

Success-Backup-Check’s documentation!

Warning

Beta software
You are using a software that has not reached a stable version yet. Please
beware that interfaces might change, APIs might disappear and general
breakage can occur before 1.0.

If you plan to use this software for something important, please read the
roadmap, and the issue tracker in Github. If you are unsure about the
future of this project, please talk to the developers, or (better yet) get
involved with the development of success-backup-check!

About

Move user files on a server from a place where the user has write rights & move it to an archive or backup folder, where
to user has no read or write access.

A use case example: Daily backup of a point-of-sale database. So that every point-of-sale device has only the current
database in the storage. The 2 server check in the operation when was the last backup & send an email if the current
database on the server is to old.

[image: function overview]

[image: Backup check]

	Installation instructions
	Requirements

	Install

	Troubleshoot

	Config
	Mail

	Time

	Server

	BackupDirs

	Logging

	Usage
	Parameter

	API documentation

	Help

	Changelog

	License

Indices and tables

	Index

	Module Index

	Search Page

Installation instructions

Requirements

	Python 3.x

	https://www.smartmontools.org for hardware tests

Linux

Debian / Ubuntu:

$ sudo apt-get install smartmontools

Mac

Brew:

$ brew install smartmontools

Install

success-backup-check can be installed using pip:

$ sudo python3 -m pip install git+git://github.com/linuxluigi/success-backup-check.git

This command will fetch the archive and its dependencies from the internet and
install them.

Or download it from git and execute:

$ git clone git@github.com:linuxluigi/success-backup-check.git
$ cd success-backup-check
$ python setup.py install --user

You might prefer to install it system-wide. In this case, skip the --user
option and execute as superuser by prepending the command with sudo.

Troubleshoot

Only tested on linux & mac, I don’t know this will work correctly on windows machines.

Windows users may find that these command will only works if typed from Python’s
installation directory.

Some Linux distributions (e.g. Ubuntu) install Python without installing pip.
Please install it before. If you don’t have root privileges, download the
get-pip.py script at https://bootstrap.pypa.io/get-pip.py and execute it as
python get-pip.py --user.

Config

Config file path: `/etc/success_backup_check.conf`

Complete Example:

[Mail]
From = from@example.com
To = to@example.com
ApiKey = YourSendGridApiKey

[Time]
days = 3

[Server]
ArchivDir = /srv/backup/daily_backup/
mode = active
file_typ = MDB

[BackupDirs]
MyDatabaseDir = /home/user/daily-db
UserWork = /home/user/done/work

[Logging]
log_level = WARNING
log_file = /var/log/succes_backup_check.log

Mail

Mails are send via https://sendgrid.com and need a From & To email address and also the sendgrid api key via ApiKey.:

[Mail]
From = from@example.com
To = to@example.com
ApiKey = YourSendGridApiKey

Time

Right now there is the section [Time] just one option. How many days one folder can be outdated.:

[Time]
days = 3

Server

[Server] is for selecting the master backup path on the server & set the server mode.

	ArchivDir is the master path in witch the backups are will be save to.

	mode has 2 values active -> move the files from original path to the backup folder & passive -> just check if
the active server has done the work right. The default value is passive

	file_typ set the typ of files witch should be backup. Examples all databases with the ending MDB.

[Server]
ArchivDir = /srv/backup/daily_backup/
mode = active
file_typ = MDB

BackupDirs

The [BackupDirs] Section set witch directory should be backed up. Every entry is a new directory. On the left side
is the name of the new directory on the backup server & on the right side ios the full path of the to back up directory:

[BackupDirs]
MyDatabaseDir = /home/user/daily-db
UserWork = /home/user/done/work

Logging

[Logging] is for selecting the log_level (WARNING, INFO, DEBUG) & where to save to the log_file:

[Logging]
log_level = WARNING
log_file = /var/log/succes_backup_check.log

Usage

To run the program run:

$ success-backup-check

Or an example in crontab. (change your Python version):

$ python3 /usr/local/lib/python3.5/dist-packages/success_backup_check/__main__.py

Parameter

	Param
	Default Value
	Function

	
	-c file

	-config file

	/etc/success_backup_check.conf
	set the config file path

	
	-h

	
	show the help text

	
	–version

	
	show the version

API Reference

API documentation for the success-backup-check module.

	
success_backup_check.__main__.get_parser()

	Creates a new argument parser.

	
success_backup_check.__main__.main(args=None)

	Main entry point

	Parameters:	args – list
A of arguments as if they were input in the command line. Leave it
None to use sys.argv.

	
success_backup_check.archiv_files.archiv_files(directory, archive_dir, extension='MDB')

	Move Files with the default ending extension from dir to archive_dir
:param directory: original dir, where the database is right now
:param archive_dir: archiv dir, werhe the database will move to
:param extension: file ending name, default “MDB”

Returns:

	
success_backup_check.archiv_files.search_dir(path, extension)

	
extension with leading point, for example: ”.MDB”

	Parameters:	
	path –

	extension –

	
success_backup_check.check_backup.check_backup(directory, days)

	
	Check a Directory if the last modify date is older than n days

	
	Args:

	directory: Directory witch will be checked
days: modify time in days

	Returns: False –> the dir is out of date

	True –> everything is fine

	
success_backup_check.read_config.main(config_path)

	Read the config from the file at config_path and return it’s content
:param config_path: str complete path of the config file
:type config_path: object

	Returns:	config content

	
success_backup_check.set_logging.get_logging_level(logging_level)

	Change string into logging level.
Example “DEBUG” -> logging.DEBUG

	Returns:	
	logging level

	“DEBUG” -> logging.DEBUG
“INFO” -> logging.INFO
“WARNING” -> logging.WARNING
default -> logging.WARNING

	Return type:	object

	
success_backup_check.set_logging.set_logging(logging_level, log_file)

	Setup logging config to log into terminal & log file.
Just execute set_logging(logging_level, log_file) and start of the script & every time when logging will use this
config.

	Parameters:	
	logging_level – string “DEBUG”, “INFO” or “WARNING”

	log_file – full path of the log file example: “/var/log/mylog.log”

	
success_backup_check.set_logging.set_logging_minimal(logging_level)

	Set logging minimal logging, just writing log to console without saving it into a file.
:param logging_level: string “DEBUG”, “INFO” or “WARNING”

	
success_backup_check.hdd_smart_test.main(config)

	HDD SMART test

	Parameters:	config (object) – config object from read_config

	
success_backup_check.hdd_smart_test.send_alert_sendmail(TEXT, failed_drives, config)

	HDD SMART test

	Parameters:	
	TEXT (object) – Message witch should be send

	config (object) – config object from read_config

Help

Need some help? Write me info@linuxluigi.com

Changelog

	Version
	Content

	0.2.0
	
	Add documentation

	Refactor Sourcecode

	add HDD SMART test

	add logging

	add more options to config

	add -c file_path & --config file_path as program parameter

	0.1
	
	Init project

License

MIT License

Copyright (c) 2017 Steffen Exler

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 success_backup_check	

 	
 	
 success_backup_check.__main__	

 	
 	
 success_backup_check.archiv_files	

 	
 	
 success_backup_check.check_backup	

 	
 	
 success_backup_check.hdd_smart_test	

 	
 	
 success_backup_check.read_config	

 	
 	
 success_backup_check.set_logging	

Index

 A
 | C
 | G
 | M
 | S

A

 	
 	archiv_files() (in module success_backup_check.archiv_files)

C

 	
 	check_backup() (in module success_backup_check.check_backup)

G

 	
 	get_logging_level() (in module success_backup_check.set_logging)

 	
 	get_parser() (in module success_backup_check.__main__)

M

 	
 	main() (in module success_backup_check.__main__)

 	(in module success_backup_check.hdd_smart_test)

 	(in module success_backup_check.read_config)

S

 	
 	search_dir() (in module success_backup_check.archiv_files)

 	send_alert_sendmail() (in module success_backup_check.hdd_smart_test)

 	set_logging() (in module success_backup_check.set_logging)

 	set_logging_minimal() (in module success_backup_check.set_logging)

 	success_backup_check.__main__ (module)

 	
 	success_backup_check.archiv_files (module)

 	success_backup_check.check_backup (module)

 	success_backup_check.hdd_smart_test (module)

 	success_backup_check.read_config (module)

 	success_backup_check.set_logging (module)

Warning

Beta software
You are using a software that has not reached a stable version yet. Please
beware that interfaces might change, APIs might disappear and general
breakage can occur before 1.0.

If you plan to use this software for something important, please read the
roadmap, and the issue tracker in Github. If you are unsure about the
future of this project, please talk to the developers, or (better yet) get
involved with the development of success-backup-check!

About

Move user files on a server from a place where the user has write rights & move it to an archive or backup folder, where
to user has no read or write access.

A use case example: Daily backup of a point-of-sale database. So that every point-of-sale device has only the current
database in the storage. The 2 server check in the operation when was the last backup & send an email if the current
database on the server is to old.

[image: function overview]

[image: Backup check]

 _images/BackupCheck.png
Backup Folder

2017-10-24 1856

Search for
the newest

2017-10-24 1857 entry

2017-10-24 22:06

2017-10-24 22:06

check f
the backup
is not outdated,

utdated

send log mail

backup
alrignt

_images/Overview.png
controlfserver operatio server

S S
S S

Save Files
to Private
Cloud

User

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/BackupCheck.png
Backup Folder

2017-10-24 1856

Search for
the newest

2017-10-24 1857 entry

2017-10-24 22:06

2017-10-24 22:06

check f
the backup
is not outdated,

utdated

send log mail

backup
alrignt

nav.xhtml

 Table of Contents

 		Success-Backup-Check's documentation!

 		Installation instructions

 		Requirements

 		Linux

 		Mac

 		Install

 		Troubleshoot

 		Config

 		Mail

 		Time

 		Server

 		BackupDirs

 		Logging

 		Usage

 		Parameter

 		API documentation

 		Help

 		Changelog

 		License

_static/comment-close.png

_static/down.png

_static/comment.png

_static/plus.png

_static/Overview.png
controlfserver operatio server

S S
S S

Save Files
to Private
Cloud

User

_static/down-pressed.png

