

Welcome to Sulu’s documentation!

	The Book
	Introduction
	What is a Content Management Platform

	Standard installation components

	Backend VS Templates

	Content Architecture

	Getting Started
	System Requirements

	Installation

	Setup

	Adding a vhost

	Creating a basic website
	About the Sulu Content Architecture

	Setup a Webspace

	Adding a theme

	Adding a template

	Using smart content

	Adding localizations

	Cookbook
	Caching with Varnish
	Install Varnish

	Server Configurations

	Varnish Configuration

	Configuring Sulu Invalidation

	Optimal configuration

	Maintenance Mode
	Create Maintenance Mode

	Configure Maintenance Mode

	Running Sulu on Heroku

	Securing your application
	Protect content using a security context

	Using tab navigation
	Create a content navigation provider

	Register the content provider as a service

	Custom error page
	Configuration

	Twig-Template

	Test it

	Optimize for production usage
	Enable doctrine caches

	Extend Entities
	Create a Entity

	Configuration

	Reference
	Content types
	Category list

	Checkbox

	Color

	Date

	Email

	Internal links

	Location

	Media selection

	Password

	Phone

	Resource locator

	Single internal link

	Smart content

	Snippet

	Tag list

	Text area

	Text editor

	Text line

	Time

	URL

	Twig Extensions
	CoreBundle

	SnippetBundle

	MediaBundle

	Document Manager
	Sulu Document Manager

	Using the Document Manager

	Creating Documents

	Data Fixtures

	Behaviors

	Debugging

	Extending the Document Manager

	Glossary

	Bundles
	HttpCacheBundle
	Handlers

	Proxy Clients

	Varnish

	Default configuration

	Developer Guide
	Behat (Functional) Testing
	Getting started

	Context Reference

	Sauce Labs

	Contributing
	Contributing code

	Contributing documentation

The Book

	Introduction
	What is a Content Management Platform

	Standard installation components

	Backend VS Templates

	Content Architecture

	Getting Started
	System Requirements

	Installation

	Setup

	Adding a vhost

	Creating a basic website
	About the Sulu Content Architecture

	Setup a Webspace

	Adding a theme

	Adding a template

	Using smart content

	Adding localizations

Introduction

	What is a Content Management Platform

	Standard installation components
	Contacts

	Assets

	Webspaces

	Settings

	Backend VS Templates

	Content Architecture

What is a Content Management Platform

A “Content Management Platform” is a set of components and modules that can be
used to build a content administration and publishing environment customized to
the individual needs of the project. It’s used for data driven systems,
web-apps or large scale web platforms. A “Content Management System” (CMS) is a
more or less standardized software with a fixed set of functionalities mainly
focused on the management of websites.

Sulu is a Content Management Platform which comes with all necessary modules to
be used as a CMS. In this documentation we will focus mainly on the usage as a
Content Management System.

Sulu is capable of managing the content of websites and fully support the
4-step “Content Life Cycle” (http://en.wikipedia.org/wiki/Web_content_lifecycle):

	Content creation/collection

	Revision/approval

	Publishing

	Archiving

The standard publishing format is HTML but the platform is multi-channel,
meaning other formats (such as e.g. XML) can be easily applied. Other
strengths are the support of multi-languages and multi-site structures with
shareable content.

Sulu was designed to create webpages with high performance in the current state
of the internet. This means a high focus on web standards (as described in the
W3C standards http://www.w3.org/standards/) and search engine optimization.

Although Sulu focuses on more complex websites it still provides an UI that is
easy to understand, fast to learn and enjoyable to use. The software runs on
modern browsers without the need of any plugins and will work on a standard
state-of-the-art PC or tablet.

Standard installation components

The standard installation of Sulu comes with a set of components (called
„modules“) required for the content management process:

Contacts

The Contact module has two main purposes: The first (and in many cases most
important) is managing the users that have access to the administration
backend of the website. The second is organising the user-data collected
through the website (e.g. newsletter registrations etc.). In more complex
environments this module can also be used to manage community members,
online-shop customers or other contact based data.

Assets

The Assets module let you upload and organize any type of documents such as
pictures, text documents (PDF, Word, Excel etc.), videos or audio clips. Once
uploaded an asset can be used in as many webpages as required remaining its
single source in the Assets module. This means if you would like to change a
document that it used in serval different webpages you would only have to
replace it once in Assets. Pictures will be automatically transformed to
web-compatible formats and resized to the required formats of the templates
while the original file will be stored as well. All other document types
remain in their original format.

Webspaces

A Webspace is the place where the actual website structure and content will be
created. Within a Webspace one single content-structure can be created but by
using e.g. multiple languages and sub-domains an unlimited number of websites
that share the same structure can be created. Furthermore an unlimited number
of webspaces can be managed in one Sulu installation.

Confused? Maybe this example helps:

ACME Inc. has a website www.acme.com that needs to be published in English,
German and French. The easy way to do this is to let the user choose their
desired language and stay on the same domain displaying the required content
using sub-domains such as e.g. www.acme.com/de. For the user or a search
engine this would mean 1 website with 3 languages sharing the same content
structure.

Now lets assume that ACME Inc. wants to dedicate each language to its
correspondent market by using top-level-domains. This would of course be more
marketing oriented and search engine friendly. The English content would be
published in www.acme.com, the German in www.acme.de and the French in
www.acme.fr. Let’s go even fufther and say each website’s design should be a
little different, maybe with a different header color. The user and the search
engine would now have 3 separate websites, each with 1 language and individual
design but all with the same content-structure.

Any of this scenarios can be created with Sulu using one Webspace.

Got it? Great! (Don’t worry if not, we go a lot deeper into this later.)

Settings

As the title implies this module gives you access to all internal adjustments
of Sulu. One very important section is Permissions where you can create user
roles with access right which then can be applied to a user in the Contacts
module. This gives you complete control over the access rights of your website
administrators. In addition you can manage meta information such as categories
or tags that are used in other modules.

Backend VS Templates

As in any CMS Sulu completely separates content from design and allows
template based content rendering. But due to the fact that usability, web
standards and SEO are of such great importance the templates take a big role
in the creation of a Sulu based web platform.

To ensure that the templates make use of all the possibilities that the CMS
delivers Sulu provides a set of functionalities and development guidelines.
Many of these can be found in this documentation and we strongly recommend to
carefully read through and use them as much as possible. By doing so your
content will be much easier to mange, the performance of your system will be
optimized and your website will be more accessible for users, search engines
or third party applications.

Content Architecture

TODO: Explain how Sulu websites are normally structured

Getting Started

	System Requirements

	Installation
	Get the code

	Install dependencies

	Setup
	Webspaces

	Templates

	Complete the installation

	Create a new user

	Adding a vhost
	Apache 2.2

	Nginx

System Requirements

For successfully running Sulu you’ll have to fulfill the following system requirements:

	Mac OSX, Linux or Windows

	Webserver (apache [http://httpd.apache.org/] or nginx [http://nginx.org/] with enabled URL rewriting)

	PHP [http://php.net/] 5.5 or higher

	Database (MySQL [http://www.mysql.com/], PostgreSQL [http://www.postgresql.org/] or any other database supported by doctrine [http://www.doctrine-project.org/])

	composer [https://getcomposer.org/]

Following optional requirements are recommended:

	Apache Jackrabbit [http://jackrabbit.apache.org/]

If you want to build parts of the system on your own, you will additionally need:

	nodejs [http://nodejs.org/]

	grunt [http://gruntjs.com/]

	ruby [https://www.ruby-lang.org/en/]

	Compass [http://compass-style.org/]

Installation

Get the code

First of all you have to clone the sulu-standard repository on GitHub [https://github.com/sulu-io/sulu-standard] and change into the cloned
directory.

$ git clone git@github.com:sulu-io/sulu-standard.git

After the clone has finished, you can change to the cloned directory, and
checkout the latest version of Sulu:

$ cd sulu-standard
$ git checkout master

Install dependencies

We use composer [https://getcomposer.org/] to install the correct versions of
Sulu’s dependencies:

composer install

At the end of the installation you will be asked for some parameters. The
following table describes these parameters, whereby most of the default values
should be fine for simple installations.

	Parameter

	Description

	database_driver

	Defines which database driver will be used

	database_host

	The address of the server, on whch the database is running

	database_port

	The port number to access the database on that server

	database_name

	The name of the database

	database_user

	The name of the database user

	database_password

	The password of the database user

	mailer_transport

	The protocol to send mails (currently not used)

	mailer_host

	The server from which the mails will be sent (currently not used)

	mailer_user

	The username for sending mails (currently not used)

	mailer_password

	The password for sending mails (currently not used)

	locale

	The default locale for the system

	secret

	An unique key needed by the symfony framework

	sulu_admin.name

	A name, which will be shown in the administration interface

	sulu_admin.email

	Administrator email address

	content_fallback_intervall

	The intervall in milliseconds, between content preview update in the
http polling mode

	websocket_port

	The port which will be used for the content preview in the http polling mode

	websocket_url

	The url which will be used for the content preview in the http polling mode

	phpcr_backend

	The PHPCR backend definition, defaults to the doctrine-dbal, check
http://doctrine-phpcr-odm.readthedocs.org/en/latest/reference/installation-configuration.html
for more configuration options

	phpcr_workspace

	The PHPCR workspace which will be used

	phpcr_user

	The user for phpcr

	phpcr_pass

	The password for phpcr

	phpcr_cache

	PHPCR caching type

Setup

Webspaces

The content management part of Sulu is built upon Webspaces. Each of these
webspaces configure a content tree, which can be managed in different
localizations. For the start you can just copy the delivered file:

cp app/Resources/webspaces/sulu.io.xml.dist app/Resources/webspaces/sulu.io.xml

Basically you can name the file however you want, as long as it is ending with
.xml. After copying you should adjust the file according to you installation.
Basically you have to change the key-tag to a unique value across all
webspaces of this installation, the name and the URLs. These values are written
in squared brackets in the following example:

<?xml version="1.0" encoding="utf-8"?>
<webspace xmlns="http://schemas.sulu.io/webspace/webspace"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://schemas.sulu.io/webspace/webspace http://schemas.sulu.io/webspace/webspace-1.0.xsd">

 <name>[name]</name>
 <key>[key]</key>

 <localizations>
 <localization language="en" shadow="auto">
 <localization language="en" country="us" shadow="auto"/>
 </localization>
 <localization language="de">
 <localization language="de" country="at"/>
 </localization>
 </localizations>

 <theme>
 <key>default</key>
 <default-templates>
 <default-template type="page">example</default-template>
 <default-template type="homepage">default</default-template>
 </default-templates>
 </theme>

 <navigation>
 <contexts>
 <context key="main">
 <meta>
 <title lang="de">Hauptnavigation</title>
 <title lang="en">Mainnavigation</title>
 </meta>
 </context>
 <context key="footer">
 <meta>
 <title lang="de">Footernavigation</title>
 <title lang="en">Footernavigation</title>
 </meta>
 </context>
 </contexts>
 </navigation>

 <portals>
 <portal>
 <name>sulu.io</name>
 <key>sulu_io</key>
 <resource-locator>
 <strategy>tree</strategy>
 </resource-locator>

 <localizations>
 <localization language="en" default="true"/>
 <localization language="de"/>
 </localizations>

 <environments>
 <environment type="prod">
 <urls>
 <url language="en" country="us">sulu.us</url>
 <url language="de" country="at">www.sulu.io</url>
 <url>sulu.lo/{localization}</url>
 </urls>
 </environment>
 <environment type="stage">
 <urls>
 <url>stage.sulu.lo/{localization}</url>
 <url>sulu.lo/{localization}</url>
 </urls>
 </environment>
 <environment type="dev">
 <urls>
 <url>[url]</url>
 <url language="en" country="us">localhost</url>
 </urls>
 </environment>
 </environments>
 </portal>
 </portals>
</webspace>

Note

You have to insert the name of your webspace at [name], the key at [key],
and the URL of your installation at [url]. If you want to run Sulu in
different environments you also have to change the URLs in the other
environment tags.

 Adding a vhost

Adding a vhost

You need to configure a virtual host for your webserver in order to run Sulu.
Here is an example for Apache and Nginx.

Apache 2.2

<VirtualHost *:80>
 DocumentRoot "/var/www/sulu.lo/web"
 ServerName sulu.lo
 <Directory "/var/www/sulu.lo/web">
 Options Indexes FollowSymLinks
 AllowOverride All
 Order allow,deny
 Allow from all

 <IfModule mod_expires.c>
 ExpiresActive On
 ExpiresDefault "access plus 1 month"
 ExpiresByType image/gif "access plus 1 month"
 ExpiresByType image/png "access plus 1 month"
 ExpiresByType image/jpeg "access plus 1 month"
 ExpiresByType image/jpg "access plus 1 month"
 ExpiresByType text/javascript "access plus 1 month"
 ExpiresByType text/css "access plus 1 month"
 </IfModule>

 <IfModule mod_deflate.c>
 SetOutputFilter DEFLATE
 SetEnvIfNoCase Request_URI \.(?:gif|jpe?g|png)$ no-gzip dont-vary
 SetEnvIfNoCase Request_URI \.(?:exe|t?gz|zip|bz2|sit|rar)$ no-gzip dont-vary
 SetEnvIfNoCase Request_URI \.pdf$ no-gzip dont-vary

 BrowserMatch ^Mozilla/4 gzip-only-text/html
 BrowserMatch ^Mozilla/4\.0[678] no-gzip
 BrowserMatch \bMSIE !no-gzip !gzip-only-text/html
 </IfModule>
 </Directory>
</VirtualHost>

Nginx

server {
 listen 8081;

 server_name sulu.lo;
 root /var/www/sulu.lo/web;

 error_log /var/log/nginx/sulu.lo.error.log;
 access_log /var/log/nginx/sulu.lo.at.access.log;

 # strip app.php/ prefix if it is present
 rewrite ^/app\.php/?(.*)$ /$1 permanent;

 location /admin {
 index admin.php;
 try_files $uri @rewriteadmin;
 }

 location @rewriteadmin {
 rewrite ^(.*)$ /admin.php/$1 last;
 }

 location / {
 index website.php;
 try_files $uri @rewritewebsite;
 }

 # expire
 location ~* \.(?:ico|css|js|gif|jpe?g|png)$ {
 try_files $uri /website.php/$1;
 access_log off;
 expires 30d;
 add_header Pragma public;
 add_header Cache-Control "public";
 }

 location @rewritewebsite {
 rewrite ^(.*)$ /website.php/$1 last;
 }

 # pass the PHP scripts to FastCGI server from upstream phpfcgi
 location ~ ^/(website|admin|app|app_dev|config)\.php(/|$) {
 include fastcgi_params;
 fastcgi_pass unix:/var/run/php5-fpm.sock;
 fastcgi_buffers 16 16k;
 fastcgi_buffer_size 32k;
 fastcgi_split_path_info ^(.+\.php)(/.*)$;
 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
 fastcgi_param SYMFONY_ENV dev;
 fastcgi_param HTTPS off;
 }
}

 Creating a basic website

Creating a basic website

	About the Sulu Content Architecture

	Setup a Webspace
	Localizations

	Themes

	Navigation

	Portals

	Adding a theme
	What is a theme

	Create a theme

	Enable the theme

	Configure image formats

	Adding a template
	Available content types

	Add a template definition

	Build the HTML template

	Create the data connection

	Using smart content

	Adding localizations

 About the Sulu Content Architecture

About the Sulu Content Architecture

 Setup a Webspace

Setup a Webspace

In this chapter we will go a bit deeper into webspaces. Therefore we will
create a configuration for a basic website. This will result in a single portal
website with multiple localizations.

As already described in the section before, a webspace also creates a new
content tree. These trees are accessible by the navigation in the Sulu
administration interface. Sulu allows you to create pages and sub pages in
these trees and fill them with content. Have a closer look at
Adding a template for more details on the content management process.

The following file shows the simplest configuration possible. These lines will
be explained in the following paragraphs.

<?xml version="1.0" encoding="utf-8"?>
<webspace xmlns="http://schemas.sulu.io/webspace/webspace"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://schemas.sulu.io/webspace/webspace http://schemas.sulu.io/webspace/webspace-1.0.xsd">

 <name>Example</name>
 <key>example</key>

 <localizations>
 <localization language="en"/>
 </localizations>

 <theme>
 <key>default</key>
 <default-templates>
 <default-template type="page">example</default-template>
 <default-template type="homepage">default</default-template>
 </default-templates>
 </theme>

 <navigation>
 <contexts>
 <context key="main">
 <meta>
 <title lang="en">Mainnavigation</title>
 </meta>
 </context>
 </contexts>
 </navigation>

 <portals>
 <portal>
 <name>example</name>
 <key>example</key>
 <resource-locator>
 <strategy>tree</strategy>
 </resource-locator>

 <environments>
 <environment type="prod">
 <urls>
 <url language="en">example.org</url>
 </urls>
 </environment>
 <environment type="dev">
 <urls>
 <url language="en">example.lo</url>
 </urls>
 </environment>
 </environments>
 </portal>
 </portals>
</webspace>

As you probably already have encountered, the root tag for our webspace
definition is webspace. Afterwards you see a name, which is displayed in the
administration interface. But even more important is the key, which is used
internally to generate some files and define some paths. Therfore it is really
important that the webspace key is unique across all webspaces in a single
installation.

Localizations

In the localizations-tag you can list all the available localizations in this
webspace. In the example we are simply adding the english language, but you can
also define country specific language if you add a country attribute to the
localization, so for instance the following tag would add austrian german to
the available localizations:

<localization language="de" country="at" />

For a more complete explanation you should have a look at
Adding localizations.

Themes

The theme is described by a key. This key leads to a certain theme,
implemented by a developer in the system. Read more about themes in the section
Adding a theme.

Navigation

It’s also possible to define some so called navigation contexts, which allows
the user to add pages to different kind of navigations. The different contexts
can be defined in the navigation-section, and this selection will be
available to choose from in the administration interface. Afterwards the
developer can retrieve the navigation for a given context by using some
Twig-extensions delivered with Sulu.

Portals

A webspace can itself consist of multiple portals. In our simple configuration
file we make use of only one portal. The idea is that the same content can be
shared among different portals and URLs. The portals can then also define for
themeselve in which localization they publish the content, so that you can
spread different localizations over different URLs.

Our sample file defines just one portal, which includes a name and a key
just as the webspace, wherby the key for the portal hast to be unique for the
entire installation, not only within this webspace.

Then the strategy for the resource-locator is defined, which influences
the design of the URLs for the content. Currently there is only the
tree-option available resulting in exposing the entire content tree in the
URL.

URLs

The most important part of the portal configuration are the environments,
because they are including the URLs for the portal. A portal can have multiple
environments, which have to match the environments defined in Symfony. Usually
dev, stage and prod are available. Each environment can define its own
set of URLs. The URLs also have to include the localization somehow. You have
two possibilities to do so:

Fixing an URL to a specific localization

The above example shows this possibility, where you fix one URL to exactly one
localization. The following fragment shows again how to this:

<url language="de" country="at">www.example.org</url>

Since it is possible to define localizations without a country, this attribute
is also optional here. However, the combination of language and country here
must result in an existing localization.

Using placeholders in the URL definition

Another possibility is to create the URL with a placeholder. Have a look at the
following line for an example:

<url>www.example.org/{localization}</url>

Placeholder are expressions in curly braces, which will be expanded to every
possible value. For the above example that means, that an URL for every
localization defined will be generated. So if you have a localization de-at
and en-gb, the system will create URLs for www.example.org/de-at and
www.example.org/en-us.

In the following table all the possible placeholders are listed, and explains
the values of them by using the de-at-localization:

	Placeholder

	Description

	Example for de-at

	{localization}

	The name of the entire localization

	de-at

	{language}

	The name of the language

	de

	{country}

	The name of the country, only makes
sense in combination with {language}

	at

 Adding a theme

Adding a theme

What is a theme

A theme defines the way the content from Sulu is presented on the website. In
general it’s not more than a simple folder containing all the required twig
templates, images, scripts, fonts and all the other assets you want to use in
this specific theme.

You can have multiple themes in one Sulu installation. Every webspace can
decide which theme to use, by a simple key in the webspace configuration file
already described in Setup a Webspace. This means that it is also very
easy to switch between different themes.

Create a theme

Creating a theme is as easy as creating a new folder in the Resources/themes/
folder of your bundle with the name of the new theme. Afterwards you have to
fill this folder with all the used templates in the webspace. These templates
go into another subfolder in your theme, which you have to reference later. We
a
recommend to name this folder templates. It is also recommended to create
a folder views for more general templates, like the master template, an
error page, etc., and a folder blocks for reusable templates, like the seo
information.

For more concrete information about the structure of these templates you should
check the Adding a template.

Enable the theme

For resolving the templates we are using the LiipThemeBundle [https://github.com/liip/LiipThemeBundle], which requires
you to register your themes. You can do that in your application configuration
located at app/config/config.yml. Add the name of your theme folder to the
following list:

liip_theme:
 themes: ["default", "your-new-shiny-theme"]

Configure image formats

If you are using images, you probably also care about the available image
formats. Sulu also supports you with that issue. You can define different image
formats, which Sulu will then create for every uploaded image. This generation
is based on your configuration. You can define the formats in the file
Resources/themes/<theme>/config/image-formats.xml. Take a look at the
following file for an example:

<?xml version="1.0" encoding="UTF-8"?>
<formats xmlns="http://schemas.sulu.io/media/formats"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://schemas.sulu.io/media/formats http://schemas.sulu.io/media/formats-1.0.xsd">
 <format>
 <name>640x480</name>
 <commands>
 <command>
 <action>resize</action>
 <parameters>
 <parameter name="x">640</parameter>
 <parameter name="y">480</parameter>
 </parameters>
 </command>
 </commands>
 </format>
</formats>

With the format tag you are creating a new image format. You have to name this
format, and create a list of commands to execute on it. The example will resize
the uploaded image to the size defined with the two parameters.

The next table shows the standard commands available with its parameters.

	Command

	Parameters

	Resize

	x: the new width

y: the new height

	Scale

	x: the new width

y: the new height

	Crop

	x: x-coordinate of the startpoint

y: y-coordinate of the startpoint

w: the with of the new image

h: the height of the new image

 Adding a template

Adding a template

In Sulu a template consists of multiple content types, whereby a content type
describes the way the data is stored in the database and how to enter them in
the administration interface. Pages in the Sulu content section will be based
on one of these templates.

On this page there are the available content types described, how to define
these values in our template configuration file, what you should consider when
creating the HTML templates, and finally how to connect the data from Sulu to
the HTML template.

Available content types

The following list shows the content types delivered by a standard sulu
installation. The first column shows the key, which acts as an unique
identifier. The second one describeds the appearance in the administration
interface, and the last one how the content is returned to the HTML template.

	Key

	Appearance

	Value

	text_line

	simple text line

	text

	text_area

	text area

	text

	text_editor

	text editor with formatting capabalities

	formatted text

	color

	color picker

	text

	date

	date picker

	text

	time

	text line with a time validation

	text

	url

	text line with an URL validation

	text

	email

	text line with an email validation

	text

	password

	password field

	text

	phone

	text line for a phone number

	text

	internal_links

	widget for adding links to other pages

	resolved pages as defined in parameters

	single_internal_link

	widget for selecting a single internal link

	resolved page as defined in parameters

	smart_content

	widget for configuring smart contents, a
content type for aggregating multiple pages

	resolved pages as defined in parameters

	resource_locator

	widget for entering the URL for the page

	text

	tag_list

	autocomplete field for entering and adding
tags

	array of texts

	media_selection

	widget for adding media (images, documents)
to the page

	array containing another array with
urls for every format

Add a template definition

To add a new template to your Sulu installation, you just create a new xml file
in app/Resources/pages named by a unique template key. See the following
file for an example of a template definition:

<?xml version="1.0" ?>
<template xmlns="http://schemas.sulu.io/template/template"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://schemas.sulu.io/template/template http://schemas.sulu.io/template/template-1.0.xsd">
 <key>default</key>

 <view>ClientWebsiteBundle:templates:default</view>
 <controller>SuluWebsiteBundle:Default:index</controller>
 <cacheLifetime>2400</cacheLifetime>

 <meta>
 <title lang="en">Default</title>
 </meta>

 <properties>
 <property name="title" type="text_line" mandatory="true">
 <meta>
 <title lang="en">Title</title>
 </meta>

 <tag name="sulu.rlp.part"/>
 </property>

 <property name="url" type="resource_locator" mandatory="true">
 <meta>
 <title lang="en">Resourcelocator</title>
 </meta>

 <tag name="sulu.rlp"/>
 </property>

 <property name="images" type="media_selection">
 <meta>
 <title lang="en">Images</title>
 </meta>
 </property>

 <property name="article" type="text_editor">
 <meta>
 <title lang="de">Artikel</title>
 <title lang="en">Article</title>
 </meta>

 <params>
 <param name="godMode" value="true"/>
 <param name="links" value="true"/>
 <param name="tables" value="true"/>
 </params>
 </property>
 </properties>
</template>

The root element of this xml file is template, which first child element is a
key, which has to match the filename without the file extension (e.g. the file
default.xml has the key default).

The next xml tags contains some information about rendering the template. This
includes the view, which is the reference to the twig template, and the
controller-tag references the controller, which is used to render the given
template. For standard templates you don’t have to define your own controllers,
because you can use the index-action of the DefaultController in the
SuluwebsiteBundle. Both the template and controller have to be referenced
as described in the Template Naming and Locations [http://symfony.com/doc/current/book/templating.html#template-naming-locations] (with the addition of the
LiipThemeBundle [https://github.com/liip/LiipThemeBundle#theme-cascading-order]) and Controller Naming Pattern [http://symfony.com/doc/current/book/routing.html#controller-string-syntax] in the Symfony
documentation.

The meta-tag consists of another title-tag for each available language,
which will be displayed in the template selection of the Sulu administration
interface.

The next tag is for all the properties in this template. A property is the
instance of one of the previous listed content types. The property’s type
attribute is the key from the list above, and the name identifies this
particular property. The first child element is another meta-tag containing
the title for each language, which will be displayed in the content management
form in the Sulu administration. Depending on the content type you can/must add
some more parameters, as for the article-property in the example above. The
example is enabling the godMode, the icon for adding links and the icon for
adding tables.

Note

Every template has to define a property named title, because it is used
internally for generating URLs and storing.

 Using smart content

Using smart content

 Adding localizations

Adding localizations

 Cookbook

Cookbook

Awesome recipies for lunch

	Caching with Varnish

	Maintenance Mode

	Running Sulu on Heroku

	Securing your application

	Using tab navigation

	Custom error page

	Optimize for production usage

	Extend Entities

 Caching with Varnish

Caching with Varnish

Varnish is a HTTP caching proxy [https://en.wikipedia.org/wiki/Proxy_server] server which can be used to radically
improve the response time of your website.

Sulu is bundled with a “soft” caching proxy [https://en.wikipedia.org/wiki/Proxy_server], the Symfony HttpCache [http://symfony.com/doc/current/book/http_cache.html], but
using Varnish is a more optimal solution for a large website, especially if it
has lots of traffic.

In addition to being twice as fast as the default caching implementation it
also supports better cache invalidation, which means that your website will
appear more up-to-date.

Note

“Twice as fast” is relative. The default cache implementation can respond
in 0.02s compared to varnishes 0.01s - the difference here is
imperceptible - but varnish will scale better and supports better
invalidation.

 Maintenance Mode

Maintenance Mode

When you need to deploy a new version of your project on a production environment
it is often necessary to disable your sulu-application and inform your users
about it.

Sulu maintenance mode displays a simple holding page which can be easily customized.

Create Maintenance Mode

To create a maintenance page, you first need to create a maintenance.php file:

$ cp app/maintenance.php.dist app/maintenance.php

Then you need to set the environment variable SULU_MAINTENANCE to true.
For example, in your .htaccess file (for apache)

SetEnv SULU_MAINTENANCE true

Configure Maintenance Mode

Allowed IP addresses

You may like to access your application while maintenance mode is active. Then you need to set the allowed IPs:

<?php
$allowedIPs = array(
 '127.0.0.1'
);

Translations

You can define translations for your template as follows:

<?php
$translations = array(
 'en' => array(
 'title' => 'Maintenance',
 'heading' => 'The page is currently down for maintenance',
 'description' => 'Sorry for any inconvenience caused. Please try again shortly.',
),
);

Default locale

By default, maintenance.php is automatically detecting your browsers language. If no translation for this language
exists the default locale is being used. By default this is English:

<?php
define('DEFAULT_LOCALE', 'en');

 Running Sulu on Heroku

Running Sulu on Heroku

Heroku [http://www.heroku.com] enables programmers to run their applications in the cloud, and makes
it really easy to scale your application if it follows some rules. There is a
Sulu cloud edition [https://github.com/sulu-io/sulu-cloud], which follows these rules.

You will find a “Deploy to Heroku” button in the README.md file of the
repository of the previously mentioned Sulu cloud edition [https://github.com/sulu-io/sulu-cloud]. This button leads
to a Heroku page for deploying your very own Sulu installation.

Give the application a name and choose between Europe and United States as
a region, whatever is closer to your actual destination. This choice will also
influence the performance of your website.

Unless you really want to, you should leave the SYMFONY_ENV environment
variable to prod. Otherwise the buid process will fail, because Heroku
installs the dependencies with composer install --no-dev. If you change the
environment to dev or test Sulu wil try to load some Symfony bundles,
which are not installed, and therefore lead to an error during the build
procedure.

The other environment variable you have to set is DOMAIN. Set it to
whatever domain this installation should work on, e.g.
sulu-cloud.herokuapp.com if you don’t have your own DNS entry or to
something like sulu.io.

For more details about working with Heroku you should check out the Heroku Dev
Center [https://devcenter.heroku.com/].

 Securing your application

Securing your application

Sulu is delivered with two different possiblities to protect parts of your
application. The first is the permissions based on security contexts, which
allow you to restrict access to entire parts of your application or Sulu. The
permissions for this kind of security are managed on a roles level. In addition
to that the localization for which these permissions are valid has to be
defined on the assignment of the role to the user.

The second way is to protect the access on a per-object basis. These
permissions are set on the specific object. The user still has to have the
correct localizations assigned in order to gain access.

This tutorial will show how to use Sulu’s security functionality with your own
application specific code.

Protect content using a security context

This section describes how to protect an entire part of your application (but
not a specific object).

Define your security context

First of all you have to define the security context, which is represented by a
simple string. This is done in the Admin class of your Bundle:

<?php

namespace Acme\Bundle\ExampleBundle\Admin;

use Sulu\Bundle\AdminBundle\Admin\Admin;

class AcmeExampleAdmin extends Admin
{
 // ...

 public function getSecurityContexts()
 {
 return array(
 'Sulu' => array(
 'Acme' => array(
 'sulu.acme.example'
)
);
);
 }

 // ...
}

This information is defined in the getSecurityContexts method, which should
return an array. The first level describes the system to which the security
context applies - this would either be Sulu (for stuff in the administration)
or a different context that you have defined manually.

The second level just defines the title for another separation used in the
administration interface. The third and last level defines the name of the
permissions themselves. This name follows a namespacing scheme based on the
previously used names.

Note

Since the Admin class is registered as a bundle, you can make use of
different services to define the available security contexts. For example
the SuluContentBundle uses a service to create an own security context for
all available webspaces in the system.

 Using tab navigation

Using tab navigation

It is very easy to build your own or to extend already existing tab navigations
in Sulu. The general process of displaying such a tab navigation in the
administration interface of Sulu covers the following steps:

	Your JavaScript component sends a request to
/admin/content-navigations?alias=acme, and might add more options as
query parameters.

	The server responds to this request based on so called
ContentNavigationProviders, which are registered to listen to a certain
alias, and the passed query parameters.

	The content is returned and Sulu’s JavaScript Tab component renders the
delivered information for you as tabs.

This article will describe how this can be achieved in a few simple steps.

Create a content navigation provider

If you want to create your own tab navigation, you have to build a provider for
it first. A provider is just a simple service implementing the
ContentNavigationProviderInterface containing a function named
getNavigationItems. The task of this function is to return an array of
ContentNavigationItems, the following lines show an example of this:

<?php

namespace Acme\Bundle\Example\Admin;

use Sulu\Bundle\AdminBundle\Navigation\ContentNavigationProviderInterface;
use Sulu\Bundle\AdminBundle\Navigation\ContentNavigationItem;

class AcmeContentNavigationProvider implements ContentNavigationProviderInterface
{
 pubilc function getNavigationItems(array $options = array())
 {
 $item = new ContentNavigationItem('Item');
 $item->setAction('item');
 $item->setDisplay(array('edit'));
 $item->setComponent('item-tab@acmeexample');
 $item->setComponentOptions(array());

 return array($item);
 }
}

The getNavigationItems function takes an array with options. These options
are all the query parameters that were passed via the HTTP request. You can
base certain decisions on these options like if some navigation items should be
created at all, or you can pass these options to the JavaScript components
which will be started when selecting a specific tab.

Note

Since this class will be registered as a service, you can inject any other
service you want to help you decide which ContentNavigationItems you
want to create. It is quite common to use SecurityChecker to check for
certain privileges before creating an item.

 Custom error page

Custom error page

With Sulu it is very easy to customize the error pages for your website users.
You can define a template for each HTTP status code.

Configuration

The following code-block shows a default configuration for the exception
templates. If you want to add an own exception for example 400 you can simply
add it to the list. You can specify that for each theme.

<theme>
 <key>default</key>

 <error-templates>
 <error-template default="true">ClientWebsiteBundle:views:error.html.twig</error-template>
 <error-template code="404">ClientWebsiteBundle:views:error404.html.twig</error-template>
 <error-template code="500">ClientWebsiteBundle:views:error500.html.twig</error-template>
 </error-templates>
</theme>

The ExceptionController uses the status-code of the response to determine
which template is responsible for the exception. If no special template is
defined it uses the default template.

Twig-Template

In the twig-template you can use your website master template to reuse your
style.

{% extends "ClientWebsiteBundle:views:master.html.twig" %}

{% block title %}Error {{ status_code }}{% endblock %}

{% block content %}
 <h1>Error {{ status_code }}</h1>
 <p>{{ status_text }}</p>

 <p>{{ exception.message }}</p>
{% endblock %}

Warning

Be careful which variable you use in your master.html.twig. If you use variables
which are not defined in the error-template, the error-page cannot be rendered.

 Optimize for production usage

Optimize for production usage

If you want to use Sulu in production there are a few more optimizations you
can do than just switching to the prod environment. The Symfony documentation
already gives an introduction into deploying applications [http://symfony.com/doc/current/cookbook/deployment/tools.html]. Since Sulu is
also a Symfony application all these tips also apply to deploying Sulu.

This cookbook entry will show even more ways to optimize the performance of
Sulu in a production environment.

Enable doctrine caches

The Symfony documentation already describes how to activate caching for the
metadata, queries and results in its DoctrineBundle documentation [http://symfony.com/doc/current/reference/configuration/doctrine.html#caching-drivers].

If you have APC installed and want to enable caching using APC you can just
uncomment the following lines in app/config/admin/config_prod.yml and
app/config/website/config_prod.yml:

doctrine:
 orm:
 metadata_cache_driver: apc
 result_cache_driver: apc
 query_cache_driver: apc

In case you want to use other caching providers you should have a look at the
DoctrineBundle documentation [http://symfony.com/doc/current/reference/configuration/doctrine.html#caching-drivers], where the configuration of other providers is
explained.

 Extend Entities

Extend Entities

Sulu has a very easy way to extend and replace the internal entities. This feature is not
implemented for each entity but it will be implemented for all soon.

These entities are ready to extend:

	User

	Role

	Contact

You can extend all of them in the same way. Therefor we explain it for User here.

Create a Entity

Create your own Entity for example in the ClientWebsiteBundle. You can use the
doctrine:generate:entity command for that. Extend the generated Entity with the
Sulu User class.

<?php

namespace Client\Bundle\WebsiteBundle\Entity;

use Doctrine\ORM\Mapping as ORM;
use Sulu\Bundle\SecurityBundle\Entity\User as SuluUser;

/**
 * User
 *
 * @ORM\Table()
 * @ORM\Entity
 */
class User extends SuluUser
{
 /**
 * @var string
 *
 * @ORM\Column(name="myProperty", type="string", length=255, nullable = true)
 */
 private $myProperty;

 /**
 * Set myProperty
 *
 * @param string $myProperty
 * @return User
 */
 public function setMyProperty($myProperty)
 {
 $this->myProperty = $myProperty;

 return $this;
 }

 /**
 * Get myProperty
 *
 * @return string
 */
 public function getMyProperty()
 {
 return $this->myProperty;
 }
}

Warning

Your Entity can have own properties, but they should have at least default values.
Otherwise the normal features of Sulu could crash (like the
sulu:security:user:create command).

 Reference

Reference

	Content types

	Twig Extensions

	Document Manager

	Glossary

 Content types

Content types

As already described in Adding a template
a template consists of multiple content types, which enable the user to manage
content in a semantic way.

The simplest template possible looks something like the this:

<?xml version="1.0" ?>
<template xmlns="http://schemas.sulu.io/template/template"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://schemas.sulu.io/template/template http://schemas.sulu.io/template/template-1.0.xsd">
 <key>default</key>

 <view>ClientWebsiteBundle:templates:default</view>
 <controller>SuluWebsiteBundle:Default:index</controller>
 <cacheLifetime>2400</cacheLifetime>

 <meta>
 <title lang="en">Default</title>
 </meta>

 <properties>
 <property name="title" type="text_line" mandatory="true">
 <meta>
 <title lang="en">Title</title>
 </meta>

 <tag name="sulu.rlp.part"/>
 </property>

 <property name="url" type="resource_locator" mandatory="true">
 <meta>
 <title lang="en">Resourcelocator</title>
 </meta>

 <tag name="sulu.rlp"/>
 </property>
 </properties>
</template>

This chapter will describe which types you can insert within the
properties tag. Every content type in the documentation comes with an
example property tag to clarify the usage.

This documentation also specifies the available parameters and tags for each
content type:

	Category list

	Checkbox

	Color

	Date

	Email

	Internal links

	Location

	Media selection

	Password

	Phone

	Resource locator

	Single internal link

	Smart content

	Snippet

	Tag list

	Text area

	Text editor

	Text line

	Time

	URL

 Category list

Category list

Description

Shows a list of all available categories. The user can select with a checkbox
which ones to assign to the page. Categories can be managed in the settings
section of Sulu. The selection will be saved as an array.

Parameters

No parameters available

Example

<property name="categories" type="category_list">
 <meta>
 <title lang="en">Category List</title>
 </meta>
</property>

 Checkbox

Checkbox

Description

Shows a simple checkbox, the state of the checkbox will be saved as a boolean.

Parameters

No parameters available

Example

<property name="available" type="checkbox">
 <meta>
 <title lang="en">Available</title>
 </meta>
</property>

 Color

Color

Description

Shows a text line with an attached color picker, the inserted content will be
saved as simple string.

Parameters

No parameters available

Example

<property name="color" type="color">
 <meta>
 <title lang="en">Color</title>
 </meta>
</property>

 Date

Date

Description

Shows a text line with an attached date picker. The inserted content will be
saved as a normalized string.

Parameters

No parameters available

Example

<property name="date" type="date">
 <meta>
 <title lang="en">Date</title>
 </meta>
</property>

 Email

Email

Description

Shows a text line, the inserted content will be validated against a email regex
and saved as a simple string.

Parameters

No parameters available

Example

<property name="email" type="email">
 <meta>
 <title lang="en">E-Mail</title>
 </meta>
</property>

 Internal links

Internal links

Description

Shows a list with the possibility to add links to other pages managed in Sulu.
Additionally it populates all the fields defined in the template configuration
to the HTML template. The content is stored as an array of references.

Parameters

	Parameter

	Type

	Description

	properties

	collection

	Defines with which key which property of the linked page should be
populated to the HTML template.

Example

<property name="links" type="internal_links">
 <meta>
 <title lang="en">Links</title>
 </meta>

 <params>
 <param name="properties" type="collection">
 <param name="title" value="title"/>
 <param name="article" value="article"/>
 </param>
 </params>
</property>

 Location

Location

Description

Adds the possibility to assign geographic information to a page. Can be used
either with Google Maps and Open Street Maps.

Parameters

	Parameter

	Type

	Description

	countries

	collection

	A collection of countries represented as string assigned to unique
keys (usually the ISO code of the country)

	mapProviders

	collection

	Defines the available map providers

	defaultProvider

	string

	The preselected provider in the dropdown

	geolocatorName

	string

	The alias of the service, which should be used for geolocation

Example

<property name="location" type="location">
 <meta>
 <title lang="en">Location</title>
 </meta>
</property>

 Media selection

Media selection

Description

Shows a list with the possibility to assign some assets from the media section
to a page. Also allows to define a position, which can be handled later in the
template.

Parameters

	Parameter

	Type

	Description

	types

	string

	A comma separated list of available asset types to assign. Each item in
the list must be one of image, video or audio.

	displayOptions

	collection

	A collection of booleans, which defines to which positions the assets
can be assigned (leftTop, top, rightTop, …)

	defaultDisplayOption

	string

	Defines which of the displayOptions is the default one

Example

<property name="images" type="media_selection">
 <meta>
 <title lang="en">Images</title>
 </meta>

 <params>
 <param name="types" value="images"/>
 <param name="displayOptions" type="collection">
 <param name="leftTop" value="true"/>
 <param name="top" value="true"/>
 <param name="rightTop" value="true"/>
 <param name="left" value="true"/>
 <param name="middle" value="false"/>
 <param name="right" value="true"/>
 <param name="leftBottom" value="true"/>
 <param name="bottom" value="true"/>
 <param name="rightBottom" value="true"/>
 </param>
 <param name="defaultDisplayOption" value="left"/>
 </params>
</property>

 Password

Password

Description

Shows a password input field, the inserted content will be saved as a simple
string.

Parameters

No parameters available

Example

<property name="password" type="password">
 <meta>
 <title lang="en">Password</title>
 </meta>
</property>

 Phone

Phone

Description

Shows a text line, the inserted content will be validated against a phone
number regex and saved as a simple string.

Parameters

No parameters available

Example

<property name="phone" type="phone">
 <meta>
 <title lang="en">Phone number</title>
 </meta>
</property>

 Resource locator

Resource locator

Description

Shows a text line with a non-editable prefix, which represents the routes to
this position in the content tree. The part of the current page can be edited
in the available text line. Additionally there is a button with the URL history
of the current page, where parts of the history can also be deleted or
reactivated.

Tags

	Tag

	Description

	sulu.rlp

	The resource locator with this tag defines the URL to a specific page

	sulu.rlp.part

	Fields marked with this tag are used to generate the URL for a specific
page

Parameters

No parameters available

Example

<property name="title" type="text_line">
 <tag name="sulu.rlp.part"/>
</property>
<property name="resource_locator" type="resource_locator">
 <meta>
 <title lang="en">Resource locator</title>
 </meta>

 <tag name="sulu.rlp"/>
</property>

 Single internal link

Single internal link

Description

Shows a field, on which exactly one link to another page can be assigned.

Parameters

No parameters available

Example

<property name="link" type="single_internal_link">
 <meta>
 <title lang="en">Link</title>
 </meta>
</property>

 Smart content

Smart content

Description

Shows a list of pages, which depend on a configurable filter. You can define
which site’s children should be included, what tags the filtered pages
must have, how they are sorted, and how many results you want to get.
Additionally you can define some presentation types, so that the content
manager can decide if the pages should be displayed e.g. in one column or two
columns. The filter is saved as a JSON string in the database.

Parameters

	Parameter

	Type

	Description

	max_per_page

	integer

	Limits the results per page. Omit this parameter to disable pagination.

	page_parameter

	string

	Defines the page number key to be used in the query string

	properties

	collection

	Defines the property names which will be exposed in the HTML template

	present_as

	collection

	A collection of strings, which can be configured for different
presentation modes. If more than one element is given, the user can
choose between the elements in this collection. The selected value is
also passed to the HTML template.

Example

<property name="smart_content" type="smart_content">
 <meta>
 <title lang="en">Smart Content</title>
 </meta>

 <params>
 <param name="max_per_page" value="5"/>
 <param name="page_parameter" value="p"/>
 <param name="properties" type="collection">
 <param name="title" value="title"/>
 <param name="article" value="article"/>
 </param>
 <param name="present_as" type="collection">
 <param name="two">
 <meta>
 <title lang="en">Two columns</title>
 </meta>
 </param>
 <param name="one">
 <meta>
 <title lang="en">One column</title>
 </meta>
 </param>
 </param>
 </params>
</property>

 Snippet

Snippet

Description

Shows a list with the possibility to assign an arbitrary amount of snippets.
Snippets are small blocks managed in the global section, which can be reused on
as many pages as necessary. The assigned snippets will be saved as an array of
references.

Parameters

No parameters available

Example

<property name="snippets" type="snippet">
 <meta>
 <title lang="en">Snippets</title>
 </meta>
</property>

 Tag list

Tag list

Description

Shows a simple text line with an autocomplete feature for the available Tags in
the system. Tags can be managed in the settings section of Sulu. The assigned
tags will be saved as an array.

Note

Tags which do not already exist will be created.

 Text area

Text area

Description

Shows a simple text area, the inserted content will be saved as simple string.

Parameters

No parameters available

Example

<property name="description" type="text_area">
 <meta>
 <title lang="en">Description</title>
 </meta>
</property>

 Text editor

Text editor

Description

Shows a rich text editor, capable of formatting text as well. The output of the
editor will be stored as HTML in a string field.

Parameters

	Parameter

	Type

	Description

	table

	boolean

	Adds tools for creating tables to the text editor

	link

	boolean

	Adds buttons for creating links to the text editor

	paste_from_word

	boolean

	Adds a button to paste content from word to the text editor. If you add
text via this button, some characters which could cause troubles are
removed.

	height

	integer

	Sets the initialize height of the texteditor.

	max_height

	integer

	Sets the maximum height to which the texteditor can grow.

Texteditor supports also all ckeditor config [http://docs.ckeditor.com/#!/api/CKEDITOR.config-cfg] parameters in snakecase.

Example

<property name="article" type="text_editor">
 <meta>
 <title lang="en">Article</title>
 </meta>

 <params>
 <param name="table" value="true"/>
 <param name="link" value="true"/>
 <param name="paste_from_word" value="true"/>
 <param name="height" value="100"/>
 <param name="max_height" value="200"/>
 <!-- CKEditor Parameters examples: -->
 <param name="extra_allowed_content" value="img(*)[*]; span(*)[*]; div(*)[*]; iframe(*)[*]; script(*)[*]" />
 <param name="ui_color" value="#ffcc00"/>
 </params>
</property>

 Text line

Text line

Description

Shows a simple text line, the inserted content will be saved as simple string.

Parameters

No parameters available

Example

<property name="title" type="text_line">
 <meta>
 <title lang="en">Title</title>
 </meta>
</property>

 Time

Time

Description

Shows a text line, the inserted content will be validated against a localized
time string and saved as a simple string.

Parameters

No parameters available

Example

<property name="time" type="time">
 <meta>
 <title lang="en">Time</title>
 </meta>
</property>

 URL

URL

Description

Shows a text line, the inserted content will be validated against an URL regex
and saved as a simple string.

Parameters

No parameters available

Example

<property name="url" type="url">
 <meta>
 <title lang="en">URL</title>
 </meta>
</property>

 Twig Extensions

Twig Extensions

Sulu provides its own Twig functions and filters In addition to the standard set of Twig functions [http://twig.sensiolabs.org/documentation] which
you can use in website templates.

CoreBundle

Functions

	sulu_breadcrumb

	sulu_content_load

	sulu_content_load_parent

	sulu_content_path

	sulu_content_root_path

	sulu_meta_alternate

	sulu_meta_seo

	sulu_navigation_root_flat

	sulu_navigation_root_flat

	sulu_navigation_root_tree

	sulu_navigation_tree

	sulu_sitemap

	sulu_sitemap_url

Filters

	sulu_util_multisort

SnippetBundle

	sulu_snippet_load

MediaBundle

	sulu_get_media_url

 sulu_breadcrumb

sulu_breadcrumb

Returns the breadcrumb for a given node UUID

{{ sulu_breadcrumb(node.uuid) }}

Arguments:

	uuid: string - UUID of page node for which to show the breadcrumb

 sulu_content_load

sulu_content_load

Returns a Structure for the given UUID

{% set page = sulu_content_load('1234-1234-1234-1234-1234') %}

Arguments:

	uuid: string - UUID of structure

Returns:

	
	array

	
	uuid: UUID of page

	title: Title of page

	url: URL for page

	template: Template name of page

	changed: Changed date of page

	changer: User ID of changer

	created: Date of creation

	creator: User ID of creator

	nodeType: Type of node

	path: Path of page

	excerpt: Excerpt (if load-excerpt is true)

 sulu_content_load_parent

sulu_content_load_parent

Return the parent of the Structure with the given UUID

{% set page = sulu_content_load_parent('1234-1234-1234-1234-1234') %}

Arguments:

	uuid: string - UUID of structure parent

Returns:

	
	array

	
	uuid: UUID of page

	title: Title of page

	url: URL for page

	template: Template name of page

	changed: Changed date of page

	changer: User ID of changer

	created: Date of creation

	creator: User ID of creator

	nodeType: Type of node

	path: Path of page

	excerpt: Excerpt (if load-excerpt is true)

 sulu_content_path

sulu_content_path

Returns the absolute URL for the content at the given path

<ul class="nav nav-justified">
 {% for item in content.snippets[0].internalLinks %}

 {{ item.title }}

 {% endfor %}

Arguments:

	url: string - Url to get path

	webspaceKey string - If item is not in the same webspace as current content (optional)

Returns: string - Absolute URL

 sulu_content_root_path

sulu_content_root_path

Returns the absolute URL for the content root at the given path

<ul class="nav nav-justified">
 {% for item in content.snippets[0].internalLinks %}

 {{ item.title }}

 {% endfor %}

Arguments:

	url: string - Url to get path

	webspaceKey string - If item is not in the same webspace as current content (optional)

Returns: string - Absolute URL

 sulu_meta_alternate

sulu_meta_alternate

Note

This documentation is a incomplete.

 sulu_meta_seo

sulu_meta_seo

Note

This documentation is a incomplete.

 sulu_navigation_root_flat

sulu_navigation_root_flat

Returns navigation Page from root in a flat list data-structure.

Arguments:

	context: string - optional: context to filter navigation

	depth: integer - optional: depth to load (1 - childs, 2 - childs and child of childs, …)

	loadExcerpt: boolean - optional: load data from excerpt tab

Returns:

	
	array

	
	uuid: UUID of page

	title: Title of page

	url: URL for page

	template: Template name of page

	changed: Changed date of page

	changer: User ID of changer

	created: Date of creation

	creator: User ID of creator

	nodeType: Type of node

	path: Path of page

	excerpt: Excerpt (if load-excerpt is true)

 sulu_navigation_root_flat

sulu_navigation_root_flat

Returns navigation Page from root in a flat list data-structure.

Arguments:

	context: string - optional: context to filter navigation

	depth: integer - optional: depth to load (1 - childs, 2 - childs and child of childs, …)

	loadExcerpt: boolean - optional: load data from excerpt tab

Returns:

	
	array

	
	uuid: UUID of page

	title: Title of page

	url: URL for page

	template: Template name of page

	changed: Changed date of page

	changer: User ID of changer

	created: Date of creation

	creator: User ID of creator

	nodeType: Type of node

	path: Path of page

	excerpt: Excerpt (if load-excerpt is true)

 sulu_navigation_root_tree

sulu_navigation_root_tree

Returns navigation Page from root in a tree data-structure.

Arguments:

	context: string - optional: context to filter navigation

	depth: integer - optional: depth to load (1 - childs, 2 - childs and child of childs, …)

	loadExcerpt: boolean - optional: load data from excerpt tab

Returns:

	
	array

	
	uuid: UUID of page

	title: Title of page

	url: URL for page

	template: Template name of page

	changed: Changed date of page

	changer: User ID of changer

	created: Date of creation

	creator: User ID of creator

	nodeType: Type of node

	path: Path of page

	excerpt: Excerpt (if load-excerpt is true)

 sulu_navigation_tree

sulu_navigation_tree

Returns navigation Page from root in a tree data-structure.

Arguments:

	context: string - optional: context to filter navigation

	depth: integer - optional: depth to load (1 - childs, 2 - childs and child of childs, …)

	loadExcerpt: boolean - optional: load data from excerpt tab

Returns:

	
	array

	
	uuid: UUID of page

	title: Title of page

	url: URL for page

	template: Template name of page

	changed: Changed date of page

	changer: User ID of changer

	created: Date of creation

	creator: User ID of creator

	nodeType: Type of node

	path: Path of page

	excerpt: Excerpt (if load-excerpt is true)

 sulu_sitemap

sulu_sitemap

Returns sitemap for given Webspace and Locale (or default is the current locale and webspace).

Arguments:

	locale string - locale for determine sitemap (optional)

	webspaceKey string - webspace for determine sitemap (optional)

 sulu_sitemap_url

sulu_sitemap_url

Returns url for given Webspace and locale.

Arguments;

	url string - The uuid of the current content

	locale string - optional: locale for determine url

	webspaceKey string - optional: webspace for determine url

Returns:

Url for a gievn webspace and locale

 sulu_util_multisort

sulu_util_multisort

Allows arrays of arrays or objects to be sorted by any properties which are
accessible via. the Symfony PropertyAccessor [http://symfony.com/doc/current/components/property_access/introduction.html] path(s).

{% for content in content.smartcontent|sulu_util_multisort('[title]', 'asc') %}
 {# ... #}
{% endfor %}

You can specify an array of paths to enable cascading sorting, for example

{% for content in content.smartcontent|sulu_util_multisort(['[title]', '[description]'], 'asc') %}

Arguments:

	path: Property path

	direction: Direction to sort, either ASC or DESC

 sulu_snippet_load

sulu_snippet_load

Returns content array for given uuid.

Arguments:

	uuid: string - The uuid of requested content

	locale: string - optional: Locale to load snippet

Returns:

	
	array

	
	uuid: UUID of page

	title: Title of page

	url: URL for page

	template: Template name of page

	changed: Changed date of page

	changer: User ID of changer

	created: Date of creation

	creator: User ID of creator

	nodeType: Type of node

	path: Path of page

	excerpt: Excerpt (if load-excerpt is true)

 sulu_get_media_url

sulu_get_media_url

Returns relative URL to the given media.

{% set url = sulu_get_media_url(media, 'inline') %}

Configuration:

Following configuration is optional and means, that the default dispositionType is “attachment” for each file and only if the mimeTypes of a file match “application/pdf” or “image/jpeg” it’s the “inline” dispositionType.

If the default dispositionType would be “inline” and some files should be “attachment”, than the configuration of “mime_types_attachment” should be filled and “mime_types_inline” should be empty.

sulu_media:
 disposition_type:
 default: "attachment"
 mime_types_inline: ["application/pdf", "image/jpeg"]
 mime_types_attachment: []

Arguments:

	media: object - The media object

	dispositionType: string - override default configuration (‘inline’, ‘attachment’) (optional)

Returns: string - Relative URL

 Document Manager

Document Manager

	Sulu Document Manager

	Using the Document Manager

	Creating Documents

	Data Fixtures

	Behaviors

	Debugging

	Extending the Document Manager

 Sulu Document Manager

Sulu Document Manager

The Sulu Document Manager is a layer which sits between the PHPCR repository
and the application model. It provides a layer of domain abstraction on top of
the raw PHPCR session, workspace, query manager, etc.

It is similar in concept to a typical ORM (for example Doctrine ORM) with some
differences.

The following is an example:

<?php
// find a document in a specific locale and set a new title
$document = $documentManager->find('/cmf/contents/foobar', 'de');
$document->setTitle('Hello');

// persist the document then flush the changes
$documentManager->persist($document);
$documentManager->flush();

If you are familiar with Doctrine this will seem very familiar. There are some
differences however:

	Persist commits the chagnes to the node immediately, changes made to the
document later on will not be taken into account on flush(). It is better
to think of persist() as a function which prepares a snapshot of the
current state of the document to be persisted.

	The document manager is localization aware by default.

Some other things to note:

	The Document Manager is 100% event based. This makes it very extensible, all
of the functionality is provided by Event Subscribers.

	Documents are defined with “Behavior” interfaces, which the event
subscribers use to determine if and how the document should be handled.

 Using the Document Manager

Using the Document Manager

Finding documents

Documents can be located using either their UUID or their path:

<?php
$document = $documentManager->find('/path/to/document');
$document = $documentManager->find('842e61c0-09ab-42a9-87c0-308ccc90e6f4');

To find a localized document:

$germanDocument = $documentManager->find('842e61c0-09ab-42a9-87c0-308ccc90e6f4', 'de');

Additionally, options can be specified:

<?php
$fooDocument = $documentManager->find('842e61c0-09ab-42a9-87c0-308ccc90e6f4', 'de', array(
 'my_option' => 'foobar',
));

Persisting documents

The Sulu Document Manager requires that you persist() documents and then
flush the document manager.

Note

The persist operation, unlike other document/object managers, takes a snapshot of
the document in its current state and maps the data to the PHPCR node.

Changes made to the document after calling persist will not be taken
in to account when flush is called.

 Creating Documents

Creating Documents

The Sulu Document Manager uses interfaces to determine how a document is
handled. These interfaces are known as behaviors. Behaviors
act upon documents.

Note

It is e