
streamsx.testing Documentation
Release 0.3.1

IBMStreams

Jul 12, 2019

Contents

1 Overview 1

2 unittest integration 3

3 nose integration 5
3.1 streamsx.testing . 5
3.2 streamsx.testing.nose . 15

4 Indices and tables 19

Python Module Index 21

Index 23

i

ii

CHAPTER 1

Overview

Testing for IBM Streams SPL and Python applications.

1

streamsx.testing Documentation, Release 0.3.1

2 Chapter 1. Overview

CHAPTER 2

unittest integration

• Test streams by placing conditions on streams in an application, such as this stream must receive at least 100
tuples.

• Allow a test to be easily executed in different environments, such as standalone and against the public cloud
service.

3

streamsx.testing Documentation, Release 0.3.1

4 Chapter 2. unittest integration

CHAPTER 3

nose integration

• Plugins to allow configuration changes when running tests using nosetests without modifying the test code.

streamsx.testing IBM Streams application testing.
streamsx.testing.nose Nose plugins for IBM Streams application testing.

3.1 streamsx.testing

IBM Streams application testing.

3.1.1 Overview

Testing of an application, sub-graph or operator is performed by building a Python topology that invokes the element
under test in a standard Python unittest. The element under test can be a SPL application, sub-graph, operator or a
Python application, sub-graph or single transformation. See Testing overview.

Testing of SPL functions is performed by declaring series of input data and expected output. See SPL function testing
overview.

Python is a natural choice for testing of SPL applications as tests can be written simply and executed immediately
without a compilation step. By use of the standard Python unittest existing tools such as nosetets can be used to
run tests, produce reports and integrate with continuous integration tools such as Jenkins.

3.1.2 Testing overview

Allows testing of a streaming application by creation conditions on streams that are expected to become valid during
the processing. Tester is designed to be used with Python’s unittest module.

A complete application may be tested or fragments of it, for example a sub-graph can be tested in isolation that takes
input data and scores it using a model.

5

streamsx.testing Documentation, Release 0.3.1

Supports execution of the application on STREAMING_ANALYTICS_SERVICE, DISTRIBUTED or STANDALONE.

A Tester instance is created and associated with the Topology to be tested. Conditions are then created against
streams, such as a stream must receive 10 tuples using tuple_count().

Here is a simple example that tests a filter correctly passes tuples with values greater than 5:

import unittest
from streamsx.testing import Tester
from streamsx.topology.topology import Topology

class TestSimpleFilter(unittest.TestCase):

def setUp(self):
Sets self.test_ctxtype and self.test_config
Tester.setup_streaming_analytics(self)

def test_filter(self):
Declare the application to be tested
topology = Topology()
s = topology.source([5, 7, 2, 4, 9, 3, 8])
s = s.filter(lambda x : x > 5)

Create tester and assign conditions
tester = Tester(topology)
tester.contents(s, [7, 9, 8])

Submit the application for test
If it fails an AssertionError will be raised.
tester.test(self.test_ctxtype, self.test_config)

A stream may have any number of conditions and any number of streams may be tested.

A local_check() is supported where a method of the unittest class is executed once the job becomes healthy. This
performs checks from the context of the Python unittest class, such as checking external effects of the application or
using the REST api to monitor the application.

A test fails-fast if any of the following occur:

• Any condition fails. E.g. a tuple failing a tuple_check().

• The local_check() (if set) raises an error.

• The job for the test:

– Fails to become healthy.

– Becomes unhealthy during the test run.

– Any processing element (PE) within the job restarts.

A test timeouts if it does not fail but its conditions do not become valid. The timeout is not fixed as an absolute test run
time, but as a time since “progress” was made. This can allow tests to pass when healthy runs are run in a constrained
environment that slows execution. For example with a tuple count condition of ten, progress is indicated by tuples
arriving on a stream, so that as long as gaps between tuples are within the timeout period the test remains running until
ten tuples appear.

Note: The test timeout value is not configurable.

6 Chapter 3. nose integration

streamsx.testing Documentation, Release 0.3.1

Note: The submitted job (application under test) has additional elements (streams & operators) inserted to implement
the conditions. These are visible through various APIs including the Streams console raw graph view. Such elements
are put into the Tester category.

Note: Tester is an import of streamsx.topology.tester.Tester.

3.1.3 SPL function testing overview

SPL functions can tested using FnTester by providing series of input values and the expected function return values.
Functions under test may be SPL or SPL native functions (implemented in Java or C++).

class streamsx.testing.Tester(topology)
Testing support for a Topology.

Allows testing of a Topology by creating conditions against the contents of its streams.

Conditions may be added to a topology at any time before submission.

If a topology is submitted directly to a context then the graph is not modified. This allows testing code to be
inserted while the topology is being built, but not acted upon unless the topology is submitted in test mode.

If a topology is submitted through the test method then the topology may be modified to include operations to
ensure the conditions are met.

Warning: For future compatibility applications under test should not include intended failures that cause a
processing element to stop or restart. Thus, currently testing is against expected application behavior.

Parameters topology – Topology to be tested.

add_condition(stream, condition)
Add a condition to a stream.

Conditions are normally added through tuple_count(), contents() or tuple_check().

This allows an additional conditions that are implementations of Condition.

Parameters

• stream (Stream) – Stream to be tested.

• condition (Condition) – Arbitrary condition.

Returns stream

Return type Stream

contents(stream, expected, ordered=True)
Test that a stream contains the expected tuples.

Parameters

• stream (Stream) – Stream to be tested.

• expected (list) – Sequence of expected tuples.

• ordered (bool) – True if the ordering of received tuples must match expected.

3.1. streamsx.testing 7

streamsx.testing Documentation, Release 0.3.1

Returns stream

Return type Stream

eventual_result(stream, checker)
Test a stream reaches a known result or state.

Creates a test condition that the tuples on a stream eventually reach a known result or state. Each tuple on
stream results in a call to checker(tuple_).

The return from checker is handled as:

• None - The condition requires more tuples to become valid.

• true value - The condition has become valid.

• false value - The condition has failed. Once a condition has failed it can never become valid.

Thus checker is typically stateful and allows ensuring that condition becomes valid from a set of input
tuples. For example in a financial application the application under test may need to achieve a final known
balance, but due to timings of windows the number of tuples required to set the final balance may be
variable.

Once the condition becomes valid any false value, except None, returned by processing of subsequent
tuples will cause the condition to fail.

Returning None effectively never changes the state of the condition.

Parameters

• stream (Stream) – Stream to be tested.

• checker (callable) – Callable that returns evaluates the state of the stream with result
to the result.

New in version 1.11.

static get_streams_version(test)
Returns IBM Streams product version string for a test.

Returns the product version corresponding to the test’s setup. For STANDALONE and DISTRIBUTED the
product version corresponds to the version defined by the environment variable STREAMS_INSTALL.

Parameters test (unittest.TestCase) – Test case setup to run IBM Streams tests.

local_check(callable)
Perform local check while the application is being tested.

A call to callable is made after the application under test is submitted and becomes healthy. The check is
in the context of the Python runtime executing the unittest case, typically the callable is a method of the
test case.

The application remains running until all the conditions are met and callable returns. If callable raises an
error, typically through an assertion method from unittest then the test will fail.

Used for testing side effects of the application, typically with STREAMING_ANALYTICS_SERVICE or
DISTRIBUTED. The callable may also use the REST api for context types that support it to dynamically
monitor the running application.

The callable can use submission_result and streams_connection attributes from Tester instance to inter-
act with the job or the running Streams instance. These REST binding classes can be obtained as follows:

• Job - tester.submission_result.job

• Instance - tester.submission_result.job.get_instance()

8 Chapter 3. nose integration

streamsx.testing Documentation, Release 0.3.1

• StreamsConnection - tester.streams_connection

Simple example of checking the job is healthy:

import unittest
from streamsx.topology.topology import Topology
from streamsx.topology.tester import Tester

class TestLocalCheckExample(unittest.TestCase):
def setUp(self):

Tester.setup_distributed(self)

def test_job_is_healthy(self):
topology = Topology()
s = topology.source(['Hello', 'World'])

self.tester = Tester(topology)
self.tester.tuple_count(s, 2)

Add the local check
self.tester.local_check = self.local_checks

Run the test
self.tester.test(self.test_ctxtype, self.test_config)

def local_checks(self):
job = self.tester.submission_result.job
self.assertEqual('healthy', job.health)

Warning: A local check must not cancel the job (application under test).

Warning: A local check is not supported in standalone mode.

Parameters callable – Callable object.

static minimum_streams_version(test, required_version)
Checks test setup matches a minimum required IBM Streams version.

Parameters

• test (unittest.TestCase) – Test case setup to run IBM Streams tests.

• required_version (str) – VRMF of the minimum version the test requires. Exam-
ples are '4.3', 4.2.4.

Returns True if the setup fulfills the minimum required version, false otherwise.

Return type bool

static require_streams_version(test, required_version)
Require a test has minimum IBM Streams version.

Skips the test if the test’s setup is not at the required minimum IBM Streams version.

Parameters

3.1. streamsx.testing 9

streamsx.testing Documentation, Release 0.3.1

• test (unittest.TestCase) – Test case setup to run IBM Streams tests.

• required_version (str) – VRMF of the minimum version the test requires. Exam-
ples are '4.3', 4.2.4.

resets(minimum_resets=10)
Create a condition that randomly resets consistent regions. The condition becomes valid when each con-
sistent region in the application under test has been reset minimum_resets times by the tester.

The resets are performed at arbitrary intervals scaled to the period of the region (if it is periodically trig-
gered).

Note: A region is reset by initiating a request though the Job Control Plane. The reset is not driven by
any injected failure, such as a PE restart.

Parameters minimum_resets (int) – Minimum number of resets for each region.

New in version 1.11.

run_for(duration)
Run the test for a minimum number of seconds.

Creates a test wide condition that becomes valid when the application under test has been running for
duration seconds. Maybe be called multiple times, the test will run as long as the maximum value provided.

Can be used to test applications without any externally visible streams, or streams that do not have testable
conditions. For example a complete application may be tested by runnning it for for ten minutes and use
local_check() to test any external impacts, such as messages published to a message queue system.

Parameters duration (float) – Minimum number of seconds the test will run for.

static setup_distributed(test, verbose=None)
Set up a unittest.TestCase to run tests using IBM Streams distributed mode.

Requires a local IBM Streams install define by the STREAMS_INSTALL environment variable. If
STREAMS_INSTALL is not set then the test is skipped.

The Streams instance to use is defined by the environment variables:

• STREAMS_ZKCONNECT - Zookeeper connection string (optional)

• STREAMS_DOMAIN_ID - Domain identifier

• STREAMS_INSTANCE_ID - Instance identifier

The user used to submit and monitor the job is set by the optional environment variables:

• STREAMS_USERNAME - User name defaulting to streamsadmin.

• STREAMS_PASSWORD - User password defaulting to passw0rd.

The defaults match the setup for testing on a IBM Streams Quick Start Edition (QSE) virtual machine.

Warning: streamtool is used to submit the job and requires that streamtool does not prompt
for authentication. This is achieved by using streamtool genkey.

See also:

Generating authentication keys for IBM Streams

Two attributes are set in the test case:

10 Chapter 3. nose integration

https://www.ibm.com/support/knowledgecenter/SSCRJU_4.2.1/com.ibm.streams.cfg.doc/doc/ibminfospherestreams-user-security-authentication-rsa.html

streamsx.testing Documentation, Release 0.3.1

• test_ctxtype - Context type the test will be run in.

• test_config - Test configuration.

Parameters

• test (unittest.TestCase) – Test case to be set up to run tests using Tester

• verbose (bool) – If true then the streamsx.topology.test logger is configured
at DEBUG level with output sent to standard error.

Returns: None

static setup_standalone(test, verbose=None)
Set up a unittest.TestCase to run tests using IBM Streams standalone mode.

Requires a local IBM Streams install define by the STREAMS_INSTALL environment variable. If
STREAMS_INSTALL is not set, then the test is skipped.

A standalone application under test will run until a condition fails or all the streams are finalized or when
the run_for() time (if set) elapses. Applications that include infinite streams must include set a run for
time using run_for() to ensure the test completes

Two attributes are set in the test case:

• test_ctxtype - Context type the test will be run in.

• test_config- Test configuration.

Parameters

• test (unittest.TestCase) – Test case to be set up to run tests using Tester

• verbose (bool) – If true then the streamsx.topology.test logger is configured
at DEBUG level with output sent to standard error.

Returns: None

static setup_streaming_analytics(test, service_name=None, force_remote_build=False,
verbose=None)

Set up a unittest.TestCase to run tests using Streaming Analytics service on IBM Cloud.

The service to use is defined by:

• VCAP_SERVICES environment variable containing streaming_analytics entries.

• service_name which defaults to the value of STREAMING_ANALYTICS_SERVICE_NAME envi-
ronment variable.

If VCAP_SERVICES is not set or a service name is not defined, then the test is skipped.

Two attributes are set in the test case:

• test_ctxtype - Context type the test will be run in.

• test_config - Test configuration.

Parameters

• test (unittest.TestCase) – Test case to be set up to run tests using Tester

• service_name (str) – Name of Streaming Analytics service to use. Must
exist as an entry in the VCAP services. Defaults to value of STREAM-
ING_ANALYTICS_SERVICE_NAME environment variable.

3.1. streamsx.testing 11

streamsx.testing Documentation, Release 0.3.1

• force_remote_build (bool) – Force use of the Streaming Analytics build service.
If false and STREAMS_INSTALL is set then a local build will be used if the local envi-
ronment is suitable for the service, otherwise the Streams application bundle is built using
the build service.

• verbose (bool) – If true then the streamsx.topology.test logger is configured
at DEBUG level with output sent to standard error.

If run with Python 2 the test is skipped, only Python 3.5 is supported with Streaming Analytics service.

Returns: None

test(ctxtype, config=None, assert_on_fail=True, username=None, password=None, al-
ways_collect_logs=False)

Test the topology.

Submits the topology for testing and verifies the test conditions are met and the job remained healthy
through its execution.

The submitted application (job) is monitored for the test conditions and will be canceled when all the con-
ditions are valid or at least one failed. In addition if a local check was specified using local_check()
then that callable must complete before the job is cancelled.

The test passes if all conditions became valid and the local check callable (if present) completed without
raising an error.

The test fails if the job is unhealthy, any condition fails or the local check callable (if present) raised an
exception. In the event that the test fails when submitting to the STREAMING_ANALYTICS_SERVICE
context, the application logs are retrieved as a tar file and are saved to the current working directory. The
filesystem path to the application logs is saved in the tester’s result object under the application_logs key,
i.e. tester.result[‘application_logs’]

Parameters

• ctxtype (str) – Context type for submission.

• config – Configuration for submission.

• assert_on_fail (bool) – True to raise an assertion if the test fails, False to return
the passed status.

• username (str) – Deprecated

• password (str) – Deprecated

• always_collect_logs (bool) – True to always collect the console log and PE trace
files of the test.

result
The result of the test. This can contain exit codes, application log paths, or other relevant test infor-
mation.

submission_result
Result of the application submission from submit().

streams_connection
Connection object that can be used to interact with the REST API of the Streaming Analytics service
or instance.

Type StreamsConnection

Returns True if test passed, False if test failed if assert_on_fail is False.

Return type bool

12 Chapter 3. nose integration

streamsx.testing Documentation, Release 0.3.1

Deprecated since version 1.8.3: username and password parameters. When required for a dis-
tributed test use the environment variables STREAMS_USERNAME and STREAMS_PASSWORD to define
the Streams user.

tuple_check(stream, checker)
Check each tuple on a stream.

For each tuple t on stream checker(t) is called.

If the return evaluates to False then the condition fails. Once the condition fails it can never become valid.
Otherwise the condition becomes or remains valid. The first tuple on the stream makes the condition valid
if the checker callable evaluates to True.

The condition can be combined with tuple_count() with exact=False to test a stream map or
filter with random input data.

An example of combining tuple_count and tuple_check to test a filter followed by a map is working cor-
rectly across a random set of values:

def rands():
r = random.Random()
while True:

yield r.random()

class TestFilterMap(unittest.testCase):
Set up omitted

def test_filter(self):
Declare the application to be tested
topology = Topology()
r = topology.source(rands())
r = r.filter(lambda x : x > 0.7)
r = r.map(lambda x : x + 0.2)

Create tester and assign conditions
tester = Tester(topology)
Ensure at least 1000 tuples pass through the filter.
tester.tuple_count(r, 1000, exact=False)
tester.tuple_check(r, lambda x : x > 0.9)

Submit the application for test
If it fails an AssertionError will be raised.
tester.test(self.test_ctxtype, self.test_config)

Parameters

• stream (Stream) – Stream to be tested.

• checker (callable) – Callable that must evaluate to True for each tuple.

tuple_count(stream, count, exact=True)
Test that a stream contains a number of tuples.

If exact is True, then condition becomes valid when count tuples are seen on stream during the test.
Subsequently if additional tuples are seen on stream then the condition fails and can never become valid.

If exact is False, then the condition becomes valid once count tuples are seen on stream and remains valid
regardless of any additional tuples.

Parameters

3.1. streamsx.testing 13

streamsx.testing Documentation, Release 0.3.1

• stream (Stream) – Stream to be tested.

• count (int) – Number of tuples expected.

• exact (bool) – True if the stream must contain exactly count tuples, False if the stream
must contain at least count tuples.

Returns stream

Return type Stream

class streamsx.testing.FnTester(name)
SPL function tester.

Creates a holder for an SPL function under test.

Parameters name – SPL namespace qualified name of the function.

Simple examples

Example testing a function with a single parameter (spl.math::abs) with int32 and float64 values:

import unittest
from streamsx.testing import Tester, FnTester

class TestStandardFunctions(unittest.TestCase):

def setUp(self):
Sets self.test_ctxtype and self.test_config
Tester.setup_standalone(self)

def test_abs(self):
Declare the tester
tester = FnTester('spl.math::abs')

Setup a series of int64 values for testing
args = [1,2,-3,0,-5]
tester.series(args, [abs(i) for i in args], name='abs_int64')

Setup a series of float64 values for testing
args = [0.5, 0.0, -4.5]
tester.series(args, [abs(i) for i in args], name='abs_float64')

Execute the test
tester.test(self)

Note: The function under test and its series are tested using a generated application run with Tester.

series(args, expected, name=None)
Declare a function test with a series of values.

Each value in args is passed into the function under test and the result expected to be the corresponding
value in expected.

Each value in args is a simple value for functions that accept a single parameter. Otherwise each value is
a tuple with the number of required parameters.

Each value in expected is a simple value for functions that return an SPL type that is not an SPL tuple.
Otherwise each value is a tuple with the correct number of values for the returned tuple schema.

14 Chapter 3. nose integration

streamsx.testing Documentation, Release 0.3.1

Multiple series may be created for a single instance of FnTester, typically using different data types
accepted by the function.

The series tests are not executed until FnTester.test is called.

The series name can aid with diagnostics when debugging tests or functions to clearly indicate which series
is failing.

Parameters

• args (list) – List of values to be passed into the function under test.

• expected (list) – List of expected results.

• name (str) – Name of series. Defaults to a generated name.

test(test, assert_on_fail=True, always_collect_logs=False)
Test the function.

Submits this function for testing and verifies all the series have the expected results.

The submitted job containing the series tests is monitored and will be canceled when all the series are valid
or at least one failed.

The test passes if all series became valid.

The test fails if the job is unhealthy or any series fails.

In the event that the test fails the application logs are retrieved (when supported by the Streams instance)
as a tar file and are saved to the current working directory. The filesystem path to the application logs is
saved in the tester’s result object under the application_logs key, i.e. tester.result[‘application_logs’]

The test case test must have been setup with on of Tester.setup_standalone(), Tester.
setup_distributed() or Tester.setup_streaming_analytics().

Parameters

• test – Instance of unittest.TestCase running the function series.

• assert_on_fail (bool) – True to raise an assertion if the test fails, False to return
the passed status.

• always_collect_logs (bool) – True to always collect the console log and PE trace
files of the test.

Returns True if test passed, False if test failed if assert_on_fail is False.

Return type bool

3.2 streamsx.testing.nose

Nose plugins for IBM Streams application testing.

Classes

AddConfigurationPlugin() Add arbitrary configuration to a test
DisableSSLVerifyPlugin() Disable SSL certification verification.
JobConfigPlugin() Job configuration plugin.
SkipStandalonePlugin() Skip standalone tests.

3.2. streamsx.testing.nose 15

streamsx.testing Documentation, Release 0.3.1

class streamsx.testing.nose.AddConfigurationPlugin
Add arbitrary configuration to a test

Enabled with --with-streamsx-add-config.

This plugin adds arbitrary configuration items to a test’s test_config dictionary by updating with the dic-
tionary value supplied by the options.

These options must be set when using this plugin.

• --streamsx-test-context CONTEXT - Context that will have its configuration added to. Any test
that runs with a different context will not have its

• --streamsx-test-config CODE - Code that is executed using built-in method exec. The execu-
tion must set the local variable cfg to a dictionary that will then be used as test.test_config.
update(cfg) before the test is run.

Example:

nosetests --with-streamsx-add-config --streamsx-test-context STANDALONE --
→˓streamsx-test-config "cfg = {'topology.keepArtifacts':True}"

configure(options, conf)
Configure the plugin and system, based on selected options.

The base plugin class sets the plugin to enabled if the enable option for the plugin (self.enableOpt) is true.

options(parser, env=environ({’HOSTNAME’: ’build-9365248-project-251772-streamsxtesting’,
’PYPY_VERSION_35’: ’pypy3.5-7.0.0’, ’APPDIR’: ’/app’, ’HOME’:
’/home/docs’, ’OLDPWD’: ’/’, ’CONDA_VERSION’: ’4.6.14’, ’READTHE-
DOCS’: ’True’, ’READTHEDOCS_PROJECT’: ’streamsxtesting’, ’PATH’:
’/home/docs/checkouts/readthedocs.org/user_builds/streamsxtesting/envs/pypackage/bin:/home/docs/.pyenv/shims:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/home/docs/.conda/bin:/home/docs/.pyenv/bin’,
’LANG’: ’C.UTF-8’, ’DEBIAN_FRONTEND’: ’noninteractive’, ’BIN_PATH’:
’/home/docs/checkouts/readthedocs.org/user_builds/streamsxtesting/envs/pypackage/bin’,
’PYTHON_VERSION_35’: ’3.5.7’, ’READTHEDOCS_VERSION’: ’pypackage’,
’PYTHON_VERSION_27’: ’2.7.16’, ’PYTHON_VERSION_36’: ’3.6.8’, ’PWD’:
’/home/docs/checkouts/readthedocs.org/user_builds/streamsxtesting/checkouts/pypackage/docs/source’,
’PYTHON_VERSION_37’: ’3.7.3’, ’PYENV_ROOT’: ’/home/docs/.pyenv’, ’DOCU-
TILSCONFIG’: ’/home/docs/checkouts/readthedocs.org/user_builds/streamsxtesting/checkouts/pypackage/docs/source/docutils.conf’}))

Register commandline options.

Implement this method for normal options behavior with protection from OptionConflictErrors. If you
override this method and want the default –with-$name option to be registered, be sure to call super().

class streamsx.testing.nose.DisableSSLVerifyPlugin
Disable SSL certification verification.

Disables SSL certification when running distributed tests. This is useful when a test instance with a self-signed
certificate, such as the IBM Streams Quick Start edition.

Enabled with --with-streamsx-disable-ssl-verify.

configure(options, conf)
Configure the plugin and system, based on selected options.

The base plugin class sets the plugin to enabled if the enable option for the plugin (self.enableOpt) is true.

class streamsx.testing.nose.JobConfigPlugin
Job configuration plugin.

Plugin that modifies the job configuration object for the application under test.

Enabled with --with-streamsx-jco.

16 Chapter 3. nose integration

streamsx.testing Documentation, Release 0.3.1

These options are supported:

• --streamsx-jco-default-tag=tag - Sets the resource tag for the default host pool. The default
host pool is where transformations/operators with explicit resource tags are assigned to and by default
maps to the resource tag application.

configure(options, conf)
Configure the plugin and system, based on selected options.

The base plugin class sets the plugin to enabled if the enable option for the plugin (self.enableOpt) is true.

options(parser, env=environ({’HOSTNAME’: ’build-9365248-project-251772-streamsxtesting’,
’PYPY_VERSION_35’: ’pypy3.5-7.0.0’, ’APPDIR’: ’/app’, ’HOME’:
’/home/docs’, ’OLDPWD’: ’/’, ’CONDA_VERSION’: ’4.6.14’, ’READTHE-
DOCS’: ’True’, ’READTHEDOCS_PROJECT’: ’streamsxtesting’, ’PATH’:
’/home/docs/checkouts/readthedocs.org/user_builds/streamsxtesting/envs/pypackage/bin:/home/docs/.pyenv/shims:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/home/docs/.conda/bin:/home/docs/.pyenv/bin’,
’LANG’: ’C.UTF-8’, ’DEBIAN_FRONTEND’: ’noninteractive’, ’BIN_PATH’:
’/home/docs/checkouts/readthedocs.org/user_builds/streamsxtesting/envs/pypackage/bin’,
’PYTHON_VERSION_35’: ’3.5.7’, ’READTHEDOCS_VERSION’: ’pypackage’,
’PYTHON_VERSION_27’: ’2.7.16’, ’PYTHON_VERSION_36’: ’3.6.8’, ’PWD’:
’/home/docs/checkouts/readthedocs.org/user_builds/streamsxtesting/checkouts/pypackage/docs/source’,
’PYTHON_VERSION_37’: ’3.7.3’, ’PYENV_ROOT’: ’/home/docs/.pyenv’, ’DOCU-
TILSCONFIG’: ’/home/docs/checkouts/readthedocs.org/user_builds/streamsxtesting/checkouts/pypackage/docs/source/docutils.conf’}))

Register commandline options.

Implement this method for normal options behavior with protection from OptionConflictErrors. If you
override this method and want the default –with-$name option to be registered, be sure to call super().

class streamsx.testing.nose.SkipStandalonePlugin
Skip standalone tests.

Automatically skips any tests that have been configured for standalone using Tester.
setup_standalone().

Enabled with --with-streamsx-skip-standalone.

configure(options, conf)
Configure the plugin and system, based on selected options.

The base plugin class sets the plugin to enabled if the enable option for the plugin (self.enableOpt) is true.

3.2. streamsx.testing.nose 17

streamsx.testing Documentation, Release 0.3.1

18 Chapter 3. nose integration

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

19

streamsx.testing Documentation, Release 0.3.1

20 Chapter 4. Indices and tables

Python Module Index

n
streamsx.testing.nose, 15

s
streamsx.testing, 5

21

streamsx.testing Documentation, Release 0.3.1

22 Python Module Index

Index

A
add_condition() (streamsx.testing.Tester method),

7
AddConfigurationPlugin (class in

streamsx.testing.nose), 16

C
configure() (streamsx.testing.nose.AddConfigurationPlugin

method), 16
configure() (streamsx.testing.nose.DisableSSLVerifyPlugin

method), 16
configure() (streamsx.testing.nose.JobConfigPlugin

method), 17
configure() (streamsx.testing.nose.SkipStandalonePlugin

method), 17
contents() (streamsx.testing.Tester method), 7

D
DisableSSLVerifyPlugin (class in

streamsx.testing.nose), 16

E
eventual_result() (streamsx.testing.Tester

method), 8

F
FnTester (class in streamsx.testing), 14

G
get_streams_version() (streamsx.testing.Tester

static method), 8

J
JobConfigPlugin (class in streamsx.testing.nose), 16

L
local_check() (streamsx.testing.Tester method), 8

M
minimum_streams_version()

(streamsx.testing.Tester static method), 9

O
options() (streamsx.testing.nose.AddConfigurationPlugin

method), 16
options() (streamsx.testing.nose.JobConfigPlugin

method), 17

R
require_streams_version()

(streamsx.testing.Tester static method), 9
resets() (streamsx.testing.Tester method), 10
result (streamsx.testing.Tester attribute), 12
run_for() (streamsx.testing.Tester method), 10

S
series() (streamsx.testing.FnTester method), 14
setup_distributed() (streamsx.testing.Tester

static method), 10
setup_standalone() (streamsx.testing.Tester static

method), 11
setup_streaming_analytics()

(streamsx.testing.Tester static method), 11
SkipStandalonePlugin (class in

streamsx.testing.nose), 17
streams_connection (streamsx.testing.Tester at-

tribute), 12
streamsx.testing (module), 5
streamsx.testing.nose (module), 15
submission_result (streamsx.testing.Tester at-

tribute), 12

T
test() (streamsx.testing.FnTester method), 15
test() (streamsx.testing.Tester method), 12
Tester (class in streamsx.testing), 7
tuple_check() (streamsx.testing.Tester method), 13
tuple_count() (streamsx.testing.Tester method), 13

23

	Overview
	unittest integration
	nose integration
	streamsx.testing
	streamsx.testing.nose

	Indices and tables
	Python Module Index
	Index

