
Stressant Documentation
Release ???

Antoine Beaupre

Aug 16, 2023

Contents

1 Features 3

2 Demo 5

3 Acknowledgements 7
3.1 Installation . 7
3.2 stressant manual page . 9
3.3 Design . 15
3.4 Contributor’s guide . 24
3.5 History . 28

i

ii

Stressant Documentation, Release ???

Stressant is a simple yet complete stress-testing tool that forces a computer to perform a series of test using well-known
Linux software in order to detect possible design or construction failures.

Stressant builds on top of existing software and tries to cover most components of you system (currently disk, CPU
and processor). It is part of the Grml Live Linux project and also packaged for Debian.

Contents 1

https://gitlab.com/anarcat/stressant
https://grml.org/

Stressant Documentation, Release ???

2 Contents

CHAPTER 1

Features

• disk testing (with smartctl(8) and fio())

• CPU testing (with stress-ng(1))

• network testing (with iperf3(1))

• designed to be ran automatically

• supports sending reports by email or saving to disk

• basic benchmarks (with hdparm(8) and dd(1))

See also the Design document for other planned features and remaining work.

Installation instructions are in the Installation document.

Contributions are welcome, see the Contributor’s guide document.

3

Stressant Documentation, Release ???

4 Chapter 1. Features

CHAPTER 2

Demo

5

https://asciinema.org/a/107950

Stressant Documentation, Release ???

6 Chapter 2. Demo

CHAPTER 3

Acknowledgements

Thanks to jrollins & dkg for writing debirf which was so useful in creating the first Stressant prototypes, and especially
to dkg for help with qemu and other oddities. Thanks also to taggart for spurring this idea forward. Finally, thanks to
the Grml team for being providing useful feedback on the toolset and for welcoming Stressant contributions in Grml
itself.

3.1 Installation

Stressant is a Python program that can be installed in the usual way from PyPI:

pip install stressant

It can also be installed from source:

./setup.py install

If you are running Debian “buster” (10) or later, you can also install the Debian package:

apt install stressant

3.1.1 Downloading images

Stressant is also designed to boot from a live CD or USB stick. It can also boot from the network with a proper
configuration.

Pre-built images are available in the Grml Linux Linux distribution, in the “FULL” images. In particular, see the daily
images for the latest.

7

https://pypi.python.org/pypi/stressant
https://gitlab.com/anarcat/stressant
https://grml.org/download/
https://grml.org/daily/
https://grml.org/daily/

Stressant Documentation, Release ???

3.1.2 Installing the image

You can deploy the ISO on a USB stick with the following command on most UNIX systems, where /dev/sdX is
the device for your USB key:

sudo cp grml96-full_sid_latest.iso /dev/sdX

To get better progress information, you can use the fantastic pv package:

pv grml96-full_sid_latest.iso | sudo dd of=/dev/sdX conv=fdatasync

For other operating systems, you may try those different options:

• For Debian: see the official Debian documentation

• For Ubuntu: try the Ubuntu Startup Disk Creator

• For Fedora and derivatives: try the Media Writer or follow those instructions

• For Microsoft Windows: use the win32diskimager software

• For all platforms: maybe also try Etcher if the above is too complicated

Note: it seems that Mac OS is constantly changing how this works. There used to be support for
burning ISO images directly in the Disk Utility, but that feature was removed. You may want to try
this approach if Etcher doesn’t work for you.

Note: this should be moved in the main Grml documentation.

3.1.3 Booting images using PXE

Inside the ISO file, Grml is build as a squashfs and one can use the fetch=URL argument to fetch that squashfs over
the network. Those german instructions show how to extract the squashfs from the image and set it up in a PXE menu,
but basically, what you need is:

kernel grml/2008.11/small-linux26
append initrd=grml/2008.11/small-minirt26.gz boot=live fetch=http://grml.example.com/
→˓grml/grml-small.squashfs

The small-* kernel and initrd come from the grml-terminalserver project.

Netbooting images is very useful in all sorts of situations. While Grml’s grml-terminalserver tool helps in automati-
cally configure a PXE server, you may want to configure your own, more complete setup. See for now the Koumbit
wiki for PXE configuration documentation.

I have done xperimentes to boot ISO images over the network but those have been generally unsuccessful.

Note: this should be moved in the main Grml documentation.

Also note that you can directly boot into Grml and/or Stressant using a tool like netboot.xyz and iPXE.

3.1.4 Testing images in qemu

A good way to test Stressant without having to reboot your computer is with an emulator like Qemu. This will load
the 64 bit image in a KVM-enabled 512 MB image running only on the serial console:

qemu-system-x86_64 -m 512 -enable-kvm \
-serial mon:stdio -display none \
grml96-full-stressant.iso

8 Chapter 3. Acknowledgements

http://www.debian.org/releases/stable/amd64/ch04s03.html#usb-copy-isohybrid
https://www.ubuntu.com/download/desktop/create-a-usb-stick-on-ubuntu
https://github.com/MartinBriza/MediaWriter
https://fedoraproject.org/wiki/How_to_create_and_use_Live_USB
https://sourceforge.net/projects/win32diskimager/
https://etcher.io/
http://apple.stackexchange.com/a/100458
https://en.wikipedia.org/wiki/SquashFS
http://www.pro-linux.de/kurztipps/2/1432/grml-small-200811-via-pxe-booten-ohne-nfs.html
http://grml.org/terminalserver/
http://grml.org/terminalserver/
https://wiki.koumbit.net/PxeMaintenance
https://wiki.koumbit.net/PxeMaintenance
http://superuser.com/questions/304722/is-it-possible-to-boot-from-an-iso-over-the-network-and-how
https://netboot.xyz/
http://ipxe.org/
http://qemu.org/

Stressant Documentation, Release ???

See also the Qemu cheat sheet in the Koumbit wiki.

3.2 stressant manual page

3.2.1 Synopsis

stressant [-h] [–version] [–log [PATH]] [–email EMAIL] [–smtpserver HOST] [–smtpuser USERNAME] [–smtppass
PASSWORD] [–no-information] [–no-disk] [–smart] [–diskDevice PATH] [–jobFile PATH] [–overwrite] [–writeSize
SIZE] [–directory PATH] [–diskRuntime DISKRUNTIME] [–no-cpu] [–cpuBurnTime TIME] [–no-network] [–iperf-
Server HOST] [–iperfTime TIME]

3.2.2 Description

Stressant is a simple yet complete stress-testing tool that forces a computer to perform a series of test using well-known
Linux software in order to detect possible design or construction failures.

3.2.3 Options

-h, --help show this help message and exit

--version show program’s version number and exit

--logfile <PATH> write reports to the given logfile (default: stressant-
$HOSTNAME.log)

--email EMAIL send report by email to given address

--smtpserver HOST SMTP server to use, use a colon to specify the port number if non-
default (25). will attempt to use STARTTLS to secure the connection
and fail if unsupported (default: deliver using the –mta command)

--smtpuser USERNAME username for the SMTP server (default: no user)

--smtppass PASSWORD password for the SMTP server (default: prompted, if –smtpuser
is specified)

--no-information, --information gather basic information (default: True)

--no-disk, --disk run disk tests (default: True)

--smart, --no-smart run SMART tests (default: False)

--diskDevice PATH device to benchmark (default: /dev/sda)

--jobFile PATH path to the fio job file to use (default:
/usr/share/doc/fio/examples/basic-verify.fio)

--overwrite actually destroy the given device (default: False)

--writeSize SIZE size to write to disk, bytes or percentage (default: 100M)

--directory PATH directory to perform file tests in, created if missing (default: None)

--diskRuntime DISKRUNTIME upper limit for disk benchmark (default: 1m)

--no-cpu, --cpu run CPU tests (default: True)

--cpuBurnTime TIME timeout for CPU burn-in (default: 1m)

3.2. stressant manual page 9

https://wiki.koumbit.net/Qemu

Stressant Documentation, Release ???

--no-network, --network run network tests (default: True)

--iperfServer HOST iperf server to use (default: iperf.he.net)

--iperfTime TIME timeout for iperf test, in seconds (default: 60)

3.2.4 Examples

Small run load with defaults:

stressant

Very fast test, useful to run if you are worried about crashing the machine:

stressant --writeSize 1M --cpuBurnTime 1s --iperfTime 1

Extensive test with complete disk wipe and SMART long test:

sudo stressant --writeSize 100% --overwrite --cpuBurnTime 24h --smart
wait for the prescribed time, then show the SMART test results:
sudo smartctl -l selftest

Network test only on dedicated server:

stressant --no-information --no-cpu --no-disk --iperfServer iperf.example.net

Send test results by email:

stressant --email person@example.com

If the mail server refuses mail from your location, you can use another relay (password will be prompted):

stressant --email person@example.com --smtpserver submission.example.net --smtpuser
→˓person --smtppassword

The stressant-meta package also depends on other tools that are not directly called by the automated script
above, but are documented below. The meta-package also suggests many more useful tools.

Wiping disks

Danger: Wiping disks, just in case it’s not totally obvious, will DELETE DATA on the given file or device. DO
NOT run ANY command in this section unless you are sure you are writing to the CORRECT DEVICE and that
you REALLY want to DESTROY DATA.

As mentioned above, the stressant commandline tool can be used to directly wipe a disk with the fio(1)
command which is actually a disk-testing command that is abused for that purpose. You may not have fio(1)
installed on your machine, however, so you may also use the venerable badblocks(8) command to test disks,
without wiping them:

badblocks -nsv /dev/sdc

You can also wipe disks with the -w flag:

10 Chapter 3. Acknowledgements

Stressant Documentation, Release ???

badblocks -wsv /dev/sdc

Be aware, however, that the effect of this will vary according to the physical medium. For example, data may be
recovered old spinning hard drives (HDD) if only the above technique is used. For that purpose, you should use a tool
like nwipe(1) that erases disks using multiple passes and patterns:

nwipe --autonuke --nogui --method=random --verify=off --logfile=nwipe.log /dev/sdc

The above will also blank the drive at the end. A simpler version that will be faster and less paranoid would be:

nwipe --autonuke --nogui --method=zero --noblank --verify=off --logfile=nwipe.log /
→˓dev/sdc

Those tools are also ineffective on solid state drives (SSD) as they have a more complex logic layer and different layout
semantics. For this, you need to use a “ATA secure erase” procedure using the hdparm(8) command:

hdparm --user-master u --security-set-pass Eins /dev/sdc
time hdparm --user-master u --security-erase Eins /dev/sdc

More information about this procedure is available in the ATA wiki.

Note: The “secure erase” procedure basically delegates the task of erasing the data to the disk controller. Noth-
ing guarantees the destruction of that data, short of physical destruction of the drive. See this discussion for more
information.

For a fast wipe that can be done in an emergency, you can use the wipefs(8) command (part of the util-linux package)
to erase partitions and LUKS header. This will wipe the partitions on /dev/sdc, for example:

wipefs -af /dev/sdc

Note that to wipe a partition’s LUKS headers, however, you need first to wipe the actual partition directly, something
like this:

wipefs -af /dev/sdc3

The latter is particularly useful to destroy encrypted partitions in a hurry, as the keys are basically required to recover
the rest of the data, assuming someone can crack the key slot, of course.

Benchmarking disks

A good way to test disks is to wipe them, as above, but that’s obviously destructive. Sometimes you might want to just
test the disk’s performance by hand, without wiping anything. Stressant ships with fio(1) and bonnie++(1) for
that purpose. The latter is probably the simplest to use:

bonnie++ -s 4G -d /mnt/disk/ -n 1024

Make sure the file size (-s) is at least twice the main memory (see free -h). The /mnt/disk directory should be
writable by the current user as well.

Stressant itself, when disk tests are enabled, will run the following commands:

dd bs=1M count=512 conv=fdatasync if=/dev/zero of=/mnt/disk/testfile
dd bs=1M count=512 conv=fdatasync if=/mnt/disk/testfile of=/dev/null

(continues on next page)

3.2. stressant manual page 11

https://ata.wiki.kernel.org/index.php/ATA_Secure_Erase
https://serverfault.com/questions/199672/secure-delete-on-ssd
https://manpages.debian.org/wipefs
https://tracker.debian.org/pkg/util-linux

Stressant Documentation, Release ???

(continued from previous page)

hdparm -Tt /dev/disk
smartctl -t long /dev/disk

Those provide a quick overview of basic disk statistics as well.

More elaborate workloads can be done with fio. A simple benchmark could be:

fio --name=stressant --group_reporting --directory=/mnt/disk --size=100M

That is a basic read test. The result here, on a Western Digital Blue M.2 500GB Internal SSD (WDS500G1B0B) with
LUKS encryption, LVM and ext4, looks like:

Run status group 0 (all jobs):
READ: bw=267MiB/s (280MB/s), 267MiB/s-267MiB/s (280MB/s-280MB/s), io=100MiB

→˓(105MB), run=374-374msec

Disk stats (read/write):
dm-3: ios=323/0, merge=0/0, ticks=484/0, in_queue=484, util=70.99%, aggrios=511/0,

→˓ aggrmerge=0/0, aggrticks=764/0, aggrin_queue=764, aggrutil=76.86%
dm-0: ios=511/0, merge=0/0, ticks=764/0, in_queue=764, util=76.86%, aggrios=511/0,

→˓ aggrmerge=0/0, aggrticks=547/0, aggrin_queue=576, aggrutil=73.55%
sdb: ios=511/0, merge=0/0, ticks=547/0, in_queue=576, util=73.55%

A more realistic workload will ignore the cache (--direct=1), include random (--readwrite=randrw)
or sequential writes (--readwrite=readwrite), and parallelize the test to put more pressure on the disk
(--numjobs=4):

$ fio --name=stressant --group_reporting --directory=test --size=100M --
→˓readwrite=randrw --direct=1 --numjobs=4
Run status group 0 (all jobs):

READ: bw=45.8MiB/s (48.0MB/s), 45.8MiB/s-45.8MiB/s (48.0MB/s-48.0MB/s), io=199MiB
→˓(209MB), run=4346-4346msec
WRITE: bw=46.2MiB/s (48.5MB/s), 46.2MiB/s-46.2MiB/s (48.5MB/s-48.5MB/s), io=201MiB

→˓(211MB), run=4346-4346msec

Disk stats (read/write):
dm-3: ios=49674/50087, merge=0/0, ticks=10028/3912, in_queue=13972, util=97.22%,

→˓aggrios=50982/51423, aggrmerge=0/0, aggrticks=10204/3852, aggrin_queue=14092,
→˓aggrutil=96.62%

dm-0: ios=50982/51423, merge=0/0, ticks=10204/3852, in_queue=14092, util=96.62%,
→˓aggrios=50982/51423, aggrmerge=0/0, aggrticks=9042/2598, aggrin_queue=11224,
→˓aggrutil=92.54%
sdb: ios=50982/51423, merge=0/0, ticks=9042/2598, in_queue=11224, util=92.54%

There is, of course, way more information shown by the default fio output, including latency distribution, but those
are the numbers people first look for.

Parameters can be stored in a job file, passed as an argument to fio. Examples are available in /usr/share/doc/
fio/examples.

Stressant itself actually runs the equivalent of this:

fio --name=stressant --group_reporting --runtime=1m <(sed /^filename=/d /usr/share/
→˓doc/fio/examples/basic-verify.fio ; echo size=100m) --filename=test

Note: There are many other ways to test disks, obviously. In particular, simple tools like disk-filltest might be

12 Chapter 3. Acknowledgements

https://panthema.net/2013/disk-filltest/

Stressant Documentation, Release ???

considered for inclusion in the future, provided they enter Debian.

Testing disks

The above actually tests disks in the sense that it looks at its performance, but it’s more a benchmark than a “test”. For
tests, stressant will do a smartctl run if the --smart argument is provided. What it actually does is:

smartctl -t long /dev/sdX

Then smartctl -l selftest /dev/sdX can be used to track progress.

But this doesn’t work for all drives. For example, it may fail for external USB enclosures.

smartmontools’s NVMe support is particularly limited. nvme-cli might be able to deal with those drives better. In
theory, it should support running tests with:

nvme device-self-test /dev/nvme0

But in practice, that often fails because the devices sometimes do not support self-test at all. You can look at the
smart-log instead:

nvme smart-log /dev/nvme0

If the num_err_log_entries entry is non-zero, you can look at the actual log:

nvme error-log /dev/nvme0

Note: The above doesn’t detail how to interpret the output of those commands, and probably should. Sorry.

Testing flash memory

Flash memory cards are known to sometimes be “fake”, that is, they misreport the actual capacity of the card or the
bandwidth available. The stressant distribution therefore recommends a tool called f3 which allows you to perform
tests on the memory card. For example, this is a probe on a honest memory card:

$ sudo f3probe --destructive --time-ops /dev/sdb
F3 probe 6.0
Copyright (C) 2010 Digirati Internet LTDA.
This is free software; see the source for copying conditions.

WARNING: Probing normally takes from a few seconds to 15 minutes, but
it can take longer. Please be patient.

Good news: The device `/dev/sdb' is the real thing

Device geometry:

Usable size: 30.00 GB (62916608 blocks)
Announced size: 30.00 GB (62916608 blocks)

Module: 32.00 GB (2^35 Bytes)
Approximate cache size: 0.00 Byte (0 blocks), need-reset=no

Physical block size: 512.00 Byte (2^9 Bytes)

Probe time: 4'57"

(continues on next page)

3.2. stressant manual page 13

http://bugs.debian.org/949307
https://www.smartmontools.org/wiki/NVMe_Support
https://github.com/linux-nvme/nvme-cli
http://oss.digirati.com.br/f3/

Stressant Documentation, Release ???

(continued from previous page)

Operation: total time / count = avg time
Read: 3.07s / 4815 = 637us

Write: 4'51" / 4192321 = 69us
Reset: 324.5ms / 1 = 324.5ms

Warning: As the --destructive flag hints, this will destroy the data on the card, so backup the data elsewhere
before doing those tests.

Note that older versions of f3probe(1) (6.0 or earlier) will have trouble doing its job unless the card is con-
nected through a USB reader. Newer versions can deal with normal block devices, provided that you pass the magic
--reset-type=2 argument. Here’s such an example, on a fake MicroSD card that is labeled and announced as
32GB but is actually closer to 16GB:

root@curie:/home/anarcat/backup# ~anarcat/dist/f3/f3probe --destructive --time-ops --
→˓reset-type=2 /dev/mmcblk0
F3 probe 6.0
Copyright (C) 2010 Digirati Internet LTDA.
This is free software; see the source for copying conditions.

WARNING: Probing normally takes from a few seconds to 15 minutes, but
it can take longer. Please be patient.

Bad news: The device `/dev/mmcblk0' is a counterfeit of type limbo

You can "fix" this device using the following command:
f3fix --last-sec=30983327 /dev/mmcblk0

Device geometry:

Usable size: 14.77 GB (30983328 blocks)
Announced size: 31.25 GB (65536000 blocks)

Module: 32.00 GB (2^35 Bytes)
Approximate cache size: 7.00 MB (14336 blocks), need-reset=no

Physical block size: 512.00 Byte (2^9 Bytes)

Probe time: 2'29"
Operation: total time / count = avg time

Read: 1.57s / 32937 = 47us
Write: 2'27" / 200814 = 736us
Reset: 2us / 2 = 1us

To repair the device, you can repartition it quickly with the f3fix(1) command, as recommended in the output:

f3fix --last-sec=30983327 /dev/mmcblk0

You will also need to reformat the partition so the new size is taken into account, for example if this is a FAT32
filesystem:

mkfs.fat /dev/mmcblk0p1

You can also perform bandwidth tests with f3read(1) and f3write(1):

pmount /dev/sdb1
f3write /media/sdb1
f3read /media/sdb1

14 Chapter 3. Acknowledgements

Stressant Documentation, Release ???

This allows you to detect hidden caches and fake sizes directly as well.

Network performance testing

The --iperfServer option of stressant runs a bandwidth test against a predefined (or specified) server. You
can, of course, call iPerf directly to run your own client/server tests to find issues in specific routes on the network.
The iperf3 package was chosen over the older iperf because public servers are available for the test to work
automatically. iperf3 also has interesting performance features like --zerocopy and --file, see iperf3(1)
for details.

To run a test, start a server:

iperf3 --server

On another machine, connect to the server:

iperf3 --client 192.0.2.1

This runs a TCP test. You can specify UDP test on the client and disable bandwidth limitations (otherwise UDP tests
are limited to 1 Mbit/s):

iperf3 -c 192.0.2.1 --udp --bandwidth 0

To simulate a DDOS condition, you can try multiple clients and run the test for a longer period:

iperf3 -c 192.0.2.1 -u -b 0 --parallel 50 --time 30

3.2.5 See also

hdparm(8), smartctl(8), dd(1), fio(), stress-ng(1), iperf3(1)

3.3 Design

Stressant is shipped in the Debian GNU/Linux distribution. It is also part of the Grml project since August 2017, so
it benefits from its extensive list of utilities, which cover most of the rescue systems out there (e.g. Debian Live and
Debirf, see below for a more thorough comparison).

The Grml distribution is an ISO image that can be burned on CD/DVD or copied to a USB drive, or net-bootable
images. Grml can perform:

• memory tests with memtest86

• hardware detection and inventory with HDT

There are also many more options, for example loading to RAM or setting the system to be read-only, see the cheat-
codes list for more details.

3.3.1 The stressant tool

Stressant itself is a Python program that calls other UNIX utilities, collects their output on the screen, in a logfile
and/or sends it over email.

The objective of this software is to automate a basic stress-testing suite that, once started, will go through a basic
CPU/memory/disk/network test framework and report any errors and failures.

3.3. Design 15

https://en.wikipedia.org/wiki/Iperf
http://grml.org/
https://github.com/grml/grml-live/pull/34
http://grml.org/files/#debian
http://cmrg.fifthhorseman.net/wiki/debirf
http://hdt-project.org/
http://git.grml.org/?p=grml-live.git;a=blob_plain;f=templates/GRML/grml-cheatcodes.txt;hb=HEAD
http://git.grml.org/?p=grml-live.git;a=blob_plain;f=templates/GRML/grml-cheatcodes.txt;hb=HEAD

Stressant Documentation, Release ???

This is done through the stressant script, which performs the following tests:

• lshw and smartctl for hardware inventory

• dd, hdparm, fio and smartctl for disk testing - fio can also overwrite disk drives with the proper options
(--overwrite and --size=100%)

• stress-ng for CPU testing

• iperf3 for network testing

Here is an example test run:

$ sudo ./stressant --email anarcat@anarc.at --writeSize 1M --cpuBurnTime 1s --
→˓iperfTime 1
INFO: Starting tests
INFO: CPU cores: 4
INFO: Memory: 16 GiB (16715816960 bytes)
INFO: Hardware inventory
DEBUG: Calling lshw -short
OUTPUT: H/W path Device Class Description
OUTPUT: ==
OUTPUT: system Desktop Computer
OUTPUT: /0 bus NUC6i3SYB
OUTPUT: /0/0 memory 64KiB BIOS
OUTPUT: /0/22 memory 64KiB L1 cache
OUTPUT: /0/23 memory 64KiB L1 cache
OUTPUT: /0/24 memory 512KiB L2 cache
OUTPUT: /0/25 memory 3MiB L3 cache
OUTPUT: /0/26 processor Intel(R) Core(TM) i3-6100U CPU
→˓@ 2.30GHz
OUTPUT: /0/27 memory 16GiB System Memory
OUTPUT: /0/27/0 memory 16GiB SODIMM DDR4 Synchronous
→˓2133 MHz (0.5 ns)
OUTPUT: /0/27/1 memory [empty]
OUTPUT: /0/100 bridge Skylake Host Bridge/DRAM
→˓Registers
OUTPUT: /0/100/2 display HD Graphics 520
OUTPUT: /0/100/14 bus Sunrise Point-LP USB 3.0 xHCI
→˓Controller
OUTPUT: /0/100/14/0 usb1 bus xHCI Host Controller
OUTPUT: /0/100/14/0/1 scsi3 storage USB to ATA/ATAPI Bridge
OUTPUT: /0/100/14/0/1/0.0.0 /dev/sdb disk 500GB 00ABYS-01TNA0
OUTPUT: /0/100/14/0/1/0.0.1 /dev/sdc disk 500GB 00ABYS-01TNA0
OUTPUT: /0/100/14/0/3 input Dell USB Keyboard
OUTPUT: /0/100/14/0/4 input Kensington Expert Mouse
OUTPUT: /0/100/14/0/7 communication Bluetooth wireless interface
OUTPUT: /0/100/14/1 usb2 bus xHCI Host Controller
OUTPUT: /0/100/14.2 generic Sunrise Point-LP Thermal
→˓subsystem
OUTPUT: /0/100/16 communication Sunrise Point-LP CSME HECI #1
OUTPUT: /0/100/17 storage Sunrise Point-LP SATA
→˓Controller [AHCI mode]
OUTPUT: /0/100/1c bridge Sunrise Point-LP PCI Express
→˓Root Port #5
OUTPUT: /0/100/1c/0 network Wireless 8260
OUTPUT: /0/100/1e generic Sunrise Point-LP Serial IO
→˓UART Controller #0
OUTPUT: /0/100/1e.6 generic Sunrise Point-LP Secure
→˓Digital IO Controller

(continues on next page)

16 Chapter 3. Acknowledgements

Stressant Documentation, Release ???

(continued from previous page)

OUTPUT: /0/100/1f bridge Sunrise Point-LP LPC Controller
OUTPUT: /0/100/1f.2 memory Memory controller
OUTPUT: /0/100/1f.3 multimedia Sunrise Point-LP HD Audio
OUTPUT: /0/100/1f.4 bus Sunrise Point-LP SMBus
OUTPUT: /0/100/1f.6 eno1 network Ethernet Connection I219-V
OUTPUT: /0/1 scsi2 storage
OUTPUT: /0/1/0.0.0 /dev/sda disk 500GB WDC WDS500G1B0B-
OUTPUT: /0/1/0.0.0/1 /dev/sda1 volume 511MiB Windows FAT volume
OUTPUT: /0/1/0.0.0/2 /dev/sda2 volume 244MiB EFI partition
OUTPUT: /0/1/0.0.0/3 /dev/sda3 volume 465GiB EFI partition
INFO: SMART information for /dev/sda
DEBUG: Calling smartctl -i /dev/sda
OUTPUT: smartctl 6.6 2016-05-31 r4324 [x86_64-linux-4.9.0-1-amd64] (local build)
OUTPUT: Copyright (C) 2002-16, Bruce Allen, Christian Franke, www.smartmontools.org
OUTPUT:
OUTPUT: === START OF INFORMATION SECTION ===
OUTPUT: Device Model: WDC WDS500G1B0B-00AS40
OUTPUT: Serial Number: XXXXXXXXXXXX
OUTPUT: LU WWN Device Id: XXXXXXXXXXXX
OUTPUT: Firmware Version: XXXXXXXXXXXX
OUTPUT: User Capacity: 500,107,862,016 bytes [500 GB]
OUTPUT: Sector Size: 512 bytes logical/physical
OUTPUT: Rotation Rate: Solid State Device
OUTPUT: Form Factor: M.2
OUTPUT: Device is: Not in smartctl database [for details use: -P showall]
OUTPUT: ATA Version is: ACS-2 T13/2015-D revision 3
OUTPUT: SATA Version is: SATA 3.2, 6.0 Gb/s (current: 6.0 Gb/s)
OUTPUT: Local Time is: Fri Mar 17 10:24:52 2017 EDT
OUTPUT: SMART support is: Available - device has SMART capability.
OUTPUT: SMART support is: Enabled
OUTPUT:
INFO: Basic disk bandwidth tests
INFO: Writing 1MB file
DEBUG: Calling dd bs=1M count=512 conv=fdatasync if=/dev/zero of=test
OUTPUT: 512+0 records in
OUTPUT: 512+0 records out
OUTPUT: 536870912 bytes (537 MB, 512 MiB) copied, 1.39591 s, 385 MB/s
INFO: Reading 1MB file
DEBUG: Calling dd bs=1M count=512 of=/dev/null if=test
OUTPUT: 512+0 records in
OUTPUT: 512+0 records out
OUTPUT: 536870912 bytes (537 MB, 512 MiB) copied, 0.0848588 s, 6.3 GB/s
INFO: Hdparm test
DEBUG: Calling hdparm -Tt /dev/sda
OUTPUT:
OUTPUT: /dev/sda:
OUTPUT: Timing cached reads: 12406 MB in 2.00 seconds = 6207.39 MB/sec
OUTPUT: Timing buffered disk reads: 1504 MB in 3.00 seconds = 501.13 MB/sec
INFO: Disk stress test
DEBUG: Calling fio --name=stressant --readwrite=randrw --numjob=4 --sync=1 --direct=1
→˓--group_reporting --size=1M --output=/tmp/tmpo2QJnR
OUTPUT: stressant: (g=0): rw=randrw, bs=4K-4K/4K-4K/4K-4K, ioengine=psync, iodepth=1
OUTPUT: ...
OUTPUT: fio-2.16
OUTPUT: Starting 4 processes
OUTPUT:
OUTPUT: stressant: (groupid=0, jobs=4): err= 0: pid=978: Fri Mar 17 10:25:07 2017

(continues on next page)

3.3. Design 17

Stressant Documentation, Release ???

(continued from previous page)

OUTPUT: read : io=2160.0KB, bw=5669.3KB/s, iops=1417, runt= 381msec
OUTPUT: clat (usec): min=141, max=2197, avg=486.59, stdev=344.70
OUTPUT: lat (usec): min=141, max=2198, avg=486.96, stdev=344.71
OUTPUT: clat percentiles (usec):
OUTPUT: | 1.00th=[145], 5.00th=[153], 10.00th=[161], 20.00th=[175],
OUTPUT: | 30.00th=[189], 40.00th=[217], 50.00th=[278], 60.00th=[676],
OUTPUT: | 70.00th=[748], 80.00th=[828], 90.00th=[916], 95.00th=[980],
OUTPUT: | 99.00th=[1384], 99.50th=[1800], 99.90th=[2192], 99.95th=[2192],
OUTPUT: | 99.99th=[2192]
OUTPUT: write: io=1936.0KB, bw=5081.4KB/s, iops=1270, runt= 381msec
OUTPUT: clat (usec): min=618, max=6602, avg=2566.13, stdev=1029.39
OUTPUT: lat (usec): min=619, max=6602, avg=2566.71, stdev=1029.39
OUTPUT: clat percentiles (usec):
OUTPUT: | 1.00th=[732], 5.00th=[900], 10.00th=[964], 20.00th=[1672],
OUTPUT: | 30.00th=[1976], 40.00th=[2384], 50.00th=[2640], 60.00th=[3152],
OUTPUT: | 70.00th=[3312], 80.00th=[3440], 90.00th=[3568], 95.00th=[3856],
OUTPUT: | 99.00th=[4704], 99.50th=[4960], 99.90th=[6624], 99.95th=[6624],
OUTPUT: | 99.99th=[6624]
OUTPUT: lat (usec) : 250=24.41%, 500=4.88%, 750=7.91%, 1000=19.34%
OUTPUT: lat (msec) : 2=10.84%, 4=30.66%, 10=1.95%
OUTPUT: cpu : usr=0.80%, sys=2.39%, ctx=1945, majf=0, minf=35
OUTPUT: IO depths : 1=100.0%, 2=0.0%, 4=0.0%, 8=0.0%, 16=0.0%, 32=0.0%, >=64=0.0%
OUTPUT: submit : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0
→˓%
OUTPUT: complete : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0
→˓%
OUTPUT: issued : total=r=540/w=484/d=0, short=r=0/w=0/d=0, drop=r=0/w=0/d=0
OUTPUT: latency : target=0, window=0, percentile=100.00%, depth=1
OUTPUT:
OUTPUT: Run status group 0 (all jobs):
OUTPUT: READ: io=2160KB, aggrb=5669KB/s, minb=5669KB/s, maxb=5669KB/s,
→˓mint=381msec, maxt=381msec
OUTPUT: WRITE: io=1936KB, aggrb=5081KB/s, minb=5081KB/s, maxb=5081KB/s,
→˓mint=381msec, maxt=381msec
OUTPUT:
OUTPUT: Disk stats (read/write):
OUTPUT: dm-3: ios=207/493, merge=0/0, ticks=120/296, in_queue=416, util=58.78%,
→˓aggrios=540/1527, aggrmerge=0/0, aggrticks=288/752, aggrin_queue=1040, aggrutil=75.
→˓30%
OUTPUT: dm-0: ios=540/1527, merge=0/0, ticks=288/752, in_queue=1040, util=75.30%,
→˓aggrios=540/1326, aggrmerge=0/201, aggrticks=264/704, aggrin_queue=968, aggrutil=74.
→˓49%
OUTPUT: sda: ios=540/1326, merge=0/201, ticks=264/704, in_queue=968, util=74.49%
INFO: CPU stress test for 1s
DEBUG: Calling stress-ng --timeout 1s --cpu 0 --ignite-cpu --metrics-brief --log-
→˓brief --tz --times --aggressive
OUTPUT: dispatching hogs: 4 cpu
OUTPUT: cache allocate: default cache size: 3072K
OUTPUT: successful run completed in 1.05s
OUTPUT: stressor bogo ops real time usr time sys time bogo ops/s bogo ops/
→˓s
OUTPUT: (secs) (secs) (secs) (real time) (usr+sys time)
OUTPUT: cpu 453 1.04 2.80 0.00 437.62 161.
→˓79
OUTPUT: cpu:
OUTPUT: acpitz 27.80 °C
OUTPUT: pch_skylake 32.77 °C

(continues on next page)

18 Chapter 3. Acknowledgements

Stressant Documentation, Release ???

(continued from previous page)

OUTPUT: acpitz 31.78 °C
OUTPUT: x86_pkg_temp 34.40 °C
OUTPUT: for a 1.05s run time:
OUTPUT: 4.22s available CPU time
OUTPUT: 2.81s user time (66.64%)
OUTPUT: 0.01s system time (0.24%)
OUTPUT: 2.82s total time (66.87%)
OUTPUT: load average: 0.34 0.58 2.52
INFO: Running network benchmark
DEBUG: Calling iperf3 -c iperf.he.net -t 1
OUTPUT: iperf3: error - the server is busy running a test. try again later
ERROR: Command failed: Command 'iperf3 -c iperf.he.net -t 1' returned non-zero exit
→˓status 1
INFO: all done
INFO: sent email to ['anarcat@anarc.at'] using anarc.at

Note that there are nice colors in an actual console, the above is just a dump of the logfile.

We currently use the iperf.he.net server from Hurricane Electric as a default server for our tests, but users
are encouraged to change that to a local server using the --iperfServer argument to get more accurate results.
Notice how that performance test failed, above, because the HE server wasn’t available: this is just another hint that
you should use your own server.

A number of public iPerf servers are available, here are a few lists:

• <https://iperf.fr/iperf-servers.php>

• <https://github.com/R0GGER/public-iperf3-servers>

• <https://proof.ovh.ca/>

3.3.2 Background

This project emanates from a packaging effort of a custom Linux distribution called ‘breakin’. It turned into a simple
Python program that reuses existing stress-testing programs packaged in Debian.

Stressant used to be built as a standalone Debian Derivative, a Pure blend based on Debirf. But in 2017, the project
was rearchitectured to be based on Grml and to focus on developing a standalone stress-testing tool. While Stressant
could still become its own Debian derivative, it seems futile for now to make yet another Debian derivative. Instead,
we focus our energy into contributing to the Grml project without needing to create the heavy infrastructure for another
Linux distribution.

The Is your Computer Stable? post from Jeff Atwood was a motivation to get back into the project. It outlines a few
basic tools to use to make sure your computer is stable:

• memtest86 - shipped with Grml

• install Ubuntu - we assume you’ll do that anyways

• MPrime to stress the CPU - not free software, [stress-ng][] was chosen instead and gives similar results here

• badblocks test (with -sv) - this is covered by the fio test

• smartctl -i/-a/-t to identify and test harddrives

• dd and hdparm to get quick stats - done

• bonnie++ for more extensive benchmarks - Grml people suggested we use fio instead

• iperf for network testing - this assumes a local server, we instead use iperf3 and public servers

3.3. Design 19

https://he.net/
https://iperf.fr/iperf-servers.php
https://github.com/R0GGER/public-iperf3-servers
https://proof.ovh.ca/
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=707178
https://wiki.debian.org/DebianPureBlends
http://cmrg.fifthhorseman.net/wiki/debirf
https://wiki.debian.org/Derivatives
https://blog.codinghorror.com/is-your-computer-stable/
http://www.mersenne.org/download/
https://en.wikipedia.org/wiki/Badblocks
https://en.wikipedia.org/wiki/Bonnie%2B%2B
http://fio.readthedocs.org/
https://en.wikipedia.org/wiki/Iperf
http://software.es.net/iperf/
https://iperf.fr/iperf-servers.php

Stressant Documentation, Release ???

• furmark for testing the GPU - Windows-only, no Linux equivalent, the Phoronix test suite uses ffmpeg tests for
that purpose

The idea was to regroup this in a single tool that would perform all those tests, without reinventing the wheel of course.

Stressant was also highly coupled with Koumbit’s infrastructure as this is where the Debirf recipes were originally
developed. It needed a CI system to build the images, which was originally done with Jenkins. This was then done
with Gitlab CI, but failed to build images because of issues with debirf and, ultimately, docker itself. This is why why
Grml was used as a basis for future development.

3.3.3 Remaining work

Stressant could run in a tmux or screen session that would show the current task on one pane and syslog (or journalctl)
in another. This would allow for more information to be crammed in a single display while at the same time making
remote access (e.g. through SSH) easier to switch to.

Note: Parallism is discussed as part of a larger redesign in issue #3.

Finally, we need clear and better documentation on various testing tools there are out there, a bit like TAILS is doing.
For example, we used to ship with diskscan but i didn’t even remember that and I am not sure what to use it
for or when to use it. A summary description of the available tools, maybe through a menu system or at least a
set of HTML files, would be useful. I use Sphinx and RST for this because of the simplicity and availability of
tools like readthedocs.org and the ease of creation for offline documentation (PDF and ePUB). A rendered copy of
the documentation is available on stressant.readthedocs.io and in the stressant-doc package. The metapackage
(stressant-meta) lists the relevant recovery tools and some of those are documented in the stressant manual
page.

3.3.4 Similar software

In the meantime, here’s a list of software that’s similar to stressant or that could be used by stressant.

Test suites

Those are fairly similar to stressant in that they perform multiple benchmarks:

• Breakin - stress-test and hardware diagnostics tool

• Checkbox - Ubuntu’s certification tool, shipped with Debian stretch but removed because upstream switched to
snaps, new RFP

• Inquisitor - hardware testing suite

• OpenBenchmarking.org - a good source of benchmarking tools

• PerfKit Benchmarker - GCP’s benchmarking tool

• Phoronix test suite - far-ranging benchmarking suite

• Stressapptest - Stressful Application Test, userspace memory and IO test - similar to stressant

• bench-scripts - a review of many benchmarking scripts that provide a nice and simple interface for basic bench-
marks

• sys_basher - another stress-testing tool

• Ars Technica - has a interesting post detailing a few key fio commands that should be ran

20 Chapter 3. Acknowledgements

http://www.ozone3d.net/benchmarks/fur/
https://en.wikipedia.org/wiki/Phoronix_Test_Suite
https://openbenchmarking.org/test/pts/ffmpeg
https://koumbit.org
https://gitlab.com/anarcat/stressant/issues/3
https://stressant.readthedocs.io/
http://www.advancedclustering.com/products/software/breakin/
https://checkbox.readthedocs.io/en/latest/
https://en.wikipedia.org/wiki/Inquisitor_(hardware_testing_software)
https://openbenchmarking.org/
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://en.wikipedia.org/wiki/Phoronix_Test_Suite
https://github.com/stressapptest/stressapptest
https://github.com/haydenjames/bench-scripts
http://www.polybus.com/sys_basher_web/
https://arstechnica.com/gadgets/2020/02/how-fast-are-your-disks-find-out-the-open-source-way-with-fio/

Stressant Documentation, Release ???

• hardware - python module for hardware inventory, reuses lshw, pciutils, smartmontools, etc, not in
Debian yet

Purpose-specific tools

• chipsec - framework for analyzing the security of PC platforms including hardware, system firmware
(BIOS/UEFI), and platform components

• FWTS - Ubuntu’s Firmware Test Suite - performs sanity checks on Intel/AMD PC firmware. It is intended
to identify BIOS and ACPI errors and if appropriate it will try to explain the errors and give advice to help
workaround or fix firmware bugs

• Power Stress and Shaping Tool (PSST) - a “controlled power tool for Intel SoC components such as CPU and
GPU. PSST enables very fine control of stress function without its own process overhead”, packaged in Debian
as psst

• The stress terminal (s-tui) - mostly for testing CPU, temperature and power usage, now included in the meta-
package

• tinymembench - memory bandwidth userland tester

• stressdisk - “Stress test your disks / memory cards / USB sticks before trusting your valuable data to them”

3.3.5 Building images by hand

Note: Starting from August 2017, stressant is part of Grml, and it’s usually superfluous to build your own image
unless you’re into that kind of kinky stuff. Those notes are kept mostly for historical purposes.

There is a handy build-iso.sh script that will setup APT repositories and run all the right commands to build
a Grml Stressant ISO image on a recent Debian release (tested on Jessie and stretch). Note that you can pass extra
flags to the grml-live command with the $GRML_LIVE_FLAGS environment variable. What follows is basically a
description of what that script does.

To build an image by hand, you will need to first install the grml-live package which is responsible for building
Grml images. For this, you will need to add the Grml Debian repository to your sources.list file. Instructions
for doing so are available in the files section of the Grml site.

Once this is done, you should be able to build an image using:

sudo grml-live -c DEBORPHAN,GRMLBASE,GRML_FULL,RELEASE,AMD64,IGNORE,STRESSANT \
-s unstable -a amd64 \
-o $PWD/grml -U $USER \
-v $(date +%Y.%m) -r gossage -g grml64-full-stressant

This will build a “full” Grml release (-c) based on Debian unstable on a 64 bit architecture (-a) in the ./grml
subdirectory (-o). The files will be owned (-U) by the current user ($USER). The version number (-v), the release
name (-r) and flavor (-g) are just cargo-culted from the upstream official release. See the grml-live for further
options, but do note the -u option that can be used to rerun the builds if you want to only update the image to the latest
release, for example.

The resulting ISO will be in ./grml/grml_isos/grml64-full_$(date +%Y.%m%d).iso. To make a
multi-arch ISO, you should use the grml2iso command. For example, this is how upstream builds the 96 ISO
which features the 32 bits and 64 bits architectures:

grml2iso -o grml96-small_2014.11.iso grml64-small_2014.11.iso grml32-small_2014.11.iso

3.3. Design 21

https://github.com/redhat-cip/hardware
https://github.com/chipsec/chipsec
https://wiki.ubuntu.com/FirmwareTestSuite/
https://01.org/power-stress-and-shaping-tool
https://tracker.debian.org/pkg/psst
https://amanusk.github.io/s-tui/
https://github.com/ssvb/tinymembench
https://github.com/ncw/stressdisk
http://grml.org/grml-live/
http://deb.grml.org/
http://grml.org/files/
http://jenkins.grml.org/job/grml64-full_Release/26/console
http://grml.org/grml-live/
http://jenkins.grml.org/job/grml96-full_Release/lastSuccessfulBuild/console

Stressant Documentation, Release ???

3.3.6 Build system review

The following is a summary evaluation of the different options considered by the Stressant project to build live images.
This problem space is currently in flux: at the time of writing, the tools used to build the Debian Live images are
changing and the future of the project was uncertain. Keep this in mind when you read this in the future. Here are the
options that were considered, with a detailed evaluation below:

• DebIRF

• FAI

• vmdebootstrap

• live-build and live-wrapper

• Grml

• mkosi

The Debian cloud team also considered a few tools to generate their cloud images, and some are relevant here (FAI
and vmdebootstrap), see this post for details. There’s also this more exhaustive list of tools to build Debian systems.

DebIRF

Debirf stands for Debian InitRamFs and builds the live image into the initrd file. It was originally used by Stressant
because it was simple and easy to modify. It also allowed booting from the network easily, as we only had to load the
kernel and didn’t have to bother with ISO images loading or NFS, like other options.

In the end, however, Debirf proved to be too limited for our needs: it doesn’t provide a way to embed boot-level,
arbitrary binaries like memtest86 because it is too tightly coupled with the Linux kernel. Furthermore, we were having
serious issues building debirf images in newer releases, either in Debian 8 (bug #806377) or 9 (bug #848834).

FAI

I have tried to use FAI to follow the lead of the Debian cloud team. Unfortunately, I stumbled upon a few bugs. First,
fai-diskimage would fail to build an image if the host uses LVM. This was fixed in FAI 5.3.3 (or maybe 5.3.4?). Also,
FAI seems to fetch base files from a cleartext URL, which seems like a dubious security choice.

After finding this tutorial, I figured I would give it a try again. Unfortunately, after asking on IRC (#debian-cloud
on OFTC), I was told (by Noah!) that “fai-diskimage is probably not what you want for an iso image” and they
suggested I use fai-cd. Unfortunately, fai-cd works completely differently: it doesn’t support the --class
system that fai-diskimage was built with, so we can’t reuse those already mysterious recipes. fai-cd seems to
be built towards creating install medium and not live images.

All this seems to make FAI mostly unusable for the task at hand, although it should be noted that grml-live uses FAI
to build their images. . .

vmdebootstrap

vmdebootstrap is a minimal image building tool, written in Python, used for Debian live images. It requires root (for
loop filesystems creation), and doesn’t support shipping the Debian installer anymore.

We have had good results with vmdebootstrap, but the fact that it requires a loop device has made it difficult to
use Gitlab’s CI system. Docker has a bug that makes it impossible to use loop devices and kpartx commands in it.

22 Chapter 3. Acknowledgements

https://lists.debian.org/msgid-search/20170626140821.noixwidcadj4rphr@einval.com
https://wiki.debian.org/Teams/Cloud
https://wiki.debian.org/FAI
https://vmdebootstrap.alioth.debian.org/
https://lists.debian.org/debian-cloud/2016/11/msg00100.html
https://wiki.debian.org/SystemBuildTools
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=806377
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=848834
https://wiki.debian.org/Teams/Cloud
http://fai-project.org/doc/man/fai-diskimage.html
https://lists.debian.org/debian-cloud/2017/01/msg00003.html
http://fai-project.org/download/basefiles/
https://noah.meyerhans.us/blog/2017/02/10/using-fai-to-customize-and-build-your-own-cloud-images/
http://grml.org/grml-live/
https://vmdebootstrap.alioth.debian.org/
https://www.debian.org/devel/debian-live/
https://github.com/docker/docker/issues/27886

Stressant Documentation, Release ???

So to build images through Gitlab’s CI would require full virtualization instead of just Docker, something that’s not
provided by Gitlab.com right now. This problem is probably shared by all image building tools, however.

Worse: VirtualBox did not make it to stretch at all which makes it difficult to deploy new builders for it.

live-build and live-wrapper

live-build is a set of tools used by Debian live and other blends (e.g. PGP cleanroom uses live-build). It used to be a
set of shell scripts, but it now uses live-wrapper which uses vmdebootstrap in the end.

It is unclear if I am better off using live build or vmdebootstrap directly. The PGP cleanroom build uses live build, so
maybe I should do that as well. . .

Notes: live-wrapper is where the idea of using HDT comes from. Unfortunately, it looks like the boot menus don’t
actually work yet (bug #813527). Furthermore, live-wrapper doesn’t support initrd-style netboot, so we would need
documentation on how to boot from ISO files over PXE.

Grml

Grml is a project quite similar to the original goal of stressant:

• based on Debian

• provides rescue tools

• live CD/USB image

• also provides support for netboot through grml-terminalserver, which can use remote squashfs

The project is really interesting and we have therefore switched the focus of Stressant towards creating an integrated
stress-test tool on top of grml instead of trying to fix all the issues those guys are already struggling with. . . We use
grml-debootstrap, a tool similar to vmdebootstrap, to build stressant images.

Grml has most of the packages we had in our dependencies, except those:

blktool
bonnie++
chntpw
diskscan
e2tools
fatresize
foremost
hfsplus
i7z
lm-sensors
mtd-utils
scrub
smp-utils
stress-ng
tofrodos
u-boot-tools
wodim

Of those, only stress-ng is actually required by stressant.

The remaining issues with Grml integration are:

1. add stressant to the Grml build (pull request #34 - done!)

2. review the above packages we collected from various rescue modes and see if they are relevant

3.3. Design 23

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=794466
https://tracker.debian.org/pkg/live-build
https://www.debian.org/devel/debian-live/
https://wiki.debian.org/OpenPGP/CleanRoomLiveEnvironment
https://anonscm.debian.org/cgit/collab-maint/make-pgp-clean-room.git/tree/scripts
https://live-wrapper.readthedocs.io/en/latest/
https://vmdebootstrap.alioth.debian.org/
https://anonscm.debian.org/cgit/debian-live/live-wrapper.git/tree/lwr/run.py
https://bugs.debian.org/813527
https://bugs.debian.org/849015
http://grml.org/
http://grml.org/grml-live/
http://grml.org/terminalserver/
http://www.pro-linux.de/kurztipps/2/1432/grml-small-200811-via-pxe-booten-ohne-nfs.html
http://grml.org/grml-debootstrap/
https://github.com/grml/grml-live/pull/34

Stressant Documentation, Release ???

3. hook stressant in the magic Grml menu to start directly from the boot menu - we can use the
scripts=path-name argument for this, it looks in the “DCS dir”, which is / or whatever myconfig=
points at

4. figure out how to chain into memtest86 to complete the test suite

Because stressant has been accepted into Debian, we should not need to setup our own build system, unless Grml
refuses to integrate the package directly. In any case, we may want to setup our own Continuous Integration (CI)
system to build feature branches and similar. The proper way to do this seems to be to add the .deb file directly at
the root (/) of the live filesystem with the install local files technique and the debs boot-time argument.

mkosi

mkosi is another tool from the systemd folks which we may want to consider.

3.4 Contributor’s guide

This document outlines how to contribute to this project. It details a code of conduct, how to submit issues, bug reports
and patches.

3.4.1 Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making
participation in our project and our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race,
religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment include:

• Using welcoming and inclusive language

• Being respectful of differing viewpoints and experiences

• Gracefully accepting constructive criticism

• Focusing on what is best for the community

• Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

• The use of sexualized language or imagery and unwelcome sexual attention or advances

• Trolling, insulting/derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or electronic address, without explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

24 Chapter 3. Acknowledgements

https://github.com/grml/live-boot-grml/issues/5
http://grml.org/grml-live/#install-local-files
https://github.com/systemd/mkosi

Stressant Documentation, Release ???

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appro-
priate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any
contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the
project or its community. Examples of representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed representative at an online or offline
event. Representation of a project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting one of the persons
listed below. All complaints will be reviewed and investigated and will result in a response that is deemed necessary
and appropriate to the circumstances. The project maintainers is obligated to maintain confidentiality with regard to
the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent
repercussions as determined by other members of the project’s leadership.

Project maintainers are encouraged to follow the spirit of the Django Code of Conduct Enforcement Manual when
receiving reports.

Contacts

The following people have volunteered to be available to respond to Code of Conduct reports. They have reviewed
existing literature and agree to follow the aforementioned process in good faith. They also accept OpenPGP-encrypted
email:

• Antoine Beaupré anarcat@debian.org

Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 1.4, available at http://contributor-
covenant.org/version/1/4

Changes

The Code of Conduct was modified to refer to project maintainers instead of project team and small paragraph was
added to refer to the Django enforcement manual.

Note: We have so far determined that writing an explicit enforcement policy is not necessary, considering
the available literature already available online and the relatively small size of the community. This may
change in the future if the community grows larger.

3.4. Contributor’s guide 25

https://www.djangoproject.com/conduct/enforcement-manual/
mailto:anarcat@debian.org
http://contributor-covenant.org
http://contributor-covenant.org/version/1/4/
http://contributor-covenant.org/version/1/4/

Stressant Documentation, Release ???

3.4.2 Patches

Patches can be submitted through merge requests on the GitLab project.

Some guidelines for patches:

• A patch should be a minimal and accurate answer to exactly one identified and agreed problem.

• A patch must compile cleanly and pass project self-tests on all target platforms.

• A patch commit message must consist of a single short (less than 50 characters) line stating a summary of the
change, followed by a blank line and then a description of the problem being solved and its solution, or a reason
for the change. Write more information, not less, in the commit log.

• Patches should be reviewed by at least one maintainer before being merged.

Project maintainers should merge their own patches only when they have been approved by other maintainers, unless
there is no response within a reasonable timeframe (roughly one week) or there is an urgent change to be done (e.g.
security or data loss issue).

As an exception to this rule, this specific document cannot be changed without the consensus of all administrators of
the project.

Note: Those guidelines were inspired by the Collective Code Construct Contract. The document was
found to be a little too complex and hard to read and wasn’t adopted in its entirety. See this discussion for
more information.

Patch triage

You can also review existing pull requests, by cloning the contributor’s repository and testing it. If the tests do not
pass (either locally or in the online Continuous Integration (CI) system), if the patch is incomplete or otherwise does
not respect the above guidelines, submit a review with “changes requested” with reasoning.

3.4.3 Documentation

We love documentation!

The documentation mostly in the README file and can be edited online once you register.

3.4.4 Issues and bug reports

We want you to report issuess you find in the software. It is a recognized and important part of contributing to this
project. All issues will be read and replied to politely and professionnally. Issues and bug reports should be filed on
the issue tracker.

3.4.5 Issue triage

Issue triage is a useful contribution as well. You can review the issues in the GitHub project and, for each issue:

• try to reproduce the issue, if it is not reproducible, label it with more-info and explain the steps taken to
reproduce

• if information is missing, label it with more-info and request specific information

• if the feature request is not within the scope of the project or should be refused for other reasons, use the
wontfix label and close the issue

26 Chapter 3. Acknowledgements

https://gitlab.com/anarcat/stressant/merge_requests
https://gitlab.com/anarcat/stressant/
https://rfc.zeromq.org/spec:42/C4/
https://github.com/zeromq/rfc/issues?utf8=%E2%9C%93&q=author%3Aanarcat%20
https://gitlab.com/anarcat/stressant/edit/master/README.md
https://gitlab.com/anarcat/stressant/issues
https://gitlab.com/anarcat/stressant/issues

Stressant Documentation, Release ???

• mark feature requests with the enhancement label, bugs with bug, duplicates with duplicate and so on. . .

Note that some of those operations are available only to project maintainers, see below for the different statuses.

3.4.6 Membership

There are three levels of membership in the project, Administrator (also known as “Owner” in GitHub or GitLab),
Maintainer (also known as “Member” on GitHub or “Developer” on GitLab), or regular users (everyone with or
without an account). Anyone is welcome to contribute to the project within the guidelines outlined in this document,
regardless of their status, and that includes regular users.

Maintainers can:

• do everything regular users can

• review, push and merge pull requests

• edit and close issues

Administrators can:

• do everything maintainers can

• add new maintainers

• promote maintainers to administrators

Regular users can be promoted to maintainers if they contribute to the project, either by participating in issues, docu-
mentation or pull requests.

Maintainers can be promoted to administrators when they have given significant contributions for a sustained time-
frame, by consensus of the current administrators. This process should be open and decided as any other issue.

3.4.7 Release process

To make a release:

1. generate release notes with:

gbp dch

the file header will need to be moved back up to the beginning of the file. also make sure to add a summary and
choose a proper version according to Semantic Versioning

2. tag the release according to Semantic Versioning rules:

git tag -s x.y.z

3. build and test the Python package:

python3 setup.py bdist_wheel
sudo pip3 install dist/*.whl
stressant --version
sudo stressant --email anarcat@anarc.at --logfile test.log --writeSize 1M --
→˓cpuBurnTime 1s --iperfTime 1
check your emails and the logfile
sudo pip3 uninstall stressant

4. build and test the debian package:

3.4. Contributor’s guide 27

http://semver.org/
http://semver.org/

Stressant Documentation, Release ???

git-buildpackage
sudo dpkg -i ../stressant_*.deb
stressant --version
sudo stressant --email anarcat@anarc.at --logfile test.log --writeSize 1M --
→˓cpuBurnTime 1s --iperfTime 1
sudo dpkg --remove stressant

5. push changes:

git push
git push --tags
twine upload dist/*
dput ../stressant*.changes

6. edit the tag on Gitlab, copy-paste the changelog entry and attach the signed binaries

3.5 History

stressant (0.7.0) unstable; urgency=medium

[Antoine Beaupré]

* documentation updates:

* add ars fio commands

* mention nvme drives

* move README in the right place

* move similar software to design

* split related projects in groups

* add tinymembench

* show how we actually run a basic bench

* checkbox is another alternative to stressant

* new features:

* make a basic fio test bench, only shipped in source

* fix syntax error in docs

* start listing iperf server lists

* add fqdn to email subject and default logfile

* add timestamps to email and logs

* NegateAction: allow caller to override default

* fixes:

* reverse logic of default NegateAction argument

* properly flush changes to disk before calling fio job

* code cleanups:

* fix branch name in gbp

* lint: fix long line wrap

[Debian Janitor]

* Use secure copyright file specification URI.

* Use canonical URL in Vcs-Git.

* Update standards version to 4.5.1, no changes needed.

-- Antoine Beaupré <anarcat@debian.org> Thu, 09 Feb 2023 11:37:48 -0500

stressant (0.6.0) unstable; urgency=medium

* documentation updates:

* mention disk-filltest

(continues on next page)

28 Chapter 3. Acknowledgements

https://gitlab.com/anarcat/stressant/tags

Stressant Documentation, Release ???

(continued from previous page)

* do not verify disk wipes and use the "random" method

* "stressant.py" was renamed to "stressant"

* factor in NMU from plugwash, thanks!

* code changes:

* remove bare except, assuming we mean to catch other SMTP exceptions

* cosmetic: harmonize fio argument order between file and dir

* cosmetic: remove cargo-culted comments referring to previous code

* API-breaking changes:

* merge the two disk sizes arguments (--diskPercent and --fileSize
merge into --writeSize)

* deprecate the ISO build functionality, we made it into grml

* new features:

* cap disk tests to one minute by default (--diskRuntime)

* bump Standards-Version to 4.5.0, no change

* improve error messages in SMTP backoff mechanism

* backport Python 3.7 improvements to SMTP buffering handler

* bugfixes:

* fix unicode decode error in Python 3.7

* create directory earlier, so that dd can work

* fix job file argument so it supports jobs with filename=

* fix error handling in SMTP handler

* fix infinite loop in SMTP handler

-- Antoine Beaupré <anarcat@debian.org> Thu, 20 Feb 2020 09:43:58 -0500

stressant (0.5.0+nmu1) unstable; urgency=medium

* Non-maintainer upload.

* Re-upload source-only to allow migration to testing (Closes: 943867).

* Fix clean target.

-- Peter Michael Green <plugwash@debian.org> Sat, 09 Nov 2019 07:50:54 +0000

stressant (0.5.0) unstable; urgency=medium

* ship new stressant-meta package

* add mkosi to the list of iso generators

* update and clarify live build images section

* add more detailed iperf tests

* add warning and example of fake card and repair

* tell user how to see smart results

* run smart tests after other disk benchmarks

* use job files instead of static fio configuration

* rename jobfile argument to abstract away fio

* link to debian manpages

* use proper smartmontools dependency (Closes: #859698)

* add more related projects

* mention more simple disk tests

* mention that wiping disks is a fairly good way to test them

* more generic title for flash memory

* include s-tui in meta

* link to the bench.sh scripts

* port to python3 (Closes: #938573)

* fix --version usage

* some linting

-- Antoine Beaupré <anarcat@debian.org> Sun, 27 Oct 2019 16:29:43 -0400
(continues on next page)

3.5. History 29

Stressant Documentation, Release ???

(continued from previous page)

stressant (0.4.1) unstable; urgency=medium

* remove traces of monkeysign

* hide serial numbers from smartctl output

* python packages are arch:all, not any

* split docs in a separate package

-- Antoine Beaupré <anarcat@debian.org> Tue, 27 Jun 2017 22:59:36 -0400

stressant (0.4.0) unstable; urgency=medium

* can now test in arbitrary directories with --directory option

* fix "edit" links in docs

* fix version parsing

* fix version detection in sphinx build

* fix sphinx build-dep

* add examples to manpage

* explain how the usage and manpages are generated

* deal with older colorlog modules

* fix changelog generation with gbp

-- Antoine Beaupré <anarcat@debian.org> Sun, 23 Apr 2017 20:03:41 -0400

stressant (0.3.2) unstable; urgency=medium

* hook grml build into Gitlab CI

* various documentation updates, including:

* review builders section

* credit grml in acknowledgements

* add asciinema screncast

* convert documentation to Sphinx/RST

* add manpage

-- Antoine Beaupré <anarcat@debian.org> Sun, 02 Apr 2017 21:50:04 -0400

stressant (0.3.1) unstable; urgency=medium

* fix copyright file

-- Antoine Beaupré <anarcat@debian.org> Fri, 17 Mar 2017 12:02:16 -0400

stressant (0.3.0) unstable; urgency=medium

* rebuild the whole project using Grml

* rewrite and complete prototype in Python

* email, logfile and color support

* network tests with iPerf3

* disk tests with fio

* CPU tests with stress-ng

* basic information gathered with lshw and smart

-- Antoine Beaupré <anarcat@debian.org> Fri, 17 Mar 2017 11:10:21 -0400

stressant (0.2) experimental; urgency=medium

* switch to using vmdebootstrap to build ISO images
(continues on next page)

30 Chapter 3. Acknowledgements

Stressant Documentation, Release ???

(continued from previous page)

* add first prototype of test run, not packaged

* switch to native packaging

* Initial release (Closes: #707178)

-- Antoine Beaupré <anarcat@debian.org> Thu, 05 Jan 2017 02:50:03 -0500

3.5. History 31

	Features
	Demo
	Acknowledgements
	Installation
	stressant manual page
	Design
	Contributor’s guide
	History

