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CHAPTER 2

Content

2.1 About This Documentation

Welcome to the unofficial documentation for the Sublime Text editor!
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Sublime Text is a versatile and fun text editor for code and prose that automates repetitive tasks so you can focus the
important stuff. It works on OS X, Windows and Linux.

If you’re starting out with Sublime Text, read the Basic Concepts section first.

Happy learning!

2.1.1 Contributing to the Documentation

If you want to contribute to this documentation, head over to the GitHub repo. This guide has been created with
Sphinx.
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2.2 Installation

Make sure to read the conditions for use on the official site. Sublime Text is not free.

The process of installing Sublime Text is different for each platform.

2.2.1 32 bits or 64 bits?

OS X

You can ignore this section: there is only one version of Sublime Text for OS X.

Windows

You should be able to run the 64-bit version if you are using a modern version Windows. If you are having trouble
running the 64-bit version, try the 32-bit version.

Linux

Run this command in your terminal to check your operating system’s type:

uname -m

2.2.2 Windows

Portable or Not Portable?

Sublime Text comes in two flavors for Windows: normal, and portable. Most users should be better served by a normal
installation. Use the portable version only if you know you need it.

Normal installations separate data between two folders: the installation folder proper, and the data directory (user-
specific directory for data; explained later in this guide). Normal installations also integrate Sublime Text with File
Explorer.

Portable installations keep all files needed by Sublime Text in a single folder. This folder can be moved around and
the editor will still work.

How to Install the Normal Version of Sublime Text

1. Download the installer

2. Double click on the installer

How to Install the Portable Version of Sublime Text

1. Download the compressed files

2. Unzip them to a folder of your choice

You will find the sublime_text.exe executable inside that folder.

2.2. Installation 5
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2.2.3 OS X

1. Download .dmg file

2. Open .dmg file

3. Drag the Sublime Text 3 bundle into the Applications folder

To create a symbolic link to use at the command line issue the following command at the terminal:

ln -s "/Applications/Sublime Text.app/Contents/SharedSupport/bin/subl" /usr/local/
→˓bin/subl

2.2.4 Linux

You can download the package and uncompress it manually. Alternatively, you can use the command line.

Ubuntu

For i386

cd ~
wget http://c758482.r82.cf2.rackcdn.com/sublime-text_build-3083_i386.deb

For x64

cd ~
wget http://c758482.r82.cf2.rackcdn.com/sublime-text_build-3083_amd64.deb

Other Linux Distributions

For i386

cd ~
wget http://c758482.r82.cf2.rackcdn.com/sublime_text_3_build_3083_x32.tar.bz2
tar vxjf sublime_text_3_build_3083_x32.tar.bz2

For x64

cd ~
wget http://c758482.r82.cf2.rackcdn.com/sublime_text_3_build_3083_x64.tar.bz2
tar vxjf sublime_text_3_build_3083_x64.tar.bz2

Now we should move the uncompressed files to an appropriate location.

sudo mv Sublime\ Text\ 3 /opt/

Lastly, we create a symbolic link to use at the command line.

sudo ln -s /opt/Sublime\ Text\ 3/sublime_text /usr/bin/sublime

In Ubuntu, if you also want to add Sublime Text to the Unity luncher, read on.

First we need to create a new file.
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sudo sublime /usr/share/applications/sublime.desktop

Then copy the following into it.

[Desktop Entry]
Version=1.0
Name=Sublime Text 3
# Only KDE 4 seems to use GenericName, so we reuse the KDE strings.
# From Ubuntu's language-pack-kde-XX-base packages, version 9.04-20090413.
GenericName=Text Editor

Exec=sublime
Terminal=false
Icon=/opt/Sublime Text 3/Icon/48x48/sublime-text.png
Type=Application
Categories=TextEditor;IDE;Development
X-Ayatana-Desktop-Shortcuts=NewWindow

[NewWindow Shortcut Group]
Name=New Window
Exec=sublime -n
TargetEnvironment=Unity

If you’ve registered your copy of Sublime Text, but every time you open it you’re asked to enter your license, you
should try running this command.

sudo chown -R username:username /home/username/.config /sublime-text-3

Just replace username with your account’s username. This should fix the permission error in the case that you opened
up Sublime Text as root when you first entered the license.

2.2.5 Release Channels

At the time of this writing, two major versions of Sublime Text exist: Sublime Text 2 and Sublime Text 3. Generally
speaking, Sublime Text 3 is the better choice. Even though it’s technically in beta, it’s as stable as Sublime Text 2 and
has more features.

Use Sublime Text 2 only if you have found issues running Sublime Text 3 or you depend on any package not available
for Sublime Text 3.

Getting Sublime Text 3

Sublime Text 3 currently has two release channels:

• Beta (default, recommended)

• Dev

Beta releases are better tested and more reliable for everyday use than development builds. The majority of users
should only use beta releases.

The dev channel is unstable: dev builds may contain bugs and not work reliably. Dev builds are updated more often
than beta releases.

Dev builds are only available to registered users.

2.2. Installation 7
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Getting Sublime Text 2

We recommend Sublime Text 3, but if you have chosen to use Sublime Text 2 you can download it here.

2.3 Basic Concepts

2.3.1 Overview

To fully understand the rest of this guide, you need to be familiar with the concepts presented in this section.

2.3.2 General Conventions

This guide is written from the perspective of a Windows user. Most instructions will only require trivial changes to
work on other platforms.

Unless otherwise noted, relative paths (for example, Packages/User) start at the Data Directory.

We assume default key bindings when indicating keyboard shortcuts. If you are using a non-US-English keyboard
layout, some key bindings may not match your layout. This is due to the way Sublime Text processes key strokes
internally.

2.3.3 Mastering Sublime Text Takes Time

Mastering Sublime Text requires time and practice. Luckily, it’s built around a handful of concepts that make for a
consistent system once all the pieces come together.

This guide will teach you how to use and configure Sublime Text.

Sublime Text is a versatile editor for programmers, but you don’t need to be one in order to use it, and you don’t need
to configure it extensively to be productive—it’s an efficient tool out of the box. Hackers, however, will appreciate all
the customization and extensibility opportunities.

In the following paragraphs, we’ll outline key aspects that you’ll get familiar with after you’ve spent some time using
the editor.

2.3.4 The Data Directory

Nearly all of the interesting files for users live under the data directory. The data directory is a platform-dependent
location:

• Windows: %APPDATA%\Sublime Text 3

• OS X: ~/Library/Application Support/Sublime Text 3

• Linux: ~/.config/sublime-text-3

If you’re using the portable version (Windows only), look for Application/Data. Here, Application refers
to the directory to which you’ve extracted the compressed portable files and where the executable resides.

Note that the Data directory only exists with that name in the portable version. In full installations, it is one of the
locations indicated above.

8 Chapter 2. Content
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2.3.5 The Packages Directory

This is a key directory located under the data directory. All resources for supported programming and markup lan-
guages are stored here.

(More on packages and resources later.)

You can access the packages directory from the main menu (Preferences → Browse Packages. . . ), by means of an
API call (sublime.packages_path()), and by other means that will be explained in later topics.

In this guide, we refer to the packages folder as Packages, packages path, packages folder or packages directory.

The User Package

Packages/User is a catch-all directory for custom plugins, snippets, macros, etc. Consider it your personal area in
the packages folder. Additionally, it will contain most of your personal application or plugin settings.

Updates to Sublime Text will never overwrite the contents of Packages/User.

2.3.6 Sublime Text is Programmable

This information is useful for programmers. Other users just need to know that Sublime Text enables users with
programming skills to add their own features to the editor.

Sublime Text exposes its internals via an Application Programming Interface (API) that programmers can interact with
using the Python programming language. An embedded Python interpreter is included in the editor. The embedded
interpreter is useful to inspect the editor’s settings and to quickly test API calls while developing plugins.

Sublime Text and plugins output information to a console. To open the console, press Ctrl+` or select View →
Show Console from the main menu.

Here’s the Python console in Sublime Text:

Your System’s Python vs the Sublime Text 3 Embedded Python

Sublime Text 3 comes with its own Python interpreter that’s separate from your system’s Python interpreter (if avail-
able).

The embedded interpreter is only intended to interact with the plugin API, not for general development.

2.3. Basic Concepts 9
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2.3.7 Packages, Plugins, Resources and Other Terms

Almost every aspect of Sublime Text can be extended or customized. You can modify the editor’s behavior, add macros
and snippets, extend menus and much more. You can even create whole new features using the editor’s API to build
complex plugins.

Sublime Text’s vast flexibility is the reason why you will learn about so many configuration files: there simply must
be a place to specify all available preferences and settings.

Configuration files in Sublime Text are text files that conform to a predefined structure or format: JSON predominates,
but you’ll find XML files too. For the more advanced extensibility options, Python source code files are used.

In this guide, for brevity, we sometimes refer collectively to all these disparate configuration files as resources.

Sublime Text will look for resources inside the packages folder. We’ll talk at length about packages later, but the
short version is that, to keep things tidy, Sublime Text has a notion of a package, that is, a folder (or zip archive) that
contains resources that belong together (maybe they help compose emails faster, write HTML efficiently, enhance the
coding experience for C, Ruby, Go. . . ).

2.3.8 Textmate Compatibility

This information is useful for Textmate users who are now using Sublime Text.

Textmate is an editor for the Mac.

Sublime Text compatibility with Textmate bundles is good excluding commands, which are incompatible. Addition-
ally, Sublime Text requires all syntax definitions to have the .tmLanguage extension, and all preferences files to have
the .tmPreferences extension. In particular, this means that .plist files will be ignored, even if they are located under a
Syntaxes or Preferences subdirectory.

2.3.9 vi/Vim Emulation

This information is useful for Vim users who are now using Sublime Text.

vi is an ancient modal editor that lets the user perform all operations from the keyboard. Vim, a modern version of vi,
is still in widespread use.

Sublime Text provides vi emulation through the Vintage package. The Vintage package is ignored by default. Learn
more about Vintage in the official documentation.

An evolution of Vintage, called Vintageous, offers a better vi/Vim editing experience and is updated more often than
Vintage. Vintageous is an open source project.

2.3.10 emacs Emulation

This information is useful for emacs users who are now using Sublime Text.

emacs is another popular editor for programmers.

Sublime Text does not offer any built-in emacs emulation, but you can try third-party packages created by other
Sublime Text users.
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2.4 Editing

2.4.1 Overview

Sublime Text is brim-full of editing features. This topic just scratches the surface of what’s possible.

2.4.2 Multiple Selections

Multiple selections let you make sweeping changes to your text efficiently. Any praise about multiple selections is an
understatement. This is why:

Select some text and press Ctrl + D to add more instances. If you want to skip the current instance, press Ctrl
+ K, Ctrl + D.

If you go too far, press Ctrl + U to deselect the current instance.

2.4.3 Transforming Multiple Selections into Lines

Ctrl + L expands the selections to the end of the line. Ctrl + Shift + L splits the selections into lines.

You can copy multiple selected lines to a separate buffer, edit them there, select the content again as multiple lines and
then paste them back into place in the first buffer.

2.4.4 Column Selection

You can select a rectangular area of a file. Column selection makes use of multiple selections.

It’s possible to add blocks of text to or remove them from the selection.

Using the Mouse

Windows

Select Block Right Mouse Button +
Add to Selection Ctrl + Right Mouse Button +
Remove from Selection Alt + Right Mouse Button +

Linux

Select Block Right Mouse Button +
Add to Selection Ctrl + Right Mouse Button +
Remove from Selection Alt + Right Mouse Button +

OS X

Select Block Right Mouse Button +
Add to Selection + Right Mouse Button +
Remove from Selection + + Right Mouse Button +

2.4. Editing 11
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Using the Keyboard

Windows Ctrl + Alt + Up and Ctrl + Alt + Down
Linux Alt + + Up and Alt + + Down
OS X + + Up and + + Down

2.4.5 Other Ways of Selecting Text

The list is long; all available options can be found under Selection. To name a few:

• Select subwords (Alt + Shift + <arrow>)

• Expand selection to brackets (Ctrl + Shift + M)

• Expand selection to indentation (Ctrl + Shift + J)

• Expand selection to scope (Ctrl + Shift + Space)

2.4.6 Transposing Things

Need to swap two letters or, better yet, two words? Experiment with Ctrl + T.

2.4.7 And much, much more. . .

The Edit, Selection, Find and Goto menus are good places to look for handy editing tools. You might end up using
just a few of them, but the rest will still be there for when you need them.

2.5 Search and Replace

Sublime Text features two main types of searches:

2.5.1 Search and Replace – Single File

Searching

Keyboard shortcuts related to the search panel:

Open search panel Ctrl + F
Toggle regular expressions Alt + R
Toggle case sensitivity Alt + C
Toggle exact match Alt + W
Find next Enter
Find previous Shift + Enter
Find all Alt + Enter

12 Chapter 2. Content



Sublime Text Unofficial Documentation, Release 3.0

Incremental Search

Keyboard shortcuts related to the incremental search panel:

Open incremental search panel Ctrl + I
Toggle regular expressions Alt + R
Toggle case sensitivity Alt + C
Toggle exact match Alt + W
Find next Enter
Find previous Shift + Enter
Find all Alt + Enter

The only difference between this panel and the regular search panel lies in the behavior of the Enter key. In incre-
mental searches, it will select the next match in the file and dismiss the search panel for you. Choosing between this
panel or the regular search panel is a matter of preference.

Replacing Text

Keyboard shortcuts related to the replace panel:

Open replace panel Ctrl + H
Replace next Ctrl + Shift + H
Replace all Ctrl + Alt + Enter

Tips

Other Ways of Searching in Files

Goto Anything provides the operator # to search in the active file.

Other Search-Related Key Bindings

These key bindings work when the search panel is hidden:

Search forward using most recent pattern F3
Search backwards using most recent pattern Shift + F3
Select all matches using most recent pattern Alt + F3

You can also perform searches based on the current selection:

Search using current selection Ctrl + E
Replace using current selection Ctrl + Shift + E

Multiline Search

You can type in multiline search patterns into search panels. To enter newline characters, press Ctrl + Enter.

Note that search panels are resizable too.

2.5. Search and Replace 13
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Fig. 2.1: A multiline pattern

2.5.2 Search and Replace — Multiple Files

The search panel for searching multiple files is known as Find in Files.

Searching

Keyboard shortcuts related to Find in Files:

Open Find in Files Ctrl + Shift + F
Toggle regular expressions Alt + R
Toggle case sensitivity Alt + C
Toggle exact matches Alt + W
Find next Enter

Search Filters

The Where field in Find in Files limits the search scope. You can define filters in several ways:

• Adding individual directories (Unix-style paths, even on Windows)

• Adding/excluding files based on wildcards

• Adding symbolic locations (<open folders>, <open files>. . . )

Relative paths in filters are interpreted to start at the root of the active project.

It is also possible to combine filters using commas. You can combine filters in any order.

Fig. 2.2: Combining Where scopes in Find in Files

Press the . . . button in the search panel to display a menu containing filtering options.
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Results Format

You can customize how results are displayed using buttons available in the Find in Files panel. These are the available
options:

• Show in separate view (Use Buffer)

• Show context

Fig. 2.3: Find in Files results displayed in a view

Fig. 2.4: Buttons for customizing the Find in Files results

Navigating Results

If a search yields matches, you can move through the sequence using the following key bindings:

Next match F4
Previous match Shift + F4

2.5. Search and Replace 15
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2.5.3 Regular Expressions

Search functions in Sublime Text support regular expressions, a powerful tool for searching and replacing text. Regular
Expressions find complex patterns in text.

Regular expression patterns are composed of symbols and special constructs. To the non-initiated, regular expres-
sion patterns look undecipherable because common characters double as operators and cannot always be interpreted
literally.

This is how a regular expression might look:

(?:Sw|P)i(?:tch|s{2})\s(?:it\s)?of{2}!

The term regular expression is usually shortened to regexp or regex.

To take full advantage of the search and replace facilities in Sublime Text, you should at least learn the basics of
regular expressions. This guide doesn’t teach you how to use regular expressions.

The Replace box in a search and replace panel also supports special symbols called format strings that look similar to
regular expressions. Format strings allow you to perform complex text transformations before inserting the result into
the buffer.

Sublime Text uses the Perl Compatible Regular Expressions (PCRE) engine from the Boost library to power regular
expressions in search panels.

2.5.4 Using Regular Expressions in Sublime Text

To use regular expressions in Sublime Text, first activate them in the corresponding search panel by clicking on the
available buttons or using keyboard shortcuts.

If you don’t activate regular expressions before performing a search, the search terms will be interpreted literally.

Fig. 2.5: A search panel with the regular expressions option enabled

See also:
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Boost library documentation for regular expressions Documentation on regular expressions.

Boost library documentation for format strings Documentation on format strings. Note that Sublime Text addi-
tionally interprets \n as $n.

2.6 Build Systems (Batch Processing)

See also:

Reference for build systems Complete documentation on all available options, variables, etc.

Warning: Build system selection is currently undergoing a rework in the dev channel. The following information
may be outdated.

See this forum thread for details.

Build systems let you run your files through external programs like make, tidy, interpreters, etc.

Executables called from build systems must be in your PATH. For more information about making sure the PATH seen
by Sublime Text is set correctly, see Troubleshooting Build Systems.

2.6.1 File Format

Build systems are JSON files and have the extension .sublime-build.

Example

Here’s an example of a build system:

{
"cmd": ["python", "-u", "$file"],
"file_regex": "^[ ]*File \"(...*?)\", line ([0-9]*)",
"selector": "source.python"

}

cmd Required. This option contains the actual command line to be executed:

python -u /path/to/current/file.ext

file_regex A Perl-style regular expression to capture error information from an external program’s output. This
information is used to help you navigate through error instances with F4.

selector If the Tools | Build System | Automatic option is set, Sublime Text will automatically find the corre-
sponding build system for the active file by matching selector to the file’s scope.

In addition to options, you can use some variables in build systems too, as we have done above with $file, which
expands to the active buffer’s filename.

2.6.2 Where to Store Build Systems

Build systems must be located somewhere under the Packages folder (e.g. Packages/User). Many packages
include their own build systems.

2.6. Build Systems (Batch Processing) 17
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2.6.3 Running Build Systems

Build systems can be run by pressing F7 or from Tools → Build.

2.7 File Management and Navigation

Sublime Text includes a variety of features to help you keep your work organized and find your way around your
projects.

2.7.1 Projects

Projects group sets of files and folders to keep your work organized. They support project-specific settings and build
systems and you can quickly switch between them to continue working where you left off.

Adding folders to a project is necessary for Goto Anything and project-wide Goto Definition.

There is always an active project, even if you haven’t created or opened one. In this situation, you are working with an
anonymous project, which has limited functionality. New windows always use an anonymous project when they first
open.

Project metadata is stored in JSON files with a .sublime-project extension. Wherever there’s
a .sublime-project file, you will find an ancillary .sublime-workspace file too. The .
sublime-workspace file contains session data that you should never edit. (More on workspaces later.)

Note: Generally speaking, it’s fine to commit .sublime-project files to a source code repository, but always be
mindful of what you store in them.

The above not withstanding, in projects where not everybody is using Sublime Text as their editor it’s advisable to
keep the .sublime-project file outside of the project’s repository.

Creating a Project

Start with an anonymous project by opening a new window or closing any active project with the Project → Close
Project menu.

You can add and remove folders to/from a project using the Project menu or the side bar’s context menu. If you drag
a folder onto a Sublime Text window, it will be added to the project too.

To save an anonymous project, go to Project → Save Project As. . . .

After the project is saved, you can edit it by hand to adjust further options.

Opening Projects

Using the main menu, you can open or switch projects by selecting Projects → Open Recent, Projects → Switch
Project. . . or Projects → Quick Switch Project. . . .

When switching projects, Sublime Text will close the current project and open the specified one in the same window,
When opening a project, Sublime Text will open a new window and open the selected project there.

Keyboard shortcuts related to projects:

Quick Switch Project. . . Ctrl + Alt + P
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Note: The key binding was removed with build 3096 for Windows and must be added manually, if desired. In order
to do this, add the following key binding to your user key bindings file:

{ "keys": ["ctrl+alt+p"], "command": "prompt_select_workspace" }

Additionally, you can open a project from the command line by passing the .sublime-project file as an argu-
ment to the subl command line helper included with Sublime Text.

Advanced Configuration for Project Files

Along with more options for individual directories, projects can have specific build systems or settings overrides.

See also:

Projects - Reference Documentation on project file format and options.

Settings Related to the Sidebar and Projects

binary_file_patterns A list of wildcards. Files matching these wildcards will show up in the side bar, but
will be excluded from Goto Anything and Find in Files.

Workspaces

Workspaces hold session data associated with a project, which includes information about the opened files, pane
layout, find history and more. A project can have multiple workspaces.

A common use case for workspaces is to work on different features within the same project, where each feature
requires a different set of files to be open, and you want to switch between features quickly. In this case you’ll want to
have a second workspace available. Writing tests could be an example for this.

Workspaces behave very much like projects. To create a new workspace, select Project → New Workspace for
Project. To save the active workspace, select Project → Save Workspace As. . . .

The workspace metadata is stored in JSON files with the .sublime-workspace extension, which you are not
supposed to edit.

To switch between different workspaces, use Ctrl+Alt+P, exactly as you do with projects.

As with projects, you can open a workspace from the command line by passing the desired .sublime-workspace
file as an argument to the subl command line helper included with Sublime Text.

Caution: Unlike .sublime-project files, .sublime-workspace files are not meant to be shared or
edited manually. You should never commit .sublime-workspace files into a source code repository. They
may contain sensitive information.

2.7.2 File Navigation

Goto Anything

Using Goto Anything, you can navigate your project’s files swiftly.

2.7. File Management and Navigation 19
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Keyboard shortcuts related to Goto Anything:

Open Goto Anything Ctrl + P
Pin current item and close Goto Anything Enter
Pin current item →
Close Goto Anything Esc

As you type into Goto Anything’s input area, names of files in the current project will be searched, and a preview
of the best match will be shown. This preview is transient; that is, it won’t become the actual active view until you
perform some operation on it. You will find transient views in other situations, for example, after clicking on a file in
the sidebar.

Goto Anything lives up to its name –there’s more to it than locating files.

Goto Anything Operators

Goto Anything accepts several operators. All of them can be used on their own or after the search term.

Example:

models:100

This instructs Sublime Text to first search for a file whose path matches models, and then to go to line 100 in said
file.

Supported Operators

@symbol Searches the active file for the symbol named symbol.

Note: Symbols usually include class and function names.

Symbol searches will only yield results if the active file type has symbols defined for it. Symbols are defined in
.tmLanguage files. For more information about symbols, see Symbols.

#term Performs a fuzzy search of the term search term and highlights all matches.
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:line_number Goes to the specified line_number, or to the end of the file if line_number is larger that the
file’s line count.

The Goto Anything operators are bound to the following shortcuts:

@ Ctrl + R
# Ctrl + ;
: Ctrl + G

Sidebar

The sidebar provides an overview of the active project (more on projects later). Files and folders in the sidebar will be
available in Goto Anything and project-wide actions like, for example, project-wide searches.

Projects and the sidebar are closely related. It’s important to note that there’s always an active project; if you haven’t
opened a project file, an anonymous project will be used instead.

The sidebar provides basic file management operations through its context menu.

These are common keyboard shortcuts related to the side bar:

Toggle side bar Ctrl + K, Ctrl + B
Give the focus to the side bar Ctrl + 0
Return the focus to the view Esc
Navigate side bar Arrow keys

Files opened from the sidebar create semi-transient views. Unlike transient views, semi-transient views show up as a
new tab. The tab title of semi-transient views appears in italics. Before a new semi-transient view is opened, any other
pre-existing semi-transient view in the same pane gets automatically closed.

Here’s an example showing a normal view, a transient view, and a semi-transient view. Notice that the transient view
has no tab:

Panes

Panes are groups of views. In Sublime Text, you can have multiple panes open at the same time.

Main keyboard shortcuts related to panes:

Create new pane Ctrl+K, Ctrl+↑
Close active pane Ctrl+K, Ctrl+↓

Further pane management commands can be found under View → Layout and related submenus.
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2.8 Customizing Sublime Text

Sublime Text can be fully customized. In the following topics, we outline the most common options. In particular, we
don’t cover themes, an immensely configurable area of Sublime Text.

2.8.1 Settings

Sublime Text stores configuration data in .sublime-settings files. Flexibility comes at the price of a slightly complex
system for applying settings. However, here’s a rule of thumb:

Always place your personal settings files under Packages/User to guarantee they will take precedence over any other
conflicting settings files.

With that out of the way, let’s unveil, to please masochistic readers, the mysteries of how settings work.

Format

Settings files use JSON and have the .sublime-settings extension.

Types of Settings

The name of each .sublime-settings file determines its purpose. Names can be descriptive (like Preferences
(Windows).sublime-settings or Minimap.sublime-settings), or they can be related to what the
settings file is controlling. For example, file type settings need to carry the name of the .tmLanguage syntax definition
for the file type. Thus, for the .py file type, whose syntax definition is contained in Python.tmLanguage, the
corresponding settings files would be called Python.sublime-settings.

Also, some settings files only apply to specific platforms. This can be inferred from the file names, e.g.
Preferences (platform).sublime-settings. Valid names for platform are Windows, Linux, OSX.

This is important: Platform-specific settings files in the Packages/User folder are ignored. This way, you can be
sure a single settings file overrides all the others.

Settings changes are usually updated in real time, but you may have to restart Sublime Text in order to load new
settings files.

How to Access and Edit Common Settings Files

Unless you need very fine-grained control over settings, you can access the main configuration files through the
Preferences | Settings - User and Preferences | Settings - More menu items. Editing Preferences | Settings -
Default is discouraged, because changes will be reverted with every update to the software. However, you can use
that file for reference: it contains comments explaining the purpose of all available global and file type settings.

Order of Precedence of .sublime-settings Files

The same settings file (such as Python.sublime-settings) can appear in multiple places. All settings defined
in identically named files will be merged together and overwritten according to predefined rules. See Merging and
Order of Precedence for more information.

Let us remember again that any given settings file in Packages/User ultimately overrides every other settings file
of the same name.
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In addition to settings files, Sublime Text maintains session data—settings for the particular set of files being currently
edited. Session data is updated as you work on files, so if you adjust settings for a particular file in any way (mainly
through API calls), they will be recorded in the session and will take precedence over any applicable .sublime-settings
files.

To check the value of a setting for a particular file being edited, use view.settings().
get("setting_name") from the console.

Finally, it’s also worth noting that some settings may be automatically adjusted for you. Keep this in mind if you’re
puzzled about some setting’s value. For instance, this is the case for certain whitespace-related settings and the
syntax setting.

Below, you can see the order in which Sublime Text would process a hypothetical hierarchy of settings for Python files
on Windows:

• Packages/Default/Preferences.sublime-settings

• Packages/Default/Preferences (Windows).sublime-settings

• Packages/User/Preferences.sublime-settings

• Packages/Python/Python.sublime-settings

• Packages/User/Python.sublime-settings

• Session data for the current file

• Auto adjusted settings

See The Settings Hierarchy for a full example of the order of precedence.

Global Editor Settings and Global File Settings

These settings are stored in Preferences.sublime-settings and Preferences (platform).
sublime-settings files. The defaults can be found in Packages/Default.

Valid names for platform are Windows, Linux, OSX.

File Type Settings

If you want to target a specific file type, name the .sublime-settings file after the file type’s syntax definition. For exam-
ple, if our syntax definition +was called Python.tmLanguage, we’d need to call our settings file Python.sublime-
settings.

Settings files for specific file types usually live in packages, like +:file:Packages/Python, but there can be multiple
settings files in separate locations for the same file type.

Similarly to global settings, one can establish platform-specific settings for file types. For example, Python
(Linux).sublime-settings would only be consulted under Linux.

Also, let us emphasize that under Pakages/User only Python.sublime-settings would be read, but not
any Python (platform).sublime-settings variant.

Regardless of its location, any file-type-specific settings file has precedence over a global settings file affecting file
types.

The Settings Hierarchy

Below, you can see the order in which Sublime Text would process a hypothetical hierarchy of settings for Python files
on Windows:
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• Packages/Default/Preferences.sublime-settings

• Packages/Default/Preferences (Windows).sublime-settings

• Packages/AnyOtherPackage/Preferences.sublime-settings

• Packages/AnyOtherPackage/Preferences (Windows).sublime-settings

• Packages/User/Preferences.sublime-settings

• Settings from the current project

• Packages/Python/Python.sublime-settings

• Packages/Python/Python (Windows).sublime-settings

• Packages/User/Python.sublime-settings

• Session data for the current file

• Auto-adjusted settings

Where to Store User Settings (Once Again)

Whenever you want to save settings, especially if they should be preserved between software updates, place the
corresponding .sublime-settings file in Packages/User.

2.8.2 Indentation

See also:

Indentation Official Sublime Text Documentation.

2.8.3 Key Bindings

See also:

Reference for key bindings Complete documentation on key bindings.

Key bindings let you map sequences of key presses to commands.

File Format

Key bindings are defined in JSON and stored in .sublime-keymap files.

In the same package, separate keymap files for Linux, OSX and Windows may exist for better OS integration.

Example

[
{ "keys": ["ctrl+shift+n"], "command": "new_window" },
{ "keys": ["ctrl+o"], "command": "prompt_open_file" }

]
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Defining and Overriding Key Bindings

Sublime Text ships with default key bindings (for example, Packages/Default/Default (Windows).
sublime-keymap). In order to override default key bindings or add new ones, use a separate keymap file with
higher precedence: for example, Packages/User/Default (Windows).sublime-keymap.

See Merging and Order of Precedence for more information.

Advanced Key Bindings

Simple key bindings consist of a sequence of one or more keys mapped to a command. However, there are more
complex syntaxes for passing arguments to commands and restricting key bindings to specific contexts.

Passing Arguments

Use the args key to specify arguments:

{ "keys": ["shift+enter"], "command": "insert", "args": {"characters": "\n"} }

Here, \n is passed to the insert command whenever Shift+Enter is pressed.

Contexts

Contexts determine whether a given key binding is enabled based on the caret’s position or some other state.

{ "keys": ["escape"], "command": "clear_fields", "context":
[

{ "key": "has_next_field", "operator": "equal", "operand": true }
]

}

This key binding translates to clear snippet fields and resume normal editing if there is a next snippet field available.
Thus, pressing ESC will only trigger this key binding if you are cycling through snippet fields.

The same key binding may be mapped to multiple contexts, so a single sequence of key presses may produce different
results at different times.

Key Chords

You can create key bindings composed of multiple keys.

{ "keys": ["ctrl+k", "ctrl+v"], "command": "paste_from_history" }

Here, to trigger the command paste_from_history, you have to press Ctrl + K first, then release K, and
finally press V.

Note: This example is a default key binding, so you can try it at any time.

2.8.4 Menus

See also:

Reference for menus Reference for menu creation.
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Sublime Text provides several menus that can be modified, for example, by adding menu items.

File Format

Format JSON (with comments)
Exten-
sion

.sublime-menu

Name One out of the list of available menus. See Available Menus for the complete name list and what menu
they represent.

Loca-
tion

Any under Packages

Content A list of “Menu Item” objects

Example

The following is an excerpt from the default Main.sublime-menu file.

[
{

"caption": "Edit",
"mnemonic": "E",
"id": "edit",
"children":
[

{ "command": "undo", "mnemonic": "U" },
{ "command": "redo_or_repeat", "mnemonic": "R" },
{

"caption": "Undo Selection",
"children":
[

{ "command": "soft_undo" },
{ "command": "soft_redo" }

]
},
{ "caption": "-", "id": "clipboard" },
{ "command": "copy", "mnemonic": "C" },
{ "command": "cut", "mnemonic": "t" },
{ "command": "paste", "mnemonic": "P" },
{ "command": "paste_and_indent", "mnemonic": "I" },
{ "command": "paste_from_history", "caption": "Paste from History" }

]
}

]

Images

Available Menus

The file name of a .sublime-menu file specifies the menu to be modified in the application.

The following menus are available:
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Fig. 2.6: The default context menu in the editing area.

File/Menu
Name

Description

Main Main menu
Context Context menu in the editing area
Find in Files Appears when clicking the “. . . ” button in the Find in Files panel.
Side Bar Context menu for each node in the sidebar
Side Bar
Mount Point

Additional context menu items for the top-level nodes in the sidebar

Tab Context Context menu of the tab bar
Widget Con-
text

Context menu of input fields in all kinds of widgets, including Command Palette, Goto Anything,
the Find panels and panels opened by plugins

Additionally, the following four menus open when you click their respective section in the status bar:

• Encoding

• Line Endings

• Indentation

• Syntax

Menu Items

When selected, a menu item can either invoke a command (with arguments), or open a submenu.

The available properties are:

• a command name,

• arguments for the command,

• an ID,

• a caption,
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Fig. 2.7: A modified context menu in the editing area.

Fig. 2.8: Demonstration of a status bar menu.
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• a mnemonic and

• a submenu.

In order to function properly, a menu item must provide at least:

• a command name,

• a caption and a submenu,

• just a caption, or

• an ID (see below).

When parsing a menu item, the following rules apply:

1. A menu item with a submenu cannot invoke a command. If the separator caption is used, it will be rendered as
a literal hyphen.

2. If no caption is provided, a caption is inferred from the command’s description method. If neither caption
nor command are provided, the caption will be an empty string.

3. The character used for the mnemonic must be contained in the item’s caption. Mnemonics are case-sensitive.

4. Menu that reference missing commands are disabled.

5. Menu items can be hidden or disabled by their referenced command.

Separators

Separators are menu items with the caption - and no submenu. They are commonly used to group menu items with a
similar purpose or that are otherwise related. Separators cannot invoke commands. The presence of a submenu causes
the menu separator to be rendered as a regular item with a single hyphen as its caption.

Multiple consecutive separators are reduced to one, and separators at the beginning or the end of a menu are not
displayed.

Menu Merging

.sublime-menu files are loaded in the same order as packages. Menu files with the same name are concatenated,
unless IDs are specified (see below).

Menu files in the same package are loaded in lexicographical order starting at the root folder, and then traversing
sub-folders in the same manner.

As a special case, menu items from the User package declared in the standard non-ID section of a menu are always
inserted after any standard items from other packages.

Item IDs

When a menu item specifies an ID, a separate section within the menu is searched for and, if it does not exist, created
at the end of the menu. This ID lookup is forward-going only.

The ID determines the section’s name, and the menu item with the matching ID will be the first item in this section.
All following items in the file will then be appended to the ID’s section, until another item with an ID is found.

For example, if you have main menu as:
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[
{ "caption": "-", "id": "clipboard" },
{ "command": "copy" },
{ "caption": "-", "id": "selection" },
{ "command": "select_all" }

]

And you want to insert the menu entry paste after the clipboard entry when adding it, you need to create the
insertion file as:

[
{ "caption": "-", "id": "clipboard" },
{ "command": "paste" }

]

If two menu items from different .sublime-menu files reference the same item via ID, Sublime Text will override
the item’s previous parameters with the new parameters, if there are any. Child elements extend the submenu. All
following items are then appended to the ID’s section, until another item with an ID is found.

It is common practice to assign IDs to separators and items having a submenu, so that other packages or the user
themselves can easily customize the menu. This allows appending items to sections introduced by separators and
appending items to submenus.

Note: Due to the strict forward lookup, it is possible to have multiple different items with the same ID in one menu.
Because of the potential confusion this may cause, it is discouraged.

Example: The following three IDs are defined in a menu, in this order: test, test2, test.

The item with the second “test” ID can then be targeted using the following ID combinations: test, test2,
test; test, test or test2, test.

Submenus

Every menu item can have a submenu. Hovering the mouse pointer over a menu item with a submenu will reveal the
items grouped under it. Submenus are independent menus with their own ID hierarchy.

In order to extend a submenu from a different menu file, an ID must be specified in both places to target the correct
item.

The Main Menu

Unlike all other menus, the Main Menu’s root menu represents the menu items in the menu bar (File, Help, etc.).
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Interface for Commands

A menu item can be dynamically

• hidden,

• disabled,

• checked, or

• assigned a different caption.

For this, commands must implement the required methods in their class. Each implemented method will be called
with the arguments specified in the corresponding menu item. If that call fails, the method will be immediately called
again without arguments.

• is_visible

• is_enabled

• is_checked

• description

Some of these methods also have an influence on the Command Palette.

See also:

Official API Documentation on the Command interface

Context Menus in the Side Bar

The Side Bar and Side Bar Mount Point menus are different to the other menus in that they provide contextual
information regarding the selected item(s). The selected directories and files are passed as a list to the specified
command in a files argument.

2.8.5 Color Schemes

Sublime Text uses color schemes to highlight source code and to define the colors of some items in the editing area:
background, foreground, gutter, caret, selection. . .

Color schemes are fully customizable.

Let’s look at a Python file as Sublime Text highlights it using the default color scheme Monokai:
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Selecting a Color Scheme

You can change the current color scheme by means of the Preferences → Color Scheme menu.

A common way of selecting a color scheme is by associating it to a type of file using file-type-specific settings. Select
Preferences → Settings - Syntax Specific to open the corresponding settings file and set the color_scheme setting.

For more information about settings, see Settings.

See also:

Reference for color schemes Complete reference on color scheme settings.

2.9 Extending Sublime Text

The following topics show various ways in which Sublime Text can be extended with additional functionality.

2.9.1 Commands

Commands are ubiquitous in Sublime Text: key bindings, menu items and macros all work through the command
system. They are found in other places too.

Some commands are implemented in the editor’s core, but many of them are provided as Python plugins. Every
command can be called from a Python plugin.

32 Chapter 2. Content



Sublime Text Unofficial Documentation, Release 3.0

Command Dispatching

Normally, commands are bound to the application object, a window object or a view object. Window objects, however,
will dispatch commands based on input focus, so you can issue a view command from a window object and the correct
view instance will be found for you.

Anatomy of a Command

Commands have a name separated by underscores (snake_case) like hot_exit, and can take a dictionary of argu-
ments whose keys must be strings and whose values must be JSON types. Here are a few examples of commands run
from the Python console:

view.run_command("goto_line", {"line": 10})
view.run_command('insert_snippet', {"contents": "<$SELECTION>"})
view.window().run_command("prompt_select_project")

See also:

Reference for commands Command reference.

2.9.2 Macros

Macros are a basic automation facility comprising sequences of commands. Use them whenever you need to repeat
the exact same steps to perform an operation.

Macro files are JSON files with the extension .sublime-macro. Sublime Text ships with a few macros providing
core functionality, such as line and word deletion. You can find these under Tools | Macros or in Packages/
Default.

How to Record Macros

To start recording a macro, press Ctrl+q and subsequently execute the desired steps one by one. When you’re done,
press Ctrl+q again to stop the macro recorder. Your new macro won’t be saved to a file, but kept in the macro buffer
instead. Now you will be able to run the recorded macro by pressing Ctrl+Shift+q, or save it to a file by selecting
Tools | Save macro. . .

Note that the macro buffer will remember only the latest recorded macro. Also, macros only record commands sent to
the buffer: window-level commands, such creating a new file, will be ignored.

How to Edit Macros

As an alternative to recording a macro, you can edit it by hand. Just save a new file with the .sublime-macro
extension under Packages/User and add commands to it. Macro files have this format:

[
{"command": "move_to", "args": {"to": "hardeol"}},
{"command": "insert", "args": {"characters": "\n"}}

]

See the Commands section for more information on commands.

If you’re editing a macro by hand, you need to escape quotation marks, blank spaces and backslashes by preceding
them with \.
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Where to Store Macros

Macro files can be stored in any package folder, and then will show up under Tools | Macros | <PackageName>.

Key Binding for Macros

Macro files can be bound to key combinations by passing the macro file path to the run_macro_file command like so:

{"keys": ["super+alt+l"], "command": "run_macro_file", "args": {"file": "res://
→˓Packages/User/Example.sublime-macro"}}

2.9.3 Snippets

Whether you are coding or writing the next vampire best-seller, you’re likely to need certain short fragments of text
again and again. Use snippets to save yourself tedious typing. Snippets are smart templates that will insert text for you
and adapt it to their context.

To create a new snippet, select Tools | Developer | New Snippet. . . Sublime Text will present you with a skeleton for
it.

Snippets can be stored under any package’s folder, but to keep it simple while you’re learning, you can save them to
your Packages/User folder.

Snippets File Format

Snippets typically live in a Sublime Text package. They are simplified XML files with the extension .sublime-snippet.
For instance, you could have a greeting.sublime-snippet inside an Email package.

The structure of a typical snippet is as follows (including the default hints Sublime Text inserts for your convenience):

<snippet>
<content><![CDATA[Type your snippet here]]></content>
<!-- Optional: Tab trigger to activate the snippet -->
<tabTrigger>xyzzy</tabTrigger>
<!-- Optional: Scope the tab trigger will be active in -->
<scope>source.python</scope>
<!-- Optional: Description to show in the menu -->
<description>My Fancy Snippet</description>

</snippet>

The snippet element contains all the information Sublime Text needs in order to know what to insert, whether to
insert and when. Let’s look at each of these parts in turn.

content The actual snippet. Snippets can range from simple to fairly complex templates. We’ll look at examples
of both later.

Keep the following in mind when writing your own snippets:

• If you want to get a literal $, you have to escape it like this: \$.

• When writing a snippet that contains indentation, always use tabs. When the snippet is inserted, the tabs
will be transformed into spaces if the option translate_tabs_to_spaces is true.

• The content must be included in a <![CDATA[...]]> section. Snippets won’t work if you don’t do
this!

34 Chapter 2. Content



Sublime Text Unofficial Documentation, Release 3.0

• The content of your snippet must not contain ]]> because this string of characters will prematurely
close the <![CDATA[...]]> section, resulting in an XML error. To work around this pitfall, you can
insert an undefined variable into the string like this: ]]$NOT_DEFINED>. This modified string passes
through the XML parser without closing the content element’s <![CDATA[...]]> section, but Sublime
Text will replace $NOT_DEFINEDwith an empty string before inserting the snippet into your file. In other
words, ]]$NOT_DEFINED> in your snippet file content will be written as ]]> when you trigger the
snippet.

tabTrigger Defines the sequence of keys that must be pressed to insert this snippet. After typing this sequence,
the snippet will kick in as soon as you hit the Tab key.

A tab trigger is an implicit key binding.

scope Scope selector determining the context where the snippet will be active. See Scopes for more information.

description Used when showing the snippet in the Snippets menu. If not present, Sublime Text defaults to the
file name of the snippet.

With this information, you can start writing your own snippets as described in the next sections.

Note: In the interest of brevity, we’re only including the content element’s text in examples unless otherwise
noted.

Snippet Features

Environment Variables

Snippets have access to contextual information in the form of environment variables. The values of the variables listed
below are set automatically by Sublime Text.

You can also add your own variables to provide extra information. These custom variables are defined in .
sublime-options files.

$PARAM1 .. $PARAMn Arguments passed to the insert_snippet command. (Not covered here.)
$SELECTION The text that was selected when the snippet was triggered.
$TM_CURRENT_LINE Content of the cursor’s line when the snippet was triggered.
$TM_CURRENT_WORD Word under the cursor when the snippet was triggered.
$TM_DIRECTORY Directory name of the file being edited. (since 3154)
$TM_FILENAME Name of the file being edited, including extension.
$TM_FILEPATH Path to the file being edited.
$TM_FULLNAME User’s user name.
$TM_LINE_INDEX Column where the snippet is being inserted, 0 based.
$TM_LINE_NUMBER Row where the snippet is being inserted, 1 based.
$TM_SELECTED_TEXT An alias for $SELECTION.
$TM_SCOPE The scope of the beginning of each selected region. (since 3154)
$TM_SOFT_TABS YES if translate_tabs_to_spaces is true, otherwise NO.
$TM_TAB_SIZE Spaces per-tab (controlled by the tab_size option).

Let’s see a simple example of a snippet using variables:

=================================
USER NAME: $TM_FULLNAME
FILE NAME: $TM_FILENAME
TAB SIZE: $TM_TAB_SIZE
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SOFT TABS: $TM_SOFT_TABS
=================================

# Output:
=============================
USER NAME: guillermo
FILE NAME: test.txt
TAB SIZE: 4

SOFT TABS: YES
=============================

Fields

With the help of field markers, you can cycle through positions within the snippet by pressing the Tab key. Fields are
used to walk you through the customization of a snippet after it’s been inserted.

First Name: $1
Second Name: $2
Address: $3

In the example above, the cursor will jump to $1 if you press Tab once. If you press Tab a second time, it will
advance to $2, etc. You can also move backwards in the series with Shift+Tab. If you press Tab after the highest
tab stop, Sublime Text will place the cursor at the end of the snippet’s content so that you can resume normal editing.

If you want to control where the exit point should be, use the $0 mark. By default, this is the end of the snippet.

You can break out of the field cycle any time by pressing Esc.

Mirrored Fields

Identical field markers mirror each other: when you edit the first one, the rest will be populated in real time with the
same value.

First Name: $1
Second Name: $2
Address: $3
User name: $1

In this example, “User name” will be filled out with the same value as “First Name”.

Placeholders

By expanding the field syntax a little bit, you can define default values for a field. Placeholders are useful whenever
there’s a general case for your snippet, but you still want to keep it customizable.

First Name: ${1:Guillermo}
Second Name: ${2:López}
Address: ${3:Main Street 1234}
User name: $1

Variables can be used as placeholders:
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First Name: ${1:Guillermo}
Second Name: ${2:López}
Address: ${3:Main Street 1234}
User name: ${4:$TM_FULLNAME}

And you can nest placeholders within other placeholders too:

Test: ${1:Nested ${2:Placeholder}}

Substitutions

In addition to the place holder syntax, tab stops can specify more complex operations with substitutions. Use substi-
tutions to dynamically generate text based on a mirrored tab stop. Of course, the tab stop you want to use as variable
has to be mirrored somewhere else in the snippet.

The substitution syntax has the following syntaxes:

• ${var_name/regex/format_string/}

• ${var_name/regex/format_string/options}

var_name The variable name: 1, 2, 3. . . or an environment variable such as TM_FILENAME or SELECTION.

regex Perl-style regular expression: See the Boost library documentation for regular expressions.

format_string See the Boost library documentation for format strings.

options

Optional. May be any of the following:

i Case-insensitive regex.

g Replace all occurrences of regex.

m Don’t ignore newlines in the string.

With substitutions you can, for instance, underline text effortlessly:

Original: ${1:Hey, Joe!}
Transformation: ${1/./=/g}

# Output:

Original: Hey, Joe!
Transformation: =========

Another more complex example can translate snail_case to Tile Case With Spaces. Basically, it combines two separate
expressions and replaces into one. It also illustrates that replaces may occur before the actual tabstop.

Transformation: ${1/^(\w)|(?:_(\w))/(?1\u$1:)(?2 \u$2:)/g}
Original: ${1:text_in_snail_case}

# Output:

Transformation: Text In Snail Case
Original: text_in_snail_case

You can also use environment variables with substitutions:
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# In file MyModule.js:

Transformation: ${TM_FILENAME/(\w+)\.js/\1/g}

# Output:

Transformation: MyModule

2.9.4 Completions

In the spirit of IDEs, Sublime Text suggests completions that aggregate code or content while writing by catching
everything that you have written, like variable names.

There are however several ways to extend the list of completions (for example, depending on the current syntax).

This topic deals with how completions are used and where they come from.

How to Use Completions

There are two methods for using completions. Even though, when screening them, the priority given to completions
always stays the same, the two methods produce different results.

Completions can be inserted in two ways:

• through the completions list :

– Ctrl + Spacebar on Windows / OS X,

– Alt + / on Linux

• or by pressing Tab.

The Completions List

To use the completions list:

1. Press Ctrl + Spacebar (Alt + / on Linux) or just type something.

2. Optionally, press the shortcut again to select the next entry or use up and down arrow keys.

3. Press Enter or Tab to validate selection (depending on the auto_complete_commit_on_tab setting)

4. Optionally, press Tab repeatedly to insert the next available completion.

Note: If the completions list was opened explicitly, the current selection in the completions list can also be validated
with any punctuation sign that isn’t itself bound to a snippet (e.g. .).

When the list of completion candidates can be narrowed down to one unambiguous choice given the current prefix,
this one completion will be validated automatically the moment you trigger the completion list.

Hints

Additionally, you may see a trigger hint on the right side of a completion’s trigger in the completions list. This can be
used as a preview of the completion’s content.
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The above is in fact a snippet and expands to $arrayName = array('' => , );.

Triggers and Contents

Completions not sourced from the text in the current file may provide a trigger that is different to the content they
will insert if selected. This is commonly used for function completions where the content also includes the function’s
signature.

For example, completing array_map from the PHP completions will result in array_map(callback, arr1):

You may notice in the animation that the cursor automatically selected callback. This is because completions
support the same features as snippets with fields and placeholders. For more details, refer to Snippet Features.

Completions with multiple cursors

Sublime Text can also handle completions with multiple cursors but will only open the completion list when all cursors
share the same text between the current cursor positions and the last word separator character (e.g. . or a line break).

Working example (| represents one cursor):

l|
some text with l|
l| and.l|

Not working example:

l|
some text with la|
l| andl|

Selections are essentially ignored, only the position of the cursor matters. Thus, e|[-some selection]
example, with | as the cursor and [...] as the current selection, completes to example|[-some
selection] example.
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Tab-Completed Completions

If you want to be able to tab-complete completions, the setting tab_completion must be set to true (default).
Snippet tab-completion is unaffected by this setting: They will always be completed according to their tab trigger.

With tab_completion enabled, completion of items is always automatic. This means, unlike the case of the
completions list, that Sublime Text will always make the decision for you. The rules for selecting the best completion
are the same as described above, but in case of ambiguity, Sublime Text will insert the item it deems most suitable.
You can press the Tab key multiple times to walk through other available options.

Inserting a Literal Tab Character

When tab_completion is enabled, you can press Shift + Tab to insert a literal tab character.

Sources for Completions and their Priorities

These are the sources for completions the user can control, in the order they are prioritized:

1. Snippets

2. API-injected completions via on_query_completions()

3. Completions files

Additionally, the following completions are folded into the final list:

4. Words in the buffer

Snippets will always win when the current prefix matches their tab trigger exactly. For the rest of the completion
sources, a fuzzy match is performed. Furthermore, snippets always lose in a fuzzy match.

When a list of completions is shown, snippets will still be listed alongside the other items, even if the prefix only
partially matches the snippets’ tab triggers.

Note: Completions sourced from words in the buffer can be suppressed explicitly from an
on_query_completions event hook.

2.9.5 Command Palette

See also:

Reference for Command Palette Complete documentation on the command palette options.

Overview

The command palette is an interactive list whose purpose is to execute commands. The command palette is fed entries
by means of .sublime-commands files. Commands that don’t warrant creating a key binding of their own are
usually good candidates for inclusion in a .sublime-commands file.

By default, the command palette includes many useful commands and provides convenient access to individual settings
as well as settings files.

To use the command palette:

1. Press Ctrl+Shift+P
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Fig. 2.9: The Command Palette
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2. Select a command

3. Press Enter

The command palette filters entries by context. This means that whenever you open it, you won’t always see all the
commands defined in every .sublime-commands file.

Example of a .sublime-commands File

Here’s an excerpt from Packages/Default/Default.sublime-commands:

[
{ "caption": "Project: Save As", "command": "save_project_as" },
{ "caption": "Project: Close", "command": "close_project" },
{ "caption": "Project: Add Folder", "command": "prompt_add_folder" },

{ "caption": "Preferences: Default File Settings", "command": "open_file", "args
→˓": {"file": "${packages}/Default/Base File.sublime-settings"} },

{ "caption": "Preferences: User File Settings", "command": "open_file", "args": {
→˓"file": "${packages}/User/Base File.sublime-settings"} },

{ "caption": "Preferences: Default Global Settings", "command": "open_file", "args
→˓": {"file": "${packages}/Default/Global.sublime-settings"} },

{ "caption": "Preferences: User Global Settings", "command": "open_file", "args":
→˓{"file": "${packages}/User/Global.sublime-settings"} },

{ "caption": "Preferences: Browse Packages", "command": "open_dir", "args": {"dir
→˓": "$packages"} }
]

2.9.6 Syntax Definitions

Syntax definitions make Sublime Text aware of programming and markup languages. Most noticeably, they work
together with colors to provide syntax highlighting. Syntax definitions define scopes that divide the text in a buffer
into named regions. Several editing features in Sublime Text make extensive use of this fine-grained contextual
information.

Essentially, syntax definitions consist of regular expressions used to find text, as well as more or less arbitrary, dot-
separated strings called scopes or scope names. For every occurrence of a given regular expression, Sublime Text
gives the matching text its corresponding scope name.

Note: As of Sublime Text Build 3084, a new syntax definition format has been added, with the .sublime-syntax
extension.

It is highly encouraged to be used in favor of the legacy format described in this document, unless compatibility with
older versions is desired.

Documentation is available here: http://www.sublimetext.com/docs/3/syntax.html

Prerequisites

In order to follow this tutorial, you will need to install PackageDev, a package intended to ease the creation of new
syntax definitions for Sublime Text. Follow the installation notes in the “Getting Started” section of the readme.
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File format

Sublime Text uses property list (Plist) files to store syntax definitions. However, because editing XML files is a
cumbersome task, we’ll use YAML instead and convert it to Plist format afterwards. This is where the PackageDev
package (mentioned above) comes in.

Note: If you experience unexpected errors during this tutorial, chances are PackageDev or YAML is to blame. Don’t
immediately think your problem is due to a bug in Sublime Text.

By all means, do edit the Plist files by hand if you prefer to work in XML, but always keep in mind their differing
needs in regards to escape sequences, many XML tags etc.

Scopes

Scopes are a key concept in Sublime Text. Essentially, they are named text regions in a buffer. They don’t do anything
by themselves, but Sublime Text peeks at them when it needs contextual information.

For instance, when you trigger a snippet, Sublime Text checks the scope bound to the snippet and looks at the caret’s
position in the file. If the caret’s current position matches the snippet’s scope selector, Sublime Text fires it off.
Otherwise, nothing happens.

Scopes vs Scope Selectors

There’s a slight difference between scopes and scope selectors: Scopes are the names defined in a syntax definition,
while scope selectors are used in items like snippets and key bindings to target scopes. When creating a new syntax
definition, you care about scopes; when you want to constrain a snippet to a certain scope, you use a scope selector.

Scopes can be nested to allow for a high degree of granularity. You can drill down the hierarchy very much like with
CSS selectors. For instance, thanks to scope selectors, you could have a key binding activated only within single
quoted strings in Python source code, but not inside single quoted strings in any other language.

Sublime Text inherits the idea of scopes from Textmate, a text editor for Mac. Textmate’s online manual contains
further information about scope selectors that’s useful for Sublime Text users too. In particular, Color Schemes make
extensive use of scopes to style every aspect of a language in the desired color.

How Syntax Definitions Work

At their core, syntax definitions are arrays of regular expressions paired with scope names. Sublime Text will try to
match these patterns against a buffer’s text and attach the corresponding scope name to all occurrences. These pairs of
regular expressions and scope names are known as rules.

Rules are applied in order, one line at a time. Rules are applied in the following order:

1. The rule that matches at the first position in a line

2. The rule that comes first in the array

Each rule consumes the matched text region, which therefore will be excluded from the next rule’s matching attempt
(save for a few exceptions). In practical terms, this means that you should take care to go from more specific rules to
more general ones when you create a new syntax definition. Otherwise, a greedy regular expression might swallow
parts you’d like to have styled differently.

Syntax definitions from separate files can be combined, and they can be recursively applied too.
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Your First Syntax Definition

By way of example, let’s create a syntax definition for Sublime Text snippets. We’ll be styling the actual snippet
content, not the whole .sublime-snippet file.

Note: Since syntax definitions are primarily used to enable syntax highlighting, we’ll use the phrase to style to mean
to break down a source code file into scopes. Keep in mind, however, that colors are a different thing from syntax
definitions and that scopes have many more uses besides syntax highlighting.

Here are the elements we want to style in a snippet:

• Variables ($PARAM1, $USER_NAME. . . )

• Simple fields ($0, $1. . . )

• Complex fields with placeholders (${1:Hello})

• Nested fields (${1:Hello ${2:World}!})

• Escape sequences (\\$, \\<. . . )

• Illegal sequences ($, <. . . )

Here are the elements we don’t want to style because they are too complex for this example:

• Variable Substitution (${1/Hello/Hi/g})

Note: Before continuing, make sure you’ve installed the PackageDev package as explained above.

Creating A New Syntax Definition

To create a new syntax definition, follow these steps:

• Go to Tools | Packages | Package Development | New Syntax Definition

• Save the new file in your Packages/User folder as a .YAML-tmLanguage file.

You now should see a file like this:

# [PackageDev] target_format: plist, ext: tmLanguage
---
name: Syntax Name
scopeName: source.syntax_name
fileTypes: []
uuid: 0da65be4-5aac-4b6f-8071-1aadb970b8d9

patterns:
-
...

Let’s examine the key elements.

name The name that Sublime Text will display in the syntax definition drop-down list. Use a short, descriptive name.
Typically, you will use the name of the programming language you are creating the syntax definition for.

scopeName The topmost scope for this syntax definition. It takes the form source.<lang_name> or text.
<lang_name>. For programming languages, use source. For markup and everything else, use text.
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fileTypes This is a list of file extensions (without the leading dot). When opening files of these types, Sublime
Text will automatically activate this syntax definition for them.

uuid This is a unique identifier for this syntax definition. Each new syntax definition gets its own uuid. Even though
Sublime Text itself ignores it, don’t modify this.

patterns A container for your patterns.

For our example, fill the template with the following information:

# [PackageDev] target_format: plist, ext: tmLanguage
---
name: Sublime Snippet (Raw)
scopeName: source.ssraw
fileTypes: [ssraw]
uuid: 0da65be4-5aac-4b6f-8071-1aadb970b8d9

patterns:
-
...

Note: YAML is not a very strict format, but can cause headaches when you don’t know its conventions. It supports
single and double quotes, but you may also omit them as long as the content does not create another YAML literal. If
the conversion to Plist fails, take a look at the output panel for more information on the error. We’ll explain later how
to convert a syntax definition in YAML to Plist. This will also cover the first commented line in the template.

The --- and ... are optional.

Analyzing Patterns

The patterns array can contain several types of element. We’ll look at some of them in the following sections. If
you want to learn more about patterns, refer to Textmate’s online manual.

Matches

Matches take this form:

match: (?i:m)y \s+[Rr]egex
name: string.format
comment: This comment is optional.

Regular Expressions’ Syntax In Syntax Definitions

Sublime Text uses Oniguruma’s syntax for regular expressions in syntax definitions. Several existing syntax defini-
tions make use of features supported by this regular expression engine that aren’t part of perl-style regular expres-
sions, hence the requirement for Oniguruma.

match A regular expression Sublime Text will use to find matches.

name The name of the scope that should be applied to any occurrences of match.

comment An optional comment about this pattern.
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Let’s go back to our example. It looks like this:

# [PackageDev] target_format: plist, ext: tmLanguage
---
name: Sublime Snippet (Raw)
scopeName: source.ssraw
fileTypes: [ssraw]
uuid: 0da65be4-5aac-4b6f-8071-1aadb970b8d9

patterns:
-
...

That is, make sure the patterns array is empty.

Now we can begin to add our rules for Sublime snippets. Let’s start with simple fields. These could be matched with
a regex like so:

\$[0-9]+
# or...
\$\d+

We can then build our pattern like this:

name: keyword.other.ssraw
match: \$\d+
comment: Tab stops like $1, $2...

Choosing the Right Scope Name

Naming scopes isn’t obvious sometimes. Check the Textmate naming conventions for guidance on scope names.
PackageDev automatically provides completions for scope names according to these conventions. It is important to
re-use the basic categories outlined there if you want to achieve the highest compatibility with existing colors.

Color schemes have hardcoded scope names in them. They could not possibly include every scope name you can
think of, so they target the standard ones plus some rarer ones on occasion (like for CSS or Markdown). This means
that two color schemes using the same syntax definition may render the text differently!

Bear in mind too that you should use the scope name that best suits your needs or preferences. It’d be perfectly fine
to assign a scope like constant.numeric to anything other than a number if you have a good reason to do so.

And we can add it to our syntax definition too:

# [PackageDev] target_format: plist, ext: tmLanguage
---
name: Sublime Snippet (Raw)
scopeName: source.ssraw
fileTypes: [ssraw]
uuid: 0da65be4-5aac-4b6f-8071-1aadb970b8d9

patterns:
- comment: Tab stops like $1, $2...

name: keyword.other.ssraw
match: \$\d+

...
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Note: You should use two spaces for indent. This is the recommended indent for YAML and lines up with lists like
shown above.

We’re now ready to convert our file to .tmLanguage. Syntax definitions use Textmate’s .tmLanguage extension
for compatibility reasons. As explained above, they are simply Plist XML files.

Follow these steps to perform the conversion:

• Make sure that Automatic is selected in Tools | Build System, or select Convert to ...

• Press F7

• A .tmLanguage file will be generated for you in the same folder as your .YAML-tmLanguage file

• Sublime Text will reload the changes to the syntax definition

In case you are wondering why PackageDev knows what you want to convert your file to: It’s specified in the first
comment line.

You have now created your first syntax definition. Next, open a new file and save it with the extension .ssraw. The
buffer’s syntax name should switch to “Sublime Snippet (Raw)” automatically, and you should get syntax highlighting
if you type $1 or any other simple snippet field.

Let’s proceed to creating another rule for environment variables.

comment: Variables like $PARAM1, $TM_SELECTION...
name: keyword.other.ssraw
match: \$[A-Za-z][A-Za-z0-9_]+

Repeat the above steps to update the .tmLanguage file.

Fine Tuning Matches

You might have noticed, for instance, that the entire text in $PARAM1 is styled the same way. Depending on your
needs or your personal preferences, you may want the $ to stand out. That’s where captures come in. Using
captures, you can break a pattern down into components to target them individually.

Let’s rewrite one of our previous patterns to use captures:

comment: Variables like $PARAM1, $TM_SELECTION...
name: keyword.other.ssraw
match: \$([A-Za-z][A-Za-z0-9_]+)
captures:

'1': {name: constant.numeric.ssraw}

Captures introduce complexity to your rule, but they are pretty straightforward. Notice how numbers refer to paren-
thesized groups left to right. Of course, you can have as many capture groups as you want.

Note: Writing 1 on a new line and pressing tab will autocomplete to '1': {name: } thanks to PackageDev.

Arguably, you’d want the other scope to be visually consistent with this one. Go ahead and change it too.

Note: As with ususal regular expressions and substítutions, the capture group '0' applies to the whole match.
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Begin-End Rules

Up to now we’ve been using a simple rule. Although we’ve seen how to dissect patterns into smaller components,
sometimes you’ll want to target a larger portion of your source code that is clearly delimited by start and end marks.

Literal strings enclosed by quotation marks or other delimiting constructs are better dealt with by begin-end rules.
This is a skeleton for one of these rules:

name:
begin:
end:

Well, at least in their simplest version. Let’s take a look at one that includes all available options:

name:
contentName:
begin:
beginCaptures:

'0': {name: }
# ...

end:
endCaptures:

'0': {name: }
# ...

patterns:
- name:

match:
# ...

Some elements may look familiar, but their combination might be daunting. Let’s inspect them individually.

name Just like with simple captures this sets the following scope name to the whole match, including begin and
end marks. Effectively, this will create nested scopes for beginCaptures, endCaptures and patterns
defined within this rule. Optional.

contentName Unlike the name this only applies a scope name to the enclosed text. Optional.

begin Regex for the opening mark for this scope.

end Regex for the end mark for this scope.

beginCaptures Captures for the begin marker. They work like captures for simple matches. Optional.

endCaptures Same as beginCaptures but for the end marker. Optional.

patterns An array of patterns to match only against the begin-end’s content; they aren’t matched against the text
consumed by begin or end themselves. Optional.

We’ll use this rule to style nested complex fields in snippets:

name: variable.complex.ssraw
contentName: string.other.ssraw
begin: '(\$)(\{)([0-9]+):'
beginCaptures:

'1': {name: keyword.other.ssraw}
'3': {name: constant.numeric.ssraw}

end: \}
patterns:
- include: $self
- name: support.other.ssraw

match: .
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This is the most complex pattern we’ll see in this tutorial. The begin and end keys are self-explanatory: they define
a region enclosed between ${<NUMBER>: and }. We need to wrap the begin pattern into quotes because otherwise
the trailing : would tell the parser to expect another dictionary key. beginCaptures further divides the begin mark
into smaller scopes.

The most interesting part, however, is patterns. Recursion, and the importance of ordering, have finally made their
appearance here.

We’ve seen above that fields can be nested. In order to account for this, we need to style nested fields recursively.
That’s what the include rule does when we furnish it the $self value: it recursively applies our entire syntax
definition to the text captured by our begin-end rule. This portion excludes the text individually consumed by the
regexes for begin and end.

Remember, matched text is consumed; thus, it is excluded from the next match attempt and can’t be matched again.

To finish off complex fields, we’ll style placeholders as strings. Since we’ve already matched all possible tokens inside
a complex field, we can safely tell Sublime Text to give any remaining text (.) a literal string scope. Note that this
doesn’t work if we made the pattern greedy (.+) because this includes possible nested references.

Note: We could’ve used contentName: string.other.ssraw instead of the last pattern but this way we
introduce the importance of ordering and how matches are consumed.

Final Touches

Lastly, let’s style escape sequences and illegal sequences, and then we can wrap up.

- comment: Sequences like \$, \> and \<
name: constant.character.escape.ssraw
match: \\[$<>]

- comment: Unescaped and unmatched magic characters
name: invalid.illegal.ssraw
match: '[$<>]'

The only hard thing here is not forgetting that [] enclose arrays in YAML and thus must be wrapped in quotes. Other
than that, the rules are pretty straightforward if you’re familiar with regular expressions.

However, you must take care to place the second rule after any others matching the $ character, since otherwise it will
be consumed and result in every following expression not matching.

Also, even after adding these two additional rules, note that our recursive begin-end rule from above continues to work
as expected.

At long last, here’s the final syntax definition:

# [PackageDev] target_format: plist, ext: tmLanguage
---
name: Sublime Snippet (Raw)
scopeName: source.ssraw
fileTypes: [ssraw]
uuid: 0da65be4-5aac-4b6f-8071-1aadb970b8d9

patterns:
- comment: Tab stops like $1, $2...

name: keyword.other.ssraw
match: \$(\d+)
captures:
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'1': {name: constant.numeric.ssraw}

- comment: Variables like $PARAM1, $TM_SELECTION...
name: keyword.other.ssraw
match: \$([A-Za-z][A-Za-z0-9_]+)
captures:
'1': {name: constant.numeric.ssraw}

- name: variable.complex.ssraw
begin: '(\$)(\{)([0-9]+):'
beginCaptures:
'1': {name: keyword.other.ssraw}
'3': {name: constant.numeric.ssraw}

end: \}
patterns:
- include: $self
- name: support.other.ssraw
match: .

- comment: Sequences like \$, \> and \<
name: constant.character.escape.ssraw
match: \\[$<>]

- comment: Unescaped and unmatched magic characters
name: invalid.illegal.ssraw
match: '[$<>]'

...

There are more available constructs and code reuse techniques using a “repository”, but the above explanations should
get you started with the creation of syntax definitions.

Note: If you previously used JSON for syntax definitions you are still able to do this because PackageDev is back-
wards compatible.

If you want to consider switching to YAML (either from JSON or directly from Plist), it provides a command named
PackageDev: Convert to YAML and Rearrange Syntax Definition which will automatically
format the resulting YAML in a pleasurable way.

See also:

Syntax Definitions Reference for syntax definitions

2.9.7 Plugins

See also:

API Reference More information on the Python API.

Plugins Reference More information about plugins.

This section is intended for users with programming skills.

Sublime Text can be extended through Python plugins. Plugins build features by reusing existing commands or creating
new ones. Plugins are a logical entity, rather than a physical one.
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Prerequisites

In order to write plugins, you must be able to program in Python. At the time of this writing, Sublime Text used Python
3.

Where to Store Plugins

Sublime Text will look for plugins only in these places:

• Installed Packages (only .sublime-package files)

• Packages

• Packages/<pkg_name>/

As a consequence, any plugin nested deeper in Packages won’t be loaded.

Keeping plugins directly under Packages is discouraged. Sublime Text sorts packages in a predefined way before
loading them, so if you save plugin files directly under Packages you might get confusing results.

Your First Plugin

Let’s write a “Hello, World!” plugin for Sublime Text:

1. Select Tools | New Plugin. . . in the menu.

2. Save to Packages/User/hello_world.py.

You’ve just written your first plugin! Let’s put it to use:

1. Create a new buffer (Ctrl+n).

2. Open the Python console (Ctrl+`).

3. Type: view.run_command("example") and press enter.

You should see the text “Hello, World!” in the newly created buffer.

Analyzing Your First Plugin

The plugin created in the previous section should look roughly like this:

import sublime, sublime_plugin

class ExampleCommand(sublime_plugin.TextCommand):
def run(self, edit):

self.view.insert(edit, 0, "Hello, World!")

Both the sublime and sublime_plugin modules are provided by Sublime Text; they are not part of the Python
standard library.

As we mentioned earlier, plugins reuse or create commands. Commands are an essential building block in Sublime
Text. They are simply Python classes that can be called in similar ways from different Sublime Text facilities, like the
plugin API, menu files, macros, etc.

Sublime Text Commands derive from the *Command classes defined in sublime_plugin (more on this later).

The rest of the code in our example is concerned with particulars of TextCommand or with the API. We’ll discuss
those topics in later sections.
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Before moving on, though, we’ll look at how we invoked the new command: first we opened the Python console and
then we issued a call to view.run_command(). This is a rather inconvenient way of calling commands, but it’s
often useful when you’re in the development phase of a plugin. For now, keep in mind that your commands can be
accessed through key bindings and by other means, just like other commands.

Conventions for Command Names

You may have noticed that our command is named ExampleCommand, but we passed the string example to the
API call instead. This is necessary because Sublime Text standardizes command names by stripping the Command
suffix and separating PhrasesLikeThis with underscores, like so: phrases_like_this.

New commands should follow the same naming pattern.

Types of Commands

You can create the following types of commands:

• Window commands (sublime_plugin.WindowCommand)

• Text commands (sublime_plugin.TextCommand)

When writing plugins, consider your goal and choose the appropriate type of commands.

Shared Traits of Commands

All commands need to implement a .run() method in order to work. Additionally, they can receive an arbitrarily
long number of keyword parameters.

Note: Parameters to commands must be valid JSON values due to how ST serializes them internally.

Window Commands

Window commands operate at the window level. This doesn’t mean that you can’t manipulate views from window
commands, but rather that you don’t need views in order for window commands to be available. For instance, the
built-in command new_file is defined as a WindowCommand so it works even when no view is open. Requiring a
view to exist in that case wouldn’t make sense.

Window command instances have a .window attribute to point to the window instance that created them.

The .run() method of a window command doesn’t require any positional parameter.

Window commands are able to route text commands to their window’s active view.

Text Commands

Text commands operate at the view level, so they require a view to exist in order to be available.

Text command instances have a .view attribute pointing to the view instance that created them.

The .run() method of text commands requires an edit instance as its first positional argument.

52 Chapter 2. Content



Sublime Text Unofficial Documentation, Release 3.0

Text Commands and the edit Object

The edit object groups modifications to the view so that undo and macros work sensibly.

Note: Contrary to older versions, Sublime Text 3 doesn’t allow programmatic control over edit objects. The API is in
charge of managing their life cycle. Plugin creators must ensure that all modifying operations occur inside the .run
method of new text commands. To call existing commands, you can use view.run_command(<cmd_name>,
<args>) or similar API calls.

Responding to Events

Any command deriving from EventListener will be able to respond to events.

Another Plugin Example: Feeding the Completions List

Let’s create a plugin that fetches data from Google’s Autocomplete service and then feeds it to the Sublime Text
completions list. Please note that, as ideas for plugins go, this a very bad one.

import sublime, sublime_plugin

from xml.etree import ElementTree as ET
import urllib

GOOGLE_AC = r"http://google.com/complete/search?output=toolbar&q=%s"

class GoogleAutocomplete(sublime_plugin.EventListener):
def on_query_completions(self, view, prefix, locations):

elements = ET.parse(
urllib.request.urlopen(GOOGLE_AC % prefix)

).getroot().findall("./CompleteSuggestion/suggestion")

sugs = [(x.attrib["data"],) * 2 for x in elements]

return sugs

Note: Make sure you don’t keep this plugin around after trying it or it will interfere with the autocompletion system.

See also:

EventListener.on_query_completions() Documentation on the API event used in this example.

Learning the API

The API reference is documented at www.sublimetext.com/docs/3/api_reference.html

To get acquainted with the Sublime Text API and the available commands, it may be helpful to read existing code and
learn from it.

In particular, the Packages/Default contains many examples of undocumented commands and API calls. Note
that you will first have to extract its contents to a folder if you want to take a look at the code within - PackageRe-
sourceViewer helps with this.
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2.9.8 Packages

• Overview

• Package Locations (and Abbreviations)

– .sublime-package Packages

– Interactions Between Packages with The Same Name

• Package Contents

• Types of Packages

• Managing Packages

– Installing Packages

– Disabling Packages

– Enabling Packages

– Removing Packages

• Customizing or Overriding Packages

• Merging and Order of Precedence

• Reverting Sublime Text to Its Default Configuration

Overview

A package is a container for resources.

Package Locations (and Abbreviations)

There are three locations for storing packages for different purposes.

• Packages can be folders under Data/Packages (short: Packages)

• or zip archives with the .sublime-package extension located under Data/Installed Packages
(short: Installed Packages) or any of its subdirectories.

• Additionally, Sublime Text provides a set of default packages as zip archives in Application/Packages
(short: Shipped Packages), where Application refers to the folder where the Sublime Text executable
resides.

This folder is not intended to be modified by the user.

Note: For simplicity, we will occasionally refer to all these directories simply as Packages, and to a package in any
folder (.sublime-package or not) as Packages/PackageName. Consequently, a file inside a package may
also be referred to as PackageName/a_file.extension.
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.sublime-package Packages

Packages distributed as .sublime-package zip archives should be considered read-only containers of resources
and never be modified manually. Since they are usually updated as a whole, any manual changes made to them will be
lost in the process.

If you do want to modify files in these archives, see Customizing or Overriding Packages.

Interactions Between Packages with The Same Name

If two packages with the same name exist in both Installed Packages and Shipped Packages, the one in
Installed Packages will be used and the one in Shipped Packages will be ignored.

Any file in Packages/PackageName takes precedence over an identically named file in Installed
Packages/PackageName.sublime-package or Shipped Packages/PackageName.
sublime-package.

See also Customizing or Overriding Packages.

Package Contents

Typical resources found in packages include:

• build systems (.sublime-build)
• color schemes (.tmTheme)
• key maps (.sublime-keymap)
• macros (.sublime-macro)
• menus (.sublime-menu)
• metadata (.tmPreferences)
• mouse maps (.sublime-mousemap)
• plugins (.py)
• settings (.sublime-settings)
• snippets (.sublime-snippet)
• syntax definitions (.tmLanguage)
• themes (.sublime-theme)

Some packages may hold support files for other packages or for core features. For example, the spell checker uses
Installed Packages/Language - English.sublime-package as a data store for English dictionar-
ies.

Types of Packages

In this guide, we categorize packages for clarity when discussing this topic, but Sublime Text doesn’t use this termi-
nology and you don’t need to learn it.

shipped packages

default packages A set of packages that Sublime Text ships with. Some of these packages are core packages, while
others enhance Sublime Text to support common programming languages out of the box.

Examples: Default, Python, Java, C++, Markdown.

Located in Shipped Packages.

core packages Sublime Text requires these packages in order to function properly.

Complete list: Default, Theme - Default, Color Scheme - Default, Text, Language - English.
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They are part of the shipped packages and located in Shipped Packages.

user packages Installed or created by the user to extend Sublime Text’s functionality. They are not part of Sublime
Text, and are always contributed by users or third parties.

Example: User.

Located in Packages and Installed Packages.

installed packages A subtype of user packages.

Installed packages are .sublime-package archives and usually maintained by a package manager.

Located in Installed Packages.

Note: Due to the unfortunate name of this folder, talking about installing packages in Sublime Text is confusing.

Sometimes, in this guide, by installing we mean ‘adding a user/third party package to Sublime Text’ (in any
form), and sometimes we use the term in its stricter sense of ‘copying a .sublime-package archive to
Installed Packages’.

override packages A special type of user packages.

Override packages serve the purpose of customizing packages that are distributed as .sublime-package
files. They are effectively injected into the original package and do not stand-alone.

See Customizing or Overriding Packages for details.

Located in Packages.

Note that by third party we also refer to users of other editors, notably Textmate, as Sublime Text and Textmate share
some types of resource files that can be reused without modification.

Managing Packages

Installing Packages

Note: Regular users rarely need to know how to install packages by hand, as automatic package managers are
available.

The de facto package manager for Sublime Text is Package Control.

Packages can be installed in two main ways:

• by copying Sublime Text resources to a folder under Packages, or

• by copying a .sublime-package file to Installed Packages.

Disabling Packages

To temporarily disable packages, you can add them to the ignored_packages list in your Packages/User/
Preferences.sublime-settings file. Packages will be loaded or unloaded as needed when the settings file
is saved.
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Enabling Packages

To re-enable a package, remove the package’s name from the ignored_packages list in your Packages/User/
Preferences.sublime-settings file.

Removing Packages

If you installed a package with a package manager, remove it using the method provided by the package manager.

If you installed a package manually, follow this procedure to safely remove a package:

1. Disable the package while Sublime Text is running.

2. Close Sublime Text.

3. Remove the package’s resources from the disk.

4. Remove the package’s name from the ignored_packages list.

In addition to the resources you have placed initially in a Packages folder or in Installed Packages, plugins
may create configuration files (such as .sublime-settings files) or other files to store package-related data.
Frequently, you will find them in the User package. Therefore, if you want to remove all traces of a package, you will
need to find and remove all the additional files that it may have installed.

Warning: Shipped packages are reinstated during every Sublime Text update, so you can’t delete them forever.
If you want to stop using a shipped package, disable it.

Customizing or Overriding Packages

Since packages in .sublime-package zip archives are read-only, you cannot modify them directly. However,
Sublime Text allows you to create an override package that will effectively inject files into the original archive without
modifying the archive itself.

To create an override package, create a new folder under Packages and name it after the .sublime-package
file you want to override, excluding the extension. Any file you create in this package will take precedence over any
identically named file in the original package.

Python plugins in override packages are able to use relative imports for accessing other modules in the corresponding
.sublime-package file as if they were part of it.

Warning: Files in override packages override entire files. If the overriden file in the corresponding .
sublime-package is updated, you will not be notified.

Merging and Order of Precedence

Package precedence is important for merging certain resources, for example, .sublime-keymap and .
sublime-settings files, and for loading plugins (.py files).

If an override package exists for a .sublime-package package, it will be loaded at the same time as the .
sublime-package archive.

Sublime Text loads packages in this order:

1. Packages/Default;
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2. shipped packages in lexicographical order;

3. installed packages in lexicographical order;

4. all remaining user packages, except for Packages/User, that did not override anything, in lexicographical
order;

5. Packages/User

Reverting Sublime Text to Its Default Configuration

Reverting Sublime Text to a fresh state solves many problems that appear to be bugs in Sublime Text but are in fact
caused by misbehaving packages and plugins.

To revert Sublime Text to its default configuration and remove all your settings and configurations, delete the data
directory and restart the editor. Keep in mind that the Installed Packages folder will be deleted too, so you’ll
lose all your installed packages.

Always make sure to back up your data before taking an extreme measure like this one!

2.10 Command Line Usage

Sublime Text includes a command-line helper called subl. Using the command-line helper, you can open files and
folders and perform other actions from the command line.

Before using subl, make sure it is on your PATH. To put subl on your PATH, you may need to add directories to
PATH or use symbolic links.

2.10.1 Invocations

subl [options] [files] Open given files.
subl [options] [directories] Open given directories.
subl [options] - Edit standard input.

Filenames may be given a :line or :line:column suffix to open at a specific location. The line and column
specifiers are 1-based offsets.

Reading from standard input only works in OS X.

2.10.2 Options

The subl command-line helper accepts a few options. For details, see below the next summary.

--project <project> Load the given project.
--command <command> Execute the given command.
--new-window, -n Open a new window.
--add, -a Add folders to the current window.
--wait, -w Wait for the files to be closed before returning.
--background, -b Don’t activate the application.
--stay, -s Keep the application activated after closing the file.
--help, -h Display help.
--version, -v Show version information.
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--project <project> Load the given project.

The project argument designates the .sublime-project or .sublime-workspace file to be loaded.

--command <command> Execute the given command.

The command argument designates the command to be run.

If Sublime Text isn’t running already, only ApplicationCommands will work when invoked from the com-
mand line. If Sublime Text is already running, WindowCommands will work as well when invoked from the
command line.

You can also pass arguments to the command. The arguments must be separated from the command name by a
space and represented as a JSON object. As usual, you have to escape quotation marks and other characters as
required by your shell. For example, this syntax may work in bash as well as PowerShell: subl --command
'echo {\"foo\": 100 }'.

--new-window (-n) Open a new window.

This option should be used when an instance of Sublime Text is already running.

--add (-a) Add folders to the current window.

Add folders to the current window instead of opening a new window.

--wait (-w) Wait for the files to be closed before returning.

This is useful, for example, to use Sublime Text as an editor with version control systems like git. Implied if
reading from standard input.

--background (-b) Don’t activate the application.

--stay (-s) Keep the application activated after closing the file.

Only works in combination with --wait.

--help (-h) Display help.

--version (-v) Show version information.

2.11 Reference

This section contains concise technincal information about Sublime Text. It is intended mainly as a quick reference
for advanced users who want to modify Sublime Text’s default behavior.

If you’re looking for a gentler introduction to any of these topics, try the general index.

2.11.1 Projects - Reference

See also:

Documentation on projects Explains how to work with projects.

Project information is saved in metadata files that can be edited to allow advanced configuration other than adding or
removing folders. To edit the project file of the currently active project via the Project → Edit Project menu. An
anonymous project cannot be configured in any way, because no .sublime-project file exists for it.
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File Format

Format JSON (with comments)
Extension .sublime-project
Name Any
Location Anywhere on your file system
Content Metadata for projects

Example

Project metadata is split across three topmost sections:

• folders, for the included folders;

• settings, for project-specific settings; and

• build_systems, for project-specific build systems.

1 {
2 "folders":
3 [
4 {
5 "path": "src",
6 "folder_exclude_patterns": ["backup"]
7 },
8 {
9 "path": "docs",

10 "name": "Documentation",
11 "file_exclude_patterns": ["*.css"]
12 }
13 ],
14 "settings":
15 {
16 "tab_size": 8
17 },
18 "build_systems":
19 [
20 {
21 "name": "List",
22 "cmd": ["ls"]
23 }
24 ]
25 }

Sections

Pattern precedence

The include patterns are applied first, effectively excluding everything that is not matched by them. Afterwards, the
exclude patterns further exclude files or folders from the project.

Folders A list of folders that will be listed in the sidebar and defines the project scope.
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path Required. The path may be relative to the project directory or absolute. Use . for the directory the
project file is in.

name Optional. If present, it will appear in the side bar instead of the directory name.

folder_exclude_patterns Optional. List of wildcard patterns. Folders matching the wildcard patterns
will be excluded from the project.

folder_include_patterns Optional. List of wildcard patterns. Folders matching the wildcard patterns
will be included in the project.

file_exclude_patterns Optional. List of wildcard patterns. Files matching the wildcard patterns will
be excluded from the project.

file_include_patterns Optional. List of wildcard patterns. Files matching the wildcard patterns will
be included in the project.

follow_symlinks Optional. If enabled, symlinks will be followed for path resolution.

Example:

{
"folders":
[

{
"path": ".",
"folder_include_patterns": ["foo"],
"file_exclude_patterns": ["*.html"]

},
{

"path": "foo",
"name": "foo <with HTML files>"

}
]

}

Settings A project may define project-specific settings that will only apply to files within that project. Project-specific
settings override user settings, but not syntax-specific settings.

Almost all settings can be overridden (excluding global settings).

See also:

The Settings Hierarchy A detailed example for the order of precedence for settings.

Settings - Reference Reference of available settings.

Build Systems You can define project-specific build systems in a .sublime-project file. Build systems in
projects follow the same rules as conventional build system, except a name must be specified for each. They
will show up in the Tools → Build Systems menu and are selectable in the Build With popup, but only in that
project.

See also:

Build Systems - Reference Documentation on build systems and their options.

2.11.2 Syntax Definitions

Note: As of Sublime Text Build 3084, a new syntax definition format has been added, with the .sublime-syntax
extension.
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It is highly encouraged to be used in favor of the legacy format described in this document, unless compatibility with
older versions is desired.

Documentation is available here: http://www.sublimetext.com/docs/3/syntax.html

Compatibility with Textmate

Generally, Sublime Text syntax definitions are compatible with Textmate language files.

File Format

Textmate syntax definitions are Plist files with the tmLanguage extension. However, for convenience in this refer-
ence document, YAML is shown instead.

Additionally, Sublime Text also understands the hidden-tmLanguage extension, which can not be selected by the
user but only by set by plugins. “Find in Files” makes use of this. The downsite is that these can not be included by
import statements in other language definitions.

---
name: Sublime Snippet (Raw)
scopeName: source.ssraw
fileTypes: [ssraw]
uuid: 0da65be4-5aac-4b6f-8071-1aadb970b8d9

patterns:
- comment: Tab stops like $1, $2...

name: keyword.other.ssraw
match: \$\d+

- comment: Variables like $PARAM1, $TM_SELECTION...
name: keyword.other.ssraw
match: \$([A-Za-z][A-Za-z0-9_]+)
captures:
'1': {name: constant.numeric.ssraw}

- name: variable.complex.ssraw
begin: '(\$)(\{)([0-9]+):'
beginCaptures:
'1': {name: keyword.other.ssraw}
'3': {name: constant.numeric.ssraw}

end: \}
patterns:
- include: $self
- name: support.other.ssraw
match: .

- name: constant.character.escape.ssraw
match: \\[$<>]

- name: invalid.illegal.ssraw
match: '[$<>]'

...

name Descriptive name for the syntax definition. Shows up in the syntax definition dropdown menu located in the
bottom right of the Sublime Text interface. It’s usually the name of the programming language or equivalent.
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scopeName Name of the topmost scope for this syntax definition. Either source.<lang> or text.<lang>.
Use source for programming languages and text for markup and everything else.

fileTypes This is a list of file extensions (without the leading dot). When opening files of these types, Sublime
Text will automatically activate this syntax definition for them. Optional.

uuid Unique indentifier for this syntax definition. Currently ignored.

patterns Array of patterns to match against the buffer’s text.

repository Array of patterns abstracted out from the patterns element. Useful to keep the syntax definition
tidy as well as for specialized uses like recursive patterns or re-using the same pattern. Optional.

The Patterns Array

Elements contained in the patterns array.

match Contains the following elements:

match Pattern to search for.
name Optional. Scope name to be assigned to matches of match.
comment Optional. For information only.
captures Optional. Refinement of match. See below.

In turn, captures can contain n of the following pairs of elements (note that 0 refers to the whole match):

0..n Name of the group referenced. Must be a string.
name Scope to be assigned to the group.

Examples:

# Simple

- comment: Sequences like \$, \> and \<
name: constant.character.escape.ssraw
match: \\[$<>]

# With captures

- comment: Tab stops like $1, $2...
name: keyword.other.ssraw
match: \$(\d+)
captures:

'1': {name: constant.numeric.ssraw}

include Includes items in the repository, other syntax definitions or the current one.

References:

$self The current syntax definition.
#itemName itemName in the repository.
source.js External syntax definitions.

Examples:
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# Requires presence of DoubleQuotedStrings element in the repository.
- include: '#DoubleQuotedStrings'

# Recursively includes the complete current syntax definition.
- include: $self

# Includes and external syntax definition.
- include: source.js

begin..end Defines a scope potentially spanning multiple lines

Contains the following elements (only begin and end are required):

name Scope name for the content including the markers.
contentName Scope name for the content excluding the markers.
begin The start marker pattern.
end The end marker pattern.
name Scope name for the whole region.
beginCaptures captures for begin. See captures.
endCaptures captures for end. See captures.
patterns Array of patterns to be matched against the content.

Example:

name: variable.complex.ssraw
begin: '(\$)(\{)([0-9]+):'
beginCaptures:
'1': {name: keyword.other.ssraw}
'3': {name: constant.numeric.ssraw}

end: \}
patterns:
- include: $self
- name: support.other.ssraw
match: .

Repository

Can be referenced from patterns or from itself in an include element. See include for more information.

The repository can contain the following elements:

repository:

# Simple elements
elementName:
match: some regexp
name: some.scope.somelang

# Complex elements
otherElementName:
patterns:
- match: some regexp

name: some.scope.somelang
- match: other regexp

name: some.other.scope.somelang
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Examples:

repository:
numericConstant:
patterns:
- name: constant.numeric.double.powershell

match: \d*(?<!\.)(\.)\d+(d)?(mb|kb|gb)?
captures:

'1': {name: support.constant.powershell}
'2': {name: support.constant.powershell}
'3': {name: keyword.other.powershell}

- name: constant.numeric.powershell
match: (?<!\w)\d+(d)?(mb|kb|gb)?(?!\w)
captures:

'1': {name: support.constant.powershell}
'2': {name: keyword.other.powershell}

scriptblock:
name: meta.scriptblock.powershell
begin: \{
end: \}
patterns:
- include: $self

Escape Sequences

Be sure to escape JSON/XML sequences as needed.

For YAML, additionally make sure that you didn’t unintentionally start a new scalar by not using quotes for your
strings. Examples that won’t work as expected:

match: [aeiou]

include: #this-is-actually-a-comment

match: "#"\w+""

2.11.3 Color Schemes

• Overview

• File Format

• Where to Store Color Schemes

• Structure of a Color Scheme File

– Topmost Elements in Color Schemes Files

– Sub-elements of Settings

• Minimal Scope Coverage

• Sublime Text Settings Related to Color Schemes

– View Settings
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Overview

Color schemes define the colors used to highlight source code in Sublime Text views and to style different elements
found in the editing area: background, foreground, selection, caret. . .

File Format

Format Property List
Extension .tmTheme
Name Any
Location Any under Packages
Content Described in Structure of a Color Scheme File

The file format of color scheme files is inherited from Textmate.

Note: Sublime Text uses the .tmTheme extension for color scheme files to maintain compatibility with Textmate.
Rather confusingly, Sublime Text also has a notion of a user interface (UI) theme. A UI theme is a set of styles and
decorations to alter the look of the editor’s UI.

It’s important to remember that UI themes and color schemes are two different customization mechanisms. Generally
speaking, it is far less complex to create a new color scheme than it is to create a new UI theme.

Where to Store Color Schemes

By convention, packages primarily containing a set of color scheme files have the Color Scheme - prefix. For example:
Color Scheme - Default.

The file names of all available color schemes are displayed in the Preferences → Color Scheme menu, grouped by
the containing package.

Structure of a Color Scheme File

All color scheme files share the same topmost structure.

Colors can be expressed in the following formats: #RRGGBB, #RGB, X11 color names

Most elements controlling colors accept an alpha channel value: #RRGGBBAA.

Contents

• Topmost Elements in Color Schemes Files

• Sub-elements of Settings

– Global Settings

* General

* Brackets

* Tags

* Find
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* Gutter

* Selection

* Guides

* Highlighted Regions

* Shadow

– Scoped Settings

Topmost Elements in Color Schemes Files

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://www.apple.com/
→˓DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>

<key>name</key>
<string>Monokai</string>
<key>settings</key>
<array>

<!-- INSERT DICTIONARIES WITH COLOR SETTINGS HERE -->
</array>
<key>uuid</key>
<string>D8D5E82E-3D5B-46B5-B38E-8C841C21347D</string>

</dict>
</plist>

name Optional. Name of the color scheme. Ignored by Sublime Text.

settings Required. Container for further color scheme settings. See Sub-elements of Settings for details.

uuid Optional. A unique identifier for the file. Ignored by Sublime Text.

Sub-elements of Settings

Sublime Text supports the following color scheme settings:

Global Settings

Not associated with any scope. These settings affect global visual items in the editing area.

Global settings go inside a <dict> element within the topmost <array>.

<array>
<dict>

<key>settings</key>
<dict>

<key>background</key>
<string>#272822</string>
<key>caret</key>
<string>#F8F8F0</string>
...

</dict>
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</dict>
...
</array>

General

foreground Default foreground color for the view. Affects file contents, the gutter, rulers and guides.

The alpha channel does not apply to file contents.

Because there is no override setting for rulers, the only way to change the color of rulers is a “hack” further
described here.

background Default background color of the view (and gutter).

invisibles Ignored.

caret Color of the caret.

lineHighlight Color of the line the caret is in.

Only used when the higlight_line setting is set to true.

Brackets

bracketContentsOptions Controls how brackets are highlighted when a caret is between a bracket pair. Ex-
pects a space-separated list of the available options.

Only applied when the match_brackets setting is set to true.

Options: underline, stippled_underline, squiggly_underline, foreground

Default: underline

bracketContentsForeground Color of the highlighting(s) selected by bracketContentsOptions.

Only applied when the match_brackets setting is set to true.

bracketsOptions Controls how brackets are highlighted when a caret is next to a bracket. Expects a space-
separated list of the available options.

Only applied when the match_brackets setting is set to true.

Options: underline, stippled_underline, squiggly_underline, foreground

Default: underline

bracketsForeground Color of the highlighting(s) selected by bracketOptions.

Only applied when the match_brackets setting is set to true.

Tags

tagsOptions Controls how tags are highlighted when a caret is inside a tag. Expects a space-separated list of the
available options.

Only applied when the match_tags setting is set to true.

Options: underline, stippled_underline, squiggly_underline, foreground

Default: stippled_underline
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tagsForeground Color of the highlighting(s) selected by tagsOptions.

Only applied when the match_tags setting is set to true.

Find

findHighlight Background color of regions matching the current search.

findHighlightForeground Foreground color of regions matching the current search.

Gutter

gutter Background color of the gutter.

gutterForeground Foreground color of the gutter.

Selection

selection Color of the selection regions.

selectionBorder Color of the selection regions’ border.

inactiveSelection Color of inactive selections (inactive view).

Guides

guide Color of the guides displayed to indicate nesting levels.

Only used if the indent_guide_options setting includes‘‘draw_normal‘‘.

activeGuide Color of the guide lined up with the caret.

Only applied if the indent_guide_options setting includes draw_active.

stackGuide Color of the current guide’s parent guide levels.

Only used if the indent_guide_options setting is set to draw_active.

Highlighted Regions

highlight Background color for regions added via sublime.add_regions() with the sublime.
DRAW_OUTLINED flag added.

highlightForeground Foreground color for regions added via sublime.add_regions() with the
sublime.DRAW_OUTLINED flag added.

Shadow

shadow Color of the shadow effect when the buffer is scrolled.

shadowWidth Width of the shadow effect when the buffer is scrolled.

Values greater than 32 cause the shadow to be hidden. The default is 8.

Note that, despite its nature, this expects a string value.
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Scoped Settings

Settings associated with a particular scope.

<array>
...
<dict>

<key>name</key>
<string>Comment</string>
<key>scope</key>
<string>comment</string>
<key>settings</key>
<dict>

<key>foreground</key>
<string>#75715E</string>

</dict>
</dict>
...

</array>

name Descriptive name of the item.

scope Target scope name.

settings Container for settings.

Valid settings are:

fontStyle Space-separated list of styles for the font.

Options: bold, italic, nothing (resets fontStyle to normal)

foreground Foreground color.

background Background color.

Minimal Scope Coverage

Refer to the official Scope Naming guidelines in order to find out which scopes a color scheme should cover at
minimum.

Sublime Text Settings Related to Color Schemes

View Settings

color_scheme Path to a color scheme file relative to the Data folder (example: Packages/Color Scheme -
Default/Monokai.tmTheme).

2.11.4 Build Systems

Warning: Build system selection is currently undergoing a rework in the dev channel. The following information
may be outdated.

See this forum thread for details.

70 Chapter 2. Content

http://www.sublimetext.com/docs/3/scope_naming.html#color_schemes
http://www.sublimetext.com/forum/viewtopic.php?f=2&t=17471&sid=81fd17a6c886e151a3f69c0eaa87272d


Sublime Text Unofficial Documentation, Release 3.0

Using build systems, you can run files through external programs without leaving Sublime Text, and see the output
they generate.

Build Systems – Basics

Overview

You can use build systems to run files through external programs and see any generated output, all without leaving
Sublime Text.

Note: We use the term build in a broad sense. A build system doesn’t need to generate a compiled executable—it
could simply format code, run an interpreter, etc.

Parts of a Build System

Simple build systems only require a .sublime-build file. More advanced build systems may optionally consist
of up to three parts:

• a .sublime-build file (configuration data in JSON format);

• optionally, a custom Sublime Text command (Python code) driving the build process;

• optionally, an external executable file (script or binary file).

File Format of .sublime-build Files

Format JSON (with comments)
Extension .sublime-build
Name Any
Location Any under Packages
Content Predefined items and, optionally, arbitrary user-defined items

A .sublime-build file contains configuration data as a JSON object and specifies switches, options and environ-
mental data. Each .sublime-build file is normally associated with a specific scope corresponding to a file type
(for example, source.python).

The file name represents the name of the build system and will be displayed whenever you can select a build system.

Example

{
"cmd": ["python", "-u", "$file"],
"file_regex": "^[ ]*File \"(...*?)\", line ([0-9]*)",
"selector": "source.python"

}
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The Sublime Text Command Used in A Build System

When you run the default build task in Sublime Text (Ctrl+B), a Sublime Text command receives the configuration
data specified in the .sublime-build file. This command then builds the files. Often, it calls an external program.
By default, the command used in build systems is exec, but it can be overridden.

Overriding the Default Command for Build Systems

By default, build systems use the exec command implemented by Packages/Default/exec.py. This com-
mand simply forwards configuration data to an external program and runs it asynchronously.

Using the target option in a .build-system file, it’s possible to override the exec command. See Target
Command Arguments for details.

Calling External Programs

A build system may call an external program to process files. The external program may be a custom shell script, a
standard utility like make or tidy, etc. Usually, the external program receives paths to files or directories, along with
switches and options that configure its behavior.

Note: Build systems can but don’t need to call external programs—a build system could be implemented entirely as
a Sublime Text command.

Build Systems – Configuration

Warning: Build system selection is currently undergoing a rework in the dev channel. The following information
may be outdated.

See this forum thread for details.

Overview

The build system framework in Sublime Text tries to be flexible enough to accommodate a large number of build
scenarios.

Should the default configuration options fall short for your needs, you can implement your own build system mecha-
nism in two main ways:

• as a custom target command (still using the default build system framework)

• as an entirely new plugin (skipping the build system framework)

Meta Options in Build Systems

This is a list of standard options that all build systems understand. These options are used internally by Sublime Text.
The target command does not receive any of these options.
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target (optional) A Sublime Text WindowCommand. Defaults to exec (Packages/Default/exec.py).
This command receives all the target command arguments specified in the .sublime-build file (as
**kwargs).

Used to override the default build system command. Note that if you choose to override the default command
for build systems, you can add any number of extra options to the .sublime-build file.

selector (optional) Used when Tools | Build System | Automatic is set to true. Sublime Text uses this scope
selector to find the appropriate build system for the active view.

windows, osx and linux (optional) Used to selectively apply options by OS. OS-specific values override de-
faults. Each of the listed items accepts a dictionary of options.

See Platform-specific Options.

variants (optional) A list of dictionaries of options. Variant names will appear in the Command Palette for easy
access if the build system’s selector matches for the active file.

Using variants it’s possible to specify multiple build system tasks in the same .sublime-build file.

See Variants.

name (optional) Only valid inside a variant.

Identifies a build system task. If the name is ‘Run’, the variant will show up under Tools | Build System.
Sublime Text will automatically bind the ‘Run’ task to Ctrl+Shift+B.

See Variants.

Target Command Arguments

Thanks to the target setting, which overrides the default exec command with any other command of your choice,
a build system may contain any number of custom arguments that the new target command accepts.

See the target option.

Platform-specific Options

The windows, osx and linux elements let you provide platform-specific data in the build system. Here’s an
example:

{
"cmd": ["ant"],
"file_regex": "^ *\\[javac\\] (.+):([0-9]+):() (.*)$",
"working_dir": "${project_path:${folder}}",
"selector": "source.java",

"windows": {
"cmd": ["ant.bat"]

}
}

In this case, ant will be executed for every platform except Windows, where ant.bat will be used instead.

Variants

Here’s a contrived example of a build system with variants:
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{
"selector": "source.python",
"cmd": ["date"],

"variants": [

{ "name": "List Python Files",
"cmd": ["ls -l *.py"],
"shell": true

},

{ "name": "Word Count (current file)",
"cmd": ["wc", "$file"]

},

{ "name": "Run",
"cmd": ["python", "-u", "$file"]

}
]

}

Given these settings, Ctrl+B would run the date command, Crtl+Shift+B would run the Python interpreter and
the remaining variants would appear in the Command Palette as Build: name whenever the build system was
active.

Capturing Build System Results

When build systems output text to a results view, it’s possible to capture results data in order to enable result navigation.

Note: Results can also mean errors. Often, build systems produce error data.

Set the following view settings in a results view if you want to enable results navigation:

result_file_regex A Perl-style regular expression to capture up to four fields of error information from a
results view, namely: filename, line number, column number and error message. Use groups in the pattern to
capture this information. The filename field and the line number field are required.

result_line_regex If result_file_regex doesn’t match but result_line_regex exists and does
match on the current line, walk backwards through the buffer until a line matching result_file_regex is
found, and use the two matches to determine the file and line to go to.

result_base_dir Used to find files where results occur.

When result data is captured, you can navigate to results in your project’s files with F4 and Shift+F4. If available,
the captured error message will be displayed in the status bar.

Build System Variables

Build systems expand the following variables in .sublime-build files:
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$file_path The directory of the current file, e.g., C:\Files.
$file The full path to the current file, e.g., C:\Files\Chapter1.txt.
$file_name The name portion of the current file, e.g., Chapter1.txt.
$file_extension The extension portion of the current file, e.g., txt.
$file_base_name The name-only portion of the current file, e.g., Document.
$folder The path to the first folder opened in the current project.
$project The full path to the current project file.
$project_path The directory of the current project file.
$project_name The name portion of the current project file.
$project_extension The extension portion of the current project file.
$project_base_name The name-only portion of the current project file.
$packages The full path to the Packages folder.

Note: Expansion is currently applied only to the following keys in the .sublime-build file: cmd, shell_cmd,
and working_dir.

Placeholders for Variables

Features found in snippets can be used with these variables. For example:

${project_name:Default}

This will emit the name of the current project if there is one, otherwise Default.

${file/\.php/\.txt/}

This will emit the full path of the current file, replacing .php with .txt.

See also:

Snippets Documentation on snippet variables.

Running Build Systems

Select the desired build system from Tools | Build System, and then select Tools | Build. Alternatively, you can use
the command palette or the following key bindings:

Ctrl+B Run default build task
F7 Run default build task
Ctrl+Shift+B Run ‘Run’ build task
Ctrl+Break Cancel running build task

See Variants.

exec Command Arguments

All the options that follow are related to the exec command (see also Exec Command Reference). If you change the
target command, these options can no longer be relied on (see Target Command Arguments for details).

2.11. Reference 75



Sublime Text Unofficial Documentation, Release 3.0

cmd Required if shell_cmd is empty.

Overriden by shell_cmd.

Array containing the command to run and its desired arguments. If you don’t specify an absolute path, the
external program will be searched in your PATH. Ultimately, subprocess.Popen(cmd) is called.

On Windows, GUIs are supressed.

shell_cmd Required if cmd is empty.

Overrides cmd if used.

A string that specifies the command to be run and its arguments. Ultimately, subprocess.
Popen(shell_cmd, shell=True) is called.

It should help in getting right invocations involving complex uses of quotation marks.

working_dir Optional.

Directory to change the current directory to before running cmd. The original current directory is restored
afterwards.

encoding Optional.

Output encoding of cmd. Must be a valid Python encoding. Defaults to UTF-8.

env Optional.

Dictionary of environment variables to be merged with the current process’ before passing them to cmd.

Use this option, for example, to add or modify environment variables without modifying your system’s settings.

Environmental variables will be expanded.

shell Optional.

If true, cmd will be run through the shell (cmd.exe, bash. . . ).

If shell_cmd is used, this option has no effect.

path Optional.

PATH used by the cmd subprocess.

Use this option to add directories to PATH without having to modify your system’s settings.

Environmental variables will be expandend.

file_regex Optional.

Sets the result_file_regex for the results view.

See Capturing Build System Results for details.

line_regex Optional.

Sets the result_line_regex for the results view.

See Capturing Build System Results for details.

syntax Optional.

If provided, it will be used to colorize the build system’s output.
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Troubleshooting Build Systems

Build systems will look for executables in your PATH. Therefore, your PATH variable must be correctly set.

On some operating systems, the value of PATH may vary between terminal windows and graphical applications. Thus,
depending on how you start Sublime Text, the build system may or may not work.

To solve this issue, make sure you set the PATH so that graphical applications such as Sublime Text can find it. See
the links below for more information.

Alternatively, you can use the path option in a .sublime-build file to override the PATH used to locate the
executable specified in cmd.

See also:

Managing Environment Variables in Windows Search Microsoft knowledge base for this topic.

Setting Environment Variables in OSX StackOverflow topic.

2.11.5 Key Bindings

Key bindings map key presses to commands.

File Format

Key bindings are stored in .sublime-keymap files and defined in JSON. Keymap files may be located anywhere
in a package.

Naming Keymap Files

Any keymap named Default.sublime-keymap will always be applied in all platforms.

Additionally, each platform can optionally have its own keymap:

• Default (Windows).sublime-keymap

• Default (OSX).sublime-keymap

• Default (Linux).sublime-keymap

Sublime Text will ignore any .sublime-keymap file whose name doesn’t follow the patterns just described.

Structure of a Key Binding

Keymaps are arrays of key bindings. These are all valid elements in a key binding:

keys An array of case-sensitive keys. Modifiers can be specified with the + sign. You can build chords by adding
elements to the array (for example, ["ctrl+k","ctrl+j"]). Ambiguous chords are resolved with a time-
out.

command Name of the command to be executed.

args Dictionary of arguments to be passed to command. Keys must be names of parameters to command.

context Array of conditions that determine a particular context. All conditions must evaluate to true for the context
to be active. See Structure of a Context below for more information.

Here’s an example:
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{ "keys": ["shift+enter"], "command": "insert_snippet", "args": {"contents": "\n\t$0\n
→˓"}, "context":

[
{ "key": "setting.auto_indent", "operator": "equal", "operand": true },
{ "key": "selection_empty", "operator": "equal", "operand": true, "match_all":

→˓true },
{ "key": "preceding_text", "operator": "regex_contains", "operand": "\\{$",

→˓"match_all": true },
{ "key": "following_text", "operator": "regex_contains", "operand": "^\\}",

→˓"match_all": true }
]

}

Structure of a Context

key Name of the context whose value you want to query.

operator Type of test to perform against key’s value. Defaults to equal.

operand The result returned by key is tested against this value.

match_all Requires the test to succeed for all selections. Defaults to false.

Context Keys

Arbitrary keys may be provided by plugins. Thus, this section only features keys provided by Sublime Text itself.

auto_complete_visible Returns true if the autocomplete list is visible.

has_next_field Returns true if a next snippet field is available.

has_prev_field Returns true if a previous snippet field is available.

num_selections Returns the number of selections.

overlay_visible Returns true if any overlay is visible.

panel_visible Returns true if any panel is visible.

following_text Test against the selected text and the text following it until the end of the line.

preceding_text Test against the text on the line up to and including the selection.

selection_empty Returns true if the selection is an empty region.

setting.x Returns the value of the x setting. x can be any string.

text Restricts the test to the selected text.

selector Returns the name of the current scope.

panel_has_focus Returns true if a panel has input focus.

panel Returns true if the panel given as operand is visible.

Context Operators

equal, not_equal Test for equality.

regex_match, not_regex_match Match against a regular expression (full match).
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regex_contains, not_regex_contains Match against a regular expression (partial match).

Command Mode

Sublime Text provides a command_mode setting to prevent key presses from being sent to the buffer. This is useful,
for example, to emulate Vim’s modal behavior.

Key bindings not intended for command mode (generally, all of them) should include a context like this:

{"key": "setting.command_mode", "operand": false}

This way, plugins legitimately using command mode will be able to define appropriate key bindings without interfer-
ence.

Bindable Keys

Keys in key bindings may be specified literally or by name. If using a name doesn’t work in your case, try a literal
value.

Here’s the list of all valid names:

• up

• down

• right

• left

• insert

• home

• end

• pageup

• pagedown

• backspace

• delete

• tab

• enter

• pause

• escape

• space

• keypad0

• keypad1

• keypad2

• keypad3

• keypad4

• keypad5
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• keypad6

• keypad7

• keypad8

• keypad9

• keypad_period

• keypad_divide

• keypad_multiply

• keypad_minus

• keypad_plus

• keypad_enter

• clear

• f1

• f2

• f3

• f4

• f5

• f6

• f7

• f8

• f9

• f10

• f11

• f12

• f13

• f14

• f15

• f16

• f17

• f18

• f19

• f20

• sysreq

• break

• context_menu

• browser_back

• browser_forward
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• browser_refresh

• browser_stop

• browser_search

• browser_favorites

• browser_home

Modifiers

• shift

• ctrl

• alt

• super (Windows key, Command key. . . )

Warning about Bindable Keys

If you’re developing a package, keep this in mind:

• Ctrl+Alt+<alphanum> should never be used in any Windows key bindings.

• Option+<alphanum> should never be used in any OS X key bindings.

In both cases, the user’s ability to insert non-ASCII characters would be compromised otherwise.

End-users are free to remap any key combination.

Order of Preference for Key Bindings

Key bindings in a keymap file are evaluated from the bottom to the top. The first matching context wins.

Keeping Keymaps Organized

Sublime Text ships with default keymaps under Packages/Default. Other packages may include keymap files of
their own.

The recommended storage location for your personal keymap files is Packages/User.

See Merging and Order of Precedence for more information.

International Keyboards

Due to the way Sublime Text maps key names to physical keys, key names may not correspond to physical keys in
keyboard layouts other than US English.
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Troubleshooting

To enable logging related to keymaps, see:

• sublime.log_commands(flag).

• sublime.log_input(flag).

This may help in debugging keymaps.

2.11.6 Menus - Reference

See also:

Documentation on menus Explains how menus work and what you can do

File Format

Format JSON (with comments)
Exten-
sion

.sublime-menu

Name One out of the list of available menus. See Available Menus for the complete name list and what menu
they represent.

Loca-
tion

Any under Packages

Content A list of “Menu Item” objects

Example

The following is an excerpt from the default Main.sublime-menu file.

[
{

"caption": "Edit",
"mnemonic": "E",
"id": "edit",
"children":
[

{ "command": "undo", "mnemonic": "U" },
{ "command": "redo_or_repeat", "mnemonic": "R" },
{

"caption": "Undo Selection",
"children":
[

{ "command": "soft_undo" },
{ "command": "soft_redo" }

]
},
{ "caption": "-", "id": "clipboard" },
{ "command": "copy", "mnemonic": "C" },
{ "command": "cut", "mnemonic": "t" },
{ "command": "paste", "mnemonic": "P" },
{ "command": "paste_and_indent", "mnemonic": "I" },
{ "command": "paste_from_history", "caption": "Paste from History" }
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]
}

]

“Menu Item” objects

Menu items may have the following properties.

Unless you are referencing an existing item via ID, each menu item must define either children, command or
caption.

command Name of the command to be called when the menu item is selected.

args Object of arguments to the command. For Side Bar and Side Bar Mount Point menus, this is extended by a
files argument that contains all selected items in the sidebar as a list.

caption Text to be displayed in the menu. A single hyphen (-) turns the item into a menu separator.

children List of “Menu Item” objects that are displayed when the item is hovered. Overrides existence of
command property.

mnemonic A single character used for menu accelerators. The character must be contained in the caption and is
case-sensitive.

id A unique string identifier for the menu item. This can be used to extend menu sections or sub-menu or to alter a
menu item entirely.

Refer to the main documentation on how this works.

2.11.7 Settings – Reference

See also:

Customization - Settings A detailed overview on settings in Sublime Text and their order of precedence.

Global Settings

Global settings can only be modified in Preferences.sublime-settings and Preferences
(<platform>).sublime-settings (where <platform> can be any of Linux, OSX or Windows) and,
where indicated, also in .sublime-project files.

theme

Type str
Default "Default.sublime-theme"

Theme to be used. Accepts a base name for a .sublime-theme file.

scroll_speed

Type float
Default 1.0

Controls the smooth scrolling feature.

• A value of 0 disables smooth scrolling.
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• A value between 0 and 1 makes scrolling slower.

• A value of 1 is the default scrolling speed.

• A value larger than 1 makes scrolling faster.

hot_exit

Type bool
Default true

If true and you exit the application or active window, Sublime Text will close the application or window
without prompting, even if there are unsaved files. Unsaved files and the state of the active project will be
restored the next time Sublime Text starts.

remember_open_files

Type bool
Default false

If true, every time you start Sublime Text it will reopen the files that were open when the application
was closed the last time.

open_files_in_new_window

Type bool
Default true

OS X only. If true, a new window is created when files are opened from Finder or by dragging them
onto the dock icon.

close_windows_when_empty

Type bool
Default (All) false
Default (OS X) true

If true and no folder is open in the active window, the window will be closed when the last file is closed.

show_full_path

Type bool
Default (All) true
Default (OS X) false

If true, show the active file’s full path in the title bar.

preview_on_click

Type bool
Default true

If true, preview file contents when clicking on a file in the side bar. Files in preview will be closed
automatically as soon as they lose focus (for example, if you press Esc). Double-clicking or editing a file
in preview will open the file in a tab.
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folder_exclude_patterns

Type [str,]
Default [".svn", ".git", ".hg", "CVS"]

Accepts wildcards. Excludes the matching folders in the project from the side bar, Goto Anything and
any project-wide action.

This setting must be used in a global Preferences.sublime-settings file, or in folder items in
a .sublime-project file.

file_exclude_patterns

Type [str,]
De-
fault

["*.pyc", "*.pyo", "*.exe", "*.dll", "*.obj", "*.o", "*.a",
"*.lib", "*.so", "*.dylib", "*.ncb", "*.sdf", "*.suo", "*.
pdb", "*.idb", ".DS_Store", "*.class", "*.psd", "*.db", "*.
sublime-workspace"]

Accepts wildcards. Excludes the matching files in the project from the side bar, Goto Anything and any
project-wide action.

This setting must be used in a global Preferences.sublime-settings file, or in folder items in
a .sublime-project file.

binary_file_patterns

Type [str,]
De-
fault

["*.jpg", "*.jpeg", "*.png", "*.gif", "*.ttf", "*.tga", "*.
dds", "*.ico", "*.eot", "*.pdf", "*.swf", "*.jar", "*.zip"]

Accepts wildcards. Excludes the matching files in the project from Goto Anything and any project-wide
action, but not the side bar.

This setting must be used in a global Preferences.sublime-settings file, or in folder items in
a .sublime-project file.

show_tab_close_buttons

Type bool
Default true

If false, hides close buttons in the tab bar until you hover the mouse over the tab bar.

mouse_wheel_switches_tabs

Type bool
Default false

If true and the cursor is in the tab bar, scrolling the mouse wheel will switch tabs.

ignored_packages
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Type [str,]
Default ["Vintage"]

A list of packages that Sublime Text will ignore. Packages in this list will be disabled until you remove
them from the list.

Some packages may not respond gracefully to being disabled/enabled via this setting. Therefore, after
editing this setting, you should restart Sublime Text.

File Settings

Whitespace and Indentation

auto_indent

Type bool
Default true

Toggles automatic indentation. Automatic indentation will try to calculate the correct indentation when
you press :kbd:´Enter´.

smart_indent

Type bool
Default true
Depends on auto_indent

Toggles smart indentation. Smart indentation tries additional heuristics to calculate the correct indenta-
tion. when you press :kbd:´Enter´.

indent_to_bracket

Type bool
Default false
Depends on auto_indent

If true, adds whitespace up to the first open bracket when indenting.

tab_size

Type int
Default 4

Size of a tab in spaces.

translate_tabs_to_spaces

Type bool
Default false

Determines whether to replace a tab character with tab_size number of spaces when Tab is pressed.
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use_tab_stops

Type bool
Default true

If translate_tabs_to_spaces is true, this setting will make Tab and Backspace insert/delete
tab_size number of spaces per key press.

trim_automatic_white_space

Type bool
Default true

Toggles deletion of whitespace added by auto_indent.

detect_indentation

Type bool
Default true

If false, disables detection of tabs vs. spaces whenever a buffer is loaded. If true, it will automatically
modify translate_tabs_to_spaces and tab_size.

draw_white_space

Type enum : str
Default "selection"

Valid values: none, selection, all.

trim_trailing_white_space_on_save

Type bool
Default false

If true, Sublime Text will remove whitespace from the active file before saving.

tab_completion

Type bool
Default true

If true, pressing Tab will insert the best matching completion.

If false, Tab will only trigger snippets or insert a tab.

Tab can still be used to insert an explicit tab when tab_completion is true.

auto_complete

Type bool
Default true

If true, completions will be shown automatically while typing.
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auto_complete_size_limit

Type int
Default 4194304

In files whose size is larger than this value, auto complete will stop being automatically triggered.

auto_complete_delay

Type int
Default 50

Delay in milliseconds before the auto complete window is shown after typing.

auto_complete_selector

Type str
De-
fault

"meta.tag - punctuation.definition.tag.begin, source - comment
- string.quoted.double.block - string.quoted.single.block -
string.unquoted.heredoc"

Selector denoting scopes where auto complete will be active.

auto_complete_triggers

Type [{ (enum : str) : str }, ]
Default [{"characters": "<", "selector": "text.html"}]

Additional situations to trigger auto complete.

auto_complete_commit_on_tab

Type bool
Default false

By default, auto complete will commit the current completion on Enter.

If true, this setting will allow you to complete on Tab instead.

Completing on Tab is generally a superior option, as it removes the ambiguity between committing the
completion and inserting a newline.

auto_complete_with_fields

Type bool
Default false
Depends on auto_complete_commit_on_tab

If true, auto complete will be also shown when snippet fields are active.

auto_complete_cycle

Type bool
Default false
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If true, pressing Up on the first item in the auto complete window will select the last item.

If false, the auto complete window will be closed in the same situation.

Likewise for the Down key when the last item is selected.

auto_close_tags

Type bool
Default true

If true, entering </ will automatically close HTML and XML tags.

shift_tab_unindent

Type bool
Default false

By default, Shift+Tab will only unindent if the selection spans multiple lines. When pressing
Shift+Tab at other times, it will insert a tab character. This way, tabs can be inserted when
tab_completion is enabled.

If true, Shift+Tab will always unindent instead of inserting tabs.

copy_with_empty_selection

Type bool
Default true

If true, the copy and cut commands will operate on the current line when the selection is empty
instead of doing nothing.

find_selected_text

Type bool
Default (All) true
Default (OS X) false

If true, the selected text will be copied into the find panel when it’s shown.

auto_find_in_selection

Type bool
Default false

If true, the Find in Selection flag will be enabled automatically when multiple lines are selected.

drag_text

Type bool
Default true

If true, clicking on selected text will begin a drag-drop operation.

Not currently implemented under Linux.
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Visual Settings

always_show_minimap_viewport

Type bool
Default false

If true, shows a rectangle on the minimap highlighting the file’s visible area. If false, only shows the
rectangle when you hover the cursor over the minimap.

color_scheme

Type str
Default "Packages/Color Scheme - Default/Monokai.tmTheme"

Sets the colors used for text highlighting. Accepts a path relative to the Data directory (for example:
Packages/Color Scheme - Default/Monokai Bright.tmTheme).

font_face

Type str
Default (Linux) "Monospace"
Default (OS X) "Menlo-Regular"
Default (Windows) "Consolas"

Font face to be used for editable text.

font_size

Type int
Default (All) 10
Default (OS X) 12

Size of the font for editable text.

font_options

Type enum : str
Default []

Valid values: bold, italic, no_antialias, gray_antialias, subpixel_antialias,
directwrite (Windows).

gutter

Type bool
Default true

Toggles display of gutter.

line_numbers
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Type bool
Default true

If true, displays line numbers in the gutter.

margin

Type int
Default 4

Spacing between the gutter and the text.

fold_buttons

Type bool
Default true

If true, you will see triangles next to lines that can be folded.

fade_fold_buttons

Type bool
Default true

If true, the fold buttons will be hidden until you hover the mouse over the gutter.

rulers

Type float | [float,]
Default []

Columns at which to display vertical lines. Rulers help to visually indicate the length of a line. Accepts a
list of numeric values (such as [79, 89, 99]) or a single numeric value (for example, 79).

draw_minimap_border

Type bool
Default false

If true, draws a border around the minimap’s region corresponding to the the view’s currently visible
text. The minimapBorder key of the active color scheme controls the border’s color.

highlight_line

Type bool
Default false

If true, highlights lines where a caret is present.

line_padding_top
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Type int
Default 0

Additional spacing at the top of each line, in pixels.

line_padding_bottom

Type int
Default 0

Additional spacing at the bottom of each line, in pixels.

caret_style

Type enum : str
Default "smooth"

Determines the style of the caret (text insertion point).

Valid values: smooth, phase, blink, solid.

caret_extra_top

Type int
Default 0

Increases the size of the caret.

caret_extra_bottom

Type int
Default 0

Increases the size of the caret.

caret_extra_width

Type int
Default 0

Increases the width of the caret.

scroll_past_end

Type bool
Default (All) true
Default (OS X) false

If true, Sublime Text will leave a wide, empty margin between the last line and the bottom of the
window.

word_wrap
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Type bool | auto
Default "auto"

If true, disables horizontal scrolling. If set to auto, will be disabled for source code and enabled
otherwise.

wrap_width

Type int
Default 0
Depends on word_wrap

If greater than 0, wraps long lines at the specified column as opposed to the window width.

indent_subsequent_lines

Type bool
Default true
Depends on word_wrap

If false, wrapped lines will not be indented. Only has effect if word_wrap is set to true.

draw_centered

Type bool
Default false

If true, text will be drawn centered rather than left-aligned.

match_brackets

Type bool
Default true

If false, disables bracket highlighting for brackets enclosing the caret.

match_brackets_content

Type bool
Default true

If true, the nearest bracket pair surrounding the caret will be highlighted. Otherwise, the caret has to be
next to a bracket for highlighting to occur.

match_brackets_square

Type bool
Default true
Depends on match_brackets

If false, stops highlighting square brackets. Only has effect if match_brackets is true.

match_brackets_braces
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Type bool
Default true
Depends on match_brackets

If false, stops highlighting curly brackets. Only has effect if match_brackets is true.

match_brackets_angle

Type bool
Default false
Depends on match_brackets

If false, stops highlighting angle brackets. Only has effect if match_brackets is true.

match_tags

Type bool
Default true

If true, enables visualization of the matching tag in HTML and XML content.

match_selection

Type bool
Default true

If true, highlights other occurrences of the selected text.

draw_indent_guides

Type bool
Default true

If true, draws lines at every indentation level.

The color of the indentation guides is controlled via the .tmTheme settings: guide, activeGuide and
stackGuide.

indent_guide_options

Type enum : str
Default ["draw_normal"]
Depends on draw_indent_guides

Valid options: draw_normal, draw_active.

The draw_active option will cause the indent guide containing the caret to be shown in a different
color.

show_definitions

Type bool
Depends on index_files

94 Chapter 2. Content



Sublime Text Unofficial Documentation, Release 3.0

If true, hovering over a word will show a popup listing all possible locations for the symbol.

tree_animation_enabled

Type bool
Default true

If true, animations will be shown in the sidebar when expanding or collapsing folders.

animation_enabled

Type bool
Default true

If true, animations will be shown throughout the application.

hightlight_modified_tabs

Type bool

If true, makes tabs with unsaved changes more visible.

bold_folder_labels

Type bool
Default false

If true, folder names in the side bar will be bold.

use_simple_full_screen

Type bool
Default false

OS X only.

If true, disables Lion-style full-screen support.

Sublime Text must be restarted after changing this setting for it to take effect.

gpu_window_buffer

Type enum : (bool | str)
Default "auto"

OS X only.

Valid values: true, false, auto.

If auto, it will enable the setting when running on a screen 2560 pixels or wider (for example, a Retina
display).

If true, OpenGL is used to accelerate drawing.

Sublime Text must be restarted after changing this setting for it take effect.

overlay_scroll_bars
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Type enum : str
Default "system"

Valid values: system, enabled, disabled.

enable_tab_scrolling

Type bool
Default true

If true, tabs will scroll left and right instead of simply shrinking when there are too many to show on
the tab bar.

show_encoding

Type bool
Default false

If true, shows the active file’s encoding in the status bar.

show_line_endings

Type bool
Default false

If true, shows the active file’s type of line endings in the status bar.

remember_full_screen

Type bool
Default false

If true, allows Sublime Text to start in full-screen mode if it was exited in full-screen mode.

If false, Sublime Text will never start in full-screen mode.

always_prompt_for_file_reload

Type bool
Default false

If true, always prompt before reloading a file.

By default, prompting will only occur if a file has unsaved changes.

create_window_at_startup

Type bool
Default true

OS X only.

If true, an empty window will be created at startup.

show_panel_on_build
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Type bool
Default true

If true, shows the Build Results panel when building.

If false, the Build Results panel can be shown via the Tools --> Build Results menu item.

index_files

Type bool
Default true

If true, file indexing parses all files in the side bar and builds an index of their symbols.

Required for Goto Definition to work.

Symbols are only available for syntaxes that define them via .tmPreferences files.

index_workers

Type int
Default 0
Depends on index_files

Sets the number of threads used for indexing.

If 0, Sublime Text will use all available cores.

To disable indexing completely, use index_files.

index_exclude_patterns

Type [str,]
Default ["*.log"]
Depends on index_files

Indicates which files will not be indexed.

Patterns in this list accept wildcards.

Automatic Behavior

auto_match_enabled

Type bool
Default true

Toggles automatic pairing of quotes, brackets, etc.

save_on_focus_lost

Type bool
Default false

If true, saves files automatically when switching to a different file or application.
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find_selected_text

Type bool
Default (All) true
Default (OS X) false

If true, the selected text will be copied into the find panel when the panel is opened.

word_separators

Type str
Default "./\\()\"'-:,.;<>~!@#$%^&*|+=[]{}`~?"

Characters considered to divide words for actions like advancing the cursor, etc. Not used for every
context where a notion of a word separator is useful (for example, word wrapping). In some contexts, the
text might be tokenized based on other criteria (for example, the syntax definition rules).

ensure_newline_at_eof_on_save

Type bool
Default false

If true, adds a new line at the end of the active file before saving if no new line is present.

System and Miscellaneous Settings

is_widget

Type bool
Default null

Is set to true by Sublime Text if the buffer is an input field in a dialog, as opposed to a regular buffer.

spell_check

Type bool
Default false

Toggles the spell checker.

dictionary

Type bool
Default "Packages/Language - English/en_US.dic"

Word list to be used by the spell checker. Accepts a path relative to the Data directory (such as
Packages/Language - English/en_US.dic). You can add more dictionaries.

spelling_selector
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Type str
De-
fault

"markup.raw, source string.quoted - punctuation - meta.
preprocessor.c.include, source comment - source comment.block.
preprocessor, -(source, constant, keyword, storage, support,
variable, markup.underline.link, meta.tag)"

De-
pends
on

spell_check

Scope selector to determine which scopes will be spell checked.

fallback_encoding

Type bool
Default "Western (Windows 1252)"

The encoding to use when the encoding can’t be determined automatically. ASCII, UTF-8 and UTF-16
encodings will be detected automatically .

default_encoding

Type str
Default "UTF-8"

Encoding used when saving new files, and files opened with an undefined encoding (for example, plain
ascii files).

If a file is opened with a specific encoding (either detected or given explicitly), this setting will be ignored
and the file’s encoding will be used to save the file.

enable_hexadecimal_encoding

Type bool
Default true

If true, files containing null bytes will be opened as hexadecimal by default.

default_line_ending

Type bool
Default "system"

Determines what characters to use to designate new lines. Valid values: system (OS-dependant),
windows (CRLF) and unix (LF).

tab_completion

Type bool
Default true

Determines whether pressing Tab will insert completions.
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Build and Error Navigation Settings

result_file_regex

Type str
Default null

Regular expression used to extract file names from build system output printed to a view or output panel.
Follows the rules for error capturing in build systems.

result_line_regex

Type str
Default null

Regular expression used to extract line information from build system output printed to a view or output
panel. Follows the rules for error capturing in build systems.

result_base_dir

Type str
Default null

Folder to start looking for offending files based on information extracted with result_file_regex
and result_line_regex.

build_env

Type bool | {str : str}
Default false

List of paths to add to build systems by default.

File and Directory Settings

default_dir

Type str
Default null

Sets the default save folder for the view. If the value of this setting points to an existing folder, you will
be prompted to save the file to that folder when you try to save the file.

atomic_save

Type bool
Default false

If true, Sublime Text will save by writing to an alternate file and then renaming it over the original file.

Atomic save attempts to reduce data loss by only removing the orginal file when the new file has been
successfully written. Because the a file is first created and then renamed instead of being updated in place,
many file listeners and virtual file systems will get confused. For this reason, it’s disabled by default.
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Input Settings

command_mode

Type bool
Default false

If true, the buffer will ignore key strokes. Useful when emulating Vim’s modal behavior.

move_to_limit_on_up_down

Type bool
Default (All) false
Default (OS X) true

If true and the caret is on the first line, pressing the up arrow will move the caret to the beginning of the
line. If the caret is on the last line, the down arrow will move the caret to the end of the last line.

2.11.8 Completions Files

See also:

Completions Introduction to the different types of completions

Note that completions aren’t limited to completions files, because other sources contribute to the completions list
(see above). However, the most explicit way Sublime Text provides you to feed it completions is by means of .
sublime-completions files.

This topic only deals with the format of a .sublime-completions file.

File Format

Completions are JSON files with the .sublime-completions extension. Entries in completions files can contain
either snippet-like strings or plain text.

Example

Here’s an example (with HTML completions):

{
"scope": "text.html - source - meta.tag, punctuation.definition.tag.begin",

"completions":
[

{ "trigger": "a", "contents": "<a href=\"$1\">$0</a>" },
{ "trigger": "abbr\t<abbr>", "contents": "<abbr>$0</abbr>" },
{ "trigger": "acronym", "contents": "<acronym>$0</acronym>" }

]
}

scope Determines when the completions list will be populated with this list of completions.

See Scopes for more information.
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completions Array of completions.

Types of Completions

Plain Strings

Plain strings are equivalent to an entry where the trigger is identical to the contents:

"foo"
// is equivalent to:
{ "trigger": "foo", "contents": "foo" }

Trigger-based Completions

{ "trigger": "foo", "contents": "foobar" },
{ "trigger": "foo\ttest", "contents": "foobar" }

trigger Text that will be displayed in the completions list and will cause the contents to be inserted when chosen.

You can use a \t tab character to add a hint for the preceding trigger. The hint will be displayed right-aligned,
slightly grayed and does not affect the trigger itself.

contents Text to be inserted in the buffer. Supports the same string interpolation features as snippets.

Refer to Snippet Features.

Note: If you want a literal $, you have to escape it like this: \\$ (double backslashes are needed because we
are within a JSON string).

2.11.9 Symbols

Overview

Sublime Text provides basic support for symbol navigation (jumping to class and function definitions, etc.). Symbol
navigation can be enabled for any type of file.

The symbol navigation framework in Sublime Text is strictly text-based. No lexical or syntactical analysis is per-
formed.

Format

Symbols are defined using metadata files. Because symbol definition files are commonly required by packages, they
are discussed separately in this page for convenience.

Just as regular metadata files, symbol definition files have the .tmPreferences extension and use the Property List
format. The file name is ignored by Sublime Text.

See also:

Metadata Files Detailed documentation on metadata files.
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Defining Symbols

Sublime Text features two types of symbol list: a local symbol list (active file) and a global symbol list (project-wide).
Using symbol definition files, you can target both individually.

Symbol definition files use scope selectors to capture symbols in source code files.

Several symbol definition files can coexist in the same package. For example, two symbol definition files could work in
tandem: one would define all symbols, and a second one could selectively hide some of them if they were uninteresting
for users.

Let’s see an example of a symbol definition file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://www.apple.com/
→˓DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>

<key>name</key>
<string>Symbol List</string>
<key>scope</key>
<string>source.python meta.function.python, source.python meta.class.python</

→˓string>
<key>settings</key>
<dict>

<key>showInSymbolList</key>
<integer>1</integer>

</dict>
</dict>
</plist>

Using the file above, Sublime Text would scan source code files for scope names source.python meta.
function.python and source.python meta.class.python, and text within would be indexed as sym-
bols. The showInSymbolList setting tells Sublime Text to use the local symbol list.

Text Transformations

It is possible to apply transformations to symbols before they are displayed to the user. Symbol transformations consist
of text substitutions defined as regular expressions using the Oniguruma syntax.

This is an example of a text substitution:

s/class\s+([A-Za-z_][A-Za-z0-9_]*.+?\)?)(\:|$)/$1/g;

In this case, a captured symbol such as class FooBar(object) would show up as FooBar(object) in the
symbol list.

Let’s expand our previous example to use a symbol transformation:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://www.apple.com/
→˓DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>

<key>name</key>
<string>Symbol List</string>
<key>scope</key>
<string>source.python meta.function.python, source.python meta.class.python</

→˓string>
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<key>settings</key>
<dict>

<key>showInSymbolList</key>
<integer>1</integer>
<key>symbolTransformation</key>
<string>

s/class\s+([A-Za-z_][A-Za-z0-9_]*.+?\)?)(\:|$)/$1/g;
s/def\s+([A-Za-z_][A-Za-z0-9_]*\()(?:(.{0,40}?\))|((.{40}).+?\)))(\:)/$1(?2:

→˓$2)(?3:$4...\))/g;
</string>

</dict>
</dict>
</plist>

Structure of a Symbol Definition File

All metadata files share the same topmost structure, which is inherited from the Property List format.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://www.
→˓apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>

...
</dict>
</plist>

These are all the valid elements in a symbol definition file:

name Optional. Name of the symbol definition. Ignored by Sublime Text.

<key>name</key>
<string>Some arbitrary name goes here</string>

scope Comma-separated list of scope names that Sublime Text will use to capture symbols in files.

<key>scope</key>
<string>source.python meta.function.python, source.python meta.class.python</
→˓string>

settings Required. A container for settings.

<key>settings</key>
<dict>

...
</dict>

uuid Optional. A unique identifier for the file. Ignored by Sublime Text.

<key>uuid</key>
<string>BC062860-3346-4D3B-8421-C5543F83D11F</string>

settings Subelements

showInSymbolList Optional. Links symbols to the local symbol list. Valid values are 0 or 1. If 0, the corre-
sponding symbols will not be displayed.
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<key>showInSymbolList</key>
<integer>1</integer>

showInIndexedSymbolList Optional. Links symbols to the global symbol list. Valid values are 0 or 1. If 0,
the corresponding symbols will not be displayed.

<key>showInIndexedSymbolList</key>
<integer>1</integer>

symbolTransformation Optional. Targets the local symbol list. Semicolon-separated list of text substitutions
expressed as regular expressions using the Oniguruma syntax. Whitespace between substitution instructions is
ignored.

<key>symbolTransformation</key>
<string>

s/class\s+([A-Za-z_][A-Za-z0-9_]*.+?\)?)(\:|$)/$1/g;
s/def\s+([A-Za-z_][A-Za-z0-9_]*\()(?:(.{0,40}?\))|((.{40}).+?\)))(\:)/$1(?2:

→˓$2)(?3:$4...\))/g;
</string>

symbolIndexTransformation Optional. Targets the global symbol list. Semicolon-separated list of text sub-
stitutions expressed as regular expressions using the Oniguruma syntax. Whitespace between substitution in-
structions is ignored.

<key>symbolIndexTransformation</key>
<string>

s/class\s+([A-Za-z_][A-Za-z0-9_]*.+?\)?)(\:|$)/$1/g;
s/def\s+([A-Za-z_][A-Za-z0-9_]*\()(?:(.{0,40}?\))|((.{40}).+?\)))(\:)/$1(?2:

→˓$2)(?3:$4...\))/g;
</string>

Navigating Symbols

Once symbols are defined, you can navigate them using standard key bindings:

F12 Go to definition
Ctrl+R Show local symbol list
Ctrl+Shift+R Show global symbol list

See also:

Goto Anything Browsing symbols using Goto Anything.

2.11.10 Comments

Overview

Sublime Text provides a default command to comment and uncomment lines of code. This command can be enabled
for any type of file using metadata files.
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File Format

Comment markers are defined using metadata files. However, because metadata for comment markers is commonly
required by packages, it’s discussed separately in this page for convenience.

Just as regular metadata files, comment metadata files have the .tmPreferences extension and use the Property
List format. The file name is ignored by Sublime Text.

See also:

Metadata Files Detailed documentation on metadata.

Example

Let’s see a basic example of a comment metadata file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://www.apple.com/
→˓DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>

<key>name</key>
<string>Miscellaneous</string>
<key>scope</key>
<string>source.python</string>
<key>settings</key>
<dict>

<string></string>
<key>shellVariables</key>
<array>

<dict>
<key>name</key>
<string>TM_COMMENT_START</string>
<key>value</key>
<string># </string>

</dict>
</array>

</dict>
</dict>
</plist>

In the example we’ve highlighted some parts that are specific to comment metadata files.

Structure of a Comment Metadata File

All comment metadata files share the same topmost structure, which is inherited from Property List format:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/
→˓PropertyList-1.0.dtd">
<plist version="1.0">
<dict>

...
</dict>
</plist>

These are all the valid elements in a comment metadata file:
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name Optional. Name of the metadata. Ignored by Sublime Text.

<key>name</key>
<string>Shell Variables</string>

scope Required. Comma-separated list of scope selectors to determine in which context the metadata should be
active.

In most cases you’ll use the base scope for a particular syntax.

<key>scope</key>
<string>source.python</string>

settings Required. A container for settings.

<key>settings</key>
<dict>

...
</dict>

uuid Optional. A unique identifier for the file. Ignored by Sublime Text.

<key>uuid</key>
<string>BC062860-3346-4D3B-8421-C5543F83D11F</string>

settings Subelements

shellVariables Required. Container for comment markers.

<key>shellVariables</key>
<array>

...
</array>

shellVariables Subelements

Note: The shellVariables array may contain any arbitrary subelement, but here we’re only concerned with
those related to comments. See Shell Variables (Child of settings) for details.

TM_COMMENT_START Defines a default comment marker.

To define additional comment markers, name them TM_COMMENT_START_2, TM_COMMENT_START_3, etc.

<dict>
<key>name</key>
<string>TM_COMMENT_START</string>
<key>value</key>
<string># </string>

</dict>

TM_COMMENT_END Optional. Defines an end comment marker. If omitted, TM_COMMENT_START will be treated
as a line comment marker.

If present and a corresponding start comment marker can be found, the pair is treated as block comment markers.
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To define additional end comment markers, name them TM_COMMENT_END_2, TM_COMMENT_END_3, etc.

<dict>
<key>name</key>
<string>TM_COMMENT_END_2</string>
<key>value</key>
<string>*/</string>

</dict>

TM_COMMENT_DISABLE_INDENT Optional. Valid values are yes and no. Disables indentation for the
TM_COMMENT_START marker.

To target other group of markers, use TM_COMMENT_DISABLE_INDENT_2, etc.

<dict>
<key>name</key>
<string>TM_COMMENT_DISABLE_INDENT</string>
<key>value</key>
<string>yes</string>

</dict>

Example

Here’s a more complete example of a comment metadata file using some of the features just discussed:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://www.apple.com/
→˓DTDs/PropertyList-1.0.dtd">
<plist version="1.0">

<dict>
<key>shellVariables</key>
<array>

<dict>
<key>name</key>
<string>TM_COMMENT_START</string>
<key>value</key>
<string>// </string>

</dict>
<dict>

<key>name</key>
<string>TM_COMMENT_START_2</string>
<key>value</key>
<string>/*</string>

</dict>
<dict>

<key>name</key>
<string>TM_COMMENT_END_2</string>
<key>value</key>
<string>*/</string>

</dict>
</array>

</dict>
<key>uuid</key>
<string>BC062860-3346-4D3B-8421-C5543F83D11F</string>

</dict>
</plist>
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Related Keyboard Shortcuts

Once comment metadata has been defined, you can use standard key bindings to comment and uncomment lines of
code.

Ctrl+/ Toggle line comment
Ctrl+Shift+/ Toggle block comment

2.11.11 Metadata Files

Overview

Metadata are parameters that can be assigned to certain text sections using scope selectors.

These paremeters can be used for many purposes; for example:

• specifying the current comment markers, even within embedded source code, so that you can toggle comments
in any syntax,

• defining rules for auto-indentation,

• marking symbols that Sublime Text will allow you to browse to quickly.

Furthermore, snippets can access metadata declared in the shellVariables setting, which allows you to create a
snippet that has different contents depending on where it’s used.

File Format

Metadata files have the .tmPreferences extension and use the Property List format. The file name is ignored by
Sublime Text.

Metadata files are inherited from TextMate.

Example

Here’s an example of a metadata file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://www.apple.com/
→˓DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>

<key>name</key>
<string>JavaScript Metadata</string>
<key>scope</key>
<string>source.js</string>
<key>settings</key>
<dict>

<key>decreaseIndentPattern</key>
<string>^(.*\*/)?\s*\}.*$</string>
<key>increaseIndentPattern</key>
<string>^.*\{[^}"']*$</string>

<key>bracketIndentNextLinePattern</key>
<string>(?x)
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^ \s* \b(if|while|else)\b [^;]* $
| ^ \s* \b(for)\b .* $
</string>

</dict>
<dict>

<key>shellVariables</key>
<array>

<dict>
<key>name</key>
<string>TM_COMMENT_START</string>
<key>value</key>
<string>// </string>

</dict>
<dict>

<key>name</key>
<string>TM_COMMENT_START_2</string>
<key>value</key>
<string>/*</string>

</dict>
<dict>

<key>name</key>
<string>TM_COMMENT_END_2</string>
<key>value</key>
<string>*/</string>

</dict>
</array>

</dict>
<key>uuid</key>
<string>BC062860-3346-4D3B-8421-C5543F83D11F</string>

</dict>
</plist>

The example file combines several types of metadata.

Structure of a Metadata File

All metadata files share the same topmost structure, which is inherited from the Property List format.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/
→˓PropertyList-1.0.dtd">
<plist version="1.0">
<dict>

...
</dict>
</plist>

Sublime Text uses the following topmost keys in metadata files; all others are ignored by default.

name Optional. Name of the metadata. Ignored by Sublime Text.

<key>name</key>
<string>Shell Variables</string>

scope Required. Scope selector to determine in which context the metadata should be available.
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<key>scope</key>
<string>source.python</string>

settings Required. Container for settings.

<key>settings</key>
<dict>

...
</dict>

uuid Optional. A unique identifier for the file. Ignored by Sublime Text.

<key>uuid</key>
<string>BC062860-3346-4D3B-8421-C5543F83D11F</string>

Subelements of settings

The settings element can contain subelements for different purposes, which will be grouped in the following
sections.

Some subelements have certain functionality associated with them by default, while others can only be accessed via
the API.

Indentation Options (Children of settings)

Indentation options control aspects of the auto-indentation mechanism.

increaseIndentPattern Regex. If it matches on the current line, the next line will be indented one level
further.

<key>increaseIndentPattern</key>
<string>insert regex here</string>

decreaseIndentPattern Regex. If it matches on the current line, the next line will be unindented one level.

<key>decreaseIndentPattern</key>
<string>insert regex here</string>

bracketIndentNextLinePattern Regex. If it matches on the current line, only the next line will be indented
one level further.

<key>bracketIndentNextLinePattern</key>
<string>insert regex here</string>

disableIndentNextLinePattern Regex. If it matches on the current line, the next line will not be indented
further.

<key>disableIndentNextLinePattern</key>
<string>insert regex here</string>

unIndentedLinePattern Regex. The auto-indenter will ignore lines matching this regex when computing the
next line’s indentation level.

<key>unIndentedLinePattern</key>
<string>insert regex here</string>
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Completions Options (Child of settings)

Completion options control aspects of the completions mechanism.

cancelCompletion Regex. If it matches on the current line, supresses the autocomplete popup.

<key>cancelCompletion</key>
<string>insert regex here</string>

Symbol Definitions (Child of settings)

Documentation for symbol definitions was moved to a separate page: Symbol Definition settings.

Shell Variables (Child of settings)

Shell variables are used for different purposes and can be accessed from snippets.

Note that shell variables are defined as dictionaries in an array, and thus have a different format from settings
subelements.

shellVariables Container for “shell variables”.

<key>shellVariables</key>
<array>

...
</array>

shellVariables Subelements

Subelements of shellVariables are dictionaries with name and value keys.

<dict>
<key>name</key>
<string>BOOK_OPENING</string>
<key>value</key>
<string>Once upon a time...</string>

</dict>

See also:

Comments Shell variables defining comment markers.

Related API Functions

To extract metadata information from plugin code, you can use the view.meta_info(key, point) API call.

2.11.12 Command Palette

The command palette is fed entries with .sublime-commands files.
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File Format of .sublime-commands Files

Format JSON (with comments)
Extension .sublime-commands
Name Any
Location Any under Packages
Content Command palette item

Example

Here’s an excerpt from Packages/Default/Default.sublime-commands:

[
{ "caption": "Project: Save As", "command": "save_project_as" },
{ "caption": "Project: Close", "command": "close_project" },
{ "caption": "Project: Add Folder", "command": "prompt_add_folder" },

{ "caption": "Preferences: Default File Settings", "command": "open_file", "args
→˓": {"file": "${packages}/Default/Base File.sublime-settings"} },

{ "caption": "Preferences: User File Settings", "command": "open_file", "args": {
→˓"file": "${packages}/User/Base File.sublime-settings"} },

{ "caption": "Preferences: Default Global Settings", "command": "open_file", "args
→˓": {"file": "${packages}/Default/Global.sublime-settings"} },

{ "caption": "Preferences: User Global Settings", "command": "open_file", "args":
→˓{"file": "${packages}/User/Global.sublime-settings"} },

{ "caption": "Preferences: Browse Packages", "command": "open_dir", "args": {"dir
→˓": "$packages"} }
]

Command Palette Item

These are the elements that can be included in a .sublime-commands item:

caption Text for display in the command palette.

command Command to be executed.

args Arguments to pass to command. Note that to locate the packages folder you need to use a snippet-like variable:
${packages} or $packages. This differs from other areas of the editor due to different implementations
in the lower layers.

How to Use the Command Palette

1. Press Ctrl+Shift+P

2. Select command

Entries are filtered by current context. Not all entries will be visible at all times.

2.11.13 Plugins

See also:

API Reference More information on the Python API.
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Plugins are Python scripts implementing *Command classes from sublime_plugin.

Where to Store Plugins

Sublime Text will look for plugins in these places:

• Packages

• Packages/<pkg_name>

• .sublime-package files

Plugin files nested deeper in Packages won’t be loaded.

All plugins should live inside a folder of their own and not directly under Packages. This will spare you confusions
when Sublime Text attempts to sort packages for loading.

Conventions for Command Names

By convention, Sublime Text command class names are suffixed with Command and written as
NamesLikeThisCommand.

However, command names are automatically transformed from NamesLikeThisCommand to name_like_this.
Thus, ExampleCommand would become example, and AnotherExampleCommand would become
another_example.

In names for classes defining commands, use NameLikeThisCommand. To call a command from the API, use the
standardized name_like_this.

Types of Commands

• sublime_plugin.WindowCommand

• sublime_plugin.TextCommand

• sublime_plugin.EventListener

Instances of WindowCommand have a .window attribute pointing to the window instance that created them. Simi-
larly, instances of TextCommand have a .view attribute.

Shared Traits for Commands

All commands must implement a .run() method.

All commands can receive an arbitrarily long number of keyword arguments that must be valid JSON types.

How to Call Commands from the API

Depending on the type of command, use a reference to a View or a Window and call <object>.
run_command('command_name'). In addition to the command’s name, .run_command accepts a dictionary
whose keys are the names of valid parameters for said command:

window.run_command("echo", {"Tempus": "Irreparabile", "Fugit": "."})
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Command Arguments

All user-provided arguments to commands must be valid JSON types.

Text Commands and the edit Object

Text commands receive an edit object passed to them by Sublime Text.

All actions done within an edit are grouped as a single undo action. Callbacks such as on_modified() and
on_selection_modified() are called when the edit is finished.

Contrary to earlier versions of Sublime Text, the edit object’s life time is now managed solely by the editor. Plugin
authors must ensure to perform all editing operations within the run() method of text commands so that macros and
repeating commands work as expected.

To call other commands from your own commands, use the run_command() function.

Responding to Events

Any subclass of EventListener will be able to respond to events. You cannot make a class derive both from
EventListener and from any other type of command.

A Word of Warning about EventListener

Expensive operations in event listeners can cause Sublime Text to become unresponsive, especially in events trig-
gered frequently, like on_modified() and on_selection_modified(). Be careful of how much work is
done in these and don’t implement events you don’t need, even if they just pass.

Sublime Text and the Python Standard Library

Sublime Text ships with a trimmed down standard library.

Automatic Plugin Reload

Sublime Text will reload topmost Python modules as they change (perhaps because you are editing a .py file within
Packages). By contrast, Python subpackages won’t be reloaded automatically, and this can lead to confusion while
you’re developing plugins. Generally speaking, it’s best to restart Sublime Text after you’ve made changes to plugin
files, so all changes can take effect.

Multithreading

Only the set_timeout() function is safe to call from different threads.

2.11.14 Python API

See also:

Official Documentation API documentation.
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Missing in the official docs

There are quite a few things that are not (yet) documented in the official docs, this section tries to solve this.

Index

module sublime

• class Window

– set_layout()

• class View

– match_selector()

module sublime_plugin

• class EventListener

– on_query_completions()

sublime module

class sublime.Window
This class represents windows in Sublime Text and provides an interface of methods to interact with them. For
all available methods, see the official documentation.

set_layout(layout)
Changes the tile-based panel layout of view groups.

Parameters layout (dict) – specifies the new layout, see below

Returns None

Expects a dictionary like this:

{"cols": [float], "rows": [float], "cells": [[int]]}

where [type] represents a list of type.

cols A list of the column separators (floating point numbers), should start with 0 (left) and end with 1
(right).

rows A list of the row separators (floating point numbers), should start with 0 (top) and end with 1
(bottom).

cells A list of cell lists which describe a cell’s boundaries each. Cells can be imagines as rectangles with
the rows and cols specified along in this dictionary. Think like this:

[x1, y1, x2, y2]

where all values are integers respectively and map to the cols and rows indicies. Thus, a cell with [0,
0, 1, 2] translates to a cell from the top left to the first column and the second row separator (in a
2x2 grid this would be bottom center).

Note: rows and cols are not tested for boundaries and they are not adjusted either. Thus, it is possible to
specify values lower than 0 or higher than 1 and Sublime Text will in fact treat them accordingly. That
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means you can crop views or create borders. It is not known whether the “background color” of these
empty spaces can be modified, the default is black. Use at your own risk!

The order of column or row separators is not checked either. If you, for example, use a reversed column
list like [1, 0.5, 0] you get to see two black panels. Sublime Text is unusable in this state.

Examples:

# A 2-column layout with a separator in the middle
window.set_layout({

"cols": [0, 0.5, 1],
"rows": [0, 1],
"cells": [[0, 0, 1, 1], [1, 0, 2, 1]]

})

# A 2x2 grid layout with all separators in the middle
window.set_layout({

"cols": [0, 0.5, 1],
"rows": [0, 0.5, 1],
"cells": [[0, 0, 1, 1], [1, 0, 2, 1],

[0, 1, 1, 2], [1, 1, 2, 2]]
})

# A 2-column layout with the separator in the middle and the right
# column being split in half
window.set_layout({

"cols": [0, 0.5, 1],
"rows": [0, 0.5, 1],
"cells": [[0, 0, 1, 2], [1, 0, 2, 1],

[1, 1, 2, 2]]
})

class sublime.View
Similar to Window , this class represents views in Sublime Text and provides an interface of methods to interact
with them. For all available methods, see the official documentation.

match_selector(point, selector)
Matches the scope at point against the specified selector.

Parameters

• point (int) – Point in the view whose scope the selector should be matched against.

• selector (str) – A scope selector.

Returns bool Whether the selector matches or not.

Equivalent to:

view.score_selector(point, selector) != 0
# or
sublime.score_selector(view.scope_name(point), selector) != 0

sublime_plugin module

class sublime_plugin.EventListener
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on_query_completions(view, prefix, locations)
Called whenever the completion list is requested.

This accounts for all views and all windows, so in order to provide syntax-specific completions you should
test the current scope of locations with match_selector().

view A View instance for which the completions should be made.

prefix The text entered so far. This is only until the next word separator.

locations Array of points in view where the completion should be inserted. This can be interpreted as
the current selection.

If you want to handle completions that depend on word separator characters you need to test each lo-
cation individually. See Completions with multiple cursors on how Sublime Text handles completions
with multiple cursors.

Return value Expects two (three) formats for return values:

1. [[trigger, contents], ...]

A list of completions similar to Trigger-based Completions but without mapping keys. trigger
may use the \\t description syntax.

Note: In Sublime Text 3, completions may also consist of plain strings instead of the trigger-
contents-list.

2. ([[trigger, contents], ...], flags)

Basically the same as above but wrapped in a 2-sized tuple. The second element, the flags, may
be a bitwise OR combination of these flags:

sublime.INHIBIT_WORD_COMPLETIONS Prevents Sublime Text from adding its word
completions to the completion list after all plugins have been processed. This consists of any
word in the current document that is longer than 3 characters.

sublime.INHIBIT_EXPLICIT_COMPLETIONS Prevents Sublime Text from suggesting
entries from .sublime-completions files. Therefore, with this flag set, it will only
show completions that are returned by plugins from their on_query_completions meth-
ods (along with word completions unless the above flag is also set.)

Flags are shared among all completions, once set by one plugin you can not revert them.

3. Anything else (e.g. None)

No effect.

Example: See Another Plugin Example: Feeding the Completions List for an example on how to use this
event.

Exploring the API

A quick way to see the API in action:

1. Add Packages/Default (Preferences | Browse Packages. . . ) to your project.

2. Ctrl + Shift + F

3. Enter *.py in the In Files: field

4. Check Use Buffer option

5. Search API name

6. F4
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7. Study relevant source code

2.11.15 Commands

Overview

This list of commands is a work in progress.

About Paths in Command Arguments

Some commands take paths as parameters. Among these, some support snippet-like syntax, while others don’t. A
command of the first kind would take a parameter like $packages/SomeDir/SomeFile.ext whereas a com-
mand of the second kind would take a parameter like Packages/SomeDir/SomeFile.ext.

Generally, newer commands support the snippet-like syntax.

Commands expect UNIX-style paths if not otherwise noted, including on Windows (for example, /c/Program
Files/Sublime Text 2/sublime_plugin.py).

Often, relative paths in arguments to commands are assumed to start at the Data directory.

Variables in Paths as Arguments

The same variables available to build systems are expanded in arguments to commands. See Build System Variables
for more information.

Commands

Note: This list is incomplete.

build Runs a build system.

• variant [String]: Optional. The name of the variant to be run.

set_build_system Changes the current build system.

• file [String]: Path to the build system. If empty, Sublime Text tries to automatically find an appropriate
build systems from specified selectors.

• index [Int]: Used in the Tools | Build System menu but otherwise probably not useful.

new_build_system Creates a new buffer and inserts a build system template.

toggle_save_all_on_build Toggles whether all open files should be saved before starting the build.

run_macro_file Runs a .sublime-macro file.

• file [String]: Relative path to the macro file.

insert_snippet Inserts a snippet from a string or .sublime-snippet file.

• contents [String]: Snippet as a string to be inserted. Remember that backslashes \ have to be escaped,
like in every other JSON string.

• name [String]: Relative path to the .sublime-snippet file to be inserted.
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See also:

Snippets Documentation on snippets and their variable features.

insert Inserts a string.

• characters [String]: String to be inserted.

append Inserts a string at the end of the view.

XXX

• characters [String]: String to be inserted.

• force [Bool]:

• scroll_to_end [Bool]:

move Advances the caret by predefined units.

• by [Enum]: Values: characters, words, word_ends, subwords, subword_ends, lines, pages, stops.

• forward [Bool]: Whether to advance or reverse in the buffer.

• word_begin [Bool]

• empty_line [Bool]

• punct_begin [Bool]

• separators [Bool]

• extend [Bool]: Whether to extend the selection. Defaults to false.

move_to Advances the caret to predefined locations.

• to [Enum]: Values: bol, eol, bof, eof, brackets.

• extend [Bool]: Whether to extend the selection. Defaults to false.

open_file Opens the specified file. Will dynamically open resource files from sublime-package archives as read-only
if the specified override file does not exist.

• file [String]: Absolute or relative path to the file to be opened. Relative paths will originate from the
recently

Expands snippet-like variables, such as $platform and $packages.

• contents [String]: This string will be written to the new buffer if the file does not exist. accessed directory
(e.g. the directory of the currently opened file).

open_dir Opens the specified directory with the default file manager.

• dir [String]: The directory to open.

edit_settings Opens the default and user settings files in a new window.

• base_file [String]: The path to the default setting file.

• default [String]: Content of the user file if none exists.

New in version 3124.

open_file_settings Opens the syntax-specific user settings file for the current syntax.

new_window Opens a new window.

close_window Closes the active window.

switch_file Switches between two files with the same name and different extensions.
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• extensions [String]: Extensions (without leading dot) for which switching will be enabled.

close Closes the active view.

close_file Closes the active view and, under certain circumsances, the whole application. XXX Sounds kinda wrong.

exit Exits the whole application with all open windows.

reopen_last_file Reopens the last closed file.

save Saves the active file.

• encoding [String]: The file encoding to save as.

save_all Saves all open files.

prompt_save_as Prompts for a new file name and saves the active file.

save_project_as Prompts for a new file name and saves the current project.

prompt_select_project Opens a popup with recently accessed projects where you can fuzzy-search.

prompt_open_project Prompts for a project file to open as a project.

close_project Closes the current project.

prompt_add_folder Prompts for a folder to add to the current project.

close_folder_list Removes all folders from the current project.

refresh_folder_list Reloads all folders in the current project and updates the side bar.

toggle_side_bar Shows or hides the sidebar.

reveal_in_side_bar Shows the selected file in the sidebar.

toggle_show_open_files Shows ot hides the open files in the sidebar.

toggle_status_bar Shows or hides the status bar.

toggle_full_screen Toggles full screen mode on or off.

toggle_distraction_free Toggles distraction free mode on or off.

toggle_tabs Shows or hides the tab bar.

toggle_minimap Shows or hides the minimap.

left_delete Deletes the character right before the caret.

right_delete Deletes the character right after the caret.

undo Undoes the latest action.

redo Reapplies the latest undone action.

redo_or_repeat Performs the latest action again.

soft_undo Undoes each action stepping through granular edits.

soft_redo Redoes each action stepping through granular edits.

cut Removes the selected text and sends it to the system clipboard. Put differently, it cuts.

copy Sends the selected text to to the system clipboard.

paste Inserts the clipboard contents after the caret.

• clipboard [String]: May be selection. XXX what other values are allowed?

paste_and_indent Inserts the clipboard contents after the caret and indents contextually.
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select_lines Adds a line to the current selection.

• forward [Bool]: Whether to add the next or previous line. Defaults to true.

scroll_lines Scrolls lines in the view.

amount [Float]: Positive values scroll lines down and negative values scroll lines up.

prev_view Switches to the previous view.

next_view Switches to the next view.

next_view_in_stack Switches to the most recently active view.

prev_view_in_stack Switches to the view that was active before the most recently active view.

select_all Select the view’s content.

split_selection_into_lines Splits the selection into multiple selections, one on each line.

single_selection Collapses multiple selections into a single selection.

clear_fields Breaks out of the active snippet field cycle.

hide_panel Hides the active panel.

• cancel [Bool]: Notifies the panel to restore the selection to what it was when the panel was opened. (Only
incremental find panel.)

hide_overlay Hides the active overlay. Show the overlay using the show_overlay command.

hide_auto_complete Hides the auto complete list.

insert_best_completion

Inserts the best completion that can be inferred from the current context.
XXX Probably useless. XXX

• default [String]: String to insert failing a best completion.

replace_completion_with_next_completion XXX Useless for users. XXX

reindent Corrects indentation of the selection with regular expressions set in the syntax’s preferences. The base
indentation will be that of the line before the first selected line. Sometimes does not work as expected.

indent Increments indentation of selection.

unindent Unindents selection.

detect_indentation Guesses the indentation from the current file.

next_field Advances the caret to the text snippet field in the current snippet field cycle.

prev_field Moves the caret to the previous snippet field in the current snippet field cycle.

commit_completion

Inserts into the buffer the item that’s currently selected in the auto complete list.
XXX Probably not useful for users. XXX

toggle_overwrite Toggles overwriting on or off.

expand_selection Extends the selection up to predefined limits.

• to [Enum]: Values: bol, hardbol, eol, hardeol, bof, eof, brackets, line, tag, scope, indentation.

close_tag Surrounds the current inner text with the appropiate tags.

toggle_record_macro Starts or stops the macro recorder.
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run_macro Runs the macro stored in the macro buffer.

save_macro Prompts for a file path to save the macro in the macro buffer to.

show_overlay Shows the requested overlay. Use the hide_overlay command to hide it.

• overlay [Enum]: The type of overlay to show. Possible values:

– goto: Show the Goto Anything overlay.

– command_palette: Show the Command Palette.

• show_files [Bool]: If using the goto overlay, start by displaying files rather than an empty widget.

• text [String]: The initial contents to put in the overlay.

show_panel Shows a panel.

• panel [Enum]: Values: incremental_find, find, replace, find_in_files, console or output.<panel_name>.

• reverse [Bool]: Whether to search backwards in the buffer.

• toggle [Bool]: Whether to hide the panel if it’s already visible.

find_next Finds the next occurrence of the current search term.

find_prev Finds the previous occurrence of the current search term.

find_under_expand Adds a new selection based on the current selection or expands the selection to the current word.

find_under_expand_skip Adds a new selection based on the current selection or expands the selection to the current
word while removing the current selection.

find_under Finds the next occurrence of the current selection or the current word.

find_under_prev Finds the previous occurrence of the current selection or the current word.

find_all_under Finds all occurrences of the current selection or the current word.

slurp_find_string Copies the current selection or word into the “find” field of the find panel.

slurp_replace_string Copies the current selection or word into the “replace” field of the find and replace panel.

next_result Advance to the next captured result.

prev_result Move to the previous captured result.

toggle_setting Toggles the value of a boolean setting. This value is view-specific.

• setting [String]: The name of the setting to be toggled.

set_setting Set the value of a setting. This value is view-specific.

• setting [String]: The name of the setting to changed.

• value [*]: The value to set to.

set_line_ending Changes the line endings of the current file.

• type [Enum]: windows, unix, cr

next_misspelling Advance to the next misspelling

prev_misspelling Move to the previous misspelling.

swap_line_down Swaps the current line with the line below.

swap_line_up Swaps the current line with the line above.

toggle_comment Comments or uncomments the active lines, if available.
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• block [Bool]: Whether to insert a block comment.

join_lines Joins the current line with the next one.

duplicate_line Duplicates the current line.

auto_complete Opens the auto complete list.

replace_completion_with_auto_complete XXX Useless for users. XXX

show_scope_name Shows the name for the caret’s scope in the status bar.

exec Runs an external process asynchronously. On Windows, GUIs are supressed.

exec is the default command used by build systems, thus it provides similar functionality. However, a few
options in build systems are taken care of by Sublime Text internally so they list below only contains parameters
accepted by this command.

• cmd [[String]]

• shell_cmd [String]: Shell command to use. If given overrides cmd and ignores shell.

• file_regex [String]

• line_regex [String]

• working_dir [String]

• encoding [String]

• env [{String: String}]

• quiet [Bool]: If True no runtime information is printed if the command fails or has a non-zero exit code.

• kill [Bool]: If True will simply terminate the current build process. This is invoked via Build: Cancel
command from the Command Palette.

• update_phantoms_only [Bool]

• hide_phantoms_only [Bool]

• word_wrap [Bool]: Whether to word-wrap the output in the build panel

• syntax [String]: Syntax file used to colour output.

• path [String]

• shell [Bool]

See also:

Arbitrary Options for build systems Detailed documentation on all other available options.

transpose Makes selections or characters swap places.

With selection: The contents of the selected regions are circulated.
Without selection: Swaps adjacent characters and moves the caret forward by 1.

sort_lines Sorts lines.

• case_sensitive [Bool]: Whether the sort should be case sensitive.

sort_selection Sorts lines in selection.

• case_sensitive [Bool]: Whether the sort should be case sensitive.
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permute_lines XXX

• operation [Enum]: reverse, unique, shuffle . . . ?

permute_selection XXX

• operation [Enum]: reverse, unique, shuffle . . . ?

set_layout Changes the group layout of the current window. This command uses the same pattern as Window.
set_layout(), see there for a list and explanation of parameters.

focus_group Gives focus to the top-most file in the specified group.

• group [Int]: The group index to focus. This is determined by the order of cells items from the current
layout (see Window.set_layout()).

move_to_group Moves the current file to the specified group.

• group [Int]: The group index to focus. See focus_group command.

select_by_index Focuses a certain tab in the current group.

• index [Int]: The tab index to focus.

next_bookmark Select the next bookmarked region.

prev_bookmark Select the previous bookmarked region.

toggle_bookmark Sets or unsets a bookmark for the active region(s). (Bookmarks can be accessed via the regions
API using "bookmarks" as the key.)

select_bookmark Selects a bookmarked region in the current file.

• index [Int]

clear_bookmarks Removes all bookmarks.

select_all_bookmarks Selects all bookmarked regions.

wrap_lines Wraps lines. By default, it wraps lines at the first ruler’s column.

• width [Int]: Specifies the column at which lines should be wrapped.

upper_case Makes the selection upper case.

lower_case Makes the selection lower case.

title_case Capitalizes the selection’s first character and turns the rest into lower case.

swap_case Swaps the case of each character in the selection.

set_mark Marks the position of each caret in the current file. If any marks have already been set in that file, they are
removed.

select_to_mark Selects the text between the current position of each one of the current carets and the marked position.
Each caret is matched with each mark in order of occurrence, and is moved to the beginning of its selection.

If any number of selections overlap, they are joined and, of all the carets corresponding to each one of the joined
selections, only the one occurring first in the file is preserved.

If the number of current carets is less or equal to the number of marks, the remaining marks in order are ignored.
Conversely, if currently there are more carets than marks, the first relevant selections are produced. Of all extra
marks, those contained in the selections are removed, and the rest of them are left where they are, without
triggering a selection from their position.

delete_to_mark Deletes the text that select_to_mark would select.
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swap_with_mark Marks all the current carets’ positions, removes those carets, and sets new carets at the previously
marked positions, if any.

clear_bookmarks If no name argument, or the name “bookmarks” is specified, it removes all bookmarks set in the
current file, but not the marks. If the name “mark” is specified as an argument, it removes all marks set in the
current file, but not the bookmarks.

• name [String]: e.g. "mark", "bookmarks".

yank XXX

show_at_center Scrolls the view to show the selected line in the middle of the view and adjusts the horizontal
scrolling if necessary.

increase_font_size Increases the font size.

decrease_font_size Decreases the font size.

reset_font_size Resets the font size to the default

Note: This essentially removes the entry from your User settings, there might be other places where this has
been “changed”.

fold Folds the current selection and displays ... instead. Unfold arrows are added to the lines where a region has
been folded.

unfold Unfolds all folded regions in the selection or the current line if there is none.

fold_by_level Scans the whole file and folds everything with an indentation level of level or higher. This does not
unfold already folded regions if you first fold by level 2 and then by 3, for example. Sections with cursors are
not folded.

• level [Int]: The level of indentation that should be folded. 0 is equivalent to running unfold_all.

fold_tag_attributes Folds all tag attributes in XML files, only leaving the tag’s name and the closing bracket visible.

unfold_all Unfolds all folded regions.

context_menu Shows the context menu.

open_recent_file Opens a recently closed file.

• index [Int]

open_recent_folder Opens a recently closed folder.

• index [Int]

open_recent_project Opens a recently closed project.

• index [Int]

clear_recent_files Deletes records of recently accessed files and folders.

clear_recent_projects Deletes records of recently accessed projects.

reopen Reopens the current file.

• encoding [String]: The file encoding the file should be reopened with.

clone_file Clones the current view into the same tab group, both sharing the same buffer. That means you can drag
one tab to another group and every update to one view will be visible in the other one too.

revert Undoes all unsaved changes to the file.

expand_tabs XXX

• set_translate_tabs [Bool]
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unexpand_tabs XXX

• set_translate_tabs [Bool]

new_plugin Creates a new buffer and inserts a plugin template (a text command).

new_snippet Creates a new buffer and inserts a snippet template.

open_url Opens the specified url with the default browser.

• url [String]

show_about_window I think you know what this does.

Discovering Commands

There are several ways to discover a command’s name in order to use it as a key binding, in a macro, as a menu entry
or in a plugin.

• Browsing the default key bindings at Preferences | Key Bindings - Default. If you know the key binding whose
command you want to inspect you can just search for it using the search panel. This, of course, also works in
the opposite direction.

• ``sublime.log_commands(True)``

Running the above in the console will tell Sublime Text to print the command’s name in the console whenever
a command is run. You can practically just enter this, do whatever is needed to run the command you want to
inspect and then look at the console. It will also print the passed arguments so you can basically get all the
information you need from it. When you are done, just run the function again with False as parameter.

• Inspecting .sublime-menu files. If your command is run by a menu item, browse the default menu file at
Packages/Default/Main.sublime-menu. You will find them quick enough once you take a look
at it, or see the menu documentation.

• Similar to menus you can do exactly the same with .sublime-command files. See Completions for some docu-
mentation on completion files.

2.11.16 Keyboard Shortcuts - Windows/Linux

Warning: This topic is a draft and may contain wrong information.
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Editing

Keypress Command
Ctrl + X Cut line
Ctrl + Insert line after
Ctrl + + Insert line before
Ctrl + + ↑ Move line/selection up
Ctrl + + ↓ Move line/selection down
Ctrl + L Select line - Repeat to select next lines
Ctrl + D Select word - Repeat select others occurrences
Ctrl + M Jump to closing parentheses Repeat to jump to opening parentheses
Ctrl + + M Select all contents of the current parentheses
Ctrl + + K Delete Line
Ctrl + KK Delete from cursor to end of line
Ctrl + K + Delete from cursor to start of line
Ctrl + ] Indent current line(s)
Ctrl + [ Un-indent current line(s)
Ctrl + + D Duplicate line(s)
Ctrl + J Join line below to the end of the current line
Ctrl + / Comment/un-comment current line
Ctrl + + / Block comment current selection
Ctrl + Y Redo, or repeat last keyboard shortcut command
Ctrl + + V Paste and indent correctly
Ctrl + Space Select next auto-complete suggestion
Ctrl + U soft undo; jumps to your last change before undoing change when repeated
Alt + + W Wrap Selection in html tag
Alt + . Close current html tag
Alt + q Hard wrap line to ruler column setting

Windows

Ctrl + Alt + Up Column selection up
Ctrl + Alt + Down Column selection down

Linux

Alt + + Up Column selection up
Alt + + Down Column selection down

Navigation/Goto Anywhere

Keypress Command
Ctrl + P Quick-open files by name
Ctrl + R Goto symbol
Ctrl + ; Goto word in current file
Ctrl + G Goto line in current file
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General

Keypress Command
Ctrl + + P Command prompt
Ctrl + KB Toggle side bar
Ctrl + + Alt + P Show scope in status bar

Find/Replace

Keypress Command
Ctrl + F Find
Ctrl + H Replace
Ctrl + + F Find in files

Tabs

Split window

Keypress Command
Alt + + 1 Revert view to single column
Alt + + 2 Split view into two columns
Alt + + 3 Split view into three columns
Alt + + 4 Split view into four columns
Alt + + 5 Set view to grid (4 groups)
Alt + + 8 Split view into two rows
Ctrl + [NUM] Jump to group where num is 1-4
Ctrl + + [NUM] Move file to specified group where num is 1-4

Bookmarks

Keypress Command
Ctrl + F2 Toggle bookmark
F2 Next bookmark
+ F2 Previous bookmark
Ctrl + + F2 Clear bookmarks

Text manipulation

Keypress Command
Ctrl + KU Transform to Uppercase
Ctrl + KL Transform to Lowercase
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2.11.17 Keyboard Shortcuts - OSX

Warning: This topic is a draft and may contain wrong information.

Editing

Keypress Command
+ X Cut line
+ Insert line after
+ + Insert line before
+ + ↑ Move line/selection up
+ + ↓ Move line/selection down
+ L Select line - Repeat to select next lines
+ D Select word - Repeat to select next occurrence
+ + G Select all occurrences of current selection
+ + ↑ Extra cursor on the line above
+ + ↓ Extra cursor on the line below
+ M Jump to closing parentheses Repeat to jump to opening parentheses
+ + M Select all contents of the current parentheses
+ A Move to beginning of line
+ Left Move to beginning of text on line
+ E, + Right Move to end of line
+ K, + K Delete from cursor to end of line
+ K + Delete from cursor to start of line
+ ] Indent current line(s)
+ [ Un-indent current line(s)
+ + D Duplicate line(s)
+ J Join line below to the end of the current line
+ / Comment/un-comment current line
+ + / Block comment current selection
+ Y Redo, or repeat last keyboard shortcut command
+ + V Paste and indent correctly
+ Space Select next auto-complete suggestion
+ U Soft undo; jumps to your last change before undoing change when repeated
+ + Up Column selection up
+ + Down Column selection down
+ + W Wrap Selection in html tag
+ + K Delete current line of cursor

Navigation/Goto Anywhere

Keypress Command
+ P or + T Quick-open files by name
+ R Goto symbol

Goto word in current file
+ G Goto line in current file
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General

Keypress Command
+ + P Command Palette
+ ‘ Python Console
+ + F Toggle fullscreen mode
+ + + F Toggle distraction-free mode
+ K, + B Toggle side bar
+ + P Show scope in status bar

Find/Replace

Keypress Command
+ F Find
+ + F Replace
+ + F Find in files
+ I Incremental Find

Scrolling

Keypress Command
+ V Scroll down one page
+ L Center current line vertically in page
+ Down Scroll to end of file
+ Up Scroll to start of file

Tabs

Keypress Command
+ + t Open last closed tab
+ [NUM] Jump to tab in current group where num is 1-9
+ 0 Jump to 10th tab in current group
+ + [ Cycle left through tabs
+ + ] Cycle right through tabs
^ + Tab Cycle up through recent tabs
+ ^ + Tab Cycle down through recent tabs

Find in files
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Split window

Keypress Command
+ + 1 Revert view to single column
+ + 2 Split view into two columns
+ + 3 Split view into three columns
+ + 4 Split view into four columns
+ + 5 Set view to grid (4 groups)
+ [NUM] Jump to group where num is 1-4
+ + [NUM] Move file to specified group where num is 1-4

Bookmarks

Keypress Command
+ F2 Toggle bookmark
F2 Next bookmark
+ F2 Previous bookmark
+ + F2 Clear bookmarks

Text manipulation

Keypress Command
+ K, + U Transform to Uppercase
+ K, + L Transform to Lowercase
+ + up, + + down Clip text upwards / downwards

2.12 Glossary

buffer Data of a loaded file and additional metadata, associated with one or more views. The distinction between
buffer and view is technical. Most of the time, both terms can be used interchangeably.

view Graphical display of a buffer. Multiple views can show the same buffer.

plugin A feature implemented in Python, which can consist of a single command or multiple commands. It can be
contained in one .py file or many .py files.

package This term is ambiguous in the context of Sublime Text, because it can refer to a Python package (unlikely),
a folder inside Packages or a .sublime-package file. Most of the time, it means a folder inside Packages
containing resources that belong together, which build a new feature or provide support for a programming or
markup language.

panel An input/output widget, such as a search panel or the output panel.

overlay An input widget of a special kind. For example, Goto Anything is an overlay.

file type In the context of Sublime Text, file type refers to the type of file as determined by the applicable .
tmLanguage syntax definition.

However, this is an ambiguous term, and in some instances it could also be used with the broader meaning it has
in technical texts.
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