Subclass Register Documentation
Release 1.0.1

Yngve Mardal Moe

Aug 16, 2019






Contents

1 Motivation 1
2 Installation instructions 3
3 Documentation 5

Index 9







CHAPTER 1

Motivation

This library implements a simple class decorator that you can apply to a base class. This decorator then hooks into
the way the decorated class is subclassed, adding all new subclasses to a dictionary whose keys are class names and
values are the classes themselves.

The motivation for this project was to autogenerate deep learning models from pure JSON files, thus ensuring repro-
ducibility of the results. I do, however, think that it is ideal for any kind of codebase where we want to generate safe
code from configuration files.




Subclass Register Documentation, Release 1.0.1

2 Chapter 1. Motivation



CHAPTER 2

Installation instructions

The subclass register can be installed with pip:

pip install subclass-register

by cloning this repo and running setup.py

git clone https://github.com/yngvem/subclass-register
cd subclass-register
python setup.py

or by simply downloading the src\subclass_register\subclass_register.py file and the LISENCE
file into your project.




Subclass Register Documentation, Release 1.0.1

4 Chapter 2. Installation instructions



CHAPTER 3

Documentation

class subclass_register.SubclassRegister (class_type=’class’)
Creates a register instance used to register all subclasses of some base class.

Use the SubclassRegister.link decorator to link a base class with the register.

Examples

We create the register as any other class and link it to a base class using the 1ink_base decorator.

>>> register = SubclassRegister('car')
>>> @register.link_base
class BaseCar:
pass
>>> class SUV (BaseCar) :
def _ init_ (self, num_seats):
self.num_seats = num_seats
>>> class Sedan (BaseCar) :
def _ init_ (self, num_seats):
self.num_seats = num_seats

The available_classes attribute returns a tuple with the class-names in the register

>>> register.available_classes
('suv', 'Sedan')

We can also ommit adding a class from the register, using the skip decorator.

>>> (@register.skip
class SportsCar (BaseCar) :
def _ _init__ (self, horse_powers):
self.horse_powers = horse_powers

We see thawt the SportsCar class is not added to the register.




Subclass Register Documentation, Release 1.0.1

>>> register.available_classes
('suv', 'Sedan')

Indexing works as if the register was a dictionary

>>> register['SUV']
<class 'subclass_register.subclass_register.SUV'>

We can also check if elements are in the register

>>> 'SUV' in register
True

And delete them from the register

>>> del register['SUV']

>>> 'SUV' in register

False

>>> register.available_classes
('Sedan',)

We can also manually add classes to the register

>>> register['SUV'] = SUV
>>> 'SUV' in register
True

>>> register.available_classes
('Sedan', 'SUV')

But we can not overwrite already existing classes in the register

>>> register['SUV'] = SUV
Traceback (most recent call last):

ValueError: Cannot register two classes with the same name

If we use a name that is not in the register, we get an error and a list of the available classes sorted by similarity
(using difflib)

>>> register['sedan'] # doctest: +IGNORE_EXCEPTION_DETATIL
Traceback (most recent call last):

NotInRegisterError: sedan is not a valid name for a car.
Available cars are (in decreasing similarity):

* Sedan

* SUV

Similarly, if we try to access a class that we skipped, we get the same error.

>>> register|['SportsCar'] # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):

NotInRegisterError: SportsCar is not a valid name for a car.
Available cars are (in decreasing similarity):

* Sedan

* SUV

When we iterate over the register, we iterate over the class names

6 Chapter 3. Documentation



Subclass Register Documentation, Release 1.0.1

>>> for car in register:
print (car)

Sedan

SUvV

We can also iterate over the register using dictionary-style methods

>>> for car, Car in register.items():

print (car, Car)
Sedan <class 'subclass_register.subclass_register.Sedan'>
SUV <class 'subclass_register.subclass_register.SUV'>
>>> for Car in register.keys():

print (Car)
Sedan
SuUvV
>>> for Car in register.values():

print (Car)
<class 'subclass_register.subclass_register.Sedan'>
<class 'subclass_register.subclass_register.SUV'>

__init__ (class_type=’class’)
Initiate a class register.

Parameters class_type (str)— The name of the classes we register, e.g. layer or model if
used for neural networks. It is used for pretty error messages.

link_ base (cls)
Link a base class to the register. Can be used as a decorator.

skip (cls)
Decorator used to signal that the class shouldn’t be added to the register.

available classes
Tuple of the classes in the register.

Type tuple[str]

linked
Whether the register is linked to a base class or not.

Type bool

items ()
Iterate over class names and classes.

values ()
Iterate over classes (not names)

keys ()
Iterate over class names

___contains__ (class_name)
Check if a class name is in the register.

__iter_ ()
Iterate over class names.

__getitem__ (class_name)
Get a class from the register.

__setitem__ (name, class_name)
Add a new class to the register. It is impossible to change existing classes.




Subclass Register Documentation, Release 1.0.1

__delitem__ (class_name)
Delete a class from the register.

8 Chapter 3. Documentation



Index

Symbols

__contains___ () (subclass_register.SubclassRegister
method), 7

__delitem__ () (subclass_register.SubclassRegister
method), 7

__getitem__ () (subclass_register.SubclassRegister
method), 7

__init__ () (subclass_register.SubclassRegister
method), 7

__iter_ () (subclass_register.SubclassRegister
method), 7

__setitem__ () (subclass_register.SubclassRegister
method), 7

A

availlable classes (sub-
class_register.SubclassRegister attribute),
7

items () (subclass_register.SubclassRegister method),
7

K

keys () (subclass_register.SubclassRegister method), 7

L

link_base () (subclass_register.SubclassRegister
method), 7
linked (subclass_register.SubclassRegister attribute), 7

S

skip () (subclass_register.SubclassRegister method), 7
SubclassRegister (class in subclass_register), 5

V

values () (subclass_register.SubclassRegister method),
7




	Motivation
	Installation instructions
	Documentation
	Index

