syntax BPOKE offset, value and
BPOKE_W offset, value
BPOKE_L offset, value

Location BPOKE (DIY Toolkit - Vol B)

These three commands allow you to alter the value of SuperBASIC variables in much the same was as
the extended POKE commands do on Minerva and SMS.

9.38. BPEEK% 145

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

BPOKE_W and BPOKE_L were added in v0.7 of the toolkit.

They unfortunately always access the SuperBASIC variables of Job 0 (SuperBASIC) and cannot therefore
be used on a Multiple BASIC interpreter.

CROSS-REFERENCE
See POKE.

BPEEK% and related commands allow you to read the values of the SuperBASIC variables.

9.44 BPUT

Syntax BPUT [#ch\position,] [item “[item']" ..] or
BPUT [#ch,] [item
Location Toolkit II, THOR XVI

This command is the complement to BGET, in that it places the byte value for each item into the specified
channel (default #3) at the current file position (or the specified position if the first variant is used).

If the value of item is outside the range 0...255, an overflow error will result, whereas if item is not an
integer or floating point number, then an error in expression will result. On the other hand, if a non-
integer floating point is given as an item, then the value will be rounded to the nearest integer and this
placed into the given channel.

Provided that the second variant of this command is used, the specified channel need not be open to a
file, in which case each item is taken as being a character, for example: BPUT #2,72,101,108,108,111

will print the word Hello in channel #2. This can of course be used to send control codes to a printer
much more easily than the PRINT command.

For example:

BPUT #3,27,70

is a lot easier to understand than:
PRINT #3,CHR$(27)&’F’

to switch off emphasised mode.

As with BGET, if no item is specified, then the first variant can be used to set the current file position.
position will also be updated at the end of the command to contain the current file pointer.

Example

BPUT #ch,4.5,7100°,52,a+1

places the values 5,100,52 and (a+1) at the current file position.

NOTE

The codes sent by BPUT are affected by any translate that is active (see TRA).
SMS NOTE

BPUT will now accept string parameters to allow you to pass several bytes at a time, for example:
a$="Hello’:BPUT #3,a$

146 Chapter 9. Keywords B

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

is equivalent to: BPUT #2,72,101,108,108,111
CROSS-REFERENCE

See FGETB, BPUT, PUT, GET, LPUT, UPUT and WPUT.

FPOS allows you to find the current file position.

TRUNCATE allows you to truncate a file to the current file position.
PEEK fetches one byte from memory.

UPUT allows you to send bytes without them being translated.

9.45 BREAK_ON

See BREAK OFF below.

9.46 BREAK_OFF

Syntax BREAK_ON
BREAK_OFF
Location TinyToolkit

The command BREAK_OFF de-activates the functioning of both <CTRL><SPACE> (the Break Key)
and <CTRL><F5> (the Pause Screen key) during the running of interpreted SuperBASIC programs so
that they cannot be stopped by the user unless they stop either due to an error or a STOP command.

The command BREAK_ON reactivates both keys.
The function BREAK returns the current status:

IF BREAK=1 means the Break Key is active, while
IF BREAK=0 means that it is inactive.

NOTE 1

BREAK_OFF may not work on Minerva ROMs unless you have v1.10 or later of the Toolkit, which uses
the new Minerva System Xtensions to overcome any problem.

NOTE 2
BREAK_OFF does not currently work with SMS.
CROSS-REFERENCE

STOP terminates interpreted programs even if the Break Key is disabled. Do not confuse with the com-
mand BREAK.

9.45. BREAK_ON 147

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

9.47 BREAK

Syntax BREAK switch
Location BTool

The command BREAK takes the parameter of either ON (=1) or OFF (=0) and enables or disables the
ability to stop a program with the Break key <CTRL><SPACE> (and <ESC> on Minerva) accordingly.

Example

100 WINDOW 136,100,100,40: INK 7

110 BORDER 1,4,3: PAPER 3,0: CLS

120 SCALE 100,-50,-50: POINT 0,0

130 fast=ASK("Fast (y/n)"): CLS
140 BREAK fast

150 FOR n=0 TO 4000

160 IF BREAK% THEN AT 0,0: PRINT n
170 x=RND(-50 TO 50): y=RND(-50 TO 50)
180 z=SIN(PI*SQRT(x*x+y*y)/10)+1
190 IF z > 2*RND THEN POINT x,y
200 END FOR n

210 BREAK ON

NOTE 1

After the Break key has been disabled and re-enabled, if you try to Break from the interpreter’s com-
mand window #0 it might be disturbed. Instead of printing ‘not complete’ (error -1) in #0 when
<CTRL><SPACE> is pressed, that message may appear in #2 and Break will work only once, the in-
terpreter will not accept any further Breaks... A single <ENTER> after you initially press the Break key
cures this.

NOTE 2

This command does not work under SMS.
CROSS-REFERENCE

See also BREAK%, FREEZE and FREEZFE%.

Do not confuse BTool’s command BREAK with TinyToolkit’s function BREAK (although you can use
both in the same program!)

9.48 BREAK%

Syntax BREAK%
Location BTool

The function BREAK% returns the current state as to whether the Break key is enabled, either ON or
OFF.

CROSS-REFERENCE

148 Chapter 9. Keywords B

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

See BREAK!!

9.49 BTool EXT

Syntax BTool EXT
Location BTool

This command is similar to TK2_EXT and TINY_EXT, in that it installs BTool so that keyword defini-
tions with the same name as those provided in other Toolkits are overwritten with the Btool definition.

WARNING

BTool_EXT will hang SuperBASIC if the BTool Toolkit has been loaded into the common heap - this is
most likely to happen on later versions of Toolkit II where LRESPR uses the common heap if jobs are
running. Try LINKUP instead.

See also K/LL which removes all current jobs.

9.50 BTool RMV

Syntax BTool RMV
Location BTool

All keywords implemented by BTool (except BTool_EXT) are removed from the SuperBASIC name list.
The Toolkit itself remains in memory and can be re-activated with BTool _EXT.

9.51 BTRAP

Syntax BTRAP #ch,key [,d1 [,d2 [,d3 [,al [,a2]]]]]
Location TRAPS (DIY Toolkit Vol T)

This command is identical to QTRAP, except that the address parameters (al and a2) are taken to be
relative to A6, therefore allowing you to access system calls which need to access the SuperBASIC
variables, so that you can for example save and load arrays direct!!

WARNING

Several TRAP #3 calls can crash the computer - make certain that you know what you are doing!
CROSS-REFERENCE

See IO_TRAP, MTRAP and QTRAP.

Any return parameters can be read with DATAREG and ADDREG.

CLS, PAN and SCROLL can also be used to call TRAP #3.

Refer to the QDOS/SMS Reference Manual (Section 15) for details of the various system TRAP #3 calls.

9.49. BTool_EXT 149

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Also refer to the DIY Toolkit documentation for this command.

9.52 BUTTON%

Syntax BUTTONo (flag)
Location KMOUSE, MOUSE (DIY Toolkit - Vol I), Amiga QDOS v3.20+

This function can be used to find out if any mouse buttons have been pressed and if so which ones.
Unfortunately, you cannot use this to find out if a button has been pressed twice quickly in succession
(known as double-clicking).

The value of flag is used to tell the function which buttons you wish to interrogate:

* 0 - Has any key been pressed ? If so, the value returned will be O plus the following numbers if the
relevant key(s) has been pressed:

— +1 - Button One Pressed
— +2 - Button Two Pressed
— +4 - Button Three Pressed

* 1 - Has Button One been pressed (this is the left hand mouse button)? If so 1 is returned, otherwise
0.

* 2 - Has Button Two been pressed (this is the right hand mouse button)? If so, 1 is returned, other-
wise 0.

* 3 - Has Button Three been pressed (this is the middle mouse button)? If so, 1 is returned, otherwise
0.

Example

A routine to wait for the user to press the right and left mouse button at the same time:

100 DEFine PROCedure WAIT_MOUSE
110 REPeat mloop

120 IF BUTTON%(0)=1+2:RETurn
130 END REPeat mloop

140 END DEFine

CROSS-REFERENCE
X_PTR%, Y_PTR% and PTR_FN% can also be used to interrogate the mouse.

150 Chapter 9. Keywords B

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

9.53 BVER$

Syntax BVER$
Location BeuleTools

This function returns the version number of the Beule Toolkit. This may be useful if a program makes
use of commands or functions which were not supported by older versions.

9.54 BYTES_FREE

Syntax memory = BYTESFREE
Location DIJToolkit 1.16

This simple function returns the amount of memory known by the system to be free. The answer is
returned in bytes, see also KBYTES_FREE. For the technically minded, the free memory is considered
to be that between the addresses held in the system variables SV_FREE and SV_BASIC.

EXAMPLE

2500 freeMemory = BYTES_FREE

2510 IF freeMemory < 32 * 1024 THEN

2520 REMark Do something here if not enough memory left...
2530 END IF

CROSS-REFERENCE
KBYTES FREE.

9.53. BVERS$ 151

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

152 Chapter 9. Keywords B

CHAPTER
TEN

KEYWORDS C

10.1 CACHE_ON

Syntax CACHE_ON
Location SMS, Super Gold Card

This command enables any internal caches which may be available on your operating system. This is in
fact the default.

Caches are a means of storing computer instructions in fast memory and cutting down on the time taken
by a computer to execute those instructions.

Normally a computer chip works is fed a program in a series of numbers representing commands, a format
which is known as machine code. This machine code operates at a very low level - the SuperBASIC
command PRINT a$ would need several hundred machine code commands to have any effect on screen).
The later Motorola chips (not 68000 or 68008) used by QLs and Amigas (and also the newer chips on
PCs and ATARISs) all have on-board caches which can hold a certain number of these machine code
instructions. If, while the program is running, it accesses those instructions again within a short time (ie.
before the cache becomes full), then the chip can execute that series of commands again very quickly.

Although caches can therefore speed up many programs, some computer programs were written in the
days before caches were available for the QL and compatibles, and therefore will not work if the cache
is switched on. This is particularly true of some of the commands used by the Turbo compiler which
contain self-modifying code, thus meaning that storage of a chunk of instructions is self-defeating.

CROSS-REFERENCE
CACHE_OFF allows you to disable the caches.

10.2 CACHE_OFF

Syntax CACHE_OFF
Location SMS, Super Gold Card

This command disables the internal caches used to speed up the operating system. This can help some
of the older software to work on newer systems.

In particular, this command is needed if Flexynet is to work (see NETSEND).

153

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE
See CACHE_ON.

10.3 CALL

Syntax CALL address [,d1[,d2[,d3[,d4[,d5[,d6[,d7 [,a0[,al[,a2[,a3[,a4[,a5 1111111111111
Location QL ROM

This command allows you to call a machine code routine loaded at the memory location address from
SuperBASIC. At the same time, you can set the initial 68008 registers by supplying more than one pa-
rameter. Each additional parameter should be an integer value and is placed into the appropriate machine
code register.

You cannot return values to SuperBASIC using this command, although you can return errors by setting
DO from the machine code on return.

If the machine code register DO contains a number other than an error code (or 0) on return, the program
will stop with the error ‘At line .

Various useful routines can be CALLed on a Minerva ROM - these are discussed on the next few pages.
NOTE 1

This command could crash the computer if used from within a program longer than 32K on pre JS ROMs.
This is fixed by Toolkit II, the THOR XVI and Minerva.

NOTE 2

It can be dangerous to CALL addresses in memory unless you know that you have loaded a specified
machine code routine into that location.

MINERVA NOTES:
MINERVA NOTES

Minerva adds various routines which can be CALLed from within a SuperBASIC program to perform
various tasks quickly and efficiently. The routines are as follows:

(1) Reset machine
CALL 390,param

This routine resets the QL and allows you to set various parameters according to the value of param,
which allows you, for example, to cut the amount of memory available to the machine. >/p>

To calculate the value of param, look at the following table and decide what effects you want the reset to
have.

Next, look up the value of that effect and add it to param.
EffectValue to add

» Skip memory test =1

» Skip ROM scanning (ignore extras) = 2

* Alter maximum memory = 4

154 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

* Default to TV mode = 8
* Ignore F1..F4 (no wait) = 16
* Leave n*256 bytes between screen and System Variables = n*256
* Set ramtop to nKB = (n+128)*1024
Examples
(a) reset machine and force dual screen TV mode (no memory test):
CALL 390,8+16+128+1
(b) reset machine to 640K:
CALL 390,(640+128)*1024+4
MINERVA WARNINGS

CALL 390 can crash the machine - always set the new ramtop to a multiple of 64K and do not try to
allocate more memory than is in the system.

If you leave space between the screen and System Variables, this will reduce the amount of memory
available accordingly!!

If your system uses a keyboard linked to SuperHermes, do not use CALL to reset the system unless
you include a line such as PAUSE 40 prior to the CALL command to clear all pending input, otherwise
SuperHermes becomes confused!

(2) Move memory quickly:
CALL PEEK_W(344)+16384,length,2,3,4,5,6,7,dest,source

This command allows you to move length bytes from the source address to the destination address (dest)
extremely quickly.

Either source or dest may be odd addresses, and the code will even cope with overlapping areas.
Minerva Example:
Minerva Example

To copy the whole of the main screen to a screen storage area pointed to by the variable scr_store

10 scr_size=SCR_LLEN*SCR_YLIM
20 scr_store=ALCHP(scr_size)
30 CALL PEEK_W(344)+16384,scr_size,2,3,4,5,6,7,scr_store,SCR_BASE

(3) Clear memory quickly
CALL PEEK_W(360)+16384,length,2,3,4,5,6,7,address

This command allows you to clear length bytes from the given start address onwards extremely quickly.
It could for example, be used to clear storage buffers.

Please note that address may be odd.
CROSS-REFERENCE
LBYTES, SBYTES can be used to load and save areas of memory (and machine code routines).

ALCHP and RESPR can be used to set aside areas of memory for user routines.

10.3. CALL 155

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

BMOVE and similar commands allow you to move areas of memory on other ROM implementations.

10.4 CAPS

Syntax CAPS
Location BeuleTools

After the command CAPS has been issued, any input from the keyboard via INPUT, INKEYS$ etc. is
translated into capital letters. CAPS simulates the use of the capslock key.

Example
To ask the user for any keyboard input, for example a

password where this should be entered in capital letters:

100 CAPS
110 INPUT "Please enter password:'"!pass$
120 NOCAPS

NOTE

Some old replacement keyboards use dirty tricks to engage capslock. If you are fed up with the original
QL keyboard then ensure you get the latest release of a modern keyboard interface and an IBM-style
keyboard. If you do not do this, then you may have to change to capslock mode with CAPS...

CROSS-REFERENCE
NOCAPS is self-explanatory.

10.5 CATNAP

Syntax CATNAP
Location Turbo Toolkit

The Turbo compiler allows PROCedure and FuNction definitions within a compiled program to be defined
as GLOBAL and then called by other tasks. This is similar to making a modular machine code program
which is then linked together when the assembly language modules are assembled. Under Turbo, the
various program modules can be compiled separately, but then loaded together with LINK_LOAD_A
and similar commands.

The CATNAP command will force a compiled program to wait at this statement indefinitely. The com-
piled program is only allowed to carry on execution from the next statement if another module calls one
of the GLOBAL definitions contained in the current program and the GLOBAL PROCedure or FuNction
has completed.

If CATNAP is used within a SuperBASIC program, then the program is simply suspended until the Break
key is pressed.

CROSS-REFERENCE

156 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

SNOOZE is similar. See also GLOBAL, EXTERNAL and LINK_LOAD_A.

10.6 CBASE

Syntax CBASE [(#ch)](Btool) and
CBASE (#ch)(TinyToolkit)
Location BTool, TinyToolkit

The function CBASE finds the start address of the channel definition block which belongs to #ch. This is
an area in memory where QDOS stores a lot of information about the channel, for example, which kind
of device is connected to the channel.

The Btool variant returns the base of channel #1 if #ch is not specified.
CROSS-REFERENCE

The Pointer Interface modifies the structure of channel definition blocks for windows.

If you want to access these, preferably use WINCTRL instead of CBASE. See also CHBASE.

You can also use the CHAN_ <KeywordsC.clean.html#chan_>xx functions to look at the channel defi-
nition block.

10.7 CCHR$

Syntax CCHRS (x)
Location BTool

The function CCHRS$ takes a word value (max 32767) and returns two characters represented by that
word. This is therefore the same as:

X=PEEK_W(10000)
PRINT CHR$(X DIV 256);CHR$(X MOD 256)
CROSS-REFERENCE

CHRS$ can be used to print each character separately.

10.8 CDEC$

Syntax CDECS (value,length,ndp)
Location Toolkit II, THOR XVI

The function CDECS allows you to convert a given value into a string in a specified format. This function
will always take the integer part of the given value (which must be in the range -2731...2731, and will
be rounded to the nearest integer if it is a floating point) and then assumes that the last ndp digits are to
the right of the decimal point.

10.6. CBASE 157

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

If there are enough characters to the left of the decimal point, a comma (*,”) will be placed between each
set of three characters. The length is the length of the string which is to be returned, which must always
be greater than or equal to the length of the value plus each comma and the decimal point. If length is
not large enough, then the string returned will be full of asterisks ("*’).

This function is particularly useful for formatting columns of figures, especially in view of the fact that
it sidesteps the QL’s habit of converting large numbers to exponential form. The commas ensure that it
is ideal for use in formatting output of currencies.

Examples

PRINT CDEC$(123,4,0)

will print ¢ 123’

PRINT CDEC$(123,4,1)

will print ‘12.3’

PRINT CDEC$(1234567,9,2)

will print ‘12,345.67°

CROSS-REFERENCE

PRINT _USING is a general means of formatting output.
IDECS$ and FDECS$ are complementary functions.

10.9 CD_ALLTIME

Syntax CD_ALLTIME
Location SMSQ/E for QPC

This function returns the actual elapsed time in REDBOOK format from the start of the CD which is
being played at present.

Example

A procedure to give the currently elapsed time:

100 DEFine PROCedure SHOW_TIME

110 elapse%=CD_ALLTIME

120 PRINT 'TOTAL ELAPSED TIME: ';CD_HOUR (elapse%);' HRS ';CD_MINUTE (elapse
—%);"' MINS ';:

130 PRINT CD_SECOND (elapse%);' SECS'

130 END DEFine

CROSS-REFERENCE

CD_PLAY plays specified tracks.

CD_TRACK allows you to find out which track is being played.

CD_TRACKTIME allows you to find out the total elapsed time on the current track.
CD_RED2HSG allows you to convert REDBOOK format to HSG Format.

158 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CD_HOUR, CD_MINUTE, CD_SECOND allow you to convert REDBOOK format into a more under-
standable form.

10.10 CD_CLOSE

Syntax CD_CLOSE
Location SMSQ/E for QPC

This command closes the CD drive drawer, loading a CD if you have placed one in the drawer.
CROSS-REFERENCE

CD_EJECT opens the drawer.

CD_PLAY allows you to play a CD.

See CD_INIT.

10.11 CD_EJECT

Syntax CD_EJECT
Location SMSQ/E for QPC

This command opens the CD drive drawer and allows you to either place a new CD in the drive or to
remove one.

You need to close the drawer before attempting to play the CD!
CROSS-REFERENCE

CD_CLOSE closes the CD drive drawer.

CD_PLAY allows you to play an Audio CD.

10.12 CD_FIRSTTRACK

Syntax CD_FIRSTTRACK
Location SMSQ/E for QPC

This function will return the track number of the first track on the CD currently in the player (this should
always be 1).

CROSS-REFERENCE
CD_LASTTRACK allows you to find out the last track number.

10.10. CD_CLOSE 159

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.13 CD_HOUR

Syntax CD_HOUR (address)
Location SMSQ/E for QPC

This function takes an address in REDBOOK format and tells you the number of hours (0..23) contained
in that address.

CROSS-REFERENCE

CD_MINUTE and CD_SECOND allow you to find the number of minutes and seconds in a REDBOOK
address respectively.

10.14 CD_HSG2RED

Syntax CD_HSG2RED (address)
Location SMSQ/E for QPC

There are two common formats used to address sectors on a CD directly. The standard format is RED-
BOOK format, which uses a time index to calculate the sector to address.

This time index is in the form $00MMSSFF where MM is the minute, SS the second and FF the frame.
There are 75 frames in one second.

The other format is HSG FORMAT where the sector is calculated by reference to the formula:
HSG=(minute*60+second)*75+frame

This function takes the address in HSG format and converts this to REDBOOK format.
CROSS-REFERENCE

CD_RED2HSG allows you to convert REDBOOK format addresses to HSG format.

CD_HOUR, CD_MINUTE and CD_SECOND allow you to find out the hours, minutes and seconds
referred to by a REDBOOK address.

10.15 CD_INIT

Syntax CD_INIT [name$]
Location SMSQ/E for QPC

QPC is able to use a CD player linked to a PC in order to play Audio CDs at present.

You first of all need to initialise the CD drive by using this command. CD_INIT causes QPC to seach
for a CD-ROM drive and initialise the driver.

160 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

You can either pass the name of the drive as a parameter or, if you do not use name$, then QPC will use the
PC program MSCDEX (if present) to locate the CD-ROM Drive. MSCDEX can be loaded in the PC file
AUTOEXEC.BAT if you wish, otherwise the CD drive name must appear in the PC file CONFIG.SYS.

Example

CD_INIT ‘mscd001’

NOTE 1

This command will only be recognised once.
NOTE 2

The CD player commands and functions will not work if you have not loaded the PC’s CD-ROM driver
in config.sys, for example with the line:

DEVICE=C:\CD\CDROMDRYV.SYS /D:MSCD001
CROSS-REFERENCE
CD_PLAY allows you to play CD Audio tracks.

CD_FEJECT ejects a disk from the drive, or allows you to insert a new disk.

10.16 CD_ISCLOSED

Syntax CD_ISCLOSED
Location SMSQ/E for QPC

This function will return 1 (True) if the CD drawer is closed, otherwise it will return 0.

Example

100 IF NOT CD_ISPLAYING

110 IF NOT CD_ISCLOSED : CD_CLOSE
120 IF CD_ISINSERTED : CD_PLAY
130 END IF

CROSS-REFERENCE
CD_CLOSE closes the CD drawer.

10.17 CD_ISINSERTED

Syntax CD_ISINSERTED
Location SMSQ/E for QPC

This function will return 1 (True) if there is a CD in the CD-ROM drive and the drawer is closed, otherwise
it will return 0.

CROSS-REFERENCE

10.16. CD_ISCLOSED 161

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

See CD_ISCLOSED.

10.18 CD_ISPAUSED

Syntax CD_ISPAUSED
Location SMSQ/E for QPC

This function will return 1 (True) if the CD is paused (as opposed to stopped), otherwise it will return 0.
CROSS-REFERENCE

CD_STOP can be used to pause the CD.

CD_RESUME resumes playing a CD.

10.19 CD_ISPLAYING

Syntax CD_ISPLAYING
Location SMSQ/E for QPC

This function will return 1 (True) if an Audio CD is currently playing, otherwise it will return 0.
CROSS-REFERENCE
CD_PLAY allows you to play an Audio CD.

10.20 CD_LASTTRACK

Syntax CD_LASTTRACK
Location SMSQ/E for QPC

This function will return the track number of the last track on the CD currently in the player.
CROSS-REFERENCE
CD_FIRSTTRACK allows you to find out the first track number.

CD_TRACK tells you the track number currently playing.

162 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.21 CD_LENGTH

Syntax CD_LENGTH
Location SMSQ/E for QPC

This function will return the length of the Audio CD currently in the player in REDBOOK format.
CROSS-REFERENCE

CD_LASTTRACK allows you to find out the last track number.

CD_HOUR, CD_MINUTE, CD_SECOND convert REDBOOK format into a time.

10.22 CD_MINUTE

Syntax CD_MINUTE (address)
Location SMSQ/E for QPC

This function takes an address in REDBOOK format and tells you the number of minutes (0..59) con-
tained in that address.

CROSS-REFERENCE

CD_HOUR and CD_SECOND allow you to find the number of hours and seconds in a REDBOOK
address respectively.

10.23 CD_PLAY

Syntax CD_PLAY [start [,end]]
Location SMSQ/E for QPC

This command allows you to play the tracks on an audio CD once it has been initialised. If no parameters
are specified, QPC will play the whole of the CD in the CD-ROM drive.

This command will not slow the operation of SMSQ/E and returns immediately that the CD starts playing.

The parameters allow you to specify the start and end tracks to be played. These parameters are given
either as track numbers or as sectors in REDBOOK format (if bit 31 of the parameter is set). A sector on
an Audio CD is 2352 bytes.

To set bit 31, add the value $80000000 or 2731
Examples

CD_PLAY

plays the whole disk

CD_PLAY 10

play track 10 to the end of the disk

10.21. CD_LENGTH 163

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CD_PLAY 5,CD_TRACKSTART(5)+$80000000

play track 5 only.

A program which will play all of the tracks on an Audio CD in a random order:

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290

INPUT 'Has the CD-ROM Drive already been initialised ? [y] ';an$
IF an$=='n': CD_INIT
IF NOT CD_ISINSERTED
IF CD_ISCLOSED : CD_EJECT
INPUT 'Place a CD in the drive and press <ENTER> ';an$
CD_CLOSE
IF NOT CD_ISINSERTED
PRINT 'NO CD LOADED ':PAUSE :STOP
END IF
END IF
tracks=CD_LASTTRACK-CD_FIRSTTRACK
DIM played% (tracks)
FOR i=1 to tracks
REPeat Floop
play=RND(1 TO tracks)
IF played%(play)=0: played%(play)=1: EXIT Floop
END REPeat Floop
CD_PLAY play,play
REPeat Ploop: IF NOT CD_ISPLAYING: EXIT Ploop
END FOR i

CROSS-REFERENCE

CD_INIT allows SMSQ/E to recognise a CD drive.

CD_STOP pauses playing

CD_EJECT opens the disk drawer to allow you to insert a new CD.

CD_CLOSE closes the disk drawer.

CD_ISINSERTED allows you to check if a CD is in the drive.

10.24 CD_RED2HSG

Syntax CD_RED2HSG (address)
Location SMSQ/E for QPC

This function converts a specified address in HSG format into REDBOOK format.
CROSS-REFERENCE

See CD_HSG2RED !

164

Chapter 10.

Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.25 CD_RESUME

Syntax CD_RESUME
Location SMSQ/E for QPC

This command restarts the CD-ROM drive playing from the last track on which it was paused.
NOTE

If you had not previously paused the CD, then an error is reported.

CROSS-REFERENCE

CD_STOP allows you to pause a CD which is currently playing.

CD_ISPAUSED allows you to check if the CD has been paused.

10.26 CD_SECOND

Syntax CD_SECOND (address)
Location SMSQ/E for QPC

This function takes an address in REDBOOK format and tells you the number of seconds (0..59) con-
tained in that address.

CROSS-REFERENCE

CD_HOUR and CD_MINUTE allow you to find the number of hours and minutes in a REDBOOK ad-
dress respectively.

10.27 CD_STOP

Syntax CD_STOP
Location SMSQ/E for QPC

This command has one of two effects.

If an Audio CD is already playing, then the disk is paused.

If you have already paused the Audio CD, then a complete stop is performed.
Example

The following procedure brings the CD to a complete stop -

you cannot resume playing.

10.25. CD_RESUME 165

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

1000 DEFine PROCedure STOP_CD
1010 CD_STOP

1020 IF CD_ISPAUSED : CD_STOP
1030 END DEFine

WARNING

On some laptop PCs, it has been noted that if you are playing an Audio CD and close the case without
issuing CD_STOP, when you re-open the case QPC will have crashed.

CROSS-REFERENCE

CD_RESUME allows you to resume playing an Audio CD that has been paused.
CD_PLAY allows you to play an Audio CD that is at a complete stop.
CD_EJECT opens the drive drawer.

CD_CLOSE closes the drive drawer.

10.28 CD_TRACK

Syntax CD_TRACK
Location SMSQ/E for QPC

This function returns the track number of which track on a CD is actually being played at present.
CROSS-REFERENCE
CD_PLAY plays specified tracks.

10.29 CD_TRACKLENGTH

Syntax CD_TRACKLENGTH (track)
Location SMSQ/E for QPC

This function returns the length of a specified track in HSG format.
CROSS-REFERENCE

CD_TRACKTIME allows you to find out the elapsed time on a track being played.
CD_HSG2RED converts the HSG format to REDBOOK format.

166 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.30 CD_TRACKSTART

Syntax CD_TRACKSTART (track)
Location SMSQ/E for QPC

This function returns the start address for a specified track in REDBOOK format.
CROSS-REFERENCE

CD_TRACKLENGTH allows you to find out the length of a track.

CD_PLAY allows you to play specified tracks

CD_RED2HSG converts the REDBOOK format to HSG format.

10.31 CD_TRACKTIME

Syntax CD_TRACKTIME
Location SMSQ/E for QPC

This function returns the actual elapsed time in REDBOOK format within the current CD track that is
being played at present.

CROSS-REFERENCE

CD_PLAY plays specified tracks.

CD_TRACK allows you to find out which track is being played.

CD_ALLTIME allows you to find out the total elapsed time on the CD disk as a whole.

10.32 CEIL

Syntax CEIL (x)
Location Math Package

The function CEIL returns the closest integer to x which is greater than or equal to x (the ‘ceiling’ of x).
Compare INT which returns the next integer which is less than or equal:

CEIL(12.75)=13 INT(12.75)=12 CEIL(-2.3)=-2 INT(-2.3)=-3
CEIL can handle numbers in the range -32768<x<=32768.
Example

A mechanic needs one and a half hours to replace the rusty exhaust of a car. If his rate of pay is £13 per
hour, he will charge CEIL(13*1.5)=£20 for the job (excluding parts).

NOTE

10.30. CD_TRACKSTART 167

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

The simplest way to get a true INTEGER function, where x is rounded up or down to the nearest integer
is with INT(x+.5) which ensures that INT(12.75)=13 and INT(-2.3)=-2.

CROSS-REFERENCE
INT

10.33 CHANGE

Syntax ~ CHANGE old_drv1$ TO new_drv2$
Location TinyToolkit

This command allows you to rename directory devices. All directory device names are in the form xxxn_,
where xxx identifies the drive type (eg. FLP) and n the drive number (1..8).

The most common drive types are:
* RAM - temporary internal ramdisk
* FLP - floppy disk drive (sometimes called FDK)
* MDV - microdrive
* MOS - permanent external ramdisk

¢ WIN - hard disk drive (sometimes HDK)

NUL - null device, a dummy device
e DEV - universal devices (also PTH)
(Please see the Devices Appendix.)

CHANGE replaces the xxx part of a device name by a user defined name. This new name can already
exist but both parameters must consist of three letters; the use of characters other than letters is possible
but not recommended, eg:

CHANGE “flp” TO “<*>”.
Example
CHANGE “ram” TO “mdv” makes the system believe that a ramdisk is a microdrive.

DIR mdv1_ will provide a directory of ramdisk 1, but the device ram1_ (or ram2_, etc.) is no longer
recognised. The microdrives themselves cannot be accessed any more until you use: CHANGE “mdv”
TO “ram” to restore the normal condition.

NOTE

If a device name is in ROM (eg. possibly mdv on QLs without floppy disk drives), the error -20 (read
only) will be reported.

CROSS-REFERENCE
FLP_USE and RAM_USE work similarly.

168 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.34 CHANID

Syntax CHANID [(#ch)]Btool only or
CHANID (#ch)TinyToolkit
Location BTool, TinyToolkit

QDOS uses a different sort of channel number internally to those used by SuperBASIC. These so-called
channel IDs have the advantage that two channels will never have the same channel ID, even if some
channels have been closed for a long time.

The function CHANID expects an open SuperBASIC channel #ch (a default channel of #1 is allowed by
Btool) and returns its current internal channel ID.

Example

100 OPEN#3, con_2x1

110 PRINT CHANID(#3)

120 CLOSE#3: OPEN#3,con_2x1
130 PRINT CHANID(#3)

140 CLOSE#3

CROSS-REFERENCE

CHANID is intended for use with FILE OPEN.
CHANNEL ID is the same as the Btool variant.
See SET _CHANNEL also.

10.35 CHANNELS

Syntax CHANNELS [#ch]
Location BTool, Qsound, TinyToolkit

The command CHANNELS list all channels which are currently open (including channels from any other
job) to the given channel (default #1).

Each channel is listed with a channel number which can be used with CLOSE% and provides details of
its size and position. Unfortunately, the name of the Job which owns the channel is not listed.

NOTE

The Tiny Toolkit and Qsound version of this command do not currently work with the Pointer Environ-
ment. The BTool version works to some extent.

CROSS-REFERENCE
CLOSE%, JOBS and CHANID

10.34. CHANID 169

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.36 CHANNEL_ID

Syntax CHANNEL_ID [(#ch)]
Location Turbo Toolkit

This function is exactly the same as CHANID.
CROSS-REFERENCE
SeeCHANID and SET_CHANNEL.

10.37 CHAN_B%
10.38 CHAN_W%

10.39 CHAN_L%

Syntax CHAN_B% (#ch, offset) and
CHAN_WUY% (#ch, offset) and
CHAN_L

Location CHANS (DIY Toolkit - Vol C)

These three functions can be used to look at values within the channel definition block relating to the
specified channel (#ch). You will need a good book on the QL’s operating system to understand the
various offsets, such as the QDOS/SMS Reference Manual (See section 18.7 to 18.9.3 in that book).

They allow you to read single bytes, words and longwords from the channel definition block (what is
required depends upon the offset).

Extra offsets (negative numbers) are added by the Pointer Environment which can also be looked at by
using these functions.

Examples
Instead of using SCR_BASE, you can use:
PRINT CHAN_L (#1,50)

to find the base address of the screen.

100 PRINT 'Window #1's size is';
110 PRINT CHAN_W% (#1,28);'x'; CHAN_W% (#1,30);'a'; CHAN_W% (#1,24);'x'; CHAN_W% (
—#1,26)

CROSS-REFERENCE

CHBASE can be used to find out similar information.

170 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.40 CHARGE

Syntax CHARGE [task_file$]
Location Turbo Toolkit

This command starts up the Turbo Compiler and attempts to compile the program currently loaded in
SuperBASIC Job 0.

It is similar to issuing the commands:

EXEC_W flpl_ PARSER_TASK
EXEC flpl_ CODEGEN_TASK

The default device which contains the Turbo compiler (PARSER_TASK and CODEGEN_TASK) can be
configured with a special toolkit configuration program.

If you do not specify a task_file$, then the one which is configured is assumed to be the name of the new
compiled file to be generated. This and several other defaults may be altered from the front panel which
is generated by PARSER_TASK. The default settings on the front panel may also be configured and set
using various directives such as TURBO_obfil.

The maximum length of the task_file$ is 12 characters. If a longer string is supplied, only the first 12
characters are used.

Example

CHARGE ‘GENEALOGY’

NOTE 1

This command will not work on Minerva and SMS.
NOTE 2

The filename for the new task has never really worked correctly when passed as a parameter, if you specify
a device as part of the filename. The filename becomes corrupted if this is the case.

NOTE 3

When you compile a program using TURBO, it is imperative that all of the machine code procedures and
functions which are used by that program are linked into the machine. If you fail to do this, then an error
will be reported when you try to run your compiled program using EXEC or EXEC_W for example.

This is different to QLiberator, which only checks whether each machine code function or procedure is
linked in when (and if) it tries to use them whilst the compiled program is being run.

CROSS-REFERENCE

DATA_AREA and various TURBO_xxx directives exist, starting with TURBO_diags to allow you to
specify various compilation options from within your program’s source code.

Please also refer to COMPILED.

10.40. CHARGE 171

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.41 CHAR_DEF

Syntax CHAR_DEEF fontl,font2
Location SMSQ/E v2.57+

This command is very similar to the CHAR_USE command, except that instead of altering the fonts
attached to a specified window, it sets the default fonts which are used for every new window channel
that is opened after this command (unless they in turn define their own fonts).

The two parameters should point to an address in memory where a font in the QL font format is stored. If
either parameter is 0, then that fount is reset to the standard system fount. If either parameter is -1, then
CHAR_DEF will not affect that font.

Minerva users can achieve the same effect with the following:

110 Font®=PEEK_L (!124 !40)
120 Fontl=PEEK_L (!124 !44)
130 POKE_L !124 !40, NewFont®, NewFontl

Note that you will need to store the addresses of the original QL. ROM fonts (as in lines 110 and 120).
NOTE 1

The screen windows which are already open will not be affected.

NOTE 2

This command cannot affect a screen window which has been OPENed over the Network, unless issued
on the Slave computer (on whose screen the window appears), before the window was OPENed over the
Network.

CROSS-REFERENCE
CHAR_USE, CHAR_INC.

Please also refer to the Fonts Appendix.

10.42 CHAR_INC

Syntax CHAR_INC [#channel,] x_step,y_step
Location Toolkit II, THOR XVI

This command sets the horizontal (x_step) and vertical (y_step) distance between characters printed on
a window (default #1). The standard values are the width and height of a character and are automatically
set by CSIZE.

CSIZE#2,0,0 performs an internal CHAR_INC#2,6,10.

Characters are generally based on a grid which measures 8x10 pixels, although the leftmost column was
not available for fonts on pre-JS ROMs. Also, if you own a JSU ROM (an American QL), this grid size
is reduced to 8x8, although programs would appear to run okay on the JSU ROM without modification
(see MODE for further details).

172 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Example

Would you like to print more characters to the screen than normal? You can either do this by defining
smaller fonts or by writing characters on the screen closer together:

100 WINDOW 512,40,0,0:CLS
110 CSIZE 0,0: CHAR_INC 5,8:0VER 1
120 PRINT FILLS$('.',102)

Window #1 now offers 5 rows and 102 columns instead of 4 rows and 85 columns, but text can only be
read in overwrite mode (OVER 1). CHAR_INC 6,8 is the highest possible value which will allow text to
be read without the need for OVER 1.

WARNING

Unless you have Minerva or Lightning installed (with _IngASLNG enabled), if you specify a character
height less than the standard 10 pixels (for CSIZE x,0) for example, the strip printed will remain at ten
pixels, and although the screen driver might detect that it is not necessary to scroll a window to fit the
text on, it does not take account of the height of the strip, which could therefore fall out of the window
(or into the system variables if your window is near the bottom of the screen).

CROSS-REFERENCE
CSIZE, OVER.
See also TTINC.

10.43 CHAR_USE

Syntax CHAR_USE [#ch,] font1,font2
Location Toolkit II, THOR XVI

This command allows you to attach substitute fonts in QDOS format to the specified window channel
(default #1).

CHAR_USE will attach the two fonts at addresses font1 and font2 to the window in place of the current
system fonts.

When a character is printed, if it cannot be found at either fontl or font2, then the first character of the
second font will be used.

To return to the current system fonts on the specified window, use font1=0 or font2=0 as appropriate.

If you use the value of -1 as one of the parameters, then that font attached to the specified channel will
not be altered by this command.

Example

CHAR_USE #3,font_address,0

resets the first font in #3 to the font stored at font_address in memory.
NOTE

This command will have no effect on a window OPENed over the Network.

CROSS-REFERENCE

10.43. CHAR_USE 173

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Please refer to the Fonts Appendix concerning QL fonts.
CHAR_INC allows you to alter the spacing between characters.
CHAR_DEF allows you to alter the default system fonts.
S_FONT performs the same function as CHAR_USE.

10.44 CHBASE

Syntax CHBASE [(#ch)] or
CHBASE (chidx%, chtag%)
Location QBASE (DIY Toolkit Vol Q)

CHBASE is a function which returns the start address of a window definition block. This block contains
a wide range of information about a window, such as the size and colour settings. Refer to the QDOS
Reference manual Section 18.7 and 18.9.1 (or similar) for further details.

The window can be either specified by its SuperBASIC channel number, eg: CHBASE(#2), where the
default is #1, or the internal channel ID; which must be split into index (chidx%) and tag (chtag) before
being passed to CHBASE.

The latter syntax allows you to access the windows of jobs other than the current job.

Inside knowledge about the operating system is necessary to access these tables. Please refer to QDOS
system documentation. The structure of the window definition block is different under Thors, original
QLs and the Pointer Environment.

CHBASE returns small negative integers if an error occurs, representing the QDOS error code:
* -1 = Window is currently in use, eg. awaiting input.
* -6 = No such channel exists.
* -15 =1It’s a channel but not a window.

Example 1

The current INK colour is found at offset $46, so: INK 7: PRINT PEEK(CHBASE+ HEX(°46”)) will
print 7, because of the INK 7 command.

Example 2

It is usually not recommended to close and re-open SuperBASIC channel #0. The following lines check
if this has happened, although they will only work under the SuperBASIC interpreter(!). You will find
the condition in line 100 is always true for Minerva’s MultiBASIC interpreters and SMS’s SBASIC
interpreters: this does no harm - the example is more or less just an example of the syntax of CHBASE. ..

100 IF CHBASE(0,0) <> CHBASE(#0) THEN

110 UNDER 1: PRINT "Warning": UNDER 0

120 PRINT "Channel #0 is not in it's original state."
130 END IF

CROSS-REFERENCE
CBASE.

174 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

See also CHAN _B% and related functions.

10.45 CHECK

Syntax oops = CHECK(‘name’)
Location DIJToolkit 1.16

If name is a currently loaded machine code procedure or function, then the variable oops will be set
to 1 otherwise it will be set to 0. This is a handy way to check that an extension command has been
loaded before calling it. In a Turbo’d or Supercharged program, the EXEC will fail and a list of missing
extensions will be displayed, a QLiberated program will only fail if the extension is actually called.

EXAMPLE

1000 DEFine FuNction CheckTK2
1010 REMark Is TK2 present?
1020 RETurn CHECK('WTV')
2030 END DEFine

10.46 CHECK%

Syntax CHECK% (integer$)
Location CONTROL (DIY Toolkit Vol E)

Coercion is the process of converting a string which holds a number into the actual number. It is a
powerful in-built feature of SuperBASIC. This allows you to create input routines such as:

100 dage% = RND(10 TO 110)
110 INPUT "Your age [" & dage¥% & "]1?" ! age$;

120 IF age$ = "" THEN

130 age¥% = dage%: PRINT age%
140 ELSE

150 age¥% = age$: PRINT

160 END IF

Although SuperBASIC coercion is very powerful, it does have its limits when non-numeric strings are
entered. If age$ was “44”, age%o=age$ will assign 44 to age%. Even if the string was not really a number,
eg. “44x5”, SuperBASIC will simply ignore everything behind legal characters (ie. age%=age$ would
assign 44 to age% still). However, if age$ contained something like “no thanks” it cannot be coerced and
the program will fail with an ‘error in expression’ (-17).

The function CHECK% exploits the fact that SuperBASIC is obviously able to see the difference between
a valid number or what comes close to that and nonsense. CHECK%% carries out an explicit coercion for
integer numbers: it will try to make a number from the supplied parameter in the same way as Super-
BASIC would. However, CHECKY% will not stop with an error for unusable strings, instead it returns
-32768.

10.45. CHECK 175

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Although “-32768” is converted correctly to -32768, this value must be reserved because the program
cannot know whether the input was illegal or -32768.

Example

Let’s rewrite the above example for coercion with CHECK%. We have to replace the implicit coercion
age%o=age$ with age%o=CHECK%(age$) and put INPUT into a loop:

100 dage% = RND(10® TO 110)
110 REPeat asking
120 INPUT "Your age [" & dage% & "]1?" ! age$;

130 IF age$ = "" THEN

140 age% = dage%: PRINT age%

150 ELSE

160 age% = CHECK%(age$): PRINT

170 IF age% > -32768 THEN EXIT asking
180 END TIF

190 END REPeat asking

CROSS-REFERENCE
CHECKF does the same as CHECK% but converts strings containing floating point numbers.
WHEN ERRor can trap the coercion failure.

See the Coercion Appendix also.

10.47 CHECKF

Syntax CHECKEF (float$)
Location CONTROL (DIY Toolkit Vol E)

Justlike CHECK%, the function CHECKEF takes the specified string and coerces it to a number. This time,
however, the number returned will be a floating point rather than an integer as returned by CHECK%.

CHECKEF works just like CHECKY% except that a return value of -1E600 signifies unacceptable strings.
CROSS-REFERENCE
CHECK% and TTEFP are worth a look.

10.48 CHK_HEAP

Syntax CHK_HEAP
Location SMSQ/E

This command is used to check whether the heap has become corrupted - we have no real details over its
working as it is undocumented.

176 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.49 CHR$

Syntax CHRS$ (code)
Location QL ROM

This function returns the character associated with the given code.

The QL ROM character set is actually only in the range 0...255, although code can be anything in the
range -32768...32767. The least significant byte of the supplied parameter is used, ie. code && 255.

Examples
PRINT CHR$(100) and PRINT CHR$(1636)
both return ‘d’.

A short function to convert any lower case letters in a given string to upper case:

100 DEFine FuNction UP$(a$)

110 LOCal US$

115 U$=a$

117 IF a$='"':RETurn ''

120 FOR i=1 TO LEN(a$)

130 IF CODEC a$(i))>96:IF CODE(a$(i))<123:U$(i)=CHR$(CODE(a$(i))-32)
140 END FOR i

150 RETurn U$

160 END DEFine UP$

NOTE
The THOR XVI limits code to the range 0...255.
CROSS-REFERENCE

See CODE and also please refer to the Characters section of the Appendix.

10.50 CIRCLE

Syntax ~ CIRCLE [#ch,] x,y,radius [,ratio,ecc] “[;x',y!,radius [,ratio!,ecc']]”
Location QL ROM

This command allows you to draw a circle of the given radius with its centre point at the point (X,y).

The positioning and size of the circle will actually depend upon the scale and shape of the specified
window (default #1).

The co-ordinates are calculated by reference to the graphics origin, and the graphics pointer will be set
to the centre point of the last circle to be drawn on completion of the command.

If any parts of the circle lie outside of the specified window, they will not be drawn (there will not be an
Overflow Error).

If the parameters ratio and ecc are specified, this command has exactly the same effect as ELLIPSE.

10.49. CHR$ 177

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

This command will actually allow you to draw multiple circles by including more sets of parameters.
Each additional set must be preceded by a semicolon (unless the preceding circle uses five parameters).
This means that these commands are all the same:

CIRCLE 1090, 100,20,1,0,50,50,20
CIRCLE 100,100,20;50,50,20
CIRCLE 100,100,20:CIRCLE 50,50,20

Although the FILL command will allow you to draw filled circles on screen (in the current ink colour),
you will need to include a FILL 1 statement prior to each circle if they are to appear independently on
screen (this cannot be achieved when using this command to draw multiple circles!). If this rule is not
followed, then any points which lie on the same horizontal line (even though they may be in different
circles) will be joined.

Example

Try the following for an interesting effect:

100 WINDOW 448,200,32,16: MODE 8

110 PAPER 0: CLS

120 SCALE 200,-100,-100

130 INK 4:CIRCLE -50,-50,5

140 FOR i=1 TO 350

150 INK RND(7): FILL 1

160 CIRCLE_R 5-(i MOD 10),15-(i MOD 30),20
170 END FOR i

CROSS-REFERENCE

Please refer to ELLIPSE for further information on the ratio and ecc details.

10.51 CIRCLE_R

Syntax ~ CIRCLE_R [#ch,] x,y,radius [ratio,ecc] “[;x',y!,radius’ [,ratio’,ecc']]"
Location QL ROM

This command draws a circle relative to the current graphics cursor. See CIRCLE.
CROSS-REFERENCE
Please refer to ARC_R. ELLIPSE_R is exactly the same as this command.

178 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.52 CKEYOFF

Syntax CKEYOFF
Location Pointer Interface (v1.23 or later)

Normally, the Pointer Interface will recognise the cursor keys in the same way as it recognises the mouse,
thus allowing you to move the pointer around the screen using the keyboard.

You may however prefer that the cursor keys had no effect on the pointer - the solution is simple - just
use the command CKEYOFF.

NOTE
There were problems with this command prior to v1.56.
Note 2

At some point CKEYOFF required a channel number parameter, ie CKEYOFF #channel. If you don’t
specify a channel number the command falls back on the current S*BASIC’s channel #0.

Unfortunately, if there isn’t already a channel #0 open, for example, a program might have opened its first
channel using:

1500 main = FOPEN(“con_”

In this case, the the CKEYOFF command will open a new console channel and then try to set the window
size of that channel to the default size of 256x62. If, however, the program had already OUTLN’ed #main
to a smaller size, in any dimension, than 256x62, then this call will fail.

And here’s the bug: Instead of closing the failed console channel, the command simply returns without
error. This leaves a “dangling” console channel open without an S*BASIC handle. And each repeated
call to CKEYOFF/CKEYON opens another such channel!

As of ptr_gen 2.07 and SMSQ/E 3.39, this bug should be fixed, in that an “Out of Range” error will be
returned should the situation described above arise.

The workaround for earlier versions is: Always use this command with a channel number unless there is
definitely an available console channel #0!

The bug fix is that, if the circumstances described pertain, the call will return with an “Out of Range”
erTor.

CROSS-REFERENCE

CKEYON tells the Pointer Interface to recognise the cursor keys again.

10.53 CKEYON

Syntax CKEYON [#channel]
Location Pointer Interface (v1.23 or later)

See CKEYOFF.
NOTE

10.52. CKEYOFF 179

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

There were problems with this command prior to v1.56.
Note 2
At some point CKEYON started to have to take a channel number, ie CKEYON #channel.

If you dont give a channel number the commands try to open their own channel - that hybrid number
0/1, as do a number of IO commands (at least in SMSQ/E). All well and good. But if you, say, open
your first channel as number 3, as happens automatically if your first channel in a daughter SBASIC or
Qlib compiled job, and you open it with ch = FOPEN(“con_") then, if that channel is OUTLiNed to be
smaller than the default channel, the call fails and returns to the routine - which gives up. But doesnt say
anything! However, now there is dangling, open channel in the main channel table that SBASIC doesnt
know about. So next time you use this command yet another channel is opened in the main channel table!
And so it goes on ad finitum until the job is killed - or the system chokes.

This is a rare circumstance, admittedly, but it is still a bug.

The bug fix is that if the circumstances described pertain, the call will return with an Out of Range error.

10.54 CLCHP

Syntax CLCHP
Location Toolkit II, THOR XVI, Btool

A BASIC program can reserve space in the common heap with ALCHP. The command CLCHP removes
all space which has been grabbed using ALCHP and returns it to the common heap so that it can be used
for other purposes.

CROSS-REFERENCE
ALCHP reserves areas of the common heap, and RECHP releases a specified part of the common heap.
Compare RESERVE and the Btool variant of ALCHP.

NEW and LOAD also release areas of the common heap.

10.55 CLEAR

Syntax CLEAR
Location QL ROM

This command forces all variables to be cleared meaning that the computer will no longer remember
their values.

This does not affect SuperBASIC functions or resident keywords, for example, PRINT PI will always
return 3.141593.

On non-SMS machines, if a variable is PRINTed, which has not yet been assigned a value, an asterisk
appears on screen. If you try to use a variable which has not yet been assigned a value, then an error will
occur (normally error in expression (-17)).

180 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

If Toolkit II is present (or you are using Minerva or a THOR XVI), any valid WHEN structures are also
suspended by the CLEAR command.

Adding CLEAR before a program is run ensures that all variables used in a program will be defined
properly. While developing a large program in BASIC it may sometimes be helpful to set an essential
variable directly in the command line and not as a static statement in the listing.

Example

The following lines will produce a different output depending on whether they have been run before or
not:

100 PRINT a
110 a=5
120 PRINT a

The first run shows... * 5 This is because the contents of a were not defined until line 110 was reached.
The second time, a was still set and so the output is slightly different... 55
NOTE

CLEAR may cause some problems on pre Minerva ROMs if it is issued after having deleted a PROCedure
or a FuNction in a SuperBASIC program which appeared as the last thing in a program. This is fixed by
Toolkit II.

SMS NOTE

Variables which have not been assigned a value on SMS will return O (zero) if a numeric variable or
otherwise an empty string - an error will therefore not occur if you try to use such a variable.

On a machine fitted with SMS the example would therefore have printed O 5 on the first run, and 5 5 on
the second.

CROSS-REFERENCE
CLOSE, CLEAR_HOT, CLCHP, CLRMDV, RUN.

10.56 CLEAR_HOT

Syntax CLEAR_HOT key
Location TinyToolkit

This command deletes a hotkey defined with the HOT command and releases the memory used to set up
the hotkey back to QDOS’ memory management.

NOTE

CLEAR_HOT works okay, but in most cases the memory released by this command is not recognised
by the system as being free memory and therefore cannot be re-used without resetting the system.

CROSS-REFERENCE
See HOT on how to define a hotkey.
Use FREE, FREE_MEM to check the actual available memory.

10.56. CLEAR_HOT 181

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.57 CLIP%

Syntax CLIP% (#channel)
Location CLIP (DIY Toolkit - Vol S)

This function can be used to read characters from the QL’s screen.

In order for the function to work, you will need to OPEN a window over that part of the QL’s screen which
you wish to read and ensure that it is in the correct MODE and has UNDER, CSIZE and CHAR_INC
set to the same values as were used to create that part of the screen. You will also need to ensure that the
same font is being used by the window which you have OPENed. The window should be defined so that
any text written to that window would precisely match the text on screen (except for colour).

Due to the way in which QL’s work, this means that CLIP% can be used to read user-defined characters
from the screen, for example, where in games some of the font has been redefined to represent symbols
in the game.

The function will then try to read a character from the current cursor position and return its character
CODE. It can be used to read any character in the range 0...255 (except CHR$(10) which does not appear
on screen).

The DIY Toolkit includes an example of a program which uses this function to create a clip board for
reading text from a program running on the QL. It uses CHAN_W% and similar functions to read the
existing settings of the window of a target program.

However, this function is really of most use when used within your own programs, possibly to detect
collisions in a game between objects.

Example

The following short routine could be used to read the name of a disk in flpl_ (provided that the directory
was not longer than one page):

10 DIR flpl_

20 FOR i=0 TO 20

25 AT #1,1,1

30 PRINT #2,CLIPS(#1);
40 END FOR i

NOTE 1

Although this works on all QL implementations, the code will not currently work with resolutions bigger
than 512x256 pixels.

NOTE 2

If you want to read characters from a window of a program whilst the THOR XVI’s windowing envi-
ronment, or the Pointer Environment is running, you will have to switch off the windowing environ-
ment before the program in question is loaded, using POKE SYS_VARS+133,1 on the THOR or EXEP
flp1_program,u under the Pointer Environment.

NOTE 3

The main problem with these functions is that some programs do not use standard fonts (or attach fonts
to a window using non-standard techniques). Some additional fonts are supplied with DIY Toolkit which
may help in this respect.

182 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE

See the Fonts Appendix about changing QL fonts.

CHAR_USE and S_FONT allows you to set the font used by a window.
See also CLIPS$.

10.58 CLIP$

Syntax CLIPS (#channel)
Location CLIP (DIY Toolkit - Vol S)

This function is very similar to CLIP% except that it returns the actual character which appears on screen
rather than the character code.

NOTE

The same notes apply to this function as to CLIP%.
CROSS-REFERENCE

See CLIP%.

10.59 CLOCK

Syntax CLOCK [#channel] [,format$]
Location Toolkit II, THOR XVI

The command CLOCK creates a multitasking digital clock job named Clock. If no channel parameter
is stated, CLOCK will open its own window (con_60x20a448x206), which is intended for F1-monitor
mode (see WMON), otherwise the given channel will be used.

Format$ is optional and is used to define how the clock will appear on screen. It can contain any text you
desire (except for the characters % or $), but there are certain special characters (see below) which allow
you to alter the way in which the clock is presented; so CLOCK “TEA AT 4” might remind you when
tea time is, but will have no effect on the display of the clock.

The format is defined by using certain set series of strings. The following special characters will affect
the way in which the clock is displayed (the default format string is “$d %d $m %h:%m:%s” which is
ideal) :

* %d Day of month - 2 digits

 $d Day of week - 3 characters
%h Hour (24h) - 2 digits

* $m Month - 3 characters
* Y%m Minute - 2 digits

* Y%s Seconds - 2 digits

10.58. CLIP$ 183

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

* Yoy Year - 2 digits (last two digits)
* Y%c Century - 2 digits (see note 4 below)

A newline can be inserted by either padding out the string with spaces or by adding CHR$(10) inside the
string.

Example
CLOCK #2,Date: %d $m %y’ & chr$(10) & ‘Time: $d %oh:%m’
NOTE 1

There is no difference between upper case and lower case letters, so %d has the same effect as %D.
However, do watch the difference between $m and %om!

NOTE 2
Any attempt to open a clock in channel #0 will be ignored and the default window opened.
NOTE 3

Unfortunately for Pointer Environment users, there is no way of ‘unlocking’ the clock so that it can
operate alongside other Jobs. On the THOR XVI this is alleviated by ensuring that the Job is always
owned by Job 0.

NOTE 4

v2.25+ of Toolkit II introduced a further special character for use in the format string. This is %c, which
returns the first two digits of the year, for example %c%y will print the current year as four digits.

NOTE 5

On v6.41 of the THOR XVI, if CLOCK has to open its own window, this window is in fact owned by
SuperBASIC rather than the CLOCK task. This means that if CLOCK is removed other than by using
NO_CLOCK, (eg. with RJOB) the channel can be left open.

CROSS-REFERENCE

Use SDATE or ADATE to set the system date and time.
DATES and DATE return the current time.
NO_CLOCK removes the CLOCK on the THOR.

10.60 CLOSE

Syn- CLOSE #channel or

tax CLOSE #channell [, #channel2 ...] (Toolkit II, Btool & Minerva v1.81+) or
CLOSE (Toolkit II, THOR & Minerva v1.81+, BTool)

Lo- QL ROM, Toolkit II, BTool,. THOR

ca-

tion

CLOSE is a procedure which closes a specified channel, (or even several channels if the second or third
variant is used). The contents of that channel will however remain unchanged.

184 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

The second variant allows any number of specified channels to be closed at the same time and the third
closes all channels with channel numbers of #3 or above.

Every CLOSE command will first flush the contents of internal buffers to ensure that all information has
been passed to the channel before it is closed.

Examples

CLOSE#3
CLOSE#n

CLOSE #1
CLOSE#8,#3,#6
CLOSE

NOTE 1

On Minerva pre v1.81 and other ROMs, unless Toolkit II is installed, CLOSE will report ‘channel not
open’ if the channel is not open. Toolkit II and later versions of Minerva stop this from happening.

NOTE 2

There is a harmless bug in Toolkit II's CLOSE. This will report error -15 (bad parameter) if channel
#32767 was opened and CLOSE issued without parameters, or even if you use the explicit command
CLOSE #32767 (unless you have SMS). Although #32767 will still be closed successfully, any further
attempt to use CLOSE without parameters will continue to report error -15 until the program is cleared
out with NEW, LOAD or LRUN.

NOTE 3

On Minerva, if you have Lightning installed, then unless you CLOSE channels in the opposite order to
that in which they were OPENed, you may end up with several CLOSEd windows which are still visible
on screen. This will only disappear when another channel with the same channel number is opened. The
Pointer Interface and SMS cure this.

NOTE 4

Unless you have a THOR XVI or Minerva (without SMS), do not CLOSE a network out (eg. NETO_1)
channel unless you have written something to it. The machine will lock up if you do so be warned! On
a THOR, the system will lock up for 30 seconds and then report an ‘Xmit Error’. On Minerva, you will
need to press <CTRL><SPACE>.

NOTE 5

QL ROMs (pre MG) had problems in closing ser2 - they tended to close one serial channel for output
and the other for input instead!

NOTE 6:
NOTE 6

If you are writing to a file (especially on a microdrive cartridge), ensure that the drive has finished turning
after issuing the CLOSE command, before trying to access the file (otherwise you may find that all of
the changes are not present!). The other solution is to FLUSH the file before CLOSEing it.

MINERVA NOTE
CLOSE #1 will also remove a MultiBasic job in certain instances - see appendix on Multiple Basics.

WARNING

10.60. CLOSE 185

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Although under the interpreter, channel #0 (the command window) and channels #1 and #2 can be closed,
this will lock up the SuperBASIC interpreter. It does no harm at all in compiled programs.

Minerva and SMS prevents this from being disastrous, but some programs may behave a little strangely
on the newly opened #0. If you use CLOSE #0 from within a MultiBASIC or one of SMS’s SBASICs,
this will remove the MultiBASIC (or SBASIC) Job.

CROSS-REFERENCE

OPEN, CHANNELS, CLOSE% SCR_STORE and related commands can be used to provide the QL with
a windowing environment whereby the contents of the screen are restored when a window is CLOSEA.

10.61 CLOSE%

Syntax CLOSE% n
Location BTool, TinyToolkit

The command CLOSE% allows you to close a channel which is specified using the channel number listed
when you use the CHANNELS command. This thus allows you to close channels owned by other Jobs.

WARNING

If you close the channel of a job, this can lock up that job. Ensure that you know the consequences of
your actions!

CROSS-REFERENCE
CHANNELS, CLOSE

10.62 CLRMDV

Syntax CLRMDV n
Location TinyToolkit, Btool

This command forces the QL to forget that it had already read a cartridge in the given microdrive mdvn_.
This could be necessary if cartridges are exchanged between QLs, otherwise one of the QLs may not find
a file written by another QL on a cartridge. Such problems do not exist with floppies or any other media.

Example

CLRMDV 2
CROSS-REFERENCE

For RAND, CLRMDYV is very useful.

See also DEL_DEFB which performs a similar task.

186 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.63 CLS

Syntax CLS [#chan,] [cls_type]
Location QL ROM

This command is normally used to clear all or part of the specified window (default #1) to the current
paper colour for that channel (this is not affected by OVER). CLS does not affect a border attached to a
window.

The cls_type can be used to specify which area of the window is to be cleared (the default is 0). This can
have the following standard values, which have different effects depending upon the current position of
the text cursor:

* 0 Clear the whole window

* 1 Clear the window above the cursor line

* 2 Clear the window below the cursor line

* 3 Clear the whole cursor line

* 4 Clear the window from the cursor position to the right-hand end of the cursor line

After using this command, the text cursor is placed at the top left-hand corner of the window (if
cls_type=0) or at the start of the next line below the cursor position for other values.

Except under SMS and on the THOR X VI, most systems allow you to use other values for cls_type to
access various TRAP #3 system utilities. The way in which the appropriate value of cls_type is calculated
is by taking the value of DO which would be used in machine code and subtracting 32 from this. If this
gives a negative result, then add this negative result to 128.

For example, to move the cursor back one space, in machine code you would use the call IOW.PCOL
(D0=19). 19-32=-13, therefore:

CLS #3,128-13 moves the cursor back one space in #3.

You must however be aware of using CLS 98 (IO.FLINE) on pre JS ROMs, since this tended to leave the
cursor switched on!

NOTE 1

On pre MG ROMs CLS is likely to fail if the window is smaller than the cursor.
NOTE 2

The THOR XVI only allows cls_type to be in the range 0..4.

Under SMS, if cls_type is more than 4, then CLS uses cls_type MOD 4.
NOTE 3

Some of the additional values of cls_type can actually cause the computer to crash, whilst others will
merely report an error.

CROSS-REFERENCE
AT and PRINT position the text cursor.

PAPER alters the current paper colour.

10.63. CLS 187

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

SCROLL and PAN also allow you to access various system utilities.
A much safer way to access system utilities is to use /O_TRAP, MTRAP, QTRAP and BTRAP.

For details of the various TRAP #3 system utilities refer to the QDOS/SMS Reference Manual (Section
15) or similar.

10.64 CLS_A

Syntax CLS_A
Location BeuleTools

This command forces all windows currently OPENed by SuperBASIC or belonging to the current job to
be cleared and given a border (width 1, colour 255). This works on channels opened on Minerva’s dual
screens.

CROSS-REFERENCE

CLS clears a single window without changing window attributes, the border in this case.

10.65 CMD$

Syntax CMD$
Location SMS, Minerva

This function can be used from within SMS SBASICs, Minerva MultiBASICs and compiled programs
(not SuperBASIC Job 0) to read a string passed to the program when it was initiated, with the command
EX (or similar).

The string appears after the EX command, preceded with a semicolon.
Example

Create a program to load in Xchange and set its default drives and memory, something akin to:

10 xch_data$=DATADS$:xch$=PROGD$

20 data_space=300

30 x$=CMDS$

40 IF x$<>'"'

45 datpos="\" INSTR x$

50 IF datpos:data_space=x$(datpos+1 TO)
55 IF datpos>5:x$=x$(1 TO datpos-1)

74 drl=',' INSTR x$

75 IF dril<6

80 IF dr1=0:PROG_USE x$(1 TO):ELSE IF drl1<LEN(x$-4):DATA_USE x$(drl+1 TO)
99 ELSE

100 PROG_USE x$(1 TO drl-1)

110 IF drl1<LEN(x$)-4:DATA_USE x$(drl+1 TO)

120 END IF

(continues on next page)

188 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

140 END IF

150 EX xchange;data_space
160 DATA_USE xch_data$
170 PROG_USE xch$

Save this as FLP1_XCHANGE_BAS (or similar).
Now, to pass the relevant parameters all you need do under SMS is enter the line:
EXEC flpl_XCHANGE_BAS;'winl_XCHANGE_,fip2_\200’

Minerva treats the string slightly differently - see EX for an explanation of the following command which
achieves the same:

EXEC pipep; fipl_XCHANGE_BAS>win1_XCHANGE,fp2_\200’

This will execute winl_XCHANGE_xchange with the help file to be loaded from winl_XCHANGE_,
the data files being loaded from flp2_ and a dataspace of 200K.

NOTE 1

In SMS pre v2.60, you could not directly slice CMDS$ - copy it to another string variable first, as in the
example.

NOTE 2

You cannot use this command in TURBO compiled jobs - use OPTION_CMDS instead.
CROSS-REFERENCE

See EXEC and EXEC_W.

10.66 CODE

Syntax CODE (character$)
Location QL ROM

This function returns the internal code used to represent the given character$ (this will be a value between
0 and 255).

If the supplied parameter is more than one character in length, the code of the first character will be
returned. The result 255 represents the ALT key, although this will only be produced with the statement
PRINT CODE(INKEYS$) if the <ALT> key is being pressed together with a second key, in which case
the code of the second key quickly follows. If character$ is a nul string, CODE will return 0.

Example 1

PRINT CHR$(CODE(‘Alpha’))
will print ‘A’.

Example 2

A short program to reveal the code of the current key being pressed (with special code to trap the instance
of the ALT key being pressed):

10.66. CODE 189

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

100 REPeat loop
110 AT 0,0: a$ = INKEY$(#1, -1)
120 IF CODE(a$) = 255

130 PRINT 'ALT+' & CODE(INKEYS$) & ' '
140 ELSE PRINT CODE(a$);' '
150 END IF

160 END REPeat loop

Try replacing lines 110 to 150 with: 110 AT 0,0: PRINT CODE(INKEY$(-1))
CROSS-REFERENCE

Please refer to the Characters section of the Appendix for a full list of the characters and their internal
codes.

10.67 CODEVEC

Syntax CODEVEC (name$)
Location ALIAS (DIY Toolkit - Vol A)

This function is very similar to KEY_ADD in that it returns the address in memory where the machine
code for a machine code Procedure or Function is stored (useful for debugging programs with Qmon or
similar machine code monitor).

If the Machine Code Procedure or Function with the given name$ does not exist, then a ‘Not Found’
error is reported.

CROSS-REFERENCE
See KEY ADD and ELIS.

10.68 COL

Syntax COL(x,y)
Location HCO

COL is a function which returns the colour of a given screen pixel (specified in absolute co-ordinates).
The colour is however not coded in the usual way - the return value of COL is either O, 1, 2 or 3 (repre-
senting the four true colours which can displayed in MODE 4, ie. black, red, green and white).

Example

100 WMON: LIST#2

110 xmin% = 0: xmax% 100

120 ymin% = 0: ymax% 100

130 FOR x% = xmin% TO xmax%

140 FOR y% = ymin% TO ymax%
150 c% = 2 * COL(x%,y%) + 1

(continues on next page)

190 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)
160 BLOCK 1, 1, x%-xmin%, y%-ymin%, c%
170 END FOR y%
180 END FOR x%

Unless you are using Minerva or SMS, replace x% and y% by x and y.
NOTE

COL will return meaningless data unless the screen is located at address 131072, is in MODE 4, and
uses a 512 x 256 resolution.

CROSS-REFERENCE

SET draws a screen pixel.

10.69 COLOUR_NATIVE

Syntax COLOUR_NATIVE [#ch]
Location SMSQ/E v2.98+

COLOUR_NATIVE is a command used to select the colour palette to be used from within the Extended
Colour Drivers provided with SMSQ/E v2.98+ on the Q40/Q60, QXL, QPC and Aurora.

A valid window channel must be open, default #1 (or #0 on a SBASIC with only #0 open), although one
may also be supplied as #ch.

This command is similar to COLOUR_PAL, but allows you to use 256 colours on Aurora, or 65536
colours on QXL, QPC and the Q40/Q60, by selecting the native colour mode of the hardware.

Colour parameters supplied to commands such as INK are defined in native colours and therefore their
effect will depend upon the hardware itself (Appendix 16 contains details of the first 256 colours and their
Native Colour Values in decimal, hexadecimal and binary for use with the INK command or similar).

NOTE

MODE commands have no effect under the Extended Colour Drivers.
CROSS-REFERENCE

Refer to COLOUR_PAL for more details.

10.70 COLOUR_PAL

Syntax COLOUR_PAL [#ch]
Location SMSQ/E v2.98+

COLOUR_PAL is a command used to select the colour palette to be used from within the Extended
Colour Drivers provided with SMSQ/E v2.98+ on the Q40/Q60, QXL, QPC and Aurora.

10.69. COLOUR_NATIVE 191

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

This command requires the Extended Colour Drivers to have been loaded when SMSQ/E started (set
by configuration or chosen from the start-up menu on QPC). It will not have any effect upon programs
already loaded into the system.

A valid window channel must be open, default #1 (or #0 on a SBASIC with only #0 open), although one
may also be supplied as #ch.

COLOUR_PAL selects the PAL colour mode, allowing 256 colours to be used. After using this com-
mand, the effect of the colour parameters supplied to commands such as INK will depend upon the table
which appears in Appendix 16 - use the PAL colour value given for each colour (this is hardware inde-
pendent).

As a result, code such as that given in the example below is required to check on the colour scheme
currently in use and adapt the program accordingly.

Example

100 REMark Make sure the program is in the right mode for Standard QL/
—Extended Colours

110 col_sys%=0:h$=VERS$

120 IF RMODE=8:MODE 4

130 IF RMODE=16:col_sys%=1:REMark Aurora - Extended Colour Drivers

140 IF RMODE=32:col_sys%=3:REMark QXL/QPC - Extended Colour Drivers

150 IF RMODE=33:col_sys%=2:REMark Q40 - Extended Colour Drivers

160 :

170 REMark Select Appropriate colour scheme

180 IF h$="HBA':IF col_sys%<>0:COLOUR_PAL

190 SELect ON col_sys%

200 =0:BLACK=0:WHITE=7:RED=2:GREEN=4: REMark Four colours available
210 =REMAINDER :BLACK=0:WHITE=1:RED=2:GREEN=3:REMark 256 colours available
220 END SELect

230 PAPER BLACK:INK GREEN

NOTE 1

The 256 colours produced under COLOUR_PAL on non-Aurora machines may be changed to allow
any 24-bit colour using the command PALETTE_S8. This will not work on Aurora, which has display
hardware limited to 256 colours.

NOTE 2

MODE commands have no effect under the Extended Colour Drivers. RMODE will always report 16 on
Aurora, 32 on QXL/QPC and 33 on the Q40/Q60 if the Extended Colour Drivers are in use.

CROSS-REFERENCE

Refer to Appendix 16 and /NK for more details.

COLOUR_QL, COLOUR_NATIVE and COLOUR_24 are all similar.

PALETTE_QL and PALETTE_S affect colour palettes.

BGCOLOUR_QL and BGCOLOUR_24 can be used to alter the desktop colour of the main screen.

DISP_COLOUR can be used to switch between Extended Colour Drivers and the Standard Colour
Drivers.

192 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.71 COLOUR_QL

Syntax COLOUR_QL [#ch]
Location SMSQ/E v2.98+

COLOUR_QL is acommand used to select the colour palette to be used from within the Extended Colour
Drivers provided with SMSQ/E v2.98+ on the Q40/Q60, QXL, QPC and Aurora.

A valid window channel must be open, default #1 (or #0 on a SBASIC with only #0 open), although one
may also be supplied as #ch.

This command is similar to COLOUR_PAL, but selects an 8 colour mode, with colours from 0...7 as per
the original QL. MODE 8 (although all 8 colours remain available for programs which presume MODE
4).

This can cause some slight incompatibility problems, due to programs which presume that under MODE
4, INK 3 would produce Red (for example) - under COLOUR_QL it will now produce Magenta.

NOTE 1

The eight colours produced under COLOUR_QL may be changed to allow any colour supported by the
hardware using the command PALETTE_QL.

NOTE 2

MODE commands have no effect under the Extended Colour Drivers.
CROSS-REFERENCE

Refer to COLOUR_PAL for more details.

PALETTE_QL includes a way of overcoming the incompatibility problems with old MODE.. 4 programs.

10.72 COLOUR_24

Syntax COLOUR_24 [#ch]
Location SMSQ/E v2.98+

COLOUR_24 is acommand used to select the colour palette to be used from within the Extended Colour
Drivers provided with SMSQ/E v2.98+ on the QXL and QPC, providing a good graphics card is installed.

A valid window channel must be open, default #1 (or #0 on a SBASIC with only #0 open), although one
may also be supplied as #ch.

This command is similar to COLOUR_PAL, but allows you to specify colours directly using the 24 bit
colour mode, thus allowing 16777216 (2724) colours on screen at the same time.

Although the command does work on hardware which does not support a 24 bit graphics mode, the spec-
ified colours have to be adapted to fit into the memory available for each pixel (eg 8 or 16 bits). This can
cause inaccuracies and unpredictable results - COLOUR_NATIVE is preferable in such circumstances.

CROSS-REFERENCE
Refer to COLOUR_PAL and COLOUR_NATIVE for more details.

10.71. COLOUR_QL 193

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

PALETTE _QL, PALETTE_8 and BGCOLOUR_24 all use the 24 bit table to describe colours.

10.73 COMMAND_LINE

Syntax COMMAND LINE
Location Turbo Toolkit

This command is really only of any use with the TYPE_IN command. It selects the SuperBASIC com-
mand line (#0) so that anything passed with TYPE_IN is automatically entered into that channel (as if it
were typed).

Note that COMMAND_LINE cannot have any effect if SuperBASIC is doing something or if the job
which uses the command was started with EXEC_W or similar.

NOTE 1
COMMAND_LINE pre v3c27 does not seem to work correctly on all versions of the QL ROM.
NOTE 2

Two files called TurboFix_bin and MiniCommdLin_bin can be used to allow COMMAND_LINE to
select the command line of a Minerva MultiBASIC - this relies on the MultiBASIC being the job which
uses the COMMAND_LINE command. Some early versions of TurboFix_bin have bugs in it.

A similar version is available called SMSQCommdLin_BIN which works in the same way, except for
SMS SBASIC interpreters. Some versions of TurboFix_BIN also support SBASIC but it is currently
recommended that this file is used instead.

CROSS-REFERENCE
See TYPE_IN for an example.

10.74 COMPILED

Syntax COMPILED
Location Turbo Toolkit

This function simply returns a value of 0 if the current program is interpreted or 1 if it has been compiled.
NOTE 1

Although primarily for use with programs compiled with Turbo, versions of this function after v3c27
will work even from within a program compiled under QLiberator.

NOTE 2

Prior to v3c27, this function did not always return the correct value on Minerva and SMS (particularly
from within a MultiBASIC or SBASIC daughter job).

CROSS-REFERENCE
See JOB_NAME for an example.

194 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.75 COMPRESS

Syntax COMPRESS filename
Location COMPICT

This command takes the current screen contents and compresses them, saving the picture in its com-
pressed form in the stated file - the full filename (eg. ram1_test_scr) has to be used.

This compressed form does not represent that great a saving over the original 32768 bytes required to
hold the details of the screen before compression - the amount of space required for a compressed screen
depends upon the amount of adjacent pixels on the screen which have the same colour.

Whilst the screen is compressed, a pattern is drawn over the screen, which although annoying, is harmless.
Example

COMPRESS flp2_TITLE_scr

NOTE 1

COMPRESS temporarily needs 64K of working space and will report an error if this is not available.
Unfortunately the file stays open if this happens and cannot be accessed until is is closed with CLOSE%
or a desktop program such as QPAC 2 (channels menu).

NOTE 2

COMPRESS does not work in supervisor mode, ie. it multitasks, thus if you were doing something else
whilst the screen was being compressed, the saved picture may look pretty strange when expanded.

NOTE 3

COMPRESS assumes that the screen starts at $20000 and cannot therefore be used with Minerva’s second
screen or some emulator display modes.

NOTE 4
COMPRESS assumes a screen resolution of 512x256 and cannot work on higher resolution screens.
CROSS-REFERENCE

Screens which have been saved with COMPRESS can be loaded with EXPAND or re-loaded from memory
with FASTEXPAND.

See also SCR_STORE.

10.76 CONCAT

Syntax CONCAT filel . file2 TO file3
Location CONCAT

This command merges the first two files together to form a new file with the third specified filename, so
that file2 is appended to filel. The length of file3 is exactly the sum of the lengths of the merged files.

Example

10.75. COMPRESS 195

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Most SuperBASIC programmers use their own standard set of
procedures and functions. If two of them need to be added

to a program, CONCAT helps a lot: CONCAT flpl_PROG_bas,flpl_SUB_1 TO raml_PROG_tmp
DELETE flpl_PROG_bas CONCAT raml1_PROG_tmp,flpl_SUB_2 TO flpl_PROG_bas DELETE
ram1_PROG_tmp

You must ensure that line numbers do not conflict.
NOTE

Each filename must include the device.
CROSS-REFERENCE

COPY, RENAME, DELETE.

See FWRITE for the more flexible APPEND procedure.

10.77 CONNECT

Syntax CONNECT [#]pipe_in% TO [#]pipe_out%o
Location Turbo Toolkit

This command is exactly the same as TCONNECT, except that the two channels do not have to have a
hash sign in front of them.

CROSS-REFERENCE
TCONNECT andQLINK

10.78 CONTINUE

Syntax CONTINUE or
CONTINUE [line_no](Toolkit IT & Minerva only)
Location QL ROM, Toolkit II

This command allows the user to try and recover from an error (normally after STOP or pressing the
Break key), by telling the interpreter to carry on running the program from the next statement. This will
however not work if the message ‘PROC/FN Cleared’.

If you have Toolkit II, Minerva installed, you will be able to use the second variant of this command
which allows you to re-start processing at a specified line number to help with error trapping.

NOTE 1

CONTINUE cannot carry on processing where the line which was stopped was a direct command (ie.
typed in at #0).

NOTE 2

196 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Unless you are using the Toolkit II or Minerva variants of this command, do not try to use CONTINUE
after RENUMbering the program, as the continuation table is not updated by the RENUM routine and
may therefore try to jump to the old line number.

NOTE 3
Beware that RENUM does not renumber line_no if you have used this command as part of a program.
NOTE 4

CONTINUE can only re-start processing if no new lines have been added; no new variables have been
added to the program; no lines have been altered; and the PROC/FN Cleared message has not appeared.

CROSS-REFERENCE
See RETRY and also WHEN ERRor.

10.79 ConvCASE$

Syntax ConvCASES$ (string$ [,lower])
Location BTool

ConvCASES returns the given string with all upper case letters converted to lower case if lower=1, or all
lower case letters to upper case if lower=0. Default of lower is 1

NOTE

Unlike similar functions ConvCASES$ will recognise all non- ASCII letters, namely umlauts and accents.
CROSS-REFERENCE

UPPERS, LOWERS, BIT%, CHR$, UPC$, LWC$

10.80 CONVERT

Syntax CONVERT src_file,dst_file,original$,replacement$
Location CONVERT

This command is used to copy src_file to dest_file and replace all occurrences of original$ by replace-
ment$.

Both strings must have the same length.
The search is case-independent.

No default devices are supported.
Example 1

Take a QUILL-document and export it using the ‘Print to file’ option without a printer driver in the main
drive.

Next VIEW it or look at it with an editor or by: COPY flpl_example_lis TO scr.

10.79. ConvCASE$ 197

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

You will see the character CHR$(13) (the carriage return <CR> character) at the end of each line. This
is not needed by QDOS to perform a carriage return on screen. Remove these excess characters with:
CONVERT flp1_example_lis, flpl_example_txt, CHR$(13), “ «.

<CR> at the end of lines may also appear when downloading messages from a bulletin board or converting
MS/DOS text files to QDOS.

Example 2

Badly written or simple programs generally lack the feature to change device names for file operations.
Using commands like FLP_USE may have a negative effect on any jobs which are running simultane-
ously, so it is better to make the program use flp1_ instead of mdv2_.

This can be achieved quite simply with the command: CONVERT progl_exe, prog2_exe, “mdv2_",
“ﬂpl_”.

NOTE

The character CHR$(0) cannot be replaced.
CROSS-REFERENCE

EXCHG is similar to CONVERT.

10.81 COPY

Syn- COPY filel TO file2 or
tax COPY [file] [TO file2] (Toolkit II) or
COPY filel [file2 [,file3...]] {TO | !} fileb (THOR XVI)
Loca- QL ROM, Toolkit II, THOR XVI
tion

The command COPY duplicates filel, so that file2 is an exact copy. The parameters can also be a device
(eg. serl, con, scr, scr_400x20) or, if you have Toolkit II installed, a channel (eg. #3) can be used for the
second parameter.

If Toolkit II is present, COPY supports the default devices and sub-directories. COPY will look for the
file to be copied on the default data device if necessary (see DATADS).

The rules for determining the destination parameter can be somewhat complex under Toolkit II:

(1) If no device is given, but a filename is specified, then Toolkit II looks at the first parameter. The
destination device is then assumed to be the same as the source device (ie. the device name specified as
part of the first parameter, or the default data device - see DATADS).

Under SMS, it will use the default data device whether or not the first parameter contains a device.

(2) If the second parameter is omitted, then again Toolkit II looks at the first parameter. The same filename
as for the first parameter will be used. If a device is given in the first parameter, then this is used as the
destination device (unfortunately meaning that Toolkit II tries to copy the file onto itself!). On the other
hand, if no device was specified, then the default destination device will be used (see DESTDS$).

Under SMS, if a device is specified in the first parameter, SMSQ/E (v2.85 at least) tries to copy the file
to the default destination device without a filename! Normally unless the default destination device is
either PAR or SER, this will report an error ‘is in use’.

198 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(3) If a second parameter is given which includes a device name, then this is used!

If the destination is an existing file, unlike the normal ROM COPY command, Toolkit II will not break
COPY with the error -8 (already exists), but instead it will print: >file<exists, OK to overwrite..Y or N?
in channel #0 and wait for the user to press either <Y> or <N> - <ESC> and <CTRL><SPACE> mean
<N> here.

Examples

Assuming that the default data device is flpl_ and the default destination device is ram?2_ (using Toolkit
IT or SMS implementation):

Command Effect

COPY mdvl1_quill TO flp1_quill Copies mdv1_quill to fipl_quill
COPY raml_prog_bas, ram2_tmp Copies ram1_prog_bas to ram2_tmp

COPY raml_prog_bas, Copies raml_prog_bas to a window
scr_200x100
COPY prog_bas, serl Copies flpl_prog_bas to serl
COPY ser2 TO raml1_prog_bas Copies data from ser2 to a file
COPY con TO ser Copies everything typed to serl
COPY raml_prog_bas Tries to copy ram1_prog_bas to itself unless on SMS
COPY raml_prog_bas Tries to copy ram1_prog_bas to ram?2_ and will report an error
COPY prog_bas Copies flpl_prog_bas to ram2_prog_bas
COPY raml_prog_bas TO #2 Copies ram1_prog_bas to a channel
NOTE 1

The TO separator can be replaced by a comma °‘,” (although note the THOR X VI variant!).
NOTE 2

Each file includes a file header of 64 bytes to store supple-mentary information such as the time of the
last update, file type, length and much more. Without Toolkit II, COPY will always copy the header if a
file is copied. The Toolkit I COPY command does not copy the header to serial devices (eg. ser) if this
is specified as the destination.

NOTE 3

COPY without any parameters is allowed with Toolkit II, but it can cause problems (at least in versions
up to v2.28 Toolkit IT and v2.85 SMS)

As an exception to rule 2, when first used it would appear to try to copy the file “” on DATADS$ onto
itself. On systems without level-2 drivers, such files can exist, but have no special function, whereas on
level-2 drivers, these files contain the sub-directories. Thus, with the standard combination of Toolkit II
and level-2 drivers installed, a pure COPY normally breaks with error -9 (in use) (see FMAKE_DIR for
the reason).

However, due to a bug in current versions of Toolkit II, when first used it may report error -15 (bad
parameter), in which case it will have left the file fipl_ open and prevent most of any further access to
that device (unless you can close the channel with CLOSE% or a desktop).

NOTE 4

On SMS pre v2.58, if you used COPY and were asked if you wanted to overwrite the file, and answered
N, an error code was returned.

10.81. COPY 199

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

THOR XVI NOTES

The THOR XVI (v6.41 and later) supports the third variant of COPY. This allows you to merge several
files:

COPY fipl_texta,fipl_textb TO flp2_Book will create a new file fip2_Book made up of the merged files
flpl_texta and flp1_textb. The headers will (of course) not be copied.

If you alter the TO delimiter to !, ie: COPY flp1_texta,flpl_textb ! fip2_Book

then it is assumed that fileb already exists and filel, file2 and file3 are all appended to it.
CROSS-REFERENCE

SPL_USE and DEST USE set the destination device.

See COPY_N and COPY_H for copying file headers and COPY_O on how to force overwriting.
SPL performs a background copy (ie. it multitasks).

See APPEND which is similar to the THOR variant.

10.82 COPY_B

Syntax COPY_B adrl, adr2, n or
COPY_B adrl, n TO adr2
Location BTool

The command COPY_B copies n bytes from the memory address adrl to adr2 without any restrictions.
The programmer has to ensure that there is sufficient room at the specified destination memory location
(which must be free useable memory).

Example

100 RANDOMISE: n=10

110 al=ALCHP(6*n): a2=ALCHP(6*n)

120 FOR i=0 TO 6*(n-1) STEP 6: POKE_F al+i,RND
130 COPY_B al,6*n TO a2

140 FOR i=0 TO 6*(n-1) STEP 6: PRINT PEEK_F(a2+i)
150 RECHP al: RECHP a2

CROSS-REFERENCE
COPY_W, COPY_L, TTPOKEM and XCHANGE

200 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.83 COPY_H

Syntax COPY_H ([filel] [TO file2]
Location Toolkit IT

See COPY_N.
CROSS-REFERENCE
FGETHS

10.84 COPY L

Syntax COPY_L adrl, adr2, n or

COPY_L adrl, n TO adr2
Location BTool

The command COPY_L copies n longwords (each being 4 bytes) from address adrl to adr2. The two
memory locations can overlap (this is also true for COPY_B and COPY_W).

If you are using Minerva, you will probably find it quicker to use it’s specialised CALL routines.

Example

100 a=ALCHP(48+%1024)
110 COPY_L 0,12*1024 TO a

NOTE

Both adrl and adr2 must be even addresses.
CROSS-REFERENCE

COPY_W, COPY_B, ODD.

10.85 COPY_N

Syn- COPY _N filel TO file2 or
tax COPY_N [filel] [TO file2] (Tooolkit II) or
COPY_N filel [,file2 [,file3...]] {TO| !} fileb (THOR XVI)
Loca- QL ROM, Toolkit II, THOR XVI
tion

This command is basically the same as COPY, but the file header is explicitly removed. This is important
for example if you wish to copy a file direct to a printer attached to ser2.

If the file header was also printed, this would include some non-printable characters {eg. CHR$(0)},
which might be interpreted by the printer as control characters and therefore produce rubbish as output.

10.83. COPY_H 201

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Toolkit II's COPY examines the type of the destination device before it proceeds. It will not then copy
the file header if this is a serial device or a parallel port. The standard COPY command contained in the
QL ROM does not make this differentiation and so COPY_N must be used instead if the file header is
not to be copied.

CROSS-REFERENCE

COPY_H forces the file header to be copied to the given destination (whether it is a serial port, a parallel
port or not), and the syntax is identical to COPY, COPY_N and COPY_O.

10.86 COPY_O

Syntax COPY_O ([filel] [TO file2] or

COPY_O filel [,file2 [,file3...]] {TO| !} fileb (THOR XVI)
Loca- Toolkit II, THOR XVI
tion

The command COPY_O is identical to Toolkit II’'s COPY command, but if the file already exists, it will
automatically be over-written without asking the user for confirmation.

This command is also supported on the THOR XVI, although both the input and destination channels
must be specified in full.

CROSS-REFERENCE
FTEST and ETAT check the status of a file, thus enabling you to check if a file already exists.

10.87 COPY_W

Syntax COPY_W adrl, adr2, n or
COPY_W adrl, n TO adr2
Location BTool

The command COPY_W copies n words (two bytes each) from address adrl to adr2.
NOTE

Both addresses must be even.

CROSS-REFERENCE

COPY_W is always faster than COPY_B, but COPY_L is even faster than COPY_W.
See also XCHANGE.

Minerva has its own fast copy routines (see CALL).

202 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.88 COS

Syntax COS (radians)
Location QL ROM

This function allows you to find the cosine of the specified angle (given in radians).

In a right angled triangle the cosine is the ratio of the length of the side adjoining the given angle, to the
length of the hypotenuse (or the sine of the complement of that angle). Thus, sine and cosine can actually
substitute each other:

Mathematical formula In SuperBASIC

cos x = sin (PI/2-x) COS(x)=SIN(PI/2-x)
sin X = cos (PI/2-x) SIN(x)=COS(PI/2-x)

Example

An analogue clock:

100 wx = 50: wy = INT(wx / 1.25): px = 50: py = 40

110 OPEN#3,"scr_" & wx & "x" & wy & "a" & px & "x" & py

120 PAPER#3,3: CLS#3: BORDER#3,1,0: SCALE#3,100,-45,-50

130 INK#3,0: FILL#3,1: CIRCLE#3,0,0,40:FILL#3,0: INK#3,4

135 Hs = PI/6

140 FOR t = 1 TO 12

150 LINE#3,40 * SIN(Hs * t), 40 * COS(Hs * t) TO 45 * SIN(Hs * t), 45 *.
—~COS(Hs * t)

160 END FOR t

170 INK #3, 7

180 d$ = DATE$: min = d$(16 TO 17)

190 hour = d$(13 TO 14) MOD 12 + min / 60

200 LINE#3,0,0 TO 30 * SIN(Hs * hour), 30 * COS(Hs * hour)

210 LINE#3,0,0 TO 40 * SIN(PI / 30 * min), 40 * COS(PI / 30 * min)
220 PAUSE 100: CLOSE #3

NOTE 1

COS with very large values for the angle produces either very odd results or an overflow error (except on
Minerva v1.96+ where it returns 0). The correct range for radians is -PI...PI, because anything outside
this range is actually merely a repeat of the series. This is because an angle of PI*2 radians forms a
complete circle, therefore an angle of PI*3 is actually the same as an angle of PI (ie. PI*3-PI*2). If you
insist on using these silly angles, try SIN (X+P1/2) instead of COS(X).

NOTE 2

The THOR X VI (v6.41) fixes a slight inaccuracy in this command to ensure that COS(P1/2)=0. On other
ROMs COS(P1/2)==0.

The Lightning package and SMS also fix this bug.
CROSS-REFERENCE

10.88. COS 203

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

See SIN, ACOS.
Compare COSH.

Please also see the Mathematics section of the Appendix.

10.89 COSH

Syntax COSH (x)
Location Hyper, Hyperbola

This function is defined very similarly to SINH. It can be expressed as:
(EXP(x) + EXP(-x))/ 2
Example

The COSH function can be used to describe a rope, chain or similar object which has two ends tied at
the same height to a ceiling (for instance). Line 110 draws the ceiling, lines 120 to 160 the chain.

100 a = .8: SCALE 10, -5, 0: CLS
110 LINE -2,CHAIN(-2) TO 2,CHAIN(2)
120 FOR x = -2 TO 2 STEP .1

130 y = CHAIN(x)

140 IF x > -2 THEN LINE _x, _y TO x, y
150 X =X: . y=Y

160 END FOR x

170 :

180 DEFine FuNction CHAIN(x)

190 RETurn a * COSH(x/a)

200 END DEFine CHAIN

CROSS-REFERENCE
See SINH for an example.
ARCOSH is the inverse function of COSH.

10.90 COT

Syntax COT (angle)
Location QL ROM

This function returns the cotangent of a given angle (specified in radians).

In a right angled triangle the cotangent of an angle is defined as the ratio of the side adjoining the given
angle to the side opposite to the given angle (forming a right angle with the other line). Due to the
periodic nature of the function, it is best to work with angle in the range: 0 < angle < PIL.

COT/(angle) can also be calculated as COS(angle)/SIN(angle).

204 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Example

A program to create a graph showing the range of the function COT:

100
110
120
130
140
150
160
170
180
190
200
210
220
230

MODE 4:

OPEN#1,con_448x200a32x16

SCALE 100,-75,-50

INK 4:
CURSOR
CURSOR
CURSOR
CURSOR
CURSOR
CURSOR
CURSOR
INK 7

LINE -75,0 TO 125,0: LINE 0,-50 TO 0,50
0,0,0,0: PRINT 'O’

0,0,-100,0: PRINT '-&'

0,0,100,0: PRINT 'a’

0,0,-200,0: PRINT '-a * 2'

0,0,200,0: PRINT '2&'

0,0,0,-100: PRINT "1’

0,0,0,90: PRINT '-1'

FOR ang=-(PI*2)+1E-2 TO PI*2 STEP 1E-2
POINT ang*75/(PI*2),50*COT(ang)
END FOR ang

NOTE 1
Although COT(PI) and COT(PI*x) should be undefined (values of angle very close to PI tend to infinity),

on most QDOS implementations, it gives a very large positive or negative number.

Currently, only the Lightning maths package and SMS produce an overflow error (the correct result).

NOTE 2

On Minerva v1.96+ very large values of angle will return the value 0. On other implementations produce
an overflow error.

NOTE 3

COT(0) on most ROMs gives 1 - this is fixed on Minerva, SMS, Lightning, QXL, and ST/QL which give
an overflow error.

NOTE 4

COT(PI/2) should equal zero - on all implementations of this command, this returns a number near to
zero (except under SMS).

CROSS-REFERENCE
Please refer toACOT, ATAN, TAN.

Compare COTH.

Also refer to the Mathematics section of the Appendix.

10.90. COT

205

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.91 COTH

Syntax COTH (x)
Location Hyper

This function returns the hyperbolic co-tangent.

This is defined as one divided by the hyperbolic tangent, so COTH(x) = 1/TANH(x).
CROSS-REFERENCE

ARCOTH is the inverse function of COTH.

10.92 CSIZE

Syntax CSIZE [#channel,] width, height
Location QL ROM

This command sets the size and spacing of characters in the given channel (default #1).

Width ranges from O to 3 and there are two possible heights, 0 and 1. Each width and height corresponds
to a certain pixel size:

Width Spacing Size Height Spacing Size

0 6 5 0 10 9
1 8 5 1 20 18
2 12 10

3 16 10

In low resolution mode width O and 1 have no effect: in that mode, the smallest character size allowable
is 12 pixels wide; CSIZE 2,0.

NOTE 1

On pre-JS ROMs, characters which use all eight pixels available for the definition of characters will not be
printed correctly on screen. Even on JS and MG ROMs, problems exist in some character sizes. Minerva,
SMS and the ST/QL drivers (Level E-23 onwards) prevent any such problems.

NOTE 2

The THOR XVTI allows you to use any value for the vertical size - odd values give double height characters
and even values give normal height.

CROSS-REFERENCE
CHAR_INC allows you to change spacing independently of character size.
MODE will reset the character size to the default (ie. 2,0 in MODE 8 and 0,0 in MODE 4).

The command AT is also affected by the current character spacing.

206 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.93 CTAB$

Syntax CTABS (string$ [,tabdist]) tabdist=1..255
Location BTool

CTABS is a function which will look for spaces in the supplied string$ and if there is at least a tabdist
number of spaces, they will be replaced by the TAB character, CHR$(9), so that ETABS or editors /
word-processors can re-expand them to the original string.

CTABS does not alter the actual string$ but will return it in its compressed form.

The default value of tabdist is 8, and the length of string$ is limited to 255 characters (so tabdist>255
does not make much sense).

WARNING

tabdist=0 will produce rubbish output and it is also possible that CTAB$ will crash the system. Negative
values lead to nonsense results but do not harm the system.

CROSS-REFERENCE
ETABS expands the TAB marks.

10.94 CUR

Syntax CUR [#channel,] boolean
Location TinyToolkit

Every Window channel has a cursor which flashes when it is switched on and appears solid when it is
inactive.

The command CUR with boolean=1 activates the cursor of a window, and it is de-activated with
boolean=0. The default channel is #1.

Example

Multitasking programs should use INKEYS$ to read keystrokes from the keyboard if no other job is
to be similarly affected by the keys pressed. KEYROW could be used, but this does not care which
job/channel/window was active when a key was pressed (this could be used to give a background job a
command without leaving the current job).

The following function imitates the getchar() function of the C language, and is used for non-interactive
keyboard input. Arcade games should not engage the cursor!

100 DEFine FuNction GETCHAR% (channel,timeout)
110 LOCal char$

120 CUR#channel,1

130 char$=INKEY$ (#channel, timeout)

140 CUR#channel,®

150 RETurn CODE(char$)

160 END DEFine GETCHAR%

10.93. CTAB$ 207

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE

Although the cursor was activated, it will not flash until the channel is made into the current key-
board input queue (ie. when it can use PEND, EOF, INKEY$). This may therefore mean that the keys
<CTRL><C> will need to be pressed to make this program the active (current) task.

Non-console windows (scr_) cannot be used for input operations (ie. INPUT and INKEY$ cannot be
used), nevertheless, the cursor may still be enabled.

INPUT will activate and de-activate the cursor itself.
CROSS-REFERENCE

See FORCE_TYPE concerning current input queue activation, INKEYS$, INPUT and KEYROW for gen-
eral information.

CURSEN and CURDIS are both combined by the CUR command. CURSOR %.

10.95 CURDIS

Syntax CURDIS [#ch]
Location Toolkit II, THOR XVI, QSOUND

This command disables the cursor in the given channel. See CURSEN!
The default window for this command is #1.

If a cursor is disabled in a given window (or does not exist), task switching with <CTRL><C> to the job
which owns that window will not work unless the Pointer Environment is present.

WARNING

Do not use CURDIS #0 as this may prevent further input.
CROSS-REFERENCE

See CURSEN for more details.

CURSOR_OFF is similar.

10.96 CURSEN

Syntax CURSEN [#ch]
Location Toolkit II, THOR XVI, QSOUND

If a program is to multitask without the assistance of the Pointer Interface, it is necessary to give that
program an active cursor so that the user can switch to the program using the key <CTRL><C>, which
alters the active keyboard queue.

Unless a program has an active cursor, it cannot accept input from the keyboard by the use of commands
such as PAUSE, INKEY$ and INPUT.

208 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

The command CURSEN enables the cursor in the given channel, which must be either a scr or con
channel. If no channel is specified, the default is #1.

Once the cursor is enabled, a red block will appear at the current text cursor position in the given channel.
This block will begin to flash when the cursor is ‘active’ (ie. expecting input).

MINERVA NOTE

Minerva’s System Xtensions allow you to alter the attributes of the text cursor, by using the command
POKE !124!51,x where x is in the format of: RRRRSCCC, where the top 4 bits of x (RRRR) determine
the cursor flash rate, the bottom three bits (CCC) determine the colour of the cursor and the fourth bit
(S) determines whether the cursor appears as a solid block or an underline.

You can actually get an invisible cursor by using the command POKE !124!51,0. Unfortunately though,
this sets the cursor attributes for all cursors which are enabled, rather than just for the current Job.

CROSS-REFERENCE
KEYROW reads keys without an active cursor. See CURDIS also.

10.97 CURSOR

Syntax CURSOR [#channel,] [grx, gry,] X,y or
CURSOR [#channel,] flag (Btool only)
Location QL ROM, Btool

The CURSOR command allows you to set the text cursor to a specific position in the given window
(default #1). Any text which is then printed will appear with the given position at its top left corner.

The values x and y specify the position in pixel co-ordinates relative to the origin of the specified window
(eg. if the window #1 was defined as scr_448x200a32x16, the command CURSOR 224,100 will set the
text position to the exact centre of the window).

However, for the more adventurous, CURSOR can take an additional two parameters which allow you to
mix text and graphics on a given window more easily. This sets the text cursor to the graphics co-ordinate
(grx,gry) and then uses the x and y parameters to specify a relative pixel offset from this graphics co-
ordinate (a positive value of X moves the text cursor to the right, a negative value to the left; whereas a
positive value of y moves the text cursor down, a negative value up).

The second variant only works with the Btool Toolkit. This allows you to enable or disable the cursor in
the specified window (default #1), by specifying a flag of 1 to enable the cursor or O to disable the cursor.

Example

This program shows all the 45 degree angles in a circle:

100 MODE 4:WINDOW 448,200,32,16

110 PAPER 0:INK 7:CLS

120 SCALE 200,-150,-100

130 FOR i=0 TO 315 STEP 45

149 INK 7:LINE 0,0 TO SIN(RAD(i))*50,COS(RAD(i))*50
150 xoff=0:yoff=0

160 SELect ON i

(continues on next page)

10.97. CURSOR 209

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

170 =0:x0ff=-4:yoff=-9
180 =45:yoff=-9

190 =90:yoff=-4

200 =180:x0ff=-10

210 =225:x0ff=-20

220 =270:x0ff=-20:yoff=-4
230 =315:x0ff=-20:yoff=-9

240 END SELect

250 INK 4:CURSOR SIN(RAD(i))*50,COS(RAD(i))*50,xoff,yoff
260 PRINT i

270 END FOR i

NOTE 1

On pre MG ROMs, the CURSOR command only allows a maximum of four parameters, which means
that you can only use grx, gry, X and y on the default channel. You can however use commands such as
CURSOR #3,200,40,3 - although this is not supported on Minerva (pre v1.98) and SMSQ/E and should
be avoided! If you specify a fifth parameter, a ‘Bad Parameter’ error will be reported. The Btool variant
fixes this as does SMS, MG ROMs and Minerva. Compiling with Q-Liberator does not prevent this error.

NOTE 2

The graphics positioning did not work on ST/QL Emulators with Drivers prior to Level D-15 (or E-15).
NOTE 3

Compilers will not accept the second syntax.

NOTE 4

As from SMS v2.74 CURSOR limits grx to even positions to make in compatible with MODE 8 and
MODE 4 automatically.

CROSS-REFERENCE
Please refer to PRINT, LEFT and AT.

CURSEN is a more compatible means of enabling a cursor.

10.98 CURSOR%

Syntax CURSOR% [#window]
Location BTool

This function returns the current status of the text cursor in the specified window (default #1). Results
are:

¢ (for disabled,
¢ | for enabled and visible,

¢ -1 for enabled but invisible.

210 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

An active cursor flashes, and therefore alternates between visible and invisible status when enabled.
Otherwise, it will appear as a solid block on screen (unless there is no cursor attached to the specified
channel).

On Minerva it is possible to alter the shape and colour of the cursor.
CROSS-REFERENCE

CURSEN, CURDIS, CURSOR and CUR enable or disable the cursor.
Also refer to CURSOR_OFF and CURSOR_ON.

10.99 CURSOR_OFF

Syntax CURSOR_OFF [#ch]
Location Turbo Toolkit

This command is exactly the same as CURDIS.

10.100 CURSOR_ON

Syntax CURSOR_ON [#ch [!]]
Location Turbo Toolkit

This command is very similar to CURSEN, with the default window being #1.

However, you can add an exclamation mark after the channel number. If this is omitted, then upon
execution of this command the chosen window is automatically selected as the active window (where
key input is directed). Add the exclamation mark to prevent this.

CROSS-REFERENCE
See CURSOR_OFF, CURSEN and CURSOR% for more details.

10.101 CVF

Syntax CVF (mkf_$)
Location BTool

This function takes any six character long string, (the internal format of a floating point number), and
returns the value as a floating point number.

WARNING

CVF locks SuperBASIC if the supplied parameter is six bytes long but not a valid representation of a
floating point number, eg. CVF(“BlaBla”).

MKFS$ always returns a valid parameter for CVF which will not crash it.

10.99. CURSOR_OFF 211

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE
PEEK F,MKF$, CVI%, CVL, CVS$.

FPUTF and FGETF enable you to read and write floating point numbers in internal format to or from
files.

10.102 CVI%

Syntax CVI% (mki_$)
Location BTool

CVI1% is the inverse function of MK/$ and expects a two character long string, being the internal repre-
sentation of an integer, and then converts this into the actual integer number.

Example

MKI$(20812)="QL”
CVI%(“QL”)=20812
CROSS-REFERENCE
MKI$, CVL, CVF, CVS$.

FGET% and FPUT% provide similar facilities for writing and reading integers in their internal format
from files.

10.103 CVS$

Syntax CVS$ (mks_$)
Location BTool

This function takes the internal representation of a string and returns the string concerned.

A string is represented internally as a word containing the length of the string followed by the string itself.
Example

CVS$(CHR$(0) & CHRS$(2) & “Test”) = “Test”’(1 TO 2) = “Te”

CROSS-REFERENCE

MKS$, CVI%, CVL, CVF. FPUT$ and FGETS$ enable you to write strings to and read strings from files
in their internal formats.

212 Chapter 10. Keywords C

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

10.104 CVL

Syntax CVL (mkl_$)
Location BTool

This function converts the internal representation of a long integer number (a four character long string)
to the actual value and returns that. CVL is the inverse of MKLS$.

Example

CVL(MKLS$(10010) = “10010”
CROSS-REFERENCE

MKLS$, CVI%, CVF, CVSS$.

FPUTL and FGETL provide similar facilities to enable you to write and read long integers from files in
their internal format.

10.104. CVL 213

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

214 Chapter 10. Keywords C

CHAPTER
ELEVEN

KEYWORDS D

11.1 DATA

Syntax DATA expression “[,expression]”
Location QL ROM

The QL allows a SuperBASIC program to store a set of data in the program itself, which can then be
assigned to a given variable by the READ command. The DATA statement marks these areas for use by
READ. The information which can be stored at a DATA statement is basically anything which can be
stored in a variable, including strings, variables, constants and expressions.

Expressions will be calculated at the time that the item in question is READ. Whilst a program is running,
unless a READ command is found, DATA statements are ignored.

Example

[1@@@ DATA "QL User",100,x*1000+10

NOTE 1

On Pre MG ROMs, if any values in a DATA statement start with a bracket, then the other items on the
line may be ignored. If you must specify items starting with brackets, use for example: DATA 0+(...
This is fixed by MG ROMs, Minerva and SMS.

NOTE 2

Unless you have a Minerva ROM (v1.77 or later) or SMS, when you enter the DATA statement, you will
always need to type a space after the word DATA as the parser will not automatically insert one. On
later implementations a space is automatically inserted where the first DATA expression is a string, eg.
DATA’Hello’.

NOTE 3

Entering a DATA statement as a direct command from #0 has no effect. Under SMS an error is reported
‘DATA in command line has no meaning’.

NOTE 4

Due to the way in which the interpreter works, it is always more efficient to place DATA statements at
the start of a program (the search function always starts at the first line of the program).

NOTE 5

Various SuperBASIC compilers (such as Turbo) do not support expressions in DATA statements.

215

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE 6

There appears to be no real check on the parameters given for DATA, so the following line can be entered,
but will in fact cause an error when you try to READ it:

[1@ DATA 1000,PRINT, 10 J

SMS’s improved interpreter does do more checks than earlier implementations and will prevent you from
entering the line:

[1@ DATA 1,1,2a,3 }

which other implementations allow (but give an error when they try to READ the line).
NOTE 7

SMS may complain if you create numerous DATA statements inside a DEFine PROCedure or DEFine
FuNction struture.

CROSS-REFERENCE

RESTORE allows you to set the current DATA pointer. READ will assign the value at the current DATA
pointer to the given variable. EOF will return the value one if there are no more DATA statements in the
current program.

11.2 DATADS$

Syntax DATAD$
Location Toolkit IT

This function always contains the current default data device, which is an unofficial QDOS standard and
supported by all Toolkit II extensions, original SuperBASIC commands and most good software.

The default device means that if no other device is stated, if appropriate, this device will be used. The
default data device will also be consulted if a device name is supplied but the given file cannot be found
on that device. For example, assuming that DATADS$="flp2_’, if you enter VIEW ram1_example_txt and
the file example_txt is not present on ram1_, the command will then try fip2_ram1_example_txt.

This idea can be extended to use prefixes as sub-directories. Sub-directories are separated by underscores,
DATADS always ends with an underscore.

Example

TK2DIR reads all files from the current default data device via a pipe, strips off any network sub-directory
prefix and then writes the remainder of the filenames into the string array passed by parameter.

100 DEFine PROCedure TK2DIR (Verz$)
110 LOCal e,n,sd$,sd,us

120 sd$=DATAD$: us="_" INSTR sd$

130 IF us=3 AND LEN(sd$)>3 and sd$(1)="n" THEN

140 IF sd$(2) INSTR "12345678":sd$=sd$(4 TO):us="_" INSTR sd$
160 END IF

170 OPEN#4,pipe_10000: STAT#4: WDIR#4

(continues on next page)

216 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)
180 e=FILE_OPEN (#3,pipe_,CHANID(#4)): CLOSE#4
200 INPUT#3,Verz$(0)
210 FOR n=1 TO DIMN(Verz$)

220 IF EOF(#3) THEN EXIT n
230 INPUT#3,Verz$(n)
240 Verz$(n)=Verz$(n) (us+1 TO)

250 END FOR n
260 CLOSE#3
270 END DEFine TK2DIR

DIM file$(20,30)
TK2DIR file$
CLS: PRINT file$

Here only the first 20 files will be read into file$. NB. This would require substantial amendment to make
it search sub-directories also.

CROSS-REFERENCE

DATA_USE defines the default device; DUP, DDOWN and DNEXT allow you to move around the sub-
directory tree. PROGDS$ returns the default program device. DLIST prints all default devices.

11.3 DATAREG

Syntax DATAREG [number]number=0...3
Location TRAPS (DIY Toolkit Vol T)

This function returns the value of the Machine code data register number (default 0) following the com-
pletion of a MTRAP, QTRAP or BTRAP command.

Because the default data register number is 0: PRINT DATAREG will be 0 if no error occured during
the TRAP call or else the relevant error code.

Number will let you read the value of the relevant data register DO, D1, D2 or D3.
CROSS-REFERENCE

ADDREG allows you to read machine code address registers - see this for an example of DATAREG. See
MTRAP, QTRAP and BTRAP.

11.4 DATASPACE

Syntax DATASPACE (file$)
Location Turbo Toolkit

This function returns the amount of dataspace which has been set aside for the given file$. It is therefore
similar to FDAT and FILE_DAT.

11.3. DATAREG 217

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Default devices are not supported, however errors are not reported. The following error values may also
be returned by the function:

-2: The file is not executable

-3 or -6: Insufficient memory to open file

-7: File does not exist

-9: Device or file is being written to by something else.
-12: The device is valid, but the filename is not

-16: Bad or changed medium error

Example

[PRINT DATASPACE('winl_start_QD_exe')

CROSS-REFERENCE

DATA_AREA allows you to set the dataspace for a compiled program. See also F'DAT.

11.5 DATA_AREA

Syntax DATA_AREA size size=0...850
Location Turbo Toolkit

This command is only used by the Turbo compiler and should be located at the start of your program
before any active program lines.

The command specifies how much dataspace (size kilobytes) should be specified for the compiled pro-

gram.

This dataspace is used by a task for stack space and a temporary store whilst it is running.

Example

[1@ DATA_AREA 32

NOTE

This setting will override a previous TURBO_objdat directive in the same program. It will also be
overridden by a later TURBO_objdat directive in the same program.

CROSS-REFERENCE

DATASPACE allows you to find out how much dataspace has been set aside for a program. See COM-
PILED and TURBO_objfil for other compiler directives. TURBO_objdat is exactly the same.

218

Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.6 DATA USE

Syntax DATA_USE default_device
Location Toolkit II, THOR XVI

If you have Toolkit Il installed, all of the additional extensions connected with file or device handling and
all original SuperBASIC commands use the default device if no other device name is specified.

On a THOR XVI, some of the commands support default devices without Toolkit II.

The effect of the default devices would make LOAD proggy_bas work as LOAD flpl_proggy_bas (as-
suming that flp1_ is the default data device). The actual effect depends on the command being executed,
but generally the file will be looked for in three steps:

* Does the given file include a valid device? proggy_bas does not, ram1_proggy_bas does (ram1_).
If not, the parameter is assumed to be a filename and Toolkit II looks for a device on which it can
find it; so:

¢ Add the default data device to the filename. If that does not work, then:
* Add the default program device (PROGDS$) and try again.

The default program device is defined by PROG_USE, DATA_USE defines the default data device. See
PROG_USE as to the difference between the two defaults. The last two steps add the default devices to
the filename. These defaults can be interpreted as sub-directories.

Here, a sub-directory means that where a prefix is separated by underscores, this means that the file
concerned is held in the sub-directory specified by that prefix. Thus, winl_QUILL_readme_doc could
be readme_doc on a hard disk in the sub-directory QUILL or doc in the sub-subdirectory readme of
QUILL.

Sub-directories can be nested but the complete filename, including prefix must not be longer than 41
characters (note that if you are using a network device, for example nl_winl_proggy_bas, the maximum
permitted filename length is reduced to 39 in current versions of the QL device drivers).

Examples

DATA_USE flpl QUILL (or flpl_QUILL_)
DATA_USE MDV2_

DATA_USE winl_Psion_ARCHIVE

DATA_USE n2_raml_

DATA_USE mdv3_games_arcade_invaders_

NOTE 1
If there is no underscore at the end of DATA_USE’s parameter, it will be added automatically.
NOTE 2

A few programs do work with these sub-directories (if Toolkit II is present), but most do not. To make any
program work with them, you can fool them so that they believe that for instance FLP1_games_BOOT
is FLP1_BOOT or BOOT (default device FLP1_games): See the PTH_... and DEV_... commands.

NOTE 3

11.6. DATA_USE 219

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Toolkit IT sub-directories should not be mixed up with wild cards. DATA_USE flpl__bas makes WDIR
list all BASIC programs on floppy 1, but after PROG_USE flp1__bas, SAVE test will not save the current
program as flpl_test_bas but as flpl__bas_test.

NOTE 4

The default device is the current sub-directory on level-2 drivers.

NOTE 5

If you wish to turn off this feature, you can assign a null string (“”’) to DATA_USE.
NOTE 6

The default devices cannot exceed 32 characters (plus a final underscore) - any attempt to assign a longer
string will result in the error ‘Bad Parameter’ (error -15).

CROSS-REFERENCE

DATADS contains the default data device, DLIST lists all default devices. DDOWN, DUP and DNEXT
allow you to skip from sub-directory to sub-directory, climb up the tree and much more. PROG_USE
changes the default program device, and SPL_USE /DEST_USE the default destination device. See also
DEV_USE and PTH_ADD for path search.

11.7 DATE

Syn- DATE or

tax DATE (year,month,day,hour,minute,second)(Minerva & NewDate) or
DATE (year,month,day,hour,minute [,second])(SMS v2.57+)

Loca- QL ROM

tion

The function DATE returns the current date and time as the number of seconds since midnight on 1st
January 1961. For example, PRINT DATE$(DATE) is exactly the same as PRINT DATES$. The NewDate
version of this command is exactly the same as Minerva’s implementation.

NOTE

Due to the way in which the system clock is implemented on the QL (it is stored as a 32-bit unsigned
number), early versions of this function have problems with dates after 3.14:07 on 19th January 2029
(this would result in a number of seconds which needs to be stored in all 32 bits).

Although the SDATE and DATES$ functions treat the number correctly, the DATE function ignores the
most significant bit, meaning that it returns the wrong value for dates later than this.

The NewDate version of this function, as well as Minerva ROMs and under SMS, DATE treats the figure
as a 32-bit signed number. Although this allows the line PRINT DATE$(DATE) to work correctly for
all dates between 0.0:00 on 1st Jan 1961 and 6.28:15 on 6th Feb 2097, note that any dates after 3.14:07
on 19th January 2029 are returned as negative numbers, with earlier dates giving the largest negative
number.

MINERVA NOTE

DATE can accept the same six parameters accepted by SDATE. This enables you (for instance) to find
out the day on a given date without having to alter the QL clock: PRINT DAY$(DATE(1968,6,25,1,1,0))

220 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

This does also enable you to easily set the update date on a given file without altering the QL clock:

[SET_FUPDT \flp2_test_file, DATE(1990,11,1,0,0,0)

SMS NOTE

As from v2.57, DATE has been brought up to the same standard as on Minerva. However, the seconds
do not have to be specified and will default to zero if omitted.

CROSS-REFERENCE

SDATE will alter the QL clock. DAYS$ returns the day on the given date, DATES$ will return the current
date. 7_ON and T__START can be used for accurate stop-watches for timing programs.

11.8 DATES$

Syntax DATES [(date)] or
DATES$ (year,month,day,hour,minute [,second])(SMS v2.57+ only)
Location QL ROM

DATES holds the current system date and time as a string in the following format: yyyy mmm dd
hh:mm:ss.

1991 May 06 18:18:44 (example)

I I O O I N B

[| [| || || || ++---- 19 TO 21 (seconds)

I O I B I I 16 TO 17 (minutes)

| 11| || ++=-====----- 13 TO 14 Chour, 24h)
ol ssmmmmmmmm===== 10 TO 12 (day)

|| At 6 TO 8 (month as string)
et e 1 TO 4 (year)

If a parameter is used then DATES should return the date and time the given number of seconds af-
ter 1/1/1961, DATE$(DATE) is identical to DATE$ for any date before 3.14:07 on 19th Jan 2029 (see
ADATE). However, for times after this date, the number of seconds since 1/1/1961 is represented by a
negative number, calculated by number of seconds - 2147483648.

This means that to calculate a specified date after 3.14:06 on 19th Jan 2029, the following short function
is required (for non-Minerva ROMs and non-SMS machines only):

100 DEFine FuNction DATE20$(seconds)
110 offset="2147483648"

120 RETurn DATE$(seconds-offset)
130 END DEFine

This function is not needed on Minerva ROMs, with the NewDate version of DATE or under SMS - see
DATE for a full explanation.

Example 1

It may be useful to read the different parts of the date from DATES$ and reformat them for use in letters.

11.8. DATES$ 221

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

100 D$=DATES

110 year=D$(1 TO 4): day=D$(10 TO 12): D$=D$(6 TO 8)

120 month=(D$ INSTR "..JanFebMarAprMayJunJulAugSepOctNovDec")/3
130 DIM month$(12,9): RESTORE 150

140 FOR m=1 TO 12: READ month$ (m)

150 DATA "January","February",'"March","April",6 "May", "June","July"
160 DATA "August",'"September","October",'"November", "December"

170 ALTKEY "d", month$(month) & " " & day & ", " & year

Example 2

How to find the number of days between two dates:

100 datel=DATE(2032,3,30,10,0,0)

110 date2=DATE(2000,3,30,10,0,0)

120 PRINT DAYS_DIFF(date2,datel)

130 :

140 DEFine FuNction DAYS_DIFF(dyl,dy2)

150 LOCal offset,base_date,diff

160 offset='2147483648'

170 base_date=DATE(2029,1,19,3,14,7)

180 IF (datel>=0 AND date2>=0) OR (datel<0® AND date2<0)
190 IF datel>=date2:diff=datel-date2:ELSE diff=date2-datel
240 ELSE

250 IF datel<0

260 diff=(base_date-date2)+(datel+offset

270 ELSE

280 diff=(base_date-datel)+(date2+offset)

290 END IF

300 END IF

310 seconds_per_day=24*60%60

320 RETurn INT(diff/seconds_per_day)

330 END DEFine

NOTE 1

Parts of string functions cannot be obtained by slicing them directly. Expressions such as
DATES$(DATE)(1 TO 4) are only valid on Minerva ROMs or under SMS. On other ROMs, the value
of the function has to be copied to a variable before being sliced (as demonstrated in example 1).

NOTE 2
The QL’s system clock is limited in the range of dates it can cover - see ADATE.
MINERVA NOTE

Although on Minerva (v1.77 and later), DATES can now be directly sliced to extract the year for instance.
It is however, necessary to tell the operating system that you are not actually providing a parameter to be
converted into a date. This is achieved by using the following format to slice DATES$: DATES$ [([seconds])
[([start] TO [end])]] The following are therefore all valid on Minerva:

PRINT DATE$
PRINT DATE$ (DATE+86400)

(continues on next page)

222 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

TIMER$ = DATE$() (13 TO)
YEAR$ = (DATE$) (1 TO 4)
YEAR$ = DATE$(1E9)(TO 4)

Only the first two examples will work on other ROMs.
SMS NOTE

DATE$ works mainly as per Minerva, however from v2.57+, you can also supply five or six parameters
to DATES in common with DATE and SDATE.

CROSS-REFERENCE

Use SDATE and ADATE to set and alter the system time and date. DATE holds the current date as a
floating point number, DAY$ holds the weekday as a short string.

11.9 DAY$

Syntax ~ DAYS$ [(date)] or
DAYS$ (year,month,day,hour,minute [,second]) (SMS v2.57+ only)
Location QL ROM

DAY $ holds the current day as a three character string:

Sun Sunday

Mon Monday

Tue Tuesday

Wed Wednesday
Thu Thursday

Fri Sat Friday Saturday

If you provide a parameter, DAY$ will return the day of the given date (which is stated in seconds after
1/1/1961). DAY$(DATE) = DAY$.

NOTE

As with DATES$, you cannot slice DAY$ unless you have a Minerva ROM (version 1.77 or later) or SMS
- see DATES for further details.

SMS NOTE

In common with DATES, from v2.57, DAY$ will now accept five or six parameters as with SDATE and
DATE. You can also slice DAY$ (like on Minerva) - see DATES.

CROSS-REFERENCE

TRA and SET_LANGUAGE allow you to re-define the abbreviations used for the different days. DATE
holds the current system date (in seconds after 1/1/1961) as a floating point number, DATES$ as a string.

11.9. DAY$ 223

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.10 DAY%

Syntax DAY % [datestamp]
Location SMSQ/E

This function complements the DATE and DATE$ functions, by returning the day number corresponding
to the given datestamp, or current date, if no datestamp was given.

Examples

[PRINT DAY% (0)

will print the day part of the QL’s epoch, 1 for 1st of January

[PRINT DAY%

will print the current day number.
CROSS-REFERENCE
See DATE, YEAR%, MONTH%.

11.11 DBL

Syntax DBL
Location Beuletools

This function returns the control codes needed to switch on emphasised mode on an EPSON compatible
printer: DBL=CHR$(27)&”E”.

CROSS-REFERENCE
NORM, BLD, EL, ENL, PRO, SI, NRM, UNL, ALT, ESC, FF, LMAR, RMAR, PAGDIS, PAGLEN ..

11.12 DDOWN

Syntax DDOWN subdirectory
Location Toolkit II

This command adds the specified subdirectory to the default data device as a suffix.

If the default program device is the same as the default data device, then this will also be altered by
DDOWN.

If the default destination device is a directory device (ie. if it ends with an underscore), DDOWN also
alters this (whether or not it points to another drive).

224 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

winl_

winl_C_
winl_C_include_
winl_C_objects_
winl_BASIC_

winl QUILL_
winl_QUILL_letters_
winl_QUILL_translations
winl_secret_

The above could be a directory tree on a hard disk.

DATA_USE winl_ defines winl_ as the default directory device, so WDIR will list all of the files on
winl_.

DDOWN C will move into the C sub-directory, ie. DATADS is now winl_C_.

DDOWN include will make WDIR list all of the files on the hard disk which are prefixed by C_include_
(eg. winl_C_include_math_h).

NOTE 1
DDOWN does not check if there are any files with the given prefix which exist.
NOTE 2

DDOWN breaks with error -17 (error in expression) if the parameter is a resident keyword. So append an
underscore to the directory name, eg. DDOWN NEW_, or specify the parameter between quote marks
(eg. DDOWN ‘NEW’).

NOTE 3

The default devices cannot exceed 32 characters (plus a final underscore) - any attempt to extend them
beyond this will result in the error ‘Bad Parameter’ (error -15).

CROSS-REFERENCE

DUP moves up the tree, DNEXT skips from branch to branch. DATAD$ and DLIST can be used to find
out about the current sub-directory and default devices respectively.

11.13 DEALLOCATE

Syntax DEALLOCATE address
Location Turbo Toolkit

This procedure is very similar to RECHP in that it cancels a reservation of common heap memory.
However, the specified address must be an area of memory which had previously been set aside with
ALLOCATION.

WARNING

Prior to v3d27 this command could crash the system if the specified address had already been deallocated,
was an odd address, or had not been set aside with ALLOCATION.

CROSS-REFERENCE

11.13. DEALLOCATE 225

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

See ALLOCATION and RECHP.

11.14 DEBUG

Syntax DEBUG
Location Turbo Toolkit (v3.20+)

This is a compiler directive intended to precede a DEFine PROCedure or DEFine FuNction routine which
is used for debugging a program. The routine can be included or excluded from the program during
compilation using the DEBUG_LEVEL directive. Current versions of the TURBO parser do not support
this.

CROSS-REFERENCE
See DEBUG_LEVEL.

11.15 DEBUG_LEVEL

Syntax DEBUG_LEVEL level
Location Turbo Toolkit (v3.20+)

It is currently uncertain how this directive is used within TURBO compiled programs.
CROSS-REFERENCE
See DEBUG and the various TURBO_XXX commands starting with TURBO_diags.

11.16 DEFAULT

Syntax DEFAULT (expression, default_value)
Location BTool

The function DEFAULT usually simply returns the result of the given expression, unless the expression
contains undefined variables or does not produce a floating point number. In either of these latter cases
DEFAULT will return the given default_value.

Example

WRITE simply PRINTSs a text to a given channel. If the channel ch was not a valid number for any reason
then #1 is used:

100 DEFine PROCedure WRITE (ch, text$)
110 ch = DEFAULT(ch, 1)

120 PRINT#ch, text$

130 END DEFine WRITE

226 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERECE
TYPE. DEFAULTS and DEFAULT% work exactly like DEFAULT for string and integer expressions.

11.17 DEFAULT%

Syntax DEFAULT% (expression%o, default_value%)
Location BTool

CROSS-REFERENCE
See DEFAULT !

11.18 DEFAULTS$

Syntax ~ DEFAULTS$ (expression$, default_value$)
Location BTool

CROSS-REFERENCE
See DEFAULT'!

11.19 DEFAULT_DEVICE

Syntax DEFAULT_DEVICE devicename$
Location Turbo Toolkit

This command can be used in a similar way to PROG_USE and DATA_USE. It sets the default device
(up to 31 characters), for the following Turbo Toolkit commands:

* CHARGE,
EXECUTE,
EXECUTE_A,
EXECUTE_W
LINK_LOAD,
LINK_LOAD_A,
* LINK_LOAD_W.

It has no effect on any other commands.
Example

For a series of linked programs, you may want to use the following in a boot file:

11.17. DEFAULT% 227

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

[DEFAULT_DEVICE winl_PROGS_ }

Each program could call another by using:

[EXECUTE_W program2_task }

NOTE 1

Prior to v3d27, this command only supported 5 characters (although prior to v2.00 no error was reported
if more than 5 characters were used - the command simply ignored the additional characters).

NOTE 2

As from v1.26, you do not need to pass the device name as a string, for example:

[DEFAULT_DEVICE flpl_

CROSS-REFERENCE
PROG_USE.

11.20 DEFAULT_SCR

Syntax DEFAULT_SCR
Location Fn (v1.02 or later)

This function is really only useful on a Minerva ROM (although it will work quite happily on any other
ROM). It is sometimes useful when writing programs which are to run in Minerva’s dual screen mode to
discover which is the default screen. This is made necessary because all new windows which are opened,
and all MODE commands operate on the current default screen.

This therefore means that if a program is badly written, it is possible that whilst the program is running
the default screen is switched, giving the result that some of its windows are opened on scrQ and some
on scrl. PRINT DEFAULT_SCR will return O or 1 depending whether the default screen is scrO or scrl.
If Minerva is not in dual screen mode, or if Minerva is not present, 0 will be returned.

Example

A program to change the MODE of the current program safely (ie. it will only alter the MODE of the
screen in which the program is running):

100 This_JOB=DEFAULT_SCR

110 SET_MODE 8

120 :

200 DEFine PROCedure SET_MODE (alp)

210 IF RMODE(This_JOB)=alp:RETurn

220 IF This_JOB=DEFAULT_SCR:MODE alp:RETurn
230 MODE 64+32,-1:MODE alp:MODE 64+32,-1
240 END DEFine

CROSS-REFERENCE

228 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

MODE alters the mode of the current screen and job and can be used to alter the current default screen,
RMODE returns the mode of the given screen.

11.21 DEFine xxx

Syntax DEFine
Location QL ROM

This keyword forms part of the structures:
* DEFine PROCedure,
¢ DEFine FulNction,
* END DEFine.

As such, it cannot be used on its own within a program - this will cause a ‘bad line’ error, except under
SMS where it causes an error ‘Incorrect Procedure or Function Definition’.

CROSS-REFERENCE

Please refer to the individual structure descriptions for more details: DEFine FuNction, DEFine PRO-
Cedure and END DEFine.

11.22 DEFine FuNction

Syntax DEFine FuNction name[$ | %] [(item “[,item!]")]
Location QL ROM

This command marks the beginning of the SuperBASIC structure which is used to surround lines of
SuperBASIC code which forms an equivalent to a machine code function, which can be called from
within SuperBASIC and will return a value dependent upon the code contained within the structure. The
syntax of the SuperBASIC structure can take two forms:

DEFine FuNction name[$ | %] [(item [,item']")]: statement “[:statement]”:RETurn value
or

DEFine FuNction name[$ | %] [(item “[,item']")] “[LOCal var “[,var']*]" “[statements]” RETurn value
END DEFine [name]

When the specified function name is called, the interpreter will search the SuperBASIC program for the
related DEFine FuNction statement.

If arelated DEFine FuNction cannot be found, then the interpreter will search for a machine code function
of that name.

If the definition of name cannot be found, then the error ‘Not Found’ will be reported if name was defined
in the past, but the definition line has since been deleted.

11.21. DEFine xxx 229

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

If name has never been defined in the current SuperBASIC program, then it will be treated as a normal
variable and relevant error messages reported.

Under SMS in both instances the value 0 will be returned (name is treated as an undefined variable).

The method of searching for a FuNction means that if a SuperBASIC FuNction is defined with the same
name as a machine code one, the machine code one will no longer be available, and when the SuperBASIC
FuNCction is removed (for example with NEW), that keyword will no longer have any effect. If entered as
a direct command, even the in-line structure will not have any effect unless it is also called on the same
line, as the interpreter must jump to the relevant DEFine FuNction statement when the function is called.

If a DEFine FuNction statement appears in a program, if the code is not called, program flow will continue
from the statement following the next END DEFine - it is however good practice to keep all definition
structures towards the end of a program, and not to place the structure blocks in the middle of program
code, as this makes it very difficult to follow the flow of programs.

It is also good programming practice to make FulNctions self-contained and not to jump out of them using
GO TOs or GO SUBs (they can of course call other FuNctions and PROCedures).

To call the DEFine FuNction, you merely need to include its name in an expression. If however any
parameters are listed in the definition, you will need to pass the same number of parameters in brackets
after the name of the FuNction, separated by any valid SuperBASIC separator {ie. comma (,), semicolon
(;), backslash (\), exclamation mark (!) or TO }. You can also place a hash (#) before the parameters if
you so wish to indicate that it is a channel number.

If not enough parameters are supplied, the program will report ‘Error in Expression” when the missing
parameter is used, except under SMS where the missing parameters are treated as unset variables and will
therefore have the value O (if a numeric variable) or else contain an empty string (if a string variable).

If however, too many parameters are passed, the extra parameters are ignored. Parameters are passed
by reference which means that the list of items in the DEFine FuNction statement are deemed LOCal to
that definition - this means that any previous values of the items are stored whilst the definition block is
active. What is more, the type of each item does not actually matter - they assume the type of the passed
parameter. For example, the following short program will work without any problems:

10 a$=QUERY$('What is your name')
20 DEFine FuNction QUERY$(x)

30 INPUT (x)!b$

40 RETurn b$

50 END DEFine

Note though that the name of the FuNction must end with the correct variable type, ie. $ if a string is to
be returned, or Y% if an integer is to be returned (although see note 7 below).

One of the results of passing variables by reference is that if the item is altered within the definition block,
if a variable is passed as a parameter, the variable itself will also be altered (although see note 4). This
can be shown with the following short program:

100 x=10

110 y=Square(x)

120 PRINT x;'*2=";y

130 DEFine FuNction Square(za)
140 za=za*za

150 RETurn za

160 END DEFine

230 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

This can be avoided by either assigning the item to a temporary variable and then using the temporary
variable instead (see the example below), or by passing the variable as an expression, by placing it inside
brackets; for example by replacing line 110 with the following:

[1 10 y=Square((x)) }

Having passed the necessary parameters to the Function, you can then use each item inside the definition
block as normal.

Example

A short program to calculate the length of the hypotenuse in a triangle, given the length of its two other
sides:

100 MODE 4: WINDOW 448,200,32,16: SCALE 100,0,0: PAPER 0 105 CLS: INK 7
110 AT 2,25: UNDER 1: PRINT'Pythagoras calculator': UNDER 0
120 INPUT \\'Enter length of base of triangle:'!base

130 INPUT \\'Enter height of triangle:''height

140 hypotenuse=Pythag(base,height)

150 INK 4: LINE 50,20 TO 100,20 TO 100,70 TO 50,20

160 INK 7: AT 16,35-LEN(base): PRINT base

170 AT 11,46: PRINT height

180 AT 11,31-LENChypotenuse): PRINT hypotenuse

190 :

1000 DEFine FuNction Pythag(x,y)

1010 LOCal x1,yl

1020 x1=x*x:yl=y*y

1030 RETurn SQRT(x1l+yl)

1040 END DEFine

See what happens if you replace lines 1000 to 1040 with the following:

1000 DEFine FuNction Pythag(x,y)
1010 x=x*xX:y=y*y

1020 RETurn SQRT(x*y)

1030 END DEFine

NOTE 1

A FuNction must return a value under all circumstances. If the END DEFine is reached without a value
having been returned then SuperBASIC will report an ‘error in expression’ (-17), specifying the error as
having occured at the line containing the END DEFine.

Under SMS the error ‘RETurn not in PROCedure or FuNction” will be reported instead.
NOTE 2

On pre JS ROMs, you could not define new FuNctions with names which had already been used in the
same program.

NOTE 3

On pre MG ROMs, any more than nine parameters may upset the program, corrupting it by replacing
names with PRINT towards the end of a program. This can however be circumvented by increasing the
size of the Name Table by 8 bytes for each name (plus a little more for luck), using the line:

11.22. DEFine FuNction 231

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

[CALL PEEK_W(282)+36,N

NOTE 4

Although a sub-set of a simple string is an expression and therefore will not be altered within a function,
a sub-set of a DIMensioned string is not treated as an expression and will therefore be altered!!

NOTE 5

Recursive FuNctions (ie. FuNctions which call themselves, or call another PROCedure or FuNction
which in turn calls the original FuNction) are allowed (up to 32767 recursions under Minerva). They do
however gobble up memory at an amazing rate and can cause problems in compiled SuperBASIC due
to the fact that they need an ever-increasing amount of stack space. They should be avoided wherever
possible because they are also very slow.

On SMS, if you try to use recursive functions too much, you may end up with the rather esoteric error
‘program structures nested too deeply, my brain hurts’! It is however, more likely that you will end up
with an ‘Out of Error’ memory and not be able to do anything else (not even NEW).

NOTE 6

The LOCal statement (if used) must appear as the next statement following DEFine FuNction, otherwise
an error will be reported. Under SMS if this is not the case, the error ‘Misplaced LOCal’ will be reported.

NOTE 7

SMS and QLiberator do not seem to mind if you do not end the FuNction name with a $ symbol when a
string is to be returned and the FulNction will work perfectly well in the compiled version of the program.
However, this should be avoided as the program will not work on other QL. ROMs and also cannot be
compiled with TURBO. For example, take the following program, which works under SMS or when
QLiberated.

For other ROMs and TURBO, rename the function to GETSUBDIRS$:

100 file$='nl_win2_test_bas'

110 test$=GETSUBDIR(file$)

295 :

300 DEFine FuNction GETSUBDIR(s$)

310 IF s$(LEN(s$))<>'_':s$=s$&'_ "'

320 IF LEN(s$)=5:IF s$(4) INSTR '1234567890':RETurn ''
322 REPeat t_loop

325 root=1

330 FOR x=1 TO LEN(s$)

340 IF s$(x)="_"

350 IF x=3:IF s$(2) INSTR '1234567890':root=3
360 IF x=5:IF s$(4) INSTR '1234567890':root=5
370 IF x>5:IF root=1:s$=PROGD$ & s$:NEXT t_loop
380 IF x=8:IF root=3:root=8

390 END IF

400 NEXT x

410 IF root=1:s$=PROGD$ & s$:NEXT t_loop

415 as$=s$

420 IF root=3:s%$=s$(1 TO 3) & PROGD$

425 IF root=3:IF LEN(as$)>3:s$=s$&as$(4 TO):NEXT t_loop:ELSE EXIT t_loop
430 END FOR x

(continues on next page)

232 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

435 EXIT t_loop
440 END REPeat t_loop
445 as$=s$

460 RETurn s$(1 to root)
470 END DEFine

NOTE 8

Do not try to DEFine one FuNction inside another - although this is actually allowed under most imple-
mentations, compilers presume that an END DEFine should be placed before the start of the next DEFine
FuNction and it makes programs very difficult to follow.

Under SMS the error ‘Defines may not be within other clauses’ will be reported when you try to RUN
the program.

NOTE 9

On Minerva pre v1.96, if you try to link in machine code procedures or functions from inside a DEFine
PROCedure or DEFine FuNction block, problems could occur after a CLEAR command.

WARNING 1

On most ROMs (at least on JM, MGx, AH and Minerva up to v1.97), a single line recursive FuNction
will not respond to the break key. For example:

[1@ DEFine FuNction Root(a): a=2”Root(a) }

The solution for all ROMs (or all those tested so far!) - insert an additional colon (:) as in:

[1@ DEFine FuNction Root(a)::a=22Root(a)]

This is fixed on SMS v2.59+.
WARNING 2

All ROMs also suffer from this problem on multiple line recursive FuNctions, where there is no active
program line between the definition line and the line which calls the FuNction. For example:

10 DEFine FuNction Root(a)
20 a = 27Root(a)
30 END DEFine

The solution here is to insert another active program line at line 15 - for example:

= |

or:

[15 PRINT }

Do however note that a REMark, DATA or LOCal line at line 15 will not be sufficient as these are not
active commands. Again, this is fixed under SMS v2.59.

WARNING 3

11.22. DEFine FuNction 233

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Except under SMS, if you assign the same name to a FuNction as a resident command, not only will you
no longer be able to use the resident command, but it may crash the system!

SMS NOTES

In v2.59+, if you fail to create a SuperBASIC function correctly, the error INCOMPLETE DEFine ap-
pears (for example if you omit the END DEFine). Prior to v2.89 SMS would only allow a single line
DEFine FuNction if END DEFine appeared on the same line. However, although v2.89 would allow
a single-line DEFine FulNction without an END DEFine , it would report an error if the END DEFine
existed!! Thankfully, v2.90+ fixes this problem, allowing both.

CROSS-REFERENCE

END DEFine tells the interpreter where the end of the definition block can be found. RETurn allows you
to return the result of the Function. DEFine PROCedure is very similar. LOCal allows you to assign
temporary variables with the same name as variables used outside the definition block. PARUSE and
PARTYP allow you to examine the type of the parameters which are passed to the definition block.

11.23 DEFine PROCedure

Syntax DEFine PROCedure name [(item “[,item']")]
Location QL ROM

This command marks the beginning of the SuperBASIC structure which is used to surround lines of
SuperBASIC code which forms an equivalent to a machine code SuperBASIC procedure, which can be
called from within SuperBASIC as a sub-routine. This forms a powerful alternative to GO SUB and
helps to make SuperBASIC programs very easy to read and de-bug.

The syntax of the SuperBASIC structure can take two forms:

DEFine PROCedure name [(item “[,item']”)]: statement “[:statement]"
or

DEFine PROCedure name [(item “[,item']”)] “[LOCal var “[,var']"]* *[statements]” [RETurn] END
DEFine [name]

When the specified procedure name is called, the interpreter then searches the SuperBASIC program for
the related DEFine PROCedure statement.

If this cannot be found, then the interpreter will look for a machine code procedure of that name.

If the definition of name cannot be found, then the error ‘Not Found’ will be reported if name was defined
in the past, but the definition line has since been deleted.

If name has never been defined in the current SuperBASIC program, then the ‘Bad Name’ error will be
reported. As with FuNctions, the method of searching means that a machine code PROCedure can be
overwritten with a SuperBASIC definition and then later lost. Parameters and items are treated in the
same manner as with DEFine FuNction. However, please note that calling parameters should not appear
in brackets after the name (unless you intend to pass them otherwise than by reference!).

234 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

When called, all of the SuperBASIC code within the definition block will be executed until either an
END DEFine or RETurn is found, in which case execution will return to the statement after the calling
statement. In contrast however, to DEFine FuNction, there is no need for a PROCedure definition block
to contain a RETurn statement.

Strictly a PROCedure cannot return a value - however due to the nature of the parameters being passed
by reference (see DEFine FuNction), this is possible.

Example

A simple demonstration program which highlights the fact that a PROCedure or FuNction can actually
be recursive (ie. call itself), and also highlights the effect of passing parameters by reference - keep an
eye on the values in #0:

100 radius=50:height=125:CLS:CLS#0

110 Rndom_circle radius, Cheight), 100
120 AT #0,0,0:PRINT#0,radius,height, 100
125 :

130 DEFine PROCedure Rndom_circle(x,y,z)
140 INK RND(7):FILL RND(1)

150 CIRCLE RND (y),RND(z),x

160 FILL O

170 AT #0,0,0:PRINT#0,x,y, z:PAUSE

180 x=x-RND(5):y=y-1l:z=z+1

190 IF x<1:RETurn

200 Rndom_circle (x),y,z

210 END DEFine

NOTE 1

On pre JS ROMs, you could not define new PROCedures with names which had already been used in the
same program.

NOTE 2

On pre MG ROMs, any more than nine parameters may upset the program, corrupting it by replacing
names with PRINT towards the end of a program. This can however be circumvented by increasing the
size of the Name Table by 8 bytes for each name (plus a little more for luck), using the line:

[CALL PEEK_W(282)+36,N

NOTE 3

Recursive PROCedures (ie. PROCedures which call themselves, or call another PROCedure or FuNction
which in turn calls the original PROCedure) are allowed (up to 32767 recursions on Minerva). They do
however gobble up memory at an amazing rate and can cause problems in compiled SuperBASIC due
to the fact that they need an ever-increasing amount of stack space. They should be avoided wherever
possible. On SMS, if you try to use recursive functions too much, you may end up with the error ‘program
structures nested too deeply, my brain hurts’! It is however, more likely that you will end up with an ‘Out
of Memory’ error and not be able to do anything else (not even NEW).

NOTE 4

The LOCal statement (if used) must appear as the next statement following DEFine PROCedure, other-
wise an error will be reported. Under SMS if this is not the case, the error ‘Misplaced LOCal’ will be
reported.

11.23. DEFine PROCedure 235

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE 5

Do not try to DEFine one PROCedure inside another - although this is actually allowed under most
implementations, compilers presume that an END DEFine should be placed before the start of the next
DEFine PROCedure and it makes programs very difficult to follow. Under SMS the error ‘Defines may
not be within other clauses’ will be reported when you try to RUN the program.

WARNING 1

As with DEFine FuNction problems do exist with recursive PROCedures which prevent the Break key
from working. These problems are fixed by SMS v2.59+

WARNING 2

Except under SMS, if you assign the same name to a PROCedure as a resident command, not only will
you no longer be able to use the resident command, but it may crash the system!

SMS NOTES

From v2.59, as with DEFine FulNction, SMS insists that all PROCedures have an END DEFine statement,
even if they are on a single line. If this does not exist, or there is something else wrong with the syntax,
then the error ‘Incomplete DEFine is reported. The same problems exist in versions prior to v2.90 as
with DEFine FuNction for in-line code.

CROSS-REFERENCE

Please see DEFine FulNction! Also see END DEFine. Look at the example for SWAP which provides a
more practical use of recursive PROCedures.

11.24 DEFINED

Syntax DEFINED (anything)
Location BTool

SuperBASIC is different from other BASIC dialects in that it does not assign a default value to newly
introduced but still unset variables (except on SMS which assigns the value Zero to an unset numeric
variable and an empty string to an unset string).

This makes it possible for a program to detect if a variable has been properly initialised - an ‘error in
expression’ (-17) is reported if you try to carry out operations on unset variables.

The function DEFINED takes any parameter, no matter what type it is, provided that it is a constant or a
variable. DEFINED returns 0 if the parameter was a variable but unset and 1 for defined variables and
constant expressions.

NOTE
This function does not work on SMS

CROSS-REFERENCE

CLEAR makes all variables undefined. PRINT writes asterisks if unset variables are required to be
printed. TYPE returns 1, 2 or 3 for undefined variables. See also UNSET .

236 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.25 DEG

Syntax DEG (angle)
Location QL ROM

This function is used to convert an angle in radians into an angle in degrees (which is the system more
readily used by humans). Although this will work for any value of angle, due to the very nature of angles,
angle should be in the range 0. ..2*PI, which will return a value in the range 0...360.

CROSS-REFERENCE

See RAD and the Mathematics section of the Appendix.

11.26 DELETE

Syntax DELETE file or
DELETE file “[file']" (THOR XVI)
Location QL ROM, Toolkit IT

The command DELETE removes the stated file from a medium (it actually only deletes its entry from the
directory map, which thus allows these files to be recovered if necessary, with a utility such as the Public
Domain RETTUNGE_exe, provided that nothing has been written to the disk since it was deleted).

The filename must include the name of the medium, unless you have Toolkit II installed, which alters the
command so that the default data device is recognised (see DATADS$).

The command does not report an error if a file was not found! However, if an invalid device is used and
Toolkit II is not present, an error will be reported.

The THOR XVI variant of this command follows the original proposal for this command, allowing you
to delete several files at the same time by listing each filename, eg:

[DELETE flpl_boot,flpl_main_bas }

This latter syntax is accepted on non-Minerva systems, but only the first file will be deleted. If Toolkit II
is present, error -15 (bad parameter) is reported.

Example

DELETE mdv2_PROG_bak
DELETE PROG_bak

CROSS-REFERENCE
WDEL deletes several files interactively. WDEL_F, WDIR and TTEDELETE are also worth a look.

11.25. DEG 237

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.27 DEL_DEFB

Syntax DEL_DEFB
Location Toolkit II

QDOS stores information concerning devices and files (and in relation to files, even their contents) in
areas of memory known as ‘slave blocks’ (memory permitting). These slave blocks can be very useful,
since when the computer tries to access the same device (or file) again, the access is much quicker, since
the relevent details can be loaded from memory, rather than the device - the computer only need look at
the device to make certain that it is the same device (or disk) as was previously used.

There are three problems with the use of these slave blocks:

* The initial device access is slowed down as all of the information is effectively read twice - once
into memory and once into the program.

* Some disk drives do not support a means of checking if a disk has been amended on a second
computer since the last access - meaning that the old version of the information stored in the slave
blocks can be loaded instead

* On some hard-disks, the hard-disk itself may not have been altered (you may need to use a com-
mand such as WIN_FLUSH).

The command DEL_DEFB can assist with the second of these problems, by deleting all of the slave blocks
from memory. Another problem which can be assisted by DEL_DEFB is ‘heap fragmentation’. To keep
memory tidy, there is an internal list which says where to find which pieces of information. These lists
reserve memory and can lead to the phenomenon known as heap fragmentation. The following example
demonstrates this:

PRINT FREE_MEM
a=ALCHP (10000)
b=ALCHP (10000)
PRINT FREE_MEM
RECHP a

PRINT FREE_MEM

First, we noted how much memory is free and then we reserved 20000 bytes of memory in two steps. So
there are now 20000 bytes of free memory less. Now, we release the first 10000 bytes and look again at the
free memory: it has not actually increased as much as you would have thought! Actually, the memory
isn’t lost. FREE_MEM returns the largest piece of free memory in RAM. A further ALCHP(10000)
would not reduce FREE_MEM in the above example.

Maybe an illustration would make memory management clearer:

free memory |======mem=mmmmmm=mee==== |

ALCHP (10000) | BAHBHH | - ————————— oo |
ALCHP (10000) | #E#BHY | BEBHRH | - ————————— |
release first block |======|######|-—--————————- |
Key:

238 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

-- : free memory (returned by FREE_MEM)
: reserved memory
== : free memory (used for ramdisks)

The above-mentioned internal list allocates a small piece of memory which may reduce the largest piece
of free RAM available to certain operations which draw large chunks of memory at a time, causing
them to fail (out of memory), even though there would be enough memory had the ‘drive definition
blocks’ not fragmented it. The command DEL_DEFB clears these blocks, thus helping to relieve the
heap fragmentation.

NOTE

Because DEL_DEFB deletes the slave blocks, future device accesses will be slowed!
WARNING

Do not use DEL_DEFB if any channels are open to a file.

CROSS-REFERENCE

RECHP, CLCHP, RELEASE, FREE_MEM, FREE. Dynamic RAM disks use effectively all of the free
memory. FORMAT lists other ways of causing heap fragmentation.

11.28 DESPR

Syntax DESPR (bytes)
Location DESPR

The function DESPR uses an un-documented system call to try and release a given number of bytes from
the resident procedure memory on the QL. It is unknown how the ROM tries to decide which bytes to
release.

WARNING

The system call used only works properly on Minerva ROMs and can crash some versions of the QL.
This function should not be used!!

CROSS-REFERENCE

Use RESPR to allocate resident procedure memory, and do not try to release it at a later stage. Use
ALCHP and RECHP to allocate areas of memory which may be later released.

11.29 DESTDS$

Syntax DESTD$
Location Toolkit IT

This function always contains the current default destination device, which is an unofficial QDOS stan-
dard and supported by the Toolkit II variants of COPY, WCOPY, WREN, and SPL.

11.28. DESPR 239

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

When Toolkit II is initiated, DESTD$="SER’. The default device means that if no other device is stated
for the destination file, this device will be used. The default destination device will also be consulted if
a device name is supplied but the given file cannot be found on that device.

For example, assuming that DESTD$="flp2_" and DATADS$="ram1_’, if you enter COPY example_txt,
then the file ram1_example_txt will be copied to flp2_example_txt. This idea can be extended to use
prefixes as sub-directories. Sub-directories are separated by underscores, DESTD$ always ends with an
underscore.

CROSS-REFERENCE
DEST USE and SPL_USE both define the default destination device.

DUP, DDOWN and DNEXT allow you to move around the sub-directory tree. PROGDS$ returns the
default program device, DATADS returns the default data device. DLIST prints all default devices.

11.30 DEST_USE

Syntax DEST_USE name
Location Toolkit II

This command sets the current default destination device to the named directory device. An underscore
will be added to the end of the name if one is not supplied. If you supply name as an empty string, this
will turn off the default destination directory.

Example

[DEST_USE winl_Quill]

NOTE 1
DEST_USE will overwrite the default set with SPL._USE.
NOTE 2

The default devices cannot exceed 32 characters (plus a final underscore) - any attempt to assign a longer
string will result in the error ‘Bad Parameter’ (error -15).

CROSS-REFERENCE
Please see DESTD$ and SPL_USE.

11.31 DEMO

Syntax DEMO n
Location Shape Toolkit

As the name suggests, this is only a demonstration. Try the command DEMO 1 and see what happens.
Use only odd parameters if you want the screen to be restored to its previous status when the demonstra-
tion finishes.

CROSS-REFERENCE

240 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

The function ODD checks if a number is odd or even.

11.32 DET

Syntax DET [array]
Location Math Package

The function DET returns the determinant of a square matrix, meaning that the array (or the part passed)
must have two dimensions of equal size, otherwise DET breaks with error -15 (bad parameter).

The array needs to be a floating point array, any other type (including integer arrays) will also produce
error -15.

If no parameter is given, DET will use the array that has been supplied to the previously executed MAT-
INV command as its source. If however, this command has not yet been used, DET without a parameter
will stop with the error -7 (not found).

You may ask what a determinant is? Briefly speaking, it represents a square matrix by a single number
so that important characteristics of the matrix can be deduced from it, eg. the matrix cannot be inverted
if the determinant is zero.

Example

We will try to approach the eigenvalues of a matrix and list them all (the so-called “spectrum” of a matrix).
Due to approximation errors and the simple algorithm employed, there can be more output values than
there should be. This can be improved by increasing estep in line 130, but at the cost of speed.

The range of expected eigenvalues (evall to eval2) is adapted to the chosen matrix whose random ele-
ments only range between 0 and 1. There is no limit for the positive size n of the matrix, n=0 is allowed
but does not make sense because CHARPOLY becomes constant:

100 CLEAR: RANDOMISE 10: PRINT "Eigenvalues:"
110 n=2: DIM matrix(n,n), one(n,n)

120 MATRND matrix: MATIDN one

130 :

140 evall=-1: eval2=1: esteps=200

150 eprec<(eval2-evall)/estep)

160 c1=CHARPOLY(matrix,evall): count%=0

170 FOR eval=evall+eprec TO eval2 STEP eprec
180 c2=CHARPOLY(matrix,eval)

190 IF SGN(c1l)<>SGN(c2) THEN PRINT eval

200 cl=c2: count¥%=count%+1

210 AT#0,0,0: PRINT#0,INT(100*count%/esteps);"%"
220 END FOR eval

230 PRINT "absolute fault:"!eprec

240 :

250 DEFine FuNction CHARPOLY(matrix,lambda)
260 LOCal diff(n,n),i

270 FOR i=1 TO n: one(i,i)=1ambda

280 MATSUB diff,matrix,one

(continues on next page)

11.32. DET 241

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

290 RETurn DET(diff)
300 END DEFine CHARPOLY

In practice, a Newton iteration algorithm (or better) would be used.
CROSS-REFERENCE

MATINV co-operates closely with DET, so that for each of them a matrix parameter can be omitted if
the other function has been called before; MATINV calls DET internally. In the example, we used the
MATRND, MATIDN, SGN and MATSUB keywords which are all part of the same Toolkit.

11.33 DEV_NAME

Syntax device$ = DEV_NAME((address)
Location DJToolkit 1.16

This function must be called with a floating point variable name as its parameter. The first time this
function is called, address must hold the value zero, on all other calls, simply pass address unchanged
back. The purpose of the function is to return a directory device name to the variable device$, an example
is worth a thousand explanations.

1000 addr = 0

1010 REPeat loop

1020 PRINT "<" & DEV_NAME(addr) & ">"
1030 IF addr = O THEN EXIT loop: END IF
1040 END REPeat loop

This small example will scan the entire directory device driver list and return one entry from it each time
as well as updating the value in ‘addr’. The value in addr is the start of the next device driver linkage
block and must not be changed except by the function DEV_NAME. If you change addr and then call
DEV_NAME again, the results will be very unpredictable.

The check for addr being zero is done as this is the value returned when the final device name has been
extracted, in this case the function returns an empty string for the device. If the test was made before the
call to DEV_NAME, nothing would be printed as addr is zero on entry to the loop.

Please note, every QL has at least one device in the list, the ‘MDV’ device and some also have a device
with no name as you will see if you run the above example (not the last one as it is always an empty string
when addr becomes zero).

The above example will only show directory devices, those that can have DIR used on them, or FORMAT
etc, such as WIN, RAM, FLP, FDK etc, however, it cannot show the non-directory devices such as SER,
PAR (or NUL if you have Lightning), as these are in another list held in the QL.

Note

From version 1.14 of DJToolkit onwards, there is a function that counts the number of directory devices
present in the QL. See MAX_DEVS for details.

CROSS-REFERENCE
MAX_DEVS.

242 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.34 DEVICE_SPACE

Syntax DEVICE_SPACE ([#]channel)
Location Turbo Toolkit

This function returns the number of unused bytes on the medium (disk, hard disk or microdrive) to which
the specified channel is open. The channel must relate to an open file on a directory device (otherwise
junk figures may be returned).

Example

A short routine which saves an area of memory to disk, with error checking.

100 OPEN #3,'CON_448X200A32X16'

110 CLS #3

120 FILE$='FLP1_MEMORY_BIN'

130 FILE_SIZE=20000: ADDR=ALCHP(FILE_SIZE)

140 REPEAT LOOP

150 INPUT #3,'ENTER FILENAME TO SAVE MEMORY TO : [DEFAULT='; (FILE$);']';F$
160 IF F$='': F$=FILE$: ELSE FILE$=F$

170 OPEN_STATE=DEVICE_STATUS(2,FILES$)

180 IF OPEN_STATE=-20: PRINT #3, 'DEVICE IS READ ONLY': NEXT LOOP
190 IF OPEN_STATE=-11: PRINT #3, 'DEVICE IS FULL': NEXT LOOP

200 IF OPEN_STATE=-8

210 INPUT #3,'DO YOU WANT TO DELETE EXISTING FILE ? (Y/N)';AS$
220 IF A$=="Y'

230 CH=FOP_IN(FILES)

240 ELSE

250 PRINT #3;'ENTER NEW FILENAME': PAUSE 100

260 NEXT LOOP

270 END TF

275 ELSE

277 CH=FOP_NEW(FILES$)

280 END TIF

300 IF CH<O:REPORT #3: NEXT LOOP

305 FREE_SPACE=DEVICE_SPACE (#CH)

307 IF OPEN_STATE=-8: FREE_SPACE=FREE_SPACE+FLEN (#CH)
310 IF FREE_SPACE>=FILE_SIZE: PRINT#3, 'SAVING FILE': EXIT LOOP
320 PRINT #3; 'NOT ENOUGH ROOM ON DEVICE'

330 CLOSE #CH

335 IF OPEN_STATE<>-8: DELETE FILE$

340 END REPEAT LOOP

350 CLOSE #CH

355 DELETE FILES$

360 SBYTES FILES$,ADDR,FILE_SIZE

NOTE

Current versions of this fuction have difficulty returning the amount of space on large capacity drives,
such as hard disks. It assumes that a sector contains 512 bytes and will only cope with a maximum of
65535 sectors.

11.34. DEVICE_SPACE 243

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE

See FOPEN and DEVICE_STATUS for more details on accessing directory devices. DEVTYPE finds
out what type of device a channel is looking at.

11.35 DEVICE_STATUS

Syntax DEVICE_STATUS ([open_type,] filename$)
Location Turbo Toolkit

This function returns a value representing the current status of the device to which the specified filename$
points and can be used to check if an error will be generated when you try to access the given file. The
open_type defaults to 2 and can take the following values:

e -1: Use for OPEN or OPEN_NEW
* 0: Use for OPEN

* 1: Use for OPEN_IN

e 2: Use for OPEN_NEW

If an open_type of 2 is specified, then the function will try to create the file and return an error code if
this is not possible. The temporary file is deleted in all cases.

If an open_type of 0 is specified then the function will try to open the file for exclusive two way access
and report any errors.

If an open_type of 1 is specified the function opens the specified file for read only access, which means
that it does not care if a channel is already open to the file from another program.

Finally, if an open_type of -1 is specified, the function will first of all try to open a channel to the file,
returning -8 if it already exists and can therefore be read.

If it does not already exist, the function will try to create a temporary file and then read back from it
to check that the device can be written to and read from, reporting any errors which are found. Any
temporary file is then deleted by the function. This enables IN USE and bad or changed medium errors
can be detected!

If the open is successful the amount of free space on the drive is returned akin to DEVICE_SPACE,
otherwise a standard QDOS error code is returned.

NOTE 1

Current versions of this fuction have difficulty returning the amount of space on large capacity drives,
such as hard disks. It assumes that a sector contains 512 bytes and will only cope with a maximum of
65535 sectors.

NOTE 2

Due to a bug in the QL’s hardware, it is impossible to check if a microdrive is read only. In this instance,
you will get a bad or changed medium error code (-16).

CROSS-REFERENCE
See DEVICE_SPACE for an example.

244 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.36 DEVLIST

Syntax DEVLIST [#channel]
Location TinyToolkit

This command lists all directory devices recognised by the system to the specified channel. A directory
device is one which contains files. The default list channel is #1.

NOTE

If device names appear in the listing more than once, this means that more than one device driver is
loaded. This normally happens with ramdisks (“RAM”).

CROSS-REFERENCE

Directory devices may be renamed with CHANGE (this will have a corresponding effect on DEVLIST),
whilst any device can be renamed using QRD (this will have no effect on DEVLIST). Compare DLIST .

11.37 DEVTYPE

Syntax DEVTYPE [(#channel)]
Location SMS

This function returns a value to indicate the type of device the specified channel (default #0) is connected
to. At present, you should only look at the first three bits of the return value, ie:

x%=DEVTYPE (#channel)
x%=x% && 3

The value returned is:
* 0 - a purely serial device
* 1 - ascreen device
» 2 - afile system device (ie. it supports file positioning)

Any other values indicate that there is something wrong with the channel (if the value is >2) otherwise,
a negative value means that the channel is not open.

NOTE

Prior to v2.71, DEVTYPE would return ‘End of File’ error if the specified channel was attached to a file
and the file pointer was at the end of the file.

CROSS-REFERENCE
OPEN, OPEN_IN, OPEN_NEW and OPEN_OVER allow you to open channels.

11.36. DEVLIST 245

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.38 DEV_LIST

Syntax DEV_LIST [#channel]
Location DEYV device, GOLD CARD, ST/QL, SMS

This command lists all DEV_USE definitions to the given channel, default #1. You can also use a public
domain utility, DEV Manager, to set and list DEV definitions on a per-program basis.

Example

DEV_LIST for example 4a of DEV_USE prints:

DEV1_ FLP2_SOURCES_ -> DEV4_

DEV2_ FLP1_COMPILER_ -> DEV3_
DEV3_ FLP1_COMPILER_UTILS_ -> DEV4_
DEV4_ RAM1_ -> DEV5_

DEV5_ FLP1_SOURCES_OTHER_ -> DEV1_

CROSS-REFERENCE
DEV_USE, DEV_USES$, DEV_NEXT Compare DEVLIST and DLIST .

11.39 DEV_NEXT

Syntax DEV_NEXT (n) n=1..8
Location DEYV device, GOLD CARD, ST/QL, SMS

The function DEV_NEXT returns the number of the next DEVice where a given DEV will look on next
if a file was not found. If a DEV is not defined or has the search option disabled, DEV_NEXT returns
zero (0), otherwise an integer from 1 to 8 will be returned.

Example

A program which lists a search path:

100 INPUT "Which DEV device (1..8)?"In

110 IF n<l OR n>8 THEN RUN

120 DIM checked%(8)

130 REPeat SPate

140 IF NOT DEV_NEXT(n) OR checked%(n): EXIT SPate
150 PRINT DEV_USES$(n)

160 checked%(n)=1

170 n=DEV_NEXT (n)

180 END REPeat SPate

If you understood this example, then you will know exactly how the DEV device works.
CROSS-REFERENCE
DEV_USES$, DEV_LIST, DEV_USE

246 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.40 DEV_USE

Syntax ~ DEV_USE n.drive [,next_dev] n=1..8 or
DEV_USE [n](SMS v2.70+ only) or
DEV_USE [drivetype]

Loca- DEYV device, GOLD CARD, ST/QL, SMS

tion

The DEV device is a universal method of driving devices (MDV, FLP, WIN, MOS, ROM), and thus
allows old software to recognise default devices/ sub-directories as well as simplifying the use of them.
It also introduces fully programmable search paths to QDOS.

There are eight separate DEV drives available, DEV1_ to DEVS_, each of which can point to a real drive
and directory defined with DEV_USE.

The first parameter of the command is the number of the DEV device to be defined.
The second specifies what DEVn_ represents.

There is no default and nothing is predefined, but DEV_USE permits only valid drives and directories.
Any default devices (DATADS$, PROGDS etc) are not recognised so the full directory name (including
the drive name) must be stated.

There is one special second parameter, the empty string, which removes the definition of the given DEV
device; there is no error reported if it was not defined.

The second syntax (SMS v2.70+) also allows you to remove a definition by simply passing the number
of the DEV device to delete.

Example 1

DEV_USE 1,flpl_
DEV_USE 2,flpl_SUBDIR_
DEV_USE 3, flpl_SUBDIR
DEV_USE 4

Each time that DEV1_ is accessed, the actual drive which will be accessed is FLP1_, eg. DIR DEV1_
lists a directory of FLP1_.

However, LOAD DEV2_BOOT will load FLP1_SUBDIR_BOOT but especially note that LOAD
DEV3_BOOT would try to load FLP1_SUBDIRBOQOT (that’s not a typing error).

You can therefore see the importance of specifying the underscore! Whereas DATA_USE always adds
an underscore to the supplied parameter if there one was not specified, DEV_USE does not. Please pay
attention to this difference!

DEV_USE’s third parameter is optional and ranges from O to 8. This is used to specify another DEV
device which should be tried if DEVn_ was accessed for a given file, but the file was not present on that
DEV device.

In all other cases: if the drive in general is currently inaccessible (eg. open for direct sector read/write),
the file is damaged or already in use, the DEV device will stop with the appropriate error message, and
behave as normal in such situations.

Example 2

11.40. DEV_USE 247

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

DEV_USE 1,flpl_,?2
DEV_USE 2,flpl_TEST_

VIEW DEV1_Prog_bas will first try to show FLP1_Prog_bas and if it did not find that file, it will then
try DEV2_Prog_bas which is actually FLP1_TEST_Prog_bas. If this also fails, VIEW stops with a ‘Not
Found’ error. You might notice that this could lead to an endless search if DEV2_ was told to jump back
to DEV1_ if flpl_TEST_Prog_bas also did not exist.

Example 3

DEV_USE 1,flpl_,2
DEV_USE 2,flpl_TEST_,1

Luckily, this is no problem - the DEV device never circles back to a DEV which has already been tried.
So, using the definition given for example 3, VIEW DEV1_Prog_bas looks for FLP1_Prog_bas, then
FLP1_TEST_Prog_bas and breaks with ‘Not Found’ because DEV1_ has already been tested.

That’s why a DEV device cannot point to another DEV device, DEV_USE 1,DEV2_ is illegal.

It is advisable to give seldom used drives and directories a lower search priority because it naturally takes
a little time to scan through a directory for a file. Preferred directories and fast RAM disks (which take
next to no time to check for a file) should be checked before the less often-used directories are looked at.

Example 4a

DEV_USE 1,flp2_SOURCES_,4
DEV_USE 2,flpl_COMPILER_,3
DEV_USE 3,flpl_COMPILER_UTILS_,4
DEV_USE 4,raml_,5

DEV_USE 5, fl1p2_SOURCES_OTHER_, 1

The search path for DEV1_ is:

* FLP2_SOURCES_ go to DEV4_

* RAMI1_goto DEV5_

* FLP2_SOURCES_OTHER_ go to DEV1_, we already tried that, so stop
The search path for DEV2_ is:

* FLP1_COMPILER_go to DEV3_

* FLP1_COMPILER_UTILS_ go to DEV4_

* RAMI1_ goto DEV5_FLP2_SOURCES_OTHER_ go to DEV1_

* FLP2_SOURCES_ go to DEV4_, already checked, so stop.

You see that the two search paths for DEV1_ and DEV2_ are connected in one way. This rather compli-
cated example suggests that it would be useful to set the data and program device as follows:

Example 4b

DATA_USE DEV1_
PROG_USE DEV2_

248 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Taking into account that Toolkit II tries the program device after failing to find a file on the data device, a
VIEW TEXT will first search through the DEV1_ list and then DEV2_ (thus looking through all DEVs)
while EX PROG_exe stops after checking DEV?2_ and its connected DEVs.

All operations creating or deleting files will only check for the original DEV definition and ignore the
optional paths. This prevents files from being unintentionally deleted or overwritten.

Given the settings of examples 4a and 4b, OPEN_IN #3,DEV1_TEXT will act as VIEW did before
whereas OPEN_NEW #3,DEV1_TEXT creates FLP2_SOURCES_TEXT or reports an error/asks if you
want to overwrite (if necessary).

DELETE always behaves as an exception in that it does not report an error if a file was not found.

You may have noticed that the third parameter allows a wider range than the DEV number. A zero as the
third parameter simply does the same as no third parameter.

The third syntax of DEV_USE is completely different from the first two. It is analogous to the FLP_USE,
RAM_USE and NFS_USE commands and allows you to use a different three letter code for the DEV
device:

[DEV_USE fry. }

DEV1_is now called fryl_, DEV2_ fry2_ and so on. However, you can also use existing devices.

Example 4c

[DEV_USE FLP }

Now, things become really complex. With examples 4a and 4b still being valid, FLP1_ actually refers to
FLP1_SOURCES_, searching through all the other DEV definitions as well in order to find a file.

The definitions of DEV1_ as FLP1_SOURCES_ and DEVs as FLP do not collide. However, if you issued
FLP_USE DEV, FLP1_ and DEV1_ are not known any more until FLP_USE FLP restores the default
name for disk drives.

Equally, DEV_USE DEV restores the DEV name (although this can be abbreviated by a DEV_USE
without any parameters).

Example 5

[DEV_USE DEVI_

refers to the true DEV1_ again, DEV2_, DEV3_, ..., too.

Renaming DEV has been mainly implemented to convince existing software believing that a directory
file always has five letters (eg. MDV 1_) to accept sub-directories of level-2 drivers as directory files, too.

NOTE

At least up to v2.01, the DEV device does not work fully on any machine. For example WSTAT lists the
file names but not the other information: DEV_USE 1,FLP1_TEST_WSTAT DEV1_

CROSS-REFERENCE

DATA_USE, PROG_USE,DEV_USES$, DEV_NEXT. DEV_USEN is the same as the third syntax on
SMSQ/E. DEV_LIST lists all DEV definitions. MAKE_DIR and the DMEDIUM_XXX commands, start-
ing with DMEDIUM_DENSITY are also interesting.

11.40. DEV_USE 249

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.41 DEV_USEN

Syntax DEV_USEN |[drivetype]
Location SMSQ/E

This command is provided on SMSQ/E to allow you to alter the three letter reference used to access the
DEV devices. If no parameter is specified, then the name reverts to DEV.

Example
DEV_USE 2, 'winl_progs_'
DEV_USEN 'flp' DIR flp2_

This will provide a directory of winl_progs_ - this can be reset with:

DEV_USEN
DIR dev2_

CROSS-REFERENCE

DEV_USE allows you to do the same thing. FLP_USE allows you to alter the three letter description for
floppy disks.

11.42 DEV_USE$

Syntax DEV_USES$ (n) where n=1..8
Location DEYV device, GOLD CARD, ST/QL, SMS

The DEV_USES$ function returns the actual drive and directory for the number of a DEV device. If a
device was not defined, DEV_USES$ will return an empty string “”’, LEN(DEV_USE$(n))=0.

Example

A listing of all DEV definitions:

100 UNDER 1: PRINT "DEV";: UNDER 0

110 PRINT " ";: UNDER 1: PRINT "definition": UNDER 0
120 found=0

130 FOR n=1 TO 8

140 IF LEN(DEV_USE$(n)) THEN

150 PRINT n TO 5;DEV_USE$(n)

160 found=1

170 END IF

180 END FOR n

190 IF NOT found: PRINT "no DEVs defined"

CROSS-REFERENCE
DEV_NEXT, DEV_LIST ,DEV_USE.

250 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.43 DIM

Syntax DIM array (index1 *[index']") *[,arrayj (index “[indexi]")]"
Location QL ROM

The command DIM allows you to set up one or more SuperBASIC arrays which may be of string, integer
or floating point type. Each index must be an integer in the range 0. ..32767.

11.43.1 Numeric Arrays

Each index defines the maximum number of elements (less one) in any one direction, which provides the
following examples:

[DIM a(10)]

sets up a floating-point array a containing 11 elements, a(0) to a(10);

[DIM 2%(10, 10) }

sets up a two dimensional integer array z% containing 121 elements, z%(0,0) to z%(10,10) Each element
can hold a different number which can later be accessed by specific reference to each index. When the
array is set up, each element is set to zero.

11.43.2 String Arrays

String arrays are peculiar and have various differences to both un-dimensioned strings and number arrays.

In a string array, the final index contains the maximum length of a string, rounded up to the next even
number (an attempt to assign a longer string to one of the array elements will result in a truncated string).
For example:

[DIM a$(10) }

sets up a one-dimensional string array a$ with a maximum of 10 characters. This is similar to a$=FILL$(”
“,10), except that a$ now has a maximum length;

[DIM 2$(10,9)]

sets up a two-dimensional string array, which can hold 11 strings (z$(0) to z$(10)), each up to 9 characters
long.

(130

When a string array is set up with DIM, each entry is set to a nul string (*”’). The zero’th element of each

string array contains the actual length of that string, for example:

DIM a$(10,10): a$(1)="Hello': PRINT a$(1,0)

will return the value 5, as will PRINT LEN(a$(1)).

If a$ is undimensioned and a$="Hello World’, PRINT a$(0) does not generally work and will result in an
‘Out of Range’ error, except under SMS v2.60+ and Minerva where PRINT a$(0) is the same as PRINT
LEN(a$).

11.43. DIM 251

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.43.3 Sub-Sets of Arrays

Sub-sets of arrays can also be accessed, for example:

[PRINT 2$(0 TO 2) }

will print the first three strings stored in the array z$.

11.43.4 Omitting Indices

This can be one of the most difficult parts of SuperBasic from the point of view of making programs
compatible on all implementations of SuperBASIC and also making programs work the same under the
interpreter and when compiled.

The ST/QL Emulators (with E-Init v1.27 or later) follow the same rules as SMS. If an index is omitted,
SuperBASIC inserts a default index of:

O TO DIMN (array,index_no)

For example, if array is a two-dimensional array, array(1) is the same as using the form array (1,0 TO
DIMN(array,2)). Unfortunately, string arrays are slightly different when using the last index.

If the last index is omitted, this defaults to an index of:

[1 TO LEN(array$(x)) }

However, except on SMS, if a start descriptor is specified, but not an end one, the last index defaults
once again to: start_descriptor TO DIMN(array$,index_no). On SMS this defaults to start_descriptor
TO LEN(array$(x).

Even more oddly, except on SMS and Minerva, if a start descriptor is omitted, but an end descriptor
specified, the index defaults to: 0 TO end_descriptor normally resulting in an error. (On SMS and
Minerva this defaults to 1 TO end_descriptor).

However, except on SMS and Minerva, if neither a start nor end descriptor are specified, but the TO itself
is specified, this defaults to 0 TO DIMN (array$,index_no), again normally causing an error.

On SMS this defaults to 1 TO LEN (Array$ (x)
On Minerva this defaults to 1 TO DIMN (array$,index_no)

This creates the following result:

DIM a$(10):a$="Hello' INK 7:PAPER 0
STRIP 2
[PRINT a$ }

Prints ‘Hello’ => a$ (1 TO LEN(a$) (On all implementations)

[PRINT a$(1 TO)]

Prints ‘Hello ‘ => a$(1 TO DIMN(a$,1)) (except on SMS, where it prints ‘Hello’, unless the program is
compiled with Qliberator in which case the original system is adopted).

252 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

[PRINT a$ (T0)

J

Results in ‘Out of Range’ => a$(0 TO DIMN(a$,1)) (except on SMS, where it prints ‘Hello’, and on
Minerva where it prints ‘Hello In both cases, if the program is compiled with Qliberator it still reports

an error).

[PRINT a$(TO 5)

Results in ‘Out of Range’ => a$(0 TO 5) (again on SMS and Minerva it still prints ‘Hello’, unless the

program is compiled with Qliberator, which reports an error).

11.43.5 Un-Dimensioned Strings

You can use sub-sets of un-dimensioned strings, for example:

[a$:'He110 World' :PRINT a$(l TO 5)

J

However, such subsets are always treated as expressions, which means that if such a subset was passed as
a parameter to a FuNction or PROCedure (see DEFine FuNction), it cannot be passed by reference and

the string will remain unaltered by the FuNction/PROCedure.

Compare this with a sub-set of a string array, which will be altered (this sub-set exists as a sub-array).

Please see Example 3 below.

The handling of descriptors is also different with un-dimensioned strings. If neither a start nor an end

descriptor are specified, this, like string arrays, defaults to:

[1 TO LEN(string$)

However, if the start descriptor is specified, but not the end descriptor, this defaults to:

[start_descriptor TO LEN(string$)

J

However, if the start descriptor is omitted (whether the end descriptor is specified or just TO is used),

unless you have Minerva or SMS, this defaults to:

{@ TO end_descriptor

and:

[@ TO LEN(string$)

respectively, both of which cause an ‘out of range’ error.

On Minerva and SMS however, this defaults to:

[1 TO end_descriptor

and:

[1 TO LEN(string$)

11.43. DIM

253

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

respectively, thus avoiding this error.

This leads to the following result:

CLEAR
x$="Hello'
INK 7: PAPER 0: STRIP 2

[PRINT x$ }

This Prints ‘Hello’.

[PRINT x$(1 TO)]

This prints ‘Hello’

[PRINT x$(T0) }

This results in ‘Out of Range’ or ‘Hello’ on Minerva and SMS.

[PRINT x$(TO 10) }

This results in ‘Out of Range’ or ‘Hello’ on Minerva and SMS.

11.43.6 ERRORS

Due to the complexity of DIM, we felt that it would be useful to explain some of the various errors which
may be reported. SMS has an improved Interpreter which reports more intelligible error codes, therefore
those have been used:

Only arrays may be dimensioned

This occurs when you try to DIM the name of a procedure or function. It also occurs if you try to use
DIM on one of the parameters of a procedure or function and that parameter is not itself a dimensioned
variable:

100 DIM x(10)

110 c=1:test x,1

130 DEFine PROCedure test (a,b)
140 DIM b(10)

150 END DEFine

On other implementations, 'Bad Name' is reported in both instances.

Procedure and function parameters may not be dimensioned

This only happens as in the example above where you try to DIMension a variable which is in fact one
of the parameters from the DEFine PROCedure or DEFine FulNction line (eg. line 140). Here, if you
pass a dimensioned variable, eg: TEST 1,x, you get this error under SMS. Also see note 7. On other
implementations no error is reported and the problems listed in Note 7 occur.

SBASIC cannot put up with negative dimensions

This occurs if you try to use a negative index, for example: DIM x(-10) On other implementations ‘Out
of Range’ is reported.

254 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Dimensional overflow - you cannot be serious!
Too many indices have been specified in the DIM statement - refer to Appendix 8.
Error in Expression

SMS has either been unable to make any sense of the index, or else it exceeds 32767. On other ROMs
you will get the error ‘Overflow’ if index exceeds 32767.

Unknown function or array

This is generally reported of you try to use a Procedure name as the index. Other implementations report
‘Error in Expression’

11.43.7 EXAMPLES

Example 1

A program which acts as a simple quiz program, but shows off some of the best features of using arrays
- it is simplicity itself to add new questions and answers to this quiz (just amend quest and target and add
the new questions and answers as DATA at the end of the program):

100 MODE 8:WINDOW 512,256,0,0:PAPER 0:CLS

110 WINDOW 448,200,32,16

120 quest=5:target=5

130 DIM question$(quest,50),option$(quest,3,25),answer(quest)
140 RESTORE

150 FOR i=0 TO quest-1

160 READ question$(i)

170 FOR j=1 TO 3:READ option$(i,j)

180 READ answer(i)

190 END FOR i

200 REPeat main_loop

210 score=0

220 FOR i=1 TO 7,1:BORDER 10,i:PAUSE 2

230 PAPER 6:CLS:INK 2:AT 3,10:UNDER 1:CSIZE 2,1
240 PRINT 'QUIZ EXAMPLE':CSIZE 2,0:UNDER O

250 INK 0:AT 0,20:PRINT 'SCORE = ';score

260 DIM asked(quest)

270 REPeat loop

280 opt=RND(1 TO quest)

290 IF asked(opt)=1 THEN

300 FOR j=1 TO quest

310 IF asked(j)=0:opt=j:EXIT j
320 NEXT j

330 DIM asked(quest) :NEXT loop
340 END FOR j

350 END IF

360 asked(opt)=1

370 AT 4,0:CLS 2

380 ask_question(opt)

390 reply=get_answer

400 AT 16,0:PAPER 2:INK 7

(continues on next page)

11.43. DIM 255

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
645
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
835
840

IF reply=answer(opt-1)
PRINT 'Correct':score=score+l

ELSE

PRINT 'Wrong!':score=score-1
END TIF
PAPER 6:INK O
AT 0,20:PRINT 'SCORE = ';score
PAUSE

IF score=target OR score<0:EXIT loop
END REPeat loop
PAPER 0:CLS
INK 2+2*(score=target) :CSIZE 3,1
IF score=target
PRINT 'Congratulations'
ELSE
PRINT 'Oh Dear'
END IF
CSIZE 2,0:INK 7
PRINT \\'Try again?? ----- > y/n'
REPeat keys
key$=INKEY$(-1) : IF key$ INSTR 'yn':EXIT keys
END REPeat keys
IF key$=="n':STOP

END REPeat main_loop

DEFine PROCedure ask_question(no)

LOCal i
AT 6,0:start_word=1:end_word=1
no=no-1
REPeat quest_loop
FOR char=start_word TO question$(no,®)
IF question$(no,char)=" ':EXIT char
END FOR char
end_word=char
PRINT !question$(no,start_word TO end_word)!
IF end_word=question$(no,0):EXIT quest_loop
start_word=end_word+1
END REPeat quest_loop
REPeat opt_loop
PRINT \
FOR i=1 TO 3
PRINT TO 5;i;' = ';option$(no,i)
END FOR i

END DEFine

DEFine FuNction get_answer

(continued from previous page)

850 REPeat keys
860 key$=INKEY$(-1)
870 IF key$ INSTR '123':RETurn key$
(continues on next page)
256 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

880 END REPeat keys

890 END DEFine

895 :

900 DATA 'The standard Sinclair QL has how much memory?'

910 DATA '16K','128K', '640K',2

920 DATA "What was the name of Sinclair's first computer?"
930 DATA 'Z80','ZX81','ZX80',3

940 DATA 'Who is the main person responsible for QDOS?'

950 DATA 'T.Tebby','J.Jones','C.Sinclair',1

960 DATA "Which company created the QL's Gold Card?"

970 DATA 'Miracle Ltd.','Digital Precision Ltd.', 'Mercury',l1l
980 DATA 'Wlho is the main person responsible for SuperBASIC?'
990 DATA 'T.Tebby','J.Jones', 'C.Sinclair',2

Some of you may have noticed that we have used DIM option$(quest,3,25) when we could have used
DIM option$(quest,2,25). The reason for this is to make it easier to check the text - try PRINT option$
and you will see that each set of three options is separated by a blank string.

Example 2

Take the two arrays set up with:

[DIM x(2,3,4),%x$(2,4,6) .

The following sub-arrays produce the following equivalents:

x(TO, TO 2, 1 TO) => x(OTO 2,0 TO 2,1 TO 4)
x$(1 TO 2, TO 2) => x$(1 TO 2,0 TO 2,1 TO LEN(x$(..)))
x$(TO 2, TO,1 TO) => x$(0® TO 2,0 TO 4,1 TO 6)

Example 3

A short example of the use of sub-arrays and subsets of undimensioned strings:

100 DIM a$(11)

110 a$="Hello World'

120 b$="Great World'

130 swap_array a$(1 TO 5),b$(1 TO 5)
140 PRINT a$,b$

150 :

1000 DEFine PROCedure swap_array (a,b)
1010 c$=b: b=a: a=c$

1020 END DEFine

NOTE 1

The Turbo compiler alters DIM in compiled programs to enable you to re-dimension arrays without losing
their original contents. You may therefore need to physically set the contents of arrays to zero (or nul
strings) to ensure that a program works properly when compiled.

NOTE 2
On AH ROMs, a floating point array is limited to 384K size.

11.43. DIM 257

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE 3

A variable cannot be used as both a simple variable and an array variable. It is set to an array variable
as soon as the line containing the relevant DIM statement is parsed. This means that if a line containing
DIM var has been entered, the array var cannot be used until such time as the program has RUN this
line, and in any case, an attempt to use var without array descriptors (eg. var=1) is likely to fail, either
resulting in a ‘Bad Name’ error or ‘Error in Expression’.

NOTE 4

You cannot assign one array to another. For example:

[DIM a$ (3,10) , z$(3,10) :z$=a$ }

will report a ‘Not Implemented’ error.

Compare:

[z$ (1, 1 TO 10)=a$ (1, 1 TO 10).]

NOTE 5

The Turbo and Supercharge compilers insist that strings are all dimensioned as string arrays. They do
however also alter the way in which string arrays work so that they operate more like un-dimensioned
strings. Un-dimensioned strings may also upset Qliberated tasks!

NOTE 6

On pre JS ROMs you cannot use one array as the array sub-script of another in the DIM statement (other
than as the first sub-script), for example:

DIM a(10):a(3)=10
DIM a$(10,a(3))

If you try this, you will find that previous array sub-scripts are set to the value 0, ie. using the above
example, a$(0) would be acceptable, whereas a$(2) would cause an error. This will work okay provided
that the array is used as the first sub-script, otherwise use a temporary variable. For example:

subs=a(3): DIM a$(10, subs)
DIM a$(a(3),10)

would both work okay on all ROM versions.
NOTE 7

There is a bug in SMS (at least up to v2.88) if you try to DIMension a variable which has been used as a
parameter for a PROCedure or FuNction call.

Take the example given above to demonstrate the error ‘procedure and function parameters may not be
dimensioned’. Now use:

[CLEAR . TEST a,b }

no error is reported (although line 140 has no effect).

[PRINT a,b }

258 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

is equivalent to PRINT a; and any attempt to use b (eg. x=b) reports error in expression, even after
CLEAR.

On other ROMs no error is reported. However, the variable passed as a parameter is not re-dimensioned,
but some of its elements will no longer be the original value, but very small numbers and any attempt to
assign another value to those elements which have been changed may in fact fail!!

NOTE 8

Current versions of Qliberator treat all strings in the same way as on the original QL, therefore although
a program may RUN fine under the SMS or Minerva intepreter, it may cause problems when compiled.
The TURBO and SuperCHARGE compilers treat strings the same as SMS, except see Note 1 and Note
5.

MINERVA NOTE

Minerva alters the way in which both dimensioned and undimensioned strings are handled so that:

[PRINT a$(TO 10)

is now acceptable! See above.

Minerva also allows you to slice expressions and numbers. Lines such as:

[PRINT 'abed' (2 TO 3)

and:

[a$:1®1®1@ 3)

will now work. Minerva v1.96+ allows multiple index lists (see SMS Notes).
SMS NOTES

SMS alters the way in which both undimensioned and dimensioned strings are handled to make them
more sensible (see above). We now await a compiler which handles strings in the same way! SMS says
that it no longer handles multiple index lists on assignments (which apparently were allowed on earlier
ROM versions - did anyone ever use these?). An example is the line:

100 DIM a$(3,4,5)
110 a$(3,4)="Hello'
120 a$(3,4)(2 TO 5)="ELLO'

SMS will not let you type in line 120 reporting invalid syntax. To overcome this you have to replace the
line with:

120 a$(3,4,2 TO 5)="ELLO'

In common with Minerva, SMS will now also allow you to slice expressions and numbers. There is a
bug in current versions of SMS (at least up to v2.90) when passing string array sub-sets by reference, for
example the following program:

5 DIM x$(11)

10 x$="Hello World'
15 PRINT x$

20 change x$(1 TO 11)

(continues on next page)

11.43. DIM 259

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)
30 PRINT x$
40 :
1000 DEFine PROCedure change (a$)
1010 a$(l TO 3)="EXT'
1020 END DEFine

At line 30, x$ is shown to be ‘HeEXT World’?? It should be ‘EXTlo World’. Try making line 20 read:

[2@ change x$ }

Although v2.90 fixes this problem, if you pass a sub-set of an undimensioned string, a worse problem is
created. Try deleting line 5 and adding line:

[1@15 PRINT a$: PAUSE }

before RUNning the program (you may need to use CLEAR beforehand).
WARNING

DIM and dimensioned variables can crash the system in certain instances - refer to A8.4 for details of the
possible problems and more error messages which can be generated.

CROSS-REFERENCE

DIMN allows you to find out the maximum sizes of an array. Please see the Appendix on Compatability
concerning String Lengths. LEN allows you to find the length of a string.

11.44 DIMN

Syntax DIMN (array [,dimension]) or
DIMN (array (dimension' “[,dimension']"))
Location QL ROM

This function allows you to investigate the size of the given index of a specified array.

The first syntax is the most common: it will return the specified dimension (index) used in the original
DIM statement when the array was defined. If the index did not exist, then a result of zero is returned.

If dimension is not specified, then the size of the first index is returned.

The second syntax is somewhat obscure and has no practical advantages. This second syntax will not
allow you to access the size of the first index. It works by reference to the array itself, for example:

[PRINT DIMN(a$(1))]

will return the size of the second index, and:

[PRINT DIMN(a$(1,1)) }

will return the size of the third index and so forth. Once the number of dimensions used within the DIMN
statement has reached the number used by the array, then the value 1 will be returned. If any more are
specified, then the error ‘Out of Range’ will result.

260 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Examples

Take an array created with the statement:

[DIM a$(10,12)

The following results will be returned:

{PRINT DIMN(a$)

Will return 10.

[PRINT DIMN(a$, 1)

Will return 10.

[PRINT DIMN(a$,2)

Will return 12.

[PRINT DIMN(a$,3)

Will return O.

[PRINT DIMN(a$(1))

Will return 12.

{PRINT DIMN(a$(1,1))

Will return 1.

[PRINT DIMN(a$(1,1,1))

Will cause an ‘Out of Range’ error.
CROSS-REFERENCE

LEN will return the actual length of characters held within a string. DIM initialises an array.

11.45 DIR

Syntax DIR [#channel,] device or
DIR [#channel,] [device] (Toolkit II) or
DIR \file [,device] (Toolkit II)

Loca- QL ROM, Toolkit IT

tion

This command produces a listing to the specified channel (default #1) of all of the files contained on the
given device.

The listing gives the name of the device (specified with FORMAT) followed by the number of available
sectors/the number of usable sectors; followed by a list of the files in the order they appear on the disk.

11.45. DIR 261

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

If you try to get a directory of a ram disk, eg. DIR RAM1_ then the name of the device shown on screen
will be RAMI.

If Toolkit II is present, and #channel is a window, a <CTRL><F5> keystroke (pausing output) is generated
at the end of each screen full of the listing. You can however also use the third syntax to output the
directory to the specified file. If file already exists, you will be given the option of overwriting it. If file
doesn’t include a device name, the data default directory is used.

The Toolkit II variant also supports the default data directory, which will be used if no device name is
given in device, or if the specified device name would result in the error ‘Not Found’.

If you have Level-2 or Level-3 device drivers, and there are any sub-directories (created with
MAKE_DIR) in the given directory, then if you have Toolkit II present, the names of these sub-directories
will appear with the suffix ->.

You can then list the contents of these sub-directories by using DIR with the original device name plus
the name of the sub-directory. Level-3 drivers take this one step further in that after the name of the disk
in the specified device, appears details of the type of disk being read, ie. MS-DOS or QDOS followed
by SD, DD, HD or ED to confirm whether the disk is Single Density, Double Density, High Density or
Extra Density. RAM disks are listed as QDOS SD.

Example 1

With a cartridge in the left hand microdrive slot,

[DIR mdvl_

might produce the following listing in window #1:

QUILL 102/220 sectors
boot

QUILL

install_exe
printer_dat

Example 2

If Level-2 device drivers are present,

[DIR flpl_

might produce the following:

PSION DISK 1000/2880 sectors
QUILL >
ARCHIVE ->

With Level-3 drivers, you would get the same output except the first line would become:

[PSION DISK QDOS HD

[DIR ' f1p1_QUILL'

would on both Level-2 and Level-3 drivers, then produce the following output:

262 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

PSION DISK 1000/2880 sectors
QUILL_boot

QUILL_QUILL
QUILL_install_exe
QUILL_printer_dat

NOTE 1

With the Toolkit IT variant, the <CTRL><F5> will be generated even where the channel is a window
which has been opened over the network (eg. nl_scr_200x200), which can cause problems as the slave
machine will wait for a key to be pressed!

This can be avoided if you have the command FIXPF (provided as part of the QPTR documentation),
which will enable you to re-install the ROM variant of DIR.

Alternatively write the directory to a file and copy the file to the host machine, eg.

DIR \raml_tmp, flpl_
SPL raml_tmp TO nl_scr_200x200

|

It is even more sophisticated to use a named pipe instead of the temporary file ram1_tmp for the same
job:

SPL pipe_dir TO nl_scr_200x200
DIR \pipe_dir_1000, flpl_

NOTE 2

The THOR XVI retains the original QL. ROM variant of this command, which does not support the
default device, nor does it show sub-directory names.

NOTE 3

Unless you have Toolkit II present, the Break key will not have any effect on DIR. Press Break when the
listing pauses at the end of a page under Toolkit II (Minerva v1.78+ is supposed to recognise the Break
key, but it does not appear to work). The Break key is however recognised in Minerva v1.97 (at least!).

NOTE 4

Prior to Toolkit IT v2.25, DIR of a Level-2 device driver could cause problems when used inside a TURBO
compiled program.

NOTE 5

If a directory contains a file with a null string as a name (eg. SAVE flp1_), this file will not be listed on
the directory listing. This was used as a form of copy protection on some early QL software, but stops
the program from working on a QL with Level-2 or Level-3 Device Drivers as they use this file to store
the main directory!

NOTE 6

On some versions of Toolkit II, the third variant could cause problems if you supply the name of an
existing file to store the directory in, for example:

DIR \raml_XDIR

11.45. DIR 263

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

if you said ‘N’ when asked if it was OK to Overwrite the existing file - the display would be sent to #0
and #0 would then be CLOSEAd!! v2.49 of Toolkit II (and possibly earlier) does not cause any problems
but does not report an error. v2.85 of SMSQ/E (and possibly earlier) also has no problems but reports
the error ‘Already Exists’.

NOTE 7

Some people try to divide up DIRectory listings by creating files such as:

[SAVE 'F1P] - mmmmmmm e ' }

However, DIR will only list the files in the order in which they were created if you are using a virgin disk
which has not had other files deleted from it already.

CROSS-REFERENCE

DATA_USE sets the current data default directory, MAKE_DIR creates sub-directories, WDIR allows
wildcard names.

11.46 DISCARD

Syntax DISCARD [adr]
Location Memory Toolkit (DIY Toolkit Vol H)

This command removes memory which has been allocated with RESERVE fairly safely, ensuring that
the memory had been allocated with RESERVE and has not already been DISCARDed. If the adr does
not point to memory set aside with RESERVE the error ‘not found’ is returned.

CROSS-REFERENCE
See RESERVE and LINKUP. Also see CLCHP, RECHP and DESPR.

11.47 DISP_BLANK

Syntax DISP_BLANK [xblank][,yblank]
Location QVME (Level E-19 Drivers onwards), SMSQ/E for Atari ST & TT (QVME cards only)

The Atari range of computers can be attached to a wide range of monitors, some of which are able to
display higher resolutions than others. A 17 multi-sync monitor, for example, can display resolutions
of up to 1024x1024 (depending on make).

The QVME card is unable to detect the various parameters related to monitors and therefore allows you
to set your own parameters either from SuperBASIC or by configuring SMSQ/E.

This command is used for setting the margins between the currently displayed QL screen and the edges of
the monitor. This difference is known as the overscan (pixels available on the monitor which are currently
unused). xblank sets the number of horizontal pixels x2 from the edge of the monitor to the left hand
side of the QL screen.

The standard value for a 512x256 screen is 128 pixels (a standard QL monitor linked to an Atari can
display a screen 640x480) (640-512)/2=64 pixels from the left hand side of the monitor.

264 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

If xblank is omitted or O, then the original value is left unaltered.

Yblank sets the number of lines x 0.5 from the top of the monitor to the top edge of the QL screen. The
standard value is 56, which gives a top margin of (480-256)/2=112 pixels from the top of the screen. If
yblank is omitted or O, then the original value is left unaltered.

NOTE 1

If you use DISP_SIZE to alter the size of the displayed QL screen, it will automatically adjust the param-
eters for the overscan.

NOTE 2

If the y parameter is used to alter the number of blank lines, this will override any setting of the line scan
rate with DISP_RATE.

CROSS-REFERENCE

DISP_SIZE allows you to pass these parameters at the same time as amending the size of the displayed
QL screen. DISP_RATE sets the frame and line scan rates for the display - if this command is used to
adjust the line scan rate, this will alter the totoal number of lines.

Both SMSQ/E and QVME include programs to allow you to try out the various settings for the various
DISP_... commands.

11.48 DISP_INVERSE

Syntax DISP_INVERSE status
Location SMSQ/E for Atari ST & TT

The Atari range of computers support a high resolution (640x400) monochrome display mode which can
be supported under SMSQ/E and SMS2. If SMSQ/E or SMS2 is running on an Atari ST connected to a
monochrome monitor (or running on an Atari TT connected to such a monitor, without QVME)), then it
will automatically start up by loading the monochrome display driver (if available) and set the QL into
the monochrome 640x400 display mode. The QL screen can then appear either as white ink on a black
background or black ink on a white background. DISP_INVERSE allows you to invert the QL display,
with status=0 giving the default white on black and status=1 the black on white display.

NOTE
This command is not available on SMS2.
CROSS-REFERENCE

DISP_TYPE allows you to find out if the monochrome display driver is running. /NVERSE allows you
to print in inverse colours.

11.48. DISP_INVERSE 265

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.49 DISP_RATE

Syntax DISP_RATE [frame_scan][,line_scan]
Location QVME (Level E-19 Drivers onwards), SMSQ/E for Atari ST & TT (QVME cards only)

Due to the multitude of monitors which are available for the Atari ST range, it is necessary to be able to
alter the horizontal and vertical scan rates (default = 50Hz, the setting on standard QL monitors).

The first parameter specifies the frame rate (the horizontal scan rate), a setting of 70 (or more) will reduce
flicker on most Atari monitors. If omitted or 0, the original value is unchanged.

The second parameter specifies the line rate (the vertical scan rate), although this is normally not required
as it is equal to the frame rate multiplied by the total number of lines. If this parameter is omitted or zero,
the original is recalculated by reference to the number of lines and the frame rate.

The total number of lines and line rate can be calculated by reference to the following program:

100 INPUT #0, Enter y size of QL screen (DISP_SIZE) ';QLy

110 INPUT #0, 'Enter horizontal frame rate (DISP_RATE) ';Frate

120 INPUT #0, 'Enter vertical blank pixels setting (DISP_BLANK) ';Blanky
130 Total_y=QLy+Blanky

140 total_lines=Total_y*(Qly/QLy)

150 PRINT 'The total number of displayed lines will be ';total_lines
160 PRINT 'Line scan rate will be ';total_lines*Frate

J

If you use DISP_RATE to set the line scan rate, then using the total number of lines (and hence the blank
lines) are recalculated, using the following routine:

100 INPUT #0, Enter y size of QL screen (DISP_SIZE) ';QLy

110 INPUT #0, Enter horizontal frame rate (DISP_RATE) ';Frate
120 INPUT #0, 'Enter vertical line scan rate (DISP_RATE) ';Lrate
130 Total_y=INT(Lrate/Frate)

140 PRINT 'Blank Lines for DISP_BLANK will be ';Total_y-QLy

CROSS-REFERENCE

DISP_SIZE allows you to pass these parameters at the same time as amending the size of the displayed
QL screen. DISP_BLANK sets the number of horizontal and vertical blank pixels on the edge of the
display.

Both SMSQ/E and QVME include programs to allow you to try out the various settings for the DISP_...
commands.

266 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.50 DISP_SIZE

Syntax DISP_SIZE
Location QVME (Level E-19 Drivers onwards), SMSQ/E

This command lets you alter the size of the QL screen being displayed.

The first two parameters allow you to specify the display width in pixels and the height in lines (the
normal QL display is DISP_SIZE 512,256). The remaining four parameters are those which can be set
using the DISP_RATE and DISP_BLANK commands respectively. The effect of the first two parameters
depends upon the system it is being used on:

Extended Mode4 Emulator

Any width up to 512 will select the standard QL resolution. Any width over 512 will select the extended
resolution (768x280).

QVME, QXL and QPC

The width and height of the display can only be altered in increments of 32 pixels and 8 lines respectively.
If width is not a multiple of 32 or height is not a multiple of 8, they are made into the nearest feasible
size. The minimum size is 512x256 pixels.

NOTE 1

If you try to use DISP_SIZE to specify both the line rate and the number of blank lines, the line rate is
ignored and calculated according to the internal formula (see DISP_RATE).

NOTE 2
DISP_SIZE will not work if you have already used the A_OLDSCR command.
NOTE 3

Some combinations of Super Gold Card and AURORA may cause the internal QL clock to run too quickly
unless you follow DISP_SIZE by PROT_DATE 0.

NOTE 4
This command has no effect if your implementation of the QL does not support higher resolution displays.
NOTE 5

Using higher resolution displays will affect the location of the start of the screen (see SCR_BASE) - using
DISP_SIZE 512,256 to set the display size back to the normal QL resolution will not set the base of the
screen back to 131072 (the normal screen base on a standard QL). See A_ OLDSCR.

NOTE 6

Be careful when reducing screen resolution size - windows are not resized and therefore you may not be
able to see all of a program’s windows, or the SuperBASIC cursor!!

CROSS-REFERENCE

All of these parameters can be configured in SMSQ/E so that they are available immediately on start-up.
See DISP_RATE and DISP_BLANK.

11.50. DISP_SIZE 267

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.51 DISP_TYPE

Syntax DISP_TYPE
Location SMSQ/E

This function returns a number which allows you to find out the type of display driver which is currently
being used. The values returned are:

* 0 Original ST QL Emulator, QL Hardware (either of these two may support MODE 8) plus QXL
and QPC. All of these (except the original ST QL emulator) may support higher resolutions.

* 1 Extended Mode 4 Emulator (either 512x256 or 768x280 pixel screen)
* 2 QVME Mode 4 Emulator
* 4 Monochrome display (only two colours)

CROSS-REFERENCE

See DISP_INVERSE. MACHINE and PROCESSOR allow you to find out more about the hardware which
a program is being run on.

11.52 DISP_UPDATE

Syntax DISP_UDPATE x,y
Location QXL (SMSQ only)

This is an undocumented command and it is uncertain what its parameters do - it affects the rate at which
the screen is updated on the QXL. The higher x and y, the faster that the screen is updated (and hence the
smoother the graphics), although this also slows down the other parts of the QXL. If x and y are equal
to 0, the screen is only updated when you press a key - this allows the QXL to perform complex maths
routines very quickly (so long as they do not access the screen).

NOTE 1

Prior to SMSQ/E v2.65 if you used DISP_UPDATE with a parameter larger than 1 in MODE 8, this
could cause problems on screen.

NOTE 2

Using parameters smaller than 0 could lock up some versions of QXL. SCR_PRIORITY is similar under
Amiga QDOS.

268 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.53 DISPLAY_WIDTH

Syntax bytes_in_a_line = DISPLAY_WIDTH
Location DIJToolkit 1.16

This function can be used to determine how many bytes of the QL’s memory are used to hold the data in
one line of pixels on the screen. Note that the value returned has nothing to do with any window width,
it always refers to the total screen display width.

Why include this function I hear you think? If you run an ordinary QL, then the result will probably
always be 128 as this is how many bytes are used to hold a line of pixels, however, many people use Atari
ST/QLs, QXL etc and these have a number of other screen modes for which 128 bytes is not enough.

This function will return the exact number of bytes required to step from one line of pixels to the next.
Never assume that QDOS programs will only ever be run on a QL. What will happen when new Graphics
hardware or emulators arrive? This function will still work, assuming that the unit uses standard QDOS
channel definition blocks etc.

For the technically minded, the word at offset $64 in the SCR_ or CON_ channel’s definition block
is returned. This is called SD_LINEL in ‘Tebby Speak’ and is mentioned in Jochen Merz’s QDOS
Reference Manual and the QL Technical Manual by Tony Tebby et al. Andrew Pennel’s book, the QDOS
Companion gets it wrong on page 61, guess which one I used first!

11.54 DIV

Syntax xDIVy
Location QL ROM

This operator returns the integer part of x divided by y.

If x or y is not an integer, then the given value is rounded to the nearest integer (compare INT).

On non-SMS implementations the answer and both parameters must lie within the range -32768. ..32767.
On SMS, the answer and both parameters can lie anywhere within roughly -2e9. ..2e9 (32-bit numbers).

The result of the operation is always rounded down to the next integer ie. x DIV y=INT(x/y). Although
this leads to some unexpected results with negative numbers this is so that the formula: x=y*(x DIV
y)+(x MOD vy) is always true.

If you wish to use 32-bit numbers on non SMS systems, you will need to use the formula: PRINT INT(x/y)
instead of PRINT x DIV y if either x or y is outside of the specified range.

Examples

[PRINT 13 DIV 5 }

gives the result 2 (13 divided by 5 is 2.6)

[PRINT 13.4 DIV 1.5

gives the result 6 (13 DIV 2).

11.53. DISPLAY_WIDTH 269

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

[PRINT -13 DIV 5

gives the result -3
NOTE

DIV has problems with the value -32768: PRINT -32768 DIV -1 gives the result -32768 on most imple-
mentations. On Minerva v1.76 (or later) it gives the correct result, being an overflow error (the answer is
+32768 which cannot be stored as a short integer variable). On SMS v2.75+, it returns the value +32768
as DIV can handle the larger numbers!!

CROSS-REFERENCE

MOD returns the modulus of x divided by y. Also please see the alternative version of DIV'.

11.55 DIV

Syntax DIV (x,y)
Location Math Package

This function returns x/y as an integer in the same way as the ROM based DIV operator. However, this
version is not limited to 16-bit integers (-32768..32767). It will happily handle 32-bit integer numbers (-
INTMAX..INTMAX, roughly -1E9..1E9). Division by zero is not defined and will produce an overflow
message.

Example

[PRINT 49000 DIV 3

will produce an error on a standard QL. ROM. Instead, you can now use:

[PRINT DIV(-40000,3)

which gives the correct result.
NOTE 1

Both variants of DIV can be used in the same program, although the Turbo and Supercharge compilers
will not accept this version.

NOTE 2

If you try to use a program compiled under Turbo or Supercharge after loading the Math Package, if the
program uses the normal SuperBASIC operator MOD or DIV, an error will be generated and the program
will refuse to work!

CROSS-REFERENCE

MOD (as an operator or a function) returns the remainder of a division. Compare the other version of
DIV.

270 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.56 DJ_OPEN

Syntax channel = DJ_OPEN(‘filename’)
Location DJToolkit 1.16

Open an existing file for exclusive use. See DJ_OPEN_DIR below for details and examples.
CROSS-REFERENCE
DJ_OPEN_IN, DJ_OPEN_NEW, DJ_OPEN_OVER, and DJ_OPEN_DIR.

11.57 DJ_OPEN_IN

Syntax channel = DJ_OPEN_IN(‘filename’)
Location DJToolkit 1.16

Open an existing file for shared use. The same file can be opened by other applications running at the
same time. Provided they have a compatible non-exclusive OPEN mode. See DJ_OPEN_DIR below for
details and examples.

CROSS-REFERENCE
DJ_OPEN, DJ_OPEN_NEW,DJ_OPEN_OVER, and DJ_OPEN_DIR.

11.58 DJ_OPEN_NEW

Syntax channel = DJ_OPEN_NEW(‘filename’)
Location DJToolkit 1.16

Create a new file for exclusive use. See DJ_OPEN_DIR below for details and examples.
CROSS-REFERENCE
DJ _OPEN,DJ OPEN _IN,DJ OPEN_OVER, and DJ_OPEN_DIR.

11.59 DJ_OPEN_OVER

Syntax channel = DJ_OPEN_OVER(‘filename”)
Location DJToolkit 1.16

Open existing file but overwrite all the contents. See DJ_OPEN_DIR below for details and examples.
CROSS-REFERENCE
DJ_OPEN, DJ_OPEN_IN, DJ_OPEN_NEW, and DJ_OPEN_DIR.

11.56. DJ_OPEN 271

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.60 DJ_OPEN_DIR

Syntax channel = DJ_OPEN_DIR(‘filename’)
Location DJToolkit 1.16

All of these DJ_OPEN functions return the SuperBasic channel number if the channel was opened without
any problems, or, a negative error code otherwise. You can use this to check whether the open was
successful or not.

The filename must be supplied as a variable name, file$ for example, or in quotes, ‘flp1_fred_dat’.

They all work in a similar manner to the normmal SuperBasic OPEN procedures, but, DJ_OPEN_DIR
offers a new function not normally found on a standard QL.

DJToolkit Author’s Note

I am grateful to Simon N. Goodwin for his timely article in QL WORLD volume 2, issue 8 (marked Vol 2,
issue 7!!!). I had been toying with these routines for a while and was aware of the undocumented QDOS
routines to extend the SuperBasic channel table. I was, however, not able to get my routines to work
properly. Simon’s article was a great help and these functions are based on that article. Thanks Simon.

EXAMPLE

The OPEN routines work as follows:

1000 REMark open our file for input

1010 :

1020 chan = DJ_OPEN_IN('filename"')

1030 IF chan < 0

1040 PRINT 'OOPS, failed to open "filename", error ' & chan
1050 STOP

1060 END IF

1070 :

1080 REM process data in file here

DJ_OPEN_DIR is a new function to those in the normal QL range, and it works as follows:

1000 REMark read a directory

1010 :

1020 INPUT 'Which device ';dev$

1030 chan = DJ_OPEN_DIR(dev$)

1040 IF chan < 0

1050 PRINT 'Cannot open ' & dev$ & ', error ' & chan
1060 STOP

1070 END IF

1080 :

1090 CLS

1100 REPeat dir_loop

1110 IF EOF (#chan) THEN EXIT dir_loop

1120 a$ = FETCH_BYTES (#chan, 64)

1130 size = CODE(a$(16)): REMark Size of file name
1140 PRINT a$(17 TO 16 + size): REMark file name

(continues on next page)

272 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

1150 END REPeat dir_loop
1160 :

1170 CLOSE #chan

1180 STOP

In this example, no checks are done to ensure that the device actually exists, etc. You could use
DEV_NAME to check if it is a legal device. The data being read from a device directory file must always
be read in 64 byte chunks as per this example.

Each chunk is a single directory entry which holds a copy of the file header for the appropriate file. Note,
that the first 4 bytes of a file header hold the actual length of the file but when read from the directory as
above, the value if 64 bytes too high as it includes the length of the file header as part of the length of a
file.

The above routine will also print blank lines if a file has been deleted from the directory at some point.
Deleted files have a name length of zero.

Note that if you type in a filename instead of a device name, the function will cope. For example, you
type in ‘fipl_fred’ instead of ‘fipl_’. You will get a list of the files on ‘flpl_’ if ‘fred’ is a file, or even,
if ‘fred’ is not on ‘flp1_’. If, however, you have the LEVEL 2 drivers (see LEVELZ2 below), and ‘fred’ is
a sub-directory then you will get a listing of the sub-directory as requested.

CROSS-REFERENCE
DJ_OPEN, DJ_OPEN_IN, DJ_OPEN_NEW, and DJ_OPEN_OVER.

11.61 DJTK_VER$

Syntax v$ = DITK_VERS$
Location DJToolkit 1.16

This simply sets v$ to be the 4 character string ‘n.nn’ where this gives the version number of the current
toolkit. If you have problems, always quote this number when requesting help.

EXAMPLE

[PRINT DJITK_VERS

11.62 DLINE

Syntax ~ DLINE [#ch,] [range “[,range']"](Not SMS)
DLINE [range “[,range!]"]1(SMS Only)
Location QL ROM

This command deletes a given range of lines from the current SuperBASIC program. The range of lines
is as per the LIST command. If an empty range (for example DLINE) is specified, no action is taken.
When the lines have been deleted, except under SMS, the current listed lines are re-shown in the given

11.61. DJTK_VERS$ 273

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

channel (default #2), although we cannot see any reason why you would wish this to happen on another
channel! On SMS this command has no effect on the display.

NOTE 1

DLINE TO is expanded to DLINE 1 TO 32767.

NOTE 2

Only Minerva v1.96+ rejects invalid channel parameters.

NOTE 3

On Minerva pre v1.98, DLINE to the last line could crash the QL!
CROSS-REFERENCE

EDIT and AUTO allow you to enter lines. LIST allows you to view program lines.

11.63 DLIST

Syntax DLIST [#channel]
Location Toolkit IT

This command lists all three current default directories (otherwise returned by the DATAD$, PROGD$
and DESTDS$ functions) to the specified channel (default #1).

Example

DLIST

possible Output:

flpl_Quill_letters_
raml_
par

NOTE

Some Toolkit II manuals mention a second syntax: DLIST \file but it seems as though this was never
implemented. This should not be a problem since programs can read the same information from the
DATADS$, PROGD$ and DESTD$ functions.

CROSS-REFERENCE

DATADS$ (DATA_USE), PROGD$ (PROG_USE), DESTDS$ (SPL_USE or DEST_USE), DDOWN, DUP
Compare DEVLIST and DEV_LIST .

274 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.64 DMEDIUM_DENSITY

Syntax DMEDIUM_DENSITY [(#channel)] or
DMEDIUM_DENSITY (\file)
Location SMSQ/E v2.73+

This function returns a number representing the density of the medium on which the specified file or
directory is located, or to which the specified channel is open. If no parameter is specified, it looks to
channel #3 (or #1 if #3 is not open). An error will occur if the specified channel is not open or the given
file does not exist.

The value returned is:
* 0 Non-directory device
* 1 Double Density
* 2 High Density

* 3 Extra Density

255 Hard disk or ram disk as they have no density.

Example

[PRINT DMEDIUM_DENSITY(\£flp1l_)

CROSS-REFERENCE

DMEDIUM_NAMES$ gives the name of the disk attached to the specified channel. DMEDIUM_RDONLY
and DMEDIUM FORMAT are also useful.

11.65 DMEDIUM_DRIVES$

Syntax DMEDIUM_DRIVES [(#channel)] or
DMEDIUM_DRIVES$ (\file)
Location SMSQ/E v2.73+

This function returns the three letter code representing the device connected to the specified channel or
file. If no parameter is specified then it tries #1, unless channel #3 is open in which case it will access #3.
If an error occurs, for example you specify a channel which is not open or a file which does not exist, then
an error will occur. Luckily due to the fact that directories are stored in files under Level-2 and Level-3
drivers, this means that you can use:

PRINT DMEDIUM_DRIVE$ (\flp2_)

if you wish. If the specified channel is not open to a directory device then an empty string will be returned.
NOTE 1

This function does not appear to work 100%, for example on Falkenberg hard disk interfaces it returns
‘WINq’ - however you can get around this by copying the returned string to another variable and only
looking at the first three letters, for example:

11.64. DMEDIUM_DENSITY 275

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

DRV$=DMEDIUM_DRIVE$
IF DRV$<>"":PRINT DRV$(TO 3)

NOTE 2

This function will ignore the dev_ device, returning the three letter name of the device to which dev
points, for example:

DEV_USE 1,'flpl quill_ '
drv$=DMEDIUM_DRIVES$ (\DEV1_)
IF drv$<>'':PRINT drv$(to 3)

Compare:

[PRINT DMEDIUM_DRIVE$ (\DEV1_)

CROSS-REFERENCE
DMEDIUM_NAMES allows you to find out the name of the disk in the specified drive.

11.66 DMEDIUM_FORMAT

Syntax DMEDIUM_FORMAT [(#channel)] or
DMEDIUM_FORMAT (\file)
Location SMSQ/E v2.73+

This function returns a number representing the operating system under which the medium (or hard disk
partition) on which the specified file or directory is located (or to which the specified channel is open)
was created. If no parameter is specified, it looks to channel #3 (or #1 if #3 is not open).

The values returned currently are:
¢ 1 QDOS or SMSQ or SMSQ/E
* 2 DOS or TOS
NOTE
This function does not appear to work on Falkenberg hard disk interfaces where it always returns 255.
CROSS-REFERENCE

DIR will provide this information also on Level-3 device drivers. DMEDIUM_DENSITY allows you to
check the medium’s density. There is currently no way to format a disk in a format other than QDOS
or SMSQ/E without the ATARI_rext commands which were available with the ST/QL emulators from
Jochen Merz, or without specialist software (some of which is public domain).

276 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.67 DMEDIUM_FREE

Syntax DMEDIUM_FREE [(#channel)] or
DMEDIUM_FREE (\file)
Location SMSQ/E v2.73+

This function returns the number of free sectors available on the medium on which the specified file or
directory is located, or to which the specified channel is open. If no parameter is specified, it looks to
channel #3 (or #1 if #3 is not open).

CROSS-REFERENCE

DMEDIUM_TOTAL allows you to find out the total number of sectors available on the related medium.
DIR can also be used to obtain this information.

11.68 DMEDIUM_NAMES$

Syntax DMEDIUM_NAMES [(#channel)] or
DMEDIUM_NAMES$ (\file)
Location SMSQ/E v2.73+

This function returns the name which was given to the medium on which the specified file or directory is
located (or to which the specified channel is open), when that medium was FORMATted. If no parameter
is specified, it looks to channel #3 (or #1 if #3 is not open).

Example

A routine to re-format a floppy disk with the same details as previously allocated to that disk (except for
the files). The drive to format (eg. flpl_) can be passed with or without quotes, due to the use of line
120:

100 DEFine PROCedure RE_FORMAT (drv)

110 v$=VERS$:IF v$<>"HBA':PRINT #0, 'NOT SUPPORTED':PAUSE:RETurn

120 drv$=PARSTRS$(drv, 1)

130 CH=FOPEN(drv$)

140 IF CH<O:PRINT #0,'File Error - cannot access drive':PAUSE:RETurn
150 IF DMEDIUM_RDONLY (#CH)

160 PRINT #0, 'Disk Write Protected, cannot proceed':PAUSE
170 CLOSE #CH:RETurn
180 END IF

190 dname$=DMEDIUM_NAMES$ (#CH)
200 drv_density=DMEDIUM_DENSITY (#CH)
210 IF DMEDIUM_FORMAT (#CH)<>1

220 PRINT #0, 'Not QDOS / SMSQE disk, cannot proceed':PAUSE

230 CLOSE #CH:RETurn

240 END IF

250 IF DMEDIUM_TYPE(#CH)<>1

260 PRINT #0, 'This routine only supports floppy disks!!':PAUSE

(continues on next page)

11.67. DMEDIUM_FREE 277

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

270 CLOSE #CH:RETurn

280 END IF

290 CLOSE #CH

300 IF LEN(dname$)>10:dname$=dname$(1 TO 10)
310 SELect ON drv_density

320 =1:dname$=dname$&"' *D"
330 =2 :dname$=dname$&"' *H'
340 =3:dname$=dname$&' *E"'

350 END SELect
360 FORMAT drv$&dname$
370 END DEFine

Usage:

REMark Without quotes:
RE_FORMAT flpl_

or:

REMark With quotes:
RE_FORMAT 'flp2_ '

CROSS-REFERENCE

The name of a medium is set with FORMAT . You can read it with DI/R also.

11.69 DMEDIUM_RDONLY

Syntax DMEDIUM_RDONLY [(#channel)] or
DMEDIUM_RDONLY (\file)
Location SMSQ/E v2.73+

This function returns the value 1 (true) if the the medium on which the specified file or directory is located
(or to which the specified channel is open) is write-protected either through hardware or software control.
If no parameter is specified, it looks to channel #3 (or #1 if #3 is not open). If the medium can be written
to, the value returned is zero.

NOTE

This function does not appear to work on Falkenberg hard disk interfaces where it always returns 1.
CROSS-REFERENCE

See DMEDIUM_NAMES for an example.

278 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.70 DMEDIUM_REMOVE

Syntax DMEDIUM_REMOVE [(#channel)] or
DMEDIUM_REMOVE (\file)
Location SMSQ/E v2.73+

This function returns the value 1 (true) if the medium on which the specified file or directory is located
(or to which the specified channel is open) is a removable hard disk. Otherwise it returns O (false). If no
parameter is specified, it looks to channel #3 (or #1 if #3 is not open).

NOTE
This function does not appear to work on Falkenberg hard disk interfaces where it always returns 1.
CROSS-REFERENCE

DMEDIUM_RDONLY allows you to check if a disk is write- protected. There do not appear to be any
ways in which you can check if any channels are currently open to the medium (ie. whether it is safe to
remove the disk), except for listing all currently open channels, see CHANNELS.

11.71 DMEDIUM_TOTAL

Syntax DMEDIUM_TOTAL [(#channel)] or
DMEDIUM_TOTAL (\file)
Location SMSQ/E v2.73+

This function returns the number of total sectors available on the medium on which the specified file or
directory is located, or to which the specified channel is open. If no parameter is specified, it looks to
channel #3 (or #1 if #3 is not open).

CROSS-REFERENCE

DMEDIUM_FREE allows you to find out the number of sectors which currently do not contain any data
on the related medium. DI/R can also be used to obtain this information. FORMAT releases all sectors
on a disk, marking any which may be corrupt as unavailable.

11.72 DMEDIUM_TYPE

Syntax DMEDIUM_TYPE [(#channel)] or DMEDIUM_TYPE (\file)
Location SMSQ/E v2.73+

This function returns a number representing the type of drive on which the specified file or directory is
located (or to which the specified channel is open). If no parameter is specified, it looks to channel #3
(or #1 if #3 is not open).

The values currently returned are:

* 0 RAM disk

11.70. DMEDIUM_REMOVE 279

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

* 1 Floppy disk drive
* 2 Hard disk drive
* 3 CD-ROM drive
NOTE
This function does not appear to work on Falkenberg hard disk interfaces where it always returns 255.
CROSS-REFERENCE
See DMEDIUM_NAMES for an example.

11.73 DNEXT

Syntax DNEXT subdirectory
Location Toolkit II

This command allows you to move across a directory tree by replacing the current sub-directory with the
specified subdirectory in the default data device.

If the default program device is the same as the default data device, then this will also be altered by
DNEXT.

If the default destination device is a directory device (ie. if it ends with an underscore), DNEXT also alters
the last sub-directory in this (whether or not it points to another drive, or is further down the directory
tree).

winl_

winl_C_
winl_C_include_
winl_C_objects_
winl_BASIC_
winl_QUILL_
winl_QUILL_letters_
winl_QUILL_translations
winl_secret_

The above could be a directory tree on a hard disk. DATA_USE winl_C_ defines winl_C_ as the default
directory device, so WDIR will list all of the files in winl_C_.

Assuming that PROGD$="winl_BASIC_’ and DESTD$="flp2_C_Include_’, entering DNEXT Quill
will result in the following:

* DATAD$="winl_Quill_’

* PROGD$="winl_BASIC_’

* DESTDS$="flp2_C_Quill_’
NOTE 1
DNEXT does not check if there are any files with the given prefix which exist.
NOTE 2

280 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

DNEXT breaks with error -17 (error in expression) if the parameter is a resident keyword. So append
an underscore to the directory name, eg. DNEXT NEW_, or specify the parameter between quote marks
(eg. DNEXT ‘NEW’).

NOTE 3

The default devices cannot exceed 32 characters (plus a final underscore) - any attempt to extend them
beyond this will result in the error ‘Bad Parameter’ (error -15).

CROSS-REFERENCE

DUP moves up the tree, DDOWN moves down the tree. DATAD$ and DLIST can be used to find out
about the current sub-directory and default devices respectively.

11.74 DO

Syntax DO [device_] filename
Location Toolkit IT

This command allows you to execute a set of commands stored in a file (acting as an overlay).

It is intended to perform tasks dictated by a numberless file, which enables you to do many things whilst
releasing memory once the tasks have been performed.

DO is actually very similar to the Toolkit II variant MERGE and will ensure that if the given file only
contains numberless lines, the channel is closed afterwards.

It does however work just as well as MERGE on numbered files!

A numberless program is basically a set of SuperBASIC lines which do not have any line numbers. These
can therefore best be entered with the aid of an editor program. Each line is loaded into the QL with the
relevant command, and then executed (one line at a time), as if they had been entered from the command
line (#0).

This therefore means that although they can call resident SuperBASIC PROCedures and FuNctions, you
can only have in-line structures, such as IF...END IF and SELect ON...END SELect.

Once each line has been executed, it is lost and the memory occupied by that line released.

One advantage for pre JS ROMs is that if you use a numberless file to link resident keywords, such
keywords can then be used in the same program which MERGEd the numberless file. For example, if
you have a numberless file flp1_resident_bas such as:

a=RESPR(12000)
LBYTES flpl Toolkit,a: CALL a

you can then link and use the Toolkit commands in the same program by including a line such as:

[11@ DO flpl_resident_bas }

NOTE

On at least v2.28-v2.49 of Toolkit II, MERGE appears to work much better than DO at executing num-
berless files. If DO is entered as a direct command, none of the numberless lines are executed (compare

11.74. DO 281

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

MERGE which executes the first line), and if DO is part of a program, only the first line is executed
(compare MERGE which executes all of the commands in the numberless file). This is fixed under SMS.

CROSS-REFERENCE

Please refer to MERGE. SMS allows you to EXECute a SuperBASIC program, letting it run in the back-
ground and perform functions on supplied data using pipes or channels (see EX).

11.75 DOS_USE

Syntax DOS_USE device$
Location SMSQ/E for QPC

DOS_USE may be used to set the name of the DOS device. The name should be three characters long,
in upper or lower case.

Example

[DOS_USE mdv

The DOS device is renamed MDV.

[DOS_USE DOS

The DOS device is restored to DOS.

[DOS_USE

The DOS device is restored to DOS.

11.76 DOS_DRIVE

Syntax DOS_DRIVE drive%, directory$
Location SMSQ/E for QPC

This changes the directory the DOS device is connected to.

By default, DOS1_ corresponds to C:\, DOS2_ to D:\ and so on, but the base can be freely chosen in the
configuration dialogue or even at runtime:

[DOS_DRIVE 2, "C:\WINDOWS"

will assign DOS2_ to the windows directory on the host’s C:\ drive.

[PRINT DOS_DRIVES$(2)

would now return “C:\WINDOWS”.

282 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.77 DOS_DRIVES$

Syntax directory$ = DOS_DRIVES$(drive%)
Location SMSQ/E for QPC

This reads back the currently connected directory of the DOS device.
Example

If we continue from the example above for DOS_DRIVE, then:

[PRINT DOS_DRIVE$ (2) J

Will print “CAWINDOWS”.

11.78 DOTLIN

Syntax DOTLIN pl, p2, p3, col, x1, y1, x2, y2
Location HCO

The command DOTLIN is a variant of LDRAW - it draws a dotted line in the specified colour col from
the absolute co-ordinates (x1,y1) to (x2,y2).

The three first parameters are small non-negative integers which specify after how many pixels the line
is to be broken (they are known as the periods).

The line is drawn by plotting the first p1 pixels, then leaving a gap of p2 pixels, plotting the next p3 pixels
and once again leaving a gap of p2 pixels before recommencing the pattern.

Examples

[DOTLIN 10,10, 10,3, 40,40, 200, 60 }

draws a white line from the point (40,40) to the point (200,60) but only for periods of ten pixels.

If a pixel is represented by an asterisk, this would look like this:

||—— 10 --||-- 10 -=|[-- 10 --|

DOTLIN with the periods 3, 5 and 10:

||3||—5—||———1®———||—5—||3||—5—||———1®———|

CROSS-REFERENCE
All the warnings relevant to SET apply.

11.77. DOS_DRIVE$ 283

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.79 DRAW

Syntax DRAW x1,y1 TO x2,y2 ,colour
Location Fast PLOT/DRAW Toolkit

This command draws a line in absolute co-ordinates on the screen. Any windows and window attributes
are ignored. x1 and x2 range from O to 511, y1 and y2 from O to 255. DRAW uses the screen base address
defined with SCRBASE (which enables it to draw on a screen stored in memory as well as the currently
visible screen. It is therefore compatible with QL emulators and Minerva’s dual screen mode, although
it cannot support higher resolutions). The range for the colour parameter is 0..7, other values give odd
results without being dangerous.

Example

Here is a procedure which draws a line given in polar co-ordinates. A point in a polar system is specified
by a radius and angle.

170 DEFine PROCedure POLAR_DRAW (rl,phil,r2,phi2,col)
180 REMark less precise but fast version
190 LOCal r,phi,r_old,phi_old,dr,dphi

200 LOCal x1,x2,yl,y2,dist

210 r_old=rl: phi_old=phil

220 r=rl: phi=phil

230 x1=1.35*r_old*SIN(phi_old+PI/2)+255
240 yl=r_old*COS(phi_old+PI/2)+127

250 dist=(rl+r2)/2 * (phil+phi2)/PI

260 IF dist==0 THEN RETurn

270 dr=(r2-rl1)/dist: dphi=(phi2-phil)/dist
280 REPeat Drawing

290 IF r>=r2 AND phi>=phi2 THEN EXIT Drawing
300 r=r_old+dr: phi=phi_old+dphi

310 x2=1.35*r*SIN(phi+PI/2)+255

320 y2=r*COS(phi+PI/2)+127

330 DRAW x1,yl TO x2,y2 ,col

340 r_old=r: phi_old=phi

350 x1=x2: yl=y2

360 END REPeat Drawing
370 END DEFine POLAR_DRAW

POLAR_DRAW 0,0 TO 100,8*PI ,7

draws an archimedic spiral and these few lines create a polar pattern:

10 SCLR ©

20 FOR a=0 TO 50 STEP 10

30 POLAR_DRAW a,® TO a,2*PI ,7

40 POLAR_DRAW 0,PI*a/25 TO 50,PI*a/25, 7
50 END FOR a

60 REFRESH

NOTE

284 Chapter 11. Keywords D

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

DRAW is specific to the resolution of 512x256 pixels. It can however be used to draw on Minerva’s
second screen by using the command SCRBASE SCREEN(#3) (assuming that #3 is open on the second
screen).

CROSS-REFERENCE

PLOT plots a pixel, SCLR clears the screen and REFRESH makes the screen pointed to by SCRBASE
visible. See also DOTLIN and the other variant of DRAW.

11.80 DRAW

Syntax DRAW [#ch,] x2,y2
Location DRAW (DIY Toolkit - Vol G)

This command draws a line in absolute co-ordinates on the screen with reference to the specified window
channel (if any - default #1). The line is drawn from the last point plotted with the PLOT command
from the same toolkit, to the point specified by x2,y2. This is quicker than using the SuperBASIC LINE
command and unlike other similar commands, it will support the current INK colour and OVER mode.

<CTRL><F5> will pause the line drawing and it will even work in MODE 4, 8 and 12 (on the THOR
XVI, provided that you have v1.6+). The main limitation on this command is that the line must appear
fully within the specified window, so x2 and y2 cannot exceed the width or height of the specified window
(in pixels) nor be less than zero.

NOTE

Although DRAW will work wherever the screen base is located, it assumes that a line of pixels takes 128
bytes - it will not therefore currently work on higher resolutions.

CROSS-REFERENCE
See the other variant of DRAW. See also PLOT . LINE is much more flexible.

11.81 DROUND

Syntax DROUND (d, x)
Location TRIPRODRO

The function DROUND will return the floating point number x rounded to d decimal digits, counted from
the left of the number. DROUND rounds the last digit up or down depending on the next digit (ignoring
any others).

Example

DROUND(3, 1234.56) = 1230
DROUND (4, 1234.56) 1235

CROSS-REFERENCE
PROUND rounds to a given precision.

11.80. DRAW 285

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

11.82 DUP

Syntax DUP
Location Toolkit IT

This command strips off the last part of the default data device, thus moving up the directory tree. If the
default program device is the same as the default data device, then this will also be altered by DUP. If the
default destination device is a directory device (ie. if it ends with an underscore), DUP also alters this
(whether or not it points to another drive).

winl_

winl _C_
winl_C_include_
winl_C_objects_
winl_BASIC_

winl QUILL_
winl_QUILL_letters_
winl QUILL_translations
winl_secret_

If DATADS is winl_, DDOWN Quill moves down to winl_Quill_, whilst DUP will move DATADS$ back
up to winl _.

If DATADS is winl_Quill_letters_secret_, three DUPs will change it back to winl_.
NOTE

It is not possible to move beyond the name specifying the actual device to be used. In the above example,
this is the named root, winl _.

CROSS-REFERENCE

DATA_USE allows you to set the absolute directory root, DDOWN goes down the tree, and DNEXT
skips from branch to branch. DATADS returns the current default data device ie. the device name plus
the current sub-directory.

286 Chapter 11. Keywords D

CHAPTER
TWELVE

KEYWORDS E

12.1 EASTER

Syntax EASTER (year%) where year% >= 1583
Location Math Package

This function calculates the date of Easter Sunday for any given year after 1583 (when the Gregorian
calender was introduced by Pope Gregory XIII to replace the Julian calender of Julius Ceasar which had
been in use since 46 BC). EASTER returns the date as a floating point number, where the day is the
integer part of the number and the month is given by the digits following the floating point, eg. PRINT
EASTER(1993) shows 11.4 (April, 11th)

Example

Easter Sunday is used as a basis to fix other clerical days, so if two years have Easter Sunday on the same
day, the other holy dates are identical, too:

100 INPUT "Year=";year
110 east1=EASTER(year)
120 FOR y=year+1 TO 32767
130 east2=EASTER(y)

140 IF eastl=east2 THEN

150 PRINT "Next Easter Sunday on"l!eastl;". is in"!ly;"."
160 EXIT y
170 END IF

180 END FOR y

NOTE

EASTER does not return the correct value on SMSQ/E for some reason.
CROSS-REFERENCE

GREGOR

287

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

12.2 ED

Syntax ED [#ch,] [start_line]
Location Toolkit II

This command invokes Toolkit II’s full-screen editor. This provides powerful facilities for editing a
SuperBASIC program loaded in memory and forms a useful alternative to the QL’s standard EDIT and
AUTO commands.

ED will list the current SuperBASIC program from its first line (or from the specified start_line) onwards
in the given channel (default #2). If the specified channel (#ch) is not a console con_ channel, then an
error -15 (Bad Parameter) will be reported. If any lines are too long to fit in the specified window, they
are wrapped round onto the next line, with this ‘continuation line’ indented in order to differentiate from
other program lines. It does however make sense to use the widest possible window to avoid wrapping
of lines.

Once a window-full of the listing is shown, ED will activate the cursor in the window and you can then
move up or down through the listing by using the up and down cursor keys. The left and right cursor keys
will move across the listing lines (and even ‘blank’ space where the actual program lines do not appear).

Any attempt to alter a line (eg. to delete a character) will activate that line, in which case it will be shown
in inverse colours. Any attempt to move the cursor off that line (or pressing <ENTER>) will tell ED to
accept the alterations and de-activate that line.

If the line is not acceptable to the SuperBASIC parser, then a ‘Bad Line’ error will be generated in #0
and the line re-activated.

If you press the Break key or <ESC> whilst a line is active, it will be de-activated and returned to its
original state. If no line is active, <ENTER> will insert a new line number half-way (if possible) between
the number of the line on which the cursor is situated and the next line number. If there is no room for
an additional line between the two program lines, <ENTER> will be ignored.

If on the other hand, there is a gap of 20 or more (or there are no further program lines), the new line
number will be the current line number plus 10.

Another way of creating new lines is to amend the line number of the current line. If you do this, a new
line with the amended line number will be inserted (overwriting any existing line) and the current line
will remain the same (the cursor remains on the same line). This enables you to copy lines from one part
of a program to another.

By way of further assistance to the SuperBASIC programmer, ED can work in two modes - Overwrite
Mode and Insert Mode. The latter is the default, in which case any characters typed will activate the
current line and insert them at the current cursor position.

In Overwrite Mode, any characters typed will activate the current line and replace the characters under
the cursor.

A line can be deleted either by using <CTRL><ALT><«> (except on SMS where you must use
<CTRL><«>) or by deleting all of the visible characters in a line. If you delete everything but the
line number, then the line pointed to by that line number will be deleted.

There are several other keys available which make editing a SuperBASIC program much easier than under
EDIT. The keys available from within the standard ED are listed on the next page.

NOTE 1

288 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Avoid ED #0 if possible.
NOTE 2

ED is likely to cause various problems if used from within a SuperBASIC program.

NOTE 3

Any attempt to create SuperBASIC lines which are longer than 32766 characters may crash SuperBASIC.

NOTE 4

If a program contains a line 32767, this may upset ED when you are editing the end of the program.

NOTE 5

ED is not very helpful when there is no program actually in memory, as it starts off with a blank screen
and you have to type the whole line, including line number (even if you passed a line number with the

command).

NOTE 6

As from SMS v2.58 you can use ED ERLIN to edit the line which has caused an error. We are not certain

if this works on other implementations.

NOTE 7

Any attempt to ED a line number greater than 32757 can cause problems (on some versions ED creates
negative line numbers, on others you cannot see the line being edited). SMSQ/E v2.85 (at least) does not

have these problems, but see Note 4 above.
ED Special Key Presses
The keys available in ED are:

Key Press Action

<ENTER> Create new line, unless line is active, in which case this tells ED to accept alterations

to the line and de-activate it.

<ESC> Leave ED - control returns to #0 unless line is active, in which case this de-activates

line without altering it.
<CTRL><SPAC See <ESC>.

<TAB> Move to the right by multiples of eight.
<SHIFT><TAB Move to the left by multiples of eight.

T Move up one line.

<ALT> T Scroll up a line (cursor remains still, text moves down).
<SHIFT> T Scroll up one page (cursor remains still).

d Move down one line.

<ALT> | Scroll down a line (cursor remains still, text moves up).
<SHIFT> | Scroll down one page (cursor remains still).

— Move right one character.

<CTRL> — Delete character under cursor (line becomes active).

— Move left one character.

<CTRL> « Delete character to left of cursor (line becomes active).
<CTRL><ALT: Delete line under cursor (not under SMS).

-

<SHIFT><F4> Switch between overwrite and insert mode.

12.2. ED

289

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

SMS adds the following additional keys:

Key Action

Press

<SHIFT> Move left one word.

-

<ALT> Move to start of line.

-

<CTRL>< Delete word to left of cursor (line becomes active).

-

<CTRL>< Delete from cursor to start of line (line becomes active).
-

<SHIFT> Move right one word.

%

<ALT> Move to end of line.

N

<CTRL>< Delete word under cursor (line becomes active).

N

<CTRL>< Delete from cursor to end of line (line becomes active).
N

<CTRL> Delete whole line under cursor.

-

<SHIFT>< Stuff the currently activated line into the Hotkey buffer so that this can be later recalled
with <ALT><SPACE>. Note this will only work if the Hotkey system is active (see
HOT_GO). For this you need v2.58+.

SMS NOTES

Oddly, the SuperBasic interpreter allows you to enter a line which is beyond the permitted range of line
numbers, for example, enter as a direct command:

40000 PRINT 'This should not be accepted'

No error is reported, and the line is executed as if it had been entered without a line number!

SMS also suffers with problems if you edit a long line at the bottom of a window, so that as you type
in more text for the line, the program line extends below the bottom of the window. ‘Invalid Syntax’ is
printed over and over in #0, crashing the computer. This was improved in v2.71 but still has not been
totally fixed.

The keying <CTRL> — clashes with the key used by early versions of the program MasterBasic (by
Ergon Software) which is used to move between occurrences of an object which has been searched for
in the program. This has been resolved in v1.46+ of the program.

If you try to use ED on #2 and this is not open, then SMS will use #0 (if this is not open, it will open a
default window #0). This is useful for SBASICs which may be started with only one channel open (an
input channel).

Another useful feature implemented on SMS is that as from v2.69, if you enter the command ED without
any parameters, this has one of two effects. If you have not previously used ED, this edits the start of the
program (as on all other versions). However, if you have previously used ED, the line which is shown
at the top of #2 is the line which was at the top of the window when you left ED previously - this can
therefore be useful when testing a section of the program.

290 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE
Please also refer to AUTO and EDIT which are replaced by this command.

12.3 EDIT

Syntax EDIT [start_number] [,step]
Location QL ROM

This command allows you to enter the SuperBASIC line editor in order to alter a SuperBASIC program
loaded in memory. It will automatically create line numbers in the command line (#0) to assist in entering
SuperBASIC programs, in much the same way as AUTO. EDIT would normally only be entered as a direct
command (although you can include it in a program line, the line numbers will not be generated until the
program has finished its work).

Once entered, you will be presented with the first line start_number (default 100) - if this line already
exists in the program, then the existing line will be presented. Otherwise, you will only see the current
line number.

Pressing the up and down arrow keys will move you to the previous line or the next line (respectively) in
the program, although if there is no previous (or next) line, then you will exit the EDIT mode. However,
if you press the Enter key, if step is specified (default 0), this will act in the same way as AUTO. However,
if step is not specified, you will leave EDIT mode.

The main advantage of using EDIT over ED is how EDIT handles the screen. If the program has not
been previously EDITed (or a PROC/FN Cleared message has been displayed) then EDIT will show a
section of the current program in #2 when you move off the line currently being EDITed with the cursor
keys or <ENTER>. This section will have the line which was just EDITed as the top line and will go on
to fill #2 with additional lines of the program. However, if the program has already been EDITed and
the PROC/FN Cleared message has not been displayed, then EDIT will not affect the display on screen
(other than showing parts of the program in #0) until you EDIT a line which is within the range of lines
which were previously being EDITed.

This range of lines is actually slightly bigger than the lines which would have been displayed in #2, going
from an invisible top line (the line above the displayed line) to an invisible bottom line (the line below
the displayed line). Now, this can be quite useful when searching a program for some text or deciding
where to copy a section of the program to, or even to line up characters on screen when the program has
been RUN.

The listing which last appeared on #2 is represented as:

110 PAPER 0:INK 4:CLS(Invisible Top Line)
120 PRINT 'A PROGRAM' (Displayed Lines)
130 PRINT 'TO GET YOUR NAME'

140 INPUT \\'ENTER YOUR NAME';name$

150 PRINT \\

160 PRINT 'HELLO'!name$

170 PRINT \\"I'M YOUR COMPUTER" (Invisible bottom Line)

NOTE 1

12.3. EDIT 291

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

You cannot set an absolute step value of zero - omit this parameter to achieve the same result!
NOTE 2

On non-Minerva ROMs EDIT uses the same routine as RENUM to check its parameters, which means
that you can specify a start_line and an end_line, although they do nothing. For example:

[EDIT 100 TO 1000:1000,20

would create lines 1000, 1020, 1040,
NOTE 3

The maximum line number is 32767. Both start_number and step should be integers - if they are not,
they will be rounded to the nearest integer (compare INT).

NOTE 4
Additional keys are available for editing on Minerva (see INPUT).
NOTE 5

EDIT can give problems if it is issued after breaking into a program which was in the middle of a PRO-
Cedure or FuNction at the time.

On non-Minerva ROMs, this is likely to produce a ‘not implemented’ error and the wrong line. Press
Break and try again do not try to edit the line. On Minerva ROMs (pre v1.97) this is compounded by the
fact that Minerva tends to try to run the program again.

Sometimes you are lucky and Minerva tries to jump to a non-existent line number before presenting you
with the desired line. Unfortunately, EDIT is never really safe in this context, and you should either type
CLEAR before EDIT or use ED.

NOTE 6

On pre Minerva ROMs SuperBASIC is liable to lock up if you try to EDIT a line after trying to call a
PROCedure/FuNction which was defined at the end of the program, but had been deleted.

SMS NOTES
On SMS the EDIT command is exactly the same as ED.
CROSS-REFERENCE

AUTO is very similar, especially where STEP is specified. DLINE deletes program lines. INPUT contains
details of the available keypresses for cursor navigation. ED provides a different means of editing a
SuperBASIC program.

[PRINT PEER_W(\\HEX('9C"))

returns the line number of the invisible top line which was last EDITed (except on SMS).

[PRINT PEEK_W(\\HEX('9E "))

returns the line number of the bottom line in #2 which was last EDITed (except on SMS).

292 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

12.4 EDITF

Syntax EDITF ([#ch,] {default | default$} [,maxlen%])
Location Turbo Toolkit

This function is similar to EDLINES. However, EDITF is intended solely for asking the user to enter a
floating point number. The specified default (which may be given as a number or a string) is printed at the
current text cursor position in #ch (default #1) and allows you to edit it. The parameter maxlen% dictates
the maximum number of characters allowed (this defaults to the amount set when the Turbo Toolkit is
configured). The edited result is returned when <ENTER> is pressed. If the string contains a nonsensical
value when <ENTER> is pressed, a warning beep is sounded.

NOTE

On non-SMS machines, a buffer full error could be reported if an attempt was made to enter a string longer
than 118 characters, or the length of the longest SuperBASIC line listed or edited to date, whichever is
longer.

CROSS-REFERENCE
See EDLINES. EDIT% and EDITS$ are also useful.

12.5 EDIT%

Syntax EDIT% ([#ch,] {default | default$} [,maxlen%])
Location Turbo Toolkit

This function is the same as EDITF, except that only integer values are acceptable.
CROSS-REFERENCE
See EDITF.

12.6 EDIT$

Syntax EDITS$ ([#ch,] default$ [,maxlen%])
Location Turbo Toolkit

This function is similar to EDLINES$. It operates in the same way as EDITF, except that any string of
characters can be edited, rather than being restricted to a number.

CROSS-REFERENCE
See EDITF .

12.4. EDITF 293

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

12.7 EDLINE$

Syntax EDLINES (#ch, maxlen%, edit$)
Location EDLINE (DIY Toolkit Vol E)

The function EDLINES prints edit$ at the current text cursor position in #ch (there is no default channel)
and allows you to edit it. A maximum length of maxlen% characters is allowed. The edited result is
returned. Unlike INPUT, EDLINES$ will not finish with <UP> or <DOWN> but only after <ENTER> and
<CTRL><SPACE> (also <ESC> on Minerva). Instead <UP> and <DOWN> move the cursor to the start
and end of the string respectively; apart from that the usual keys for editing are used: <CTRL><LEFT>
deletes the character to the left of the cursor, <CTRL><RIGHT> the character under the cursor.

Example

100 CLS

110 REPeat ask_name

120 PRINT \"Please enter your name: ";
130 Name$ = "Billy the Kid"

140 Name$ = EDLINE$ (#1,40,Name$)

150 PRINT "Your name is '";Name$;"' (y/n)? ";
160 ok$ = EDLINE§(#1,1,"y"™)

170 IF ok$ INSTR "yY" THEN EXIT ask_name

180 PRINT "Try again..."

190 END REPeat ask_name

200 PRINT "Hello,"!Name$;"!"

NOTE

You need a special version of EDLINES to work correctly on Minerva and SMS. This version is included
with the DIY Toolkit package.

CROSS-REFERENCE

EDLINES$ can be used to input numbers but you have to ensure that the entered text can be successfully
coerced to a number, see CHECK% and CHECKF for that. EDITS is similar. Other routines for human
input are for example: INPUT, INKEY$, ASK and REPLY .

12.8 EL

Syntax EL
Location Beuletools

This function returns the control codes needed to switch on the NLQ (near letter quality) font on an
EPSON compatible printer:

[PRINT EL }

is the same as:

294 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

[PRINT CHR$ (27)&"x"&CHRS (1) . }

CROSS-REFERENCE
NORM, BLD, DBL, ENL, PRO, SI, NRM, UNL, ALT, ESC, FF, LMAR, RMAR, PAGDIS, PAGLEN..

12.9 ELIS

Syntax ELIS (keyword$)
Location TinyToolkit

This function will return the machine code start address of the specified resident keyword if it is recog-
nised by SuperBASIC. If the keyword is unknown, then the function will generate a Not Found error.

CROSS-REFERENCE
See KEY_ADD, FLIS and CODEVEC. Compare FIND and LOOKUP%.

12.10 ELLIPSE

Syntax ELLIPSE [#ch,] x,y,radius,ratio,ecc *[;xi,yi,radiusi,ratioi,ecci]*
Location QL ROM

Both the ELLIPSE and CIRCLE commands perform exactly the same function. We have however decided
to split them, since if users adopt the habit of using ELLIPSE to draw ellipses and CIRCLE to draw circles,
this will help users understand SuperBASIC programs much more easily.

This command allows you to draw an ellipse in the current INK colour of the given radius with its centre
point at the point (x,y).

The ratio affects the difference between the major axis and the minor axis - the greater the ratio, the
greater the difference between the two.

The major (y) axis is specified by the parameter radius, whereas the minor (x) axis is calculated by
radius*ratio which therefore means that if ratio>1, the major axis will become the (x) axis (if you see
what we mean!).

Ecc defines the angle at which the ellipse will be drawn. This is measured in radians and forms the anti-
clockwise angle between a vertical line drawn through the origin of the ellipse and the major axis. Thus,
ecc=PI/4 draws an ellipse at an angle of 45 degrees.

The actual positioning and size of the ellipse will depend upon the scale and shape of the specified
window (default #1).

The co-ordinates are calculated by reference to the graphics origin, and the graphics pointer will be set to
the centre point of the last ellipse to be drawn on completion of the command. If any parts of the ellipse
lie outside of the specified window, they will not be drawn (there will not be an error).

If the parameters ratio and ecc are omitted, this command has exactly the same effect as CIRCLE. This
command will actually allow you to draw multiple ellipses by including more sets of parameters. Each

12.9. ELIS 295

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

additional set must be preceded by a semicolon (unless the preceding ellipse uses five parameters). This
means for example, that these all perform the same action:

ELLIPSE 100,100,20,1,2,50,50,20
ELLIPSE 100, 100,20,1,2; 50,50,20
ELLIPSE 100,100,20,1,2: CIRCLE 50,50,20

Although the FILL command will allow you to draw filled ellipses on screen (in the current ink colour),
you will need to include a FILL 1 statement prior to each ellipse if they are to appear independently on
screen (this cannot be achieved when using this command to draw multiple ellipses).

If this rule is not followed, then any points which lie on the same horizontal line (even though they may
be in different ellipses) will be joined.

Example

Try the following for an interesting effect:

100 MODE 8

110 WINDOW 448,200,32,16:PAPER 0:CLS

120 SCALE 100,0,0

130 INK 4:0VER -1

140 REPeat loop

150 FOR ang=0 TO PI*2-(PI*2/20) STEP PI*2/20
160 FILL 1:ELLIPSE 70,50,40,.5,ang

170 FILL 1:ELLIPSE 70,50,40,.5,ang

180 END FOR ang

190 END REPeat loop

NOTE

On all ROMs other than Minerva v1.89+, very small ellipses and very large ones can cause problems.
Try:

[ELLIPSE 80,80,80,6, 1 }

on a non-Minerva machine for a laugh.

Unfortunately, Lightning SE (v2.11) still contains this bug and will bring it back!
CROSS-REFERENCE

Please refer to CIRCLE, ELLIPSE R, ARC, LINE and POINT .

12.11 ELLIPSE_R

Syntax ELLIPSE_R [#ch,] x,y,radius,ratio,ecc *[;xi,yi,radiusi,ratioi,ecci]*
Location QL ROM

This command draws an ellipse relative to the current graphics cursor. See ELLIPSE above!
CROSS-REFERENCE
Please refer to ARC_R and CIRCLE_R.

296 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

12.12 ELSE

Syntax ELSE “[:statements]”
Location QL ROM

This command forms part of the IF... END IF structure and allows you to take alternative action if the
condition contained in the IF statement proves to be false.

CROSS-REFERENCE

See IF for more details.

12.13 END

Syntax END ...
Location QL ROM

This keyword forms part of the structures: END WHEN, END SELect, END IF, END REPeat, END
FOR and END DEFine As such, it cannot be used on its own within a program - this will cause a ‘bad
line’ error.

CROSS-REFERENCE

Please refer to the individual structure descriptions below for more details.

12.14 END DEFine

Syntax END DEFine [name]
Location QL ROM

This command marks the end of the DEFine PROCedure and DEFine FuNction SuperBASIC structures,
and has no meaning on its own. You may if you wish, place the name of the PROCedure or FuNction
after END DEFine to help make the SuperBASIC program more readable - this will however have no
effect on how the command is treated by the interpreter, which will still take the next END DEFine as
the end of the current definition block (even if it is followed by a different name).

The interpreter will jump out of a definition block whenever it meets a RETurn statement. It will also
jump out of a DEFine PROCedure definition when it meets an END DEFine statement. This does of
course mean that END DEFine can be used in the middle of a PROCedure to force a return to the calling
statement - however, this can cause other problems and a RETurn should be used, with END DEFine
only appearing at the very end of the definition block.

On the other hand, the interpreter can only jump out of a DEFine FuNction definition if it meets a RETurn
- if the interpreter comes across an END DEFine in such situations, it will report the error ‘Error In
Expression’. On SMS the error ‘RETurn not in Procedure or Function’ is reported. If the definition block
is not actually being used, but the interpreter is working its way through the program, when a DEFine

12.12. ELSE 297

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

PROCedure or DEFine FuNction statement is met, the interpreter will search for the next END DEFine,
and having found one, will resume the program at the next statement.

This does however mean, that unless an in-line DEFine structure is being used, if this command is miss-
ing, the interpreter will carry on searching through the program and may just stop without an error if
END DEFine does not appear anywhere in the program after the initial DEFine PROCedure (or DEFine
FuNction).

Example 1

The above rules mean that the following example will work under SuperBASIC, but is extremely ineffi-
cient and difficult to decode:

10 FOR i=1 TO 100

20 PRINT power(i)

30 DEFine FuNction power (x)
40 RETurn 2/x

50 END DEFine

60 END FOR i

Example 2

See if you can work out why the following program goes wrong:

100 FOR i=1 TO 100
110 PRINT power (i)
120 DEFine FuNction power(x)

130 DEFine FuNction base
140 RETurn 2

150 END DEFine base

160 RETurn base’x

170 END DEFine power
180 END FOR i

If you are having trouble, try inserting:

[155 PRINT 'Program line 155:';x

NOTE
END DEFine need not appear in an in-line definition statement, except under SMS.
SMS NOTE

Checks are made on a program before it is run, and so if an END DEFine statement is missing, this will
be reported as an error (‘Incomplete DEFine clause’). SMS’s improved interpreter will report the error
‘Misplaced END DEFine’ if END DEFine does not mark the end of a DEFine PROCedure or DEFine
FuNction block.

CROSS-REFERENCE

Please see DEFine PROCedure and DEFine FuNction. Other SuperBASIC structures are SELect ON,
IF, REPeat, WHEN XXX and FOR.

298 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

12.15 END FOR

Syntax END FOR loop
Location QL ROM

This command marks the end of the FOR..END FOR SuperBASIC structure with the same loop name,
and has no real meaning on its own. When the interpreter meets this statement, it then looks at the stack
to see if a related FOR command has already been parsed.

If not, then the error ‘Not Found’ will be reported, however, if such a FOR loop has been parsed, the
interpreter will fetch the end parameter and if the loop is not yet at this value, then step is added to loop
and control returned to the statement following FOR.

If however loop is already at the end value, control passes to the statement following END FOR.

The second variant is only available under SMS, where the interpreter presumes that if no loop name is
specified, the programmer means the interpreter to return control to the most recent FOR statement (if
the loop is not at its final value).

When an EXIT loop is found, the interpreter will search for the relative END FOR loop, and if found,
will resume program flow at the next statement.

Under SMS, neither EXIT nor END FOR need have a loop identifier, and therefore EXIT will simply
cause the program to jump to the statement after the next END FOR command (if no loop is specified).

This does however mean, that except under SMS, unless an in-line FOR structure is being used, if this
command is missing, the interpreter will carry on searching through the program and may just stop
without an error if END FOR loop does not appear anywhere in the program.

NOTE
END FOR need not appear in an in-line FOR statement.

SMS NOTE

SMS will report ‘unable to find an open loop’ if the interpreter comes across an END FOR command
(without a loop variable name) without a corresponding open FOR loop. If the interpreter comes across
an END FOR command (with a loop variable name) without a corresponding open FOR loop the error
‘undefined loop control variable’ is reported.

CROSS-REFERENCE

Please see FOR. Compare NEXT and EXIT. Other SuperBASIC structures are: DEFine PROCedure,
DEFine FuNction, SELect ON, I[F, REPeat, and WHEN XXX.

12.16 END IF

Syntax END IF
Location QL ROM

This command marks the end of the IF..END IF SuperBASIC structure, and has no meaning on its own.

12.15. END FOR 299

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

When the interpreter finds an IF condition statement it then evaluates the condition and carries out certain
commands depending on whether the condition was true or false.

Having carried out those commands, the interpreter then looks for a related END IF command, and will
pass control onto the statement following END IF.

This does however mean, that except under SMS, unless an in-line IF structure is being used, if this
command is missing, the interpreter will carry on searching through the program and may just stop
without an error if END IF does not appear anywhere in the program.

NOTE 1
END IF need not appear in an in-line IF statement.
NOTE 2

All ROMs (except for Minerva v1.93+ or SMS) can get mixed up with multiple in-line IF..END IF struc-
tures - see IF.

SMS NOTE

Checks are made on a program before it is run, and so if an END IF statement appears without a corre-
sponding IF command, the error ‘Misplaced END IF’ is reported.

CROSS-REFERENCE

Please see /F. Other SuperBASIC structures are: DEFine PROCedure, DEFine FuNction, SELect ON,
REPeat, FOR, and WHEN XXX.

12.17 END REPeat

Syntax END REPeat identifier or
END REPeat [identifier]SMS only
Location QL ROM

This command marks the end of the REPeat... END REPeat SuperBASIC structure with the same iden-
tifier, and has no meaning on its own.

When the interpreter meets this statement, it then looks at the stack to see if a related REPeat command
has already been parsed. If not, then the error ‘Not Found” will be reported, however, if such a REPeat
identifier has been parsed, the interpreter will force the program to loop around and return control to the
statement following REPeat.

Under SMS there is no need to specify the identifier on the END REPeat statement, in which case, the
interpreter will presume that this is the end of the last REPeat loop to have been encountered.

When an EXIT identifier is found, the interpreter will search for the relative END REPeat identifier
(or under SMS the next END REPeat command), and if found, will resume program flow at the next
statement.

This does however mean, that except under SMS, unless an in-line REPeat structure is being used, if
this command is missing, the interpreter will carry on searching through the program and may just stop
without an error if END REPeat identifier (or END REPeat under SMS) does not appear anywhere in the
program.

NOTE

300 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

END REPeat need not appear in an in-line REPeat statement.
SMS NOTE

SMS will report ‘unable to find an open loop’ if the interpreter comes across an END REPeat command
(without a loop identifier) without a corresponding open REPeat loop. If the interpreter comes across
an END REPeat command (with a loop identifier) without a corresponding open REPeat loop the error
‘undefined loop control variable’ is reported.

CROSS-REFERENCE
Please see REPeat.

NEXT loop_variable is practically the same although see EXIT. Other SuperBASIC structures are: DE-
Fine PROCedure, DEFine FuNction, SELect ON,IF, FOR, and WHEN XXX.

12.18 END SELect

Syntax END SELect
Location QL ROM

This marks the end of the SELect ON...END SELect SuperBASIC structure, and has no meaning on
its own. When the interpreter has found a match for the value of the variable, it performs a series of
commands, and then looks for the end of the block marked with END SELect.

This means that except under SMS, unless an in-line SELect ON structure is being used, if this command
is missing, the interpreter will carry on searching through the program and may just stop without an error
if END SELect does not appear anywhere in the program.

NOTE 1
END SELect need not appear in an in-line SELect ON statement.
NOTE 2

Under SMS, if END SELect appears in an in-line SELect ON statement, if any commands appear after
END SELect on the same line, an error will be reported.

SMS NOTE

Checks are made on a program before it is run, and so if an END SELect statement is missing, this will
be reported as an error (‘Incomplete SELect clause’). SMS’s improved interpreter will report the error
‘Misplaced END SELect’ if END SELect does not mark the end of a SELect ON definition block.

CROSS-REFERENCE

Please see SELect ON. Other SuperBASIC structures are DEFine PROCedure, DEFine FuNction, IF,
REPeat, WHEN XXX and FOR.

12.18. END SELect 301

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

12.19 END WHEN

Syntax END WHEN
Location QL ROM (post JM)

This marks the end of the SuperBASIC structures: WHEN ERRor and WHEN condition ... END
WHEN, and has no meaning on its own. When the program is first run, the interpreter marks the start of
this structure and then (unless it is an in-line structure) looks for the end of the block marked with END
WHEN.

This means that if this statement is missing, except under SMS, the interpreter will carry on searching
through the program and may just stop without an error if END WHEN does not appear anywhere in the
program.

NOTE
END WHEN need not appear in a single line WHEN or WHEN ERRor statement, eg:

{1@@ WHEN a>4:PRINT 'a>4"'. }

SMS NOTES

Checks are made on a program before it is run, and so if an END WHEN statement is missing, this will
be reported as an error.

SMS’s improved interpreter will also report the error ‘Misplaced END WHEN’ if END WHEN does not
mark the end of a WHEN ERROR definition block.

CROSS-REFERENCE

Please see WHEN ERRor and WHEN condition. Other SuperBASIC structures are DEFine PROCedure,
DEFine FuNction, IF, REPeat, SELect and FOR.

12.20 END_CMD

Syntax END_CMD
Location Turbo Toolkit

This marks the end of a numberless file of direct commands for use with the MERGE command. This
command should be entered on its own as the last line of the numberless file. It overcomes the problem
explained in NOTE 1 of MERGE.

CROSS-REFERENCE
Please see MERGE. DO is also useful for executing such files.

302 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

12.21 END_WHEN

Syntax END_WHEN
Location Turbo Toolkit

This marks the end of the Turbo structure equivalent to the SuperBASIC WHEN ERRor structure.
END_WHEN has no meaning on its own and should only be used within Turbo compiled programs.

CROSS-REFERENCE
Please see WHEN ERRor

12.22 ENV_DEL

Syntax ENV_DEL name$
Location Environment Variables

This command is used to remove a specified environment variable. Please note that the name of the
environment variable is case sensitive. If an empty string is passed as the argument, then an error will
be reported.

Example

A boot program may specify where the files for the main program are stored and then pass it to subse-
quently called programs with. Once the program has finished, the environment variable may be deleted.

1000 source$="winl PROGS_utils_'
1010 SETENV "PROGLOC="&source$
1020 EXEC_W source$&'main_exe'
1030 ENV_DEL "PROGLOC"

CROSS-REFERENCE
Please see SETENV.

12.23 ENV_LIST

Syntax ENV_LIST [#ch]
Location Environment Variables

This command lists all currently active environment variables to the specified channel (default #1).
CROSS-REFERENCE
Please see SETENV.

12.21. END_WHEN 303

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

12.24 ENL

Syntax ENL
Location Beuletools

This function returns the control codes needed to switch on double width on an EPSON compatible
printer:

[PRINT ENL

is the same as:

[PRINT CHRS$ (27)&"W"&CHRS (1)

CROSS-REFERENCE
NORM, BLD, EL, DBL, PRO, SI, NRM, UNL, ALT, ESC, FF, LMAR, RMAR, PAGDIS, PAGLEN.

12.25 EOF

Syntax EQOF [(#ch)]
Location QL ROM

This is a logical function which actually has two uses in SuperBASIC. If no channel number is specified,
then PRINT EOF will return 1 unless the current program contains some DATA lines which have not yet
been READ. This is therefore useful to create programs which can handle any amount of data. However,
if a channel number is specified, for example PRINT EOF(#1), then zero will be returned unless the given
channel is linked to a file and the file pointer is at (or beyond) the end of that file (ie. whether or not there
is data to be read from that channel).

Example

Two simple programs to retrieve an address from a given name (the full name must be given on input).
The first of these has the data stored in the program, whereas the second has it stored on a file called
flpl_address_data:

100 RESTORE

110 MODE 4

120 OPEN #3,con_448x200a32x16:BORDER#3,1,2:PAPER#3,0:INK#3,7
130 INPUT #3, 'Input name to look for:'!search$

140 REPeat loop

150 IF EOF:PRINT#3\\'"No address stored":EXIT loop

160 READ name$,address$

170 IF name$==search$:PRINT #3\\name$,address$:EXIT loop
180 END REPeat loop

190 CLOSE #3

200 DATA 'Fred Blogs','l17 Mulberry Court'

210 DATA 'John Peters','182 Johnson Ave.'

220 DATA 'Martin Edwards', '83 Olive Drive'

304 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

100 OPEN_IN #3,flpl_Address_data

110 MODE 4 120 OPEN #4,con_448x200a32x16:BORDER#4,1,2:PAPER#4,0:INK#4,7
130 INPUT #4,'Input name to look for:'!search$

140 REPeat loop

150 IF EOF(#3) :PRINT#4\\'"No address stored":EXIT loop

160 INPUT #3;name$,address$

170 IF name$==search$:PRINT #4\\name$,address$:EXIT loop

180 END REPeat loop

190 CLOSE #4:CLOSE #3

SMS NOTE

Until v2.55 this command was the same as EOFW, which meant that it would only return a value if there
was data waiting or it had received an end of file code - this was changed back to the original to maintain
compatibility.

CROSS-REFERENCE

DATA specifies a line of data statements. RESTORE resets the data pointer and READ will actually fetch
the data. CLOSE closes a given channel after it has been used. PEND or [O_PEND% are much better
for use on pipes. See also EOFW.

12.26 EOFW

Syntax EOFW (#ch)
Location SMS

This function is very similar to EOF in that it returns the value O if there is data waiting to be read from the
specified channel, otherwise it returns 1. The difference is that this version of the function will however
wait until data is received or the end of file code is received, which is especially useful on pipes which
may not always work with EOF which returns 1 if the channel does not contain any data to be read.

CROSS-REFERENCE
See EOF. PEND and 10_PEND % are very similar.

12.27 EPROM_LOAD

Syntax EPROM_LOAD device_file
Location ATARI_REXT (v1.21+), SMS

You cannot plug QL EPROM cartridges into the various other computers which now support QL software,
which would normally make some software which contains part of its code on EPROM, unusable. In
order that you can use such software on other computers, you need to create a file on an original QL
containing an image of the EPROM cartridge plugged into the QL’s ROM port. To do this, use the
command:

12.26. EOFW 305

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

[SBYTES f1p1_EPROM_image, 49152, 16384

It is hoped that software producers who sell software which requires an EPROM cartridge will make
versions available with ready-made images of the cartridge, so that the software can be used by users
without access to an original QL.

Having done this, you will need to have the ST/QL Emulator switched on (or SMS loaded on the other
computer), then insert that disk into the Atari’s disk drive, and use the command: EPROM_LOAD
flpl_EPROM._image This will then copy the EPROM code into the same address on the Emulator or
other computer as the EPROM cartridge occupies on the QL, thus making it usable.

NOTE 1

If you make images of several EPROM cartridges in this way, then additional ones which are loaded with
EPROM_LOAD will be stored in arbitrary addresses under SMS or the emulator. Therefore you will
need to ensure that cartridges which insist on being loaded at the address $C000 (the QL’s ROM port
address), will need to be loaded first with EPROM_LOAD.

NOTE 2
On early versions of the Emulator, this was called ROM_LOAD.
NOTE 3

On SMS before v2.52, this could crash the system if used on a Gold Card or Super Gold Card without
the specified file being present.

CROSS-REFERENCE
See also ROM, ROMs and ROM_TEST.

12.28 EPS

Syntax EPS [(x)]
Location Math Package

Since the precision of the QL is limited, a number may not change if a very small value is added. The
function EPS(x) returns the smallest value which can be added to x so that the sum of x and EPS(x)
will be different from x. This only makes sense for floating point numbers. The default parameter is 0.
EPS(x) attains its smallest value at x=0, so EPS(0) returns the smallest absolute number which can be
handled by SuperBASIC. EPS(x) is always greater than zero and EPS(x)=EPS(-x).

Example

An approximation of PI/4 as proposed by Leibniz:

100 x = 0: d =1

110 t® = DATE

120 FOR i=1 TO 1E100

130 IF ABS(1/d) < EPS(x) THEN EXIT i
140 x=x+ 1/d

150 d = - SGN(d) * (ABS(d)+2)

160 END FOR i

(continues on next page)

306 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

170 t = DATE - t0

180 PRINT "Iterations ="!i!" Runtime ="!t;"s"
190 PRINT "Iterations per Second ="!i/t

200 PRINT "PI ="!4*x!"(";PIL;")"

Unfortunately, the algorithm is not efficient enough to compete with the QL’s precision, so that about
2E9 iterations are necessary to get a suitable result. Since this will take a while (ages!), you can reduce
precision by a factor of one million, by modifying line 130:

[13@ IF ABS(1/d) < 1E6 * EPS(x) THEN EXIT i

The program will then finish after 1075 iterations with 4*x = 3.140662, not bad compared to 3.141593
when taking the drastic reduction of precision into account.

NOTE

EPS does not recognise the higher precision used by Minerva. Minerva’s higher precision may have an
effect on fractals and similar esoteric calculations.

12.29 EQ$

Syntax EQS (type, string1$, string2$)
Location Btool

This function expects the same parameters as GTS$. It will return a value of 1 if the two strings are equal
to each other using the same test as GTS$.

CROSS-REFERENCE

See GT$ for more details. NE is the same as:

NOT EQ$ (type, stringl$,string2$)

12.30 ERLIN

Syntax ERLIN
Location QL ROM (post JM version)

This function returns the line where the last error occurred. If the error occurred in a line typed into the
command window (#0), then zero is returned (zero is also returned if there is no error).

Example

It takes a lot of time to debug programs, so save typing by including a variation of the following line in
your BOOT program. Then, if an error occurs and the program stops with an error message, simply press
<ALT><E> to see and edit the line where something went wrong:

12.29. EQ$ 307

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

[ALTKEY "e","ED ERLIN-20"&CODE(216)&CODE(216),"" }

or:

[ALTKEY "e" "AUTO ERLIN",""

CROSS-REFERENCE

ERNUM returns the error number, REPORT invokes an error message and WHEN ERRor allows error
trapping. ERLIN% is exactly the same.

12.31 ERLIN%

Syntax ERLIN%
Location Turbo Toolkit

This function is exactly the same as ERLIN, except it will work on all versions of the QL. ROM.
CROSS-REFERENCE
See ERLIN and ERNUM %.

12.32 ERNUM

Syntax ERNUM
Location QL ROM (post JM version)

This function returns the error number of the last error which occurred. An error number is negative and
can be returned by any program (SuperBASIC, jobs, M/C Toolkits,...). The equivalent error messages
are the same on all of the implementations of SuperBASIC, although they are also supported in different
languages (see the Appendix for other languages):

308 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Error English message

-1 Not Complete

-2 Invalid Job

-3 Out of Memory

-4 Out of Range

-5 Buffer Full

-6 Channel not Open
-7 Not Found

-8 Already Exists

-9 In Use

-10 End of File

-11 Drive Full

-12 Bad Name

-13 Xmit Error

-14 Format Failed

-15 Bad Parameter

-16 Bad or Changed Medium
-17 Error in Expression
-18 Overflow

-19 Not Implemented Yet
-20 Read Only

-21 Bad Line

NOTE

Jobs may return a positive error number. The meaning of such a number depends on the job. No error
message will be reported.

SMS NOTE

The error messages have been redefined to try to make them more intelligent, they are now:

12.32. ERNUM 309

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Error English message

-1 Incomplete

2 Invalid Job ID

-3 Insufficient memory
-4 Value out of range

-5 Bulffer full

-6 Invalid channel ID
-7 Not found

-8 Already exists

-9 Is in use

-10 End of file

-11 Medium is full

-12 Invalid name

-13 Transmission error
-14 Format failed

-15 Invalid parameter
-16 Medium check failed
-17 Error in expression
-18 Arithmetic overflow

-19 Not implemented
-20 Write protected
-21 Invalid syntax

22 Unknown message
-23 Access denied

Other errors are reported by the SBASIC interpreter, but these are not covered by ERNUM.
CROSS-REFERENCE

ERLIN returns the line number where the error occurred. ERNUM % is the same as this function. RE-
PORT invokes an error message and WHEN ERRor can be used to trap errors. The ERR_XX functions
are alternatives to ERNUM .

12.33 ERNUM%

Syntax ERNUM%
Location Turbo Toolkit

This function is exactly the same as ERNUM, except it will work on all versions of the QL ROM.
CROSS-REFERENCE
See ERNUM and ERLIN %.

310 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

12.34 ERR_XX

Syn- ERR_NC, ERR_NJ, ERR_OM, ERR_OR, ERR_BO, ERR_NO, ERR_NF,

tax ERR_EX, ERR_IU, ERR_EF, ERR_DF, ERR_BN, ERR_TE, ERR_FF,
ERR_BP, ERR_FE, ERR_XP, ERR_OV, ERR_NI, ERR_RO, ERR_BL

Lo- QL ROM

ca-

tion

These are logical functions which return either O or 1 if the corresponding error has occurred. Only one
of them can have the value 1 at any time.

Function Error Code

ERR_NC NOT COMPLETE -1

ERR_NJ INVALID JOB -2

ERR_OM OUT OF MEMORY -3
ERR_OR OUT OF RANGE -4

ERR_BO BUFFER OVERFLOW -5
ERR_NO CHANNEL NOT OPEN -6
ERR_NF NOT FOUND -7

ERR_EX ALREADY EXISTS -8
ERR_IU IN USE -9

ERR_EF END OF FILE -10

ERR_DF DRIVE FULL -11

ERR_BN BAD NAME -12

ERR_TE TRANSMISSION ERROR -13
ERR_FF FORMAT FAILED -14
ERR_BP BAD PARAMETER -15
ERR_FE FILE ERROR -16

ERR_XP ERROR IN EXPRESSION -17
ERR_OV ARITHMETIC OVERFLOW -18
ERR_NI NOT IMPLEMENTED -19
ERR_RO READ ONLY -20

ERR_BL. BAD LINE -21

NOTE 1

These functions are not affected by REPORT.

NOTE 2

On Minerva pre v1.98, the ERR_XX functions were returning 1 if any higher error had occurred!!
WARNING

The JS ROM version of ERR_DF had a bug which crashed the system when used. All later operating
systems and Toolkit II, the THOR XVI, the Amiga-QL Emulator, TinyToolkit, and BTool fix this.

CROSS-REFERENCE

See Appendix for other languages.

12.34. ERR_XX 311

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

12.35 ERRor

Syntax ERRor
Location QL ROM (post JM)

This keyword forms part of the structure WHEN ERRor. Please refer to WHEN ERRor. As such, this
keyword cannot be used in a program on its own - this will report ‘bad line’.

CROSS-REFERENCE

WHEN ERRor contains a detailed description of this structure.

12.36 ERT

Syntax ERT function
Location HOTKEY II

Normally, whenever you use a function (or anything else which may return an error code), you will need
to assign the result of the function (or whatever else) to a variable and then test that variable in order to
see whether or not an error has been generated.

If an error has been generated, you will then need to report the error (if you do not intend to take any
action to try and rectify the situation), something which can take a lot of program space, if you intend to

write a program which does not require the command REPort to be present.

The command ERT was introduced in the Hotkey System II to enable you to write programs which test

the result for an error code and report the error all in one step.
Example 1

A simple program which provides its own error trapping:

100 PAPER 0:INK 7

110 REPeat loop

120 CLS

130 AT 0,0:PRINT 'Enter an integer (0 to 300): ';

140 xerr=GET_INT

150 IF xerr<O0:PRINT 'Error - try again':ELSE x=xerr:EXIT loop
160 PAUSE

170 END REPeat loop

180 PRINT 'The integer was : ';x

185 :

190 DEFine FuNction GET_INT

200 valid$='0123456789'

210 INPUT a$:IF a$='':RETurn -1

220 FOR i=1 TO LEN(a$):IF a$(i) INSTR valid$=0:RETurn -17
230 IF a$>300:RETurn -4

240 RETurn a$

250 END DEFine

312 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Example 2

A similar program which is designed to stop on an error:

100 PAPER 0:INK 7

110 CLS

120 AT 0,0:PRINT 'Enter an integer (0 to 300): ';
130 xerr=GET_INT

140 IF xerr<®:REPORT xerr:STOP:ELSE x=xerr

150 PRINT 'The integer was : ';Xx

155 :

160 DEFine FuNction GET_INT

170 valid$='0123456789"

180 INPUT a$:IF a$='':RETurn -1

200 IF a$>300:RETurn -4
210 RETurn a$
220 END DEFine

190 FOR i=1 TO LEN(a$):IF a$(i) INSTR valid$=0:RETurn -17

Example 3

The same program as in the second example, but using ERT:

100 PAPER 0:INK 7

110 CLS

120 AT 0,0:PRINT 'Enter an integer (0 to 300): ';
130 ERT GET_INT

140 PRINT 'The integer was : ';Xx

150 DEFine FuNction GET_INT

160 valid$='0123456789"

170 INPUT a$:IF a$='':RETurn -1

190 IF a$>300:RETurn -4
200 x=a$

210 RETurn x

220 END DEFine

180 FOR i=1 TO LEN(a$):IF a$(i) INSTR valid$=0:RETurn -17

NOTE

When you are using ERT, always beware of what you are testing for an error, for example, if you had

altered line 130 in the second example to:

[13@ ERT x-GET_INT

you would not actually be testing to see whether the function GET_INT returned an error, but whether
the line x=GET_INT produced an error - x itself would not be altered, hence the need to assign the result

to x inside the function.
CROSS-REFERENCE

REPORT will report an error without stopping the program.

12.36. ERT

313

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

12.37 ESC

Syntax ESC
Location Beuletools

This function returns the control codes ESC, or CHR$(27) for use on an EPSON compatible printer:

[PRINT ESC }

is the same as:

[PRINT CHRS (27) }

CROSS-REFERENCE
NORM, BLD, EL,DBL,ENL,PRO,SI,UNL,ALT ,FF,LMAR,RMAR,PAGDIS, PAGLEN. UPUT

12.38 ET

Syntax ET file “[,{filex | #chx}]" [;cmd$]
Location Toolkit IT

The syntax for ET is the same as for the Toolkit II variant of EX and it also operates in a similar manner.
However, ET is intended for low level debugging, ie. to trace execution of the machine code commands
step by step.

A monitor program such as Qmon is necessary.

The command ET loads the executable program, installs the job and immediately suspends the job by
setting its priority to zero. Control is then returned to SuperBASIC to allow you to use a monitor program.

CROSS-REFERENCE
EX

12.39 ETABS

Syntax ETABS (string$ [,tabdist]) where tabdist=1..255
Location BTool

Some editors and word-processors use the character CHR$(9) as a tab mark to save the space which
would otherwise be needed to store several spaces. The function ETAB$ takes a given string, expands
all tab marks in it and returns the result.

If the tabulator distance, tabdist, is not given, a default of eight characters is assumed. The length of
string$ has to be smaller than 256 characters: LEN(string$)<256.

Tabdist>255 has no effect.

314 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Example

The text file test_txt is shown with all tab marks expanded:

100 OPEN_IN#3,test_txt

110 CLS

120 REPeat all_lines

130 IF EOF(#3) THEN EXIT all_lines

140 INPUT#3,line$

150 IF LEN(line$)>255 THEN line$=1line$(1 TO 255)
160 PRINT ETAB$(line$,4)

170 END REPeat all_lines

180 CLOSE#3

NOTE
A value of tabdist<=0 will not produce usable output.
WARNING

Although tab mark distances of 32766 and 32767 are allowed, ETABS$ will not produce a sensible output.
It may even possibly crash the system.

CROSS-REFERENCE

CTABS is the complimentary function to ETABS. INSTR finds the position of a string in another string.
LEN returns the length of a string.

12.40 ETAT

Syntax ETAT (file$)
Location ETAT

This function checks to see if the given file (passed as a string) exists and then checks upon its status
(whether it can be opened etc). If necessary a standard error number is returned, otherwise ETAT will
return 0, which means that the file can be accessed without the danger of an error such as “not found”.
This can therefore be used to avoid the need for error trapping.

Example

This program copies text files to window #1:

100 REPeat input_loop

110 INPUT "File to view:"!file$

120 AnError=ETAT(file$)

130 IF NOT AnError: EXIT input_loop
140 PRINT "Sorry, ";: REPORT#1,AnError
150 END REPeat input_loop

160 OPEN_IN#3,file$

170 REPeat view_file

180 IF EOF(#3) THEN EXIT view_file

190 INPUT#3,line$: PRINT line$

(continues on next page)

12.40. ETAT 315

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

200 END REPeat view_file
210 CLOSE#3

CROSS-REFERENCE

FTEST works like ETAT but recognises the default device and directory. FILE_OPEN, FOPEN,
FOP_IN, FOP_OVER and FOP_NEW are all functions to open files without the need for error trap-
ping. OPEN, OPEN_IN and OPEN_NEW stop with error messages if an error occurs. To avoid this,
error trapping facilities, such as WHEN ERRor have to be used.

12.41 EW

Syntax EW file “[,{file* | #ch*}]"
Location Toolkit II, THOR XVI

This command causes the given file (which must be an executable program) to be executed.

If the drivename is not given, or the file cannot be found on the given device, EW will load the first file
from the default program directory (see PROGDS$), with subsequent programs being loaded from the
default data directory (see DATADS$). The calling program will be stopped whilst the new job is running
(ie. the new job cannot multitask with the calling program). If you supply any channels (which must
already be open in the calling program) or filenames as parameters, these form channels which can be
accessed by the job.

If your program has been compiled with QLiberator or is to be run as an SBASIC job under SMS then
each supplied channel will become #0, #1, #2

Note that with Turbo compiled programs the channels work backwards and will become #15, #14, #13
... To access these channels from within the job, merely ensure that the job does not try to open its own
channel with the same number, and then write the program lines as if the channels were open. Further,
you can pass a command string (cmd$) to the program specifying what the executed job should do. Tt
depends on the job what cmd$ should look like and also how you will access the given string. The Turbo
and QLiberator compilers include commands in their Toolkits to read the supplied string; and Minerva
MultiBASICs and SMS SBASICs include the function CMD$ which allows you to read the supplied
string.

If you have not used one of these compilers to produce the job, then you will need to read the string from
the stack. Please note that the command string must appear as the last parameter for the command. The
command string can be explicit strings and names as well as expressions. However, variables must be
converted into expressions, for example by:

[EW 'flpl_xchange'; (dataspace) }

On some very early versions of Toolkit II, you needed:

[EW 'flpl_xchange';dataspace&"" }

Executable programs often return an error code back to the owner job (the program which started it).
Especially with ‘C’ compiled programs, this will be non-zero if there are any errors. EW stops the owner

316 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

job if this happened. There is unfortunately no way to stop this from happening unless you use error
trapping (eg. WHEN ERRor, or Q_ERR_ON from QLiberator).

Example 1

[EW QED; "flpl_readme_txt"

The editor will be started from the default program directory and told to load the file readme_txt.

Example 2

[EW mdv1_QUILL

will start QUILL from microdrive 1.
NOTE 1

There are problems with EW and EX in Toolkit II v2.05 (and previous versions) which make them unre-
liable and difficult to use with compiled programs. The main problem lay in what was classed to be the
owner of a secondary Job. From v2.06 onwards, the owner for EX has been Job 0 and the owner for EW,
the current Job.

NOTE 2

TinyToolkit and BTool allow you to break out of a program started with EW at any time by pressing
<CTRL><SPACE> - the program can then be treated as if it was started with EX.

NOTE 3

On some versions of the QL ROM (and Toolkit IT), unless the Pointer Environment is loaded, you may
need to press <CTRL><C> to get back the cursor at the end of the task.

NOTE 4

You cannot use EW (or similar) to execute a file stored on a PC or TOS disk (even with Level-3 Device
Drivers) - see the Device Drivers Appendix, in particular the notes on Level-3 Device Drivers for further
details.

MINERVA NOTES
As from v1.93+, MultiBASICs can be started up with the command:
EW pipep “[L{file* | #ch*}]" [;cmd$]

Prior to this version, you needed to load the file Multib_exe contained on the disk supplied with Minerva
and use the command:

EW flpl_Multib_exe “[,{file* | #ch*}]" [;cmd$]

How any supplied channels are dealt with is slightly different to all other implementations. Its effect
depends on how many channels are passed:

* No channels passed - MultiBASIC started with a single small window which is the same for #0
and #1.

* One channel passed - This becomes both #0 and #1.
* Two channels passed - These become #0 and #1 respectively.

* Three or more channels passed - The first two become #0 and #1 respectively, then any additional
ones become #3 onwards.

12.41. EW 317

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Minerva MultiBASICs also treat any command string passed to them in a special way:

* If the last character of the command string is an exclamation mark (!), then the MultiBASIC is
started up with the original keywords built into the ROM, and any which had been linked into
SuperBASIC subsequently (for example Toolkit IT) will not be available to that MultiBASIC. This
character is then removed from the command string before it can be read by the MultiBASIC.

* If the command string contains the greater than sign (>), then anything which appears before that
character in the string, is opened as an input command channel (thus allowing you to run a Multi-
BASIC program in the background) and then all characters up to and including the greater than
character are deleted from the command string before it can be read by the MultiBASIC.

Example

Take a simple BASIC program to convert a given file (say flpl_TEST_TXT) into uppercase:

110 REPeat loop

120 IF EOF(#0) THEN EXIT loop
130 INPUT #0,a$

140 IF a$='"' THEN NEXT loop
150 FOR i=1 TO LEN(a$)

160 IF CODE(a$(i))>96 AND CODE(a$(i))<123 THEN
170 a$(i)=CHR$ (CODE(a$(i))-32)
180 END IF

190 END FOR i

200 PRINT a$

210 END REPeat loop

220 IF VER$(-1):CLOSE #0

Save this as flpl_UC_bas and then enter the command:

EW pipep, flpl_test_txt,#3; 'flpl _UC_bas>'

OPEN #3, con }

or, prior to v1.93, use:

EW flpl_Multib_exe,flpl_test_txt,#3;'flpl_UC_bas>'

OPEN #3, con }

The last line checks to make sure this program is not being run from the original SuperBASIC interpreter
(job 0) in which case, it then closes #0. Unfortunately, on v1.97 (at least), this program fails to spot the
end of the file (try PEND instead of EOF), and therefore reports an ‘End of File’ error on completion.
Oddly, this error is not reported if you use EX to run the program.

SMS NOTE

SMS allows EW and EX to run basic programs in the background, as an SBASIC job. For example,
using the Minerva example program above, this could be used with the line:

[Ew £1p1_UC_bas, flpl_test_txt, #3

This does not report an error on completion. Beware however that prior to v2.69, this command would
not work in Qliberated programs to start an SBASIC program. Because of this ability, SMS v2.58+ has
amended the EW set of commands so that it searches for a file in much the same way as LOAD under
SMS.

318 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Taking a default program device to be flpl_,

[EW raml_TEST }

will look for the following files:

e raml_ TEST

e raml_TEST _sav

* raml_TEST_bas

e fipl_raml_TEST

e fipl_raml_TEST sav

* flpl_ram1_TEST_bas
CROSS-REFERENCE

For further information see £X. SBASIC allows you to set up several SBASIC jobs under SMS. MB
allowed you to start up a MultiBASIC on early versions of Minerva. Please also see the appendix on
Multiple BASICs.

12.42 EX

Syntax EX file “[,{file* | #ch*}]" [;cmd$]
Location Toolkit II, THOR XVI

This command forces the given file (which must be an executable program) to be executed and control
is then generally returned to the calling program to enable the new job to multitask alongside the calling
program. Similar parameters as for EW can be passed to the job.

Use EW if the program cannot multitask for some reason or if you do not want it to, for example, because
you want to see any error messages returned by the executable task. EX doesn’t report them, it cannot as
the executable task may still be running when EX returns to the command prompt.

Example 1

[EX QED; "readme_txt"

The QED editor will be started from the default program device and told to load the file readme_txt from
the editor’s default device.

Example 2

[EX UC_obj,raml_hope_lis,par }

A program called UC_obj (a program which converts text to all upper case) will be started up to run
alongside all other programs. Two n:ref:ew channels (‘ram1_hope_lis’ and ‘par’) are opened for the task
to use for its input and output channels respectively - the task must not open its own channels but will
rely upon the user supplying them as parameters.

The BASIC version of such a program is:

12.42. EX 319

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

110
120
130
140
150
160
170
180
190
200
210

REPeat loop

IF EOF(#0) THEN EXIT loop

INPUT #0,a$

IF a$='"' THEN NEXT loop

FOR i=1 TO LEN(a$)
IF CODE(a$(i))>96 AND CODE(a$(i))<123 THEN

a$(i)=CHR$ (CODE(a$(i))-32)

END IF

END FOR i

PRINT#1,a$

END REPeat loop

Turbo users will need to alter #0 and #1 to #15 and #14 respectively.

Minerva and SMS users can use this program without compiling it (see EW above).

Using EX to set up filters

It is actually quite simple to create a multitasking environment on the QL using the EX command to set
up several programs all of which will process a given file (or data entered into a given channel) in turn.

The syntax for this version of the command is:

EX jobparams!“[TO jobparams']” [TO #chan"]

where jobparams represents the same parameters as are available for the normal EX command, being:

file “[,{file* [#ch*}]" [;cmd$]

What this actually does, is to set up a chain of jobs or channels whereby one extra channel is opened for
each job to form the output channel for the job on the left of the TO and another channel is opened to
form the input channel of the job on the right of the TO.

Where a channel number appears at the end of the line (after a TO), this is taken as being the final output
channel and nothing further can be done to the original input.

Examples

How about extending the Upper case conversion ‘filter’ so that a given text file is then printed out one
line at a time with each line being printed out as normal, but then printed again, but this time backwards!

First of all, the program to do the printing:

110
120
130
140
150
160
170
180
190
200
210

REPeat loop
IF EOF(#0): EXIT loop: REMark Turbo uses #15, not #0
INPUT #0,a$:PRINT#1,a$: REMark Turbo uses #14, not #1
IF CMD$=="y': REMark Turbo users use OPTION_CMD$
IF a$='"':NEXT loop
FOR lop=LEN(a$) TO 1 STEP -1
PRINT#1,a$(lop);
END FOR lop
PRINT#1
END IF
END REPeat loop

Compile this program and save the compiled version as flp1_Back_obj.

320

Chapter 12.

Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Now to carry out the desired task:

OPEN #3, con
EX flpl_ uc_obj,flpl_test_txt TO flpl_back_obj,#3;'y’

On Minerva v1.93+, you could use:

OPEN #3, con
EX pipep,flpl_test_txt;'flpl_uc_bas>' TO pipep,#3;'flpl_back_bas>y'

Or on SMS:

OPEN #3, con
EX flpl_uc_bas,flpl_test_txt TO flpl_back_bas,#3;'y’

How about trying this:

OPEN #3, con
EX flpl_uc_obj,flpl_test_txt TO flpl_back obj;'y' TO flpl_back_obj,#3;'y'

NOTE 1

On pre JS ROMs, you may find that if you EX a new Job whilst there is already one Job in progress, the
ink and paper colours of the first Job are set to zero. This is a problem unless you have a key to redraw
the screen for the first Job (or the Pointer Interface).

NOTE 2

The THOR XVI always ensures that cursor control is passed to the new Job on start-up rather than
returning to the calling Job.

MINERVA NOTE

Please refer to notes about EW which explain how to use this command to control MultiBASICs.
SMS NOTE

Please refer to notes about EW and use this command to control multiple SBASICs.
CROSS-REFERENCE

Use FTYP or FILE_TYPE to check if a file is executable. FDAT returns the dataspace of an executable
file, FXTRA provides other information. E7 is very similar to EX.

12.43 EXCHG

Syntax EXCHG device_file,old$,new$
Location ATARI_REXT

This command creates a Job which opens a channel to the specified file and then works through the file,
replacing every occurrence of old$ with new$. The search for old$ is case independent. Both old$ and
new$ must be the same length.

Example

12.43. EXCHG 321

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

[EXCHG flp1_Task_obj, 'mdv', ' flp' }

will replace all references to mdv1_ or mdv2_ to flpl_ and flp2_ respectively in the file fip1_task_obj.
NOTE

CHRS$(0) cannot be replaced!

CROSS-REFERENCE

See also CONVERT .

12.44 EXEC

Syn- EXEC program or

tax EXEC file “[,{file* | #ch*}]" [;cmd$] (Toolkit I, THOR XVI) or
EXEC file “[#ch*]" [;cmd$] (Minerva v1.93+)

Loca- QL ROM, Toolkit IT

tion

This command loads and starts a machine code or compiled program, but then returns control to the
calling job (ie. the job which issued EXEC) so that both jobs are multitasking.

Minerva v1.97+ has now implemented a sub-set of the Toolkit II standard, in that you can pass details of
existing channels to a job as well as a command string.

CROSS-REFERENCE

With Toolkit II installed or on a THOR XVI, EXEC is the same as EX. See also EXEC_W, EW, TTEX
and ET . If you are using the Hotkey System or SMS then see EXEP in this manual.

12.45 EXEC_W

Syn- EXEC_W program or

tax EXEC_W file “[,{file* | #ch*}]" [;cmd$] (Toolkit I, THOR XVI) or
EXEC_W file “[#ch*]" [;cmd$] (Minerva v1.93+)

Lo- QL ROM, Toolkit IT

ca-

tion

This command is the same as EXEC except that the calling job is suspended until the program has
finished.

CROSS-REFERENCE

Toolkit IT and a THOR XVI make EXEC_W the same as EW. See also EXEC, EX, TTEX, TTEX W and
ET.

322 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

12.46 EXEP

Syn-
tax

EXEP filename [;cmd$] [, Jobname$] [,options] or
EXEP Thingname$ [;cmd$] [, Jobname$] [,options] (version 2.17+)

Loca- HOTKEY II

tion

The first variant of the EXEP command is similar to the EX and EW commands provided by Toolkit II.
However, not only does EXEP allow you to pass a command string to the program being called (as with
EX or EW), but you can also supply the Job name which will be shown in a list of the Jobs currently
loaded into memory.

In order to make various ‘problem’ programs work correctly under the Pointer Environment, it is some-
times necessary to pass various parameters (options) to the Hotkey System when the program is called
in order to tell it how to treat the program.

The command EXEP allows you to execute a program (in the same way as with EXEC), but at the same
time, pass these parameters to the Pointer Environment. The parameters (or options) currently supported

are:

P [,size]- This tells the Hotkey System that the program is a Psion program (eg. Quill) which will
try to grab all of the available memory.

If size is not specified, then the Hotkey System will ask the user to specify the maximum amount of
memory (in kilobytes) that the program should use before the program actually starts. Otherwise,
the program will be allowed to use size kilobytes of memory (if available).

When the Pointer Environment was first released, Qjump produced a program (Grabber) which
could be used to amend the amount of memory addressed by the Psion programs once and for all
- if this program has been used on your copies of the Psion programs, then do not use this option.

G [,x,y,a,b] - When a program is started, the Pointer Interface will store the area of the screen
contained under each window as it is opened, restoring any part of the screen is no longer covered
by an active window.

This provides non-destructive windows, one of the major assets of the Pointer Interface. However,
some programs have a habit of opening windows, writing to the screen and then closing the window
so that the text cannot be altered - creating background information.

Unfortunately, due to the way in which the Pointer Interface works, as soon as this window is
closed, the background information would be lost.

The solution to this is to use a guardian window (created using this parameter) which specifies the
area of the screen which the program is allowed to use and which must therefore not be restored until
the program has ended (even if there are no current windows open on that area). The parameters
are used to open a guardian window x pixels wide by y pixels high at the origin (a,b).

Any attempt by a program to open or resize a window so that part of it would fall outside this
Guardian window will fail.

If you do not pass the size of the Guardian window as a parameter (eg. EXEP flpl_Graph_exe,g),
the maximum permissible window size will be assumed (eg. 512x256 on a standard QL).

F - Some programs which use KEYROW to read the keyboard, or access the screen directly, can
wreak havoc when multitasking alongside other programs.

12.46. EXEP 323

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

This parameter causes the computer to only pass any keypresses read with KEYROW to the pro-
gram started with EXEP.

* U - With some programs, for example, a clock, it is desirable for this to be updated on screen even
though it is not the Job at the top of the pile (ie. it is overwriting part of the current Job’s windows).

The Pointer Interface will allow you to do this by passing the u parameter (for unlock), for example:

[EXEP f1p1_Clock,u }

The second syntax of EXEP is similar, except that instead of loading a task stored with the given filename,
it searches through the Thing list for an Executable Thing with the given Thingname and then (if present),
will start that up as a new Job (if it is not present, then EXEP will look on the default program device for
a file called Thingname).

For example, if you have QPAC2 present, EXEP Files will call up the files sub-menu (in the latest versions
of QPAC2, you could use, for example:

[EXEP files:'\S \D flpl__exe \O v','View _EXE' J

to create a View files menu which will list all of the files on flpl_ which end with _exe, without any sort
order; the job being called ‘View _EXE’ in the Jobs list).

Example 1

Consider the following program:

100 MODE 4

110 OPEN #0,CON_10x10al132x66

120 OPEN #1,CON_448x200a32x16

130 PAPER 0:INK 7:CLS

140 BORDER 1,2:AT 10,9:PRINT 'Y AXIS'

150 AT 15,35:PRINT 'X AXIS'

160 OPEN #1,CON_248x100al132x66:BORDER 1,4
170 PAUSE

If this program was compiled (without windows being copied across) and then run, as soon as line 160
was reached, the information around the sides of the graph would be lost! The reason for the PAUSE
in line 170 is that as soon as the compiled program reached the end, it would close all of its windows,
and you would not be able to see anything! The answer is to use a Guardian window (created using this
parameter). Presuming that the above program has been compiled under the filename flpl_Graph_exe,
you could use the line:

[EXEP flp1_Graph_exe,G,448,200,32,16 J

to define a Guardian window 448x200 pixels with its origin at (32,16).
Example 2

Try for example, compiling the following program and starting it with:

{EXEP flpl_Test_exe,u]

(presuming that is the filename you allocate to it):

324 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

100 OPEN #1,con_512x256a0x0
110 REPeat Loop

120 PRINT KEYROW(O)

130 END REPeat Loop

You will find it very difficult to do anything (including removing this job). The solution is to pass this
parameter to the Pointer Interface which tells it to Freeze the program when it is in buried under another
Job’s windows (eg. if you used <CTRL><C> to change to another Job). For example, use the line:

{EXEP flpl_Test_exe, f }
Example 3

The SuperBASIC line:

[EXEP flpl_EDT; 'flp2_Text',Editor,g }

will start up an editor stored under the filename flpl_EDT, which will be given the Job name ‘Editor’
(which will be shown for example in the JOBS table), provide it with a guardian window of 512x256,
and tell it to load a file called flp2_Text.

NOTE 1
Before v2.21 of the Hotkey System I, you could not pass a command string to the program being called.
NOTE 2

The various parameters can be mixed together, for example:

[EXEP f1p1_Graph_exe,F,G,448,200,32,16; 'serl’]

NOTE 3

Versions earlier than v2.24 will not allow you to alter the Job Name, which will otherwise be the name
given the program when it was created.

CROSS-REFERENCE

THING allows you to test whether or not a given Thing is present. EX, EXEC, EW and EXEC_W are all
similar to the first variant of EXEP. GET_STUFF$ will call up the QPAC?2 files sub-menu and allow you
to read the chosen filename. HOT_THING allows you to set up a hotkey to call an Executable Thing.

12.47 EXIT

Syntax EXIT loop_variable (FOR loops) or
EXIT loop_name (REPeat loops) or
EXIT(SMS only)

Loca- QL ROM

tion

Using the first two variants of this command, the specified loop (either a FOR or a REPeat structure) will
be finished and the program will jump to the first statement after the relative END FOR loop_variable or
END REPeat loop_name.

12.47. EXIT 325

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

The third variant only exists under SMS and will force the interpreter to jump out of the current loop
being executed, whether it is a FOR loop or a REPeat loop - the interpreter will just search the program
for the next END REPeat or END FOR statement.

NOTE 1

If two or more loops are nested together, it is possible to EXIT the outer loop from within the inner loop:

REPeat loopl
ﬁﬁfeat loop2
i#.condition THEN EXIT loopl ---+
ENb.ﬁEPeat loop2

END REPeat loopl |

Such a structure is not regarded as elegant by some people because it is not possible to draw a structogram
from this.

NOTE 2

If a program is badly written, this can lead to confusion - for example, try:

100 REPeat loop
120 PRINT 'Hello'
130 EXIT loop
140 END REPeat loop
150 END REPeat loop

The interpreter fails to notice the misplaced END REPeat at line 150.

The first time that EXIT loop is encountered, the interpreter leaves the loop at line 140 - however, line 150
forces the interpreter to execute the loop a second time. This time, EXIT loop forces the interpreter to
jump out the loop at line 150. The same thing happens if you use FOR ... END FOR instead of REPeat
... END REPeat

This feature allows you to jump back into a loop from anywhere in the program (although this should be
avoided). Compare what happens if NEXT loop is used instead of END REPeat loop in line 150, EXIT
loop will always exit the loop at line 140. This means that NEXT loop can also be used to jump back
into a loop from anywhere in the program (although again, this should be avoided).

Note that in any event, these latter two features will only work if the named loop has already been RUN
(setting up the loop variables)!!

CROSS-REFERENCE

Please see FOR and REPeat for more details.

326 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

12.48 EXP

Syntax EXP (var)
Location QL ROM

This function returns the value of the mathematical base e to the power of the given parameter (in other
words, this is equivalent to the mathematical expression e*?"). This is the opposite to the function LN, ie.
var=LN(EXP(var)).

QDOS supports var in the range -512...511. The approximate value of e can be found by:

[PRINT EXP(1)

{PRINT EXP(0)

returns the value 1 - as any good mathematician knows, anything to the power of O returns the value 1.
CROSS-REFERENCE

LN returns the natural logarithm of the given value.

12.49 EXPAND

Syntax EXPAND file$
Location COMPICT

This command takes a screen file (which must have been created with COMPRESS), and re-expands it
on the visible screen.

NOTE 1

EXPAND needs a working space of 32K. A memory overflow error will be reported if there is not enough
memory available.

NOTE 2

EXPAND assumes that the screen starts at $20000 and will therefore not work on Minerva’s second
screen or extended resolutions.

NOTE 3
EXPAND will not work on QLs with resolutions above 512x256
WARNING

If the file was not saved by COMPRESS, it is most likely that the system will crash. This is certain if the
file is longer than 32K.

CROSS-REFERENCE
COMPRESS, FASTEXPAND.

12.48. EXP 327

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

12.50 EXPLODE

Syntax EXPLODE
Location ST/QL, QSound

This command produces the sound of an explosion, very nice.
CROSS-REFERENCE
SND_EXT, BELL, SHOOT.

12.51 EXTRAS

Syntax EXTRAS [#channel] or
EXTRAS \file (Toolkit IT, THOR only) or
EXTRAS [#channel][,width] (BTool only)
Loca- Toolkit II, THOR X VI, QSound, BTool
tion

This command lists all of the machine code Procedures and Functions (keywords) which are recognised
by the SuperBASIC interpreter in the given channel (default #1), or the given file (if the second variant is
used), which will be automatically opened and even overwritten if it already exists (after asking the user
to confirm that this is okay).

The file will be closed at the end of the operation.

The THOR XVI version will not list those keywords which are resident in ROM (ie. available when the
THOR is first powered up).

The BTool version lists the keywords in columns and as such is the same as EXTRAS_W. The number
of columns is adapted automatically to a window’s width; if this is too wide for your needs then you can
specify a width in characters.

The QSound variant is intended for output to a non-screen channel (see WIDTH), in which case an empty
line appears between each name. If output is sent to a window, then the words are all printed on the same
line, obscuring output.

NOTE 1

BTool’s EXTRAS does not support the SuperBASIC WIDTH command and you will therefore need to
specify an absolute width as the second parameter to format output.

NOTE 2

Versions of Tiny Toolkit pre v1.10 contained a different implementation of this command, now renamed
TXTRAS.

NOTE 3

Within an SBASIC (on SMS), EXTRAS only lists those keywords used in that SBASIC to date - this is
because the whole name table is not copied when an SBASIC is started up, allowing different SBASICs
to use the same name for different things.

328 Chapter 12. Keywords E

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE

Use SXTRAS if you have a lot of extensions in memory and you are looking for a specific one. See also
TXTRAS, VOCAB and NEW_NAME.

12.52 EXTRAS_W

Syntax EXTRAS_W [#ch]
Location ATARI_REXT

This lists all of the current SuperBASIC commands to the given channel (default #1). Unlike EXTRAS,
the output appears in columns and there is no pause when the given window is full.

CROSS-REFERENCE
EXTRAS is very similar.

12.52. EXTRAS_W 329

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

330 Chapter 12. Keywords E

CHAPTER
THIRTEEN

KEYWORDS F

13.1 FACT

Syntax FACT(n) where n=0..300
Location Math Package, FACT

The FACT function takes a non-negative integer n up to 300 and returns the factorial of the number,
calculated as the product: 1#2%3%*.. *n

Example

n elements can be combined in FACT(n) different ways, eg. take the three first letters, the FACT(3)=6
permutations of A, B and C are:

1. ABC
2. ACB
3. BAC
4. BCA
5. CAB

6. CBA
CROSS-REFERENCE
BINOM

13.2 FALSE%

Syntax FALSEY%
Location TRUFA

The function FALSE% returns the constant 0. It is used to write programs which are more legible or
which adopt habits from the PASCAL language.

CROSS-REFERENCE

TRUE%. See also SET concerning user definable resident constants.

331

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.3 FASTEXPAND

Syntax FASTEXPAND adr1,adr2
Location COMPICT

If a screen which has been compressed and saved with COMPRESS is loaded into memory with LBYTES
(for example), this command allows quicker expansion of the screen than would otherwise be possible
with EXPAND.

FASTEXPAND also allows you to expand the screen to any address (provided that there is at least 32K
of free memory stored there). adrl is the address where the compressed screen is stored and adr2 the
place in RAM where the expanded screen should be moved to.

Example

100 COMPRESS raml_test_scr

110 a=ALCHP(FLEN(\raml_test_scr))
120 LBYTES raml_test_scr,a

130 FASTEXPAND a,SCREEN

140 RECHP a

NOTE

FASTEXPAND will not work on screen resolutions in excess of 512x256 pixels.
CROSS-REFERENCE

COMPRESS, EXPAND.

13.4 FBKDT

Syntax FBKDT [(#channel)] or
FBKDT (\file)
Location Level-2 Device Drivers, SMS

It is proposed that this function be used to return the date on which a given file was last backed up.
Current versions of SuperBASIC commands, such as COPY and WCOPY do not set the back-up date of
the file being copied, although some software will do this, WinBack for example.

The idea of a back-up date is mainly for use in automatic back-up programs which can be told to copy all
files on a given medium within certain parameters, namely files which have been altered since a specific
date and which have been altered since the last time that they were backed up.

The value returned is the date in QDOS format, ie. the number of seconds since Midnight 1st January
1961 {check this initial date with PRINT DATES$(0)}. This backup time currently needs to be set man-
ually using SET_FBKDT, although it is hoped that future versions of COPY and WCOPY will do so
automatically.

If it has not been set, FBKDT will return zero. The default data device and sub-directories are supported,
default channel is #3.

Example

332 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

The PROCedure below will make an intelligent backup of all files contained in the medium specified by
the first parameter to the medium specified in the second parameter, which have been altered since they
were last backed up. TinyToolkit’'s TCONNECT or DIY-TK’s QLINK is necessary to use this example.
This can be used for example by entering the line:

[BACKUP flpl_ TO flp2_

Although sub-directories and the default data device are fully supported on the medium being backed-up,
the procedures would need modification to enable them to create similar sub-directories on the destination
device. The PROCedure makes heavy use of recursive programming, which means that it uses a lot of
memory (not all of which is released at the end of the PROCedure). It would need a considerable re-write
to be in a form which could be safely compiled.

100 DEFine PROCedure BACKUP (dirl,dir2)

110 LOCal dirl$,dir2$,old_datad$,old_destd$

120 LOCal ERRno,outer,sloop

130 dirl1$=PARSTR$(dirl,1):dir2$=PARSTR$(dir2,2)
140 old_datad$=DATAD$:o0ld_destd$=DESTD$

150 DATA_USE '':ERRno=-7

160 REPeat sloop

170 IF FTEST(dir1$)<0

180 dirl$=old_datad$&diri$

190 IF FTEST(dir1$)<O0:PRINT #0,dirl$;"' ';:EXIT sloop

200 END IF

210 full _dir$=(dir1$&' ')(1 TO 5):orig_dir$=diri1$

220 IF FTEST(dir2$)<0

230 outer=FOP_NEW(dir2$) : IF outer>0:CLOSE #outer

240 IF outer<®

250 dir2$=o0ld_destd$&dir2$

260 IF old_destd$(LEN(old_destd$))<>'_"':ERRno= -15:EXIT sloop
270 IF FOP_OVER(dir2$)<0:PRINT #0,dir2$;' ';:EXIT sloop
280 END IF

290 END IF

300 ERRno=0:EXIT sloop

310 END REPeat sloop

320 DATA_USE old_datad$

330 IF ERRno<0:REPORT ERRno:RETurn

340 IF dir2$(LEN(dir2$))<>'_':dir2$=dir2%$&"'_"'

350 main_ch=-1:max_ch=0

360 read_directory diril$

370 PRINT #0, 'Backup complete'

380 FOR i=main_ch TO max_ch:CLOSE #i

390 END DEFine

400 :

410 DEFine PROCedure read_directory(current_dir$)

420 LOCal in_ch,out_ch

430 in_ch=FOPEN('scr_"'):IF main_ch=-1:main_ch=in_ch
440 out_ch=FOPEN(pipe_10000) :DIR #out_ch,current_dir$
450 TCONNECT #out_ch TO #in_ch

460 CLOSE #out_ch

470 copy_file$ #in_ch,full_dir$,dir2$

(continues on next page)

13.4. FBKDT 333

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)
480 IF in_ch>max_ch:max_ch=in_ch
490 END DEFine
500 :
510 DEFine PROCedure copy_file$(chan,in$,out$)
520 LOCal files_loop, junk$,outer,testl,test2
530 INPUT #chan, junk$, junk$
540 REPeat files_loop

550 IF EOF (#chan) :EXIT files_loop

560 INPUT #chan,in_file$

570 out_file$=out$&in_file$

580 in_file$=in$&in_file$

590 IF LEN(in_file$)>3

600 IF in_file$(LEN(in_file$)-2 TO)=" ->'

610 read_directory in_file$(1 TO LEN(in_file$)-3)
620 NEXT files_loop

630 END IF

640 END IF

650 test1=FBKDT(\in_file$)

660 outer=FOPEN(out_file$)

670 IF outer>0

680 test2=FUPDT (#outer) : CLOSE #outer

690 ELSE

700 test2=-7

710 END IF

720 IF test2<testl OR testl=0

730 PRINT 'Backing-up'!in_file$!'=>"lout_file$
740 DELETE out_file$:COPY in_file$ TO out_file$
750 SET_FBKDT \in_file$,DATE

760 END IF

770 END REPeat files_loop
775 CLOSE#chan
780 END DEFine

CROSS-REFERENCE

FUPDT, FLEN, FTYP, FDAT, FXTRA, FILE LEN, FILE LEN, FILE TYPE, FVERS and FNAMES$
return other information about a file.

13.5 FDAT

Syntax FDAT [(#channel)] or
FDAT (\Milename) (Toolkit IT and THOR)
Location Toolkit II, THOR X VI, BTool

This function returns the value of four bytes (at offset 6 to 9) in a file header. This value represents the
dataspace of executable files (file type 1). There is no convention for any other file types. The default
data device and sub-directories are supported, the default channel is #3.

334 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE

FXTRA returns the other four bytes of the type dependent information contained in the file header.
FILE _DAT is very similar to FDAT. See also FTYP.

13.6 FDECS$

Syntax FDECS (value,length,ndp)
Location Toolkit II, THOR XVI

This function is similar to CDECS$ except for two major differences. FDECS$ does not assume that value
is an integer, and therefore uses the whole of value, although if the given ndp (number of decimal places)
is less than the number of decimal places in value, value will be rounded up or down accordingly.

FDECS does not insert commas in the characters to the left of the decimal point.

Examples

[PRINT FDECS$ (100.235,6,2)

will print ‘100.24°

[PRINT FDEC$ (100, 6,2)

will print ‘100.00°
CROSS-REFERENCE
Please see CDECS$.

13.7 FETCH_BYTES

Syntax a$ = FETCH_BYTES (#channel, how_many)
Location DJToolkit 1.16

This function returns the requested number of bytes from the given channel which must have been opened
for INPUT or INPUT/OUTPUT. It will work on CON__ channels as well, but no cursor is shown and the
characters typed in are not shown on the screen. If there is an ENTER character, or a CHR$(10), it will
not signal the end of input. The function will not return until the appropriate number of bytes have been
read.

WARNING - JM and AH ROMS will cause a ‘Buffer overflow’ error if more than 128 bytes are fetched,
this is a fault with QDOS and not with DJToolkit. See the demos file, supplied with DJToolkit, for a
workaround to this problem.

EXAMPLE

[LineOfotes$ = FETCH_BYTES (#4, 256)

13.6. FDEC$ 335

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.8 FEXP$

Syntax FEXPS$ (value,length,ndp)
Location Toolkit II

This function is different to CDECS in that it always prints the given value in exponential format. This
means that there is always only one character to the left of the decimal point (plus any sign), and ndp
(number of decimal places) states how many characters should be to the right of the decimal point.

FEXPS$ does not assume that value is an integer and therefore also caters for floating point values. The
length of the field must be at least ndp+7, otherwise an empty string is returned.

If necessary, values are rounded up or down to fit in the specified ndp number of decimal places.

Examples

[PRINT FEXP$(-100.235,11,4)

will print -1.0023E+02

[PRINT FEXP$$(100.235,11,4)

will print 1.0024E+02
CROSS-REFERENCE
CDECS$, IDEC$, FDEC$ and PRINT_USING all provide means of formatting number output.

13.9 FET

Syntax FET(file “[,{filex | #chx}]" [;cmd$])
Location SMSQ/E

Executes and returns the job ID of the job filename in suspended state (by immediately setting the new
job’s priority to zero). This function is a functional version of E7', with the same set of arguments, that
executes a job into suspended state for tracing with a monitor. In addition to what E7 does, it returns the
job ID of the new job that was started.

Examples

jId = FEX ("winl_XChange_xchange')

Will start Psion XChange in winl_xchange in suspended state and return the job ID of the new job.
CROSS-REFERENCE
See ET, EXEC, JOBS.

336 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.10 FEW

Syntax FEW(filen “[,{filex | #chx}]" [;cmd$])
Location SMSQ/E

Executes and waits for completion of the job filen, then returns the error code from that job. FEW is a
function version of EW and shares its argument list.

Example

[retcode = FEW ("winl_XChange_xchange") }

Will start Psion XChange in winl_xchange, wait until that job has ended and will then return the error
code of that job.

CROSS-REFERENCE
See EW, EXEC_W, JOBS, QUIT.

13.11 FEX

Syntax FEX(file “[,{filex | #chx}]" [;cmd$])
Location SMSQ/E

Executes and returns the job ID of the job filename. This function is a functional version of EX, with the
same set of arguments, that executes a job. In addition to what £X does, it returns the job ID of the new
job that was started.

Example

{de = FEX ("winl_XChange_xchange")]

Will start Psion XChange in winl_xchange and return the job ID of the new job.

NOTES In some combinations of SMSQ/E and FileInfo2 versions, there might be a clash of extension
names between FEX supplied as an SMSQ/E function (as described here) and a function with the same
name (but very different purpose) supplied by FileInfo2. Later versions of FileInfo2 resolved this name
clash by renaming the corresponding function to EXF.

CROSS-REFERENCE
See EX, FET, FEW, EXEC, JOBS.

13.10. FEW 337

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.12 FEX_M

Syntax FEX_M file “[,{file* | #ch*}]" [;cmd$]
Location SMSQ/E

Variant of the FEX function that executes the given file and returns the new job ID. Differently to FEX,
which starts the new job as owned by the system, FEX_M starts the job as a job owned by its parent job.
This means that the newly started job will be killed whenever its owner job is killed.

Example

[the_job_id — FEX_M(winl_gmac)

Will execute Qmac as a job owned by the current S*BASIC interpreter. When the current interpreter
ceases to exist, the new Qmac job will also be killed.

NOTE

An exhaustive explanation of the possible options can be found with the description of EX. FEX_M takes
the exact same arguments.

CROSS-REFERENCE
See EX.

13.13 FF

Syntax FF
Location Beuletools

This function returns CHR$(12), which performs a form feed when sent to an EPSON compatible printer.
CROSS-REFERENCE
NORM, BLD, EL, DBL, ENL, PRO, SI, NRM, UNL, ALT, ESC, LMAR, RMAR, PAGDIS, PAGLEN ..

13.14 FGET%

Syntax FGET% [(#channel)]
Location BTool

This function reads two bytes from #channel (default #1) and makes an integer value from them, so these
bytes should be in the internal format of an integer to make FGET% useful.

An integer is stored in two bytes as Integer = Byte1*256+ byte2
CROSS-REFERENCE

See GET and MKI$. CVI% converts a string containing the internal format of an integer to an integer
number. See also FPUT%

338 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.15 FGET$

Syntax FGETS$ [(#channel)]
Location BTool

This function reads a string in internal format from a specified channel (default #1) and returns the string.

A string is stored internally as a two byte integer (see FGET%) specifying the length of the string followed
by the characters of the string itself.

Example

100 OPEN_NEW#3,raml_test

110 PRINT#3,MKS$("Hello World.")
120 FPOS_A#3,0

130 PRINT FGET$(#3)

140 CLOSE#3

150 DELETE raml_test

CROSS-REFERENCE

GET, FGETB, FGET%, FGETL, MKS$. FPUTS$ writes a string in internal format. CVS$ converts a
string into its internal format.

13.16 FGETB

Syntax FGETB [(#channel)]
Location BTool

This function reads a single byte (character) from a specified channel (default #1) and returns its numeric
value.

Example

100 PRINT "Please press any key..."

110 CLEAR: c = FGETB

120 PRINT "You pressed '";CHR$(c);"', ";

130 PRINT "which is code"!c!"($";HEX$(c,8);")."

CROSS-REFERENCE
The Toolkit II equivalent is BGET . See also FPUTB!

13.15. FGET$ 339

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.17 FGETL

Syntax FGETL [(#channel)]
Location BTool

This function reads four bytes, being the internal representation of a longword, from a specified channel
(default #1) and returns the longword’s value.

Example

It is preferable to store a large integer in internal format because this is faster than text representation and
needs less memory, even if the number could be stored in internal float format:

100 large_int = 1.19344E7
110 :

120 REMark save value

130 OPEN_NEW#3,raml_test
140 PRINT#3,MKL$(large_int)
150 CLOSE#3: CLEAR

160 :

170 REMark read value

180 OPEN_IN#3,raml_test

190 large_int = FGETL(#3)
200 CLOSE#3: PRINT large_int

CROSS-REFERENCE

LGET, MKL$. FPUTL allows you to write numbers in internal format to channels. CVL converts strings
containing the internal format to long integers.

13.18 FGETF

Syntax FGETF [(#channel)]
Location BTool

The function FGETF gets six bytes from a channel (default #1) in the internal format of a floating point
number.

WARNING
FGETF will hang SuperBASIC if the six bytes did not represent a valid floating point, so be careful.
CROSS-REFERENCE

GET, MKF$, PEEK _F, FPUTF. CVF converts a string containing the internal format into a floating
point number.

340 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.19 FGETHS$

FGETHS [(#filechan)]
BTool

Syntax
Location

This function reads the file header from an open channel linked to a file (default #3).

Each file has a header of 64 bytes which contains technical information about the file. FGETHS returns a
string containing 64 characters, each of which represents one byte of the file header. The string contains
the following information:

Character Meaning Value in string Equivalent Function
1...4 file length CVL(h$(1 TO 4)) FLEN

5 file access key CODE(h$(5)) None

6 file type CODE(h$(6)) FTYP

7..14 type dependent info (see below) FDAT,FXTRA
15..16 filename length CVI%(h$(15 TO 16)) LEN(FNAMES$)
17..52 filename bytes CVS$(h$(15 TO 52)) FNAMES$
53..56 update time CVL(h$(53 TO 56)) FUPDT

57..58 version number CVI%(h$(57 TO 58)) FVERS

59..60 reserved CVI%(h$(59 TO 60)) None

61..64 backup date CVL(h$(61 TO 64)) FBKDT

The type dependent information is different for each file type. For type 1 (executable files) bytes 7 to
10 hold the dataspace: CVL(h$(7 TO 10)). In early documentation, bytes 57 to 60 were reserved for a
reference date which was never implemented. The last eight bytes (57 to 64) are actually not used on
level-1 drivers, level-2 drivers use every byte. There is an unofficial standard for the file access key, which
is generally used by Toolkits to store file attributes in the format:

Bit Meaning

No

7 Set if the file is read-only.

6 Set if the file is hidden and will not appear on a directory of the disk. Neither can it be accessed.
0 - are used to contain the User Number. Basically, this file will only be accessible by someone
5 with the same user number (0-63).

Files with a user number of 0 will be visible and usable by any user.
Files with a user number of 63 are generally only available to a user in a special mode (normally
this will require a password).

You will need specialist toolkits such as Toolkit III and System, neither of which are compatible with
SMS if the File Access Key is to have any effect.

Examples

Nearly every part of a file header (apart from the two unused bytes) can be read by special functions (see
the list above), here are two functions to read the rest:

13.19. FGETH$ 341

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

100 DEFine FuNction FACCKEY (chan)
110 LOCal h$

120 h$=FGETHS$ (#chan)

130 RETurn CODE(h$(5))

140 END DEFine FACCKEY

150 :

160 DEFine FuNction FSPEC% (chan)
170 LOCal h$

180 h$=FGETH$ (#chan)

190 RETurn CVI%(h$(59 TO 60))
200 END DEFine FSPEC%

CROSS-REFERENCE

FSETHS is the counterpart of FGETHS$. HEADR and GetHEAD read file headers to given memory
positions, FSETH$, HEADS and SetHEAD set them. Functions like FLEN, FTYP, FXTRA etc. read the
file header implicitly and return a certain piece of information from it. Use the CV/%, CVL and CVS$
functions to convert the internal representations to actual values.

13.20 FILE_BACKUP

Syntax bk = FILE_ BACKUP(#channel)
bk = FILE_BACKUP(‘filename’)
Location DJToolkit 1.16

This function reads the backup date from the file header and returns it into the variable bk. The parameter
can either be a channel number for an open channel, or it can be the filename (in quotes) of a closed file.
If the returned value is negative, it is a normal QDOS error code. If the value returned is positive, it can
be converted to a string be calling DATES$(bk). In normal use, a files backup date is never set by QDOS,
however, users who have WinBack or a similar backup utility program will see proper backup dates if
the file has been backed up.

EXAMPLE

1000 bk = FILE_BACKUP('flpl_boot')

1010 IF bk <> 0 THEN

1020 PRINT "Flpl_boot was last backed up on " & DATES$(bk)

1030 ELSE

1040 PRINT "Flpl_boot doesn't appear to have been backed up yet."
1050 END IF

CROSS-REFERENCE
FILE DATASPACE, FILE LENGTH, FILE TYPE, FILE UPDATE.

342 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.21 FILE_DAT

Syntax FILE_DAT (filename) or
FILE_DAT (file$)
Location TinyToolkit

This is the same as FDAT except that default devices and sub- directories are not supported.

13.22 FILE_DATASPACE

Syntax ds = FILE_DATASPACE((#channel) or
ds = FILE_DATASPACE(‘filename’)
Location DJToolkit 1.16

This function returns the current dataspace requirements for the file opened as #channel or for the file
which has the name given, in quotes, as filename. If the file is an EXEC’able file (See FILE_TYPE) then
the value returned will be the amount of dataspace that that program requires to run, if the file is not an
EXEC’able file, the result is undefined, meaningless and probably zero. If the result is negative, there
has been an error and the QDOS error code has been returned.

EXAMPLE

1000 ds = FILE_DATASPACE('flpl _WinBack_exe")

1010 IF ds <= 0 THEN

1020 PRINT "WinBack_exe doesn't appear to exist on flpl_, or is not.
—executable."

1030 ELSE

1040 PRINT "WinBack_exe's dataspace is set to " & ds & " bytes."
1050 END IF

CROSS-REFERENCE
FILE BACKUP, FILE LENGTH, FILE TYPE, FILE UPDATE.

13.23 FILE_LEN

Syntax FILE_LEN (filename) or
FILE_LEN (file$)
Location = TinyToolkit

This function returns the length of a file in bytes. It does not support the default devices or sub-directories.
Example

A short program to show simple file statistics (without any support of wild cards):

13.21. FILE_DAT 343

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

100 dev$="FLP1_"

110 OPEN#3,PIPE_10000: OPEN#4,PIPE_200

120 TCONNECT #3 TO #4

130 DIR#3,dev$: INPUT#4,h$\h$

140 :

150 sum=0: count=0

160 REPeat add_lengths

170 IF NOT PEND(#4) THEN EXIT add_lengths

180 INPUT#4,file$

185 IF " ->" INSTR file$ THEN NEXT add_lengths
190 sum=sum+FILE_LEN(dev$ & file$)

200 count=count+1

210 END REPeat add_lengths

220 :

230 CLS

240 PRINT "There are"!count!"files in"!dev$;"."
250 PRINT "They are altogether"!sum!"bytes long,"
260 PRINT "the average length is"!INT(sum/count+.5)!"bytes."

TinyToolkit’s TCONNECT or DIY Toolkit’s QLINK is necessary
NOTE

It is not recommended to get a file list by writing a directory into a file or pipe. Problems arise with
sub-directories on level-2 drivers: a sub-directory is marked with an appended “ ->” in the directory list
(WDIR, WSTAT, DIR), so opening a file such a “test ->” will fail. Refer to OPEN_DIR and FOP_DIR
for a cleaner method.

CROSS-REFERENCE

FLEN has a more flexible syntax. FILE_TYPE, FILE_DAT, FILE_POS, FNAMES$, FPOS, FTYP,
FUPDT and FXTRA hold other information on a file.

13.24 FILE_LENGTH

Syntax fl = FILE_LENGTH (#channel)
fl = FILE_LENGTH(‘filename’)
Location DJToolkit 1.16

The file length is returned. The file may be open, in which case simply supply the channel number, or
closed, supply the filename in quotes. If the returned value is negative, then it is a QDOS error code.

EXAMPLE

1000 fl1 = FILE_LENGTH('flpl_WinBack_exe')

1010 IF fl1 <= O THEN

1020 PRINT "Error checking FILE_LENGTH: " & fl

1030 ELSE

1040 PRINT "WinBack_exe's file size is " & fl1 & " bytes."
1050 END IF

344 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE
FILE_BACKUP, FILE_DATASPACE, FILE TYPE, FILE UPDATE.

13.25 FILE_OPEN

Syntax FILE_OPEN ([#ch,] device [,{mode% | ChID}])
Location BTool

FILE_OPEN is a function which will open any device (default data directory supported for files) for all
kinds of tasks. If a channel number #ch is not supplied, FILE_OPEN will choose the channel number on
its own by searching for the next free channel number and returning it.

FILE_OPEN returns the channel number if it was not specified or otherwise zero. In case of failure it
will return a (negative) error code. If error -4 (‘out of range’) is returned when a channel number has not
been supplied, this indicates that the channel table of a compiled job is full.

The third parameter can be either the open mode or the channel ID of an un-named pipe.
The open mode (default 0) is:

* 0 (old exclusive) - open an existing file to read and write.

* 1 (old shared) - open an existing file to read only.

* 2 (new exclusive) - create a new file if it does not exist.

¢ 3 (new overwrite) - create a new file, whether or not it exists.

* 4 (dir open) - open a directory to read only.

If the third parameter is the channel ID of an open input pipe, then FILE_OPEN will create an output
pipe linked to that channel.

Example

Count additional keywords:

100 chl=FILE_OPEN(pipe_10000)

110 ch2=FILE_OPEN(pipe_,CHANID(#chl))
120 EXTRAS#chl

130 FOR count=1 TO 1E6

140 IF IO_PEND%(#ch2) THEN EXIT
150 INPUT#ch2, keyword$

160 AT 0,0: PRINT count

170 END FOR count

180 CLOSE#chl, #ch2

CROSS-REFERENCE

FILE_OPEN combines OPEN, OPEN_IN, OPEN_NEW, OPEN_OVER, OPEN_DIR, FOPEN,
FOP_IN, FOP_OVER, FOP_NEW, FOP_DIR, TTEOPEN and TCONNECT . See also CHANID and ER-
NUM.

13.25. FILE_OPEN 345

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.26 FILE_POS

Syntax FILE_POS (#channel)
Location TinyToolkit

This performs the same function as FPOS, although with slightly less flexible parameters.

13.27 FILE_POSITION

Syntax where = FILE_POSITION (#channel)
Location DJToolkit 1.16

This function will tell you exactly where you are in the file that has been opened, to a directory de-
vice, as #channel, if the result returned is negative it is a QDOS error code. If the file has just been
opened, the result will be zero, if the file is at the very end, the result will be the same as calling
FILE_LENGTH(#channel) - 1, files start at byte zero remember.

EXAMPLE

1500 DEFine FuNction OPEN_APPEND(£f$)

1510 LOCal ch, fp

1515 :

1520 REMark Open a file at the end, ready for additional
1530 REMark data to be appended.

1540 REMark Returns the channel number. (Or error)

1545 :

1550 ch = DJ_OPEN(f$)

1560 IF ch < ® THEN

1570 PRINT "Error: " & ch & " Opening file: " & f$
1580 RETurn ch

1590 END IF

1595 :

1600 MOVE_POSITION #ch, 6e6
1610 fp = FILE_POSITION (#ch)
1620 IF fp < O THEN

1630 PRINT "Error: " & fp & " reading file position on: " & £$
1640 CLOSE #ch

1650 RETurn fp

1660 END IF

1665 :

1670 PRINT "File position set to EOF at: " & fp & " on file: " &f$
1680 RETurn ch
1690 END DEFine

CROSS-REFERENCE
ABS_POSITION, MOVE_POSITION .

346 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.28 FILE_PTRA

Syntax FILE_PTRA #channel, position
Location TinyToolkit

This command forces the file pointer to be set to the given position. Positions greater than the actual file
length or smaller than zero will set the pointer to the end or start of the file respectively.

CROSS-REFERENCE
FILE PTRR, FILE POS, FPOS, FLEN, FILE LEN, GET.

13.29 FILE_PTRR

Syntax FILE_PTRR #channel, bytes
Location TinyToolkit

This command moves the file pointer from its current position by the given number of bytes forward,
negative numbers allow backward movement.

The file pointer cannot go beyond the limits of the file itself, so if you try to do so, the pointer will be set
to the start or end of the file.

Example

A program to store several names and telephone numbers in a file and then to search for the given name
and return the relevant telephone number:

100 DIM a$(3,30),number(3)

110 RESTORE

120 FOR i=1 TO 3: READ a$(i),number(i)
130 OPEN_NEW #3,flp2_phone_dbs

140 FOR stores=1 TO 3

150 PUT#3,a$(stores) ,number(stores)
160 END FOR stores

170 CLOSE#3

180 :

200 INPUT name$

210 OPEN_IN#3,flp2_phone_dbs

220 REPeat find_NAME

230 IF EOF(#3) THEN PRINT 'NAME not found...': STOP
240 GET#3,entry$

250 IF entry$==name$ THEN

260 GET#3, telno
270 EXIT find_NAME
280 END IF

290 FILE_PTRR#3,6: REMark skip next phone number
300 END REPeat find_NAME
310 CLOSE#3

(continues on next page)

13.28. FILE_PTRA 347

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)
320 PRINT entry$;'....";telno
330 :
350 DATA 'P.C. Green', '999'
360 DATA 'CATFLAP inc.','7212.002121'
370 DATA 'Tim', '98081'

Note that on Minerva, Integer Tokenisation will need to be disabled.
CROSS-REFERENCE
FILE_PTRA, FILE_POS, FPOS, FLEN, FILE_LEN, GET.

13.30 FILE_TYPE

Syntax ft = FILE_TYPE(#channel)
ft = FILE_TYPE(‘filename’)
Location DJToolkit 1.16

This function returns the files type byte. The various types currently known to me are :

e 0 = BASIC, CALL able machine code, an extensions file or a DATA file.

* 1 = EXEC’able file.

» 2 = SROFF file used by linkers etc, a C68 Library file etc.

* 3 =THOR hard disc directory file. (I think!)

* 4 = A font file in The Painter

* 5 = A pattern file in The Painter

* 6 = A compressed MODE 4 screen in The Painter

* 11 = A compressed MODE 8 screen in The Painter

* 255 = Level 2 driver directory or sub-directory file, Miracle hard disc directory file.
There may be others.

EXAMPLE

1000 ft = FILE_TYPE('flpl_boot")

1010 IF ft <= 0 THEN

1020 PRINT "Error checking FILE_TYPE: " & ft

1030 ELSE

1040 PRINT "Flpl_boot's file type is " & ft & "."
1050 END IF

CROSS-REFERENCE
FILE BACKUP, FILE DATASPACE, FILE LENGTH, FILE _UPDATE.

348 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.31 FILE_UPDATE

Syntax fu = FILE_UPDATE((#channel)
fu = FILE_UPDATE(‘filename’)
Location DJToolkit 1.16

This function returns the date that the appropriate file was last updated, either by printing to it, saving it
or editing it using an editor etc. This date is set in all known QLs and emulators etc.

EXAMPLE

1000 fu = FILE_UPDATE('flpl_boot')

1010 IF fu <> 0 THEN

1020 PRINT "Flpl_boot was last written/saved/updated on " & DATE$(fu)
1030 ELSE

1040 PRINT "Cannot read lates UPDATE date from flpl_boot. Error: " & fu &

1050 END IF

CROSS-REFERENCE
FILE_DATASPACE, FILE_LENGTH, FILE_TYPE, FILE TYPE.

13.32 FILL

Syntax FILL [#channel,] boolean
Location QL ROM

This command switches Fill mode on and off. If the Fill mode is on (after FILL 1), all points in the given
window channel (default #1) that have the same vertical co-ordinate are connected by a line in the current
ink colour so that only non re-entrant figures can be filled correctly. This means that figures must only
contain two points on each horizontal row of pixels. The fill mode is de-activated by FILL 0.

Example 1

FILL 1: POINT 20,20,40,20: FILL @

draws a horizontal line from 20,20 to 40,20.

Example 2

100 DEFine PROCedure SQUARE (x,y,size,angle)
110 LOCal n: POINT x,y

120 TURNTO angle: PENDOWN: FILL 1

130 FOR n=1 TO 4: MOVE size: TURN 270

140 PENUP: FILL ©

150 END DEFine SQUARE

NOTE 1

13.31. FILE_UPDATE 349

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

FILL only affects those graphic commands which use relative co-ordinates, ie. which are influenced by
SCALE. Commands which operate in absolute window or screen co-ordinates will not invoke filling.

NOTE 2

On non-Minerva ROMs, 1K of memory may be lost if you do not issue a FILL 0O before closing a win-
dow. This is however fixed by v1.38 (or later) of the Pointer Interface (although earlier versions will
re-introduce it to Minerva!).

NOTE 3

When drawing several shapes, all of which are to be filled, ensure that you issue a FILL 0 between each
shape, otherwise they will be joined together if any points appear on the same horizontal line!

NOTE 4

FILL works by setting aside a buffer of approximately 1K. Whenever a point is then plotted in the given
window, FILL looks at the buffer to see if anything appears to the left of that point on the same horizontal
line (in which case, it fills the line between the two points), otherwise, FILL will just note the co-ordinate
of the point in its buffer.

FILL then checks if anything appears to the right of the given point, and if so, will fill the line between
the two points. Again, the co-ordinate of the point will be stored if nothing appears to the right of it.

This should explain quite a few of FILL's quirks. Whenever a new FILL command is used on that window,
the old buffer is lost, meaning that FILL will forget about any points previously plotted.

Unfortunately, the interaction of this buffer causes a lot of problems (and prevents re-entrant shapes),
especially in view of the fact that only FILL or CLOSE will clear the buffer. The buffer is not cleared
once a shape has been completely filled (eg. with CIRCLE), nor even when the screen is cleared with
CLS. Try this for example:

100 INK 7:FILL 1
110 CIRCLE 50,50,20
130 CLS

135 INK 2

140 CIRCLE 70,60,20

NOTE 5

If OVER -1 is switched on, the same line of an image may be FILLed twice causing that line to be left
empty, unless you start drawing the image from either the top or the bottom. You may also encounter
problems if you try to draw a line which has already been completed by FILL - for example try:

100 OVER -1: FILL 1
110 LINE 50,50 TO 60,60 TO 70,50 TO 50,50

The FILL command will complete the triangle as soon as the line between the points (60,60) and (70,50)
has been drawn, therefore this should be re-written:

100 OVER -1:FILL 1
110 LINE 50,50 TO 60,60 TO 70,50

On Minerva v1.97 and SMSQ/E, matters are further complicated - the first example draws a complete
triangle, whereas the second one doesn’t!

NOTE 6

350 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

If OVER -1 is switched on, a shape which is drawn as FILLed will not be wiped out by re-drawing the
same shape again, unless you do a FILL 1 before re-drawing the shape. For example, try this:

100 OVER -1:FILL 1:CIRCLE 50,50,20
110 PAUSE: CIRCLE 50,50,20

The answer is to insert a line:

[1@5 FILL 1

NOTE 7

On Minvera pre v1.86 FILL O when fill was not actually switched on would stop SuperBASIC!!
CROSS-REFERENCE

The paint colour of FI/LL is specified by INK.

13.33 FILL$

Syntax FILL$ (short$,length)
Location QL ROM

This function will generate a string of the given length and return it. The new string will consist of a
repeated series of short$ which may be one or two characters long. The length (as with any string) ranges
from 0 to 32767.

Examples

[FILL$("W-",7)

returns “W-W-W-W”,

[FILL$("+",1®)

returns “++++++++++7.

[FILL$("J0",®)

330

returns “” (the empty string).

[FILL$("TeSt" ,6)

returns “TeTeTe”.

NOTE 1

A bug in the THOR XVI (v6.40) meant that the return stack could be destroyed when appending the
result to an even length string.

NOTE 2

A program will run more quickly (although it is more difficult to type in) if you declare the string explicitly
rather than using FILLS.

13.33. FILL$ 351

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE 3

The maximum length of string that can be produced with FILL$ depends on the ROM version - see the
Compatibility Appendix.

CROSS-REFERENCE

Refer to DIM about strings in general.

13.34 FILLMEM_B

Syntax FILLMEM_B start_address, how_many, value
Location DJToolkit 1.16

Fill memory with a byte value. See FILLMEM _L below.
CROSS-REFERENCE
FILLMEM_L, FILLMEM_W.

13.35 FILLMEM_W

Syntax FILLMEM_W start_address, how_many, value
Location DJToolkit 1.16

Fill memory with a 16 bit word value . See FILLMEM_L below.
CROSS-REFERENCE
FILLMEM_L, FILLMEM_B.

13.36 FILLMEM_L

Syntax FILLMEM_L start_address, how_many, value
Location DJToolkit 1.16

Fill memory with a long (32 bit) value.
EXAMPLE
The screen memory is 32 kilobytes long. To fill it all black, try this:

[1@00 FILLMEM_B SCREEN_BASE(#0), 32 * 1024, 0

or this:

[1@10 FILLMEM_W SCREEN_BASE(#0), 16 * 1024, 0

352 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

or this:

{1@20 FILLMEM_L SCREEN_BASE(#0), 8 * 1024, 0

and the screen will change to all black. Note how the second parameter is halved each time? This is
because there are half as many words as bytes and half as many longs as words.

The fastest is FILLMEM_L and the slowest is FILLMEM_B. When you use FILLMEM W or
FILLMEM_L you must make sure that the start_address is even or you will get a bad parameter error.
FILLMEM _B does not care about its start_address being even or not.

FILLMEM B truncates the value to the lowest 8 bits, FILLMEM W to the lowest 16 bits and
FILLMEM_L uses the lowest 32 bits of the value. Note that some values may be treated as negatives when
PEEK ‘d back from memory. This is due to the QL treating words and long words as signed numbers.

CROSS-REFERENCE
FILIMEM B, FILLMEM W.

13.37 FIND

Syntax FIND (procfn$)
Location BTool

If procfn$ is the name of a machine code keyword (eg. “FILL$”) then the function FIND returns the
address where the definition is stored in memory.

If, however, procfn$ contains the name of a SuperBASIC PROCedure or FuNction then FIND will return
the line number where the PROCedure or FuNction starts.

FIND returns O if the passed name is unknown.
Example

<ALT><r> requests a Procedure/Function name and calls Toolkit II’s full screen editor accordingly:

[ALTKEY "r","ED FIND('')"&CHR$(192)&CHR$(192)

CROSS-REFERENCE
KEY ADD, ELIS, NEW_NAME Also see FLIS.

13.38 FLASH

Syntax FLASH [#ch,] switch
Location QL ROM

This command turns on or off flashing in the specified window channel (default #1). Switch can only
have the values O (to enable flashing) and 1 (to turn flashing on).

This command will only have any effect in MODE 8.

13.37. FIND 353

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

If flashing is enabled, then any characters PRINTed to the given window afterwards will be shown to
flash - it is first written out as normal, but then the parts of the character which would normally be shown
in the current INK colour will alternate with the colour of the background.

The colour of the background can in fact be different for each row of pixels - this is calculated by the
colour of the left-most pixel on each row for each character PRINTed.

Example

This short listing shows the effect of the FLASH command - note that the display is not actually changed
back to its original form.

100 PAPER 2: INK 1

120 CSIZE 3,1: MODE 8: CLS

130 FOR i=0 TO 50: LINE 80+i,80 TO 15+i,10
140 INK 7: CURSOR 100,120

150 OVER 1: FLASH 1: PRINT 'This is flashing'
160 CSIZE 1,0: FLASH 0

NOTE 1

This command only affects characters PRINTed to the screen after the FLASH 1. There is no effect on
graphics commands, or BLOCK or LINE.

NOTE 2

Spurious results may occur if you write over part of a flashing character (with OVER -1).
NOTE 3

This command does not work on the Amiga-QDOS Emulator or ST/QL Emulators.
CROSS-REFERENCE

Please also refer to UNDER, OVER and PRINT. MODE resets the FLASH mode to off.

13.39 FLEN

Syntax FLEN [(#channel)] or
FLEN (\ile)(Toolkit IT and THOR only)
Location Toolkit II, THOR X VI, BTool

This function returns the length of a file in bytes. If the second version is used, then Toolkit II’s default
data device and sub-directories will be supported, meaning that the command will consult the default
data directory if necessary (see DATADS).

If you use the first version however, you will first of all need to open a channel. If you do not supply a
channel number, then the default used by the function is #3.

NOTE 1

The space on disks, cartridges, ramdisks and all other media where files can be stored is divided up into
sectors, which are normally 512 bytes long. A file does not occupy the number of bytes returned by
FLEN but a certain number of sectors for the contents of the file itself, a few bytes for the file header and

354 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

the directory entries (sector map, etc). The total number of sectors which are occupied by the file data
are:

sectors = 2 + CEIL(FLEN(\file)/512)

NOTE 2
If the second syntax does not work, update your ToolKkit.
CROSS-REFERENCE

FILE_LEN has a slightly different syntax. FILE _TYPE, FILE_DAT, FILE_POS, FNAMES$, FPOS,
FTYP, FUPDT and FXTRA hold other information about a file. HEADR and HEADS allow you to
directly access a file header.

13.40 FLIS

Syntax FLIS (procfn$)
Location Tiny Toolkit

If procfn$ is the name of a SuperBASIC PROCedure or FuNction then FLIS will return the line number
where the PROCedure or FuNction is defined.

If however, it is a machine code keyword (eg. “FILL$”) then the function FLIS will return 0.
If the name is not recognised the error ‘Not Found’ is reported.

CROSS-REFERENCE

KEY _ADD, ELIS, NEW_NAME Also see FIND.

13.41 FLP_DENSITY

Syntax FLP_DENSITY density (density = S, D, H or E)
FLP_DENSITY (SMSQ/E for QPC only)

Loca- Gold Cards, SMS, SMSQ/E for QPC

tion

There are four types of floppy disk drives which can be connected to a QL with a Gold Card (or to other
computers which are running a QL emulator). The command FLP_DENSITY sets the type for use with
FORMAT:

Sides Density Abbrev Capacity FLP_Density

Single Double SSDD 360 Kb S
Double Double DSDD 720 Kb D (Not QPC)
Double High DSHD 1440Kb H
Double Extra DSED 3240Kb E (Not QPC)

13.40. FLIS 355

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Parameters other than the four letters S, D, H and E, (including several characters or several parameters)
are not allowed.

Examples

FLP_DENSITY h
FLP_DENSITY 'D'

NOTE 1

Tests have shown that it is not always advisable to FORMAT a disk to a lower density than would other-
wise be possible, for example a high density disk to double density. The result may be that the number
of good sectors is less than could have been achieved by formatting a disk of the lower density.

During testing, an undamaged double density disk was formatted to 1440 sectors and a high density disk
to 2880 sectors, but if the high density disk had been formatted to double density, eg. with:

[FLP_DENSITY D : FORMAT flpl_

less than 1440 sectors might be good sectors.

You may also find that some disk drives which support the higher density will be unable to read these
disks, since it will presume that they are FORMATted to their maximum density.

NOTE 2

Since FLP_DENSITY only has any affect during formatting, it should generally be avoided. This does
not really matter because a disk is automatically formatted to the highest possible density and it would
be a waste of money to use a HD disk as a DD disk.

NOTE 3

If a high or extra density disk is formatted on a system which does not support those capacities, it will be
formatted to double density without any disadvantages. Such a disk does not cause problems when used
with a Gold Card QL.

NOTE 4

A double density disk cannot be formatted to a higher density with HD drives - the Level-2 (or
Level-3) device driver will automatically reduce a density which had been set at too high a figure by
FLP_DENSITY, to the appropriate figure. An ED drive however can successfully format HD disks and
even DD disks to high and extra density, but such disks may be unreliable, ie. data could be easily lost.

NOTE 4

High density is only supported on 3.5 disks, not 5.25” disks (widely used on MS/DOS systems). Extra
density also only exists on 3.5” disks. QL DD and HD formatted disks have the same physical (but not
software) format as MS/DOS and Atari TOS disks.

NOTE 5

High density and Extra density disks are much faster than double density disks, ED disks can even be as
fast as slow hard disks.

NOTE 6

FLP_DENSITY overrides the in-built trial-and-error density detection which is slow for HD drives and
even slower with ED drives. This can however cause problems when FORMATting DSDD disks - see
FORMAT!

356 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE 7

On SQMSV/E for QPC, the same code letters may be added (after a *) to the end of the medium name to
force a particular density format. (For compatibility with older drivers, if the code letter is omitted after
the *, single sided format is assumed).

* FORMAT ‘FLP1_Disk23’ Format at highest density or as specified by FLP_DENSITY .
FORMAT ‘FLP1_Disk24*" Format single sided

FORMAT ‘FLP1_Disk25*S’ Format single sided

FORMAT ‘FLP1_Disk25*D’ Format double sided, double density

Also, FLP_DENSITY on it’s own resets automatic density selection.
CROSS-REFERENCE

The same effect as FLP_DENSITY can be achieved with a special FORMAT syntax. FLP_TRACK allows
you to specify the number of tracks to be formatted onto a disk. STAT prints the name, good and free
sectors of a medium. See also the The DMEDIUM_XXX functions, starting at DMEDIUM_DENSITY .

13.42 FLP_DRIVE

Syntax FLP_DRIVE drive%, drive$
Location SMSQ/E for QPC

This changes the drive/image the floppy device is connected to.

Example

[FLP_DRIVE 2,"C:\FLOPPY. IMG"

Now FLP2_ is assigned to the floppy image FLOPPY.IMG on the host computer’s C:\ drive.

[FLP_DRIVE 2,"B:\"

FLP2_ is assigned to the physical B:\ floppy drive of the host computer.

13.43 FLP_DRIVE$

Syntax drive$ = FLP_DRIVES(drive%)
Location SMSQ/E for QPC

This reads back the current connection of the floppy device.

Example

[PRINT FLP_DRIVES$(2)

will tell you the current setting for flp2_.

13.42. FLP_DRIVE 357

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.44 FLP_EXT

Syntax FLP_EXT
Location Gold Cards

If you use RES_128 or RES_SIZE to reset the computer to 128K memory any attempts to access the
floppy disk drives can be haphazard, and can even crash the computer.

The command FLP_EXT resolves these problems and adds the following commands for use:
RAM_USE, CACHE_ON, CACHE_OFF, SCR2DIS, SCR2EN, AUTO_TK2F1, AUTO_TK2F2,
AUTO_DIS, FLP_JIGGLE, PAR_USE, FSERVE, NFS_USE, DEV_USE, DEV_LIST, DEV_USES,
DEV_NEXT, SDUMP, SDP_SET, SDP_KEY, SDP_DEV, PRT_USE, PRT_ABT, RES_128,
RES_SIZE, PROT_DATE

CROSS-REFERENCE
See RES 128 and TK2 EXT.

13.45 FLP_JIGGLE

Syntax FLP_JIGGLE [driveno,] flag
Location Gold Cards

There were originally various problems when using Mitsubishi ED disk drives with the Gold Card and
so a fix was incorporated in both the Gold Card and Super Gold Card operating systems which forces the
drive read/write head to make a number of rapid steps.

This can however cause problems with other ED disk drives (normally seen in the form of ‘Not Found’
or ‘Bad or Changed Medium’ errors.

It was therefore felt necessary to be able to enable or disable this feature at the users request (the default
is to have the feature disabled).

To enable this feature set flag to 1, 0 will disable it.

If driveno is not specified, then the setting will be applied to all disk drives connected to the (Super) Gold
Card and automatically stored so that it is available on power on.

If driveno is specified, then the setting will only apply to that specified disk drive and will be forgotten
when the power is switched off.

CROSS-REFERENCE
See FLP_STEP and FLP_START which overcome various other problems with some disk drives.

358 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.46 FLP_SEC

Syntax FLP_SEC level
Location Gold Cards, Trump Card, SMS, THORs, SMSQ/E for QPC

The Gold Card, Trump Card and Thor range of computers, together with SMS provide a high standard
of disk security, meaning that they are unlikely to fail to notice when a disk has been swapped over, and
thereby try to write a file across two disks!

However, this level of security does affect the speed of disk access, as the system must check to see if the
disk has been altered each time that it is written to.

The command FLP_SEC allows you to choose between three levels of security, the lowest of which (level
0) is still at least as secure as many other disk operating systems (such as MSDOS). The lower the level
of security, the quicker disk access will be. The levels of security are as follows:-

Security Level 0
The disk system will only check to see if the disk has changed if a file is opened and the disk has
stopped (ie. the disk light will have gone out) since the last time it was checked. The disk map is
only updated when a file is closed (or flushed) and no other disk access has happened within half a
second. Confusion can be expected on both read and write operations whenever a disk is changed
whilst the disk light is still on or there are files open to the disk.

Security Level 1
The disk is checked each time that a file is opened, data is written to the disk, or the disk map is to
be written; provided that the disk has stopped since the last time it was checked. The disk map is
only updated when a file is closed (or flushed) and no other disk access has happened within half a
second. The disk is not checked when anything is read from the disk, which can lead to confusion
if a disk is changed whilst there are files still open.

Security Level 2
The disk is checked whenever a file is opened, data is written to or read from the disk, or the map
is to be read or written to; provided that the disk has stopped since the last time that it was checked.
The disk map and directory are updated and the slave buffers flushed every time that a file is closed
(or flushed).

SMS NOTE
FLP_SEC has no effect - the security level is fixed at 2, the most secure.
SMSQ/E for QPC NOTE

FLP_SEC has no effect - the security level is fixed at 2, the most secure.

13.46. FLP_SEC 359

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.47 FLP_START

Syntax FLP_START time
Location Gold Cards, Trump Card, THORs, ST/QL (level D.02+ drivers), SMS, SMSQ/E for QPC

The disk system always tries to read data from a disk as soon as it can. However, when writing to a disk,
it is necessary to ensure that the disk is running at full speed before any information is sent to it.

For relatively new drives, the default waiting time of 0.5 seconds should be enough to ensure that the
disk is running at full speed.

The command FLP_START can be used for older disks to allow a longer run-up time. You will need to
specify the time in 20ms units - some older drives may require a value of about 60.

Example

[FLP_START 13

sets the start up time to 13 * 20ms (260ms) - this may suit the most recent 3.5” drives.

NOTE

FLP_START has no effect on either the QXL or QPC implementations of SMSQ and SMSQ/E.
CROSS-REFERENCE

You may also need to alter the stepping rate with FLP_STEP.

13.48 FLP_STEP

Syntax FLP_STEP [drive,] rate
Location Disk Interfaces, Gold Cards, SMS, SMSQ/E for QPC

The step rate enables the computer to known how quickly to step across tracks on the disk surface.
Normally, this is automatically set to 3 milliseconds (ms) for 80 track disks and 6ms for 40 track disks,
although if the system detects repeated errors on reading the disk, it will automatically slow the step rate.

Various old disk drives may require a slower stepping speed (you will generally know this from the noise
the disk drive makes - it will make a repetitive knocking sound each time that the disk is accessed). You
can do this by increasing the value specified by setting the rate using this command.

If drive is not specified, the new step rate is taken to apply to all disk drives connected to the system,
otherwise, you can specify the number of the drive to which the new step rate is to apply.

Examples

[FLP_STEP 12

Will produce quite a slow step rate for older drives.

[FLP_STEP 2,12

360 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Will produce a step rate of 12ms for the drive in FLP2_.

NOTE 1

The first, optional parameter may not be available on some interfaces.

NOTE 2

FLP_STEP has no effect on the QXL, QPC or Atari implementations of SMSQ and SMS.
CROSS-REFERENCE

FLP_SEC will alter the security setting for reading and writing to a disk. FLP_START may also be
needed on older drives.

13.49 FLP_TRACK

Syntax FLP_TRACK tracks
Location Gold Cards, Trump Card, THOR, ST/QL, SMS

When a disk is formatted, the operating system will check to see if there are more than 55 tracks on the
disk, and if so, will presume that it should be formatted to 80 tracks (otherwise it will presume the disk
is to be formatted to 40 tracks).

The command FLP_TRACK allows you to override this setting, so that you can format a disk to, say, 75
tracks. FLP_TRACK 40 should be used as standard when a 40 track disk drive is attached to the system
as this will prevent the system from trying to read track 55 (which does not exist!!), thus saving wear on
the drive.

Example

FLP_TRACK 40

can be used on a standard DSDD 80 track disk to format it into a form readable on a 40 track drive.
CROSS-REFERENCE
FLP DENSITY also affects how a disk is FORMAT'ted.

13.50 FLP_USE

Syntax FLP_USE [device]
Location Gold Cards, Trump Card, THORs, ST/QL, SMS, SMSQ/E for QPC

Software which was written in the early days of the QL tended to assume that it would always be run
from microdrive, and therefore included no facilities to alter the default devices used by the software.

You may even find some software was written on a non-standard disk system and assumed that disks
would be accessed via FDK rather than the normal FLP.

The FLP_USE command allows you to use such software by making the FLP device emulate any other
device. You merely need to supply a three letter parameter representing the name of the device which

13.49. FLP_TRACK 361

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

is to be emulated. Once you do this, the FLP device will no longer be recognised. If the device is not
specified, then the system reverts to using FLP to access the disk drives.

Example

[FLP_USE 'mdv' J

will allow you to use software which would normally run from microdrive (unless it is copy protected!).
CROSS-REFERENCE

RAM_USE, DEV_USE and WIN_USE are very similar. DMEDIUM_TYPE can be used to find out the
type of device which a name actually refers to. DMEDIUM_NAMES$ will return the default name of a
device.

13.51 FLUSH

Syntax FLUSH [#ch]
Location Toolkit IT

The command FLUSH forces all of the QL’s temporary buffers attached to the specified channel (default
#3) to be emptied into that channel. This will only work on channels attached to files, any other type of
channel will return error -15 (bad parameter).

This command is necessary due to the use by QDOS of slave blocks whenever a file is opened. Data can
be stored partly in the slave blocks to aid speed and when writing to a file, which will only be written to
that file once the channel has been CLOSEd or the slave blocks have become full.

Because of this, there is always a danger that part of the data will be lost if there is a power failure or
other accident. FLUSH helps you to avoid this.

NOTE

FLUSH will not work with Micro Peripherals disk drives. Nor can it be used to flush the Networks.
CROSS-REFERENCE

See OPEN and CLOSE.

13.52 FLUSH_CHANNEL

Syntax FLUSH_CHANNEL #channel
Location DIJToolkit 1.16

This procedure makes sure that all data written to the given channel number has been ‘flushed’ out to the
appropriate device. This means that if a power cut occurs, then no data will be lost.

EXAMPLE

362 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

1000 DEFine PROCedure SaveSettings

1010 OPEN_OVER #3, "flpl_settings.cfg"
1020 FOR x = 1 to 100

1030 PRINT #3, Setting$(x), Value$(x)
1040 END FOR x

1050 FLUSH_CHANNEL #3

1060 CLOSE #3

1070 END DEFine

13.53 FMAKE_DIR

Syntax FMAKE_DIR (subdirectory)
Location Level-2 Device Drivers

This function will only work if Level-2 or Level-3 device drivers are available.

FMAKE_DIR is identical to MAKE_DIR except that it is a function and does not stop a program if an
error occurs, instead it returns the code of the error concerned.

The following errors need some explanation:
* Error -9 (in use) : There is already a sub-directory with the same name;
* Error -8 (already exists) : File (not a sub-directory) exists already with that name;
* Error -15 (bad parameter) : Medium does not support sub-directories.

NOTE 1

If MAKE_DIR or FMAKE_DIR fail on a ramdisk, an old type ramdisk may have been loaded. There is
no other way to activate the integral ramdisk other than by resetting the whole system.

NOTE 2

If error -15 occurs (ie. if you try to created a sub-directory on a medium where this is not possible),
MAKE_DIR and FMAKE_DIR will leave an empty file with the name of the desired sub-directory on
the medium. Remember to remove this.

CROSS-REFERENCE
See MAKE DIR.

13.54 FNAMES$

Syntax | FNAMES [(#channel)] or
FNAMES$ (\file)(Toolkit II only)
Location Toolkit II, BTool

This function returns the filename of a file attached to the specified channel (default #3), including the
sub-directory prefix but without the pure device name (eg. RAM1_).

13.53. FMAKE_DIR 363

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

The second syntax enables you to find out the full filename of the specified file.

It is hard to understand why one should need to find out about the name of an opened file - the second
syntax is even more absurd.

One possible usage is to convert a Toolkit II filename, which need not include the current sub-directory,
to a full file name. However, the functions DATADS$, PROGD$ together with some string operations are
much faster and more elegant because they skip the need to access the file header.

CROSS-REFERENCE

FLEN, FTYP, FDAT, FXTRA, FUPDT, FILE LEN and FILE TYPE return other information about a
file.

13.55 FOPEN

Syntax FOPEN (#ch, name) or
FOPEN (name)
Location Toolkit II, THOR XVI

This function is designed to allow you to access files safely without causing errors which force a program
to stop.

If the first variant of FOPEN is used, this is actually very similar to the command OPEN in operation,
except that if for some reason opening the specified channel (#ch) with the specified name would cause
an error, FOPEN returns the relevant error code. If the specified channel is successfully opened, then
FOPEN returns 0.

By contrast, if the second variant of the command is used, where no specific channel number is used, if
successful, FOPEN will return a positive number representing the number of the next available channel
(ie. the number of the lowest entry in the channel table which is empty).

If a negative number is returned, this is the appropriate error number, allowing the programmer to take
any necessary action (such as requesting the user to input a new file name).

Examples

ERRno = FOPEN(#3,scr_448x200a32x16)
Chan = FOPEN('flpl_ Input_dat'): IF Chan>0 THEN INPUT #Chan,x

NOTE 1

All versions of this command (other than v2.28 of Toolkit II or later) can be confused by filenames
which exceed 36 characters, in which case FOPEN will return 0. On later versions, FOPEN supports 41
character filenames (including any default directory).

NOTE 2

Although FOPEN opens a file for both reading and writing, it will only return an error if the file does
not already exist or is in use. It does not check whether the file is read only. Use FOP_NEW or
DMEDIUM_RDONLY for this. If you do not check whether the file is read only, an error will only
be reported if you try to write to the file!!

CROSS-REFERENCE

364 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

ERNUM contains details of the various error messages. WHEN ERRor allows you to error trap a complete
program. Also see FOP_DIR, FOP_IN, FOP_OVER and FOP_NEW. Also see OPEN. FTEST allows
you to test the status of a file without (explicitly) opening a channel.

13.56 FOP_DIR

Syntax FOP_DIR (#ch, name) or
FOP_DIR (name)
Location Toolkit II, THOR XVI

The function FOP_DIR is a complementary function to OPEN_DIR in much the same way as FOPEN
is to OPEN. This function returns the same values and suffers from the same problem as FOPEN.

CROSS-REFERENCE
See FOPEN, TTEOPEN and OPEN_DIR.

13.57 FOP_IN

Syntax FOP_IN (#ch, name) or
FOP_IN (name)
Location Toolkit II, THOR XVI

The function FOP_IN falls into the same series of functions as FOPEN, FOP_DIR, FOP_NEW and
FOP_OVER. This function is a complementary function to OPEN_IN in much the same way as FOPEN
is to OPEN. This function returns the same values and suffers from the same problem as FOPEN.

CROSS-REFERENCE
See FOPEN and OPEN_IN.

13.58 FOP_NEW

Syntax FOP_NEW (#ch, name) or
FOP_NEW (name)
Location Toolkit II, THOR XVI

This function, together with its companions FOPEN, FOP_IN, FOP_DIR and FOP_OVER, is designed
to allow you to access files safely without causing errors which force a program to stop. This function
is the complement to OPEN_NEW and returns the same values and suffers from the same problem as
FOPEN. If the specified file already exists, you are asked whether you want to over-write the existing file.
An error (-8) is returned if you press N, and error (-20) is returned if the disk is read only.

CROSS-REFERENCE
See FOPEN and OPEN_NEW.

13.56. FOP_DIR 365

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.59 FOP_OVER

Syntax FOP_OVER (#ch, name) or
FOP_OVER (name)
Location Toolkit II, THOR XVI

This function is the complement to OPEN_OVER and suffers from the same problem as FOPEN. It also
returns the same values as FOP_NEW, except that it will implicitly over-write an existing file with the
same name.

CROSS-REFERENCE
See FOPEN and OPEN_OVER.

13.60 FOR

Syntax FOR var = range “[,range']"
Location QL ROM

The SuperBASIC version of the classic FOR loop is extremely flexible.
The syntax of this SuperBASIC structure can take two forms:

FOR var=range * [,rangei]* :statement " [:statement]”
or:

FOR var=range “[,range']” “[statements]” [EXIT var] [NEXT var] END FOR var
Where range can be one of the following:

start_value TO end_value [STEP step]
or, simply just:

value

The first of these variants is known as an in-line FOR loop. Provided that there is at least one statement
following FOR, this line will be repeated until the end value is reached (see below). There is no need for
a related END FOR statement and therefore the shortest in-line FOR loop possible is:

[FOR x=1 to 100: NEXT x }

If an in-line loop is terminated prematurely, for example with EXIT, control will be passed to the statement
following the corresponding END FOR statement (if one exists), or the next program line. This allows
the following:

[FOR x=1 TO 100: IF INKEY$=' ': EXIT x: END FOR x: PRINT x }

The basic function of FOR is to count a floating point variable from a given start value to an end value by
adding step to var during each pass of the loop (step may be positive or negative depending on the start
and end values). If no step is specified, STEP 1 will be assumed.

366 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

However, if step is negative when the end value is greater than the start value (or vice versa), then the
loop will immediately exit, and nothing contained in the loop will be processed.

A similar effect can be achieved by using a REPeat structure:

var=start_value
REPeat loop

IF var >= end_value THEN
EXIT loop
ELSE var = var + step
END REPeat loop

The similarity between these two SuperBASIC loop types can be extended to the use of EXIT and NEXT
statements which can be used identically in both structures.

EXIT terminates the loop, and the next statement which will be processed is the first statement after the
corresponding END FOR. NEXT forces the program to make the next pass of the loop.

PROGRAMMING NOTES

1. When NEXT is used within a FOR..END FOR structure, if var is already at the end_value, the
NEXT statement will have no effect:

100 FOR x=1 TO 9

110 PRINT x;" ";

120 IF x MOD 2 THEN NEXT x
130 PRINT x*2

140 END FOR x

Output:

D W~ D
O O

O N V1 W =
O 00 O N

To prevent the odd result when x=9, line 120 would need to be altered to read:

£12® IF x MOD 2 THEN NEXT x: EXIT x }

2. Except on a Minerva ROM or under SMS, the loop variable is set to O before the FOR is executed,
therefore the following program prints the square roots of the numbers 0 to 9:

s N

100 x=3

110 FOR x=x TO 9

120 PRINT x;' ';

130 IF NOT RND(10) THEN EXIT x
140 PRINT SQRT(x)

150 END FOR x

J

On Minerva ROMs and under SMS, this would print out all of the square roots of the numbers 3
to 9 (as expected).

13.60. FOR 367

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

3. A NEXT statement directly after the FOR statement could be used to omit some values of the loop
variable:

100 FOR x=1 TO 9

110 IF x MOD 2 THEN NEXT x: EXIT x
120 PRINT x; TO 4; x*2

130 END FOR x

However, in some cases, it may be easier and shorter to write:

100 FOR x=2,4,6,8
110 PRINT x; TO 4; x*2
120 END FOR x

4. Single values and intervals can be freely mixed after the equals sign. The following examples are
all valid expressions:

FOR x=2,4 TO 10 STEP 2,4.5,7 TO -4 STEP -.2
FOR x=1

5. To shorten program lines even further, the FOR loop can be used in a single line and the END FOR
omitted (this is called an in-line FOR loop):

{FOR x=2,4,6,8: PRINT x; TO 4; x/2 }

Example 1

A short routine to count the lines of a text file (using the oddities of the NEXT command):

100 OPEN#3, file

110 FOR lines=0 TO 10000

120 IF EOF(#3) THEN PRINT lines: EXIT lines

130 INPUT #3,1ine$: NEXT lines

140 PRINT 'OOPS - program is longer than 10000 lines!!'
150 END FOR lines

160 CLOSE#3

Example 2

The next example is a routine to nest a variable number (loops) of times which go from Value_min to
Value_max at Value_step:

100 FOR loop=1 TO loops:Value(loop)=Value_min(loop)
110 REPeat Nesting

120 <instructions using Value(l...s) go here>

130 FOR loop=1 TO loops

140 IF Value(loop)=Value_max(loop) THEN

150 IF loop=loops THEN EXIT Nesting

160 Value(loop)=Value_min(loop)

170 NEXT loop

180 ELSE

190 Value(loop)=Value(loop)+Value_step(loop)
200 EXIT loop

(continues on next page)

368 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)
210 END IF
220 END FOR loop
230 END REPeat Nesting

NOTE 1

If you use multiple in-line FOR loops in the same program line, only the inner loop will be executed. For
example:

[FOR i—1 TO 3: FOR j=1 TO 10: PRINT i*j: END FOR j }
Output:
[1, 2,3,4,5,6,7,8,9, 10 }

This will actually work correctly under SMS.

You can get it to work on a Minerva ROM and under SMS (but not others) if the line is amended to read:

[FOR i=1 TO 3: FOR j=1 TO 10: PRINT i*j: END FOR j: END FOR i]

In fact, SMS will even allow the line to work if it simply reads:

[FOR i=1 TO 3: FOR j=1 TO 10: PRINT i*j }

NOTE 2

Unless you have SMS or a Minerva ROM, do not use GO SUB together with an in-line FOR loop, because
this will act as an END FOR command and will not call the desired routine:

100 FOR i=1 TO 10: PRINT 'Junk - test';: GO SUB 200: PRINT i
110 STOP

200 PRINT ' Number ';

210 RETurn

NOTE 3

On JS (except ST/QL) and MGx ROMs, you cannot use the first of several PROCedure/FuNction param-
eters as the loop identifier:

100 TEST 5,10

110 FOR j=1 TO 10: PRINT 'OOPS...'
120 FOR k=1 TO 10: PRINT 'OKAY...'
125 :

130 DEFine PROCedure TEST(j,k)

140 AT j,k:PRINT 'Errors !
150 END DEFine

NOTE 4

No error will be reported and all should work okay if NEXT is used instead of END FOR (unless you
try to use EXIT which would try to jump to the statement after the non-existent corresponding END
FOR, and may reach the end of the program without finding the END FOR, therefore stopping without
reporting any error), but you will have seen that NEXT is intended for another purpose.

13.60. FOR 369

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Apart from programming elegance, compilers may not be able to understand your meaning (they assume
that you have forgotten the END FOR) and may abort compilation or report a warning.

NOTE 5

Counting downwards without a negative step has no effect at all For example:

[FOR loop=0 TO -3

Omitting the STEP parameter is the same as STEP 1.
MINERVA NOTES

On a Minerva machine, a FOR loop can use either a single character string variable or an integer variable:

[FOR A$="A' TO 'Z' STEP CHR$(2):PRINT AS$;' ';

This prints out:

[ACEGIKMOQSUWY

[FOR loop%=1 TO 255: ...: END FOR loop%

This is a little quicker than:

[FOR loop=1 to 255: ...: END FOR loop

These examples will not work on other ROMs, unless you have SMS, even if they will let you type them
in!

SMS NOTES

Like Minerva, SMS will allow you to use integer variables in FOR loops (but not string variables). As
from v2.57, the range is checked to ensure that it is within the valid word integer range (-327678..32767)
when the FOR loop is started, otherwise it returns ‘Error in Expression’.

If you try to use a string loop variable, the error ‘unacceptable loop variable’ is reported. EXIT, NEXT
and END FOR do not need to contain the loop identifier, SMS will presume that when used in a program,
they refer to the loop currently being executed.

CROSS-REFERENCE
REPeat ... END REPeat is the other loop type. See also END FOR.

13.61 FORCE_TYPE

Syntax FORCE_TYPE string$
Location TinyToolkit

This command forces the given string to be typed into the current keyboard queue, just as if you had typed
it from the keyboard. There is not much use for this command in connection with applications because
key macros such as ALTKEY are much easier to use. But, FORCE_TYPE can be used to perform an
action without anyone actually needing to press a key.

370 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

Example

Your telephone rings and you talk half an hour with a friend. Meanwhile your computer crashes - God
only knows why - and the BASIC program you were writing has now disappeared along with everything
else.

You could decrease this danger by writing and compiling such a program:

100 last_stroke = DATE

110 REPeat Sleeping

120 IF KEYROW(1) THEN last_stroke = DATE
130 IF DATE-last_stroke > 300 THEN

140 FORCE_TYPE "SAVE_O FLP1_Backup_bas" & CHR$(10)
150 REPeat Wait: IF KEYROW(1) THEN EXIT Wait

160 last_stroke=DATE

170 END IF

180 END REPeat Sleeping

This example should obviously be adapted to your specific needs, applications and tools.
NOTE 1

Every console channel (ie. con_ windows) has a keyboard queue - the channel accessed by
FORCE_TYPE must first be activated by a dummy INKEYS$, PEND etc. to that channel.

NOTE 2

In earlier versions of Tinytoolkit (pre v1.10), this command was called TYPE_IN, which could cause
problems with Turbo compiled programs.

CROSS-REFERENCE
STAMP does exactly the same as FORCE_TYPE.

13.62 FORMAT

Syntax FORMAT [#channel,] medium
Location QL ROM

Each medium where data can be stored as files (disks, ramdisks, microdrives or hard disks) has to be
given a structure which is recognisable by QDOS. This is done by FORMATting it. Each medium can
also be given a name of up to ten characters long. The command FORMAT clears a medium from scratch
so that any data stored there is definitively lost. Be careful!

The following standard devices can be formatted:
* MDV1_ .. MDVS8_ - microdrive cartridges
* FLP1_ .. FLPS8_ - floppy disks
* RAMI1_ .. RAMS_ - ramdisks
e WINI_ .. WINS_ - hard disks

Depending on the type of medium, several additions to the pure medium name are possible:

13.62. FORMAT 371

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

MDYV Up to ten characters can be added, these will form the name of the cartridge, eg:

[FORMAT mdv2_SuperBASIC

J

FLP As with microdrive cartridges, a medium name can be added. If the eleventh character of the name
is an asterisk (*), the disk will be formatted single sided, ie. just the first side is used. In order to use the
single sided only option, is it necessary to put the whole parameter in quotes, eg:

[FORMAT "fl1pl_TEST *"

1

This is not applicable to HD and ED disks: their density will also be affected, making them single sided
double density (SSDD). If a single sided disk can still be bought today, it will actually be a double sided
disk of low quality.

With Super Gold Card, Gold Card and SMS, an appended asterisk plus a letter which indicates the density
will format the disk accordingly: S, D, H and E are allowed, eg:

[FORMAT "flpl TEST*h"

See FLP_DENSITY .
RAM This depends very much on the ramdisk drivers:

With standard static ramdisks, which are built into most disk interfaces and available as public domain,
you need to specify how many sectors are to be allocated to the ramdisk by adding the number of sectors
to the device name, eg:

[FORMAT raml_200

formats ram2_ to 200 sectors (100K).
These static ramdisks must be FORMATted before use.

On the other hand, the Qjump ramprt ramdisk (provided with Qpac 2 and various expansion boards,
including Trump Card, Gold Card and Super Gold Card) is dynamic - it adapts its size automatically to
the size of the files being stored on it - there is no need to FORMAT the ramdisk prior to use. This can
however also be used as a static ramdisk.

Trump Card, Super Gold Card and Gold Card ROMs also contain a special variant of a ramdisk which
allows you to produce an image of a microdrive cartridge on a ramdisk, for example by using:

FORMAT ram4_mdv2.

Faulty files are marked with an asterisk added to the end of their filenames. Although this may allow
you to ‘rescue’ a corrupt microdrive cartridge those files marked with an asterisk are faulty and therefore
unreliable.

The name of a ramdisk is always the name of the medium without an underscore, eg. RAM1 for RAM1_;
this is the same on dynamic ramdisks.

WIN A medium name can normally be stated, as with a microdrive cartridge. Please check the docu-
mentation of the hard disk drivers, they differ very much! For example, the firmware on the Falkenberg
interface disables FORMAT for hard disks until certain settings have been specified with another com-
mand.

On the THOR, an asterisk needs to be included, eg:

372 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

[FORMAT 'winl_*HARDDISK' }

See below.

SMS for ATARI computers and QXL / QPC, expects you to have already partitioned the hard disk us-
ing the computer’s native commands. On ATARIs, under SMSQ/E you then need to identify the drive
and partition using WIN_DRIVE. After that, you can use the normal QL. FORMAT command on all
these systems, however, SMSQ/E has adopted a level of protection which insists that you must use the
WIN_FORMAT command before FORMAT and the FORMAT command itself will display two charac-
ters on screen and ask you to type them in.

You should then use WIN_FORMAT to protect the partition again.

The standard drivers for the ST/QL Emulators adopt a form of protection in that you will need to type in
the two characters shown on screen as with SMSQ/E.

You can also only FORMAT a hard disk from SuperBasic Job 0 and then only when Channel #0 is OPEN.

If the hard disk has already been partitioned by the Atari ST (the first partition will normally be marked
GEM or BGM), then you will be asked to enter the number of the first partition to be used by QDOS and
the number of subsequent partitions ot be used for this disk.

Under SMSQ/E on the QXL or QPC, this same two- level protection is adopted. However, instead of
passing the medium name of the hard-disk, you have to pass the size of the QL hard disk to be created in
megabytes, for example:

[FORMAT WINL 20 }

This will create a 20 Megabyte hard disk on PC drive C:

On early versions, the maximum size that could be created was 23 Megabytes and only one drive could
be created. Later versions allow you to create WIN1 to WINS (all on drive C:).

After formatting, FORMAT will either report that the process has failed (error -14), because there was
no cartridge/disk in the drive or if the medium was faulty.

The command will also fail if the given device was write-protected.

If everything was okay, a small message is printed to the specified channel (default #1) indicating how
many sectors could be achieved and how many were good. If the two numbers differ, QDOS will have
marked some sectors as bad and will ignore them. However, experience shows that if the difference be-
tween the two numbers is great, it can be very dangerous to store important data on those disks/cartridges.

It is recommended that new microdrive cartridges should be formatted 10 times before use (you should
expect to get about 220 available sectors). It may also be useful to try formatting the cartridge in the
other microdrive.

Examples

[FORMAT mdv2_Startup

formats cartridge in microdrive 2

[FORMAT "mdv2_Startup"

as above.

13.62. FORMAT 373

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

[FORMAT flpl_backup

formats disk in disk drive 1

[FORMAT "f1p1_backup *"

as above but single sided

[FORMAT "flpl_backup*d"

double sided, double density

[FORMAT " £1p2_backup*h"

double sided, high density

[FORMAT raml_100

format ramdisk 1 to 50K

[FORMAT raml_

remove ramdisk 1

[FORMAT raml_mdv1

format ram1_ to 255 sectors and copy cartridge in microdrive 1
Notes on the different media:

The traditional microdrive is relatively slow and unreliable, and cartridges need to be formatted several
times to give good results (usually around 210-220 sectors) - pushing them firmly into the microdrive
slot while they are being formatted is said to be more efficient.

However, as new cartridges are becoming more rare and expensive today, the next best and very highly
recommended upgrade are disk drives.

It is also becoming less and less common to find users who can read information stored on microdrive,
SMS and emulators for example, do not support microdrives.

3.5” double density disks (720K)

These are pretty cheap and you can get them everywhere (although the quality does vary); they have
become a standard on the QL, although it is becoming ever more difficult to find replacement disk drives.
FORMAT should report 1440 sectors.

3.5” high density disks (1.4Mb)

These are also fairly cheap and you can get them everywhere (although the quality does vary). These
have become the new standard disks used by IBM compatible computers and therefore the disk drives
are easy to obtain. FORMAT should report 2880 sectors.

3.5” extra density disks (3.2Mb)

These are fairly expensive and difficult to obtain as they were never really accepted in the IBM PC world,
although for a time, they looked like becoming a new standard for the QL, being very quick and storing
a lot of information. FORMAT should report either 1600 or 6400 sectors (see note §).

374 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

5.25” disks (720K)

These are also widely spread in the QL scene, especially in the USA, although they are now becoming
less and less common. With the introduction of the Super Gold Card and Gold Card by Miracle Systems
Ltd, high density (HD, 1440K) and even extra density (ED, 3200K) drives have become available to
QDOS for the first time. These formats are several times faster and even more reliable, not to mention
the increased space for programs and data.

Hard disks

These are becoming more and more common, with them being readily available to people using Emu-
lators on other computers, and also now the release of relatively cheap interfaces and disk drives for the
QL and AURORA.

Ramdisks

These are not specific to any hardware configuration because they only exist in RAM and any stored data
is lost if the machine is reset or turned off. On the other hand, ramdisks are extremely fast.

NOTE 1

Unless you have a Minerva ROM (see below), do not try to FORMAT a microdrive whilst any microdrive
is still running, since this will report an ‘in use’ error.

PEEK(SYS_VARS+HEX('EE"))

will be zero if no microdrives are running.

NOTE 2

On the THOR XVI (v6.37 and earlier), there existed a bug when accessing anything greater than win2_.
NOTE 3

If there is no disk in a drive, FORMAT may also fail with a read only error (-20) instead of reporting not
found (-7).

NOTE 4
You cannot use FORMAT nl1_flpl_ (for example) to FORMAT a medium over the network.
NOTE 5

The ST/QL drivers cannot FORMAT the fifth and subsequent partitions on the hard disk unless the
extended partition table is in the form used by SUPRA, ICD and similar drives.

NOTE 6

Minerva (pre v1.98) had some bugs in the code for FORMATting microdrives.

NOTE 7

FORMAT expects the specified channel (or #1) to be OPEN, otherwise an error will be reported.
NOTE 8

FORMAT cannot report a number of sectors in excess of 32768 and so may return wrong values on
large capacity drives. SMS correctly reports the number of sectors obtained, although on an ED disk,
FORMAT will report 1600 Sectors (DIR will show the figure of 6400 sectors instead!). This is because
on an ED disk, sectors are 2048 bytes long instead of the usual 512 bytes expected by the QL device
drivers (which have to be fooled to see each sector as 4x512 byte sectors).

13.62. FORMAT 375

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

MINERVA NOTE

On Minerva v1.78 (and later), a check is carried out before performing FORMAT to see if there are any
files open on the desired medium. This stops Digital Precision’s Conqueror and Solution from working
correctly. To switch it off, use:

[POKE 1124 149, PEEK (!124 !49) || 128

SMS NOTES

As with Minerva, you cannot FORMAT a medium if there are any files open on that medium (‘Is In
Use’ error is reported). If there is a problem during the FORMAT process, SMS will emit a series of
BEEPs. However, be warned that an error message is not always displayed and the FORMAT may appear
to have completed correctly!! SMS does not allow you to access the QL’s microdrives, nor can it solve
the problem on the QXL below. SMS can corrupt floppy disks (so they have to be thrown away) if you
try to FORMAT them to the wrong density.

Some users have reported problems in using SMS to FORMAT Double Density disks in ED disk drives
linked to a Super Gold Card. This appears to afflict versions of SMS after v2.85 and all makes of
ED drives. The problem only occurs if you specify the density with FORMAT ‘flpl_NAME*D’ or
FLP_DENSITY ‘D’. In these cases, a noise is emitted during FORMAT to indicate that it has failed,
but SMS still reports 1440/1440 sectors, even though subsequent attempts to access the disk report ‘Not
Found’. The answer is to not use FLP_DENSITY in this instance.

QXL NOTES

You cannot reliably FORMAT floppy disks from scratch on most PCs using this emulator. FORMAT
merely re-formats an already formatted disk. Prior to v2.67 of SMS there existed several further problems
with FORMAT on QXL.

THOR XVI NOTES

The THOR XVI, v6.37 (and later) allows a variant of the medium name to deal with the THOR’s hard
disk:

[FORMAT "winl_options*name" }

The available options which can be specified are:

* /C : Certify drive before formatting - this reconstructs the THOR’s defect list, describing the bad
sectors and tracks;

* /Q : Quick reformat - merely sets up new directory map;

* /F : Fast reformat - does not verify the disk;

* /Gn : Set group or cluster size in blocks. Default = /G16;

* /Dn: Set directory size in number of groups or clusters. Default = /D2.

Examples

FORMAT 'winl_/Q*Main'
FORMAT 'winl_/G16/D2*THORDisk'

WARNING
Prior to v2.71 of SMS FORMAT flp3_1 on the QXL could in fact FORMAT WINI1_.

376 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

CROSS-REFERENCE

Before formatting, the number of tracks on a disk can be specified with FLP_TRACK. HD and ED disks
can be formatted to different densities if FLP_DENSITY was used to override automatic detection of
the density. See WIN_FORMAT for hard disk protection. The DMEDIUM_XXX functions, starting at
DMEDIUM DENSITY return various details about how a medium has been formatted.

13.63 FPOS

Syntax FPOS [(#channel)]
Location Toolkit II, THOR XVI, BTool

This function returns the current position of the file pointer.

The relevant file must already be open as #channel, default channel is #3. A value of zero means that the
file pointer is at the very beginning of a file, whereas a position equivalent to the file length means that it
points to the very end. The file pointer is a means by which the QL can keep track of exactly whereabouts
in a file it should take the next input from, or write to.

CROSS-REFERENCE

FILE_POS works exactly as FPOS but does not use a default channel. FILE_PTRA and FILE_PTRR
move the file pointer, which may also be set with GET, PUT, BGET and BPUT.

13.64 FPOS_A

Syntax FPOS_A ([#ch,] pos)
Location BTool

This is the same as FILE PTRA.

13.65 FPOS_R

Syntax FPOS_R ([#ch,] offset)
Location BTool

This is the same as FILE _PTRR.

13.63. FPOS 377

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.66 FPUT$

Syntax FPUTS [#ch,] string *[,stringi]*
Location BTool

This command writes the given string(s) in internal format to #ch, default is #1. The internal format of
a string is a word (two bytes) giving the length of the string followed by the contents of the string itself.

Example

[FPUT$ "Hello' }

will produce the equivalent of PRINT CHR$(0)&CHRS$(5)& Hello’.
CROSS-REFERENCE
FGETS, PUT.

13.67 FPUT%

Syntax FPUTY% [#ch,] integer *[,integeri]*
Location BTool

This command writes the specified integer(s) (range 0...32767) in its internal format to #ch, default is
#1. An integer is stored internally as two bytes (one word).

CROSS-REFERENCE
FGET%, PUT

13.68 FPUTB

Syntax ~ FPUTB [#ch,] {byte | string$} “[,{byte! | string'$}]"
Location BTool

FPUTB is a command which writes single or multiple bytes to a channel #ch (default #1). FPUTB can
take any kind of parameters which must be either a numeric value byte in the range 0..255 for a single
byte, in the range 256..32767 for two bytes or a string string$.

Example 1

CLS: FPUTB "First line",10,"Second line"
CLS: FPUTB "First 1line",2570,"Third line"

because CVI% (CHRS (10) & CHRS$ (10)) = 2570) which is (10 * 256) + 10 in big-endian format, as
the QL is.

Example 2

378 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

FPUTB is very handy for controlling printers:

OPEN#3, par
FPUTB#3,27, "x", 1
CLOSE#3

will enable near letter quality (NLQ) on an EPSON compatible printer.
CROSS-REFERENCE
BPUT, CHR$, CODE. FGETB is a complementary function.

13.69 FPUTF

Syntax ~ FPUTEF [#ch,] float “[,float']"
Location BTool

This command writes the floating point number(s) float in its internal format (six bytes) to #ch, default
is #1.

CROSS-REFERENCE
FGETF, PUT

13.70 FPUTL

Syntax FPUTL [#ch,] longint “[,longint!]"
Location BTool

This command writes the specified long integer(s) longint (-231..231-2) in internal format (four bytes)
to #ch, default is #1.

CROSS-REFERENCE
FGETL, PUT

13.71 FRACT

Syntax FRACT (x)
Location FRACT

The function FRACT separates the fractional part of any floating point number x. It could easily be
rewritten in SuperBASIC as the following:

13.69. FPUTF 379

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

100 DEFine FuNction MYFRACT (x)
110 RETurn x - INT(x) - (x < 0)
120 END DEFine MYFRACT

CROSS-REFERENCE
TRINT is complementary to FRACT.

13.72 FREAD

Syntax FREAD (#ch,address,bytes)
Location TinyToolkit

The function FREAD reads a number of bytes (bytes) from a given channel into memory, starting at
address. The number returned by FREAD gives the number of bytes it actually read.

Example

A BASIC Procedure APPEND which adds a file (file1$) to the end of a target file (file2$). If the target
file does not exist, it will be created.

The first file will be erased (remove line 220 if you do not want this). The third parameter allows you to
determine the working space of the procedure; the larger this space, the quicker the execution:

100 DEFine PROCedure APPEND (filel$,file2$,bufsize)
110 LOCal length,buffer,filel,file2,part

120 filel=FOP_IN(filel$): length=FLEN(#filel)
130 buffer=ALCHP(length)

140 file2=FOPEN(file2$)

150 IF file2=-7 THEN file2=FOP_NEW(file2$)
160 GET #file2 \1E9

170 FOR part=0 TO INT(length/bufsize)

180 bufsize=FREAD (#filel,buffer,bufsize)
190 FWRITE #file2,buffer,bufsize

200 END FOR part

210 CLOSE #filel, #file2: RECHP buffer

220 DELETE filel$

230 END DEFine APPEND

It can be called as follows:

[APPEND "raml_tumb_tmp" TO "flp2_tump_dat",b20480

NOTE

If the channel number supplied to FREAD does not refer to a file, then the error -15 (bad parameter) will
be reported after it has done its work. This behaviour is pretty strange.

CROSS-REFERENCE
FREADS, FWRITE, LBYTES, SBYTES, GET, PUT.

380 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.73 FREAD$

Syntax FREADS ([#ch], length)
Location BTool

The FREADS$ function is very similar to the FREAD command: A fixed number of characters is read
from a channel (default #0) and returned as a string. FREADS does not stop with an error if the end of
file is reached - you have to detect this by testing if the length of the returned string is really length.

Example

MYCOPY copies a file with flexible buffering up to 32k, eg. type:

[MYCOPY "mycopy_bas" TO "ram2_whatever_dat", 1000 }

to use a 1000 bytes buffer. The larger the buffer, the faster the file is copied; try a one byte buffer to see
the difference! Ok, here is the listing:

100 DEFine PROCedure MYCOPY (filel$, file2$, bufsiz%)
110 LOCal chl, ch2, buffer$

120 chl = FOP_IN(filel$)

130 ch2 = FOP_NEW(file2$)

140 REPeat copying

150 buffer$ = FREADS (#chl, bufsiz%)
160 PRINT#ch2,buffer$;
170 IF LEN(buffer$) < bufsiz% THEN EXIT copying

180 END REPeat copying
190 CLOSE #chl, #ch2
200 END DEFine MYCOPY

CROSS-REFERENCE
INPUTS$, FWRITES, COPY, GET_BYTE$

13.74 FREE

Syntax FREE
Location BTool

This function returns the largest block of the available free memory. This can be less than the actual free
memory if the heap has become fragmented (see DEL_DEFB).

CROSS-REFERENCE
See also FREE _MEM and TPFree.

x=ALCHP (FREE)

reserves the largest piece of memory available.

13.73. FREADS$ 381

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.75 FREE_FAST

Syntax FREE_FAST
Location ATARI_REXT for QVME (v2.31+)

The Atari TT recognises two types of RAM, standard ST RAM (up to 10MB) and FastRAM (otherwise
known as TT RAM) which is specifically designed for the Atari TT and works about twice as fast as the
standard ST RAM.

The QL emulator can use both types of RAM but will only recognise and use a maximum 4MB of
standard ST RAM.

If FastRAM is available, the Emulator places the device drivers into this area in order to speed them up as
well as freeing additional standard ST RAM. Howeyver, if your programs are to access the FastRAM, they
need to use various new commands. FREE_FAST is a function which returns the amount of available
FastRAM.

CROSS-REFERENCE
The other commands to access FastRAM are RESFAST, and LRESFAST .
Compare RESPR, ALCHP and FREE_MEM.

13.76 FREE_MEM

Syntax FREE_MEM
Location Toolkit II, THOR XVI

Exactly the same as FREE.

13.77 FREEZE

Syntax FREEZE switch (switch=ON or OFF)
Location BTool

The keys <CTRL><F5> cause the QL to stop working until any further key (except <CTRL>, <SHIFT>,
<ALT> and <CAPSLOCK>), including <CTRL><F5>, is pressed, which will reactivate the QL.

This keystroke is generated by some commands to give the user a chance of reading the output, eg. VIEW,
EXTRAS, SXTRAS, WDIR.

FREEZE OFF disables <CTRL><F5>, FREEZE ON re-activates it.

Example

FREEZE OFF
EXTRAS
FREEZE ON

382 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

13.78 FREEZE%

Syntax frozen = FREEZE%
Location BTool

FREEZE% returns either O or 1 (for OFF or ON respectively) if <CTRL><F5> has been disabled by
FREEZE or not.

Example

frozen = FREEZE%
IF frozen THEN do_stuff: END IF

CROSS-REFERENCE

ON and OFF are constant expressions for 1 and 0. FREEZE% returns the current state. Compare
FREEZE and FREEZE% to BREAK and BREAK%.

13.79 FSERVE

Syntax FSERVE or
FSERVE [device_name] (THOR XVI - v6.41 only)
Location Toolkit II (hardware version only or SMS), THOR XVI

This command creates a small fileserver job named Server which allows other network stations (slaves)
to access all devices on the machine where this fileserver is running (this is the Master).

The fileserver only works with the QNET network system, which itself only works reliably if Toolkit II
is installed as firmware (ie. on ROM or on EPROM) (or if Toolkit II is installed as part of SMS) on all
machines connected to the network.

To access a device on the Master, a prefix has to be added to the device name. This prefix specifies the
other machine by its network number (see NET) which may range from 1 to 8. The prefix consists of an
n, the number of the remote station and an underscore, ie: nl_ .. n8_.

If an access fails for any reason, the sending machine will not receive an acknowledgement from the
receiving one. In such cases, the network driver continues to try to get through for about 20 seconds and
then reports ‘Network aborted’ (in #0) if it still cannot communicate with the specified machine.

Examples

OPEN#3,n3_scr: PRINT#3,"Bye.'": FLUSH#3: CLOSE#3
WDIR nl_£1pl_

[FORMAT nAwanie

Be careful with this sort of thing!

[SAVE n2_raml_PROGGY_bas

13.78. FREEZE% 383

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE 1

All commands which use the SD.EXTOP or SD.FOUNT machine code calls will not work across the
network: CHAR_USE for example. This does not necessarily mean that these commands report errors:
CHAR_USE, for instance, changes the character set to a strange pattern. FORMAT will also fail over the
Network. ED and EDIT also cannot be used to edit a program on a window opened over the Network.

NOTE 2

Although windows (scr_ and con_ devices) are normally not buffered, this will be the case if they are
opened across the network. This affects just text output, all other operations (BORDER, INK, CLS,
WINDOW etc.) are performed on the host QL when issued. The buffer of 256 bytes is located in the
sending QL and flushed automatically if full. Otherwise a CLOSE command forces the buffer contents
to be sent (the FLUSH command will not work to send the buffer contents). See the Drivers section in
the Appendix for further details on Networks.

NOTE 3

If a channel was opened by a slave via the network and this QL is later removed from the network - say
by unplugging the network lead or by resetting the machine, then the channel is left open. As all such
channels are owned by the Server job, they can be flushed and closed by removing and restarting the job:

RJOB Server
FSERVE

Take care that all operations being carried out by other stations on the local machine (where the fileserver
is to be removed) have finished or have been suspended.

NOTE 4

Due to checksum tests, data transmission across the network is practically error free. There is still a very
small statistical possibility of transmission errors but really extensive experiments (moving megabytes
of data) did not even produce one.

NOTE 5

Although a normal file name can be of any length up to a maximum of 41 characters (including the device
name), if the file is to be accessed across the network, this is reduced to a maximum of 39 characters
(including the network prefix). For example:

OPEN #3,flpl_Quill_letters_Minerva2_update_doc239
OPEN #3,nl_winl _Quill_letters_Minerva2b_updates

will work, whereas the following two commands report ‘Not Found’ without attempting to access the
drives:

OPEN #4,flpl_Quill_letters_Minerva2_update_doc2392
OPEN #4,nl_winl_Quill_letters2_Minervalb_updates

NOTE 6

If you OPEN a con_ device over the Network (onto a Master machine’s screen) and try to use INPUT to
read a variable entered on that Master, there are problems here in that the delete keys on the Master which
is displaying (and editing) the text displayed in the con_ device do not work properly, leaving splodges
on the screen. You can use IO_TRAP and QTRAP to call cursor positioning routines on the Master and
then print spaces to overwrite the deleted characters, using IO_TRAP or QTRAP to move the cursor back

384 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

to the correct position and possibly pan the window to get rid of excess characters. This technique was
used to good effect in the NetPal program in DIY Toolkit (Vol N).

NOTE 7

If you try to use a Toolkit I command such as DIR to direct the output onto a window which has been
OPENed over the Network, when it reaches the bottom of a page, the Toolkit II command automatically
generates a <CTRL><F5> at the slave machine end which can only be cleared by pressing a key on the
slave machine’s keyboard.

THOR XVINOTE

The THOR XVI version of this command allows you to send, for example, a continuous log of status
messages to a file or device, eg. FSERVE scr_512x256a0x0. This is however really only useful for
debugging network programs or to analyse network traffic.

CROSS-REFERENCE

The fileserver job can be removed with RJOB, KJOB, KILL etc. or by using a desktop application (such
as QPAC2). See NET and NFS_USE for further information on networking.

Refer to the original documentation of Toolkit II and the Device Drivers Appendix for technical details.
SERNET and MIDINET create fileservers for other Networks supported by SMSQ/E and the Atari ST
Emulators.

13.80 FSETH$

Syntax FSETHS [#ch,] header$
Location BTool

FSETHS is a command which is the counterpart of FGETHS: it accepts either a 14 or 64 bytes long string
which contains a file header (or at least the first part of that) and sends that file header to the specified
channel (default #3).

CROSS-REFERENCE
See HEADS and SetHEAD)!

13.81 FTEST

Syntax FTEST (name)
Location Toolkit II

The function FTEST is designed to allow you to test for the status of a file with the specified name. It
will return a value of O if the given name can be opened for input only. It may however return a negative
number representing an error code which would result if you tried to OPEN or OPEN_IN that file.

NOTE 1

The return of -6 (channel not open) has a special meaning in relation to this function, it means that the
function could not find any room in the channel table to try and access the file.

13.80. FSETH$ 385

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE 2

Due to the nature of the command, name can be used to represent any valid device, and could therefore,
for example, be used to check if a resolution of 768x280 pixels is supported:

100 a$="scr_768x280a0x0"
110 IF FTEST(a$)<0

120 a$="scr_512x256a0x0'
130 END IF

140 OPEN #3,a$

NOTE 3

On Level-2 and Level-3 devices, there is always a file with the same name as the actual name of the
device (eg. ‘flpl_’). This therefore allows you to check if a medium is present in a Level-2 device:

IF FTEST(flpl_) < ® THEN PRINT 'Please insert disk'

You must however be aware that on Level-1 devices, it is unlikely that such a file will be present and that
FTEST will return -7 even if there is a disk present.

NOTE 4
FTEST will not warn you if a disk is read only, which can create problems.
CROSS-REFERENCE

FOPEN and FOP_IN allow you to open files safely. DMEDIUM_RDONLY can be used to find out if a
disk is write protected.

13.82 FTYP

Syntax FTYP [(#channel)] or
FTYP (\file) (Toolkit IT and THOR only)
Location Toolkit II, THOR XVI, BTool

This function returns the file type of a file which is already open as #channel (the default channel is #3) or
else the second variant can be used (which supports the Toolkit II default data device and sub-directories)
to check a given file.

The file type is one byte in the file header which by convention represents the type of the file. There are
only four standard types:

* FTYP =1 are executable jobs (normally suffixed _exe);
* FTYP = 2 are Sinclair Relocatable Object File (SROFF) modules (normally suffixed _REL);
* FTYP =255 are sub-directories on level-2 and level-3 drivers;
* FTYP = 0 are everything else.
However, some programmers use their own file types for their applications, for example:

* FTYP = 2 may also signify sub-directory declaration files used by Ralf Biedermann’s flp utility
and Hirschbiegel drivers;

386 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

FTYP = 3 are sub-directories on THOR computers.

FTYP = 4represents font files used by the PAINTER.

FTYP =5 are pattern files used by the PAINTER.

FTYP =6 or 11 are compressed screens generated by the PAINTER.

FTYP =70 is used to represent separation files from packages distributed by the Intergroup Free-
ware Exchange.

WARNING

Sometimes machine code files (Toolkits, for instance) which should be loaded with LBYTES, LRESPR
etc. have the file type 1. Executing such a file will lead to a crash in most cases, UNJOB changes the file
type back to 0. Authors with a lot of skill write machine code which can be either executed as a job or
loaded as a resident command executing the job from memory when called.

CROSS-REFERENCE

See HEADR for reading the whole file header and EX for executing jobs. FILE_TYPE does the same as
FTYP but has a slightly different syntax.

13.83 FuNction

Syntax ... FuNction
Location QL ROM

This keyword forms part of the structure DEFine FuNction. As such, it cannot be used on its own within
a program - this will cause a ‘bad line’ error.

CROSS-REFERENCE

Please refer to the individual structure descriptions for more details.

13.84 FUPDT

Syntax FUPDT [(#channel)] or
FUPDT (\file) (Toolkit II only)
Location Toolkit II, BTool

This function returns the date on which a given file was last amended. The value returned is the date in
QDOS format, ie. the number of seconds since Midnight 1st January 1961. You can check this initial
date with:

[PRINT DATE$ (0) }

The update time is altered whenever a file is created or amended. A file which has overwritten a previous
file or is a copy is regarded as a new file and will therefore have a different update time to the original.
The default data device and sub-directories are supported, default channel is #3.

Example

13.83. FuNction 387

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

It could be interesting to list all files which have been created during a certain time period. A simple
prototype of a program which will do just that follows on below.

If you want to check all files, then dev$ should contain no sub-directories or wild cards (just FLP2_,
WINI1_) and wild$ an empty string. Such a program could be used to write an intelligent backup program.

In order to run the program you will need TinyToolkit’'s TCONNECT or DIY-TK’s QLINK. You could
also use similar commands in the toolkits provided with Turbo or Qliberator.

100 CLS: INPUT "Device:"!dev$ \"Wild card:"!'wild$
110 INPUT "List from (dd mm yy):"!first$

120 INPUT TO 2;"to (<ENTER>=today):"!last$\

130 dayl=first$(1 TO 2):monthl=first$(4 TO 5)

135 yearl1=19&first$(7 TO 8)

140 IF LEN(last$) THEN

150 day2=last$(l TO 2):month2=last$(4 TO 5)

155 year2=19&last$(7 TO 8)

160 ELSE last=DATE

170 END IF

180 DATE_tmp=DATE

190 SDATE yearl,monthl,dayl,0,0,0: first=DATE

200 IF LEN(last$): SDATE year2,month2,day2,23,59,58: last=DATE
210 ADATE DATE_tmp-DATE+2

220 :

230 OPEN#3,pipe_10000: OPEN#4,pipe_100

240 TCONNECT #3 TO #4: WDIR#3,dev$ & wild$

250 yes=0: yesno=0

260 REPeat show_those

270 IF NOT PEND(#4) THEN EXIT show_those

280 INPUT#4,file$: this=FUPDT(\dev$ & file$): yesno=yesno+l
290 IF first<=this AND this<=last THEN

300 PRINT file$;TO 20;"(";DATE$(this);")"
310 yes=yes+1
320 END IF

330 END REPeat show_those
340 PRINT \"(";yes;"/";yesno!"files)"
350 CLOSE#3,#4

Minerva or SMS users can delete lines 180,190,200 and 210 and use the following lines instead:

190 first=DATE(yearl,monthl,dayl1,0,0,0)
200 IF LEN(last$): last=DATE(year2,month2,day2,23,59,58)

NOTE 1

The update time of a file will only be correct if the system clock was set to the correct time when the file
was last written to, since it is the date contained within the QL’s clock which is written to the header of the
file. If your machine has a battery backed real-time clock, then this presents no real problem; otherwise
you will need to ensure that you set the date and time after each startup.

NOTE 2

On some early versions of Toolkit II the machine code FS.RENAME routine also alters the update time
of a file!

388 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

NOTE 3

There is no legitimate way to change the update time of a file except with level-2 or level-3 drivers. It
is of course possible to set the system clock temporarily to the desired time, amend the file and then set
the clock back, but as the time taken to change the cannot be estimated exactly, this method will almost
surely reset the system clock to the incorrect time after carrying out such an operation a few times. On
level-2 and level-3 drivers, SET_FUPDT can be used.

NOTE 4

Minerva automatically updates the update dates of files on microdrives. Other ROM versions will not do
so without Toolkit II.

CROSS-REFERENCE

FBKDT, FLEN, FTYP, FDAT, FXTRA, FILE_LEN, FILE_TYPE, FVERS and FNAMES$ return other
information about a file. See DATE and ADATE about handling the system clock and SET_FUPDT on
setting the time stamp of a file.

13.85 FVERS

Syntax FVERS [(#channel)] or
FVERS (\file)
Location Level-2 Device Drivers

This function reads the version number of the given file (or of the file attached to the specified channel
{default #3} if the first variant is used).

The version numbers can range from 0 to 2'°-1 (65535) and generally indicate how often a file has been
amended. If a file was created on a level-1 device driver system, its version number is zero (0), while
newly created files on level-2 device drivers will have the version number 1 after they have been closed.
FVERS supports Toolkit II’s default data device and sub-directories.

If the first variant is used, the default channel is #3 if none is specified.

Each time that a file is amended on level-2 and level-3 drivers, the version number is increased by one.
If the version reaches its limit of 65535, it will start at version 1 again. A file has to be re-opened to
change its version by more than one. After the file has been amended, the version will only increase after
a FLUSH or CLOSE.

Unfortunately current versions of SAVE and SBYTES do not increase the version number because they
overwrite existing files instead of truncating them.

Example

OPEN_OVER#3, test_tmp: REMark create the file
PRINT#3, "just a line": REMark write a line to the file
PRINT FVERS(#3): REMark 0, neither flushed nor closed
CLOSE#3: REMark close file
PRINT FVERS(\test_tmp): REMark 1
OPEN#3, test_tmp: REMark re-open file
PRINT FVERS(#3): REMark 1, nothing changed yet
PRINT#3, "replace the line": REMark amend file
(continues on next page)

13.85. FVERS 389

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)
PRINT FVERS(#3): REMark still 1 not yet flushed
FLUSH#3: REMark write slave blocks to file
PRINT FVERS(#3): REMark now it's 2
FLUSH#3: REMark flush again
PRINT FVERS(#3): REMark 2
PRINT#3, "next line": REMark change file again
CLOSE#3: REMark close file
PRINT FVERS(\test_tmp): REMark still 2

NOTE

The file version number is not preserved if the file is overwritten. However, if you make a copy of a file,
this keeps the same version number as the original, but not on Level-1 drivers.

SMS NOTE

If you use the SAVE command without a filename to save a previously loaded SuperBASIC program, the
file version number will be increased by one.

CROSS-REFERENCE

SET_FVERS allows you to set the version number.

13.86 FWRITE

Syntax FWRITE #ch,address,bytes
Location TinyToolkit

The command FWRITE reads a given number of bytes (bytes) from memory (starting at address) and
writes them to the given channel, which should point to a file.

Example

A procedure which adds a file to another already existing file - CONCAT cannot do so. This is a rather
primitive version which grabs as much memory as necessary and uses only TinyToolkit extensions. The
program is very primitive (not in its use of these extensions), but because the memory management of
the routine is simple (but fast) and as FILE_LEN does not support default devices and sub-directories,
full filenames have to be passed.

See FREAD for an enhanced version!

100 DEFine PROCedure APPEND (filel$,file2$)
110 length=FILE_LEN(filel$)

120 buffer=GRAB(length)

130 LBYTES filel$,buffer

140 ch=FOPEN(filel$): FILE_PTRA#3,1E9

150 FWRITE #ch,buffer,length

160 CLOSE#ch: RELEASE buffer

170 END DEFine APPEND

The procedure is called by APPEND filel$ TO file2$, which will add the first file to the second file.
First, a buffer of the size of the first file is reserved in RAM, then, this file is read into the buffer. Now

390 Chapter 13. Keywords F

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

the second file is opened, the file pointer moved to the end of it and the whole buffer is then appended to
the end of the file. Finally, the channel is closed and the buffer RELEASEd.

NOTE

If the channel number does not refer to a file or even if the channel has not yet been opened, FWRITE
will report error -15 (bad parameter) after it has completed its work. This behaviour is pretty strange.

CROSS-REFERENCE

FREAD, LBYTES, SBYTES, GET, PUT. If you intend to use APPEND, please see FREAD for a better
version.

13.87 FWRITES$

Syntax FWRITES [#ch,] string$
Location BTool

FWRITES$ is a command (not a function as the $ may suggest) and writes string$ to #ch (default #1). It’s
the same as PRINT#ch,string$;.

Example

[FWRITE$ "Hello World"

NOTE
The Line feed character { CHRS$(10)} is not printed at the end of the text.

13.88 FXTRA

Syntax FXTRA [(#ch)] or
FXTRA \file (Toolkit I only)
Location Toolkit II, BTool

This is a function which returns part of the file header relating to the specified file (or the file attached
to the specified channel {default #3} if the first variant is used). See FGETHS for what part of the file
header FXTRA returns. The Toolkit I default data device and sub-directories are supported. If the first
variant is used, the default channel is #3.

CROSS-REFERENCE
See FDAT, FBKDT, FUPDT and FTYP which return similar information.

13.87. FWRITE$ 391

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

392 Chapter 13. Keywords F

CHAPTER
FOURTEEN

KEYWORDS G

14.1 GCD

Syntax GCD (x!, x® “[,x']") Where x'=0..INTMAX
Location Math Package

The function GCD takes two or more positive integers and finds their greatest common denominator,
ie. the largest number by which all of the given parameters can be divided without remainder. There
is always such a number because 1 (the smallest common denominator) divides every number without
remainder. GCD converts all passed values into integers by removing any decimal places (as with INT')
before looking for the denominator.

CROSS-REFERENCE
LCM

14.2 GER_MSG

Syntax GER_MSG
Location ST/QL

The file GER_TRA_rext is supplied with the ST/QL Emulator which contains translation tables to al-
low the Emulator to use German. Once this file has been LRESPR’d, this function can be used to
find the start of the message translation table to be used with the TRA command. You can use: TRA
GER_TRA,GER_MSG to set up the printer and message translation tables for Germany.

CROSS-REFERENCE
See NOR_MSG and GER_TRA. Also see TRA.

393

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

14.3 GER_TRA

Syntax GER_TRA
Location ST/QL

This is the complementary function to GER_MSG and points to the printer translation table for Germany
contained in the file GER_TRA_rext.

CROSS-REFERENCE
See GER_MSG.

14.4 GET

Syntax GET [#channel\file_position,] [var' “[,var']”...] or
GET [#channel,] [var! “[,var']" ...]
Location Toolkit II, THOR XVI

This command, together with PUT, helps to provide the QL with a means of using a file as a store
for variables. The QL stores variables in one of four ways: short%(range -128 to 127) is stored as
2 bytes. Short integers are only available on Minerva ROMs, when integer tokenisation is enabled.
integer%(range -32768 to 32767) is stored as 4 bytes. float(eg. 1.23 or any numbers outside the integer%o
range) is stored as 6 bytes. string$(eg. ‘Hello’) is stored as 2 bytes containing the length of the string
followed by the string itself.

GET enables variables which have been stored in this manner to be retrieved from a file opened to the
given channel (default #3). The variable stored at the current position in the file (or the file position
given with the command, if the first variant is used) is read directly into the variable name given with the
command.

If you provide more than one variable name as the second, third parameter etc, then more variables will
be read from the file in one go.

If the first variant is used, the file position is always calculated as an absolute distance from the start of the
file. However, to help you, if you supply a variable for the file_position (eg. GET \pointer), this variable
will always be updated to the current file pointer at the end of the command.

Compare GET \pointer+3 which supplies an expression for the file_pointer and cannot therefore be up-
dated automatically by the command.

If no variable is specified, the file pointer will be set to the specified position if the first variant is used.
If the second variant is used, this will have no effect.
Example

A program to store three names on a file and then to retrieve them (this would be useful in a database for
instance):

100 RESTORE
110 DIM a$(3,20)

(continues on next page)

394 Chapter 14. Keywords G

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

(continued from previous page)

120 FOR i=1 TO 3: READ a$(i)

130 OPEN_NEW #3,raml_storage

140 PUT #3,a$(1),a$(2),a$(3)

150 CLOSE #3 160 :

170 REPeat opt_loop

180 CLS: INPUT 'Which Number Name do you want?',no$
190 IF no$='':NEXT opt_loop

200 IF no$(1) INSTR '123': opt=no$(1): EXIT opt_loop
210 END REPeat opt_loop

220 OPEN_IN#3, raml_storage

230 FOR i=1 TO opt:GET#3,retrieve$

240 PRINT retrieve$

250 CLOSE #3

260 DATA 'Fred Bloggs', 'Filthy Rich', 'Peter Rabbit'

NOTE 1

The example works fine if only a few fields have to be stored. Generally, it is better to move around a file
using file pointers in a file based database.

NOTE 2

Current versions of the Turbo and Supercharge compilers are not able to compile programs which use
GET.

NOTE 3

Except under SMS v2.81+, this command can crash the system if you try to GET a string variable which
has been dimensioned {or even set with LOCal a$(512) for example}. This can be avoided by using:

[a$:FILL$(' ',512) }

to initialise the string instead.
NOTE 4

Although it is possible to use this command with non-file related channels, this is inadvisable, as each
entry would need to be typed in from the keyboard in its internal form, which can be rather difficult. If
you do use the command on a non-file related channel by accident, press the Break key to escape.

CROSS-REFERENCE
See PUT, BPUT, BGET, LGET, WGET.

14.5 GET_BYTE$

Syntax GET_BYTES (#channel,bytes)
Location TinyToolkit

This function will read a specific number of bytes from the given channel and return the result as a string.
If GET_BYTES cannot get the specified number of bytes from that channel, it will wait until there are

14.5. GET_BYTES$ 395

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

enough bytes present in the channel or until it detects an End Of File character. GET_BYTES$ does not
care which characters are read, so <LF> = CHR$(10) will not cause any problems unlike INPUT.

Example

A program to compare the contents of two files, both of which are the same length. The greater the buffer
size (maximum 32767 bytes), the faster will be the execution, but then again the greater the work space
which will be needed (maximum 64K). This is an example of the fundamental link between available
memory and operation speed:

100 Filel$="raml_a"

110 File2$="raml_b"

120 Buffer=10000

130 :

140 Pieces=FILE_LEN(Filel$) DIV Buffer
150 Rest=FILE_LEN(Filel$) MOD Buffer
160 OPEN#3,Filel$: OPEN#4,File2$

170 FOR Blk=0 TO Pieces+1

180 IF Blk>Pieces THEN Buffer=Rest
190 One$=GET_BYTE$ (#3,Buffer)

200 Two$=GET_BYTES$(#4,Buffer)

210 PRINT "Block"!Blk TO 12;

220 IF One$<>Two$ THEN

230 PRINT "Difference between"!Buffer*Blk!"and"! Buffer*(Blk+1)
240 ELSE

250 PRINT "OK"

260 END IF

270 END FOR Blk
280 CLOSE#3: CLOSE#4

NOTE

Earlier TinyToolkit versions (pre v1.10) called this function GETS$, which unfortunately caused problems
with a similar function in the Turbo Toolkit and EASYPTR.

CROSS-REFERENCE

INKEY$ reads just one byte from the given channel, which is therefore much slower than GET _BYTE$
if blocks of bytes are to be read. On the other hand, INKEYS$ allows you to specify a timeout.

The INPUT command combines input/output and reads blocks, but a block must end with <LF>.

The usage of the different keywords depends mainly on the structure of the incoming data. User input
and lines in an ASCII file normally terminate with Enter <LF>, while internal data such as disk directory
entries are stored as blocks with a fixed length (see FOP_DIR). Have a look at GET, PUT, BGET and
BPUT, too. FILE_PTRR, FILE_POS, FPOS can be used for movement.

396 Chapter 14. Keywords G

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

14.6 GET_BYTE

Syntax byte = GET_BYTE(#channel)
Location DJToolkit 1.16

Reads one character from the file attached to the channel number given and returns it as a value between
0 and 255. This is equivalent to CODE(INKEY $(#channel)).

BEWARE, PUT_BYTE can put negative values to file, for example -1 is put as 255, GET_BYTE will
return 255 instead of -1. Any negative numbers returned are always error codes.

EXAMPLE

[C = GET_BYTE(#3)]

CROSS-REFERENCE
GET _FLOAT, GET_LONG, GET_STRING, GET_WORD.

14.7 GET_FLOAT

Syntax float = GET_FLOAT (#channel)
Location DJToolkit 1.16

Reads 6 bytes from the file and returns them as a floating point value.

BEWARE, if any errors occur, the value returned will be a negative QDOS error code. As GET_FLOAT
does return negative values, it is difficult to determine whether that returned value is an error code or not.
If the returned value is -10, for example, it could actually mean End Of File, this is about the only error
code that can be (relatively) safely tested for.

EXAMPLE

[fp — GET_FLOAT(#3) }

CROSS-REFERENCE
GET_BYTE, GET_LONG, GET_STRING, GET_WORD.

14.8 GET_LONG

Syntax long = GET_LONG(#channel)
Location DIJToolkit 1.16

Read the next 4 bytes from the file and return them as a number between 0 and 2732 -1 (4,294,967,295
or HEX FFFFFFFF unsigned).

BEWARE, the same problem with negatives & error codes applies here as well as GET_FLOAT .

14.6. GET_BYTE 397

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

EXAMPLE

[1v — GET_LONG(#3) }

CROSS-REFERENCE
GET _BYTE, GET_FLOAT, GET_STRING, GET_WORD.

14.9 GET_STRING

Syntax a$ = GET_STRING((#channel)
Location DJToolkit 1.16

Read the next 2 bytes from the file and assuming them to be a QDOS string’s length, read that many
characters into a$. The two bytes holding the string’s length are NOT returned in a$, only the data bytes.

The subtle difference between this function and FETCH_BYTES is that this one finds out how many
bytes to return from the channel given, FETCH_BYTES needs to be told how many to return by the user.
GET_STRING is the same as:

FETCH_BYTES (#channel, GET_WORD (#channel))

WARNING - JM and AH ROMS will give a ‘Buffer overflow’ error if the length of the returned string is
more than 128 bytes. This is a fault in QDOS, not DJToolkit. The demos file, supplied with DJToolkit,
has a ‘fix’ for this problem.

EXAMPLE

b$ = GET_STRING(#3)

CROSS-REFERENCE
GET _BYTE, GET_FLOAT, GET_LONG, GET_WORD, FETCH_BYTES.

14.10 GET_STUFF$

Syntax GET_STUFF$
Location GETSTUFF

The Hotkey System II uses the keys <ALT><SPACE> and <ALT><SHIFT><SPACE> to type into the
current keyboard buffer the contents of a certain piece of memory, known as the Hotkey Stuffer Buffer.
The command HOT_STUFF text$ puts text$ into this buffer.

The function GET_STUFFS returns the contents of the hotkey stuffer or “0” if it does not contain any-
thing. If the FILES Thing of QPAC?2 is present, this will be started first, prior to returning the stuffer
contents. This means that a program can easily ask for a filename - just by calling GET_STUFFS.

NOTE

GET_STUFFS returns cryptic numbers in unusual circumstances, for example:

398 Chapter 14. Keywords G

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

HOT_STUFF ""
PRINT GET_STUFF$

WARNING

This function crashes SMSQ/E and Minerva when you Quit the Files Menu of QPAC 2.
CROSS-REFERENCE

See HOT _STUFF.

14.11 GetHEAD

Syntax GetHEAD #ch, adr
Location HEADER (DIY Toolkit)

GetHEAD loads the header of an opened file pointed to by the channel #ch into memory at adr, which
must point to at least 64 bytes of reserved memory.

Example

If the file header of an executable file is lost then you must modify it so that the file can be executed
again. Executable files need the file type set to 1 and the dataspace to be specified, the latter must be
large enough to avoid a serious crash. MAKEJOB does this with file$, demonstrating GetHEAD and
SetHEAD:

100 DEFine PROCedure MAKEJOB (file$, dataspace)
110 LOCal fp

120 fp=FOPEN(file$): IF fp<® THEN STOP

130 adr=ALCHP(64): IF adr=0 THEN STOP

140 GetHEAD#fp,adr

150 POKE adr+5,1

160 POKE_L adr+6,dataspace

170 SetHEAD#fp,adr

180 CLOSE#fp: RECHP adr

190 END DEFine MAKEJOB

CROSS-REFERENCE

SetHEAD saves a file header. See FGETHS for information about the file header. HEADR is very similar
to GetHEAD. See also HGET and HPUT .

14.11. GetHEAD 399

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

14.12 GET_WORD

Syntax word = GET_WORD(#channel)
Location DJToolkit 1.16

The next two bytes are read from the appropriate file and returned as an integer value. This is equivalent to
CODE(INKEY $(#channel)) * 256 + CODE(INKEY $(#channel)). See the caution above for GET_BYTE
as it applies here as well. Any negative numbers returned will always be an error code.

EXAMPLE

[w — GET_WORD(#3)

CROSS-REFERENCE
GET _BYTE, GET_FLOAT, GET_LONG, GET_STRING.

14.13 GETXY

Syntax GETXY x%, y%
Location HCO

This command draws a crosshair (with its centre at (x%,y%) which can be moved with the cursor keys.
Holding down <SHIFT> while pressing a cursor key will speed up movement. Once the crosshair is
placed in the correct position, press <SPACE> to return to BASIC. The two parameters x% and y% will
be updated to the position of the centre of the cross.

NOTE 1

It is obligatory to pass integer variables to GETXY.

NOTE 2

GETXY returns a wrong value for y% on Minerva ROMs, so it is unusable.
NOTE 3

Turbo and Supercharge compilers cannot compile this command.
WARNINGS

See SET.

CROSS-REFERENCE

INVXY

400 Chapter 14. Keywords G

SBASIC/SuperBASIC Reference Manual Online Documentation, Release 4.0.2

14.14 GO SUB

Syntax GO SUB line_number (GOSUB is expanded to GO SUB)
Location QL ROM

The command GO SUB was only implemented to make SuperBASIC more compatible with other ver-
sions of BASIC.

SuperBASIC offers much more elegant and powerful alternatives to this command - ‘structured program-
ming’. Structured programs do not have to be longer than the same program using GO SUB commands.

It is strongly recommended that you do not use GO SUBs in programs. A similar effect (and much more
besides) can be achieved by using DEFine PROCedure and DEFine FuNction.

The idea behind GO SUB is that it jumps to a