
StreamReactor Documentation
Release 0.1

Andrew Stevenson

Sep 04, 2017

Contents

1 Components 3

i

ii

StreamReactor Documentation, Release 0.1

The Stream Reactor is a set of components to build a reference architecture for streaming data platforms. At its core
is Kafka, with Kafka Connect providing a unified way to stream data in and out of the system.

The actual processing if left to streaming engines and libraries such as Spark Streaming, Apache Flink, Storm and
Kafka Streams.

DataMountaineer provides a range of supporting components to the main technologies, mainly Kafka, Kafka Connect
and the Confluent Platform.

Download here.

Contents 1

https://github.com/datamountaineer/stream-reactor/releases/tag/v0.2

StreamReactor Documentation, Release 0.1

2 Contents

CHAPTER 1

Components

Install

The Stream Reactor components are built around The Confluent Platform. They rely on the Kafka Brokers, Zookeepers
and optionally the Schema Registry provided by this distribution.

The following releases are available:

• 0.2.6

• 0.2.5

• 0.2.4

• 0.2.3

• 0.2.2

Kafka Version Confluent Version Stream reactor version
0.10.2.0 3.2.2 0.2.6
0.10.2.0 3.2 0.2.5
0.10.0.1 3.1 0.2.4
0.10.0.1 3.0.1 0.2.3
0.10.0.1 3.0.1 0.2.2

Install Confluent

Confluent can be downloaded for here

#make confluent home folder
mkdir confluent

#download confluent
wget http://packages.confluent.io/archive/3.2/confluent-3.2.2-2.11.tar.gz

3

https://github.com/datamountaineer/stream-reactor/releases/tag/v0.2.6
https://github.com/datamountaineer/stream-reactor/releases/tag/v0.2.5
https://github.com/datamountaineer/stream-reactor/releases/tag/v0.2.4
https://github.com/datamountaineer/stream-reactor/releases/tag/v0.2.3
https://github.com/datamountaineer/stream-reactor/releases/tag/v0.2.2
http://www.confluent.io/download/

StreamReactor Documentation, Release 0.1

#extract archive to confluent folder
tar -xvf confluent-3.2.2-2.11.tar.gz -C confluent

#setup variables
export CONFLUENT_HOME=~/confluent/confluent-3.2.2

Start the Confluent platform.

#Start the confluent platform, we need kafka, zookeeper and the schema registry
bin/zookeeper-server-start etc/kafka/zookeeper.properties &
sleep 10 && bin/kafka-server-start etc/kafka/server.properties &
sleep 10 && bin/schema-registry-start etc/schema-registry/schema-registry.properties &

Stream Reactor Install

Download the latest release from here.

Unpack the archive:

#Stream reactor release
mkdir stream-reactor
tar xvf stream-reactor-0.2.5-3.2.0.tar.gz -C stream-reactor

Within the unpacked directory you will find the following structure:

.
|-- LICENSE
|-- README.md
|-- bin
| |-- connect-cli
| |-- sr-cli-linux
| |-- sr-cli-osx
| `-- start-connect
|-- conf
| |-- azure-docdb-sink.properties
| |-- blockchain-source.properties
| |-- bloomberg-source.properties
| |-- cassandra-sink.properties
| |-- cassandra-source-incr.properties
| |-- cassandra-source.properties
| |-- coap-hazelcast-sink.properties
| |-- coap-hazelcast-source.properties
| |-- coap-sink.properties
| |-- coap-source.properties
| |-- druid-sink.properties
| |-- elastic-sink.properties
| |-- elastic5-sink.properties
| |-- ftp-source.properties
| |-- hazelcast-sink.properties
| |-- hbase-sink.properties
| |-- influxdb-sink.properties
| |-- jms-sink.properties
| |-- jms-source.properties
| |-- kudu-sink.properties
| |-- mongodb-sink.properties
| |-- mqtt-source.properties
| |-- mqtt-sink.properties

4 Chapter 1. Components

https://github.com/datamountaineer/stream-reactor/releases

StreamReactor Documentation, Release 0.1

| |-- redis-sink.properties
| |-- rethink-sink.properties
| |-- rethink-source.properties
| |-- voltdb-sink.properties
| `-- yahoo-source.properties
`-- libs

|-- kafka-connect-azure-documentdb-0.2.6-3.2.0-all.jar
|-- kafka-connect-blockchain-0.2.6-3.2.0-all.jar
|-- kafka-connect-bloomberg-0.2.6-3.2.0-all.jar
|-- kafka-connect-cassandra-0.2.6-3.2.0-all.jar
|-- kafka-connect-coap-0.2.6-3.2.0-all.jar
|-- kafka-connect-druid-0.2.6-3.2.0-all.jar
|-- kafka-connect-elastic-0.2.6-3.2.0-all.jar
|-- kafka-connect-elastic5-0.2.6-3.2.0-all.jar
|-- kafka-connect-ftp-0.2.6-3.2.0-all.jar
|-- kafka-connect-hazelcast-0.2.6-3.2.0-all.jar
|-- kafka-connect-hbase-0.2.6-3.2.0-all.jar
|-- kafka-connect-influxdb-0.2.6-3.2.0-all.jar
|-- kafka-connect-jms-0.2.6-3.2.0-all.jar
|-- kafka-connect-kudu-0.2.6-3.2.0-all.jar
|-- kafka-connect-mongodb-0.2.6-3.2.0-all.jar
|-- kafka-connect-mqtt-0.2.6-3.2.0-all.jar
|-- kafka-connect-redis-0.2.6-3.2.0-all.jar
|-- kafka-connect-rethink-0.2.6-3.2.0-all.jar
|-- kafka-connect-voltdb-0.2.6-3.2.0-all.jar
`-- kafka-connect-yahoo-0.2.6-3.2.0-all.jar

The libs folder contains all the Stream Reactor Connector jars.

The bin folder contains the start-connect.sh script. This loads all the Stream Reactors jars onto the CLASS-
PATH and starts Kafka Connect in distributed mode. The Confluent Platform, Zookeeper, Kafka and the Schema
Registry must be started first.

Docker Install

All the Stream Reactor Connectors, Confluent and UI’s for Connect, Schema Registry and topic browsing are available
in Dockers. The Docker images are available in DockerHub and maintained by our partner Landoop

Pull the latest images:

docker pull landoop/fast-data-dev
docker pull landoop/fast-data-dev-connect-cluster

#UI's
docker pull landoop/kafka-topics-ui
docker pull landoop/schema-registry-ui

Individual docker images are available at DataMountaineers DockerHub. We base our Docker images of Confluents
base connector image. This contains a script that uses the environment variables starting with CONNECT_ to create
the Kafka Connect Worker property files. We added a second script that uses the environment variables starting with
CONNECTOR_ to create a properties files for the actual connector we want to start.

Set the CONNECT_ and CONNECTOR_ environment variables accordingly when running the images.

Important: We strongly recommend using Landoop’s Fast Data Dev dockers. The stream reactor is prepackaged and

1.1. Install 5

https://hub.docker.com/
https://www.landoop.com/
https://hub.docker.com/u/datamountaineer/dashboard/

StreamReactor Documentation, Release 0.1

UI’s are included.

Release Notes

0.3.0

Features

• Upgrade to Confluent 3.3 and Kafka 0.11.0.0

0.2.6

Features

• Added MQTT Sink

• Upgrade to Confluent 3.2.2

• Upgrade to KCQL 2x

• Add CQL generator to Cassandra source

• Add KCQL INCREMENTALMODE support to the Cassandra source, bulk mode and the timestamp column
type is now take from KCQL

• Support for setting key and truststore type on Cassandra connectors

• Added token based paging support for Cassandra source

• Added default bytes converter to JMS Source

• Added default connection factory to JMS Source

• Added support for SharedDurableConsumers to JMS Connectors

• Upgraded JMS Connector to JMS 2.0

• Moved to Elastic4s 2.4

• Added Elastic5s with TCP, TCP+XPACK and HTTP client support

• Upgrade Azure Documentdb to 1.11.0

• Added optional progress counter to all connectors, it can be enabled with connect.progress.enabled
which will periodically report log messages processed

• Added authentication and TLS to ReThink Connectors

• Added TLS support for ReThinkDB, add batch size option to source for draining the internal queues.

• Upgrade Kudu Client to 1.4.0

• Support for dates in Elastic Indexes and custom document types

• Upgrade CoAP to 2.0.0-M4

• Upgrade Connect CLI to 1.0.2 (Renamed to connect-cli)

• Add MQTT wildcard support.

Bug Fixes

• Fixes for high CPU on CoAP source

6 Chapter 1. Components

StreamReactor Documentation, Release 0.1

• Fixes for high CPU on Cassandra source

• Fixed Avro double fields mapping to Kudu columns

• Fixes on JMS properties converter, Invalid schema when extracting properties

Misc

• Refactored Cassandra Tests to use only one embedded instance

• Removed unused batch size and bucket size options from Kudu, they are taken from KCQL

• Removed unused batch size option from DocumentDb

• Rename Azure DocumentDb connect.documentdb.db to connect.documentdb.db

• Rename Azure DocumentDb connect.documentdb.database.create to connect.documentdb.db.create

• Rename Cassandra Source connect.cassandra.source.kcql to connect.cassandra.kcql

• Rename Cassandra Source connect.cassandra.source.timestamp.type to connect.cassandra.timestamp.type

• Rename Cassandra Source connect.cassandra.source.import.poll.interval to con-
nect.cassandra.import.poll.interval

• Rename Cassandra Source connect.cassandra.source.error.policy to connect.cassandra.error.policy

• Rename Cassandra Source connect.cassandra.source.max.retries to connect.cassandra.max.retries

• Rename Cassandra Sink connect.cassandra.source.retry.interval to connect.cassandra.retry.interval

• Rename Cassandra Sink connect.cassandra.sink.kcql to connect.cassandra.kcql

• Rename Cassandra Sink connect.cassandra.sink.error.policy to connect.cassandra.error.policy

• Rename Cassandra Sink connect.cassandra.sink.max.retries to connect.cassandra.max.retries

• Rename Cassandra Sink Sink connect.cassandra.sink.retry.interval to connect.cassandra.retry.interval

• Rename Coap Source connect.coap.bind.port to connect.coap.port

• Rename Coap Sink connect.coap.bind.port to connect.coap.port

• Rename Coap Source connect.coap.bind.host to connect.coap.host

• Rename Coap Sink connect.coap.bind.host to connect.coap.host

• Rename MongoDb connect.mongo.database to connect.mongo.db

• Rename MongoDb connect.mongo.sink.batch.size to connect.mongo.batch.size

• Rename Druid connect.druid.sink.kcql to connect.druid.kcql

• Rename Druid connect.druid.sink.conf.file to connect.druid.kcql

• Rename Druid connect.druid.sink.write.timeout to connect.druid.write.timeout

• Rename Elastic connect.elastic.sink.kcql to connect.elastic.kcql

• Rename HBase connect.hbase.sink.column.family to connect.hbase.column.family

• Rename HBase connect.hbase.sink.kcql to connect.hbase.kcql

• Rename HBase connect.hbase.sink.error.policy to connect.hbase.error.policy

• Rename HBase connect.hbase.sink.max.retries to connect.hbase.max.retries

• Rename HBase connect.hbase.sink.retry.interval to connect.hbase.retry.interval

• Rename Influx connect.influx.sink.kcql to connect.influx.kcql

1.1. Install 7

StreamReactor Documentation, Release 0.1

• Rename Influx connect.influx.connection.user to connect.influx.username

• Rename Influx connect.influx.connection.password to connect.influx.password

• Rename Influx connect.influx.connection.database to connect.influx.db

• Rename Influx connect.influx.connection.url to connect.influx.url

• Rename Kudu connect.kudu.sink.kcql to connect.kudu.kcql

• Rename Kudu connect.kudu.sink.error.policy to connect.kudu.error.policy

• Rename Kudu connect.kudu.sink.retry.interval to connect.kudu.retry.interval

• Rename Kudu connect.kudu.sink.max.retries to connect.kudu.max.reties

• Rename Kudu connect.kudu.sink.schema.registry.url to connect.kudu.schema.registry.url

• Rename Redis connect.redis.connection.password to connect.redis.password

• Rename Redis connect.redis.sink.kcql to connect.redis.kcql

• Rename Redis connect.redis.connection.host to connect.redis.host

• Rename Redis connect.redis.connection.port to connect.redis.port

• Rename ReThink connect.rethink.source.host to connect.rethink.host

• Rename ReThink connect.rethink.source.port to connect.rethink.port

• Rename ReThink connect.rethink.source.db to connect.rethink.db

• Rename ReThink connect.rethink.source.kcql to connect.rethink.kcql

• Rename ReThink Sink connect.rethink.sink.host to connect.rethink.host

• Rename ReThink Sink connect.rethink.sink.port to connect.rethink.port

• Rename ReThink Sink connect.rethink.sink.db to connect.rethink.db

• Rename ReThink Sink connect.rethink.sink.kcql to connect.rethink.kcql

• Rename JMS connect.jms.user to connect.jms.username

• Rename JMS connect.jms.source.converters to connect.jms.converters

• Remove JMS connect.jms.converters and replace my kcql withConverters

• Remove JMS connect.jms.queues and replace my kcql withType=QUEUE

• Remove JMS connect.jms.topics and replace my kcql withType=TOPIC

• Rename Mqtt connect.mqtt.source.kcql to connect.mqtt.kcql

• Rename Mqtt connect.mqtt.user to connect.mqtt.username

• Rename Mqtt connect.mqtt.hosts to connect.mqtt.connection.hosts

• Remove Mqtt connect.mqtt.converters and replace my kcql withConverters

• Remove Mqtt connect.mqtt.queues and replace my kcql withType=QUEUE

• Remove Mqtt connect.mqtt.topics and replace my kcql withType=TOPIC

• Rename Hazelcast connect.hazelcast.sink.kcql to connect.hazelcast.kcql

• Rename Hazelcast connect.hazelcast.sink.group.name to connect.hazelcast.group.name

• Rename Hazelcast connect.hazelcast.sink.group.password to connect.hazelcast.group.password

• Rename Hazelcast connect.hazelcast.sink.cluster.members tp connect.hazelcast.cluster.members

8 Chapter 1. Components

StreamReactor Documentation, Release 0.1

• Rename Hazelcast connect.hazelcast.sink.batch.size to connect.hazelcast.batch.size

• Rename Hazelcast connect.hazelcast.sink.error.policy to connect.hazelcast.error.policy

• Rename Hazelcast connect.hazelcast.sink.max.retries to connect.hazelcast.max.retries

• Rename Hazelcast connect.hazelcast.sink.retry.interval to connect.hazelcast.retry.interval

• Rename VoltDB connect.volt.sink.kcql to connect.volt.kcql

• Rename VoltDB connect.volt.sink.connection.servers to connect.volt.servers

• Rename VoltDB connect.volt.sink.connection.user to connect.volt.username

• Rename VoltDB connect.volt.sink.connection.password to connect.volt.password

• Rename VoltDB connect.volt.sink.error.policy to connect.volt.error.policy

• Rename VoltDB connect.volt.sink.max.retries to connect.volt.max.retries

• Rename VoltDB connect.volt.sink.retry.interval to connect.volt.retry.interval

0.2.5

• Adding Azure DocumentDb Sink

• Adding UPSERT to Elastic Search

• Cassandra improvements withunwrap

• Upgrade to Kudu 1.0 and CLI 1.0

• Add ingest_time to CoAP Source

• Support Confluent 3.2 and Kafka 0.10.2.

• Added Azure DocumentDB.

• Added JMS Source.

• Added Schemaless Json and Json with schema support to JMS Sink.

• InfluxDB bug fixes for tags and field selection.

• Support for Cassandra data type of timestamp in the Cassandra Source for timestamp tracking.

0.2.4 (26 Jan 2017)

• Added FTP and HTTP Source.

• Added InfluxDB tag support. KCQL: INSERT INTO target dimension SELECT * FROM influx-
topic WITHTIMESTAMP sys_time() WITHTAG(field1, CONSTANT_KEY1=CONSTANT_VALUE1,
field2,CONSTANT_KEY2=CONSTANT_VALUE1)

• Added InfluxDb consistency level. Default is ALL. Use connect.influx.consistency.level to set it to
ONE/QUORUM/ALL/ANY.

• InfluxDb connect.influx.sink.route.query was renamed to connect.influx.sink.kcql.

• Added support for multiple contact points in Cassandra.

1.1. Install 9

StreamReactor Documentation, Release 0.1

0.2.3 (5 Jan 2017)

• Added CoAP Source and Sink.

• Added MongoDB Sink.

• Added MQTT Source.

• Hazelcast support for ring buffers, maps, sets, lists and cache.

• Redis support for Sorted Sets.

• Added start scripts.

• Added Kafka Connect and Schema Registry CLI.

• Kafka Connect CLI now supports pause/restart/resume; checking connectors on the classpath and validating
configuration of connectors.

• Support for Struct, Schema.STRING and Json with schema in the Cassandra, ReThinkDB, InfluxDB and Mon-
goDB sinks.

• Rename export.query.route to sink.kcql.

• Rename import.query.route to source.kcql.

• Upgrade to KCQL 0.9.5 - Add support for STOREAS so specify target sink types, e.g. Redis Sorted Sets,
Hazelcast map, queues, ringbuffers.

Fast Data Dev

This is Docker image for development.

If you need

1. Kafka Broker

2. ZooKeeper

3. Schema Registry

4. Kafka REST Proxy

5. Kafka Connect Distributed

6. Certified DataMountaineer Connectors (ElasticSearch, Cassandra, Redis ..)

7. Landoop’s Fast Data Web UIs : schema-registry , kafka-topics , kafka-connect and

8. Embedded integration tests with examples

Run with:

docker run --rm -it --net=host landoop/fast-data-dev

On Mac OSX run:

docker run --rm -it \
-p 2181:2181 -p 3030:3030 -p 8081:8081 \
-p 8082:8082 -p 8083:8083 -p 9092:9092 \
-e ADV_HOST=127.0.0.1 \
landoop/fast-data-dev

10 Chapter 1. Components

StreamReactor Documentation, Release 0.1

That’s it. Your Broker is at localhost:9092, your Kafka REST Proxy at localhost:8082, your Schema Registry at
localhost:8081, your Connect Distributed at localhost:8083, your ZooKeeper at localhost:2181 and at http://localhost:
3030 you will find Landoop’s Web UIs for Kafka Topics and Schema Registry, as well as a Coyote test report.

Fast Data Dev Connect

This docker is targeted to more advanced users and is a special case since it doesn’t set-up a Kafka cluster, instead it
expects to find a Kafka Cluster with Schema Registry up and running.

The developer can then use this docker image to setup a connect-distributed cluster by just spawning a couple contain-
ers.

docker run -d --net=host \
-e ID=01 \
-e BS=broker1:9092,broker2:9092 \
-e ZK=zk1:2181,zk2:2181 \
-e SC=http://schema-registry:8081 \
-e HOST=<IP OR FQDN> \
landoop/fast-data-dev-connect-cluster

Things to look out for in configuration options:

1.1. Install 11

http://localhost:3030
http://localhost:3030

StreamReactor Documentation, Release 0.1

1. It is important to give a full URL (including schema —http://) for schema registry.

2. ID should be unique to the Connect cluster you setup, for current and old instances. This is because Connect stores
data in Brokers and Schema Registry. Thus even if you destroyed a Connect cluster, its data remain in your Kafka
setup.

3. HOST should be set to an IP address or domain name that other connect instances and clients can use to reach the
current instance. We chose not to try to autodetect this IP because such a feat would fail more often than not. Good
choices are your local network ip (e.g 10.240.0.2) if you work inside a local network, your public ip (if you have one
and want to use it) or a domain name that is resolvable by all the hosts you will use to talk to Connect.

If you don’t want to run with –net=host you have to expose Connect’s port which at default settings is 8083. There a
PORT option, that allows you to set Connect’s port explicitly if you can’t use the default 8083. Please remember that
it is important to expose Connect’s port on the same port at the host. This is a choice we had to make for simplicity’s
sake.

docker run -d \
-e ID=01 \
-e BS=broker1:9092,broker2:9092 \
-e ZK=zk1:2181,zk2:2181 \
-e SC=http://schema-registry:8081 \
-e HOST=<IP OR FQDN> \
-e PORT=8085 \
-p 8085:8085 \
landoop/fast-data-dev-connect-cluster

Advanced

The container does not exit with CTRL+C. This is because we chose to pass control directly to Connect, so you check
your logs via docker logs. You can stop it or kill it from another terminal.

Whilst the PORT variable sets the rest.port, the HOST variable sets the advertised host. This is the hostname that
Connect will send to other Connect instances. By default Connect listens to all interfaces, so you don’t have to worry
as long as other instances can reach each instance via the advertised host.

Latest Test Results

To see the latest tests for the Connectors, in a docker, please visit Landoop’s test github here Test results can be found
here.

An example for BlockChain is:

Kafka Connect

Kafka Connect is a tool to rapidly stream events in and out of Kafka. It has a narrow focus on data ingress in and
egress out of the central nervous system of modern streaming frameworks. It is not an ETL and this separation of
concerns allows developers to quickly build robust, durable and scalable pipelines in and out of Kafka.

Kafka connect forms an integral component in an ETL pipeline when combined with Kafka and a stream processing
framework.

12 Chapter 1. Components

http://
https://github.com/Landoop/kafka-connectors-tests
https://coyote.landoop.com/connect/

StreamReactor Documentation, Release 0.1

1.2. Kafka Connect 13

StreamReactor Documentation, Release 0.1

Modes

Kafka Connect can run either as a standalone process for testing and one-off jobs, or as a distributed, scalable, fault
tolerant service supporting an entire organisations. This allows it to scale down to development, testing, and small
production deployments with a low barrier to entry and low operational overhead, and to scale up to support a large
organisations data pipeline.

Usually you’d run in distributed mode to get fault tolerance and better performance. In distributed mode you start
Connect on multiple hosts and they join together to form a cluster. Connectors which are then submitted are distributed
across the cluster.

For workers to join a Connect cluster, set the group.id in the $CONFLUENT_HOME/etc/schema-registry/
connect-avro-distributed.properties file.

The group ID is a unique identifier for the set of workers that form a single Kafka
→˓Connect
cluster
group.id=connect-cluster

Schema Registry Support

DataMountaineer recommends all payloads in Kafka are Avro. Schema Registry provides a serving layer for your
metadata. It provides a RESTful interface for storing and retrieving Avro schemas. It stores a versioned history of
all schemas, provides multiple compatibility settings and allows evolution of schemas according to the configured
compatibility setting. It provides serializers that plug into Kafka clients that handle schema storage and retrieval for
Kafka messages that are sent in the Avro format.

All our Connectors support Avro and use the Confluent provided converters to translate the Avro into Kafka Connects
internal Struct type to determine the schema and how to map onto the target sink store.

We have found some of the clients have already an infrastructure where they publish pure json on the topic and
obviously the jump to follow the best practice and use schema registry is quite an ask. So we offer support for them as
well for the following Sinks:

• ReThinkDB

• MongoDB

• InfluxDB

• DSE Cassandra Sink

• JMS - TextMessages only

We are upgrading the remaining Connectors. This allows plain text payloads with a json string.

Connectors

Kafka Connect Query Language

The Kafka Connect Query Language is implemented in antlr4 grammar files.

Why ?

While working on our sink/sources we ended up producing quite complex configuration in order to support the func-
tionality required. Imagine a Sink where you Source from different topics and from each topic you want to cherry pick

14 Chapter 1. Components

StreamReactor Documentation, Release 0.1

the payload fields or even rename them. Furthermore you might want the storage structure to be automatically created
and/or even evolve or you might add new support for the likes of bucketing (Riak TS has one such scenario). Imagine
the JDBC sink with a table which needs to be linked to two different topics and the fields in there need to be aligned
with the table column names and the complex configuration involved ...or you can just write this

routes.query = "INSERT INTO transactions SELECT field1 as column1, field2 as column2,
→˓field3 FROM topic_A;

INSERT INTO transactions SELECT fieldA1 as column1, fieldA2 as column2,
→˓fieldC FROM topic_B;"

Kafka Connect Query Language

There are two paths supported by this DSL. One is the INSERT that takes the following form (not all grammar is
shown):

INSERT INTO $TARGET
SELECT *|columns
FROM $TOPIC_NAME

[IGNORE columns]
[AUTOCREATE]
[PK columns]
[AUTOEVOLVE]
[BATCH = N]
[CAPITALIZE]
[PARTITIONBY cola[,colb]]
[DISTRIBUTEBY cola[,colb]]
[CLUSTERBY cola[,colb]]
[WITHTIMESTAMP cola|sys_time()]
[WITHFORMAT TEXT|JSON|AVRO|BINARY|OBJECT|MAP]
[STOREAS $YOUR_TYPE([key=value,])]

and a select only:

SELECT *|columns
FROM $TOPIC_NAME

[IGNORE columns]
[WITHFORMAT TEXT|JSON|AVRO|BINARY]
[WITHGROUP $YOUR_CONSUMER_GROUP]
[WITHPARTITION (partition),[(partition, offset)]
[SAMPLE $RECORDS_NUMBER EVERY $SLIDE_WINDOW

Examples

SELECT field1 FROM mytopic // Project one avro field named field1
SELECT field1 AS newName // Project and renames a field
SELECT * FROM mytopic // Select everything - perfect for avro
→˓evolution
SELECT *, field1 AS newName FROM mytopic // Select all & rename a field -
→˓excellent for avro evolution
SELECT * FROM mytopic IGNORE badField // Select all & ignore a field -
→˓excellent for avro evolution
SELECT * FROM mytopic PK field1,field2 // Select all & with primary keys (for
→˓the sources where primary keys are required)
SELECT * FROM mytopic AUTOCREATE // Select all and create the target
→˓Source (table for databases)

1.2. Kafka Connect 15

StreamReactor Documentation, Release 0.1

SELECT * FROM mytopic AUTOEVOLVE // Select all & reflect the new fields
→˓added to the avro payload into the target

Source Connectors

Source connectors load or stream data from external systems into Kafka.

Kafka Connect Blockchain

A Connector to hook into the live streaming providing a real time feed for new bitcoin blocks and transactions provided
by www.blockhain.info The connector subscribe to notification on blocks, transactions or an address and receive JSON
objects describing a transaction or block when an event occurs. This json is then pushed via kafka connect to a kafka
topic and therefore can be consumed either by a Sink or have a live stream processing using for example Kafka
Streams.

Since is a direct websocket connection the Source will only ever use one connector task at any point. There is no point
spawning more and then have duplicate data.

One thing to remember is the subscription API from blockchain doesn’t offer an option to start from a given timestamp.
This means if the connect worker is down then you will miss some data.

The Sink connects to unconfirmed transaction!! Read more about the live data here

Prerequisites

• Confluent 3.2

• Java 1.8

• Scala 2.11

Confluent Setup

Follow the instructions here.

Source Connector QuickStart

We will start the connector in distributed mode. Each connector exposes a rest endpoint for stopping, starting and
updating the configuration. We have developed a Command Line Interface to make interacting with the Connect Rest
API easier. The CLI can be found in the Stream Reactor download under the bin folder. Alternatively the Jar can be
pulled from our GitHub releases page.

Starting the Connector (Distributed)

Download, unpack and install the Stream Reactor. Follow the instructions here if you haven’t already done so. All
paths in the quickstart are based in the location you installed the Stream Reactor.

Start Kafka Connect in distributed more by running the start-connect.sh script in the bin folder.

bin/start-connect.sh

16 Chapter 1. Components

http://www.blockchain.info/
https://blockchain.info/api/
https://github.com/datamountaineer/kafka-connect-tools/releases

StreamReactor Documentation, Release 0.1

Once the connector has started we can now use the kafka-connect-tools cli to post in our distributed properties file for
BlockChain.

bin/connect-cli create blockchain-source < conf/blockchain-source.properties

#Connector `blockchain-source`:
name=blockchain-source
connector.class=com.datamountaineeer.streamreactor.connect.blockchain.source.
→˓BlockchainSourceConnector
max.tasks=1
connect.blockchain.kafka.topic = blockchain-test
max.tasks=1
#task ids:

The blockchain-source.properties file defines:

1. The name of the source.

2. The Source class.

3. The max number of tasks the connector is allowed to created (1 task only).

4. The topics to write to.

If you switch back to the terminal you started the Connector in you should see the Blockchain Source being accepted
and the task starting.

We can use the CLI to check if the connector is up but you should be able to see this in logs as-well.

#check for running connectors with the CLI
bin/connect-cli ps

blockchain-source

[2016-08-21 20:31:36,398] INFO Finished starting connectors and tasks (org.apache.
→˓kafka.connect.runtime.distributed.DistributedHerder:769)
[2016-08-21 20:31:36,406] INFO

____ _ __ __ _ _
| _ \ __ _| |_ __ _| \/ | ___ _ _ _ __ | |_ __ _(_)_ __ ___ ___ _ __
			/ _`	__/ _`		\/		/ _ \|			'_ \| __/ _`		'_ \ / _ \/ _ \ '__														
	_		(_				(_					(_)		_							(_						__/ __/
____/ __,_	____,_	_		_	___/ __,_	_		_	____,_	_	_		_	___	___	_											
____ _ _ ____ _ _ ____ by Stefan Bocutiu

| __)| | ___ ___| | __/ ___| |__ __ _(_)_ __ / ___| ___ _ _ _ __ ___ ___
| _ \| |/ _ \ / __| |/ / | | '_ \ / _` | | '_ \ ___ \ / _ \| | | | '__/ __/ _ \
| |_) | | (_) | (__| <| |___| | | | (_| | | | | | ___) | (_) | |_| | | | (_| __/
|____/|_|___/ ___|_|_____|_| |_|__,_|_|_| |_| |____/ ___/ __,_|_| ______|

Test Records

Now we need to see records pushed on the topic. We can use the kafka-avro-console-producer to do this.

$./bin/kafka-avro-console-consumer --topic blockchain-test \
--zookeeper localhost:2181 \
--from-beginning

Now the console is reading blockchain transaction data which would print on the terminal.

1.2. Kafka Connect 17

StreamReactor Documentation, Release 0.1

Configurations

connect.progress.enabled

Enables the output for how many records have been processed.

• Type: boolean

• Importance: medium

• Optional: yes

• Default : false

Deployment Guidelines

TODO

TroubleShooting

Please review the FAQs and join our slack channel.

Kafka Connect Bloomberg

Kafka Connect Bloomberg is a Source connector to subscribe to Bloomberg feeds via the Bloomberg labs open API
and write to Kafka.

Prerequisites

• Bloomberg subscription

• Confluent 3.2

• Java 1.8

• Scala 2.11

Setup

Confluent Setup

Follow the instructions here.

Source Connector QuickStart

We will start the connector in distributed mode. Each connector exposes a rest endpoint for stopping, starting and
updating the configuration. We have developed a Command Line Interface to make interacting with the Connect Rest
API easier. The CLI can be found in the Stream Reactor download under the bin folder. Alternatively the Jar can be
pulled from our GitHub releases page.

18 Chapter 1. Components

https://slackpass.io/datamountaineers
https://github.com/datamountaineer/kafka-connect-tools/releases

StreamReactor Documentation, Release 0.1

Starting the Connector (Distributed)

Download, unpack and install the Stream Reactor. Follow the instructions here if you haven’t already done so. All
paths in the quickstart are based in the location you installed the Stream Reactor.

Start Kafka Connect in distributed more by running the start-connect.sh script in the bin folder.

bin/start-connect.sh

Once the connector has started we can now use the kafka-connect-tools cli to post in our distributed properties file for
Redis. If you are using the dockers you will have to set the following environment variable to for the CLI to connect
to the Rest API of Kafka Connect of your container.

export KAFKA_CONNECT_REST="http://myserver:myport"

bin/connect-cli create bloomberg-source < conf/bloomberg-source.properties
#Connector name=name=`bloomberg-source`
connector.class=com.datamountaineer.streamreactor.connect.bloomberg.
→˓BloombergSourceConnector
tasks.max=1
connect.bloomberg.server.host=localhost
connect.bloomberg.server.port=8194
connect.bloomberg.service.uri=//blp/mkdata
connect.bloomberg.subscriptions=AAPL US Equity:LAST_PRICE,BID,ASK;IBM US Equity:BID,
→˓ASK,HIGH,LOW,OPEN
kafka.topic=bloomberg
connect.bloomberg.buffer.size=4096
connect.bloomberg.authentication.mode=USER_AND_APPLICATION
#task ids: 0

The bloomberg-source.properties file defines:

1. The connector name.

2. The class containing the connector.

3. The number of tasks the connector is allowed to start.

4. The Bloomberg server host.

5. The Bloomberg server port.

6. The Bloomberg service uri.

7. The subscription keys to subscribe to.

8. The topic to write to.

9. The buffer size for the Bloomberg API to buffer events in.

10. The authentication mode.

If you switch back to the terminal you started the Connector in you should see the Bloomberg Source being accepted
and the task starting.

We can use the CLI to check if the connector is up but you should be able to see this in logs as-well.

#check for running connectors with the CLI
bin/connect-cli ps

bloomberg-source

1.2. Kafka Connect 19

StreamReactor Documentation, Release 0.1

Test Records

Now we need to see records pushed on the topic. We can use the kafka-avro-console-producer to do this.

$./bin/kafka-avro-console-consumer --topic bloomberg \
--zookeeper localhost:2181 \
--from-beginning

Now the console is reading bloomberg transaction data which would print on the terminal.

Features

The Source Connector allows subscriptions to BPipe mkdata and refdata endpoints to feed data into Kafka.

Configurations

connect.bloomberg.server.host

The bloomberg endpoint to connect to.

• Data type : string

• Optional : no

connect.bloomberg.server.port

The Bloomberg endpoint to connect to.

• Data type : string

• Optional : no

connect.bloomberg.service.uri

Which Bloomberg service to connect to. Can be //blp/mkdata or //blp/refdata.

• Data type : string

• Optional : no

connect.bloomberg.authentication.mode

The mode to authentication against the Bloomberg server. Either APPLICATION_ONLY or
USER_AND_APPLICATION.

• Data type : string

• Optional : no

connect.bloomberg.subscriptions

• Data type : string

• Optional : no

Specifies which ticker subscription to make. The format is TICKER:FIELD,FIELD,..; e.g.AAPL US Eq-
uity:LAST_PRICE;IBM US Equity:BID

connect.bloomberg.buffer.size

• Data type : int

• Optional : yes

20 Chapter 1. Components

StreamReactor Documentation, Release 0.1

• Default : 2048

The buffer accumulating the data updates received from Bloomberg. If not provided it will default to 2048. If the
buffer is full and a new update will be received it won’t be added to the buffer until it is first drained.

connect.bloomberg.kafka.topic

The topic to write to.

• Data type : string

• Optional : no

connect.progress.enabled

Enables the output for how many records have been processed.

• Type: boolean

• Importance: medium

• Optional: yes

• Default : false

Example

name=bloomberg-source
connector.class=com.datamountaineer.streamreactor.connect.bloomberg.
→˓BloombergSourceConnector
tasks.max=1
connect.bloomberg.server.host=localhost
connect.bloomberg.server.port=8194
connect.bloomberg.service.uri=//blp/mkdata
connect.bloomberg.subscriptions=AAPL US Equity:LAST_PRICE,BID,ASK;IBM US Equity:BID,
→˓ASK,HIGH,LOW,OPEN
kafka.topic=bloomberg
connect.bloomberg.buffer.size=4096

Schema Evolution

TODO

Deployment Guidelines

TODO

TroubleShooting

Please review the FAQs and join our slack channel.

1.2. Kafka Connect 21

https://slackpass.io/datamountaineers

StreamReactor Documentation, Release 0.1

Kafka Connect Cassandra Source

Kafka Connect Cassandra is a Source Connector for reading data from Cassandra and writing to Kafka.

The Source supports:

1. The KCQL routing querying - Allows for table to topic routing.

2. Incremental mode with timestamp, timeuuid and tokens support via kcql.

3. Bulk mode

4. Error policies for handling failures.

Prerequisites

• Cassandra 3.0.9

• Confluent 3.2

• Java 1.8

• Scala 2.11

Setup

Before we can do anything, including the QuickStart we need to install Cassandra and the Confluent platform.

Cassandra Setup

First download and install Cassandra if you don’t have a compatible cluster available.

#make a folder for cassandra
mkdir cassandra

#Download Cassandra
wget http://apache.cs.uu.nl/cassandra/3.5/apache-cassandra-3.5-bin.tar.gz

#extract archive to cassandra folder
tar -xvf apache-cassandra-3.5-bin.tar.gz -C cassandra

#Set up environment variables
export CASSANDRA_HOME=~/cassandra/apache-cassandra-3.5-bin
export PATH=$PATH:$CASSANDRA_HOME/bin

#Start Cassandra
sudo sh ~/cassandra/bin/cassandra

Confluent Setup

Follow the instructions here.

22 Chapter 1. Components

StreamReactor Documentation, Release 0.1

Source Connector

The Cassandra Source connector allows you to extract entries from Cassandra with the CQL driver and write them
into a Kafka topic.

Each table specified in the configuration is polled periodically and each record from the result is converted to a Kafka
Connect record. These records are then written to Kafka by the Kafka Connect framework.

The Source connector operates in two modes:

1. Bulk - Each table is selected in full each time it is polled.

2. Incremental - Each table is querying with lower and upper bounds to extract deltas.

In incremental mode the column used to identify new or delta rows has to be provided. Due to Cassandra’s and CQL
restrictions this should be a primary key or part of a composite primary keys. ALLOW_FILTERING can also be
supplied as an configuration.

Note: TimeUUIDs are converted to strings. Use the UUIDs helpers to convert to Dates.

Only TimeUUID and Timestamp Cassandra data types are supported for tracking new rows in incremental mode. It
is also possible to use TOKENS. When the connector is set with incremental mode as TOKEN, Cassandra’s token
functionality is used in the CQL statement that is generated.

The incremental mode is set in the via the connect.cassandra.kcql option. Allowed options are TIMESTAMP,
TIMEUUID and TOKEN. For example:

INSERT INTO sink_test SELECT id, string_field FROM $TABLE5 PK id INCREMENTALMODE=TOKEN

Source Connector QuickStart

We will start the connector in distributed mode. Each connector exposes a rest endpoint for stopping, starting and
updating the configuration. We have developed a Command Line Interface to make interacting with the Connect Rest
API easier. The CLI can be found in the Stream Reactor download under the bin folder. Alternatively the Jar can be
pulled from our GitHub releases page.

Test data

Once you have installed and started Cassandra create a table to extract records from. This snippet creates a table called
orders and inserts 3 rows representing fictional orders or some options and futures on a trading platform.

Start the Cassandra cql shell

bin ./cqlsh
Connected to Test Cluster at 127.0.0.1:9042.
[cqlsh 5.0.1 | Cassandra 3.0.2 | CQL spec 3.3.1 | Native protocol v4]
Use HELP for help.
cqlsh>

Execute the following:

CREATE KEYSPACE demo WITH REPLICATION = {'class' : 'SimpleStrategy', 'replication_
→˓factor' : 3};
use demo;

1.2. Kafka Connect 23

https://docs.datastax.com/en/drivers/java/2.0/com/datastax/driver/core/utils/UUIDs.html
https://github.com/datamountaineer/kafka-connect-tools/releases

StreamReactor Documentation, Release 0.1

create table orders (id int, created timeuuid, product text, qty int, price float,
→˓PRIMARY KEY (id, created))
WITH CLUSTERING ORDER BY (created asc);

INSERT INTO orders (id, created, product, qty, price) VALUES (1, now(), 'OP-DAX-P-
→˓20150201-95.7', 100, 94.2);
INSERT INTO orders (id, created, product, qty, price) VALUES (2, now(), 'OP-DAX-C-
→˓20150201-100', 100, 99.5);
INSERT INTO orders (id, created, product, qty, price) VALUES (3, now(), 'FU-KOSPI-C-
→˓20150201-100', 200, 150);

SELECT * FROM orders;

id | created | price | product | qty
----+--------------------------------------+-------+-------------------------+-----

1 | 17fa1050-137e-11e6-ab60-c9fbe0223a8f | 94.2 | OP-DAX-P-20150201-95.7 | 100
2 | 17fb6fe0-137e-11e6-ab60-c9fbe0223a8f | 99.5 | OP-DAX-C-20150201-100 | 100
3 | 17fbbe00-137e-11e6-ab60-c9fbe0223a8f | 150 | FU-KOSPI-C-20150201-100 | 200

(3 rows)

(3 rows)

Starting the Connector (Distributed)

Download, unpack and install the Stream Reactor. Follow the instructions here if you haven’t already done so. All
paths in the quickstart are based in the location you installed the Stream Reactor.

Start Kafka Connect in distributed more by running the start-connect.sh script in the bin folder.

bin/start-connect.sh

Once the connector has started we can now use the kafka-connect-tools cli to post in our distributed properties file
for Cassandra. If you are using the dockers you will have to set the following environment variable to for the CLI to
connect to the Rest API of Kafka Connect of your container.

export KAFKA_CONNECT_REST="http://myserver:myport"

bin/connect-cli create cassandra-source-orders < conf/cassandra-source-incr.
→˓properties

#Connector `cassandra-source-orders`:
name=cassandra-source-orders
connector.class=com.datamountaineer.streamreactor.connect.cassandra.source.
→˓CassandraSourceConnector
connect.cassandra.key.space=demo
connect.cassandra.kcql=INSERT INTO orders-topic SELECT * FROM orders PK created
→˓INCREMENTALMODE=TIMEUUID
connect.cassandra.contact.points=localhost
connect.cassandra.username=cassandra
connect.cassandra.password=cassandra
#task ids: 0

The cassandra-source-incr.properties file defines:

1. The name of the connector, must be unique.

24 Chapter 1. Components

StreamReactor Documentation, Release 0.1

2. The name of the connector class.

3. The keyspace (demo) we are connecting to.

4. The KCQL statement.

5. The ip or host name of the nodes in the Cassandra cluster to connect to.

6. Username and password, ignored unless you have set Cassandra to use the PasswordAuthenticator.

We can use the CLI to check if the connector is up but you should be able to see this in logs as-well.

#check for running connectors with the CLI
bin/connect-cli ps

cassandra-source

INFO
____ __ __ ___ __ _

/ __ ____ _/ /_____ _/ |/ /___ __ ______ / /_____ _(_)___ ___ ___ _____
/ / / / __ `/ __/ __ `/ /|_/ / __ \/ / / / __ \/ __/ __ `/ / __ \/ _ \/ _ \/ ___/
/ /_/ / /_/ / /_/ /_/ / / / / /_/ / /_/ / / / / /_/ /_/ / / / / / __/ __/ /

/_____/__,_/__/__,_/_/ /_/____/__,_/_/ /_/__/__,_/_/_/ /_/___/___/_/
______ __ _____

/ ____/___ _______________ _____ ____/ /________ _/ ___/____ __ _______________
/ / / __ `/ ___/ ___/ __ `/ __ \/ __ / ___/ __ `/__ \/ __ \/ / / / ___/ ___/ _ \

/ /___/ /_/ (__ |__) /_/ / / / / /_/ / / / /_/ /___/ / /_/ / /_/ / / / /__/ __/
____/__,_/____/____/__,_/_/ /_/__,_/_/ __,_//____/____/__,_/_/ ___/___/

By Andrew Stevenson. (com.datamountaineer.streamreactor.connect.cassandra.source.
→˓CassandraSourceTask:64)
[2016-05-06 13:34:41,193] INFO Attempting to connect to Cassandra cluster at
→˓localhost and create keyspace demo. (com.datamountaineer.streamreactor.connect.
→˓cassandra.CassandraConnection$:49)
[2016-05-06 13:34:41,263] INFO Using username_password. (com.datamountaineer.
→˓streamreactor.connect.cassandra.CassandraConnection$:83)
[2016-05-06 13:34:41,459] INFO Did not find Netty's native epoll transport in the
→˓classpath, defaulting to NIO. (com.datastax.driver.core.NettyUtil:83)
[2016-05-06 13:34:41,823] INFO Using data-center name 'datacenter1' for
→˓DCAwareRoundRobinPolicy (if this is incorrect, please provide the correct
→˓datacenter name with DCAwareRoundRobinPolicy constructor) (com.datastax.driver.core.
→˓policies.DCAwareRoundRobinPolicy:95)
[2016-05-06 13:34:41,824] INFO New Cassandra host localhost/127.0.0.1:9042 added (com.
→˓datastax.driver.core.Cluster:1475)
[2016-05-06 13:34:41,868] INFO Connection to Cassandra established. (com.
→˓datamountaineer.streamreactor.connect.cassandra.source.CassandraSourceTask:87)

If you switch back to the terminal you started the Connector in you should see the Cassandra Source being accepted
and the task starting and processing the 3 existing rows.

[2016-05-06 13:44:33,132] INFO Source task Thread[WorkerSourceTask-cassandra-source-
→˓orders-0,5,main] finished initialization and start (org.apache.kafka.connect.
→˓runtime.WorkerSourceTask:342)
[2016-05-06 13:44:33,137] INFO Query SELECT * FROM demo.orders WHERE created >
→˓maxTimeuuid(?) AND created <= minTimeuuid(?) ALLOW FILTERING executing with
→˓bindings (2016-05-06 09:23:28+0200, 2016-05-06 13:44:33+0200). (com.datamountaineer.
→˓streamreactor.connect.cassandra.source.CassandraTableReader:156)
[2016-05-06 13:44:33,151] INFO Querying returning results for demo.orders. (com.
→˓datamountaineer.streamreactor.connect.cassandra.source.CassandraTableReader:185)
[2016-05-06 13:44:33,160] INFO Processed 3 rows for table orders-topic.orders (com.
→˓datamountaineer.streamreactor.connect.cassandra.source.CassandraTableReader:206)

1.2. Kafka Connect 25

StreamReactor Documentation, Release 0.1

[2016-05-06 13:44:33,160] INFO Found 3. Draining entries to batchSize 100. (com.
→˓datamountaineer.streamreactor.connect.queues.QueueHelpers$:45)
[2016-05-06 13:44:33,197] WARN Error while fetching metadata with correlation id 0 :
→˓{orders-topic=LEADER_NOT_AVAILABLE} (org.apache.kafka.clients.NetworkClient:582)
[2016-05-06 13:44:33,406] INFO Found 0. Draining entries to batchSize 100. (com.
→˓datamountaineer.streamreactor.connect.queues.QueueHelpers$:45)

Check Kafka, 3 rows as before.

$CONFLUENT_HOME/bin/kafka-avro-console-consumer \
--zookeeper localhost:2181 \
--topic orders-topic \
--from-beginning
{"id":{"int":1},"created":{"string":"Thu May 05 13:24:22 CEST 2016"},"price":{"float
→˓":94.2},"product":{"string":"DAX-P-20150201-95.7"},"qty":{"int":100}}
{"id":{"int":2},"created":{"string":"Thu May 05 13:26:21 CEST 2016"},"price":{"float
→˓":99.5},"product":{"string":"OP-DAX-C-20150201-100"},"qty":{"int":100}}
{"id":{"int":3},"created":{"string":"Thu May 05 13:26:44 CEST 2016"},"price":{"float
→˓":150.0},"product":{"string":"FU-KOSPI-C-20150201-100"},"qty":{"int":200}}

The Source tasks will continue to poll but not pick up any new rows yet.

Inserting new data

Now lets insert a row into the Cassandra table. Start the CQL shell and execute the following:

use demo;

INSERT INTO orders (id, created, product, qty, price) VALUES (4, now(), 'FU-
→˓DATAMOUNTAINEER-C-20150201-100', 500, 10000);

SELECT * FROM orders;

id | created | price | product
→˓ | qty
----+--------------------------------------+-------+----------------------------------
→˓-+-----
1 | 17fa1050-137e-11e6-ab60-c9fbe0223a8f | 94.2 | OP-DAX-P-20150201-95.

→˓7 | 100
2 | 17fb6fe0-137e-11e6-ab60-c9fbe0223a8f | 99.5 | OP-DAX-C-20150201-

→˓100 | 100
4 | 02acf5d0-1380-11e6-ab60-c9fbe0223a8f | 10000 | FU-DATAMOUNTAINEER-C-20150201-

→˓100 | 500
3 | 17fbbe00-137e-11e6-ab60-c9fbe0223a8f | 150 | FU-KOSPI-C-20150201-

→˓100 | 200

(4 rows)
cqlsh:demo>

Check the logs.

[2016-05-06 13:45:33,134] INFO Query SELECT * FROM demo.orders WHERE created >
→˓maxTimeuuid(?) AND created <= minTimeuuid(?) ALLOW FILTERING executing with
→˓bindings (2016-05-06 13:31:37+0200, 2016-05-06 13:45:33+0200). (com.datamountaineer.
→˓streamreactor.connect.cassandra.source.CassandraTableReader:156)
[2016-05-06 13:45:33,137] INFO Querying returning results for demo.orders. (com.
→˓datamountaineer.streamreactor.connect.cassandra.source.CassandraTableReader:185)

26 Chapter 1. Components

StreamReactor Documentation, Release 0.1

[2016-05-06 13:45:33,138] INFO Processed 1 rows for table orders-topic.orders (com.
→˓datamountaineer.streamreactor.connect.cassandra.source.CassandraTableReader:206)
[2016-05-06 13:45:33,138] INFO Found 0. Draining entries to batchSize 100. (com.
→˓datamountaineer.streamreactor.connect.queues.QueueHelpers$:45)

Check Kafka.

$CONFLUENT_HOME/bin/kafka-avro-console-consumer \
--zookeeper localhost:2181 \
--topic orders-topic \
--from-beginning

{"id":{"int":1},"created":{"string":"17fa1050-137e-11e6-ab60-c9fbe0223a8f"},"price":{
→˓"float":94.2},"product":{"string":"OP-DAX-P-20150201-95.7"},"qty":{"int":100}}
{"id":{"int":2},"created":{"string":"17fb6fe0-137e-11e6-ab60-c9fbe0223a8f"},"price":{
→˓"float":99.5},"product":{"string":"OP-DAX-C-20150201-100"},"qty":{"int":100}}
{"id":{"int":3},"created":{"string":"17fbbe00-137e-11e6-ab60-c9fbe0223a8f"},"price":{
→˓"float":150.0},"product":{"string":"FU-KOSPI-C-20150201-100"},"qty":{"int":200}}
{"id":{"int":4},"created":{"string":"02acf5d0-1380-11e6-ab60-c9fbe0223a8f"},"price":{
→˓"float":10000.0},"product":{"string":"FU-DATAMOUNTAINEER-C-20150201-100"},"qty":{
→˓"int":500}}

Bingo, we have our extra row.

Features

Kafka Connect Query Language

Both connectors support K afka C onnect Q uery L anguage found here GitHub repo allows for routing and mapping
using a SQL like syntax, consolidating typically features in to one configuration option.

INSERT INTO <topic> SELECT * FROM <TABLE> PK <TRACKER_COLUMN>
→˓<INCREMENTALMODE=TIMESTAMP|TIMEUUID|TOKEN>

#Select all columns from table orders and insert into a topic called orders-topic,
→˓use column created to track new rows.
#Incremental mode set to TIMEUUID
INSERT INTO orders-topic SELECT * FROM orders PK created INCREMENTALMODE=TIMEUUID

#Select created, product, price from table orders and insert into a topic called
→˓orders-topic, use column created to track new rows.
INSERT INTO orders-topic SELECT created, product, price FROM orders PK created.

The `PK` key word identifies the column used to track deltas in the target tables. If
→˓the incremental mode is set to TOKEN this column
value is wrapped inside Cassandras `token` function.

Data Types

The Source connector supports copying tables in bulk and incrementally to Kafka.

The following CQL data types are supported:

1.2. Kafka Connect 27

https://github.com/datamountaineer/kafka-connector-query-language

StreamReactor Documentation, Release 0.1

CQL Type Connect Data Type
TimeUUID Optional String
UUID Optional String
Inet Optional String
Ascii Optional String
Text Optional String
Timestamp Optional String
Date Optional String
Tuple Optional String
UDT Optional String
Boolean Optional Boolean
TinyInt Optional Int8
SmallInt Optional Int16
Int Optional Int32
Decimal Optional String
Float Optional Float32
Counter Optional Int64
BigInt Optional Int64
VarInt Optional Int64
Double Optional Int64
Time Optional Int64
Blob Optional Bytes
Map Optional String
List Optional String
Set Optional String

Note: For Map, List and Set the value is extracted from the Cassandra Row and inserted as a JSON string represen-
tation.

Modes

Incremental

In incremental mode the connector supports querying based on a column in the tables with CQL data type of
Timestamp or TimeUUID.

Incremental mode is set by specifiy INCREMENTALMODE in the kcql statement as either TIMESTAMP, TIMEUUID
or TOKEN.

Kafka Connect tracks the latest record it retrieved from each table, so it can start at the correct location on the next
iteration (or in case of a crash). In this case the maximum value of the records returned by the result-set is tracked and
stored in Kafka by the framework. If no offset is found for the table at startup a default timestamp of 1900-01-01 is
used. This is then passed to a prepared statement containing a range query.

Specifiying TOKEN causes the connector to wrap the values in the token function.

For example:

#for timestamp type `timeuuid`
SELECT * FROM demo.orders WHERE created > maxTimeuuid(?) AND created <= minTimeuuid(?)

#for timestamp type as `timestamp`
SELECT * FROM demo.orders WHERE created > ? AND created <= ?

28 Chapter 1. Components

StreamReactor Documentation, Release 0.1

#for token
SELECT * FROM demo.orders WHERE created > token(?) and created <= token(?)

Bulk

In bulk mode the connector extracts the full table, no where clause is attached to the query. Bulk mode is set when
no incremental mode is present in the KCQL statement.

Warning: Watch out with the poll interval. After each interval the bulk query will be executed again.

Topic Routing

The Sink supports topic routing that allows mapping the messages from topics to a specific table. For example map a
topic called “bloomberg_prices” to a table called “prices”. This mapping is set in the connect.cassandra.kcql
option.

Error Polices

The Sink has three error policies that determine how failed writes to the target database are handled. The error policies
affect the behaviour of the schema evolution characteristics of the sink. See the schema evolution section for more
information.

Throw

Any error on write to the target database will be propagated up and processing is stopped. This is the default behaviour.

Noop

Any error on write to the target database is ignored and processing continues.

Warning: This can lead to missed errors if you don’t have adequate monitoring. Data is not lost as it’s still in
Kafka subject to Kafka’s retention policy. The Sink currently does not distinguish between integrity constraint
violations and or other expections thrown by drivers..

Retry

Any error on write to the target database causes the RetryIterable exception to be thrown. This causes the Kafka
connect framework to pause and replay the message. Offsets are not committed. For example, if the table is offline it
will cause a write failure, the message can be replayed. With the Retry policy the issue can be fixed without stopping
the sink.

The length of time the Sink will retry can be controlled by using the connect.cassandra.max.retries and
the connect.cassandra.retry.interval.

Configurations

connect.cassandra.contact.points

Contact points (hosts) in Cassandra cluster.

1.2. Kafka Connect 29

StreamReactor Documentation, Release 0.1

• Data type: string

• Optional : no

connect.cassandra.key.space

Key space the tables to write belong to.

• Data type: string

• Optional : no

connect.cassandra.port

Port for the native Java driver.

• Data type: int

• Optional : yes

• Default : 9042

connect.cassandra.username

Username to connect to Cassandra with.

• Data type: string

• Optional : yes

connect.cassandra.password

Password to connect to Cassandra with.

• Data type: string

• Optional : yes

connect.cassandra.ssl.enabled

Enables SSL communication against SSL enable Cassandra cluster.

• Data type: boolean

• Optional : yes

• Default : false

connect.cassandra.trust.store.password

Password for truststore.

• Data type: string

• Optional : yes

connect.cassandra.key.store.path

Path to truststore.

• Data type: string

• Optional : yes

connect.cassandra.key.store.password

Password for key store.

• Data type: string

• Optional : yes

30 Chapter 1. Components

StreamReactor Documentation, Release 0.1

connect.cassandra.ssl.client.cert.auth

Path to keystore.

• Data type: string

• Optional : yes

connect.cassandra.import.poll.interval

The polling interval between queries against tables in milliseconds. Default is 1 minute.

• Data type: int

• Optional : yes

• Default : 1

Warning: WATCH OUT WITH BULK MODE AS MAY REPEATEDLY PULL IN THE SAME DATE.

connect.cassandra.import.mode

Either bulk or incremental.

• Data type : string

• Optional : no

connect.cassandra.kcql

Kafka connect query language expression. Allows for expressive table to topic routing, field selection and renaming.
In incremental mode the timestampColumn can be specified by PK colName.

Examples:

INSERT INTO TOPIC1 SELECT * FROM TOPIC1 PK myTimeUUICol

• Data type : string

• Optional : no

Warning: The timestamp column must be of CQL Type TimeUUID.

connect.cassandra.task.buffer.size

The size of the queue for buffering resultset records before write to Kafka.

• Data type : int

• Optional : yes

• Default : 10000

connect.cassandra.task.batch.size

The number of records the Source task should drain from the reader queue.

• Data type : int

• Optional : yes

• Default : 1000

1.2. Kafka Connect 31

StreamReactor Documentation, Release 0.1

connect.cassandra.error.policy

Specifies the action to be taken if an error occurs while inserting the data.

There are three available options, noop, the error is swallowed, throw, the error is allowed to propagate and retry. For
retry the Kafka message is redelivered up to a maximum number of times specified by the connect.cassandra.
max.retries option. The connect.cassandra.retry.interval option specifies the interval between
retries.

The errors will be logged automatically.

• Type: string

• Importance: high

• Default: throw

connect.cassandra.max.retries

The maximum number of times a message is retried. Only valid when the connect.cassandra.error.policy
is set to retry.

• Type: string

• Importance: high

• Default: 10

connect.cassandra.retry.interval

The interval, in milliseconds between retries if the Sink is using connect.cassandra.error.policy set to
RETRY.

• Type: int

• Importance: medium

• Default : 60000 (1 minute)

connect.cassandra.fetch.size

The max number of rows the Cassandra driver will fetch at one time.

• Type: int

• Importance: medium

• Default : 5000

connect.progress.enabled

Enables the output for how many records have been processed.

• Type: boolean

• Importance: medium

• Optional: yes

• Default : false

Bulk Example

32 Chapter 1. Components

StreamReactor Documentation, Release 0.1

name=cassandra-source-orders-bulk
connector.class=com.datamountaineer.streamreactor.connect.cassandra.source.
→˓CassandraSourceConnector
connect.cassandra.key.space=demo
connect.cassandra.kcql=INSERT INTO TABLE_X SELECT * FROM TOPIC_Y
connect.cassandra.contact.points=localhost
connect.cassandra.username=cassandra
connect.cassandra.password=cassandra

Incremental Example

name=cassandra-source-orders-incremental
connector.class=com.datamountaineer.streamreactor.connect.cassandra.source.
→˓CassandraSourceConnector
connect.cassandra.key.space=demo
connect.cassandra.kcql=INSERT INTO TABLE_X SELECT * FROM TOPIC_Y PK created
→˓INCREMENTALMODE=TIMEUUID
connect.cassandra.contact.points=localhost
connect.cassandra.username=cassandra
connect.cassandra.password=cassandra

Schema Evolution

Upstream changes to schemas are handled by Schema registry which will validate the addition and removal or fields,
data type changes and if defaults are set. The Schema Registry enforces Avro schema evolution rules. More informa-
tion can be found here.

For the Source connector, at present no column selection is handled, every column from the table is queried to column
additions and deletions are handled in accordance with the compatibility mode of the Schema Registry.

Future releases will support auto creation of tables and adding columns on changes to the topic schema.

Deployment Guidelines

TODO

TroubleShooting

Please review the FAQs and join our slack channel.

Kafka Connect Cassandra CDC

Note: This is still beta version

Kafka Connect Cassandra is a Source Connector for reading Change Data Capture from Cassandra and write the
mutations to Kafka.

1.2. Kafka Connect 33

http://docs.confluent.io/3.0.1/schema-registry/docs/api.html#compatibility
https://slackpass.io/datamountaineers

StreamReactor Documentation, Release 0.1

Why

We already provide a Kafka Connect Cassandra Source and people might ask us why another source. The main reason
is performance. We have noticed our users with large data in a Cassandra table (column family) the performance
drops. And this is not on the connector but rather how long it takes to pull the records. We have worked around the
issue by introducing a limit on the records queried on Cassandra but even so we are not that much better.

With Apache Cassandra 3.0 the support for CDC(Change Data Capture) has been added and this source implementa-
tion is making use of that to capture the changes made to your column families.

Cassandra CDC

Change data capture is designed to capture insert, update, and delete activity applied to tables(column families), and
to make the details of the changes available in an easily consumed format.

Cassandra CDC logging is configured per table, with limits on the amount of disk space to consume for storing
the CDC logs. CDC logs use the same binary format as the commit log. Cassandra tables can be
created or altered with a table property to use CDC logging.

CREATE TABLE foo (a int, b text, PRIMARY KEY(a)) WITH cdc=true;

ALTER TABLE foo WITH cdc=true;

ALTER TABLE foo WITH cdc=false;

CDC logging must be enabled in the cassandra.yaml file to begin logging. You should make sure your yaml file has
the following:

cdc_enabled: true

You can enable the CDC logging on per node basis.

The Kafka Connect Source consumes the CDC log information and pushes it to Kafka before it deletes it.

Warning: Upon flushing the memtable to disk, CommitLogSegments containing data for CDC-enabled tables
are moved to the configured cdc_raw directory. Once the disk space limit is reached, writes to CDC enabled tables
will be rejected until space is freed.

Four CDC settings are configured in the cassandra.yaml

cdc_enabled

Enables/Disables CDC logging per node

cdc_raw_directory

The directory where the CDC log is stored.

• Package installations(default): $CASSANDRA_HOME/cdc_raw.

• Tarball installations: install_location/data/cdc_raw.

cdc_total_space_in_mb

Total space available for storing CDC data. The default is 4096MB and 1/8th of the total space of the drive where
the cdc_raw_directory resides. If space gets above this value, Cassandra will throw WriteTimeoutException on
Mutations including tables with CDC enabled.

34 Chapter 1. Components

StreamReactor Documentation, Release 0.1

cdc_free_space_check_interval_ms

When the cdc_raw limit is hit and the Consumer is either running behind or experiencing back pressure, this interval
is checked to see if any new space for cdc-tracked tables has been made available.

Warning: After changing properties in the cassandra.yaml file, you must restart the node for the changes to take
effect.

Prerequisites

• Cassandra 3.0.9+

• Confluent 3.2+

• Java 1.8

• Scala 2.11

Setup

Before we can do anything, including the QuickStart we need to install Cassandra and the Confluent platform.

Cassandra Setup

First download and install Cassandra if you don’t have a compatible cluster available.

#make a folder for cassandra
mkdir cassandra

#Download Cassandra
wget http://apache.mirror.anlx.net/cassandra/3.11.0/apache-cassandra-3.11.0-bin.tar.gz

#extract archive to cassandra folder
tar xvf apache-cassandra-3.11.0-bin.tar.gz -C cassandra --strip-components=1

#enable the CDC in the yaml configuration
sed -i -- 's/cdc_enabled: false/cdc_enabled: true/g' conf/cassandra.yaml

#set CASSANDRA_HOME
export CASSANDRA_HOME=$(pwd)/cassandra

#Start Cassandra
cd cassandra
sudo sh /bin/cassandra

Note: There can be only one instance of Apache Cassandra node per machine for the connector to run properly. All
nodes should have the same path for the cdc_raw folder

Confluent Setup

Follow the instructions here.

1.2. Kafka Connect 35

StreamReactor Documentation, Release 0.1

Source Connector

The Cassandra CDC Source connector will read the commit log mutations from the CDC logs and will push them to
the target topic.

Note: messages sent to Kafka are in AVRO format.

The record pushed to Kafka populates both the key and the value part. Key will contain the metadata of the change
while the value will contain the actual data change.

Record Key

The key data structure follows this layout:

{
"keyspace": //Cassandra Keyspace name
"table" : //The Cassandra Column Family name
"changeType": //The type of change in Cassandra
"keys": {

"key1":
"key2":
..

}
"timestamp" : //the timestamp of when the change was made in Cassandra
"deleted_columns": //which columns have been deleted. We will expand on the

→˓details
}

Based on the mutation information we can identify the following types of changes:

INSERT

A record has been inserted/a record columns have been updated. There is no real solution for identifying an UPDATE
unless the connector keeps track of all the keys seen.

INSERT INTO keyspace.orders (id, created, product, qty, price) VALUES (1, now(), 'OP-
→˓DAX-P-20150201-95.7', 100, 94.2)

DELETE

An entire record has been deleted (tombstoned)

DELETE FROM datamountaineer.orders where id = 1

DELETE_COLUMN

Specific columns have been deleted (non PK columns).

DELETE product FROM datamountaineer.orders where id = 1
DELETE name.firstname FROM datamountaineer.users WHERE id=62c36092-82a1-3a00-93d1-
→˓46196ee77204;

In this case the deleted_columns entry will contain “product/name.firstname”. If more than one column is deleted
we will retain that information.

36 Chapter 1. Components

StreamReactor Documentation, Release 0.1

Value Key

The Kafka message value part contains the actual mutation data. Apart from the primary keys columns all the other
columns have an optional schema in avro. The reason for that is because one can set the values on a subset of them
during a CQL insert/update. In the QuickStart section we make use of the users table. The value AVRO schema
associated with it looks like this

{
"type" : "record",
"name" : "users",
"fields" : [{
"name" : "name",
"type" : ["null", {
"type" : "record",
"name" : "fullname",
"fields" : [{
"name" : "firstname",
"type" : ["null", "string"],
"default" : null

}, {
"name" : "lastname",
"type" : ["null", "string"],
"default" : null

}],
"connect.name" : "fullname"

}],
"default" : null

}, {
"name" : "addresses",
"type" : ["null", {
"type" : "array",
"items" : {
"type" : "record",
"name" : "MapEntry",
"namespace" : "io.confluent.connect.avro",
"fields" : [{
"name" : "key",
"type" : ["null", "string"],
"default" : null

}, {
"name" : "value",
"type" : ["null", {
"type" : "record",
"name" : "address",
"namespace" : "",
"fields" : [{
"name" : "street",
"type" : ["null", "string"],
"default" : null

}, {
"name" : "city",
"type" : ["null", "string"],
"default" : null

}, {
"name" : "zip_code",
"type" : ["null", "int"],
"default" : null

}, {

1.2. Kafka Connect 37

StreamReactor Documentation, Release 0.1

"name" : "phones",
"type" : ["null", {
"type" : "array",
"items" : ["null", "string"]

}],
"default" : null

}],
"connect.name" : "address"

}],
"default" : null

}]
}

}],
"default" : null

}, {
"name" : "direct_reports",
"type" : ["null", {
"type" : "array",
"items" : ["null", "fullname"]

}],
"default" : null

}, {
"name" : "id",
"type" : ["null", "string"],
"default" : null

}, {
"name" : "other_reports",
"type" : ["null", {
"type" : "array",
"items" : ["null", "fullname"]

}],
"default" : null

}],
"connect.name" : "users"

}

And a json representation of the actual value looks like this:

{
"id" : "UUID-String",
"name": {

"firstname":"String"
"lastname":"String"

},
"direct_reports":[

{
"firstname":"String"
"lastname":"String"

},
...

],
"other_reports":[

{
"firstname":"String"
"lastname":"String"

},
...

],

38 Chapter 1. Components

StreamReactor Documentation, Release 0.1

"addresses" : {
"home" : {

"street": "String",
"city": "String",
"zip_code": "int",
"phones": [

"+33 ...",
"+33 ..."

]
},
"work" : {

"street": "String",
"city": "String",
"zip_code": "int",
"phones": [

"+33 ...",
"+33 ..."

]
},
...

}
}

Data Types

The Source connector needs to map Apache Cassandra types to Kafka Connect Schema types. For the ones not so
familiar with connect here is the list of supported Connect Types:

• INT8,

• INT16

• INT32

• INT64

• FLOAT32

• FLOAT64

• BOOLEAN

• STRING

• BYTES

• ARRAY

• MAP

• STRUCT

Along these primitive types there are the logical types for :

• Date

• Decimal

• Time

• Timestamp

1.2. Kafka Connect 39

StreamReactor Documentation, Release 0.1

As a result for most Apache Cassandra Types we have an equivalent type for Connect Schema. A Connect Source
Record will be marshaled as AVRO when sent to Kafka.

CQL Type Connect Data Type
AsciiType OPTIONAL STRING
LongType OPTIONAL INT64
BytesType OPTIONAL BYTES
BooleanType OPTIONAL BOOLEAN
CounterColumnType OPTIONAL INT64
SimpleDateType OPTIONAL Kafka Connect Date
DoubleType OPTIONAL FLOAT64
DecimalType OPTIONAL Kafka Connect Decimal
DurationType OPTIONAL STRING
EmptyType OPTIONAL STRING
FloatType OPTIONAL FLOAT32
InetAddressType OPTIONAL STRING
Int32Type OPTIONAL INT32
ShortType OPTIONAL INT16
UTF8Type OPTIONAL STRING
TimeType OPTIONAL KAFKA CONNECT Time
TimestampType OPTIONAL KAFKA CONNECT Timestamp
TimeUUIDType OPTIONAL STRING
ByteType OPTIONAL INT8
UUIDType OPTIONAL STRING
IntegerType OPTIONAL INT32
ListType OPTIONAL ARRAY of the inner type
MapType OPTIONAL MAP of the inner types
SetType OPTIONAL ARRAY of the inner type
UserType OPTIONAL STRUCT for the user type

Please note we default to String for the these CQL types: DurationType, InetAddressType, TimeUUIDType, UUID-
Type.

How does it work

It is expected that Kafka Connect worker will run on the same node as the Apache Cassandra node.

Important: Only one Apache Cassandra Node should run per machine to have the Connector work properly The
cdc_raw folder location should be the same on all nodes running Apache Cassandra Node There should be only one
Connector Worker instance per machine. Any more won’t have any effect

Cassandra supports a master-less “ring” architecture. Each of the node in the Cassandra ring cluster will be responsible
for storing the table records. The partition key hash and number of rings in the cluster determines the where each record
is stored. (we leave aside replication from this discussion).

Upon flushing the memtable to disk, all the commit log segments containing data for CDC-enabled tables are moved
to the configured cdc_raw directory. It is only at this point the connector will pick up the changes.

Important: Changes in Cassandra are not picked up immediately. The memtables need to be flushed for the CDC
commit logs to be available. You can use nodetool to flush the tables

40 Chapter 1. Components

StreamReactor Documentation, Release 0.1

Once a file lands in the CDC folder the Connector will pick it up and read the mutations. A CDC file can contain
mutations for more than one table. Each mutation for the subscribed tables will be translated into a Kafka Connect
Source Record which will be sent by the Connect framework to the topic configured in the connector properties.

The Connect source will process the files in the order they were created and one by one. This ensures the change
sequence is retained. Once the records have been pushed to Kafka the CDC file is deleted.

The connector will only be able to read the mutations for the subscribed tables. Via configuration you can express
which tables to consider and what topic should receive those mutations information.

INSERT INTO ordersTopic SELECT * FROM datamountaineer.orders

Important: Enabling CDC on a new table means you need to restart the connector for the changes to be picked
up. The connector is driven by the configurations and not by the list of all the tables with CDC enabled. (Might be a
feature, change to do)

Below you can find a flow diagram describing the process mentioned above.

Source Connector QuickStart

We will start the connector in distributed mode. Each connector exposes a rest endpoint for stopping, starting and
updating the configuration. We have developed a Command Line Interface to make interacting with the Connect Rest
API easier. The CLI can be found in the Stream Reactor download under the bin folder. Alternatively the Jar can be
pulled from our GitHub releases page.

Once you have installed and started Cassandra create a table to capture the mutations. We will use a bit more complex
column family structure to show case what we support so far.

Let’s start the cql shell tool to create our table

$./bin/cqlsh
Connected to Test Cluster at 127.0.0.1:9042.

[cqlsh 5.0.1 | Cassandra 3.11.0 | CQL spec 3.4.4 | Native protocol v4]
Use HELP for help.
cqlsh>

Now let’s create a keyspace and a users column family(table)

CREATE KEYSPACE datamountaineer WITH REPLICATION = {'class' : 'SimpleStrategy',
→˓'replication_factor' : 3};

CREATE TYPE datamountaineer.address(
street text,
city text,
zip_code int,
phones set<text>

);

CREATE TYPE datamountaineer.fullname (
firstname text,
lastname text

);

CREATE TABLE datamountaineer.users(
id uuid PRIMARY KEY,
name fullname,

1.2. Kafka Connect 41

https://github.com/datamountaineer/kafka-connect-tools/releases

StreamReactor Documentation, Release 0.1

direct_reports set<frozen <fullname>>,
other_reports list<frozen <fullname>>,
addresses map<text, frozen <address>>);

ALTER TABLE datamountaineer.users WITH cdc=true;

Starting the Connector (Distributed)

Download, unpack and install the Stream Reactor. Follow the instructions here if you haven’t already done so. All
paths in the quickstart are based in the location you installed the Stream Reactor.

Start Kafka Connect in distributed more by running:

#make sure you have $CASSANDRA_HOME variable setup (see Cassandra setup)
$CONFLUENT_HOME/bin/connect-distributed.sh $CONFLUENT_HOME/etc/schema-registry/
→˓connect-avro-distributed.properties

#make sure you have $CASSANDRA_HOME variable setup (see Cassandra setup)
$ cat <<EOF > cassandra-cdc-source.json
{

"name": "cassandra-connect-cdc",
"config":{
"name":"cassandra-connct-cdc",
"tasks": 1,
"connector.class":"com.datamountaineer.streamreactor.connect.cassandra.cdc.

→˓CassandraCdcSourceConnector",
"connect.cassandra.kcql":"INSERT INTO users-topic SELECT * FROM datamountaineer.

→˓users",
"connect.cassandra.yaml.path.url": "$CASSANDRA_HOME/conf/cassandra.yaml",
"connect.cassandra.port": "9042",
"connect.cassandra.contact.points":"localhost"

}
}
EOF

If you visualize the file it should print something like (I used the .. because you might have a different path to where
you stored Cassandra)

{
"name": "cassandra-connect-cdc",
"config":{
"name":"cassandra-connct-cdc",
"tasks": 1,
"connector.class":"com.datamountaineer.streamreactor.connect.cassandra.cdc.

→˓CassandraCdcSourceConnector",
"connect.cassandra.kcql":"INSERT INTO orders-topic SELECT * FROM datamountaineer.

→˓orders",
"connect.cassandra.yaml.path.url": "../cassandra/conf/cassandra.yaml",
"connect.cassandra.port": "9042",
"connect.cassandra.contact.points":"localhost"

}
}

Next step is to spin up the connector. And for that we run the following bash script:

curl -X POST -H "Content-Type: application/json" --data @cassandra-cdc-source.json
→˓http://localhost:8083/connectors

42 Chapter 1. Components

StreamReactor Documentation, Release 0.1

The output from the connect-distributed should read something similar to this:

[2017-08-01 22:34:35,653] INFO Acquiring port 64101 to enforce single instance being
→˓run on Stepi (com.datamountaineer.streamreactor.connect.cassandra.cdc.
→˓CassandraCdcSourceTask:53)
[2017-08-01 22:34:35,660] INFO

____ _ __ __ _ _
| _ \ __ _| |_ __ _| \/ | ___ _ _ _ __ | |_ __ _(_)_ __ ___ ___ _ __
			/ _`	__/ _`		\/		/ _ \|			'_ \| __/ _`		'_ \ / _ \/ _ \ '__														
	_		(_				(_					(_)		_							(_						__/ __/
____/ __,_	____,_	_		_	___/ __,_	_		_	____,_	_	_		_	___	___	_											
____ by Stefan Bocutiu _ ____ ____ ____
/ ___|__ _ ___ ___ __ _ _ __ __| |_ __ __ _ / ___| _ \ / ___|

| | / _` / __/ __|/ _` | '_ \ / _` | '__/ _` | | | | | | | |
| |__| (_| __ __ \ (_| | | | | (_| | | | (_| | | |___| |_| | |___
______,_|___/___/__,_|_| |_|__,_|_| __,_| ____|____/ ____|

(com.datamountaineer.streamreactor.connect.cassandra.cdc.CassandraCdcSourceTask:65)
[2017-08-01 22:34:36,088] INFO CDC path is not set in Yaml. Using the default
→˓location (com.datamountaineer.streamreactor.connect.cassandra.cdc.logs.
→˓CdcCassandra:55)
[2017-08-01 22:34:36,411] INFO Detected Guava >= 19 in the classpath, using modern
→˓compatibility layer (com.datastax.driver.core.GuavaCompatibility:132)

Let’s go back to the cqlsh terminal and insert some records into the users table and then perform some updates and
deletes.

INSERT INTO datamountaineer.users(id, name) VALUES (62c36092-82a1-3a00-93d1-
→˓46196ee77204,{firstname:'Marie-Claude',lastname:'Josset'});

UPDATE datamountaineer.users
SET
addresses = addresses + {
'home': {

street: '191 Rue St. Charles',
city: 'Paris',
zip_code: 75015,
phones: {'33 6 78 90 12 34'}

},
'work': {

street: '81 Rue de Paradis',
city: 'Paris',
zip_code: 7500,
phones: {'33 7 12 99 11 00'}

}
}
WHERE id=62c36092-82a1-3a00-93d1-46196ee77204;

INSERT INTO datamountaineer.users(id, direct_reports) VALUES (11c11111-82a1-3a00-93d1-
→˓46196ee77204,{{firstname:'Jean-Claude',lastname:'Van Damme'}, {firstname:'Arnold',
→˓lastname:'Schwarzenegger'}});

INSERT INTO datamountaineer.users(id, other_reports) VALUES (22c11111-82a1-3a00-93d1-
→˓46196ee77204,[{firstname:'Jean-Claude',lastname:'Van Damme'}, {firstname:'Arnold',
→˓lastname:'Schwarzenegger'}]);

DELETE name.firstname FROm datamountaineer.users WHERE id=62c36092-82a1-3a00-93d1-
→˓46196ee77204;

1.2. Kafka Connect 43

StreamReactor Documentation, Release 0.1

You will notice from the logs there are no new CDC files picked up and if you navigate to the CDC ouput folder
you will see it is empty. The memtables needs to fill up to be flushed to disk. Let’s use the tool provided by Apache
Cassandra to flush the table:nodetool

$ $CASSANDRA_HOME/bin/nodetool drain

Once this completes your connect distributed log should print something along these lines:

[2017-08-01 23:10:42,842] INFO Reading mutations from the CDC file:/home/stepi/work/
→˓programs/cassandra/data/cdc_raw/CommitLog-6-1501625205002.log. Checking file is
→˓still being written... (com.datamountaineer.streamreactor.connect.cassandra.cdc.
→˓logs.CdcCassandra:158)
[2017-08-01 23:10:43,352] INFO Global buffer pool is enabled, when pool is exhausted
→˓(max is 0.000KiB) it will allocate on heap (org.apache.cassandra.utils.memory.
→˓BufferPool:230)
[2017-08-01 23:10:43,355] INFO Maximum memory usage reached (0.000KiB), cannot
→˓allocate chunk of 1.000MiB (org.apache.cassandra.utils.memory.BufferPool:91)
[2017-08-01 23:10:43,390] ERROR [Control connection] Cannot connect to any host,
→˓scheduling retry in 4000 milliseconds (com.datastax.driver.core.
→˓ControlConnection:153)
[2017-08-01 23:10:43,569] INFO 5 changes detected in /home/stepi/work/programs/
→˓cassandra/data/cdc_raw/CommitLog-6-1501625205002.log (com.datamountaineer.
→˓streamreactor.connect.cassandra.cdc.logs.CdcCassandra:173)

Let’s see what was sent over to the users topic. We will run kafka-avro-console-consumer to read the records

$./bin/kafka-avro-console-consumer --zookeeper localhost:2181 --topic users-
→˓topic --from-beginning --property print.key=true
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/home/stepi/work/programs/confluent-3.2.2/share/
→˓java/kafka-serde-tools/slf4j-log4j12-1.7.6.jar!/org/slf4j/impl/StaticLoggerBinder.
→˓class]
SLF4J: Found binding in [jar:file:/home/stepi/work/programs/confluent-3.2.2/share/
→˓java/schema-registry/slf4j-log4j12-1.7.6.jar!/org/slf4j/impl/StaticLoggerBinder.
→˓class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
Using the ConsoleConsumer with old consumer is deprecated and will be removed in a
→˓future major release. Consider using the new consumer by passing [bootstrap-server]
→˓instead of [zookeeper].
{"keyspace":"datamountaineer","table":"users","changeType":"INSERT","deleted_columns
→˓":null,"keys":{"id":{"string":"62c36092-82a1-3a00-93d1-46196ee77204"}},"timestamp
→˓":1501625394958965} {"name":{"fullname":{"firstname":{"string":"Marie-Claude"},
→˓"lastname":{"string":"Josset"}}},"addresses":null,"direct_reports":null,"id":{
→˓"string":"62c36092-82a1-3a00-93d1-46196ee77204"},"other_reports":null}
{"keyspace":"datamountaineer","table":"users","changeType":"INSERT","deleted_columns
→˓":null,"keys":{"id":{"string":"62c36092-82a1-3a00-93d1-46196ee77204"}},"timestamp
→˓":1501625395008930} {"name":null,"addresses":{"array":[{"key":{"string":"work"},
→˓"value":{"address":{"street":{"string":"81 Rue de Paradis"},"city":{"string":"Paris
→˓"},"zip_code":{"int":7500},"phones":{"array":[{"string":"33 7 12 99 11 00"}]}}}},{
→˓"key":{"string":"home"},"value":{"address":{"street":{"string":"191 Rue St. Charles
→˓"},"city":{"string":"Paris"},"zip_code":{"int":75015},"phones":{"array":[{"string":
→˓"33 6 78 90 12 34"}]}}}}]},"direct_reports":null,"id":{"string":"62c36092-82a1-3a00-
→˓93d1-46196ee77204"},"other_reports":null}
{"keyspace":"datamountaineer","table":"users","changeType":"INSERT","deleted_columns
→˓":null,"keys":{"id":{"string":"11c11111-82a1-3a00-93d1-46196ee77204"}},"timestamp
→˓":1501625395013654} {"name":null,"addresses":null,"direct_reports":{"array":[{
→˓"fullname":{"firstname":{"string":"Arnold"},"lastname":{"string":"Schwarzenegger"}}}
→˓,{"fullname":{"firstname":{"string":"Jean-Claude"},"lastname":{"string":"Van Damme"}
→˓}}]},"id":{"string":"11c11111-82a1-3a00-93d1-46196ee77204"},"other_reports":null}

44 Chapter 1. Components

StreamReactor Documentation, Release 0.1

{"keyspace":"datamountaineer","table":"users","changeType":"INSERT","deleted_columns
→˓":null,"keys":{"id":{"string":"22c11111-82a1-3a00-93d1-46196ee77204"}},"timestamp
→˓":1501625395015668} {"name":null,"addresses":null,"direct_reports":null,"id":{
→˓"string":"22c11111-82a1-3a00-93d1-46196ee77204"},"other_reports":{"array":[{
→˓"fullname":{"firstname":{"string":"Jean-Claude"},"lastname":{"string":"Van Damme"}}}
→˓,{"fullname":{"firstname":{"string":"Arnold"},"lastname":{"string":"Schwarzenegger"}
→˓}}]}}
{"keyspace":"datamountaineer","table":"users","changeType":"DELETE_COLUMN","deleted_
→˓columns":{"array":["name.firstname"]},"keys":{"id":{"string":"62c36092-82a1-3a00-
→˓93d1-46196ee77204"}},"timestamp":1501625395018481} {"name":null,"addresses
→˓":null,"direct_reports":null,"id":{"string":"62c36092-82a1-3a00-93d1-46196ee77204"},
→˓"other_reports":null}

Exactly what was changed!!!

Features

Kafka Connect Query Language

Both connectors support K afka C onnect Q uery L anguage found here GitHub repo allows for routing and mapping
using a SQL like syntax, consolidating typically features in to one configuration option.

INSERT INTO <topic> SELECT * FROM <KEYSPACE>.<TABLE>

#Select all mutations for datamountaineer.orders
INSERT INTO ordersTopic SELECT * FROM datamountaineer.orders

#while KSQL allows for fields (column) addressing the CDC Source will not use them.
→˓It pushes the entire Cassandra mutation information on the topic

Configurations

Here is a full list of configuration entries the connector knows about.

1.2. Kafka Connect 45

https://github.com/datamountaineer/kafka-connector-query-language

StreamReactor Documentation, Release 0.1

Name Description Data
Type

Op-
tio
nal

De-
fault

con-
nect.cassandra.contact.points

Contact points (hosts) in string no

con-
nect.cassandra.port

Cassandra Node Client connection port int yes 9042

con-
nect.cassandra.username

Username to connect to Cassandra with if
connect.cassandra.authentication.mode is set to
username_password

string yes

con-
nect.cassandra.password

Password to connect to Cassandra with if
connect.cassandra.authentication.mode is set to
username_password.

string yes

con-
nect.cassandra.ssl.enabled

Enables SSL communication against SSL enabled Cassandra cluster. booleanyes false

con-
nect.cassandra.trust.store.password

Password for truststore. string yes

con-
nect.cassandra.key.store.path

Path to truststore. string yes

con-
nect.cassandra.key.store.password

Password for key store. string yes

con-
nect.cassandra.ssl.client.cert.auth

Path to keystore. string yes

con-
nect.cassandra.kcql

Kafka connect query language expression. Allows for expressive
table to topic routing. It describes which CDC tables are monitored
and the target Kafka topic for Cassandra CDC information.

string no

con-
nect.cassandra.cdc.path.url

The location of the Cassandra Yaml file in URL format:file://path.
The connector reads the file to get the cdc folder but also sets the
internals of the Cassandra API allowing it to read the CDC files

string no

con-
nect.cassandra.cdc.file.watch.interval

The delay time in milliseconds before the connector checks for
Cassandra CDC files. We poll the CDC folder for new files.

long yes 2000

con-
nect.cassandra.cdc.mutation.queue.size

The maximum number of Cassandra mutation to buffer. As it reads
from the Cassandra CDC files the mutations are buffered before they
are handed over to Kafka Connect.

int yes 1000000

con-
nect.cassandra.cdc.enable.delete.while.read

The worker CDC thread will read a CDC file checking if any of the
processed files are ready to be deleted (that means the records have
been sent to kafka). Rather than waiting for a read to complete we can
delete the files while reading a CDC file. a CDC file. You can disable
it for faster faster reads by setting the value to false.

booleanyes false

con-
nect.cassandra.cdc.single.instance.port

Kafka Connect framework doesn’t allow yet configuration where you
are running only one task per worker. If you allocate more tasks than
workers then some will spin up more tasks. With Cassandra nodes we
want one want one worker and one task - not more. To ensure this we
allow the first task to grab a port subsequent calls to open the port will
fail thus not allowing multiple instance running at once

int yes 64101

con-
nect.cassandra.cdc.decimal.scale

When reading the column family metadata we don’t have details
about decimal scale

Deployment Guidelines

TODO

46 Chapter 1. Components

StreamReactor Documentation, Release 0.1

TroubleShooting

Please review the FAQs and join our slack channel.

Kafka Connect CoAP Source

A Connector and Source to stream messages from a CoAP server and write them to a Kafka topic.

The Source supports:

1. DTLS secure clients.

2. Observable resources.

The Source Connector automatically converts the CoAP response into a Kafka Connect Struct to be store in Kafka
as Avro or Json dependent on the Converters used in Connect. The schema can found here.

The key of the Struct message sent to Kafka is made from the source defined in the message, the resource on the
CoAP server and the message id.

Prerequisites

• Confluent 3.2

• Java 1.8

• Scala 2.11

Setup

Confluent Setup

Follow the instructions here.

CoAP Setup

The connector uses Californium Java API under the hood. A resource is host at coap://californium.
eclipse.org:5683. Copper, a FireFox browser addon is available so you can browse the server and resources..
This is an observable non confirmable resource. You can view messages via the browser addon by selecting the
resource and clicking the observe button on the top menu.

Source Connector QuickStart

We will start the connector in distributed mode. Each connector exposes a rest endpoint for stopping, starting and
updating the configuration. We have developed a Command Line Interface to make interacting with the Connect Rest
API easier. The CLI can be found in the Stream Reactor download under the bin folder. Alternatively the Jar can be
pulled from our GitHub releases page.

1.2. Kafka Connect 47

https://slackpass.io/datamountaineers
https://github.com/eclipse/californium
https://addons.mozilla.org/en-US/firefox/addon/copper-270430/
https://github.com/datamountaineer/kafka-connect-tools/releases

StreamReactor Documentation, Release 0.1

Starting the Connector

Download, unpack and install the Stream Reactor. Follow the instructions here if you haven’t already done so. All
paths in the quickstart are based in the location you installed the Stream Reactor.

Start Kafka Connect in distributed more by running the start-connect.sh script in the bin folder.

bin/start-connect.sh

Once the connector has started we can now use the kafka-connect-tools cli to post in our distributed properties file for
MQTT. If you are using the dockers you will have to set the following environment variable to for the CLI to connect
to the Rest API of Kafka Connect of your container.

export KAFKA_CONNECT_REST="http://myserver:myport"

bin/connect-cli create coap-source < conf/coap-source.properties

#Connector name=`coap-source`
name = coap-source
tasks = 1
connector.class = com.datamountaineer.streamreactor.connect.coap.source.
→˓CoapSourceConnector
connect.coap.uri = coap://californium.eclipse.org:5683
connect.coap.kcql = INSERT INTO coap-topic SELECT * FROM obs-pumping-non
#task ids: 0

The coap-source.properties file defines:

1. The name of the source.

2. The name number of tasks.

3. The class containing the connector.

4. The uri of the CoAP Server and port to connect to.

5. The KCQL routing querying.. This specifies the target topic and source resource on the CoAP server.

If you switch back to the terminal you started Kafka Connect in you should see the CoAP Source being accepted and
the task starting.

We can use the CLI to check if the connector is up but you should be able to see this in logs as-well.

#check for running connectors with the CLI
bin/connect-cli ps

coap-source

INFO
____ __ __ ___ __ _

/ __ ____ _/ /_____ _/ |/ /___ __ ______ / /_____ _(_)___ ___ ___ _____
/ / / / __ `/ __/ __ `/ /|_/ / __ \/ / / / __ \/ __/ __ `/ / __ \/ _ \/ _ \/ ___/

/ /_/ / /_/ / /_/ /_/ / / / / /_/ / /_/ / / / / /_/ /_/ / / / / / __/ __/ /
/_____/__,_/__/__,_/_/ /_/____/__,_/_/ /_/__/__,_/_/_/ /_/___/___/_/

______ _____
/ ____/___ ____ _____ / ___/____ __ _______________

/ / / __ \/ __ `/ __ __ \/ __ \/ / / / ___/ ___/ _ \ By Andrew Stevenson
/ /___/ /_/ / /_/ / /_/ /__/ / /_/ / /_/ / / / /__/ __/
____/____/__,_/ .___/____/____/__,_/_/ ___/___/

/_/ (com.datamountaineer.streamreactor.connect.coap.source.
→˓CoapSourceTask:54)

48 Chapter 1. Components

StreamReactor Documentation, Release 0.1

[2017-01-09 20:42:44,830] INFO CoapConfig values:
connect.coap.uri = coap://californium.eclipse.org:5683
connect.coap.port = 0
connect.coap.truststore.pass = [hidden]
connect.coap.cert.chain.key = client
connect.coap.keystore.path =
connect.coap.kcql = INSERT INTO coap-topic SELECT * FROM obs-pumping-non
connect.coap.truststore.path =
connect.coap.certs = []
connect.coap.keystore.pass = [hidden]
connect.coap.host = localhost

(com.datamountaineer.streamreactor.connect.coap.configs.CoapConfig:178)
[2017-01-09 20:42:44,831] INFO Source task WorkerSourceTask{id=coap-source-0}
→˓finished initialization and start (org.apache.kafka.connect.runtime.
→˓WorkerSourceTask:138)
[2017-01-09 20:42:45,927] INFO Discovered resources /.well-known/core (com.
→˓datamountaineer.streamreactor.connect.coap.source.CoapReader:60)
[2017-01-09 20:42:45,927] INFO Discovered resources /large (com.datamountaineer.
→˓streamreactor.connect.coap.source.CoapReader:60)
[2017-01-09 20:42:45,928] INFO Discovered resources /large-create (com.
→˓datamountaineer.streamreactor.connect.coap.source.CoapReader:60)
[2017-01-09 20:42:45,928] INFO Discovered resources /large-post (com.datamountaineer.
→˓streamreactor.connect.coap.source.CoapReader:60)
[2017-01-09 20:42:45,928] INFO Discovered resources /large-separate (com.
→˓datamountaineer.streamreactor.connect.coap.source.CoapReader:60)
[2017-01-09 20:42:45,928] INFO Discovered resources /large-update (com.
→˓datamountaineer.streamreactor.connect.coap.source.CoapReader:60)

Check for records in Kafka

Check for records in Kafka with the console consumer.

bin/kafka-avro-console-consumer \
--zookeeper localhost:2181 \
--topic coap-topic \
--from-beginning

{"message_id":{"int":4803},"type":{"string":"ACK"},"code":"4.04","raw_code":{"int
→˓":132},"rtt":{"long":35},"is_last":{"boolean":true},"is_notification":{"boolean
→˓":false},"source":{"string":"idvm-infk-mattern04.inf.ethz.ch:5683"},"destination":{
→˓"string":""},"timestamp":{"long":0},"token":{"string":"b24774e37c2314a4"},"is_
→˓duplicate":{"boolean":false},"is_confirmable":{"boolean":false},"is_rejected":{
→˓"boolean":false},"is_acknowledged":{"boolean":false},"is_canceled":{"boolean":false}
→˓,"accept":{"int":-1},"block1":{"string":""},"block2":{"string":""},"content_format":
→˓{"int":-1},"etags":[],"location_path":{"string":""},"location_query":{"string":""},
→˓"max_age":{"long":60},"observe":null,"proxy_uri":null,"size_1":null,"size_2":null,
→˓"uri_host":null,"uri_port":null,"uri_path":{"string":""},"uri_query":{"string":""},
→˓"payload":{"string":""}}
{"message_id":{"int":4804},"type":{"string":"ACK"},"code":"4.04","raw_code":{"int
→˓":132},"rtt":{"long":34},"is_last":{"boolean":true},"is_notification":{"boolean
→˓":false},"source":{"string":"idvm-infk-mattern04.inf.ethz.ch:5683"},"destination":{
→˓"string":""},"timestamp":{"long":0},"token":{"string":"b24774e37c2314a4"},"is_
→˓duplicate":{"boolean":false},"is_confirmable":{"boolean":false},"is_rejected":{
→˓"boolean":false},"is_acknowledged":{"boolean":false},"is_canceled":{"boolean":false}
→˓,"accept":{"int":-1},"block1":{"string":""},"block2":{"string":""},"content_format":
→˓{"int":-1},"etags":[],"location_path":{"string":""},"location_query":{"string":""},
→˓"max_age":{"long":60},"observe":null,"proxy_uri":null,"size_1":null,"size_2":null,
→˓"uri_host":null,"uri_port":null,"uri_path":{"string":""},"uri_query":{"string":""},
→˓"payload":{"string":""}}1.2. Kafka Connect 49

StreamReactor Documentation, Release 0.1

{"message_id":{"int":4805},"type":{"string":"ACK"},"code":"4.04","raw_code":{"int
→˓":132},"rtt":{"long":35},"is_last":{"boolean":true},"is_notification":{"boolean
→˓":false},"source":{"string":"idvm-infk-mattern04.inf.ethz.ch:5683"},"destination":{
→˓"string":""},"timestamp":{"long":0},"token":{"string":"b24774e37c2314a4"},"is_
→˓duplicate":{"boolean":false},"is_confirmable":{"boolean":false},"is_rejected":{
→˓"boolean":false},"is_acknowledged":{"boolean":false},"is_canceled":{"boolean":false}
→˓,"accept":{"int":-1},"block1":{"string":""},"block2":{"string":""},"content_format":
→˓{"int":-1},"etags":[],"location_path":{"string":""},"location_query":{"string":""},
→˓"max_age":{"long":60},"observe":null,"proxy_uri":null,"size_1":null,"size_2":null,
→˓"uri_host":null,"uri_port":null,"uri_path":{"string":""},"uri_query":{"string":""},
→˓"payload":{"string":""}}
{"message_id":{"int":4806},"type":{"string":"ACK"},"code":"4.04","raw_code":{"int
→˓":132},"rtt":{"long":35},"is_last":{"boolean":true},"is_notification":{"boolean
→˓":false},"source":{"string":"idvm-infk-mattern04.inf.ethz.ch:5683"},"destination":{
→˓"string":""},"timestamp":{"long":0},"token":{"string":"b24774e37c2314a4"},"is_
→˓duplicate":{"boolean":false},"is_confirmable":{"boolean":false},"is_rejected":{
→˓"boolean":false},"is_acknowledged":{"boolean":false},"is_canceled":{"boolean":false}
→˓,"accept":{"int":-1},"block1":{"string":""},"block2":{"string":""},"content_format":
→˓{"int":-1},"etags":[],"location_path":{"string":""},"location_query":{"string":""},
→˓"max_age":{"long":60},"observe":null,"proxy_uri":null,"size_1":null,"size_2":null,
→˓"uri_host":null,"uri_port":null,"uri_path":{"string":""},"uri_query":{"string":""},
→˓"payload":{"string":""}}

Features

1. Secure DTLS client connection.

2. Supports Observable resources to stream changes on a resource to Kafka.

3. Routing of data via KCQL to topics.

4. Automatic conversion of CoAP Response messages to Connect Structs.

Kafka Connect Query Language

K afka C onnect Q uery L anguage found here GitHub repo allows for routing and mapping using a SQL like syntax,
consolidating typically features in to one configuration option.

The CoAP Source supports the following:

INSERT INTO <topic> SELECT * FROM <resource>

No selection of fields on the CoAP message is support. All the message attributes are mapped to predefined Struct
representing the CoAP response message.

DTLS Client

The Connector use the Californium Java API and for secure connections use the Scandium security module provided
by Californium. Scandium (Sc) is an implementation of Datagram Transport Layer Security 1.2, also known as RFC
6347.

Please refer to the Californium certification repo page for more information.

DTLS Client connections can be enabled by setting the connect.coap.keystore.pass property. If set you
must provide the following or the Connector will not start and throw a configuration exception:

50 Chapter 1. Components

https://github.com/datamountaineer/kafka-connector-query-language
https://github.com/eclipse/californium
https://tools.ietf.org/html/rfc6347
https://tools.ietf.org/html/rfc6347
https://github.com/eclipse/californium/tree/master/demo-certs

StreamReactor Documentation, Release 0.1

• connect.coap.keystore.pass

• connect.coap.keystore.path

• connect.coap.truststore.pass

• connect.coap.truststore.path

Warning: The key and truststore must be available on the local disk of the worker task.

Loading specific certificates can be achieved by providing a comma separated list for the connect.coap.certs
configuration option. The certificate chain can be set by the connect.coap.cert.chain.key configuration
option.

Configurations

connect.coap.uri

Uri of the CoAP server.

• Data Type : string

• Importance: high

• Optional : no

connect.coap.kcql

The KCQL statement to select and route resources to topics.

• Data Type : string

• Importance: high

• Optional : no

connect.coap.port

The port the DTLS connector will bind to on the Connector host.

• Data Type : int

• Importance: medium

• Optional : yes

• Default : 0

connect.coap.host

The hostname the DTLS connector will bind to on the Connector host.

• Data Type : string

• Importance: medium

• Optional : yes

• Default : localhost

connect.coap.keystore.pass

The password of the key store

• Data Type : string

1.2. Kafka Connect 51

StreamReactor Documentation, Release 0.1

• Importance: medium

• Optional : yes

• Default : rootPass

connect.coap.keystore.path

The path to the keystore.

• Data Type : string

• Importance: medium

• Optional : yes

• Default :

connect.coap.truststore.pass

The password of the trust store

• Data Type : string

• Importance: medium

• Optional : yes

• Default : rootPass

connect.coap.truststore.path

The path to the truststore.

• Data Type : string

• Importance: medium

• Optional : yes

• Default :

connect.coap.certs

The certificates to load from the trust store.

• Data Type : list

• Importance: medium

• Optional : yes

• Default :

connect.coap.cert.chain.key

The key to use to get the certificate chain.

• Data Type : string

• Importance: medium

• Optional : yes

• Default : client

connect.coap.batch.size

The number of events to take from the internal queue to batch together to send to Kafka.

• Data Type : init

52 Chapter 1. Components

StreamReactor Documentation, Release 0.1

• Importance: medium

• Optional : yes

• Default : 100

connect.progress.enabled

Enables the output for how many records have been processed.

• Type: boolean

• Importance: medium

• Optional: yes

• Default : false

Schema Evolution

The schema is fixed.

The following schema is used for the key:

Name Type
source Optional string
source_resource Optional String
message_id Optional int32

The following schema is used for the payload:

Name Type
message_id Optional int32
type Optional String
code Optional String
raw_code Optional int32
rtt Optional int64
is_last Optional boolean
is_notification Optional boolean
source Optional String
destination Optional String
timestamp Optional int64
token Optional String
is_duplicate Optional boolean
is_confirmable Optional boolean
is_rejected Optional boolean
is_acknowledged Optional boolean
is_canceled Optional boolean
accept Optional int32
block1 Optional String
block2 Optional String
content_format Optional int32
etags Array of Optional Strings
location_path Optional String
location_query Optional String
max_age Optional int64

Continued on next page

1.2. Kafka Connect 53

StreamReactor Documentation, Release 0.1

Table 1.1 – continued from previous page
observe Optional int32
proxy_uri Optional String
size_1 Optional String
size_2 Optional String
uri_host Optional String
uri_port Optional int32
uri_path Optional String
uri_query Optional String
payload Optional String

TroubleShooting

Please review the FAQs and join our slack channel.

Kafka Connect JMS Source

The JMS Source connector allows subscribe to messages on JMS queues and topics.

The Source supports:

1. Pluggable converters of JMS payloads. If no converters are specified a Avro message is created representing the
JMS Message, the payload from the message is stored as a byte array in the payload field of the Avro.

2. Out of the box converters for Json/Avro and Binary

3. The KCQL routing querying - JMS Destination to Kafka topic mapping.

Prerequisites

• Confluent 3.2

• Java 1.8

• Scala 2.11

• A JMS framework (ActiveMQ for example)

Setup

Before we can do anything, including the QuickStart we need to install the Confluent platform. For ActiveMQ follow
http://activemq.apache.org/getting-started.html for the instruction of setting it up.

Confluent Setup

Follow the instructions here.

54 Chapter 1. Components

https://slackpass.io/datamountaineers
http://activemq.apache.org/getting-started.html

StreamReactor Documentation, Release 0.1

Source Connector QuickStart

We will start the connector in distributed mode. Each connector exposes a rest endpoint for stopping, starting and
updating the configuration. We have developed a Command Line Interface to make interacting with the Connect Rest
API easier. The CLI can be found in the Stream Reactor download under the bin folder. Alternatively the Jar can be
pulled from our GitHub releases page.

Starting the Connector (Distributed)

Download, unpack and install the Stream Reactor. Follow the instructions here if you haven’t already done so. All
paths in the quickstart are based in the location you installed the Stream Reactor.

Start Kafka Connect in distributed more by running the start-connect.sh script in the bin folder.

bin/start-connect.sh

Once the connector has started we can now use the kafka-connect-tools cli to post in our distributed properties file for
JMS. If you are using the dockers you will have to set the following environment variable to for the CLI to connect to
the Rest API of Kafka Connect of your container.

export KAFKA_CONNECT_REST="http://myserver:myport"

bin/connect-cli create jms-sink < conf/jms-source.properties

The jms-source.properties file defines:

name=jms-source connector.class=com.datamountaineer.streamreactor.connect.jms.source.JMSSourceConnector
tasks.max=1 connect.jms.kcql=INSERT INTO topic SELECT * FROM jms-queue connect.jms.queues=jms-
queue connect.jms.initial.context.factory=org.apache.activemq.jndi.ActiveMQInitialContextFactory con-
nect.jms.url=tcp://localhost:61616 connect.jms.connection.factory=ConnectionFactory

1. The source connector name.

2. The JMS Source Connector class name.

3. The number of tasks to start.

4. The KCQL routing querying.

5. A comma separated list of queues destination types on the target JMS, must match the from element in KCQL.

6. The JMS initial context factory.

7. The url of the JMS broker.

8. The JMS connection factory.

If you switch back to the terminal you started the Connector in you should see the JMS Source being accepted and the
task starting.

We can use the CLI to check if the connector is up but you should be able to see this in logs as-well.

#check for running connectors with the CLI
bin/connect-cli ps

jms-source

#Connector `jms-source`:
name=jms-source
connect.jms.kcql=INSERT INTO topic SELECT * FROM jms-queue
tasks.max=1

1.2. Kafka Connect 55

https://github.com/datamountaineer/kafka-connect-tools/releases

StreamReactor Documentation, Release 0.1

connector.class=com.datamountaineer.streamreactor.connect.jms.source.
→˓JMSSourceConnector
connect.jms.queues=jms-queue
connect.jms.initial.context.factory=org.apache.activemq.jndi.
→˓ActiveMQInitialContextFactory
connect.jms.url=tcp://localhost:61616
connect.jms.connection.factory=ConnectionFactory
#task ids: 0

INFO Kafka version : 0.10.2.0-cp1 (org.apache.kafka.common.utils.AppInfoParser:83)
INFO Kafka commitId : 64c9b42f3319cdc9 (org.apache.kafka.common.utils.
→˓AppInfoParser:84)
INFO ____ __ __ ___ __ _

/ __ ____ _/ /_____ _/ |/ /___ __ ______ / /_____ _(_)___ ___ ___ ___
→˓__

/ / / / __ `/ __/ __ `/ /|_/ / __ \/ / / / __ \/ __/ __ `/ / __ \/ _ \/ _ \/ __
→˓_/

/ /_/ / /_/ / /_/ /_/ / / / / /_/ / /_/ / / / / /_/ /_/ / / / / / __/ __/ /
/_____/__,_/__/__,_/_/ /_/____/__,_/_/ /_/__/__,_/_/_/ /_/___/___/_/

____ _____________
/ / |/ / ___/ ___/____ __ _______________

__ / / /|_/ /__ __ \/ __ \/ / / / ___/ ___/ _ \ By Andrew Stevenson
/ /_/ / / / /___/ /__/ / /_/ / /_/ / / / /__/ __/
____/_/ /_//____/____/____/__,_/_/ ___/___/

(com.datamountaineer.streamreactor.connect.jms.source.JMSSourceTask:22)
INFO JMSConfig values:

connect.jms.batch.size = 100
connect.jms.connection.factory = ConnectionFactory
connect.jms.converter.throw.on.error = false
connect.jms.destination.selector = CDI
connect.jms.error.policy = THROW
connect.jms.initial.context.extra.params = []
connect.jms.initial.context.factory = org.apache.activemq.jndi.

→˓ActiveMQInitialContextFactory
connect.jms.kcql = INSERT INTO topic SELECT * FROM jms-queue
connect.jms.max.retries = 20
connect.jms.password = null
connect.jms.queues = [jms-queue]
connect.jms.retry.interval = 60000
connect.jms.converters =
connect.jms.topics = []
connect.jms.url = tcp://localhost:61616
connect.jms.username = null

(com.datamountaineer.streamreactor.connect.jms.config.JMSConfig:180)
INFO Instantiated connector jms-source with version null of type class com.
→˓datamountaineer.streamreactor.connect.jms.source.JMSSourceConnector (org.apache.
→˓kafka.connect.runtime.Worker:181)
INFO Finished creating connector jms-source (org.apache.kafka.connect.runtime.
→˓Worker:194)
INFO SourceConnectorConfig values:

connector.class = com.datamountaineer.streamreactor.connect.jms.source.
→˓JMSSourceConnector

key.converter = null
name = jms-source
tasks.max = 1
transforms = null
value.converter = null

(org.apache.kafka.connect.runtime.SourceConnectorConfig:180)

56 Chapter 1. Components

StreamReactor Documentation, Release 0.1

Test Records

Now we need to send some records into the ActiveMQ broker for the Source Connector to pick up. We can do this
with the ActiveMQ command line producer. In the bin folder of the Active MQ location run the following to insert
1000 messages into a queue called jms-queue.

activemq producer --destination queue://jms-queue --message "hello DataMountaineer"

We should immediately see the records coming through the sink and into our Kafka topic:

${CONFLUENT_HOME}/bin/kafka-avro-console-consumer \
--zookeeper localhost:2181 \
--topic topic \
--from-beginning

{"message_timestamp":{"long":1490799748984},"correlation_id":null,"redelivered":{
→˓"boolean":false},"reply_to":null,"destination":{"string":"queue://jms-queue"},
→˓"message_id":{"string":"ID:Andrews-MacBook-Pro.local-49870-1490799747943-1:1:1:1:997
→˓"},"mode":{"int":2},"type":null,"priority":{"int":4},"bytes_payload":{"bytes":"hello
→˓"},"properties":null}
{"message_timestamp":{"long":1490799748985},"correlation_id":null,"redelivered":{
→˓"boolean":false},"reply_to":null,"destination":{"string":"queue://jms-queue"},
→˓"message_id":{"string":"ID:Andrews-MacBook-Pro.local-49870-1490799747943-1:1:1:1:998
→˓"},"mode":{"int":2},"type":null,"priority":{"int":4},"bytes_payload":{"bytes":"hello
→˓"},"properties":null}
{"message_timestamp":{"long":1490799748986},"correlation_id":null,"redelivered":{
→˓"boolean":false},"reply_to":null,"destination":{"string":"queue://jms-queue"},
→˓"message_id":{"string":"ID:Andrews-MacBook-Pro.local-49870-1490799747943-1:1:1:1:999
→˓"},"mode":{"int":2},"type":null,"priority":{"int":4},"bytes_payload":{"bytes":"hello
→˓"},"properties":null}
{"message_timestamp":{"long":1490799748987},"correlation_id":null,"redelivered":{
→˓"boolean":false},"reply_to":null,"destination":{"string":"queue://jms-queue"},
→˓"message_id":{"string":"ID:Andrews-MacBook-Pro.local-49870-1490799747943-
→˓1:1:1:1:1000"},"mode":{"int":2},"type":null,"priority":{"int":4},"bytes_payload":{
→˓"bytes":"hello"},"properties":null}

Features

The Source supports:

1. KCQL routing of JMS destination messages to Kafka topics.

2. Pluggable converters.

3. Default conversion of JMS Messages to Avro with the payload as a Byte array.

4. Extra connection properties for specialized connections such as SOLACE_VPN.

Converters

We provide four converters out of the box but you can plug your own. See an example here.

AvroConverter

1.2. Kafka Connect 57

StreamReactor Documentation, Release 0.1

com.datamountaineer.streamreactor.connect.converters.AvroConverter

The payload of the JMS message is an Avro message. In this case you need to provide a path for the Avro schema file
to be able to decode it.

JsonSimpleConverter

com.datamountaineer.streamreactor.connect.converters.JsonSimpleConverter

The payload for the JMS message is a Json message. This converter will parse the json and create an Avro record for
it which will be sent over to Kafka.

JsonConverterWithSchemaEvolution

An experimental converter for converting Json messages to Avro. The resulting Avro schema is fully compatible as
new fields are added as the JMS json payload evolves.

BytesConverter

com.datamountaineer.streamreactor.connect.converters.BytesConverter

This is the default implementation. The JMS payload is taken as is: an array of bytes and sent over Kafka as an avro
record with Schema.BYTES. You don’t have to provide a mapping for the source to get this converter!!

Kafka Connect Query Language

K afka C onnect Q uery L anguage found here GitHub repo allows for routing and mapping using a SQL like syntax,
consolidating typically features in to one configuration option.

The JMS Source supports the following:

INSERT INTO <kafka target> SELECT * FROM <jms destination>

Example:

#select from a JMS queue and write to a kafka topic
INSERT INTO topicA SELECT * FROM jms_queue

Configurations

connect.jms.url

Provides the JMS broker url

• Data Type: string

• Importance: high

• Optional : no

connect.jms.username

Provides the user for the JMS connection.

• Data Type: string

• Importance: high

• Optional : no

connect.jms.password

Provides the password for the JMS connection.

58 Chapter 1. Components

https://github.com/datamountaineer/kafka-connector-query-language

StreamReactor Documentation, Release 0.1

• Data Type: string

• Importance: high

• Optional : no

connect.jms.initial.context.factory

• Data Type: string

• Importance: high

• Optional: no

Initial Context Factory, e.g: org.apache.activemq.jndi.ActiveMQInitialContextFactory.

connect.jms.connection.factory

The ConnectionFactory implementation to use.

• Data Type: string

• Importance: high

• Optional : no

connect.jms.destination.selector

• Data Type: String

• Importance: high

• Optional: no

• Default: CDI

Selector to use for destination lookup. Either CDI or JNDI.

connect.jms.initial.context.extra.params

• Data Type: String

• Importance: high

• Optional: yes

List (comma separated) of extra properties as key/value pairs with a colon delimiter to supply to the initial context e.g.
SOLACE_JMS_VPN:my_solace_vp.

connect.jms.kcql

KCQL expression describing field selection and routes.

• Data Type: string

• Importance: high

• Optional : no

connect.jms.topics

Comma separated list of all the jms target topics.

• Data Type: list

• Importance: medium

• Optional : yes

1.2. Kafka Connect 59

StreamReactor Documentation, Release 0.1

connect.jms.queues

Comma separated list of all the jms target queues.

• Data Type: list

• Importance: medium

• Optional : yes

connect.jms.source.converters

Contains a tuple (jms source topic and the canonical class name for the converter to convert the JMS message to a
SourceRecord). If the source topic is not matched it will default to the BytesConverter. This will send an avro message
over Kafka using Schema.BYTES

• Data type: string

• Importance: medium

• Optional: yes

• Default: null

jms_source1=com.datamountaineer.streamreactor.connect.converters.AvroConverter;jms_
→˓source2=com.datamountaineer.streamreactor.connect.source.converters.
→˓JsonSimpleConverter

connect.converter.avro.schemas

If the AvroConverter is used you need to provide an avro Schema to be able to read and translate the raw bytes to an
avro record. The format is $JMS_TOPIC=$PATH_TO_AVRO_SCHEMA_FILE

• Data type: bool

• Importance: medium

• Optional: yes

• Default: null

connect.jms.batch.size

• Type: int

• Importance: medium

• Optional: yes

• Default: 100

The batch size to take from the JMS destination on each poll of Kafka Connect.

connect.progress.enabled

Enables the output for how many records have been processed.

• Type: boolean

• Importance: medium

• Optional: yes

• Default : false

60 Chapter 1. Components

StreamReactor Documentation, Release 0.1

Provide your own Converter

You can always provide your own logic for converting the JMS message to your an avro record. If you have messages
coming in Protobuf format you can deserialize the message based on the schema and create the avro record. All you
have to do is create a new project and add our dependency:

Gradle:

compile "com.datamountaineer:kafka-connect-common:0.7.1"

Maven:

<dependency>
<groupId>com.datamountaineer</groupId>
<artifactId>kafka-connect-common</artifactId>
<version>0.7.1</version>

</dependency>

Then all you have to do is implement com.datamountaineer.streamreactor.connect.converters.
source.Converter.

Here is our BytesConverter class code:

class BytesConverter extends Converter {
override def convert(kafkaTopic: String, sourceTopic: String, messageId: String,

→˓bytes: Array[Byte]): SourceRecord = {
new SourceRecord(Collections.singletonMap(Converter.TopicKey, sourceTopic),

null,
kafkaTopic,
MsgKey.schema,
MsgKey.getStruct(sourceTopic, messageId),
Schema.BYTES_SCHEMA,
bytes)

}
}

Schema Evolution

Not applicable.

Deployment Guidelines

TODO

TroubleShooting

Please review the FAQs and join our slack channel.

Kafka Connect ReThink

A Connector and Source to write events from ReThinkDB to Kafka. The connector subscribes to changefeeds on
tables and streams the records to Kafka.

1.2. Kafka Connect 61

https://slackpass.io/datamountaineers

StreamReactor Documentation, Release 0.1

The Source supports:

1. The KCQL routing querying - Table to topic routing

2. Initialization (Read feed from start) via KCQL.

3. ReThinkDB type (add, delete, update).

4. ReThinkDB initial states.

Prerequisites

• Confluent 3.2

• RethinkDb 2.3.3

• Java 1.8

• Scala 2.11

Setup

Rethink Setup

Download and install RethinkDb. Follow the instruction here dependent on your operating system.

Confluent Setup

Follow the instructions here.

Sink Connector QuickStart

We will start the connector in distributed mode. Each connector exposes a rest endpoint for stopping, starting and
updating the configuration. We have developed a Command Line Interface to make interacting with the Connect Rest
API easier. The CLI can be found in the Stream Reactor download under the bin folder. Alternatively the Jar can be
pulled from our GitHub releases page.

Starting the Connector (Distributed)

Download, unpack and install the Stream Reactor. Follow the instructions here if you haven’t already done so. All
paths in the quickstart are based in the location you installed the Stream Reactor.

Start Kafka Connect in distributed more by running the start-connect.sh script in the bin folder.

bin/start-connect.sh

Once the connector has started we can now use the kafka-connect-tools cli to post in our distributed properties file for
ReThinkDB. If you are using the dockers you will have to set the following environment variable to for the CLI to
connect to the Rest API of Kafka Connect of your container.

export KAFKA_CONNECT_REST="http://myserver:myport"

62 Chapter 1. Components

https://rethinkdb.com/docs/install/
https://github.com/datamountaineer/kafka-connect-tools/releases

StreamReactor Documentation, Release 0.1

bin/connect-cli create rethink-source < conf/rethink-source.properties
#Connector name=`rethink-source`
name=rethink-source
connect.rethink.host=localhost
connect.rethink.port=28015
connector.class=com.datamountaineer.streamreactor.connect.rethink.source.
→˓ReThinkSourceConnector
tasks.max=1
connect.rethink.db=test
connect.rethink.kcql=INSERT INTO rethink-topic SELECT * FROM source-test
#task ids: 0

The rethink-source.properties file defines:

1. The name of the source.

2. The name of the rethink host to connect to.

3. The rethink port to connect to.

4. The Source class.

5. The max number of tasks the connector is allowed to created. The connector splits and groups the con-
nect.rethink.kcql by the number of tasks to ensure a distribution based on allowed number of tasks and Source
tables.

6. The ReThinkDB database to connect to.

7. The KCQL routing querying.

If you switch back to the terminal you started the Connector in you should see the ReThinkDB Sink being accepted
and the task starting.

We can use the CLI to check if the connector is up but you should be able to see this in logs as-well.

#check for running connectors with the CLI
bin/connect-cli ps

rethink-source

[2016-10-05 12:09:35,414] INFO
____ __ __ ___ __ _

/ __ ____ _/ /_____ _/ |/ /___ __ ______ / /_____ _(_)___ ___ ___ _____
/ / / / __ `/ __/ __ `/ /|_/ / __ \/ / / / __ \/ __/ __ `/ / __ \/ _ \/ _ \/ ___/

/ /_/ / /_/ / /_/ /_/ / / / / /_/ / /_/ / / / / /_/ /_/ / / / / / __/ __/ /
/_____/__,_/__/__,_/_/ /_/____/__,_/_/ /_/__/__,_/_/_/ /_/___/___/_/

____ ________ _ __ ____ ____ _____
/ __ ___/_ __/ /_ (_)___ / /__/ __ \/ __) ___/____ __ _______________

/ /_/ / _ \/ / / __ \/ / __ \/ //_/ / / / __ __ \/ __ \/ / / / ___/ ___/ _ \
/ _, _/ __/ / / / / / / / / / ,< / /_/ / /_/ /__/ / /_/ / /_/ / / / /__/ __/

/_/ |_|___/_/ /_/ /_/_/_/ /_/_/|_/_____/_____/____/____/__,_/_/ ___/___/

By Andrew Stevenson (com.datamountaineer.streamreactor.connect.rethink.source.
→˓ReThinkSourceTask:48)
[2016-10-05 12:09:35,420] INFO ReThinkSourceConfig values:

connect.rethink.port = 28015
connect.rethink.host = localhost
connect.rethink.kcql = insert into rethink-topic select * from source-test
connect.rethink.db = test

1.2. Kafka Connect 63

StreamReactor Documentation, Release 0.1

Test Records

Go to the ReThink Admin console http://localhost:8080/#tables and add a database called test and table called source-
test. Then on the Data Explorer tab insert the following and hit run to insert the record into the table.

r.table('source_test').insert([
{ name: "datamountaineers-rule", tv_show: "Battlestar Galactica",

posts: [
{title: "Decommissioning speech3", content: "The Cylon War is long over..."},
{title: "We are at war", content: "Moments ago, this ship received word..."},
{title: "The new Earth", content: "The discoveries of the past few days..."}

]
}

])

Check for records in Kafka

Check for records in Kafka with the console consumer..

bin/kafka-avro-console-consumer \
--zookeeper localhost:2181 \
--topic rethink-topic \
--from-beginning

{"state":{"string":"initializing"},"old_val":null,"new_val":null,"type":{"string":
→˓"state"}}

{"state":{"string":"ready"},"old_val":null,"new_val":null,"type":{"string":"state"}
→˓}

{"state":null,"old_val":null,"new_val":{"string":"{tv_show=Battlestar Galactica,
→˓name=datamountaineers-rule, id=ec9d337e-ee07-4128-a830-22e4f055ce64, posts=[
→˓{title=Decommissioning speech3, content=The Cylon War is long over...}, {title=We
→˓are at war, content=Moments ago, this ship received word...}, {title=The new Earth,
→˓content=The discoveries of the past few days...}]}"},"type":{"string":"add"}}

Features

The ReThinkDb Source writes change feed records from RethinkDb to Kafka.

The Source supports:

1. Table to topic routing

2. Initialization (Read feed from start)

3. ReThinkDB type (add, delete, update)

4. ReThinkDB initial states

Kafka Connect Query Language

K afka C onnect Q uery L anguage found here GitHub repo allows for routing and mapping using a SQL like syntax,
consolidating typically features in to one configuration option.

The ReThink Source supports the following:

64 Chapter 1. Components

http://localhost:8080/#tables
https://github.com/datamountaineer/kafka-connector-query-language

StreamReactor Documentation, Release 0.1

INSERT INTO <target table> SELECT <fields> FROM <source topic> <INITIALIZE> <BATCH N>

Example:

#Insert mode, select all fields from topicA and write to tableA
INSERT INTO tableA SELECT * FROM topicA

#Insert mode, select all fields from topicA and write to tableA, read from start
INSERT INTO tableA SELECT * FROM topicA INITIALIZE

#Insert mode, select all fields from topicA and write to tableA, read from start and
→˓batch 100 rows to send to kafka
INSERT INTO tableA SELECT * FROM topicA INITIALIZE BATCH = 100

Configurations

connect.rethink.kcql

Kafka connect query language expression. Allows for expressive topic to table routing, field selection and renaming.
Fields to be used as the row key can be set by specifing the PK. The below example uses field1 as the primary key.

• Data type : string

• Importance: high

• Optional : no

Examples:

INSERT INTO TOPIC1 SELECT * FROM TABLE1;INSERT INTO TOPIC2 SELECT * FROM TABLE2

connect.rethink.host

Specifies the rethink server.

• Data type : string

• Importance: high

• Optional : no

connect.rethink.port

Specifies the rethink server port number.

• Data type : int

• Importance: high

• Optional : yes

• Default : 28015

connect.rethink.db

Specifies the rethink database to connect to.

• Data type : string

• Importance: high

• Optional : yes

• Default : connect_rethink_sink

1.2. Kafka Connect 65

StreamReactor Documentation, Release 0.1

connect.rethink.batch.size

The number of records to drain from the internal queue on each poll.

• Data type : int

• Importance: medium

• Optional : yes

• Default : 1000

connect.rethink.linger.ms

The number of milliseconds to wait before flushing the received messages to Kafka. The records will be flushed if the
batch size is reached before the linger period has expired.

• Data type : int

• Importance: medium

• Optional : yes

• Default : 5000

connect.rethink.cert.file

Certificate file to connect to a TLS enabled ReThink cluster. Cannot be used in conjunction with username/password.
connect.rethink.auth.key must be set.

• Data type: string

• Optional : yes

connect.rethink.auth.key

Authentication key to connect to a TLS enabled ReThink cluster. Cannot be used in conjunction with user-
name/password. connect.rethink.cert.file must be set.

• Data type: string

• Optional : yes

connect.rethink.username

Username to connect to ReThink with.

• Data type: string

• Optional : yes

connect.rethink.password

Password to connect to ReThink with.

• Data type: string

• Optional : yes

connect.rethink.ssl.enabled

Enables SSL communication against an SSL enabled Rethink cluster.

• Data type: boolean

• Optional : yes

• Default : false

66 Chapter 1. Components

StreamReactor Documentation, Release 0.1

connect.rethink.trust.store.password

Password for truststore.

• Data type: string

• Optional : yes

connect.rethink.key.store.path

Path to truststore.

• Data type: string

• Optional : yes

connect.rethink.key.store.password

Password for key store.

• Data type: string

• Optional : yes

connect.rethink.ssl.client.cert.auth

Path to keystore.

• Data type: string

• Optional : yes

connect.progress.enabled

Enables the output for how many records have been processed.

• Type: boolean

• Importance: medium

• Optional: yes

• Default : false

Example

name=rethink-source
connect.rethink.host=localhost
connect.rethink.port=28015
connector.class=com.datamountaineer.streamreactor.connect.rethink.source.
→˓ReThinkSourceConnector
tasks.max=1
connect.rethink.kcql=INSERT INTO rethink-topic SELECT * FROM source-test

Schema Evolution

The schema is fixed. The following schema is used:

Name Type Optional
state string yes
new_val string yes
old_val string yes
type string yes

1.2. Kafka Connect 67

StreamReactor Documentation, Release 0.1

Deployment Guidelines

TODO

TroubleShooting

Please review the FAQs and join our slack channel.

Kafka Connect Yahoo

A Connector and Source to write events from the Yahoo Finance API to Kafka.

DOCS WIP!

Kafka Connect Mqtt Source

A Connector to read events from Mqtt and push them to Kafka. The connector subscribes to the specified topics and
and streams the records to Kafka.

The Source supports:

1. Pluggable converters of MQTT payloads.

2. Out of the box converters for Json/Avro and Binary

3. The KCQL routing querying - Topic to Topic mapping and Field selection.

Prerequisites

• Confluent 3.2

• Mqtt server

• Java 1.8

• Scala 2.11

Setup

Confluent Setup

Follow the instructions here.

Mqtt Setup

For testing we will use a simple application spinning up an mqtt server using Moquette. Download and unzip this Also
download the schema required to read the avro records

Once you have unpacked the archiver you should start the server .. sourcecode:: bash

bin/mqtt-server

68 Chapter 1. Components

https://slackpass.io/datamountaineers
https://github.com/datamountaineer/mqtt-server/releases/download/v.0.1/mqtt-server-0.1.tgz
https://github.com/datamountaineer/mqtt-server/releases/download/v.0.1/temperaturemeasure.avro

StreamReactor Documentation, Release 0.1

You should see the following outcome:

log4j:WARN No appenders could be found for logger (io.moquette.server.Server).
log4j:WARN Please initialize the log4j system properly.
log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
Starting mqtt service on port 11883
Hit Enter to start publishing messages on topic: /mjson and /mavro

The server has started but no records have been published yet. More on this later once we start the source.

Source Connector QuickStart

We will start the connector in distributed mode. Each connector exposes a rest endpoint for stopping, starting and
updating the configuration. We have developed a Command Line Interface to make interacting with the Connect Rest
API easier. The CLI can be found in the Stream Reactor download under the bin folder. Alternatively the Jar can be
pulled from our GitHub releases page.

Starting the Connector

Download, unpack and install the Stream Reactor. Follow the instructions here if you haven’t already done so. All
paths in the quickstart are based in the location you installed the Stream Reactor.

Start Kafka Connect in distributed more by running the start-connect.sh script in the bin folder.

bin/start-connect.sh

Once the connector has started we can now use the kafka-connect-tools cli to post in our distributed properties file for
MQTT. If you are using the dockers you will have to set the following environment variable to for the CLI to connect
to the Rest API of Kafka Connect of your container.

export KAFKA_CONNECT_REST="http://myserver:myport"

bin/connect-cli create mqtt-source < conf/source.kcql/mqtt-source.properties

#Connector name=`mqtt-source`
name=mqtt-source
tasks.max=1
connect.mqtt.connection.clean=true
connect.mqtt.connection.timeout=1000
connect.mqtt.kcql=INSERT INTO kjson SELECT * FROM /mjson;INSERT INTO kavro SELECT *
→˓FROM /mavro
connect.mqtt.connection.keep.alive=1000
connect.mqtt.converters=/mjson=com.datamountaineer.streamreactor.connect.converters.
→˓source.JsonSimpleConverter;/mavro=com.datamountaineer.streamreactor.connect.
→˓converters.source.AvroConverter
connect.converter.avro.schemas=/mavro=$PATH_TO/temperaturemeasure.avro
connect.mqtt.client.id=dm_source_id,
connect.mqtt.converter.throw.on.error=true
connect.mqtt.hosts=tcp://127.0.0.1:11883
connect.mqtt.service.quality=1
connector.class=com.datamountaineer.streamreactor.connect.mqtt.source.
→˓MqttSourceConnector
#task ids: 0

The mqtt-source.properties file defines:

1.2. Kafka Connect 69

https://github.com/datamountaineer/kafka-connect-tools/releases

StreamReactor Documentation, Release 0.1

1. The name of the source.

2. The name number of tasks.

3. Clean the mqtt connection.

4. The Kafka Connect Query statements to read from json and avro topics and insert into Kafka kjson and kavro
topics.

5. Setting the time window to emit keep alive pings

6. Set the converters for each of the Mqtt topics. If a source doesn’t get a converter set it will default to BytesCon-
verter

7. Set the avro schema for the ‘avro’ Mqtt topic.

8. The mqtt client identifier.

9. If a conversion can’t happen it will throw an exception.

10. The connection to the Mqtt server.

11. The quality of service for the messages.

12. Set the connector source class.

If you switch back to the terminal you started Kafka Connect in you should see the MQTT Source being accepted and
the task starting.

We can use the CLI to check if the connector is up but you should be able to see this in logs as-well.

#check for running connectors with the CLI
bin/connect-cli ps

mqtt-source

[2016-12-20 16:51:08,058] INFO
____ _ __ __ _ _

| _ \ __ _| |_ __ _| \/ | ___ _ _ _ __ | |_ __ _(_)_ __ ___ ___ _ __
			/ _`	__/ _`		\/		/ _ \|			'_ \| __/ _`		'_ \ / _ \/ _ \ '__														
	_		(_				(_					(_)		_							(_						__/ __/
____/___,_	____,_	_	__	_	___/ __,_	_		_	____,_	_	_		_	___	___	_											
\/	__ _		_		_ / ___	___ _ _ _ __ ___ ___																					
	\/		/ _`	__	__	___ \ / _ \|			'__/ __/ _ \																		
			(_			_		_ ___)	(_)		_				(_	__/											
_		_	__,	__	__		____/ ___/ __,_	_	______	by Stefan Bocutiu																	

|_|
(com.datamountaineer.streamreactor.connect.mqtt.source.MqttSourceTask:37)

[2016-12-20 16:51:08,090] INFO MqttSourceConfig values:
connect.mqtt.kcql = INSERT INTO kjson SELECT * FROM /mjson;INSERT INTO kavro

→˓SELECT * FROM /mavro
connect.mqtt.service.quality = 1
connect.mqtt.connection.ssl.cert = null
connect.mqtt.converters = /mjson=com.datamountaineer.streamreactor.connect.

→˓converters.source.JsonSimpleConverter;/mavro=com.datamountaineer.streamreactor.
→˓connect.converters.source.AvroConverter

connect.mqtt.connection.keep.alive = 1000
connect.mqtt.hosts = tcp://127.0.0.1:11883
connect.mqtt.converter.throw.on.error = true
connect.mqtt.connection.timeout = 1000
connect.mqtt.username = null
connect.mqtt.connection.clean = true
connect.mqtt.connection.ssl.ca.cert = null
connect.mqtt.connection.ssl.key = null

70 Chapter 1. Components

StreamReactor Documentation, Release 0.1

connect.mqtt.password = null
connect.mqtt.client.id = dm_source_id

(com.datamountaineer.streamreactor.connect.mqtt.config.MqttSourceConfig:178)

Test Records

Go to the mqtt-server application you downloaded and unzipped and execute:

./bin/mqtt-server

This will put the following records into the avro and json Mqtt topic:

TemperatureMeasure(1, 31.1, "EMEA", System.currentTimeMillis())
TemperatureMeasure(2, 30.91, "EMEA", System.currentTimeMillis())
TemperatureMeasure(3, 30.991, "EMEA", System.currentTimeMillis())
TemperatureMeasure(4, 31.061, "EMEA", System.currentTimeMillis())
TemperatureMeasure(101, 27.001, "AMER", System.currentTimeMillis())
TemperatureMeasure(102, 38.001, "AMER", System.currentTimeMillis())
TemperatureMeasure(103, 26.991, "AMER", System.currentTimeMillis())
TemperatureMeasure(104, 34.17, "AMER", System.currentTimeMillis())

Check for records in Kafka

Check for records in Kafka with the console consumer. the topic for kjson (the Mqtt payload was a json and we
translated that into a Kafka Connect Struct)

bin/kafka-avro-console-consumer --zookeeper localhost:2181 --topic kjson --from-
→˓beginning

You should see the following output

SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
{"deviceId":1,"value":31.1,"region":"EMEA","timestamp":1482236627236}
{"deviceId":2,"value":30.91,"region":"EMEA","timestamp":1482236627236}
{"deviceId":3,"value":30.991,"region":"EMEA","timestamp":1482236627236}
{"deviceId":4,"value":31.061,"region":"EMEA","timestamp":1482236627236}
{"deviceId":101,"value":27.001,"region":"AMER","timestamp":1482236627236}
{"deviceId":102,"value":38.001,"region":"AMER","timestamp":1482236627236}
{"deviceId":103,"value":26.991,"region":"AMER","timestamp":1482236627236}
{"deviceId":104,"value":34.17,"region":"AMER","timestamp":1482236627236}

Check for records in Kafka with the console consumer. the topic for kavro (the Mqtt payload was a avro and we
translated that into a Kafka Connect Struct)

bin/kafka-avro-console-consumer --zookeeper localhost:2181 --topic kavro --from-
→˓beginning

You should see the following output

SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
{"deviceId":1,"value":31.1,"region":"EMEA","timestamp":1482236627236}
{"deviceId":2,"value":30.91,"region":"EMEA","timestamp":1482236627236}
{"deviceId":3,"value":30.991,"region":"EMEA","timestamp":1482236627236}

1.2. Kafka Connect 71

StreamReactor Documentation, Release 0.1

{"deviceId":4,"value":31.061,"region":"EMEA","timestamp":1482236627236}
{"deviceId":101,"value":27.001,"region":"AMER","timestamp":1482236627236}
{"deviceId":102,"value":38.001,"region":"AMER","timestamp":1482236627236}
{"deviceId":103,"value":26.991,"region":"AMER","timestamp":1482236627236}
{"deviceId":104,"value":34.17,"region":"AMER","timestamp":1482236627236}

Features

The Mqtt source allows you to plugin your own converter. Say you receive protobuf data, all you have to do is to write
your own very specific converter that knows how to convert from protobuf to SourceRecord. All you have to do is set
the connect.mqtt.converters for the topic containing the protobuf data.

Converters

We provide four converters out of the box but you can plug your own. See an example here.

AvroConverter

com.datamountaineer.streamreactor.connect.source.converters.AvroConverter

The payload for the Mqtt message is an Avro message. In this case you need to provide a path for the Avro schema
file to be able to decode it.

JsonSimpleConverter

com.datamountaineer.streamreactor.connect.source.converters.
JsonSimpleConverter

The payload for the Mqtt message is a Json message. This converter will parse the json and create an Avro record for
it which will be sent over to Kafka.

JsonConverterWithSchemaEvolution

An experimental converter for converting Json messages to Avro. The resulting Avro schema is fully compatible as
new fields are added as the MQTT json payload evolves.

BytesConverter

com.datamountaineer.streamreactor.connect.source.converters.BytesConverter

This is the default implementation. The Mqtt payload is taken as is: an array of bytes and sent over Kafka as an avro
record with Schema.BYTES. You don’t have to provide a mapping for the source to get this converter!!

Kafka Connect Query Language

K afka C onnect Q uery L anguage found here GitHub repo allows for routing and mapping using a SQL like syntax,
consolidating typically features in to one configuration option.

The Mqtt Source supports the following:

INSERT INTO <target topic> SELECT * FROM <mqtt source topic>

Example:

#Insert mode, select all fields from topicA and write to tableA
INSERT INTO kafkaTopic1 SELECT * FROM mqttTopicA

72 Chapter 1. Components

https://github.com/datamountaineer/kafka-connector-query-language

StreamReactor Documentation, Release 0.1

Configurations

connect.mqtt.kcql

Kafka connect query language expression. Allows for expressive Mqtt topic to Kafka topic routing. Currently there is
no support for filtering the fields from the incoming payload.

• Data type : string

• Importance: high

• Optional : no

Examples:

INSERT INTO KAFKA_TOPIC1 SELECT * FROM MQTT_TOPIC1;INSERT INTO KAFKA_TOPIC2 SELECT *
→˓FROM MQTT_TOPIC2

connect.mqtt.hosts

Specifies the mqtt connection endpoints.

• Data type : string

• Importance: high

• Optional : no

Example:

tcp://broker.datamountaineer.com:1883

connect.mqtt.service.quality

The Quality of Service (QoS) level is an agreement between sender and receiver of a message regarding the guarantees
of delivering a message. There are 3 QoS levels in MQTT: At most once (0); At least once (1); Exactly once (2).

• Data type : int

• Importance: high

• Optional : yes

• Default: 1

connect.mqtt.username

Contains the Mqtt connection user name

• Data type : string

• Importance: medium

• Optional : yes

• Default: null

connect.mqtt.password

Contains the Mqtt connection password

• Data type : string

• Importance: medium

• Optional : yes

• Default: null

1.2. Kafka Connect 73

StreamReactor Documentation, Release 0.1

connect.mqtt.client.id

Provides the client connection identifier. If is not provided the framework will generate one.

• Data type: string

• Importance: medium

• Optional: yes

• Default: generated

connect.mqtt.connection.timeout

Sets the timeout to wait for the broker connection to be established

• Data type: int

• Importance: medium

• Optional: yes

• Default: 3000 (ms)

connect.mqtt.connection.clean

The clean session flag indicates the broker, whether the client wants to establish a persistent session or not. A persistent
session (the flag is false) means, that the broker will store all subscriptions for the client and also all missed messages,
when subscribing with Quality of Service (QoS) 1 or 2. If clean session is set to true, the broker won’t store anything
for the client and will also purge all information from a previous persistent session.

• Data type: boolean

• Importance: medium

• Optional: yes

• Default: true

connect.mqtt.connection.keep.alive

The keep alive functionality assures that the connection is still open and both broker and client are connected to
one another. Therefore the client specifies a time interval in seconds and communicates it to the broker during the
establishment of the connection. The interval is the longest possible period of time, which broker and client can
endure without sending a message.”

• Data type: int

• Importance: medium

• Optional: yes

• Default: 5000

connect.mqtt.connection.ssl.ca.cert

Provides the path to the CA certificate file to use with the Mqtt connection”

• Data type: string

• Importance: medium

• Optional: yes

• Default: null

connect.mqtt.connection.ssl.cert

Provides the path to the certificate file to use with the Mqtt connection

74 Chapter 1. Components

StreamReactor Documentation, Release 0.1

• Data type: string

• Importance: medium

• Optional: yes

• Default: null

connect.mqtt.connection.ssl.key

Certificate private key file path.

• Data type: string

• Importance: medium

• Optional: yes

• Default: null

connect.mqtt.converters

Contains a tuple (mqtt source topic and the canonical class name for the converter of a raw Mqtt message bytes to a
SourceRecord). If the source topic is not matched it will default to the BytesConverter. This will send an avro message
over Kafka using Schema.BYTES

• Data type: string

• Importance: medium

• Optional: yes

• Default: null

mqtt_source1=com.datamountaineer.streamreactor.connect.source.converters.
→˓AvroConverter;mqtt_source2=com.datamountaineer.streamreactor.connect.source.
→˓converters.JsonSimpleConverter

connect.mqtt.converter.throw.on.error

If set to false the conversion exception will be swallowed and everything carries on BUT the message is lost!!; true
will throw the exception.Default is false.”

• Data type: bool

• Importance: medium

• Optional: yes

• Default: false

connect.converter.avro.schemas

If the AvroConverter is used you need to provide an avro Schema to be able to read and translate the raw bytes to an
avro record. The format is $MQTT_TOPIC=$PATH_TO_AVRO_SCHEMA_FILE

• Data type: bool

• Importance: medium

• Optional: yes

• Default: null

connect.progress.enabled

Enables the output for how many records have been processed.

• Type: boolean

1.2. Kafka Connect 75

StreamReactor Documentation, Release 0.1

• Importance: medium

• Optional: yes

• Default : false

Example

name=mqtt-source
tasks.max=1
connect.mqtt.connection.clean=true
connect.mqtt.connection.timeout=1000
connect.mqtt.kcql=INSERT INTO kjson SELECT * FROM /mjson;INSERT INTO kavro SELECT *
→˓FROM /mavro
connect.mqtt.connection.keep.alive=1000
connect.mqtt.converters=/mjson=com.datamountaineer.streamreactor.connect.converters.
→˓source.JsonSimpleConverter;/mavro=com.datamountaineer.streamreactor.connect.
→˓converters.source.AvroConverter
connect.converter.avro.schemas=/mavro=$PATH_TO/temperaturemeasure.avro
connect.mqtt.client.id=dm_source_id,
connect.mqtt.converter.throw.on.error=true
connect.mqtt.hosts=tcp://127.0.0.1:11883
connect.mqtt.service.quality=1
connector.class=com.datamountaineer.streamreactor.connect.mqtt.source.
→˓MqttSourceConnector

Provide your own Converter

You can always provide your own logic for converting the raw Mqtt message bytes to your an avro record. If you have
messages coming in Protobuf format you can deserialize the message based on the schema and create the avro record.
All you have to do is create a new project and add our dependency:

Gradle:

compile "com.datamountaineer:kafka-connect-common:0.7.1"

Maven:

<dependency>
<groupId>com.datamountaineer</groupId>
<artifactId>kafka-connect-common</artifactId>
<version>0.7.1</version>

</dependency>

Then all you have to do is implement com.datamountaineer.streamreactor.connect.converters.
source.Converter.

Here is our BytesConverter class code:

class BytesConverter extends Converter {
override def convert(kafkaTopic: String, sourceTopic: String, messageId: String,

→˓bytes: Array[Byte]): SourceRecord = {
new SourceRecord(Collections.singletonMap(Converter.TopicKey, sourceTopic),

null,
kafkaTopic,
MsgKey.schema,

76 Chapter 1. Components

StreamReactor Documentation, Release 0.1

MsgKey.getStruct(sourceTopic, messageId),
Schema.BYTES_SCHEMA,
bytes)

}
}

All our implementation will send a a MsgKey object as the Kafka message key. It contains the Mqtt source topic and
the Mqtt message id

Deployment Guidelines

TODO

TroubleShooting

Please review the FAQs and join our slack channel.

Sink Connectors

Sink connectors stream data from Kafka into external systems.

Kafka Connect Azure DocumentDb Sink

The Azure DocumentDb Sink allows you to write events from Kafka to your DocumentDb instance. The connector
converts the Kafka Connect SinkRecords to DocumentDb Documents and will do an insert or upsert, depending on
the configuration you chose. If the database doesn’t exist it can be created automatically - if the configuration flag is
set to true (See Configurations section below). The targeted collections will be created if they don’t already exist.

The Sink supports:

1. The KCQL routing querying - Topic to measure mapping and Field selection.

2. Schema registry support for Connect/Avro with a schema.

3. Schema registry support for Connect and no schema (schema set to Schema.String)

4. Json payload support, no Schema Registry.

5. Error policies.

6. Schema.Struct and payload Struct, Schema.String and Json payload and Json payload with no schema.

The Sink supports three Kafka payloads type:

Connect entry with Schema.Struct and payload Struct. If you follow the best practice while producing the events,
each message should carry its schema information. Best option is to send Avro. Your connect configurations should
be set to value.converter=io.confluent.connect.avro.AvroConverter. You can find an example
here. To see how easy is to have your producer serialize to Avro have a look at this. This requires SchemaRegistry
which is open source thanks to Confluent! Alternatively you can send Json + Schema. In this case your connect con-
figuration should read value.converter=org.apache.kafka.connect.json.JsonConverter. The
difference would be to point your serialization to org.apache.kafka.connect.json.JsonSerializer.
This doesn’t require the SchemaRegistry.

Connect entry with Schema.String and payload json String. Sometimes the producer would find it easier, despite
sending Avro to produce a GenericRecord, to just send a message with Schema.String and the json string.

1.2. Kafka Connect 77

https://slackpass.io/datamountaineers
https://github.com/confluentinc/kafka-connect-blog/blob/master/etc/connect-avro-standalone.properties
http://docs.confluent.io/3.0.1/schema-registry/docs/serializer-formatter.html?highlight=kafkaavroserializer

StreamReactor Documentation, Release 0.1

Connect entry without a schema and the payload json String. There are many existing systems which are publish-
ing json over Kafka and bringing them in line with best practices is quite a challenge. Hence we added the support

Prerequisites

• Azure DocumentDb instance

• Confluent 3.2

• Java 1.8

• Scala 2.11

Setup

Before we can do anything, including the QuickStart we need to install the Confluent platform. For DocumentDb
instance you can either use the emulator provided by Microsoft or provision yourself an instance in Azure.

Confluent Setup

Follow the instructions here.

DocumentDb Setup

If you already have an instance of Azure DocumentDb running you can skip this step. Otherwise, please follow this
to get an Azure account or use the Emulator.

Sink Connector QuickStart

We will start the connector in distributed mode. Each connector exposes a rest endpoint for stopping, starting and
updating the configuration. We have developed a Command Line Interface to make interacting with the Connect Rest
API easier. The CLI can be found in the Stream Reactor download under the bin folder. Alternatively the Jar can be
pulled from our GitHub releases page.

The important configuration for Connect is related to the key and value deserializer. In the first example we default to
the best practice where the source sends Avro messages to a Kafka topic. It is not enough to just be Avro messages but
also the producer must work with the Schema Registry to create the schema if it doesn’t exist and set the schema id
in the message. Every message sent will have a magic byte followed by the Avro schema id and then the actual Avro
record in binary format.

Here are the entries in the config setting all the above. The are placed in the connect-properties file Kafka
Connect is started with. Of course if your SchemaRegistry runs on a different machine or you have multiple instances
of it you will have to amend the configuration.

key.converter=io.confluent.connect.avro.AvroConverter
key.converter.schema.registry.url=http://localhost:8081
value.converter=io.confluent.connect.avro.AvroConverter
value.converter.schema.registry.url=http://localhost:8081

78 Chapter 1. Components

https://azure.microsoft.com/en-gb/pricing/details/documentdb/
https://github.com/datamountaineer/kafka-connect-tools/releases

StreamReactor Documentation, Release 0.1

Test Database

The Sink can handle creating the database if is not present. All you have to do in this case is to set the following in the
configuration

connect.documentdb.database.create=true

Starting the Connector

Download, unpack and install the Stream Reactor. Follow the instructions here if you haven’t already done so. All
paths in the quickstart are based in the location you installed the Stream Reactor.

Start Kafka Connect in distributed more by running the start-connect.sh script in the bin folder.

bin/start-connect.sh

Once the connector has started we can now use the kafka-connect-tools cli to post in our distributed properties file for
Azure DocumentDB. If you are using the dockers you will have to set the following environment variable to for the
CLI to connect to the Rest API of Kafka Connect of your container.

export KAFKA_CONNECT_REST="http://myserver:myport"

bin/connect-cli create azure-docdb-sink < conf/source.kcql/azure-docdb-sink.
→˓properties

#Connector `azure-docdb-sink`:
name=azure-docdb-sink
connector.class=com.datamountaineer.streamreactor.connect.azure.documentdb.sink.
→˓DocumentDbSinkConnector
tasks.max=1
topics=orders-avro
connect.documentdb.kcql=INSERT INTO orders SELECT * FROM orders-avro
connect.documentdb.database.name=dm
connect.documentdb.endpoint=[YOUR_AZURE_ENDPOINT]
connect.documentdb.database.create=true
connect.documentdb.master.key=[YOUR_MASTER_KEY]
connect.documentdb.batch.size=10

#task ids: 0

If you switch back to the terminal you started Kafka Connect in you should see the DocumentDb Sink being accepted
and the task starting.

We can use the CLI to check if the connector is up but you should be able to see this in logs as-well.

#check for running connectors with the CLI
bin/connect-cli ps

azure-docdb-sink

[2017-02-28 21:34:09,922] INFO

_____ _ __ __ _ _
| __ \ | | | \/ | | | (_)
| | | | __ _| |_ __ _| \ / | ___ _ _ _ __ | |_ __ _ _ _ __ ___ ___ _ __
| | | |/ _` | __/ _` | |\/| |/ _ \| | | | '_ \| __/ _` | | '_ \ / _ \/ _ \ '__|
| |__| | (_| | || (_| | | | | (_) | |_| | | | | || (_| | | | | | __/ __/ |

1.2. Kafka Connect 79

StreamReactor Documentation, Release 0.1

|_____/ __,_|____,_|_| |_|___/ __,_|_| |_|____,_|_|_| |_|___|___|_|
By Stefan Bocutiu _____ _____ ____ _____ _ _

/\ | __ \ | __ \| _ \ / ____(_) | |
/ \ _____ _ _ __ ___ | | | | ___ ___| | | | |_) | | (___ _ _ __ | | __

/ /\ \ |_ / | | | '__/ _ \ | | | |/ _ \ / __| | | | _ < ___ \| | '_ \| |/ /
/ ____ \ / /| |_| | | | __/ | |__| | (_) | (__| |__| | |_) | ____) | | | | | <

/_/ _\/___|__,_|_| ___| |_____/ ___/ ___|_____/|____/ |_____/|_|_| |_|_|_\

(com.datamountaineer.streamreactor.connect.azure.documentdb.sink.
→˓DocumentDbSinkTask:56)

Test Records

Hint: If your input topic doesn’t match the target use Kafka Streams to transform in realtime the input. Also checkout
the Plumber, which allows you to inject a Lua script into Kafka Streams to do this, no Java or Scala required!

Now we need to put some records it to the orders-topic. We can use the kafka-avro-console-producer to do
this.

Start the producer and pass in a schema to register in the Schema Registry. The schema matches the table created
earlier.

bin/kafka-avro-console-producer \
--broker-list localhost:9092 --topic orders-avro \
--property value.schema='{"type":"record","name":"myrecord","fields":[{"name":"id",
→˓"type":"string"},
{"name":"created", "type": "string"}, {"name":"product", "type": "string"}, {"name":
→˓"price", "type": "double"}]}'

Now the producer is waiting for input. Paste in the following (each on a line separately):

{"id": "1", "created": "2016-05-06 13:53:00", "product": "OP-DAX-P-20150201-95.7",
→˓"price": 94.2}
{"id": "2", "created": "2016-05-06 13:54:00", "product": "OP-DAX-C-20150201-100",
→˓"price": 99.5}
{"id": "3", "created": "2016-05-06 13:55:00", "product": "FU-DATAMOUNTAINEER-20150201-
→˓100", "price": 10000}
{"id": "4", "created": "2016-05-06 13:56:00", "product": "FU-KOSPI-C-20150201-100",
→˓"price": 150}

Now if we check the logs of the connector we should see 4 records being inserted to DocumentDB:

#From the Query Explorer in you Azure run
SELECT * FROM orders

#The query should return something along the lines

[
{

"product": "OP-DAX-P-20150201-95.7",
"created": "2016-05-06 13:53:00",
"price": 94.2,
"id": "1",
"_rid": "Rrg+APfcfwABAAAAAAAAAA==",

80 Chapter 1. Components

https://github.com/rollulus/kafka-streams-plumber
http://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple

StreamReactor Documentation, Release 0.1

"_self": "dbs/***/colls/***/docs/Rrg+APfcfwABAAAAAAAAAA==/",
"_etag": "\"4000c5f0-0000-0000-0000-58b5ecd10000\"",
"_attachments": "attachments/",
"_ts": 1488317649

},
{

"product": "OP-DAX-C-20150201-100",
"created": "2016-05-06 13:54:00",
"price": 99.5,
"id": "2",
"_rid": "Rrg+APfcfwACAAAAAAAAAA==",
"_self": "dbs/***/colls/***/docs/Rrg+APfcfwACAAAAAAAAAA==/",
"_etag": "\"4000c6f0-0000-0000-0000-58b5ecd10000\"",
"_attachments": "attachments/",
"_ts": 1488317649

},
{

"product": "FU-DATAMOUNTAINEER-20150201-100",
"created": "2016-05-06 13:55:00",
"price": 10000,
"id": "3",
"_rid": "Rrg+APfcfwADAAAAAAAAAA==",
"_self": "dbs/***/colls/***/docs/Rrg+APfcfwADAAAAAAAAAA==/",
"_etag": "\"4000c7f0-0000-0000-0000-58b5ecd10000\"",
"_attachments": "attachments/",
"_ts": 1488317650

},
{

"product": "FU-KOSPI-C-20150201-100",
"created": "2016-05-06 13:56:00",
"price": 150,
"id": "4",
"_rid": "Rrg+APfcfwAEAAAAAAAAAA==",
"_self": "dbs/***/colls/***/docs/Rrg+APfcfwAEAAAAAAAAAA==/",
"_etag": "\"4000c8f0-0000-0000-0000-58b5ecd10000\"",
"_attachments": "attachments/",
"_ts": 1488317650

}
]

Bingo, our 4 documents!

Legacy topics (plain text payload with a json string)

We have found some of the clients have already an infrastructure where they publish pure json on the topic and
obviously the jump to follow the best practice and use schema registry is quite an ask. So we offer support for them as
well.

This time we need to start the connect with a different set of settings.

#create a new configuration for connect
cp etc/schema-registry/connect-avro-distributed.properties etc/schema-registry/
→˓connect-avro-distributed-json.properties
vi vim etc/schema-registry/connect-avro-distributed.properties

Replace the following 4 entries in the config

1.2. Kafka Connect 81

StreamReactor Documentation, Release 0.1

key.converter=io.confluent.connect.avro.AvroConverter
key.converter.schema.registry.url=http://localhost:8081
value.converter=io.confluent.connect.avro.AvroConverter
value.converter.schema.registry.url=http://localhost:8081

with the following

key.converter=org.apache.kafka.connect.json.JsonConverter
key.converter.schemas.enable=false
value.converter=org.apache.kafka.connect.json.JsonConverter
value.converter.schemas.enable=false

Now let’s restart the connect instance:

#start a new instance of connect
$bin/start-connect.sh

Use the CLI to remove the old DocumentDb Sink:

bin/connect-cli rm azure-docdb-sink

and start the new sink with the json properties files to read from the a different topic with json as the payload.

#make a copy of azure-docdb-sink.properties
cp azure-docdb-sink.properties azure-docdb-sink-json.properties

#edit azure-docdb-sink-json.properties replace the following keys
topics=orders-topic-json
connect.documentdb.kcql=INSERT INTO orders_j SELECT * FROM orders-topic-json

#start the connector for DocumentDb
bin/connect-cli create azure-docdb-sink-json < azure-docdb-sink-json.properties

You should see in the terminal where you started Kafka Connect the following entries in the log:

[2017-02-28 21:55:52,192] INFO DocumentDbConfig values:
connect.documentdb.db.name = dm
connect.documentdb.endpoint = [hidden]
connect.documentdb.error.policy = THROW
connect.documentdb.master.key = [hidden]
connect.documentdb.max.retires = 20
connect.documentdb.proxy = null
connect.documentdb.retry.interval = 60000
connect.documentdb.batch.size = 10
connect.documentdb.consistency.level = Session
connect.documentdb.db.create = true
connect.documentdb.kcql = INSERT INTO orders_j SELECT * FROM orders-topic-json

(com.datamountaineer.streamreactor.connect.azure.documentdb.config.
→˓DocumentDbConfig:180)
[2017-02-28 21:55:52,193] INFO

_____ _ __ __ _ _
| __ \ | | | \/ | | | (_)
| | | | __ _| |_ __ _| \ / | ___ _ _ _ __ | |_ __ _ _ _ __ ___ ___ _ __
			/ _`	__/ _`		\/		/ _ \|			'_ \| __/ _`		'_ \ / _ \/ _ \ '__														
	__		(_				(_					(_)		_							(_						__/ __/
_____/ __,_	____,_	_		_	___/ __,_	_		_	____,_	_	_		_	___	___	_											

By Stefan Bocutiu _____ _____ ____ _____ _ _

82 Chapter 1. Components

StreamReactor Documentation, Release 0.1

/\ | __ \ | __ \| _ \ / ____(_) | |
/ \ _____ _ _ __ ___ | | | | ___ ___| | | | |_) | | (___ _ _ __ | | __

/ /\ \ |_ / | | | '__/ _ \ | | | |/ _ \ / __| | | | _ < ___ \| | '_ \| |/ /
/ ____ \ / /| |_| | | | __/ | |__| | (_) | (__| |__| | |_) | ____) | | | | | <

/_/ _\/___|__,_|_| ___| |_____/ ___/ ___|_____/|____/ |_____/|_|_| |_|_|_\

(com.datamountaineer.streamreactor.connect.azure.documentdb.sink.
→˓DocumentDbSinkTask:56)

Now it’s time to produce some records. This time we will use the simple kafka-consoler-consumer to put simple json
on the topic:

${CONFLUENT_HOME}/bin/kafka-console-producer --broker-list localhost:9092 --topic
→˓orders-topic-json

{"id": "1", "created": "2016-05-06 13:53:00", "product": "OP-DAX-P-20150201-95.7",
→˓"price": 94.2}
{"id": "2", "created": "2016-05-06 13:54:00", "product": "OP-DAX-C-20150201-100",
→˓"price": 99.5}
{"id": "3", "created": "2016-05-06 13:55:00", "product": "FU-DATAMOUNTAINEER-20150201-
→˓100", "price":10000}

Let’s check the DocumentDb database for the new records:

#From the Query Explorer in you Azure run
SELECT * FROM orders

#The query should return something along the lines

[
{

"product": "OP-DAX-P-20150201-95.7",
"created": "2016-05-06 13:53:00",
"price": 94.2,
"id": "1",
"_rid": "Rrg+AP5X3gABAAAAAAAAAA==",
"_self": "dbs/***/colls/***/docs/Rrg+AP5X3gABAAAAAAAAAA==/",
"_etag": "\"00007008-0000-0000-0000-58b5f3ff0000\"",
"_attachments": "attachments/",
"_ts": 1488319485

},
{

"product": "OP-DAX-C-20150201-100",
"created": "2016-05-06 13:54:00",
"price": 99.5,
"id": "2",
"_rid": "Rrg+AP5X3gACAAAAAAAAAA==",
"_self": "dbs/****/colls/***/docs/Rrg+AP5X3gACAAAAAAAAAA==/",
"_etag": "\"00007108-0000-0000-0000-58b5f3ff0000\"",
"_attachments": "attachments/",
"_ts": 1488319485

},
{

"product": "FU-DATAMOUNTAINEER-20150201-100",
"created": "2016-05-06 13:55:00",
"price": 10000,

1.2. Kafka Connect 83

StreamReactor Documentation, Release 0.1

"id": "3",
"_rid": "Rrg+AP5X3gADAAAAAAAAAA==",
"_self": "dbs/****/colls/****/docs/Rrg+AP5X3gADAAAAAAAAAA==/",
"_etag": "\"00007208-0000-0000-0000-58b5f3ff0000\"",
"_attachments": "attachments/",
"_ts": 1488319485

}
]

Bingo, our 3 rows!

Features

The sink connector will translate the SinkRecords to json and will insert each one in the database. We support to insert
modes: INSERT and UPSERT. All of this can be expressed via KCQL (our own SQL like syntax for configuration.
Please see below the section for Kafka Connect Query Language)

The sink supports:

1. Field selection - Kafka topic payload field selection is supported, allowing you to have choose selection of fields
or all fields written to DocumentDb.

2. Topic to table routing. Your sink instance can be configured to handle multiple topics and collections. All you
have to do is to set your configuration appropriately. Below you will find an example

connect.documentdb.kcql = INSERT INTO orders SELECT * FROM orders-topic; UPSERT INTO
→˓customers SELECT * FROM customer-topic PK customer_id; UPSERT INTO invoiceid as
→˓invoice_id, customerid as customer_id, value a SELECT invoice_id, FROM invoice-topic

3. Error policies for handling failures.

Kafka Connect Query Language

K afka C onnect Q uery L, KCQL allows for routing and mapping using a SQL like syntax, consolidating typically
features in to one configuration option.

The sink supports the following:

INSERT INTO <database>.<target collection> SELECT <fields> FROM <source topic> <PK
→˓field name>

Example:

#Insert mode, select all fields from topicA and write to tableA
INSERT INTO collectionA SELECT * FROM topicA

#Insert mode, select 3 fields and rename from topicB and write to tableB with primary
→˓key as the field id from the topic
INSERT INTO tableB SELECT x AS a, y AS b and z AS c FROM topicB PK id

Error Polices

The sink has three error policies that determine how failed writes to the target database are handled. The error policies
affect the behaviour of the schema evolution characteristics of the sink. See the schema evolution section for more

84 Chapter 1. Components

StreamReactor Documentation, Release 0.1

information.

Throw

Any error on write to the target database will be propagated up and processing is stopped. This is the default behaviour.

Noop

Any error on write to the target database is ignored and processing continues.

Warning: This can lead to missed errors if you don’t have adequate monitoring. Data is not lost as it’s still in
Kafka subject to Kafka’s retention policy. The sink currently does not distinguish between integrity constraint
violations and or other exceptions thrown by drivers..

Retry

Any error on write to the target database causes the RetryIterable exception to be thrown. This causes the Kafka
connect framework to pause and replay the message. Offsets are not committed. For example, if the database is offline
it will cause a write failure, the message can be replayed. With the Retry policy the issue can be fixed without stopping
the sink.

The length of time the sink will retry can be controlled by using the connect.documentdb.max.retires and
the connect.documentdb.retry.interval.

Topic Routing

The sink supports topic routing that maps the messages from topics to a specific collection. For example map a topic
called “bloomberg_prices” to a collection called “prices”. This mapping is set in the connect.documentdb.
kcql option. You don’t need to set up multiple sinks for each topic or collection. The same sink instance can be
configured to handle multiple collections. For example your configuration in this case:

connect.documentdb.kcql = INSERT INTO orders SELECT * FROM orders-topic; UPSERT INTO
→˓customers SELECT * FROM customer-topic PK customer_id; UPSERT INTO invoiceid as
→˓invoice_id, customerid as customer_id, value a SELECT invoice_id, FROM invoice-topic

Field Selection

The sink supports selecting fields from the source topic or selecting all. There is an option to rename a field as well.
All of this can be easily expressed with KCQL:

• Select all fields from topic fx_prices and insert into the fx collection: INSERT INTO fx SELECT * FROM
fx_prices.

• Select all fields from topic fx_prices and upsert into the fx collection, The assumption is there will be a ticker
field in the incoming json: UPSERT INTO fx SELECT * FROM fx_prices PK ticker.

• Select specific fields from the topic sample_topic and insert into the sample collection: INSERT INTO
sample SELECT field1,field2,field3 FROM sample_topic.

• Select specific fields from the topic sample_topic and upsert into the sample collection: UPSERT INTO
sample SELECT field1,field2,field3 FROM sample_fopic PK field1.

• Rename some fields while selecting all from the topic sample_topic and insert into the sample col-
lection: INSERT INTO sample SELECT *, field1 as new_name1,field2 as new_name2
FROM sample_topic.

1.2. Kafka Connect 85

StreamReactor Documentation, Release 0.1

• Rename some fields while selecting all from the topic sample_topic and upsert into the sample col-
lection: UPSERT INTO sample SELECT *, field1 as new_name1,field2 as new_name2
FROM sample_topic PK new_name1.

• Select specific fields and rename some of them from the topic sample_topic and insert into the sam-
ple collection: INSERT INTO sample SELECT field1 as new_name1,field2, field3 as
new_name3 FROM sample_topic.

• Select specific fields and rename some of them from the topic sample_topic and upsert into the sam-
ple collection: INSERT INTO sample SELECT field1 as new_name1,field2, field3 as
new_name3 FROM sample_fopic PK new_name3.

Configurations

Configurations parameters:

connect.documentdb.db

The Azure DocumentDb target database.

• Data type: string

• Optional : no

connect.documentdb.endpoint

The service endpoint to use to create the client.

• Data type: string

• Optional : no

connect.documentdb.master.key

The connection master key

• Data type: string

• Optional : no

connect.documentdb.consistency.level

Determines the write visibility. There are four possible values: Strong,BoundedStaleness,Session nbyor Eventual

• Data type: string

• Optional : yes

• Default : Session

connect.documentdb.db.create

If set to true it will create the database if it doesn’t exist. If this is set to default(false) an exception will be raised

• Data type: Boolean

• Optional : true

• Default : false

connect.documentdb.proxy

Specifies the connection proxy details.

• Data type: String

• Optional : yes

86 Chapter 1. Components

StreamReactor Documentation, Release 0.1

connect.documentdb.batch.size

The number of records the sink would push to DocumentDb at once (improved performance)

• Data type: int

• Optional : yes

• Default: 100

connect.documentdb.kcql

Kafka connect query language expression. Allows for expressive topic to collectionrouting, field selection and renam-
ing.

Examples:

INSERT INTO TABLE1 SELECT * FROM TOPIC1;INSERT INTO TABLE2 SELECT field1, field2,
→˓field3 as renamedField FROM TOPIC2

• Data Type: string

• Optional : no

connect.documentdb.error.policy

Specifies the action to be taken if an error occurs while inserting the data.

There are three available options, NOOP, the error is swallowed, THROW, the error is allowed to propagate and
retry. For RETRY the Kafka message is redelivered up to a maximum number of times specified by the connect.
documentdb.max.retires option. The connect.documentdb.retry.interval option specifies the
interval between retries.

The errors will be logged automatically.

• Type: string

• Importance: high

• Default: throw

connect.documentdb.max.retires

The maximum number of times a message is retried. Only valid when the connect.documentdb.error.
policy is set to TRHOW.

• Type: string

• Importance: high

• Default: 10

connect.documentdb.retry.interval

The interval, in milliseconds between retries if the sink is using connect.documentdb.error.policy set to
RETRY.

• Type: int

• Importance: medium

• Default : 60000 (1 minute)

connect.progress.enabled

Enables the output for how many records have been processed.

• Type: boolean

1.2. Kafka Connect 87

StreamReactor Documentation, Release 0.1

• Importance: medium

• Optional: yes

• Default : false

Example

name=azure-docdb-sink
connector.class=com.datamountaineer.streamreactor.connect.azure.documentdb.sink.
→˓DocumentDbSinkConnector
tasks.max=1
topics=orders-avro
connect.documentdb.kcql=INSERT INTO orders SELECT * FROM orders-avro
connect.documentdb.db=dm
connect.documentdb.endpoint=[YOUR_AZURE_ENDPOINT]
connect.documentdb.db.create=true
connect.documentdb.master.key=[YOUR_MASTER_KEY]
connect.documentdb.batch.size=10

Schema Evolution

Upstream changes to schemas are handled by Schema registry which will validate the addition and removal or fields,
data type changes and if defaults are set. The Schema Registry enforces Avro schema evolution rules. More informa-
tion can be found here.

Deployment Guidelines

TODO

TroubleShooting

Please review the FAQs and join our slack channel.

Kafka Connect Cassandra Sink

The Cassandra Sink allows you to write events from Kafka to Cassandra. The connector converts the value from
the Kafka Connect SinkRecords to Json and uses Cassandra’s JSON insert functionality to insert the rows. The task
expects pre-created tables in Cassandra.

Note: The table and keyspace must be created before hand!

Note: If the target table has TimeUUID fields the payload string the corresponding field in Kafka must be a UUID.

The Sink supports:

1. The KCQL routing querying - Kafka topic payload field selection is supported, allowing you to have choose
selection of fields or all fields written to Cassandra.

88 Chapter 1. Components

http://docs.confluent.io/3.0.1/schema-registry/docs/api.html#compatibility
https://slackpass.io/datamountaineers

StreamReactor Documentation, Release 0.1

2. Topic to table routing via KCQL.

3. Error policies for handling failures.

4. Payload support for Schema.Struct and payload Struct, Schema.String and Json payload and Json payload with
no schema.

5. Optional TTL, time to live on inserts. See Cassandras documentation for more information.

The Sink supports three Kafka payloads type:

Connect entry with Schema.Struct and payload Struct. If you follow the best practice while producing the events,
each message should carry its schema information. Best option is to send Avro. Your connect configurations should
be set to value.converter=io.confluent.connect.avro.AvroConverter. You can find an example
here. To see how easy is to have your producer serialize to Avro have a look at this. This requires the SchemaRegistry
which is open source thanks to Confluent! Alternatively you can send Json + Schema. In this case your connect con-
figuration should be set to value.converter=org.apache.kafka.connect.json.JsonConverter.
This doesn’t require the SchemaRegistry.

Connect entry with Schema.String and payload json String. Sometimes the producer would find it easier, despite
sending Avro to produce a GenericRecord, to just send a message with Schema.String and the json string.

Connect entry without a schema and the payload json String. There are many existing systems which are publish-
ing json over Kafka and bringing them in line with best practices is quite a challenge. Hence we added the support

Prerequisites!!

• Cassandra 2.2.4+ if your are on version 2.* or 3.0.1+ if you are on version 3.*

• Confluent 3.2

• Java 1.8

• Scala 2.11

Note: You must be using at least Cassandra 3.0.9 to have JSON support!

Setup

Before we can do anything, including the QuickStart we need to install Cassandra and the Confluent platform.

Cassandra Setup

First download and install Cassandra if you don’t have a compatible cluster available.

#make a folder for cassandra
mkdir cassandra

#Download Cassandra
wget http://apache.cs.uu.nl/cassandra/3.5/apache-cassandra-3.5-bin.tar.gz

#extract archive to cassandra folder
tar -xvf apache-cassandra-3.5-bin.tar.gz -C cassandra

#Set up environment variables

1.2. Kafka Connect 89

https://docs.datastax.com/en/cql/3.3/cql/cql_using/useTTL.html
https://github.com/confluentinc/kafka-connect-blog/blob/master/etc/connect-avro-standalone.properties
http://docs.confluent.io/3.0.1/schema-registry/docs/serializer-formatter.html?highlight=kafkaavroserializer

StreamReactor Documentation, Release 0.1

export CASSANDRA_HOME=~/cassandra/apache-cassandra-3.5-bin
export PATH=$PATH:$CASSANDRA_HOME/bin

#Start Cassandra
sudo sh ~/cassandra/bin/cassandra

Confluent Setup

Follow the instructions here.

Sink Connector QuickStart

We will start the connector in distributed mode. Each connector exposes a rest endpoint for stopping, starting and
updating the configuration. We have developed a Command Line Interface to make interacting with the Connect Rest
API easier. The CLI can be found in the Stream Reactor download under the bin folder. Alternatively the Jar can be
pulled from our GitHub releases page.

Test data

The Sink currently expects precreated tables and keyspaces. So lets create a keyspace and table in Cassandra via the
CQL shell first.

Once you have installed and started Cassandra create a table to write records to. This snippet creates a table called
orders to hold fictional orders on a trading platform.

Start the Cassandra cql shell

bin ./cqlsh
Connected to Test Cluster at 127.0.0.1:9042.
[cqlsh 5.0.1 | Cassandra 3.0.2 | CQL spec 3.3.1 | Native protocol v4]
Use HELP for help.
cqlsh>

Execute the following to create the keyspace and table:

CREATE KEYSPACE demo WITH REPLICATION = {'class' : 'SimpleStrategy', 'replication_
→˓factor' : 3};
use demo;

create table orders (id int, created varchar, product varchar, qty int, price float,
→˓PRIMARY KEY (id, created))
WITH CLUSTERING ORDER BY (created asc);

Starting the Connector (Distributed)

Download, unpack and install the Stream Reactor. Follow the instructions here if you haven’t already done so. All
paths in the quickstart are based in the location you installed the Stream Reactor.

Start Kafka Connect in distributed more by running the start-connect.sh script in the bin folder.

bin/start-connect.sh

90 Chapter 1. Components

https://github.com/datamountaineer/kafka-connect-tools/releases

StreamReactor Documentation, Release 0.1

Once the connector has started we can now use the kafka-connect-tools cli to post in our distributed properties file
for Cassandra. If you are using the dockers you will have to set the following environment variable to for the CLI to
connect to the Rest API of Kafka Connect of your container.

export KAFKA_CONNECT_REST="http://myserver:myport"

bin/connect-cli create cassandra-sink-orders < conf/cassandra-sink.properties

#Connector `cassandra-sink-orders`:
name=cassandra-sink-orders
connector.class=com.datamountaineer.streamreactor.connect.cassandra.sink.
→˓CassandraSinkConnector
tasks.max=1
topics=orders-topic
connect.cassandra.kcql=INSERT INTO orders SELECT * FROM orders-topic
connect.cassandra.port=9042
connect.cassandra.key.space=demo
connect.cassandra.contact.points=localhost
connect.cassandra.username=cassandra
connect.cassandra.password=cassandra
#task ids: 0

The cassandra-sink.properties file defines:

1. The name of the sink.

2. The Sink class.

3. The max number of tasks the connector is allowed to created (1 task only).

4. The topics to read from.

5. The KCQL routing querying.

6. The Cassandra host.

7. The Cassandra port.

8. The Cassandra Keyspace.

9. The username.

10. The password.

If you switch back to the terminal you started the Connector in you should see the Cassandra Sink being accepted and
the task starting.

We can use the CLI to check if the connector is up but you should be able to see this in logs as-well.

#check for running connectors with the CLI
bin/connect-cli ps

cassandra-sink

[2016-05-06 13:52:28,178] INFO
____ __ __ ___ __ _

/ __ ____ _/ /_____ _/ |/ /___ __ ______ / /_____ _(_)___ ___ ___ _____
/ / / / __ `/ __/ __ `/ /|_/ / __ \/ / / / __ \/ __/ __ `/ / __ \/ _ \/ _ \/ ___/

/ /_/ / /_/ / /_/ /_/ / / / / /_/ / /_/ / / / / /_/ /_/ / / / / / __/ __/ /
/_____/__,_/__/__,_/_/ /_/____/__,_/_/ /_/__/__,_/_/_/ /_/___/___/_/

______ __ _____ _ __
/ ____/___ _______________ _____ ____/ /________ _/ ___/(_)___ / /__

/ / / __ `/ ___/ ___/ __ `/ __ \/ __ / ___/ __ `/__ \/ / __ \/ //_/

1.2. Kafka Connect 91

StreamReactor Documentation, Release 0.1

/ /___/ /_/ (__ |__) /_/ / / / / /_/ / / / /_/ /___/ / / / / / ,<
____/__,_/____/____/__,_/_/ /_/__,_/_/ __,_//____/_/_/ /_/_/|_|

By Andrew Stevenson. (com.datamountaineer.streamreactor.connect.cassandra.sink.
→˓CassandraSinkTask:50)
[2016-05-06 13:52:28,179] INFO Attempting to connect to Cassandra cluster at
→˓localhost and create keyspace demo. (com.datamountaineer.streamreactor.connect.
→˓cassandra.CassandraConnection$:49)
[2016-05-06 13:52:28,187] WARN You listed localhost/0:0:0:0:0:0:0:1:9042 in your
→˓contact points, but it wasn't found in the control host's system.peers at startup
→˓(com.datastax.driver.core.Cluster:2105)
[2016-05-06 13:52:28,211] INFO Using data-center name 'datacenter1' for
→˓DCAwareRoundRobinPolicy (if this is incorrect, please provide the correct
→˓datacenter name with DCAwareRoundRobinPolicy constructor) (com.datastax.driver.core.
→˓policies.DCAwareRoundRobinPolicy:95)
[2016-05-06 13:52:28,211] INFO New Cassandra host localhost/127.0.0.1:9042 added (com.
→˓datastax.driver.core.Cluster:1475)
[2016-05-06 13:52:28,290] INFO Initialising Cassandra writer. (com.datamountaineer.
→˓streamreactor.connect.cassandra.sink.CassandraJsonWriter:40)
[2016-05-06 13:52:28,295] INFO Preparing statements for orders-topic. (com.
→˓datamountaineer.streamreactor.connect.cassandra.sink.CassandraJsonWriter:62)
[2016-05-06 13:52:28,305] INFO Sink task org.apache.kafka.connect.runtime.
→˓WorkerSinkTask@37e65d57 finished initialization and start (org.apache.kafka.connect.
→˓runtime.WorkerSinkTask:155)
[2016-05-06 13:52:28,331] INFO Source task Thread[WorkerSourceTask-cassandra-source-
→˓orders-0,5,main] finished initialization and start (org.apache.kafka.connect.
→˓runtime.WorkerSourceTask:342)

Test Records

Now we need to put some records it to the orders-topic. We can use the kafka-avro-console-producer to do
this.

Start the producer and pass in a schema to register in the Schema Registry. The schema matches the table created
earlier.

Hint: If your input topic doesn’t match the target use Kafka Streams to transform in realtime the input. Also checkout
the Plumber, which allows you to inject a Lua script into Kafka Streams to do this, no Java or Scala required!

${CONFLUENT_HOME}/bin/kafka-avro-console-producer \
--broker-list localhost:9092 --topic orders-topic \
--property value.schema='{"type":"record","name":"myrecord","fields":[{"name":"id",
→˓"type":"int"},{"name":"created","type":"string"},{"name":"product","type":"string"},
→˓{"name":"price","type":"double"}, {"name":"qty", "type":"int"}]}'

Now the producer is waiting for input. Paste in the following (each on a line separately):

{"id": 1, "created": "2016-05-06 13:53:00", "product": "OP-DAX-P-20150201-95.7",
→˓"price": 94.2, "qty":100}
{"id": 2, "created": "2016-05-06 13:54:00", "product": "OP-DAX-C-20150201-100", "price
→˓": 99.5, "qty":100}
{"id": 3, "created": "2016-05-06 13:55:00", "product": "FU-DATAMOUNTAINEER-20150201-
→˓100", "price": 10000, "qty":100}
{"id": 4, "created": "2016-05-06 13:56:00", "product": "FU-KOSPI-C-20150201-100",
→˓"price": 150, "qty":100}

92 Chapter 1. Components

https://github.com/rollulus/kafka-streams-plumber
http://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple

StreamReactor Documentation, Release 0.1

Now if we check the logs of the connector we should see 2 records being inserted to Cassandra:

[2016-05-06 13:55:10,368] INFO Setting newly assigned partitions [orders-topic-0] for
→˓group connect-cassandra-sink-1 (org.apache.kafka.clients.consumer.internals.
→˓ConsumerCoordinator:219)
[2016-05-06 13:55:16,423] INFO Received 4 records. (com.datamountaineer.streamreactor.
→˓connect.cassandra.sink.CassandraJsonWriter:96)
[2016-05-06 13:55:16,484] INFO Processed 4 records. (com.datamountaineer.
→˓streamreactor.connect.cassandra.sink.CassandraJsonWriter:138)

use demo;
SELECT * FROM orders;

id | created | price | product | qty
----+---------------------+-------+-----------------------------------+-----

1 | 2016-05-06 13:53:00 | 94.2 | OP-DAX-P-20150201-95.7 | 100
2 | 2016-05-06 13:54:00 | 99.5 | OP-DAX-C-20150201-100 | 100
3 | 2016-05-06 13:55:00 | 10000 | FU-DATAMOUNTAINEER-20150201-100 | 500
4 | 2016-05-06 13:56:00 | 150 | FU-KOSPI-C-20150201-100 | 200

(4 rows)

Bingo, our 4 rows!

Features

The Sink connector uses Cassandra’s JSON insert functionality. The SinkRecord from Kafka Connect is converted to
JSON and feed into the prepared statements for inserting into Cassandra.

See Cassandra’s documentation for type mapping.

Kafka Connect Query Language

K afka C onnect Q uery L anguage found here GitHub repo allows for routing and mapping using a SQL like syntax,
consolidating typically features in to one configuration option.

The Cassandra Sink supports the following:

INSERT INTO <target table> SELECT <fields> FROM <source topic> TTL=<TTL>

Example:

#Insert mode, select all fields from topicA and write to tableA
INSERT INTO tableA SELECT * FROM topicA

#Insert mode, select 3 fields and rename from topicB and write to tableB
INSERT INTO tableB SELECT x AS a, y AS b and z AS c FROM topicB

#Insert mode, select 3 fields and rename from topicB and write to tableB with TTL
INSERT INTO tableB SELECT x AS a, y AS b and z AS c FROM topicB TTL=100000

1.2. Kafka Connect 93

http://www.datastax.com/dev/blog/whats-new-in-cassandra-2-2-json-support
http://cassandra.apache.org/doc/cql3/CQL-2.2.html#insertJson
https://github.com/datamountaineer/kafka-connector-query-language

StreamReactor Documentation, Release 0.1

Error Polices

The Sink has three error policies that determine how failed writes to the target database are handled. The error policies
affect the behaviour of the schema evolution characteristics of the sink. See the schema evolution section for more
information.

Throw

Any error on write to the target database will be propagated up and processing is stopped. This is the default behaviour.

Noop

Any error on write to the target database is ignored and processing continues.

Warning: This can lead to missed errors if you don’t have adequate monitoring. Data is not lost as it’s still in
Kafka subject to Kafka’s retention policy. The Sink currently does not distinguish between integrity constraint
violations and or other expections thrown by drivers..

Retry

Any error on write to the target database causes the RetryIterable exception to be thrown. This causes the Kafka
connect framework to pause and replay the message. Offsets are not committed. For example, if the table is offline it
will cause a write failure, the message can be replayed. With the Retry policy the issue can be fixed without stopping
the sink.

The length of time the Sink will retry can be controlled by using the connect.cassandra.max.retries and
the connect.cassandra.retry.interval.

Topic Routing

The Sink supports topic routing that allows mapping the messages from topics to a specific table. For example map a
topic called “bloomberg_prices” to a table called “prices”. This mapping is set in the connect.cassandra.kcql
option.

Field Selection

The Sink supports selecting fields from the Source topic or selecting all fields and mapping of these fields to columns
in the target table. For example, map a field called “qty” in a topic to a column called “quantity” in the target table.

All fields can be selected by using “*” in the field part of connect.cassandra.kcql.

Leaving the column name empty means trying to map to a column in the target table with the same name as the field
in the source topic.

Legacy topics (plain text payload with a json string)

We have found some of the clients have already an infrastructure where they publish pure json on the topic and
obviously the jump to follow the best practice and use schema registry is quite an ask. So we offer support for them as
well.

This time we need to start the connect with a different set of settings.

94 Chapter 1. Components

StreamReactor Documentation, Release 0.1

#create a new configuration for connect
cp etc/schema-registry/connect-avro-distributed.properties etc/schema-registry/
→˓connect-distributed-json.properties
vi etc/schema-registry/connect-distributed-json.properties

Replace the following 4 entries in the config

key.converter=io.confluent.connect.avro.AvroConverter
key.converter.schema.registry.url=http://localhost:8081
value.converter=io.confluent.connect.avro.AvroConverter
value.converter.schema.registry.url=http://localhost:8081

with the following

key.converter=org.apache.kafka.connect.json.JsonConverter
key.converter.schemas.enable=false
value.converter=org.apache.kafka.connect.json.JsonConverter
value.converter.schemas.enable=false

Now let’s restart the connect instance: .. sourcecode:: bash

#start a new instance of connect $CONFLUENT_HOME/bin/connect-distributed etc/schema-
registry/connect-distributed-json.properties

Configurations

Configurations common to both Sink and Source are:

connect.cassandra.contact.points

Contact points (hosts) in Cassandra cluster. This is a comma separated value. i.e:host-1,host-2

• Data type: string

• Optional : no

connect.cassandra.key.space

Key space the tables to write belong to.

• Data type: string

• Optional : no

connect.cassandra.port

Port for the native Java driver.

• Data type: int

• Optional : yes

• Default : 9042

connect.cassandra.username

Username to connect to Cassandra with.

• Data type: string

• Optional : yes

1.2. Kafka Connect 95

StreamReactor Documentation, Release 0.1

connect.cassandra.password

Password to connect to Cassandra with.

• Data type: string

• Optional : yes

connect.cassandra.ssl.enabled

Enables SSL communication against SSL enable Cassandra cluster.

• Data type: boolean

• Optional : yes

• Default : false

connect.cassandra.trust.store.password

Password for truststore.

• Data type: string

• Optional : yes

connect.cassandra.key.store.path

Path to truststore.

• Data type: string

• Optional : yes

connect.cassandra.key.store.password

Password for key store.

• Data type: string

• Optional : yes

connect.cassandra.ssl.client.cert.auth

Path to keystore.

• Data type: string

• Optional : yes

connect.cassandra.kcql

Kafka connect query language expression. Allows for expressive topic to table routing, field selection and renaming.

Examples:

INSERT INTO TABLE1 SELECT * FROM TOPIC1;INSERT INTO TABLE2 SELECT field1, field2,
→˓field3 as renamedField FROM TOPIC2

• Data Type: string

• Optional : no

connect.cassandra.error.policy

Specifies the action to be taken if an error occurs while inserting the data.

96 Chapter 1. Components

StreamReactor Documentation, Release 0.1

There are three available options, noop, the error is swallowed, throw, the error is allowed to propagate and retry. For
retry the Kafka message is redelivered up to a maximum number of times specified by the connect.cassandra.
max.retries option. The connect.cassandra.retry.interval option specifies the interval between
retries.

The errors will be logged automatically.

• Type: string

• Importance: high

• Default: throw

connect.cassandra.max.retries

The maximum number of times a message is retried. Only valid when the connect.cassandra.error.policy
is set to retry.

• Type: string

• Importance: high

• Default: 10

connect.cassandra.retry.interval

The interval, in milliseconds between retries if the Sink is using connect.cassandra.error.policy set to
RETRY.

• Type: int

• Importance: medium

• Default : 60000 (1 minute)

connect.progress.enabled

Enables the output for how many records have been processed.

• Type: boolean

• Importance: medium

• Optional: yes

• Default : false

Example

name=cassandra-sink-orders
connector.class=com.datamountaineer.streamreactor.connect.cassandra.sink.
→˓CassandraSinkConnector
tasks.max=1
topics=orders-topic
connect.cassandra.kcql = INSERT INTO TABLE1 SELECT * FROM TOPIC1;INSERT INTO TABLE2
→˓SELECT field1,
field2, field3 as renamedField FROM TOPIC2
connect.cassandra.contact.points=localhost
connect.cassandra.port=9042
connect.cassandra.key.space=demo
connect.cassandra.contact.points=localhost
connect.cassandra.username=cassandra
connect.cassandra.password=cassandra

1.2. Kafka Connect 97

StreamReactor Documentation, Release 0.1

Schema Evolution

Upstream changes to schemas are handled by Schema registry which will validate the addition and removal or fields,
data type changes and if defaults are set. The Schema Registry enforces Avro schema evolution rules. More informa-
tion can be found here.

For the Sink connector, if columns are add to the target Cassandra table and not present in the Source topic they will be
set to null by Cassandras Json insert functionality. Columns which are omitted from the JSON value map are treated
as a null insert (which results in an existing value being deleted, if one is present), if a record with the same key is
inserted again.

Future releases will support auto creation of tables and adding columns on changes to the topic schema.

Deployment Guidelines

TODO

TroubleShooting

Please review the FAQs and join our slack channel.

Kafka Connect CoAP Sink

A Connector and Sink to stream messages from Kafka to a CoAP server.

The Sink supports:

1. DTLS secure clients.

2. The KCQL routing querying - Topic to measure mapping and Field selection.

3. Schema registry support for Connect/Avro with a schema.

4. Schema registry support for Connect and no schema (schema set to Schema.String)

5. Json payload support, no Schema Registry.

6. Error policies.

7. Payload support for Schema.Struct and payload Struct, Schema.String and Json payload and Json payload with
no schema

The Sink supports three Kafka payloads type:

Connect entry with Schema.Struct and payload Struct. If you follow the best practice while producing the events,
each message should carry its schema information. Best option is to send Avro. Your connect configurations should
be set to value.converter=io.confluent.connect.avro.AvroConverter. You can find an example
here. To see how easy is to have your producer serialize to Avro have a look at this. This requires the SchemaRegistry
which is open source thanks to Confluent! Alternatively you can send Json + Schema. In this case your connect con-
figuration should be set to value.converter=org.apache.kafka.connect.json.JsonConverter.
This doesn’t require the SchemaRegistry.

Connect entry with Schema.String and payload json String. Sometimes the producer would find it easier, despite
sending Avro to produce a GenericRecord, to just send a message with Schema.String and the json string.

Connect entry without a schema and the payload json String. There are many existing systems which are publish-
ing json over Kafka and bringing them in line with best practices is quite a challenge. Hence we added the support

98 Chapter 1. Components

http://docs.confluent.io/3.0.1/schema-registry/docs/api.html#compatibility
https://slackpass.io/datamountaineers
https://github.com/confluentinc/kafka-connect-blog/blob/master/etc/connect-avro-standalone.properties
http://docs.confluent.io/3.0.1/schema-registry/docs/serializer-formatter.html?highlight=kafkaavroserializer

StreamReactor Documentation, Release 0.1

The payload of the CoAP request sent to the CoAP server is sent as json.

Prerequisites

• Confluent 3.2

• Java 1.8

• Scala 2.11

Setup

Confluent Setup

Follow the instructions here.

CoAP Setup

The connector uses Californium Java API under the hood. Copper, a FireFox browser addon is available so you can
browse the server and resources.

We will use a simple CoAP test server we have developed for testing. Download the CoAP test server from our github
release page and start the server in a new terminal tab.

mkdir coap_server
cd coap_server
wget https://github.com/datamountaineer/coap-test-server/releases/download/v1.0/start-
→˓server.sh
chmod +x start-server.sh
./start-server.sh

You will see the server start listening on port 5864 for secure DTLS connections and on port 5633 for insecure
connections.

m.DTLSConnector$Worker.java:-1) run() in thread DTLS-Receiver-0.0.0.0/0.0.0.0:5634 at
→˓(2017-01-10 15:41:08)
1 INFO [CoapEndpoint]: Starting endpoint at localhost/127.0.0.1:5633 - (org.eclipse.
→˓californium.core.network.CoapEndpoint.java:192) start() in thread main at (2017-01-
→˓10 15:41:08)
1 CONFIG [UDPConnector]: UDPConnector starts up 1 sender threads and 1 receiver
→˓threads - (org.eclipse.californium.elements.UDPConnector.java:261) start() in
→˓thread main at (2017-01-10 15:41:08)
1 CONFIG [UDPConnector]: UDPConnector listening on /127.0.0.1:5633, recv buf = 65507,
→˓ send buf = 65507, recv packet size = 2048 - (org.eclipse.californium.elements.
→˓UDPConnector.java:261) start() in thread main at (2017-01-10 15:41:08)
Secure CoAP server powered by Scandium (Sc) is listening on port 5634
UnSecure CoAP server powered by Scandium (Sc) is listening on port 5633

Source Connector QuickStart

We will start the connector in distributed mode. Each connector exposes a rest endpoint for stopping, starting and
updating the configuration. We have developed a Command Line Interface to make interacting with the Connect Rest

1.2. Kafka Connect 99

https://github.com/eclipse/californium
https://addons.mozilla.org/en-US/firefox/addon/copper-270430/

StreamReactor Documentation, Release 0.1

API easier. The CLI can be found in the Stream Reactor download under the bin folder. Alternatively the Jar can be
pulled from our GitHub releases page.

Starting the Connector

Download, unpack and install the Stream Reactor. Follow the instructions here if you haven’t already done so. All
paths in the quickstart are based in the location you installed the Stream Reactor.

Start Kafka Connect in distributed more by running the start-connect.sh script in the bin folder.

bin/start-connect.sh

Once the connector has started we can now use the kafka-connect-tools cli to post in our distributed properties file for
MQTT. If you are using the dockers you will have to set the following environment variable to for the CLI to connect
to the Rest API of Kafka Connect of your container.

export KAFKA_CONNECT_REST="http://myserver:myport"

bin/connect-cli create coap-source < conf/coap-source.properties

#Connector name=`coap-sink`
name = coap-sink
tasks = 1
connector.class = com.datamountaineer.streamreactor.connect.coap.sink.
→˓CoapSinkConnector
connect.coap.uri = coap://localhost:5683
connect.coap.kcql = INSERT INTO unsecure SELECT * FROM coap_topic
topics = coap_topic
#task ids: 0

The coap-source.properties file defines:

1. The name of the sink.

2. The name number of tasks.

3. The class containing the connector.

4. The uri of the CoAP Server and port to connect to.

5. The KCQL routing querying.. This specifies the target resources on the CoAP server and the source topic.

6. The topics to source (Required by Connect Framework).

If you switch back to the terminal you started Kafka Connect in you should see the CoAP Sink being accepted and the
task starting.

We can use the CLI to check if the connector is up but you should be able to see this in logs as-well.

#check for running connectors with the CLI
bin/connect-cli ps

coap-sink

INFO
____ __ __ ___ __ _

/ __ ____ _/ /_____ _/ |/ /___ __ ______ / /_____ _(_)___ ___ ___ _____
/ / / / __ `/ __/ __ `/ /|_/ / __ \/ / / / __ \/ __/ __ `/ / __ \/ _ \/ _ \/ ___/

/ /_/ / /_/ / /_/ /_/ / / / / /_/ / /_/ / / / / /_/ /_/ / / / / / __/ __/ /
/_____/__,_/__/__,_/_/ /_/____/__,_/_/ /_/__/__,_/_/_/ /_/___/___/_/

100 Chapter 1. Components

https://github.com/datamountaineer/kafka-connect-tools/releases

StreamReactor Documentation, Release 0.1

______ _____ _ __
/ ____/___ ____ _____ / ___/(_)___ / /__ By Andrew Stevenson

/ / / __ \/ __ `/ __ __ \/ / __ \/ //_/
/ /___/ /_/ / /_/ / /_/ /__/ / / / / / ,<
____/____/__,_/ .___/____/_/_/ /_/_/|_|

/_/ (com.datamountaineer.streamreactor.connect.coap.sink.
→˓CoapSinkTask:52)
[2017-01-10 12:57:32,238] INFO CoapSinkConfig values:

connect.coap.uri = coap://localhost:5683
connect.coap.port = 0
connect.coap.retry.interval = 60000
connect.coap.truststore.pass = [hidden]
connect.coap.cert.chain.key = client
connect.coap.error.policy = THROW
connect.coap.kcql = INSERT INTO unsecure SELECT * FROM coap_topic
connect.coap.host = localhost
connect.coap.certs = []
connect.coap.max.retires = 20
connect.coap.keystore.path =
connect.coap.truststore.path =
connect.coap.keystore.pass = [hidden]

(com.datamountaineer.streamreactor.connect.coap.configs.CoapSinkConfig:178)

Test Records

Now we need to put some records it to the coap_topic topics. We can use the kafka-avro-console-producer
to do this.

Start the producer and pass in a schema to register in the Schema Registry. The schema has a firstname field of
type string, a lastname field of type string, an age field of type int and a salary field of type double.

${CONFLUENT_HOME}/bin/kafka-avro-console-producer \
--broker-list localhost:9092 --topic coap-topic \
--property value.schema='{"type":"record","name":"User","namespace":"com.

→˓datamountaineer.streamreactor.connect.rethink"
,"fields":[{"name":"firstName","type":"string"},{"name":"lastName","type":"string"},

→˓{"name":"age","type":"int"},{"name":"salary","type":"double"}]}'

Now the producer is waiting for input. Paste in the following:

{"firstName": "John", "lastName": "Smith", "age":30, "salary": 4830}

Check for Records in the CoAP server via Copper

Now check the logs of the connector you should see this:

[2017-01-10 13:47:36,525] INFO Delivered 1 records for coap-topic. (com.
→˓datamountaineer.streamreactor.connect.coap.sink.CoapSinkTask:47)

In Firefox go the following url. If you have not installed Copper do so here .

coap://127.0.0.1:5633/insecure

Hit the get button and the records will be displayed in the bottom panel.

1.2. Kafka Connect 101

https://addons.mozilla.org/en-US/firefox/addon/copper-270430/

StreamReactor Documentation, Release 0.1

Configurations

connect.coap.uri

Uri of the CoAP server.

• Data Type : string

• Importance: high

• Optional : no

connect.coap.kcql

The KCQL statement to select and route resources to topics.

• Data Type : string

• Importance: high

• Optional : no

connect.coap.port

The port the DTLS connector will bind to on the Connector host.

• Data Type : int

• Importance: medium

• Optional : yes

• Default : 0

connect.coap.host

The hostname the DTLS connector will bind to on the Connector host.

102 Chapter 1. Components

StreamReactor Documentation, Release 0.1

• Data Type : string

• Importance: medium

• Optional : yes

• Default : localhost

connect.coap.keystore.pass

The password of the key store

• Data Type : string

• Importance: medium

• Optional : yes

• Default : rootPass

connect.coap.keystore.path

The path to the keystore.

• Data Type : string

• Importance: medium

• Optional : yes

• Default :

connect.coap.truststore.pass

The password of the trust store

• Data Type : string

• Importance: medium

• Optional : yes

• Default : rootPass

connect.coap.truststore.path

The path to the truststore.

• Data Type : string

• Importance: medium

• Optional : yes

• Default :

connect.coap.certs

The certificates to load from the trust store.

• Data Type : list

• Importance: medium

• Optional : yes

• Default :

connect.coap.cert.chain.key

The key to use to get the certificate chain.

1.2. Kafka Connect 103

StreamReactor Documentation, Release 0.1

• Data Type : string

• Importance: medium

• Optional : yes

• Default : client

connect.coap.error.policy

Specifies the action to be taken if an error occurs while inserting the data.

There are three available options, noop, the error is swallowed, throw, the error is allowed to propagate and retry. For
retry the Kafka message is redelivered up to a maximum number of times specified by the connect.coap.max.
retries option. The connect.coap.retry.interval option specifies the interval between retries.

The errors will be logged automatically.

• Type: string

• Importance: medium

• Optional: yes

• Default: RETRY

connect.coap.max.retries

The maximum number of times a message is retried. Only valid when the connect.coap.error.policy is set
to retry.

• Type: string

• Importance: high

• Optional: yes

• Default: 10

connect.coap.retry.interval

The interval, in milliseconds between retries if the Sink is using connect.coap.error.policy set to RETRY.

• Type: int

• Importance: medium

• Optional: yes

• Default : 60000 (1 minute)

connect.progress.enabled

Enables the output for how many records have been processed.

• Type: boolean

• Importance: medium

• Optional: yes

• Default : false

TroubleShooting

Please review the FAQs and join our slack channel.

104 Chapter 1. Components

https://slackpass.io/datamountaineers

StreamReactor Documentation, Release 0.1

Kafka Connect Elastic

A Connector and Sink to write events from Kafka to Elastic Search using Elastic4s client. The connector converts the
value from the Kafka Connect SinkRecords to Json and uses Elastic4s’s JSON insert functionality to index.

The Sink creates an Index and Type corresponding to the topic name and uses the JSON insert functionality from
Elastic4s.

The Sink supports:

1. Auto index creation at start up.

2. The KCQL routing querying - Topic to index mapping and Field selection.

3. Auto mapping of the Kafka topic schema to the index.

Prerequisites

• Confluent 3.2

• Elastic Search 2.2

• Java 1.8

• Scala 2.11

Setup

Confluent Setup

Follow the instructions here.

Elastic Setup

Download and start Elastic search.

curl -L -O https://download.elastic.co/elasticsearch/release/org/elasticsearch/
→˓distribution/tar/elasticsearch/2.2.0/elasticsearch-2.2.0.tar.gz
tar -xvf elasticsearch-2.2.0.tar.gz
cd elasticsearch-2.2.0/bin
./elasticsearch --cluster.name elasticsearch

Sink Connector QuickStart

We will start the connector in distributed mode. Each connector exposes a rest endpoint for stopping, starting and
updating the configuration. We have developed a Command Line Interface to make interacting with the Connect Rest
API easier. The CLI can be found in the Stream Reactor download under the bin folder. Alternatively the Jar can be
pulled from our GitHub releases page.

1.2. Kafka Connect 105

https://github.com/sksamuel/elastic4s
https://github.com/datamountaineer/kafka-connect-tools/releases

StreamReactor Documentation, Release 0.1

Starting the Connector (Distributed)

Download, unpack and install the Stream Reactor. Follow the instructions here if you haven’t already done so. All
paths in the quickstart are based in the location you installed the Stream Reactor.

Start Kafka Connect in distributed more by running the start-connect.sh script in the bin folder.

bin/start-connect.sh

Once the connector has started we can now use the kafka-connect-tools cli to post in our distributed properties file for
Elastic. If you are using the dockers you will have to set the following environment variable to for the CLI to connect
to the Rest API of Kafka Connect of your container.

export KAFKA_CONNECT_REST="http://myserver:myport"

bin/connect-cli create elastic-sink < conf/elastic-sink.properties

#Connector name=`elastic-sink`
connect.progress.enabled=true
name=elastic-sink
connector.class=com.datamountaineer.streamreactor.connect.elastic5.
→˓ElasticSinkConnector
connect.elastic.url=localhost:9300
connect.elastic.cluster.name=elasticsearch
tasks.max=1
topics=orders-topic
connect.elastic.kcql=INSERT INTO index_1 SELECT * FROM orders-topic
#task ids: 0

The elastic-sink.properties file defines:

1. The name of the connector.

2. The class containing the connector.

3. The name of the cluster on the Elastic Search server to connect to.

4. The max number of task allowed for this connector.

5. The Source topic to get records from.

6. The KCQL routing querying.

If you switch back to the terminal you started the Connector in you should see the Elastic Sink being accepted and the
task starting.

We can use the CLI to check if the connector is up but you should be able to see this in logs as-well.

#check for running connectors with the CLI
bin/connect-cli ps

elastic-sink

[2016-05-08 20:56:52,241] INFO

____ __ __ ___ __ _
/ __ ____ _/ /_____ _/ |/ /___ __ ______ / /_____ _(_)___ ___ ___ _____
/ / / / __ `/ __/ __ `/ /|_/ / __ \/ / / / __ \/ __/ __ `/ / __ \/ _ \/ _ \/ ___/

/ /_/ / /_/ / /_/ /_/ / / / / /_/ / /_/ / / / / /_/ /_/ / / / / / __/ __/ /
/_____/__,_/__/__,_/_/ /_/____/__,_/_/ /_/__/__,_/_/_/ /_/___/___/_/

________ __ _ _____ _ __

106 Chapter 1. Components

StreamReactor Documentation, Release 0.1

/ ____/ /___ ______/ /_(_)____/ ___/(_)___ / /__
/ __/ / / __ `/ ___/ __/ / ___/__ \/ / __ \/ //_/

/ /___/ / /_/ (__) /_/ / /__ ___/ / / / / / ,<
/_____/_/__,_/____/__/_/___//____/_/_/ /_/_/|_|

by Andrew Stevenson
(com.datamountaineer.streamreactor.connect.elastic.ElasticSinkTask:33)

[2016-05-08 20:56:52,327] INFO [Hebe] loaded [], sites [] (org.elasticsearch.
→˓plugins:149)
[2016-05-08 20:56:52,765] INFO Initialising Elastic Json writer (com.datamountaineer.
→˓streamreactor.connect.elastic.ElasticJsonWriter:31)
[2016-05-08 20:56:52,777] INFO Assigned List(test_table) topics. (com.datamountaineer.
→˓streamreactor.connect.elastic.ElasticJsonWriter:33)
[2016-05-08 20:56:52,836] INFO Sink task org.apache.kafka.connect.runtime.
→˓WorkerSinkTask@69b6b39 finished initialization and start (org.apache.kafka.connect.
→˓runtime.WorkerSinkTask:155)

Test Records

Now we need to put some records it to the test_table topics. We can use the kafka-avro-console-producer
to do this.

Start the producer and pass in a schema to register in the Schema Registry. The schema has a id field of type int and
a random_field of type string.

${CONFLUENT_HOME}/bin/kafka-avro-console-producer \
--broker-list localhost:9092 --topic orders-topic \
--property value.schema='{"type":"record","name":"myrecord","fields":[{"name":"id",
→˓"type":"int"},
{"name":"random_field", "type": "string"}]}'

Now the producer is waiting for input. Paste in the following:

{"id": 999, "random_field": "foo"}
{"id": 888, "random_field": "bar"}

Check for records in Elastic Search

Now if we check the logs of the connector we should see 2 records being inserted to Elastic Search:

[2016-05-08 21:02:52,095] INFO Flushing Elastic Sink (com.datamountaineer.
→˓streamreactor.connect.elastic.ElasticSinkTask:73)
[2016-05-08 21:03:52,097] INFO No records received. (com.datamountaineer.
→˓streamreactor.connect.elastic.ElasticJsonWriter:63)
[2016-05-08 21:03:52,097] INFO org.apache.kafka.connect.runtime.
→˓WorkerSinkTask@69b6b39 Committing offsets (org.apache.kafka.connect.runtime.
→˓WorkerSinkTask:187)
[2016-05-08 21:03:52,097] INFO Flushing Elastic Sink (com.datamountaineer.
→˓streamreactor.connect.elastic.ElasticSinkTask:73)
[2016-05-08 21:04:20,613] INFO Elastic write successful for 2 records! (com.
→˓datamountaineer.streamreactor.connect.elastic.ElasticJsonWriter:77)

1.2. Kafka Connect 107

StreamReactor Documentation, Release 0.1

If we query Elastic Search for id 999:

curl -XGET 'http://localhost:9200/INDEX_1/_search?q=id:999'

{
"took": 45,
"timed_out": false,
"_shards": {

"total": 5,
"successful": 5,
"failed": 0

},
"hits": {

"total": 1,
"max_score": 1.2231436,
"hits": [{

"_index": "INDEX_1",
"_type": "INDEX_1",
"_id": "AVMY4eZXFguf2uMZyxjU",
"_score": 1.2231436,
"_source": {

"id": 999,
"random_field": "foo"

}
}]

}
}

Features

1. Auto index creation at start up.

2. Topic to index mapping.

3. Auto mapping of the Kafka topic schema to the index.

4. Field selection

Kafka Connect Query Language

K afka C onnect Q uery L anguage found here GitHub repo allows for routing and mapping using a SQL like syntax,
consolidating typically features in to one configuration option.

The Elastic Sink supports the following:

INSERT INTO <index> SELECT <fields> FROM <source topic> [WITHDOCTYPE=<your_document_
→˓type>] [WITHINDEXSUFFIX=<your_suffix>]

WITHDOCTYPE allows you to associate a document type to the document inserted. WITHINDEXSUFFIX allows you
to specify a suffix to your index and we support date format. All you have to say is ‘_suffix_{YYYY-MM-dd}’

Example:

#Insert mode, select all fields from topicA and write to indexA
INSERT INTO indexA SELECT * FROM topicA

108 Chapter 1. Components

https://github.com/datamountaineer/kafka-connector-query-language

StreamReactor Documentation, Release 0.1

#Insert mode, select 3 fields and rename from topicB and write to indexB
INSERT INTO indexB SELECT x AS a, y AS b and z AS c FROM topicB PK y

This is set in the connect.elastic.kcql option.

Auto Index Creation

The Sink will automatically create missing indexes at startup. The Sink use elastic4s, more details can be found here

Configurations

connect.elastic.url

Url of the Elastic cluster.

• Data Type : string

• Importance: high

• Optional : no

connect.elastic.kcql

Kafka connect query language expression. Allows for expressive table to topic routing, field selection and renaming.

Examples:

INSERT INTO INDEX_1 SELECT field1, field2 FROM TOPIC1

• Data type : string

• Importance: high

• Optional : no

connect.elastic.write.timeout

Specifies the wait time for pushing the records to ES.

• Data type : long

• Importance: low

• Optional : yes

• Default : 300000 (5mins)

connect.elastic.throw.on.error

Throws the exception on write failure. Default is ‘true’

• Data type : long

• Importance: low

• Optional : yes

• Default: : true

connect.progress.enabled

Enables the output for how many records have been processed.

• Type: boolean

1.2. Kafka Connect 109

https://github.com/sksamuel/elastic4s

StreamReactor Documentation, Release 0.1

• Importance: medium

• Optional: yes

• Default : false

Example

name=elastic-sink
connector.class=com.datamountaineer.streamreactor.connect.elastic.ElasticSinkConnector
connect.elastic.url=localhost:9300
connect.elastic.cluster.name=elasticsearch
tasks.max=1
topics=test_table
connect.elastic.kcql=INSERT INTO INDEX_1 SELECT field1, field2 FROM TOPIC1

Schema Evolution

Upstream changes to schemas are handled by Schema registry which will validate the addition and removal or fields,
data type changes and if defaults are set. The Schema Registry enforces Avro schema evolution rules. More informa-
tion can be found here.

Elastic Search is very flexible about what is inserted. All documents in Elasticsearch are stored in an index. We do
not need to tell Elasticsearch in advance what an index will look like (eg what fields it will contain) as Elasticsearch
will adapt the index dynamically as more documents are added, but we must at least create the index first. The Sink
connector automatically creates the index at start up if it doesn’t exist.

The Elastic Search Sink will automatically index if new fields are added to the Source topic, if fields are removed the
Kafka Connect framework will return the default value for this field, dependent of the compatibility settings of the
Schema registry.

Deployment Guidelines

TODO

TroubleShooting

Please review the FAQs and join our slack channel.

Kafka Connect Elastic 5

A Connector and Sink to write events from Kafka to Elastic Search using Elastic4s client. The connector converts the
value from the Kafka Connect SinkRecords to Json and uses Elastic4s’s JSON insert functionality to index.

The Sink creates an Index and Type corresponding to the topic name and uses the JSON insert functionality from
Elastic4s.

The Sink supports:

1. Auto index creation at start up.

2. The KCQL routing querying - Topic to index mapping and Field selection.

110 Chapter 1. Components

http://docs.confluent.io/3.0.1/schema-registry/docs/api.html#compatibility
https://slackpass.io/datamountaineers
https://github.com/sksamuel/elastic4s

StreamReactor Documentation, Release 0.1

3. Auto mapping of the Kafka topic schema to the index.

Prerequisites

• Confluent 3.2

• Elastic Search 5.4

• Java 1.8

• Scala 2.11

Setup

Confluent Setup

Follow the instructions here.

Elastic Setup

Download and start Elastic search.

curl -L -O https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-5.4.0.
→˓tar.gz
tar -xvf elasticsearch-5.4.0.tar.gz
cd elasticsearch-5.4.0/bin
./elasticsearch --cluster.name elasticsearch

Sink Connector QuickStart

We will start the connector in distributed mode. Each connector exposes a rest endpoint for stopping, starting and
updating the configuration. We have developed a Command Line Interface to make interacting with the Connect Rest
API easier. The CLI can be found in the Stream Reactor download under the bin folder. Alternatively the Jar can be
pulled from our GitHub releases page.

Starting the Connector (Distributed)

Download, unpack and install the Stream Reactor. Follow the instructions here if you haven’t already done so. All
paths in the quickstart are based in the location you installed the Stream Reactor.

Start Kafka Connect in distributed more by running the start-connect.sh script in the bin folder.

bin/start-connect.sh

Once the connector has started we can now use the kafka-connect-tools cli to post in our distributed properties file for
Elastic. If you are using the dockers you will have to set the following environment variable to for the CLI to connect
to the Rest API of Kafka Connect of your container.

export KAFKA_CONNECT_REST="http://myserver:myport"

1.2. Kafka Connect 111

https://github.com/datamountaineer/kafka-connect-tools/releases

StreamReactor Documentation, Release 0.1

bin/connect-cli create elastic-sink < conf/elastic-sink.properties

#Connector name=`elastic-sink`
connect.progress.enabled=true
name=elastic-sink
connector.class=com.datamountaineer.streamreactor.connect.elastic5.
→˓ElasticSinkConnector
connect.elastic.url=localhost:9300
connect.elastic.cluster.name=elasticsearch
tasks.max=1
topics=orders-topic
connect.elastic.kcql=INSERT INTO index_1 SELECT * FROM orders-topic
#task ids: 0

The elastic-sink.properties file defines:

1. The name of the connector.

2. The class containing the connector.

3. The name of the cluster on the Elastic Search server to connect to.

4. The max number of task allowed for this connector.

5. The Source topic to get records from.

6. The KCQL routing querying.

If you switch back to the terminal you started the Connector in you should see the Elastic Sink being accepted and the
task starting.

We can use the CLI to check if the connector is up but you should be able to see this in logs as-well.

#check for running connectors with the CLI
bin/connect-cli ps

elastic-sink

[2016-05-08 20:56:52,241] INFO

____ __ __ ___ __ _
/ __ ____ _/ /_____ _/ |/ /___ __ ______ / /_____ _(_)___ ___ ___ _____
/ / / / __ `/ __/ __ `/ /|_/ / __ \/ / / / __ \/ __/ __ `/ / __ \/ _ \/ _ \/ ___/

/ /_/ / /_/ / /_/ /_/ / / / / /_/ / /_/ / / / / /_/ /_/ / / / / / __/ __/ /
/_____/__,_/__/__,_/_/ /_/____/__,_/_/ /_/__/__,_/_/_/ /_/___/___/_/

________ __ _ _____ _ __
/ ____/ /___ ______/ /_(_)____/ ___/(_)___ / /__

/ __/ / / __ `/ ___/ __/ / ___/__ \/ / __ \/ //_/
/ /___/ / /_/ (__) /_/ / /__ ___/ / / / / / ,<
/_____/_/__,_/____/__/_/___//____/_/_/ /_/_/|_|

by Andrew Stevenson
(com.datamountaineer.streamreactor.connect.elastic.ElasticSinkTask:33)

[2016-05-08 20:56:52,327] INFO [Hebe] loaded [], sites [] (org.elasticsearch.
→˓plugins:149)
[2016-05-08 20:56:52,765] INFO Initialising Elastic Json writer (com.datamountaineer.
→˓streamreactor.connect.elastic.ElasticJsonWriter:31)
[2016-05-08 20:56:52,777] INFO Assigned List(test_table) topics. (com.datamountaineer.
→˓streamreactor.connect.elastic.ElasticJsonWriter:33)

112 Chapter 1. Components

StreamReactor Documentation, Release 0.1

[2016-05-08 20:56:52,836] INFO Sink task org.apache.kafka.connect.runtime.
→˓WorkerSinkTask@69b6b39 finished initialization and start (org.apache.kafka.connect.
→˓runtime.WorkerSinkTask:155)

Test Records

Now we need to put some records it to the test_table topics. We can use the kafka-avro-console-producer
to do this.

Start the producer and pass in a schema to register in the Schema Registry. The schema has a id field of type int and
a random_field of type string.

${CONFLUENT_HOME}/bin/kafka-avro-console-producer \
--broker-list localhost:9092 --topic orders-topic \
--property value.schema='{"type":"record","name":"myrecord","fields":[{"name":"id",
→˓"type":"int"},
{"name":"random_field", "type": "string"}]}'

Now the producer is waiting for input. Paste in the following:

{"id": 999, "random_field": "foo"}
{"id": 888, "random_field": "bar"}

Check for records in Elastic Search

Now if we check the logs of the connector we should see 2 records being inserted to Elastic Search:

[2016-05-08 21:02:52,095] INFO Flushing Elastic Sink (com.datamountaineer.
→˓streamreactor.connect.elastic.ElasticSinkTask:73)
[2016-05-08 21:03:52,097] INFO No records received. (com.datamountaineer.
→˓streamreactor.connect.elastic.ElasticJsonWriter:63)
[2016-05-08 21:03:52,097] INFO org.apache.kafka.connect.runtime.
→˓WorkerSinkTask@69b6b39 Committing offsets (org.apache.kafka.connect.runtime.
→˓WorkerSinkTask:187)
[2016-05-08 21:03:52,097] INFO Flushing Elastic Sink (com.datamountaineer.
→˓streamreactor.connect.elastic.ElasticSinkTask:73)
[2016-05-08 21:04:20,613] INFO Elastic write successful for 2 records! (com.
→˓datamountaineer.streamreactor.connect.elastic.ElasticJsonWriter:77)

If we query Elastic Search for id 999:

curl -XGET 'http://localhost:9200/INDEX_1/_search?q=id:999'

{
"took": 45,
"timed_out": false,
"_shards": {

"total": 5,
"successful": 5,
"failed": 0

},
"hits": {

"total": 1,
"max_score": 1.2231436,

1.2. Kafka Connect 113

StreamReactor Documentation, Release 0.1

"hits": [{
"_index": "INDEX_1",
"_type": "INDEX_1",
"_id": "AVMY4eZXFguf2uMZyxjU",
"_score": 1.2231436,
"_source": {

"id": 999,
"random_field": "foo"

}
}]

}
}

Features

1. Auto index creation at start up.

2. Topic to index mapping.

3. Auto mapping of the Kafka topic schema to the index.

4. Field selection

Kafka Connect Query Language

K afka C onnect Q uery L anguage found here GitHub repo allows for routing and mapping using a SQL like syntax,
consolidating typically features in to one configuration option.

The Elastic Sink supports the following:

INSERT INTO <index> SELECT <fields> FROM <source topic> [WITHDOCTYPE=<your_document_
→˓type>] [WITHINDEXSUFFIX=<your_suffix>]

WITHDOCTYPE allows you to associate a document type to the document inserted. WITHINDEXSUFFIX allows you
to specify a suffix to your index and we support date format. All you have to say is ‘_suffix_{YYYY-MM-dd}’

Example:

#Insert mode, select all fields from topicA and write to indexA
INSERT INTO indexA SELECT * FROM topicA

#Insert mode, select 3 fields and rename from topicB and write to indexB
INSERT INTO indexB SELECT x AS a, y AS b and z AS c FROM topicB PK y

This is set in the connect.elastic.kcql option.

Auto Index Creation

The Sink will automatically create missing indexes at startup. The Sink use elastic4s, more details can be found here

Configurations

connect.elastic.url

114 Chapter 1. Components

https://github.com/datamountaineer/kafka-connector-query-language
https://github.com/sksamuel/elastic4s

StreamReactor Documentation, Release 0.1

Url of the Elastic cluster.

• Data Type : string

• Importance: high

• Optional : no

connect.elastic.kcql

Kafka connect query language expression. Allows for expressive table to topic routing, field selection and renaming.

Examples:

INSERT INTO INDEX_1 SELECT field1, field2 FROM TOPIC1

• Data type : string

• Importance: high

• Optional : no

connect.elastic.error.policy

Specifies the action to be taken if an error occurs while inserting the data.

There are three available options, noop, the error is swallowed, throw, the error is allowed to propagate and retry. For
retry the Kafka message is redelivered up to a maximum number of times specified by the connect.elastic.
max.retries option. The connect.elastic.retry.interval option specifies the interval between re-
tries.

The errors will be logged automatically.

• Type: string

• Importance: high

• Default: throw

connect.elastic.max.retries

The maximum number of times a message is retried. Only valid when the connect.elastic.error.policy
is set to retry.

• Type: string

• Importance: high

• Default: 10

connect.elastic.xpack.settings

Enables secure connection. here .By providing a value for the entry the sink will end up creating a secure connection.
The entry is a ; separated list of key=value sequence

Example:

connect.elastic.xpack.settings=xpack.security.user=transport_client_user:changeme;
→˓xpack.ssl.key=/path/to/client.key;xpack.ssl.certificate=/path/to/client.crt

• Type: string

• Importance: medium

• Default: null

• Optional: yes

1.2. Kafka Connect 115

https://www.elastic.co/products/x-pack/security

StreamReactor Documentation, Release 0.1

connect.elastic.xpack.plugins

Provides the list of plugins to enable. The entry is a ; separated list of full class path (The classes need to derive from
org.elasticsearch.plugins.Plugin)

• Type: string

• Importance: medium

• Default: null

• Optional: yes

connect.elastic.write.timeout

Specifies the wait time for pushing the records to ES.

• Data type : long

• Importance: low

• Optional : yes

• Default : 300000 (5mins)

connect.elastic.url.prefix

URL connection string prefix.

• Data type : string

• Importance: low

• Optional : yes

• Default : elasticsearch

connect.elastic.cluster.name

Name of the elastic search cluster, used in local mode for setting the connection

• Data type : string

• Importance: low

• Optional : yes

• Default : elasticsearch

connect.elastic.use.http

TCP or HTTP. Elastic4s client type to use, http or tcp, default is tcp.

Note: The HTTP Client is not support with Xpack.

• Data type : string

• Importance: low

• Optional : yes

• Default : TCP

connect.elastic.error.policy

Specifies the action to be taken if an error occurs while inserting the data.

116 Chapter 1. Components

StreamReactor Documentation, Release 0.1

There are three available options, noop, the error is swallowed, throw, the error is allowed to propagate and retry. For
retry the Kafka message is redelivered up to a maximum number of times specified by the connect.elastic.
max.retries option. The connect.elastic.retry.interval option specifies the interval between re-
tries.

The errors will be logged automatically.

• Type: string

• Importance: high

• Optional : yes

• Default: RETRY

connect.elastic.max.retries

The maximum number of times a message is retried. Only valid when the connect.elastic.error.policy
is set to retry.

• Type: string

• Importance: medium

• Optional : yes

• Default: 10

connect.elastic.retry.interval

The interval, in milliseconds between retries if the Sink is using connect.elastic.error.policy set to
RETRY.

• Type: int

• Importance: medium

• Optional : yes

• Default : 60000 (1 minute)

connect.progress.enabled

Enables the output for how many records have been processed.

• Type: boolean

• Importance: medium

• Optional: yes

• Default : false

Example

name=elastic-sink
connector.class=com.datamountaineer.streamreactor.connect.elastic.ElasticSinkConnector
connect.elastic.url=localhost:9300
connect.elastic.cluster.name=elasticsearch
tasks.max=1
topics=test_table
connect.elastic.kcql=INSERT INTO INDEX_1 SELECT field1, field2 FROM TOPIC1

1.2. Kafka Connect 117

StreamReactor Documentation, Release 0.1

Schema Evolution

Upstream changes to schemas are handled by Schema registry which will validate the addition and removal or fields,
data type changes and if defaults are set. The Schema Registry enforces Avro schema evolution rules. More informa-
tion can be found here.

Elastic Search is very flexible about what is inserted. All documents in Elasticsearch are stored in an index. We do
not need to tell Elasticsearch in advance what an index will look like (eg what fields it will contain) as Elasticsearch
will adapt the index dynamically as more documents are added, but we must at least create the index first. The Sink
connector automatically creates the index at start up if it doesn’t exist.

The Elastic Search Sink will automatically index if new fields are added to the Source topic, if fields are removed the
Kafka Connect framework will return the default value for this field, dependent of the compatibility settings of the
Schema registry.

Deployment Guidelines

TODO

TroubleShooting

Please review the FAQs and join our slack channel.

Kafka Connect HazelCast

A Connector and Sink to write events from Kafka to HazelCast. The connector takes the value from the Kafka Connect
SinkRecords and inserts/update an entry in HazelCast. The Sink supports writing to a reliable topic, ring buffer, queue,
set, list, imap, multi-map and icache.

The Sink supports:

1. The KCQL routing querying - Kafka topic payload field selection is supported, allowing you to have choose
selection of fields or all fields written to Hazelcast.

2. Topic to table routing via KCQL.

3. Error policies for handling failures.

4. Encoding as JSON, TEXT or Avro in Hazelcast via KCQL.

5. Storing in a Hazelcast RELIABLE_TOPIC, RING_BUFFER, QUEUE, SET, LIST, IMAP, MULTI_MAP,
ICACHE via KCQL.

Prerequisites

• Confluent 3.2

• Hazelcast 3.6.4 or higher

• Java 1.8

• Scala 2.11

118 Chapter 1. Components

http://docs.confluent.io/3.0.1/schema-registry/docs/api.html#compatibility
https://slackpass.io/datamountaineers

StreamReactor Documentation, Release 0.1

Setup

Confluent Setup

Follow the instructions here.

HazelCast Setup

Download and install HazelCast from here

When you download and extract the Hazelcast ZIP or TAR.GZ package, you will see 3 scripts under the /bin folder
which provide basic functionality for member and cluster management.

The following are the names and descriptions of each script:

• start.sh - Starts a Hazelcast member with default configuration in the working directory.

• stop.sh - Stops the Hazelcast member that was started in the current working directory.

Start HazelCast:

bin/start.sh

INFO: [10.128.137.102]:5701 [dev] [3.6.4] Address[10.128.137.102]:5701 is STARTING
Aug 16, 2016 2:43:04 PM com.hazelcast.nio.tcp.nonblocking.NonBlockingIOThreadingModel
INFO: [10.128.137.102]:5701 [dev] [3.6.4] TcpIpConnectionManager configured with Non
→˓Blocking IO-threading model: 3 input threads and 3 output threads
Aug 16, 2016 2:43:07 PM com.hazelcast.cluster.impl.MulticastJoiner
INFO: [10.128.137.102]:5701 [dev] [3.6.4]

Members [1] {
Member [10.128.137.102]:5701 this

}

Aug 16, 2016 2:43:07 PM com.hazelcast.core.LifecycleService
INFO: [10.128.137.102]:5701 [dev] [3.6.4] Address[10.128.137.102]:5701 is STARTED

This will start Hazelcast with a default group called dev and password dev-pass

Sink Connector QuickStart

We will start the connector in distributed mode. Each connector exposes a rest endpoint for stopping, starting and
updating the configuration. We have developed a Command Line Interface to make interacting with the Connect Rest
API easier. The CLI can be found in the Stream Reactor download under the bin folder. Alternatively the Jar can be
pulled from our GitHub releases page.

Starting the Connector (Distributed)

Download, unpack and install the Stream Reactor. Follow the instructions here if you haven’t already done so. All
paths in the quickstart are based in the location you installed the Stream Reactor.

Start Kafka Connect in distributed more by running the start-connect.sh script in the bin folder.

1.2. Kafka Connect 119

https://hazelcast.org/staging-dl/
https://github.com/datamountaineer/kafka-connect-tools/releases

StreamReactor Documentation, Release 0.1

bin/start-connect.sh

Once the connector has started we can now use the kafka-connect-tools cli to post in our distributed properties file
for HazelCast. If you are using the dockers you will have to set the following environment variable to for the CLI to
connect to the Rest API of Kafka Connect of your container.

export KAFKA_CONNECT_REST="http://myserver:myport"

bin/connect-cli create hazelcast-sink < conf/hazelcast-sink.properties

#Connector name=`hazelcast-sink`
name=hazelcast-sink
connector.class=com.datamountaineer.streamreactor.connect.hazelcast.sink.
→˓HazelCastSinkConnector
max.tasks=1
topics = hazelcast-topic
connect.hazelcast.cluster.members=locallhost
connect.hazelcast.group.name=dev
connect.hazelcast.group.password=dev-pass
connect.hazelcast.kcql=INSERT INTO sink-test SELECT * FROM hazelcast-topic WITHFORMAT
→˓JSON
#task ids: 0

The hazelcast-sink.properties configuration defines:

1. The name of the sink.

2. The Sink class.

3. The max number of tasks the connector is allowed to created.

4. The topics to read from (Required by framework)

5. The name of the HazelCast host to connect to.

6. The name of the group to connect to.

7. The password for the group.

8. The KCQL routing querying.

If you switch back to the terminal you started the Connector in you should see the Hazelcast Sink being accepted and
the task starting.

We can use the CLI to check if the connector is up but you should be able to see this in logs as-well.

#check for running connectors with the CLI
bin/connect-cli ps

hazelcast-sink

(org.apache.kafka.clients.consumer.ConsumerConfig:178)
[2016-08-20 16:45:39,518] INFO Kafka version : 0.10.0.0 (org.apache.kafka.common.
→˓utils.AppInfoParser:83)
[2016-08-20 16:45:39,518] INFO Kafka commitId : b8642491e78c5a13 (org.apache.kafka.
→˓common.utils.AppInfoParser:84)
[2016-08-20 16:45:39,520] INFO Created connector hazelcast-sink (org.apache.kafka.
→˓connect.cli.ConnectStandalone:91)
[2016-08-20 16:45:39,520] INFO

____ __ __ ___ __ _

120 Chapter 1. Components

StreamReactor Documentation, Release 0.1

/ __ ____ _/ /_____ _/ |/ /___ __ ______ / /_____ _(_)___ ___ ___ _____
/ / / / __ `/ __/ __ `/ /|_/ / __ \/ / / / __ \/ __/ __ `/ / __ \/ _ \/ _ \/ ___/

/ /_/ / /_/ / /_/ /_/ / / / / /_/ / /_/ / / / / /_/ /_/ / / / / / __/ __/ /
/_____/__,_/__/__,_/_/ /_/____/__,_/_/ /_/__/__,_/_/_/ /_/___/___/_/

__ __ ________ __ _____ _ __
/ / / /___ _____ ___ / / ____/___ ______/ /_/ ___/(_)___ / /__

/ /_/ / __ `/_ / / _ \/ / / / __ `/ ___/ __/__ \/ / __ \/ //_/
/ __ / /_/ / / /_/ __/ / /___/ /_/ (__) /_ ___/ / / / / / ,<

/_/ /_/__,_/ /___/___/_/____/__,_/____/__//____/_/_/ /_/_/|_|

by Andrew Stevenson
(com.datamountaineer.streamreactor.connect.hazelcast.sink.HazelCastSinkTask:41)

[2016-08-20 16:45:39,521] INFO HazelCastSinkConfig values:
connect.hazelcast.buffer.size = 32
connect.hazelcast.keep.alive = true
connect.hazelcast.tcp.no.delay = true
connect.hazelcast.group.password = [hidden]
connect.hazelcast.connection.retries = 2
connect.hazelcast.connection.linger.seconds = 3
connect.hazelcast.retry.interval = 60000
connect.hazelcast.max.retires = 20
connect.hazelcast.batch.size = 1000
connect.hazelcast.connection.reuse.address = true
connect.hazelcast.group.name = dev
connect.hazelcast.cluster.members = [192.168.99.100]
connect.hazelcast.error.policy = THROW
connect.hazelcast.kcql = INSERT INTO sink-test SELECT * FROM hazelcast-topic

→˓WITHFORMAT JSON
connect.hazelcast.connection.timeout = 5000

(com.datamountaineer.streamreactor.connect.hazelcast.config.HazelCastSinkConfig:178)
Aug 20, 2016 4:45:39 PM com.hazelcast.core.LifecycleService
INFO: HazelcastClient[dev-kafka-connect-05e64989-41d9-433e-ad21-b54894486384][3.6.4]
→˓is STARTING
Aug 20, 2016 4:45:39 PM com.hazelcast.core.LifecycleService
INFO: HazelcastClient[dev-kafka-connect-05e64989-41d9-433e-ad21-b54894486384][3.6.4]
→˓is STARTED
Aug 20, 2016 4:45:39 PM com.hazelcast.client.spi.impl.ClientMembershipListener
INFO:

Members [1] {
Member [172.17.0.2]:5701

}

Aug 20, 2016 4:45:39 PM com.hazelcast.core.LifecycleService
INFO: HazelcastClient[dev-kafka-connect-05e64989-41d9-433e-ad21-b54894486384][3.6.4]
→˓is CLIENT_CONNECTED

Test Records

Now we need to put some records it to the test_table topics. We can use the kafka-avro-console-producer
to do this.

Start the producer and pass in a schema to register in the Schema Registry. The schema has a firstname field of
type string a lastname field of type string, an age field of type int and a salary field of type double.

1.2. Kafka Connect 121

StreamReactor Documentation, Release 0.1

${CONFLUENT_HOME}/bin/kafka-avro-console-producer \
--broker-list localhost:9092 --topic hazelcast-topic \
--property value.schema='{"type":"record","name":"User","namespace":"com.

→˓datamountaineer.streamreactor.connect.HazelCast"
,"fields":[{"name":"firstName","type":"string"},{"name":"lastName","type":"string"},

→˓{"name":"age","type":"int"},{"name":"salary","type":"double"}]}'

Now the producer is waiting for input. Paste in the following:

{"firstName": "John", "lastName": "Smith", "age":30, "salary": 4830}

Check for records in HazelCast

Now check the logs of the connector you should see this:

[2016-08-20 16:53:58,608] INFO Received 1 records. (com.datamountaineer.streamreactor.
→˓connect.hazelcast.sink.HazelCastWriter:62)
[2016-08-20 16:53:58,644] INFO Written 1 (com.datamountaineer.streamreactor.connect.
→˓hazelcast.sink.HazelCastWriter:71)

Now stop the connector.

Features

Kafka Connect Query Language

K afka C onnect Q uery L anguage found here GitHub repo allows for routing and mapping using a SQL like syntax,
consolidating typically features in to one configuration option.

The HazelCast Sink supports the following:

INSERT INTO <reliable topic> SELECT <fields> FROM <source topic> WITHFORMAT
<JSON|AVRO> STOREAS <RELIABLE_TOPIC|RING_BUFFER|QUEUE|SET|LIST|IMAP|MULTI_MAP|ICACHE>

Example:

#Insert mode, select all fields from topicA and write to tableA
INSERT INTO tableA SELECT * FROM topicA

#Insert mode, select 3 fields and rename from topicB and write to tableB, store as
→˓serialized avro encoded byte arrays
INSERT INTO tableB SELECT x AS a, y AS b and z AS c FROM topicB WITHFORMAT avro
→˓STOREAS RING_BUFFER

This is set in the connect.hazelcast.kcql option.

Error Polices

The Sink has three error policies that determine how failed writes to the target database are handled. The error policies
affect the behaviour of the schema evolution characteristics of the sink. See the schema evolution section for more
information.

Throw

122 Chapter 1. Components

https://github.com/datamountaineer/kafka-connector-query-language

StreamReactor Documentation, Release 0.1

Any error on write to the target database will be propagated up and processing is stopped. This is the default behaviour.

Noop

Any error on write to the target database is ignored and processing continues.

Warning: This can lead to missed errors if you don’t have adequate monitoring. Data is not lost as it’s still in
Kafka subject to Kafka’s retention policy. The Sink currently does not distinguish between integrity constraint
violations and or other expections thrown by drivers..

Retry

Any error on write to the target database causes the RetryIterable exception to be thrown. This causes the Kafka
connect framework to pause and replay the message. Offsets are not committed. For example, if the table is offline it
will cause a write failure, the message can be replayed. With the Retry policy the issue can be fixed without stopping
the sink.

The length of time the Sink will retry can be controlled by using the connect.hazelcast.max.retries and
the connect.hazelcast.retry.interval.

With Format

Hazelcast requires that data stored in collections and topics is serializable. The Sink offers two modes to store data.

Avro In this mode the Sink converts the SinkRecords from Kafka to Avro encoded byte arrays. Json In this mode the
Sink converts the SinkRecords from Kafka to Json strings.

This behaviour is controlled by the KCQL statement in the connect.hazelcast.kcql option. The default is
JSON.

Stored As

The Hazelcast Sink supports storing data in RingBuffers, ReliableTopics, Queues, Sets, Lists, IMaps, Multi-maps and
ICaches. This behaviour is controlled by the KCQL statement in the connect.hazelcast.kcql option. Note
that IMaps, Multi-maps and ICaches support a key as well as a value.

#store into a ring buffer
INSERT INTO tableB SELECT x AS a, y AS b and z AS c FROM topicB WITHFORMAT avro
→˓STOREAS RING_BUFFER
#store into a reliable topic
INSERT INTO tableB SELECT x AS a, y AS b and z AS c FROM topicB WITHFORMAT avro
→˓STOREAS RELIABLE_TOPIC
#store into a queue
INSERT INTO tableB SELECT x AS a, y AS b and z AS c FROM topicB WITHFORMAT avro
→˓STOREAS QUEUE
#store into a set
INSERT INTO tableB SELECT x AS a, y AS b and z AS c FROM topicB WITHFORMAT avro
→˓STOREAS SET
#store into a list
INSERT INTO tableB SELECT x AS a, y AS b and z AS c FROM topicB WITHFORMAT avro
→˓STOREAS LIST
#store into an i-map with field1 used as the map key
INSERT INTO tableB SELECT x AS a, y AS b and z AS c FROM topicB PK field1 WITHFORMAT
→˓avro STOREAS IMAP
#store into a multi-map with field1 used as the map key

1.2. Kafka Connect 123

StreamReactor Documentation, Release 0.1

INSERT INTO tableB SELECT x AS a, y AS b and z AS c FROM topicB PK field1 WITHFORMAT
→˓avro STOREAS MULTI_MAP
#store into an i-cache with field1 used as the cache key
INSERT INTO tableB SELECT x AS a, y AS b and z AS c FROM topicB PK field1 WITHFORMAT
→˓avro STOREAS ICACHE

Parallel Writes

By default each task in the Sink will write the records it receives sequentially, the Sink optionally supports parallel
writes where an executorThreadPool is started and records are written in parallel. While this results in better perfor-
mance we can’t guarantee the order of the writes.

To enable parallel writes set the connect.hazelcast.parallel.write configuration option to true.

Configurations

connect.hazelcast.kcql

KCQL expression describing field selection and routes.

• Data type : string

• Importance: high

• Optional : no

connect.hazelcast.error.policy

Specifies the action to be taken if an error occurs while inserting the data.

There are three available options, noop, the error is swallowed, throw, the error is allowed to propagate and retry. For
retry the Kafka message is redelivered up to a maximum number of times specified by the connect.hazelcast.
max.retries option. The connect.hazelcast.retry.interval option specifies the interval between
retries.

The errors will be logged automatically.

• Type: string

• Importance: high

• Optional: yes

• Default: throw

connect.hazelcast.max.retries

The maximum number of times a message is retried. Only valid when the connect.hazelcast.error.policy
is set to retry.

• Type: string

• Importance: medium

• Optional: yes

• Default: 10

connect.hazelcast.retry.interval

The interval, in milliseconds between retries if the Sink is using connect.hazelcast.error.policy set to
RETRY.

124 Chapter 1. Components

StreamReactor Documentation, Release 0.1

• Type: int

• Importance: medium

• Optional: yes

• Default : 60000 (1 minute)

connect.hazelcast.batch.size

Specifies how many records to insert together at one time. If the connect framework provides less records when it is
calling the Sink it won’t wait to fulfill this value but rather execute it.

• Type : int

• Importance : medium

• Optional: yes

• Defaults : 1000

connect.hazelcast.cluster.members

Address List is the initial list of cluster addresses to which the client will connect. The client uses this list to find an
alive node. Although it may be enough to give only oneaddress of a node in the cluster (since all nodes communicate
with each other),it is recommended that you give the addresses for all the nodes.

• Data type : string

• Importance : high

• Optional: no

• Default: localhost

connect.hazelcast.group.name

The group name of the connector in the target Hazelcast cluster.

• Data type : string

• Importance : high

• Optional: no

• Default: dev

connect.hazelcast.group.password

The password for the group name.

• Data type : string

• Importance : high

• Optional : yes

• Default : dev-pass

connect.hazelcast.timeout

Connection timeout is the timeout value in milliseconds for nodes to accept client connection requests.

• Data type : int

• Importance : low

• Optional : yes

• Default : 5000

1.2. Kafka Connect 125

StreamReactor Documentation, Release 0.1

connect.hazelcast.retries

Number of times a client will retry the connection at startup.

• Data type : int

• Importance : low

• Optional : yes

• Default : 2

connect.hazelcast.keep.alive

Enables/disables the SO_KEEPALIVE socket option. The default value is true.

• Data type : boolean

• Importance : low

• Optional : yes

• Default : true

connect.hazelcast.tcp.no.delay

Enables/disables the SO_REUSEADDR socket option. The default value is true.

• Data type : boolean

• Importance : low

• Optional : yes

• Default : true

connect.hazelcast.linger.seconds

Enables/disables SO_LINGER with the specified linger time in seconds. The default value is 3.

• Data type : int

• Importance : low

• Optional : yes

• Default : 3

connect.hazelcast.buffer.size

Sets the SO_SNDBUF and SO_RCVBUF options to the specified value in KB for this Socket. The default value is 32.

• Data type : int

• Importance : low

• Optional : yes

• Default : 32

connect.hazelcast.parallel.write

All the sink to write in parallel the records received from Kafka on each poll. Order of writes in not guaranteed.

• Data type : boolean

• Importance : medium

• Optional : yes

• Default : false

126 Chapter 1. Components

StreamReactor Documentation, Release 0.1

connect.progress.enabled

Enables the output for how many records have been processed.

• Type: boolean

• Importance: medium

• Optional: yes

• Default : false

Schema Evolution

Upstream changes to schemas are handled by Schema registry which will validate the addition and removal or fields,
data type changes and if defaults are set. The Schema Registry enforces Avro schema evolution rules. More informa-
tion can be found here.

The Sink serializes either an Avro or Json representation of the Sink record to the target reliable topic in Hazelcaset.
Hazelcast is agnostic to the schema.

Deployment Guidelines

TODO

TroubleShooting

Please review the FAQs and join our slack channel.

Kafka Connect HBase

A Connector and Sink to write events from Kafka to HBase. The connector takes the value from the Kafka Connect
SinkRecords and inserts a new entry to HBase.

The Sink supports:

1. The KCQL routing querying - Kafka topic payload field selection is supported, allowing you to select fields
written to HBase.

2. Topic to table routing via KCQL.

3. RowKey selection - Selection of fields to use as the row key, if none specified the topic name, partition and
offset are used via KCQL.

4. Error policies.

Prerequisites

• Confluent 3.2

• HBase 1.2.0

• Java 1.8

• Scala 2.11

1.2. Kafka Connect 127

http://docs.confluent.io/3.0.1/schema-registry/docs/api.html#compatibility
https://slackpass.io/datamountaineers

StreamReactor Documentation, Release 0.1

Setup

HBase Setup

Download and extract HBase:

wget https://www.apache.org/dist/hbase/1.2.1/hbase-1.2.1-bin.tar.gz
tar -xvf hbase-1.2.1-bin.tar.gz -C hbase

Edit conf/hbase-site.xml and add the following content:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>

<name>hbase.cluster.distributed</name>
<value>true</value>

</property>
<property>
<name>hbase.rootdir</name>
<value>file:///tmp/hbase</value>

</property>
<property>
<name>hbase.zookeeper.property.dataDir</name>
<value>/tmp/zookeeper</value>

</property>
</configuration>

The hbase.cluster.distributed is required since when you start hbase it will try and start it’s own
Zookeeper, but in this case we want to use Confluents.

Now start HBase and check the logs to ensure it’s up:

bin/start-hbase.sh

Confluent Setup

Follow the instructions here.

Sink Connector QuickStart

We will start the connector in distributed mode. Each connector exposes a rest endpoint for stopping, starting and
updating the configuration. We have developed a Command Line Interface to make interacting with the Connect Rest
API easier. The CLI can be found in the Stream Reactor download under the bin folder. Alternatively the Jar can be
pulled from our GitHub releases page.

HBase Table

The Sink expects a precreated table in HBase. In the HBase shell create the test table, go to your HBase install location.

bin/hbase shell
hbase(main):001:0> create 'person',{NAME=>'d', VERSIONS=>1}

128 Chapter 1. Components

https://github.com/datamountaineer/kafka-connect-tools/releases

StreamReactor Documentation, Release 0.1

hbase(main):001:0> list
person
1 row(s) in 0.9530 seconds

hbase(main):002:0> describe 'person'
DESCRIPTION
'person', {NAME => 'd', BLOOMFILTER => 'ROW', VERSIONS => '1', IN_MEMORY => 'false',
→˓KEEP_DELETED_CELLS => 'false', DATA_BLOCK_ENCOD true
ING => 'NONE', TTL => 'FOREVER', COMPRESSION => 'NONE', MIN_VERSIONS => '0',
→˓BLOCKCACHE => 'true', BLOCKSIZE => '65536', REPLICATION
_SCOPE => '0'}

1 row(s) in 0.0810 seconds

Starting the Connector (Distributed)

Download, unpack and install the Stream Reactor. Follow the instructions here if you haven’t already done so. All
paths in the quickstart are based in the location you installed the Stream Reactor.

Start Kafka Connect in distributed more by running the start-connect.sh script in the bin folder.

bin/start-connect.sh

Once the connector has started we can now use the kafka-connect-tools cli to post in our distributed properties file for
HBase. If you are using the dockers you will have to set the following environment variable to for the CLI to connect
to the Rest API of Kafka Connect of your container.

export KAFKA_CONNECT_REST="http://myserver:myport"

bin/connect-cli create hbase-sink < conf/hbase-sink.properties

#Connector name=`hbase-sink`
name=person-hbase-test
connector.class=com.datamountaineer.streamreactor.connect.hbase.HbaseSinkConnector
tasks.max=1
topics=hbase-topic
connect.hbase.column.family=d
connect.hbase.kcql=INSERT INTO person SELECT * FROM hbase-topic PK firstName, lastName
#task ids: 0

This hbase-sink.properties configuration defines:

1. The name of the sink.

2. The Sink class.

3. The max number of tasks the connector is allowed to created. Should not be greater than the number of partitions
in the Source topics otherwise tasks will be idle.

4. The Source kafka topics to take events from.

5. The HBase column family to write to.

6. The KCQL routing querying.

If you switch back to the terminal you started the Connector in you should see the HBase Sink being accepted and the
task starting.

We can use the CLI to check if the connector is up but you should be able to see this in logs as-well.

1.2. Kafka Connect 129

StreamReactor Documentation, Release 0.1

#check for running connectors with the CLI
bin/connect-cli ps

hbase-sink

INFO
____ __ __ ___ __ _

/ __ ____ _/ /_____ _/ |/ /___ __ ______ / /_____ _(_)___ ___ ___ _____
/ / / / __ `/ __/ __ `/ /|_/ / __ \/ / / / __ \/ __/ __ `/ / __ \/ _ \/ _ \/ ___/

/ /_/ / /_/ / /_/ /_/ / / / / /_/ / /_/ / / / / /_/ /_/ / / / / / __/ __/ /
/_____/_,__,_/_/ /_/___\\\\\,\/_/ /_/_/__,_/_/_/ /_/___/___/_/

/ / / / __)____ _________ / ___/(_)___ / /__
/ /_/ / __ / __ `/ ___/ _ __ \/ / __ \/ //_/

/ __ / /_/ / /_/ (__) __/__/ / / / / / ,<
/_/ /_/_____/__,_/____/___/____/_/_/ /_/_/|_|

By Stefan Bocutiu (com.datamountaineer.streamreactor.connect.hbase.HbaseSinkTask:44)

Test Records

Now we need to put some records it to the test_table topics. We can use the kafka-avro-console-producer
to do this.

Start the producer and pass in a schema to register in the Schema Registry. The schema has a firstname field of
type string, a lastname field of type string, an age field of type int and a salary field of type double.

${CONFLUENT_HOME}/bin/kafka-avro-console-producer \
--broker-list localhost:9092 --topic hbase-topic \
--property value.schema='{"type":"record","name":"User","namespace":"com.

→˓datamountaineer.streamreactor.connect.hbase",
"fields":[{"name":"firstName","type":"string"},{"name":"lastName","type":"string"},{

→˓"name":"age","type":"int"},
{"name":"salary","type":"double"}]}'

Now the producer is waiting for input. Paste in the following:

{"firstName": "John", "lastName": "Smith", "age":30, "salary": 4830}
{"firstName": "Anna", "lastName": "Jones", "age":28, "salary": 5430}

Check for records in HBase

Now check the logs of the connector you should see this

INFO Sink task org.apache.kafka.connect.runtime.WorkerSinkTask@48ffb4dc finished
→˓initialization and start (org.apache.kafka.connect.runtime.WorkerSinkTask:155)
INFO Writing 2 rows to Hbase... (com.datamountaineer.streamreactor.connect.hbase.
→˓writers.HbaseWriter:83)

In HBase:

hbase(main):004:0* scan 'person'
ROW COLUMN+CELL
Anna\x0AJones column=d:age,
→˓timestamp=1463056888641, value=\x00\x00\x00\x1C
Anna\x0AJones column=d:firstName,
→˓timestamp=1463056888641, value=Anna

130 Chapter 1. Components

StreamReactor Documentation, Release 0.1

Anna\x0AJones column=d:income,
→˓timestamp=1463056888641, value=@\xB56\x00\x00\x00\x00\x00
Anna\x0AJones column=d:lastName,
→˓timestamp=1463056888641, value=Jones
John\x0ASmith column=d:age,
→˓timestamp=1463056693877, value=\x00\x00\x00\x1E
John\x0ASmith column=d:firstName,
→˓timestamp=1463056693877, value=John
John\x0ASmith column=d:income,
→˓timestamp=1463056693877, value=@\xB2\xDE\x00\x00\x00\x00\x00
John\x0ASmith column=d:lastName,
→˓timestamp=1463056693877, value=Smith
2 row(s) in 0.0260 seconds

Now stop the connector.

Features

The HBase Sink writes records from Kafka to HBase.

The Sink supports:

1. Field selection - Kafka topic payload field selection is supported, allowing you to select fields written to HBase.

2. Topic to table routing.

3. RowKey selection - Selection of fields to use as the row key, if none specified the topic name, partition and
offset are used.

4. Error policies.

Kafka Connect Query Language

K afka C onnect Q uery L anguage found here GitHub repo allows for routing and mapping using a SQL like syntax,
consolidating typically features in to one configuration option.

The HBase Sink supports the following:

INSERT INTO <table> SELECT <fields> FROM <source topic> <PK> primary_key_cols

Example:

#Insert mode, select all fields from topicA and write to tableA and use the default
→˓rowkey (topic name, partition, offset)
INSERT INTO tableA SELECT * FROM topicA

#Insert mode, select 3 fields and rename from topicB and write to tableB, use field y
→˓from the topic as the row key
INSERT INTO tableB SELECT x AS a, y AS b and z AS c FROM topicB PK y

This is set in the connect.hbase.kcql option.

Error Polices

The Sink has three error policies that determine how failed writes to the target database are handled. The error policies
affect the behaviour of the schema evolution characteristics of the sink. See the schema evolution section for more

1.2. Kafka Connect 131

https://github.com/datamountaineer/kafka-connector-query-language

StreamReactor Documentation, Release 0.1

information.

Throw

Any error on write to the target database will be propagated up and processing is stopped. This is the default behaviour.

Noop

Any error on write to the target database is ignored and processing continues.

Warning: This can lead to missed errors if you don’t have adequate monitoring. Data is not lost as it’s still in
Kafka subject to Kafka’s retention policy. The Sink currently does not distinguish between integrity constraint
violations and or other expections thrown by drivers.

Retry

Any error on write to the target database causes the RetryIterable exception to be thrown. This causes the Kafka
connect framework to pause and replay the message. Offsets are not committed. For example, if the table is offline it
will cause a write failure, the message can be replayed. With the Retry policy the issue can be fixed without stopping
the sink.

The length of time the Sink will retry can be controlled by using the connect.hbase.max.retries and the
connect.hbase.retry.interval.

Configurations

connect.hbase.column.family

The hbase column family.

• Type: string

• Importance: high

• Optional: no

connect.hbase.kcql

Kafka connect query language expression. Allows for expressive topic to table routing, field selection and renaming.
Fields to be used as the row key can be set by specifing the PK. The below example uses field1 and field2 are the row
key.

Examples:

INSERT INTO TABLE1 SELECT * FROM TOPIC1;INSERT INTO TABLE2 SELECT * FROM TOPIC2 PK
→˓field1, field2

If no primary keys are specified the topic name, partition and offset converted to bytes are used as the HBase rowkey.

• Type: string

• Importance: high

• Optional: no

connect.hbase.error.policy

Specifies the action to be taken if an error occurs while inserting the data.

132 Chapter 1. Components

StreamReactor Documentation, Release 0.1

There are three available options, noop, the error is swallowed, throw, the error is allowed to propagate and retry. For
retry the Kafka message is redelivered up to a maximum number of times specified by the connect.hbase.max.
retries option. The connect.hbase.retry.interval option specifies the interval between retries.

The errors will be logged automatically.

• Type: string

• Importance: medium

• Optional: yes

• Default: RETRY

connect.hbase.max.retries

The maximum number of times a message is retried. Only valid when the connect.hbase.error.policy is
set to retry.

• Type: string

• Importance: medium

• Optional: yes

• Default: 10

connect.hbase.retry.interval

The interval, in milliseconds between retries if the Sink is using connect.hbase.error.policy set to RETRY.

• Type: int

• Importance: medium

• Optional: yes

• Default : 60000 (1 minute)

connect.progress.enabled

Enables the output for how many records have been processed.

• Type: boolean

• Importance: medium

• Optional: yes

• Default : false

Example

connect.hbase.column.family=d
connect.hbase.kcql=INSERT INTO person SELECT * FROM TOPIC1
connector.class=com.datamountaineer.streamreactor.connect.hbase.HbaseSinkConnector
tasks.max=1
topics=TOPIC1
name=hbase-test

1.2. Kafka Connect 133

StreamReactor Documentation, Release 0.1

Schema Evolution

Upstream changes to schemas are handled by Schema registry which will validate the addition and removal or fields,
data type changes and if defaults are set. The Schema Registry enforces Avro schema evolution rules. More informa-
tion can be found here.

The HBase Sink will automatically write and update the HBase table if new fields are added to the Source topic, if fields
are removed the Kafka Connect framework will return the default value for this field, dependent of the compatibility
settings of the Schema registry. This value will be put into the HBase column family cell based on the connect.
hbase.fields mappings.

Deployment Guidelines

TODO

TroubleShooting

Please review the FAQs and join our slack channel.

Kafka Connect Influx

A Connector and Sink to write events from Kafka to InfluxDB. The connector takes the value from the Kafka Connect
SinkRecords and inserts a new entry to InfluxDB.

The Sink supports:

1. The KCQL routing querying - Topic to index mapping and Field selection.

2. Auto mapping of the Kafka topic schema to the index.

3. Payload support for Schema.Struct and payload Struct, Schema.String and Json payload and Json payload with
no schema

The Sink supports three Kafka payloads type:

Connect entry with Schema.Struct and payload Struct. If you follow the best practice while producing the events,
each message should carry its schema information. Best option is to send Avro. Your connect configurations should
be set to value.converter=io.confluent.connect.avro.AvroConverter. You can find an example
here. To see how easy is to have your producer serialize to Avro have a look at this. This requires the SchemaRegistry
which is open source thanks to Confluent! Alternatively you can send Json + Schema. In this case your connect con-
figuration should be set to value.converter=org.apache.kafka.connect.json.JsonConverter.
This doesn’t require the SchemaRegistry.

Connect entry with Schema.String and payload json String. Sometimes the producer would find it easier, despite
sending Avro to produce a GenericRecord, to just send a message with Schema.String and the json string.

Connect entry without a schema and the payload json String. There are many existing systems which are publish-
ing json over Kafka and bringing them in line with best practices is quite a challenge. Hence we added the support.

Prerequisites

• Confluent 3.2

• Java 1.8

134 Chapter 1. Components

http://docs.confluent.io/3.0.1/schema-registry/docs/api.html#compatibility
https://slackpass.io/datamountaineers
https://github.com/confluentinc/kafka-connect-blog/blob/master/etc/connect-avro-standalone.properties
http://docs.confluent.io/3.0.1/schema-registry/docs/serializer-formatter.html?highlight=kafkaavroserializer

StreamReactor Documentation, Release 0.1

• Scala 2.11

Setup

Confluent Setup

Follow the instructions here.

InfluxDB Setup

Download and start InfluxDB. Users of OS X 10.8 and higher can install InfluxDB using the Homebrew package
manager. Once brew is installed, you can install InfluxDB by running:

brew update
brew install influxdb

Note: InfluxDB starts an Admin web server listening on port 8083 by default. For this quickstart this will collide
with Kafka Connects default port of 8083. Since we are running on a single node we will need to edit the InfluxDB
config.

#create config dir
sudo mkdir /etc/influxdb
#dump the config
influxd config > /etc/influxdb/influxdb.generated.conf

Now change the following section to a port 8087 or any other free port.

[admin]
enabled = true
bind-address = ":8087"
https-enabled = false
https-certificate = "/etc/ssl/influxdb.pem"

Now start InfluxDB.

influxd

If you are running on a single node start InfluxDB with the new configuration file we generated.

influxd -config /etc/influxdb/influxdb.generated.conf

Sink Connector QuickStart

We will start the connector in distributed mode. Each connector exposes a rest endpoint for stopping, starting and
updating the configuration. We have developed a Command Line Interface to make interacting with the Connect Rest
API easier. The CLI can be found in the Stream Reactor download under the bin folder. Alternatively the Jar can be
pulled from our GitHub releases page.

1.2. Kafka Connect 135

https://influxdata.com/downloads/#influxdb
https://github.com/datamountaineer/kafka-connect-tools/releases

StreamReactor Documentation, Release 0.1

Test data

The Sink expects a database to exist in InfluxDB. Use the InfluxDB CLI to create this:

~ influx
Visit https://enterprise.influxdata.com to register for updates, InfluxDB server
→˓management, and monitoring.
Connected to http://localhost:8086 version v1.0.2
InfluxDB shell version: v1.0.2

> CREATE DATABASE mydb

Starting the Connector (Distributed)

Download, unpack and install the Stream Reactor. Follow the instructions here if you haven’t already done so. All
paths in the quickstart are based in the location you installed the Stream Reactor.

Start Kafka Connect in distributed more by running the start-connect.sh script in the bin folder.

bin/start-connect.sh

Once the connector has started we can now use the kafka-connect-tools cli to post in our distributed properties file
for InfluxDB. If you are using the dockers you will have to set the following environment variable to for the CLI to
connect to the Rest API of Kafka Connect of your container.

export KAFKA_CONNECT_REST="http://myserver:myport"

bin/connect-cli create influx-sink < conf/influxdb-sink.properties

#Connector name=`influx-sink`
name=influxdb-sink
connector.class=com.datamountaineer.streamreactor.connect.influx.InfluxSinkConnector
tasks.max=1
topics=influx-topic
connect.influx.kcql=INSERT INTO influxMeasure SELECT * FROM influx-topic
→˓WITHTIMESTAMP sys_time()
connect.influx.url=http://localhost:8086
connect.influx.db=mydb
#task ids: 0

The influx-sink.properties file defines:

1. The name of the connector.

2. The class containing the connector.

3. The max number of task allowed for this connector.

4. The Source topic to get records from.

5. The KCQL routing querying.

6. The InfluxDB connection URL.

7. The InfluxDB database.

If you switch back to the terminal you started Kafka Connect in you should see the InfluxDB Sink being accepted and
the task starting.

136 Chapter 1. Components

StreamReactor Documentation, Release 0.1

We can use the CLI to check if the connector is up but you should be able to see this in logs as-well.

#check for running connectors with the CLI
bin/connect-cli ps

influxdb-sink

INFO
____ _ __ __ _ _

| _ \ __ _| |_ __ _| \/ | ___ _ _ _ __ | |_ __ _(_)_ __ ___ ___ _ __
			/ _`	__/ _`		\/		/ _ \|			'_ \| __/ _`		'_ \ / _ \/ _ \ '__														
	_		(_				(_					(_)		_							(_						__/ __/
____/ __,_	____,_	_		_	___/ __,_	_		_	____,_	_	_		_	___	___	_											
___ __ _ ____ _ ____ _ _ by Stefan Bocutiu

|_ _|_ __ / _| |_ ___ _| _ \| |__ / ___|(_)_ __ | | __
| || '_ \| |_| | | | \ \/ / | | | '_ \ ___ \| | '_ \| |/ /
| || | | | _| | |_| |> <| |_| | |_) | ___) | | | | | <

|___|_| |_|_| |_|__,_/_/_____/|_.__/ |____/|_|_| |_|_|_\
(com.datamountaineer.streamreactor.connect.influx.InfluxSinkTask:45)

[INFO InfluxSinkConfig values:
connect.influx.retention.policy = autogen
connect.influx.error.policy = THROW
connect.influx.username = root
connect.influx.db = mydb
connect.influx.password = [hidden]
connect.influx.url = http://localhost:8086
connect.influx.retry.interval = 60000
connect.influx.kcql = INSERT INTO influxMeasure SELECT * FROM influx-topic

→˓WITHTIMESTAMP sys_time()
connect.influx.max.retires = 20

(com.datamountaineer.streamreactor.connect.influx.config.InfluxSinkConfig:178)

Test Records

Now we need to put some records it to the test_table topics. We can use the kafka-avro-console-producer
to do this.

Start the producer and pass in a schema to register in the Schema Registry. The schema has a company field of type
string a address field of type string, an latitude field of type int and a longitude field of type int.

${CONFLUENT_HOME}/bin/kafka-avro-console-producer \
--broker-list localhost:9092 --topic influx-topic \
--property value.schema='{"type":"record","name":"User","namespace":"com.

→˓datamountaineer.streamreactor.connect.influx","fields":[{"name":"company","type":
→˓"string"},{"name":"address","type":"string"},{"name":"latitude","type":"float"},{
→˓"name":"longitude","type":"float"}]}'

Now the producer is waiting for input. Paste in the following:

{"company": "DataMountaineer","address": "MontainTop","latitude": -49.817964,
→˓"longitude": -141.645812}

Check for records in InfluxDB

Now check the logs of the connector you should see this:

1.2. Kafka Connect 137

StreamReactor Documentation, Release 0.1

INFO Setting newly assigned partitions [influx-topic-0] for group connect-influx-sink
→˓(org.apache.kafka.clients.consumer.internals.ConsumerCoordinator:231)
INFO Received 1 record(-s) (com.datamountaineer.streamreactor.connect.influx.
→˓InfluxSinkTask:81)
INFO Writing 1 points to the database... (com.datamountaineer.streamreactor.connect.
→˓influx.writers.InfluxDbWriter:45)
INFO Records handled (com.datamountaineer.streamreactor.connect.influx.
→˓InfluxSinkTask:83)

Check in InfluxDB.

influx
Visit https://enterprise.influxdata.com to register for updates, InfluxDB server
→˓management, and monitoring.
Connected to http://localhost:8086 version v1.0.2
InfluxDB shell version: v1.0.2
> use mydb;
Using database mydb
> show measurements;
name: measurements

name
influxMeasure

> select * from influxMeasure;
name: influxMeasure

time address async company latitude
→˓ longitude
1478269679104000000 MontainTop true DataMountaineer -49.817962646484375 -
→˓141.64581298828125

Features

1. Topic to index mapping. 3. Auto mapping of the Kafka topic schema to the index. 4. Field selection 5. Tagging the
data points using constants or fields from the payload

Tag

InfluxDB allows via the client API to provide a set of tags (key-value) to each point added. The current connector
version allows you to provide them via the KCQL

INSERT INTO <measure> SELECT <fields> FROM <source topic> WITHTIMESTAMP <field_name>
→˓|sys_time() WITHTAG(field|(constant_key=constant_value))

Example:

#Tagging using constants
INSERT INTO measureA SELECT * FROM topicA WITHTAG (DataMountaineer=awesome,
→˓Influx=rulz!)

#Tagging using fields in the payload. Say we have a Payment structure with these
→˓fields: amount, from, to, note
INSERT INTO measureA SELECT * FROM topicA WITHTAG (from, to)

138 Chapter 1. Components

StreamReactor Documentation, Release 0.1

#Tagging using a combination of fields in the payload and constants. Say we have a
→˓Payment structure with these fields: amount, from, to, note
INSERT INTO measureA SELECT * FROM topicA WITHTAG (from, to,
→˓provider=DataMountaineer)

Note: At the moment you can only reference the payload fields but if the structure is nested you can’t address nested
fields. Support for such functionality will be provided soon. You can’t tag with fields present in the Kafka message
key, or use the message metadata(partition, topic, index).

Kafka Connect Query Language

K afka C onnect Q uery L anguage found here GitHub repo allows for routing and mapping using a SQL like syntax,
consolidating typically features in to one configuration option.

The Influx Sink supports the following:

INSERT INTO <measure> SELECT <fields> FROM <source topic> WITHTIMESTAMP <field_name>
→˓|sys_time()

Example:

#Insert mode, select all fields from topicA and write to indexA
INSERT INTO measureA SELECT * FROM topicA

#Insert mode, select 3 fields and rename from topicB and write to indexB, use field Y
→˓as the point measurement
INSERT INTO measureB SELECT x AS a, y AS b and z AS c FROM topicB WITHTIMESTAMP y

#Insert mode, select 3 fields and rename from topicB and write to indexB, use field Y
→˓as the current system time for
#Point measurement
INSERT INTO measureB SELECT x AS a, y AS b and z AS c FROM topicB WITHTIMESTAMP sys_
→˓time()

This is set in the connect.influx.kcql option.

Error Polices

The Sink has three error policies that determine how failed writes to the target database are handled. The error policies
affect the behaviour of the schema evolution characteristics of the sink. See the schema evolution section for more
information.

Throw

Any error on write to the target database will be propagated up and processing is stopped. This is the default behaviour.

Noop

Any error on write to the target database is ignored and processing continues.

1.2. Kafka Connect 139

https://github.com/datamountaineer/kafka-connector-query-language

StreamReactor Documentation, Release 0.1

Warning: This can lead to missed errors if you don’t have adequate monitoring. Data is not lost as it’s still in
Kafka subject to Kafka’s retention policy. The Sink currently does not distinguish between integrity constraint
violations and or other expections thrown by drivers.

Retry

Any error on write to the target database causes the RetryIterable exception to be thrown. This causes the Kafka
connect framework to pause and replay the message. Offsets are not committed. For example, if the table is offline it
will cause a write failure, the message can be replayed. With the Retry policy the issue can be fixed without stopping
the sink.

The length of time the Sink will retry can be controlled by using the connect.influx.max.retries and the
connect.influx.retry.interval.

Configurations

connect.influx.kcql

Kafka connect query language expression. Allows for expressive topic to table routing, field selection and renaming.
For InfluxDB it allows either setting a default or selecting a field from the topic as the Point measurement.

• Data type : string

• Importance: high

• Optional : no

connect.influx.url

The InfluxDB database url.

• Data type : string

• Importance: high

• Optional : no

connect.influx.db

The InfluxDB database.

• Data type : string

• Importance: high

• Optional : no

connect.influx.username

The InfluxDB username.

• Data type : string

• Importance: high

• Optional : yes

connect.influx.password

The InfluxDB password.

• Data type : string

• Importance: high

140 Chapter 1. Components

StreamReactor Documentation, Release 0.1

• Optional : yes

connect.influx.consistency.level

Specifies the write consistency. If any write operations do not meet the configured consistency guarantees, an error
will occur and the data will not be indexed. The default consistency-level is ALL. Other available options are ANY,
ONE, QUORUM

• Data type : string

• Importance: medium

• Optional : yes

• Default : ALL

connect.influx.retention.policy

Determines how long InfluxDB keeps the data - the options for specifying the duration of the retention policy are listed
below. Note that the minimum retention period is one hour. DURATION determines how long InfluxDB keeps the
data - the options for specifying the duration of the retention policy are listed below. Note that the minimum retention
period is one hour.

m minutes h hours d days w weeks INF infinite

Default retention is autogen from 1.0 onwards or default for any previous version

• Data type : string

• Importance: medium

• Optional : yes

connect.influx.error.policy

Specifies the action to be taken if an error occurs while inserting the data.

There are three available options, noop, the error is swallowed, throw, the error is allowed to propagate and retry.
For retry the Kafka message is redelivered up to a maximum number of times specified by the connect.influx.
max.retries option. The connect.influx.retry.interval option specifies the interval between retries.

The errors will be logged automatically.

• Type: string

• Importance: medium

• Optional: yes

• Default: RETRY

connect.influx.max.retries

The maximum number of times a message is retried. Only valid when the connect.influx.error.policy is
set to retry.

• Type: string

• Importance: medium

• Optional: yes

• Default: 10

connect.influx.retry.interval

The interval, in milliseconds between retries if the Sink is using connect.influx.error.policy set to
RETRY.

1.2. Kafka Connect 141

StreamReactor Documentation, Release 0.1

• Type: int

• Importance: high

• Optional: no

• Default : 60000 (1 minute)

connect.progress.enabled

Enables the output for how many records have been processed.

• Type: boolean

• Importance: medium

• Optional: yes

• Default : false

Example

name=influxdb-sink
connector.class=com.datamountaineer.streamreactor.connect.influx.InfluxSinkConnector
tasks.max=1
topics=influx-topic
connect.influx.kcql=INSERT INTO influxMeasure SELECT * FROM influx-topic
→˓WITHTIMESTAMP sys_time()
connect.influx.url=http://localhost:8086
connect.influx.db=mydb

Schema Evolution

Upstream changes to schemas are handled by Schema registry which will validate the addition and removal or fields,
data type changes and if defaults are set. The Schema Registry enforces Avro schema evolution rules. More informa-
tion can be found here.

Deployment Guidelines

TODO

TroubleShooting

Please review the FAQs and join our slack channel.

Kafka Connect JMS Sink

The JMS Sink connector allows you to extract entries from a Kafka topic with the CQL driver and pass them to a JMS
topic/queue. The connector allows you to specify the payload type sent to the JMS target:

1. JSON

2. AVRO

3. MAP

142 Chapter 1. Components

http://docs.confluent.io/3.0.1/schema-registry/docs/api.html#compatibility
https://slackpass.io/datamountaineers

StreamReactor Documentation, Release 0.1

4. OBJECT

The Sink supports:

1. The KCQL routing querying. Kafka topic payload field selection is supported, allowing you to select fields
written to the queue or topic in JMS.

2. Topic to topic routing via KCQL.

3. Payload format selection via KCQL.

4. Error policies for handling failures.

5. Payload support for Schema.Struct and payload Struct, Schema.String and Json payload and Json payload with
no schema.

The Sink supports three Kafka payloads type for TextMessage (Format JSON) only:

Note: Only support with used with KCQL format type JSON. This sends messages at TextMessages to the JMS
destination.

Connect entry with Schema.Struct and payload Struct. If you follow the best practice while producing the events,
each message should carry its schema information. Best option is to send Avro. Your connect configurations should
be set to value.converter=io.confluent.connect.avro.AvroConverter. You can find an example
here. To see how easy is to have your producer serialize to Avro have a look at this. This requires the SchemaRegistry
which is open source thanks to Confluent! Alternatively you can send Json + Schema. In this case your connect con-
figuration should be set to value.converter=org.apache.kafka.connect.json.JsonConverter.
This doesn’t require the SchemaRegistry.

Connect entry with Schema.String and payload json String. Sometimes the producer would find it easier, despite
sending Avro to produce a GenericRecord, to just send a message with Schema.String and the json string.

Connect entry without a schema and the payload json String. There are many existing systems which are publish-
ing json over Kafka and bringing them in line with best practices is quite a challenge. Hence we added the support.

Prerequisites

• Confluent 3.2

• Java 1.8

• Scala 2.11

• A JMS framework (ActiveMQ for example)

Setup

Before we can do anything, including the QuickStart we need to install the Confluent platform. For ActiveMQ follow
http://activemq.apache.org/getting-started.html for the instruction of setting it up.

Confluent Setup

Follow the instructions here.

1.2. Kafka Connect 143

https://github.com/confluentinc/kafka-connect-blog/blob/master/etc/connect-avro-standalone.properties
http://docs.confluent.io/3.0.1/schema-registry/docs/serializer-formatter.html?highlight=kafkaavroserializer
http://activemq.apache.org/getting-started.html

StreamReactor Documentation, Release 0.1

Sink Connector QuickStart

We will start the connector in distributed mode. Each connector exposes a rest endpoint for stopping, starting and
updating the configuration. We have developed a Command Line Interface to make interacting with the Connect Rest
API easier. The CLI can be found in the Stream Reactor download under the bin folder. Alternatively the Jar can be
pulled from our GitHub releases page.

Starting the Connector (Distributed)

Download, unpack and install the Stream Reactor. Follow the instructions here if you haven’t already done so. All
paths in the quickstart are based in the location you installed the Stream Reactor.

Start Kafka Connect in distributed more by running the start-connect.sh script in the bin folder.

bin/start-connect.sh

Once the connector has started we can now use the kafka-connect-tools cli to post in our distributed properties file for
JMS. If you are using the dockers you will have to set the following environment variable to for the CLI to connect to
the Rest API of Kafka Connect of your container.

export KAFKA_CONNECT_REST="http://myserver:myport"

bin/connect-cli create jms-sink < conf/jms-sink.properties

The jms-sink.properties file defines:

If you switch back to the terminal you started the Connector in you should see the JMS Sink being accepted and the
task starting.

We can use the CLI to check if the connector is up but you should be able to see this in logs as-well.

#check for running connectors with the CLI
bin/connect-cli ps

jms-sink

Test Records

Now we need to put some records it to the test_table topics. We can use the kafka-avro-console-producer
to do this.

Start the producer and pass in a schema to register in the Schema Registry. The schema has a id field of type int and
a random_field of type string.

${CONFLUENT_HOME}/bin/kafka-avro-console-producer \
--broker-list localhost:9092 --topic jms_test \
--property value.schema='{"type":"record","name":"User","namespace":"com.
→˓datamountaineer.streamreactor.connect.jms",
"fields":[{"name":"firstName","type":"string"},{"name":"lastName","type":"string"},{
→˓"name":"age","type":"int"},{"name":"salary","type":"double"}]}'

Now the producer is waiting for input. Paste in the following:

{"firstName": "John", "lastName": "Smith", "age":30, "salary": 4830}
{"firstName": "Anna", "lastName": "Jones", "age":28, "salary": 5430}

144 Chapter 1. Components

https://github.com/datamountaineer/kafka-connect-tools/releases

StreamReactor Documentation, Release 0.1

Now check for records in ActiveMQ.

Now stop the connector.

Features

The Sink supports:

1. Field selection - Kafka topic payload field selection is supported, allowing you to select fields written to the
queue or topic in JMS.

2. Topic to JMS Destination routing.

3. Payload format selection.

4. Error policies for handling failures.

5. Payload support for Schema.Struct and payload Struct, Schema.String and Json payload and Json payload with
no schema. Only supported when storing as JSON

Kafka Connect Query Language

K afka C onnect Q uery L anguage found here GitHub repo allows for routing and mapping using a SQL like syntax,
consolidating typically features in to one configuration option.

The JMS Sink supports the following:

INSERT INTO <jms target> SELECT <fields> FROM <source topic> STOREAS
→˓<AVRO|JSON|MAP|OBJECT>

Example:

#select all fields from topicA and write to jmsA
INSERT INTO jmsA SELECT * FROM topicA

#select 3 fields and rename from topicB and write to jmsB as JSON in a TextMessage
INSERT INTO jmsB SELECT x AS a, y AS b and z AS c FROM topicB STOREAS JSON

JMS Payload

When a message is sent to a JMS target it can be one of the following:

1. JSON - Send a TextMessage;

2. AVRO - Send a BytesMessage;

3. MAP - Send a MapMessage;

4. OBJECT - Send an ObjectMessage

Topic Routing

The Sink supports topic routing that allows mapping the messages from topics to a specific jms target. For example,
map a topic called “bloomberg_prices” to a jms target named “prices”. This mapping is set in the connect.jms.
kcql option.

1.2. Kafka Connect 145

https://github.com/datamountaineer/kafka-connector-query-language

StreamReactor Documentation, Release 0.1

Example:

//Select all
INSERT INTO prices SELECT * FROM bloomberg_prices; INSERT INTO jms3 SELECT * FROM
→˓topic2

Configurations

connect.jms.url

Provides the JMS broker url

• Data Type: string

• Importance: high

• Optional : no

connect.jms.username

Provides the user for the JMS connection.

• Data Type: string

• Importance: high

• Optional : no

connect.jms.password

Provides the password for the JMS connection.

• Data Type: string

• Importance: high

• Optional : no

connect.jms.initial.context.factory

• Data Type: string

• Importance: high

• Optional: no

Initial Context Factory, e.g: org.apache.activemq.jndi.ActiveMQInitialContextFactory.

connect.jms.connection.factory

The ConnectionFactory implementation to use.

• Data Type: string

• Importance: high

• Optional : no

connect.jms.destination.selector

• Data Type: String

• Importance: high

• Optional: no

• Default: CDI

146 Chapter 1. Components

StreamReactor Documentation, Release 0.1

Selector to use for destination lookup. Either CDI or JNDI.

connect.jms.initial.context.extra.params

• Data Type: String

• Importance: high

• Optional: yes

List (comma separated) of extra properties as key/value pairs with a colon delimiter to supply to the initial context e.g.
SOLACE_JMS_VPN:my_solace_vp.

connect.jms.kcql

KCQL expression describing field selection and routes.

• Data Type: string

• Importance: high

• Optional : no

connect.jms.topics

Comma separated list of all the jms target topics.

• Data Type: list

• Importance: medium

• Optional : yes

connect.jms.queues

Comma separated list of all the jms target queues.

• Data Type: list

• Importance: medium

• Optional : yes

connect.jms.error.policy

Specifies the action to be taken if an error occurs while inserting the data.

There are three available options, noop, the error is swallowed, throw, the error is allowed to propagate and retry. For
retry the Kafka message is redelivered up to a maximum number of times specified by the connect.jms.max.
retries option. The connect.jms.retry.interval option specifies the interval between retries.

The errors will be logged automatically.

• Type: string

• Importance: medium

• Optional: yes

• Default: RETRY

connect.jms.max.retries

The maximum number of times a message is retried. Only valid when the connect.jms.error.policy is set
to retry.

• Type: string

• Importance: medium

1.2. Kafka Connect 147

StreamReactor Documentation, Release 0.1

• Optional: yes

• Default: 10

connect.jms.retry.interval

The interval, in milliseconds between retries if the Sink is using connect.jms.error.policy set to RETRY.

• Type: int

• Importance: medium

• Optional: yes

• Default : 60000 (1 minute)

connect.progress.enabled

Enables the output for how many records have been processed.

• Type: boolean

• Importance: medium

• Optional: yes

• Default : false

Schema Evolution

Not applicable.

Deployment Guidelines

TODO

TroubleShooting

Please review the FAQs and join our slack channel.

Kafka Connect Kudu

A Connector and Sink to write events from Kafka to kudu.The connector takes the value from the Kafka Connect
SinkRecords and inserts a new entry to Kudu.

The Sink supports:

1. The KCQL routing querying - Kafka topic payload field selection is supported, allowing you to select fields
written to Kudu.

2. Topic to table routing via KCQL.

3. Auto table create with DISTRIBUTE BY partition strategy via KCQL.

4. Auto evolution of tables via KCQL.

5. Error policies for handling failures.

148 Chapter 1. Components

https://slackpass.io/datamountaineers

StreamReactor Documentation, Release 0.1

Prerequisites

• Confluent 3.2

• Kudu 0.8

• Java 1.8

• Scala 2.11

Setup

Kudu Setup

Download and check Kudu QuickStart VM starts up.

curl -s https://raw.githubusercontent.com/cloudera/kudu-examples/master/demo-vm-setup/
→˓bootstrap.sh | bash

Confluent Setup

Follow the instructions here.

Sink Connector QuickStart

We will start the connector in distributed mode. Each connector exposes a rest endpoint for stopping, starting and
updating the configuration. We have developed a Command Line Interface to make interacting with the Connect Rest
API easier. The CLI can be found in the Stream Reactor download under the bin folder. Alternatively the Jar can be
pulled from our GitHub releases page.

Kudu Table

Lets create a table in Kudu via Impala. The Sink does support auto creation of tables but they are not sync’d yet with
Impala.

#demo/demo
ssh demo@quickstart -t impala-shell

CREATE TABLE default.kudu_test (id INT,random_field STRING)
TBLPROPERTIES ('kudu.master_addresses'='127.0.0.1', 'kudu.key_columns'='id',
'kudu.table_name'='kudu_test', 'transient_lastDdlTime'='1456744118',
'storage_handler'='com.cloudera.kudu.hive.KuduStorageHandler')
exit;

Note: The Sink will fail to start if the tables matching the topics do not already exist and the Sink is not in auto create
mode.

1.2. Kafka Connect 149

https://github.com/datamountaineer/kafka-connect-tools/releases

StreamReactor Documentation, Release 0.1

Starting the Connector (Distributed)

Download, unpack and install the Stream Reactor. Follow the instructions here if you haven’t already done so. All
paths in the quickstart are based in the location you installed the Stream Reactor.

Start Kafka Connect in distributed more by running the start-connect.sh script in the bin folder.

bin/start-connect.sh

Once the connector has started we can now use the kafka-connect-tools cli to post in our distributed properties file for
Kudu. If you are using the dockers you will have to set the following environment variable to for the CLI to connect
to the Rest API of Kafka Connect of your container.

export KAFKA_CONNECT_REST="http://myserver:myport"

bin/connect-cli create kudu-sink < conf/kudu-sink.properties
#Connector name=kudu-sink
connector.class=com.datamountaineer.streamreactor.connect.kudu.KuduSinkConnector
tasks.max=1
connect.kudu.master=quickstart
connect.kudu.kcql = INSERT INTO kudu_test SELECT * FROM kudu-test
topics=kudu_test
#task ids: 0

The kudu-sink.properties file defines:

1. The name of the sink.

2. The Sink class.

3. The max number of tasks the connector is allowed to created. Should not be greater than the number of partitions
in the Source topics otherwise tasks will be idle.

4. The Kudu master host.

5. The KCQL routing querying.

6. The Source kafka topics to take events from.

If you switch back to the terminal you started the Connector in you should see the Kudu Sink being accepted and the
task starting.

We can use the CLI to check if the connector is up but you should be able to see this in logs as-well.

#check for running connectors with the CLI
bin/connect-cli ps

kudu-sink

[2016-05-08 22:00:20,823] INFO
____ __ __ ___ __ _

/ __ ____ _/ /_____ _/ |/ /___ __ ______ / /_____ _(_)___ ___ ___ _____
/ / / / / __ `/ __/ __ `/ /|_/ / __ \/ / / / __ \/ __/ __ `/ / __ \/ _ \/ _ \/ ___/

/ /_/ / /_/ / /_/ /_/ / / / / /_/ / /_/ / / / / /_/ /_/ / / / / / __/ __/ /
/_____/__,_/__/__,_/_/ /_/____/__,_/_/ /_/__/__,_/_/_/ /_/___/___/_/

__ __ __ _____ _ __
/ //_/_ ______/ /_ __/ ___/(_)___ / /__

/ ,< / / / / __ / / / /__ \/ / __ \/ //_/
/ /| / /_/ / /_/ / /_/ /___/ / / / / / ,<
/_/ |___,_/__,_/__,_//____/_/_/ /_/_/|_|

150 Chapter 1. Components

StreamReactor Documentation, Release 0.1

by Andrew Stevenson
(com.datamountaineer.streamreactor.connect.kudu.KuduSinkTask:37)

[2016-05-08 22:00:20,823] INFO KuduSinkConfig values:
connect.kudu.master = quickstart

(com.datamountaineer.streamreactor.connect.kudu.KuduSinkConfig:165)
[2016-05-08 22:00:20,824] INFO Connecting to Kudu Master at quickstart (com.
→˓datamountaineer.streamreactor.connect.kudu.KuduWriter$:33)
[2016-05-08 22:00:20,875] INFO Initialising Kudu writer (com.datamountaineer.
→˓streamreactor.connect.kudu.KuduWriter:40)
[2016-05-08 22:00:20,892] INFO Assigned topics (com.datamountaineer.streamreactor.
→˓connect.kudu.KuduWriter:42)
[2016-05-08 22:00:20,904] INFO Sink task org.apache.kafka.connect.runtime.
→˓WorkerSinkTask@b60ba7b finished initialization and start (org.apache.kafka.connect.
→˓runtime.WorkerSinkTask:155)

Test Records

Now we need to put some records it to the test_table topics. We can use the kafka-avro-console-producer
to do this.

Start the producer and pass in a schema to register in the Schema Registry. The schema has a id field of type int and
a random_field of type string.

${CONFLUENT_HOME}/bin/kafka-avro-console-producer \
--broker-list localhost:9092 --topic kudu-test \
--property value.schema='{"type":"record","name":"myrecord","fields":[{"name":"id",
→˓"type":"int"},
{"name":"random_field", "type": "string"}]}'

Now the producer is waiting for input. Paste in the following:

{"id": 999, "random_field": "foo"}
{"id": 888, "random_field": "bar"}

Check for records in Kudu

Now check the logs of the connector you should see this:

[2016-05-08 22:09:22,065] INFO
____ __ __ ___ __ _

/ __ ____ _/ /_____ _/ |/ /___ __ ______ / /_____ _(_)___ ___ ___ _____
/ / / / __ `/ __/ __ `/ /|_/ / __ \/ / / / __ \/ __/ __ `/ / __ \/ _ \/ _ \/ ___/

/ /_/ / /_/ / /_/ /_/ / / / / /_/ / /_/ / / / / /_/ /_/ / / / / / __/ __/ /
/_____/__,_/__/__,_/_/ /_/____/__,_/_/ /_/__/__,_/_/_/ /_/___/___/_/

__ __ __ _____ _ __
/ //_/_ ______/ /_ __/ ___/(_)___ / /__

/ ,< / / / / __ / / / /__ \/ / __ \/ //_/
/ /| / /_/ / /_/ / /_/ /___/ / / / / / ,<
/_/ |___,_/__,_/__,_//____/_/_/ /_/_/|_|

by Andrew Stevenson
(com.datamountaineer.streamreactor.connect.kudu.KuduSinkTask:37)

1.2. Kafka Connect 151

StreamReactor Documentation, Release 0.1

[2016-05-08 22:09:22,065] INFO KuduSinkConfig values:
connect.kudu.master = quickstart

(com.datamountaineer.streamreactor.connect.kudu.KuduSinkConfig:165)
[2016-05-08 22:09:22,066] INFO Connecting to Kudu Master at quickstart (com.
→˓datamountaineer.streamreactor.connect.kudu.KuduWriter$:33)
[2016-05-08 22:09:22,116] INFO Initialising Kudu writer (com.datamountaineer.
→˓streamreactor.connect.kudu.KuduWriter:40)
[2016-05-08 22:09:22,134] INFO Assigned topics kudu_test (com.datamountaineer.
→˓streamreactor.connect.kudu.KuduWriter:42)
[2016-05-08 22:09:22,148] INFO Sink task org.apache.kafka.connect.runtime.
→˓WorkerSinkTask@68496440 finished initialization and start (org.apache.kafka.connect.
→˓runtime.WorkerSinkTask:155)
[2016-05-08 22:09:22,476] INFO Written 2 for kudu_test (com.datamountaineer.
→˓streamreactor.connect.kudu.KuduWriter:90)

In Kudu:

#demo/demo
ssh demo@quickstart -t impala-shell

SELECT * FROM kudu_test;

Query: select * FROM kudu_test
+-----+--------------+
| id | random_field |
+-----+--------------+
| 888 | bar |
| 999 | foo |
+-----+--------------+
Fetched 2 row(s) in 0.14s

Now stop the connector.

Features

The Kudu Sink writes records from Kafka to Kudu.

The Sink supports:

1. Field selection - Kafka topic payload field selection is supported, allowing you to select fields written to Kudu.

2. Topic to table routing.

3. Auto table create with DISTRIBUTE BY partition strategy.

4. Auto evolution of tables.

5. Error policies for handling failures.

Kafka Connect Query Language

K afka C onnect Q uery L anguage found here GitHub repo allows for routing and mapping using a SQL like syntax,
consolidating typically features in to one configuration option.

The Kudu Sink supports the following:

152 Chapter 1. Components

https://github.com/datamountaineer/kafka-connector-query-language

StreamReactor Documentation, Release 0.1

<write mode> INTO <target table> SELECT <fields> FROM <source topic> <AUTOCREATE>
→˓<AUTOEVOLVE> <DISTRIBUTEBY> <PK_FIELDS> INTO <NBR_OF_BUCKETS> BUCKETS

Example:

#Insert mode, select all fields from topicA and write to tableA
INSERT INTO tableA SELECT * FROM topicA

#Insert mode, select 3 fields and rename from topicB and write to tableB
INSERT INTO tableB SELECT x AS a, y AS b and z AS c FROM topicB

#Upsert mode, select all fields from topicC, auto create tableC and auto evolve, use
→˓field1 and field2 as the primary keys
UPSERT INTO tableC SELECT * FROM topicC AUTOCREATE DISTRIBUTEBY field1, field2 INTO
→˓10 BUCKETS AUTOEVOLVE

Error Polices

The Sink has three error policies that determine how failed writes to the target database are handled. The error policies
affect the behaviour of the schema evolution characteristics of the Sink. See the schema evolution section for more
information.

Throw

Any error on write to the target database will be propagated up and processing is stopped. This is the default behaviour.

Noop

Any error on write to the target database is ignored and processing continues.

Warning: This can lead to missed errors if you don’t have adequate monitoring. Data is not lost as it’s still in
Kafka subject to Kafka’s retention policy. The Sink currently does not distinguish between integrity constraint
violations and or other expections thrown by drivers.

Retry

Any error on write to the target database causes the RetryIterable exception to be thrown. This causes the Kafka
connect framework to pause and replay the message. Offsets are not committed. For example, if the table is offline it
will cause a write failure, the message can be replayed. With the Retry policy the issue can be fixed without stopping
the sink.

The length of time the Sink will retry can be controlled by using the connect.kudu.max.retries and the
connect.kudu.retry.interval.

Auto conversion of Connect records to Kudu

The Sink automatically converts incoming Connect records to Kudu inserts or upserts.

Topic Routing

The Sink supports topic routing that allows mapping the messages from topics to a specific table. For example, map a
topic called “bloomberg_prices” to a table called “prices”. This mapping is set in the connect.kudu.kcql option.

1.2. Kafka Connect 153

StreamReactor Documentation, Release 0.1

Example:

//Select all
INSERT INTO table1 SELECT * FROM topic1; INSERT INTO tableA SELECT * FROM topicC

Field Selection

The Kudu Sink supports field selection and mapping. This mapping is set in the connect.kudu.kcql option.

Examples:

//Rename or map columns
INSERT INTO table1 SELECT lst_price AS price, qty AS quantity FROM topicA

//Select all
INSERT INTO table1 SELECT * FROM topic1

Tip: Check you mappings to ensure the target columns exist.

Warning: Field selection disables evolving the target table if the upstream schema in the Kafka topic changes.
By specifying field mappings it is assumed the user is not interested in new upstream fields. For example they may
be tapping into a pipeline for a Kafka stream job and not be intended as the final recipient of the stream.

If you chose field selection you must include the primary key fields otherwise the insert will fail.

Write Modes

The Sink supports both insert and upsert modes. This mapping is set in the connect.kudu.kcql option.

Insert

Insert is the default write mode of the sink.

Insert Idempotency

Kafka currently provides at least once delivery semantics. Therefore, this mode may produce errors if unique con-
straints have been implemented on the target tables. If the error policy has been set to NOOP then the Sink will
discard the error and continue to process, however, it currently makes no attempt to distinguish violation of integrity
constraints from other exceptions such as casting issues.

Upsert

The Sink support Kudu upserts which replaces the existing row if a match is found on the primary keys.

Upsert Idempotency

Kafka currently provides at least once delivery semantics and order is a guaranteed within partitions.

This mode will, if the same record is delivered twice to the sink, result in an idempotent write. The existing record
will be updated with the values of the second which are the same.

If records are delivered with the same field or group of fields that are used as the primary key on the target table, but
different values, the existing record in the target table will be updated.

Since records are delivered in the order they were written per partition the write is idempotent on failure or restart.
Redelivery produces the same result.

154 Chapter 1. Components

StreamReactor Documentation, Release 0.1

Auto Create Tables

The Sink supports auto creation of tables for each topic. This mapping is set in the connect.kudu.kcql option.

Primary keys are set in the DISTRIBUTEBY clause of the connect.kudu.kcql.

Tables are created with the Kudu hash partition strategy. The number of buckets must be specified in the kcql
statement.

#AutoCreate the target table
INSERT INTO table1 SELECT * FROM topic AUTOCREATE DISTRIBUTEBY field1, field2 INTO 10
→˓BUCKETS

Note: The fields specified as the primary keys (distributeby) must be in the SELECT clause or all fields must be
selected

The Sink will try and create the table at start up if a schema for the topic is found in the Schema Registry. If no schema
is found the table is created when the first record is received for the topic.

Auto Evolve Tables

The Sink supports auto evolution of tables for each topic. This mapping is set in the connect.kudu.kcql option.
When set the Sink will identify new schemas for each topic based on the schema version from the Schema registry.
New columns will be identified and an alter table DDL statement issued against Kudu.

Schema evolution can occur upstream, for example any new fields or change in data type in the schema of the topic,
or downstream DDLs on the database.

Upstream changes must follow the schema evolution rules laid out in the Schema Registry. This Sink only supports
BACKWARD and FULLY compatible schemas. If new fields are added the Sink will attempt to perform a ALTER
table DDL statement against the target table to add columns. All columns added to the target table are set as nullable.

Fields cannot be deleted upstream. Fields should be of Avro union type [null, <dataType>] with a default set. This
allows the Sink to either retrieve the default value or null. The Sink is not aware that the field has been deleted as a
value is always supplied to it.

Warning: If a upstream field is removed and the topic is not following the Schema Registry’s evolution rules, i.e.
not full or backwards compatible, any errors will default to the error policy.

Downstream changes are handled by the sink. If columns are removed, the mapped fields from the topic are ignored.
If columns are added, we attempt to find a matching field by name in the topic.

Error Polices

The Sink has three error policies that determine how failed writes to the target database are handled. The error policies
affect the behaviour of the schema evolution characteristics of the sink. See the schema evolution section for more
information.

Throw

Any error on write to the target database will be propagated up and processing is stopped. This is the default behaviour.

Noop

1.2. Kafka Connect 155

StreamReactor Documentation, Release 0.1

Any error on write to the target database is ignored and processing continues.

Warning: This can lead to missed errors if you don’t have adequate monitoring. Data is not lost as it’s still in
Kafka subject to Kafka’s retention policy. The Sink currently does not distinguish between integrity constraint
violations and or other expections thrown by drivers..

Retry

Any error on write to the target database causes the RetryIterable exception to be thrown. This causes the Kafka
connect framework to pause and replay the message. Offsets are not committed. For example, if the table is offline it
will cause a write failure, the message can be replayed. With the Retry policy the issue can be fixed without stopping
the sink.

The length of time the Sink will retry can be controlled by using the connect.kudu.max.retries and the
connect.cassandra.retry.interval.

Data Type Mappings

Connect Type Kudu Data Type
INT8 INT8
INT16 INT16
INT32 INT32
INT64 INT64
BOOLEAN BOOLEAN
FLOAT32 FLOAT
FLOAT64 FLOAT
BYTES BINARY

Configurations

connect.kudu.master

Specifies a Kudu server.

• Data type : string

• Importance: high

• Optional : no

connect.kudu.kcql

Kafka connect query language expression. Allows for expressive topic to table routing, field selection and renaming.

Examples:

INSERT INTO TABLE1 SELECT * FROM TOPIC1;INSERT INTO TABLE2 SELECT field1, field2,
→˓field3 as renamedField FROM TOPIC2

• Data Type: string

• Importance: high

• Optional : no

156 Chapter 1. Components

StreamReactor Documentation, Release 0.1

connect.kudu.error.policy

Specifies the action to be taken if an error occurs while inserting the data.

There are three available options, noop, the error is swallowed, throw, the error is allowed to propagate and retry. For
retry the Kafka message is redelivered up to a maximum number of times specified by the connect.kudu.max.
retries option. The connect.kudu.retry.interval option specifies the interval between retries.

The errors will be logged automatically.

• Type: string

• Importance: high

• Optional : yes

• Default: RETRY

connect.kudu.max.retries

The maximum number of times a message is retried. Only valid when the connect.kudu.error.policy is set
to retry.

• Type: string

• Importance: medium

• Optional : yes

• Default: 10

connect.kudu.retry.interval

The interval, in milliseconds between retries if the Sink is using connect.kudu.error.policy set to RETRY.

• Type: int

• Importance: medium

• Optional : yes

• Default : 60000 (1 minute)

connect.kudu.schema.registry.url

The url for the Schema registry. This is used to retrieve the latest schema for table creation.

• Type : string

• Importance : high

• Optional : yes

• Default : http://localhost:8081

connect.progress.enabled

Enables the output for how many records have been processed.

• Type: boolean

• Importance: medium

• Optional: yes

• Default : false

1.2. Kafka Connect 157

http://localhost:8081

StreamReactor Documentation, Release 0.1

Example

name=kudu-sink
connector.class=com.datamountaineer.streamreactor.connect.kudu.KuduSinkConnector
tasks.max=1
connect.kudu.master=quickstart
connect.kudu.kcql=INSERT INTO kudu_test SELECT * FROM kudu_test AUTOCREATE
→˓DISTRIBUTEBY id INTO 5 BUCKETS
topics=kudu_test
connect.kudu.schema.registry.url=http://myhost:8081

Deployment Guidelines

TODO

TroubleShooting

Please review the FAQs and join our slack channel.

Kafka Connect Mongo Sink

The Mongo Sink allows you to write events from Kafka to your MongoDB instance. The connector converts the
value from the Kafka Connect SinkRecords to MongoDB Document and will do an insert or upsert depending on the
configuration you chose. It is expected the database is created upfront; the targeted MongoDB collections will be
created if they don’t exist

Note: The database needs to be created upfront!

The Sink supports:

1. The KCQL routing querying - Topic to measure mapping and Field selection.

2. Schema registry support for Connect/Avro with a schema.

3. Schema registry support for Connect and no schema (schema set to Schema.String)

4. Json payload support, no Schema Registry.

5. Error policies.

6. Payload support for Schema.Struct and payload Struct, Schema.String and Json payload and Json payload with
no schema

The Sink supports three Kafka payloads type:

Connect entry with Schema.Struct and payload Struct. If you follow the best practice while producing the events,
each message should carry its schema information. Best option is to send Avro. Your connect configurations should
be set to value.converter=io.confluent.connect.avro.AvroConverter. You can find an example
here. To see how easy is to have your producer serialize to Avro have a look at this. This requires the SchemaRegistry
which is open source thanks to Confluent! Alternatively you can send Json + Schema. In this case your connect con-
figuration should be set to value.converter=org.apache.kafka.connect.json.JsonConverter.
This doesn’t require the SchemaRegistry.

158 Chapter 1. Components

https://slackpass.io/datamountaineers
https://github.com/confluentinc/kafka-connect-blog/blob/master/etc/connect-avro-standalone.properties
http://docs.confluent.io/3.0.1/schema-registry/docs/serializer-formatter.html?highlight=kafkaavroserializer

StreamReactor Documentation, Release 0.1

Connect entry with Schema.String and payload json String. Sometimes the producer would find it easier, despite
sending Avro to produce a GenericRecord, to just send a message with Schema.String and the json string.

Connect entry without a schema and the payload json String. There are many existing systems which are publish-
ing json over Kafka and bringing them in line with best practices is quite a challenge. Hence we added the support.

Prerequisites

• MongoDB 3.2.10

• Confluent 3.2

• Java 1.8

• Scala 2.11

Setup

Before we can do anything, including the QuickStart we need to install MongoDb and the Confluent platform.

Confluent Setup

Follow the instructions here.

MongoDb Setup

If you already have an instance of Mongo running you can skip this step. First download and install MongoDb
Community edition. This is the manual approach for installing on Ubuntu. You can follow the details https://docs.
mongodb.com/v3.2/administration/install-community/ for your OS.

#go to home folder
cd ~

#make a folder for mongo
mkdir mongodb

#Download Mongo
wget wget https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-ubuntu1604-3.2.10.

→˓tgz

#extract the archive
tar xvf mongodb-linux-x86_64-ubuntu1604-3.2.10.tgz -C mongodb
cd mongodb
mv mongodb-linux-x86_64-ubuntu1604-3.2.10/* .

#create the data folder
mkdir data
mkdir data/db

#Start MongoDb
bin/mongod --dbpath data/db

1.2. Kafka Connect 159

https://docs.mongodb.com/v3.2/administration/install-community/
https://docs.mongodb.com/v3.2/administration/install-community/

StreamReactor Documentation, Release 0.1

Sink Connector QuickStart

We will start the connector in distributed mode. Each connector exposes a rest endpoint for stopping, starting and
updating the configuration. We have developed a Command Line Interface to make interacting with the Connect Rest
API easier. The CLI can be found in the Stream Reactor download under the bin folder. Alternatively the Jar can be
pulled from our GitHub releases page.

The important configuration for Connect is related to the key and value deserializer. In the first example we default to
the best practice where the source sends Avro messages to a Kafka topic. It is not enough to just be Avro messages but
also the producer must work with the Schema Registry to create the schema if it doesn’t exist and set the schema id
in the message. Every message sent will have a magic byte followed by the Avro schema id and then the actual Avro
record in binary format.

Here are the entries in the config setting all the above. The are placed in the connect-properties file Kafka
Connect is started with. Of course if your SchemaRegistry runs on a different machine or you have multiple instances
of it you will have to amend the configuration.

key.converter=io.confluent.connect.avro.AvroConverter
key.converter.schema.registry.url=http://localhost:8081
value.converter=io.confluent.connect.avro.AvroConverter
value.converter.schema.registry.url=http://localhost:8081

Test Database

The Sink requires that a database be precreated in MongoDB.

#from a new terminal
cd ~/mongodb/bin

#start the cli
./mongo

#list all dbs
show dbs

#create a new database named connect
use connect

#create a dummy collection and insert one document to actually create the database
db.dummy.insert({"name":"Kafka Rulz!"})

#list all dbs
show dbs

Starting the Connector

Download, unpack and install the Stream Reactor. Follow the instructions here if you haven’t already done so. All
paths in the quickstart are based in the location you installed the Stream Reactor.

Start Kafka Connect in distributed more by running the start-connect.sh script in the bin folder.

bin/start-connect.sh

Once the connector has started we can now use the kafka-connect-tools cli to post in our distributed properties file for
Kudu. If you are using the dockers you will have to set the following environment variable to for the CLI to connect
to the Rest API of Kafka Connect of your container.

160 Chapter 1. Components

https://github.com/datamountaineer/kafka-connect-tools/releases

StreamReactor Documentation, Release 0.1

export KAFKA_CONNECT_REST="http://myserver:myport"

bin/connect-cli create mongo-sink < conf/source.kcql/mongo-sink.properties

#Connector `mongo-sink-orders`:
name=mongo-sink-orders
connector.class=com.datamountaineer.streamreactor.connect.mongodb.sink.
→˓MongoSinkConnector
tasks.max=1
topics=orders-topic
connect.mongo.kcql=INSERT INTO orders SELECT * FROM orders-topic
connect.mongo.database=connect
connect.mongo.connection=mongodb://localhost:27017
connect.mongo.batch.size=10

#task ids: 0

If you switch back to the terminal you started Kafka Connect in you should see the Mongo Sink being accepted and
the task starting.

We can use the CLI to check if the connector is up but you should be able to see this in logs as-well.

#check for running connectors with the CLI
bin/connect-cli ps

mongo-sink

[2016-11-06 22:25:29,354] INFO MongoConfig values:
connect.mongo.retry.interval = 60000
connect.mongo.kcql = INSERT INTO orders SELECT * FROM orders-topic
connect.mongo.connection = mongodb://localhost:27017
connect.mongo.error.policy = THROW
connect.mongo.database = connect
connect.mongo.sink.batch.size = 10
connect.mongo.max.retires = 20

(com.datamountaineer.streamreactor.connect.mongodb.config.MongoConfig:178)
[2016-11-06 22:25:29,399] INFO

____ _ __ __ _ _
| _ \ __ _| |_ __ _| \/ | ___ _ _ _ __ | |_ __ _(_)_ __ ___ ___ _ __
			/ _`	__/ _`		\/		/ _ \|			'_ \| __/ _`		'_ \ / _ \/ _ \ '__														
	_		(_				(_					(_)		_							(_						__/ __/
____/ __,_	____,_	_		_	___/ __,_	_		_	____,_	_	_		_	___	___	_											
__ __ ____ _ ____ _ _ by Stefan Bocutiu

| \/ | ___ _ __ __ _ ___ | _ \| |__ / ___|(_)_ __ | | __
| |\/| |/ _ \| '_ \ / _` |/ _ \| | | | '_ \ ___ \| | '_ \| |/ /
| | | | (_) | | | | (_| | (_) | |_| | |_) | ___) | | | | | <
|_| |_|___/|_| |_|__, |___/|____/|_.__/ |____/|_|_| |_|_|_\

. (com.datamountaineer.streamreactor.connect.mongodb.sink.MongoSinkTask:51)
[2016-11-06 22:25:29,990] INFO Initialising Mongo writer.Connection to mongodb://
→˓localhost:27017 (com.datamountaineer.streamreactor.connect.mongodb.sink.MongoWriter
→˓$:126)

Test Records

1.2. Kafka Connect 161

StreamReactor Documentation, Release 0.1

Hint: If your input topic doesn’t match the target use Kafka Streams to transform in realtime the input. Also checkout
the Plumber, which allows you to inject a Lua script into Kafka Streams to do this, no Java or Scala required!

Now we need to put some records it to the orders-topic. We can use the kafka-avro-console-producer to do
this.

Start the producer and pass in a schema to register in the Schema Registry. The schema matches the table created
earlier.

bin/kafka-avro-console-producer \
--broker-list localhost:9092 --topic orders-topic \
--property value.schema='{"type":"record","name":"myrecord","fields":[{"name":"id",
→˓"type":"int"},
{"name":"created", "type": "string"}, {"name":"product", "type": "string"}, {"name":
→˓"price", "type": "double"}]}'

Now the producer is waiting for input. Paste in the following (each on a line separately):

{"id": 1, "created": "2016-05-06 13:53:00", "product": "OP-DAX-P-20150201-95.7",
→˓"price": 94.2}
{"id": 2, "created": "2016-05-06 13:54:00", "product": "OP-DAX-C-20150201-100", "price
→˓": 99.5}
{"id": 3, "created": "2016-05-06 13:55:00", "product": "FU-DATAMOUNTAINEER-20150201-
→˓100", "price": 10000}
{"id": 4, "created": "2016-05-06 13:56:00", "product": "FU-KOSPI-C-20150201-100",
→˓"price": 150}

Now if we check the logs of the connector we should see 2 records being inserted to MongoDB:

[2016-11-06 22:30:30,473] INFO Setting newly assigned partitions [orders-topic-0] for
→˓group connect-mongo-sink-orders (org.apache.kafka.clients.consumer.internals.
→˓ConsumerCoordinator:231)
[2016-11-06 22:31:29,328] INFO WorkerSinkTask{id=mongo-sink-orders-0} Committing
→˓offsets (org.apache.kafka.connect.runtime.WorkerSinkTask:261)

#Open a new terminal and navigate to the mongodb instalation folder
./bin/mongo

> show databases
connect 0.000GB
local 0.000GB

> use connect
switched to db connect

> show collections
dummy
orders

> db.orders.find()
{ "_id" : ObjectId("581fb21b09690a24b63b35bd"), "id" : 1, "created" : "2016-05-06

→˓13:53:00", "product" : "OP-DAX-P-20150201-95.7", "price" : 94.2 }
{ "_id" : ObjectId("581fb2f809690a24b63b35c2"), "id" : 2, "created" : "2016-05-06

→˓13:54:00", "product" : "OP-DAX-C-20150201-100", "price" : 99.5 }
{ "_id" : ObjectId("581fb2f809690a24b63b35c3"), "id" : 3, "created" : "2016-05-06

→˓13:55:00", "product" : "FU-DATAMOUNTAINEER-20150201-100", "price" : 10000 }
{ "_id" : ObjectId("581fb2f809690a24b63b35c4"), "id" : 4, "created" : "2016-05-06

→˓13:56:00", "product" : "FU-KOSPI-C-20150201-100", "price" : 150 }

Bingo, our 4 rows!

162 Chapter 1. Components

https://github.com/rollulus/kafka-streams-plumber
http://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple

StreamReactor Documentation, Release 0.1

Legacy topics (plain text payload with a json string)

We have found some of the clients have already an infrastructure where they publish pure json on the topic and
obviously the jump to follow the best practice and use schema registry is quite an ask. So we offer support for them as
well.

This time we need to start the connect with a different set of settings.

#create a new configuration for connect
cp etc/schema-registry/connect-avro-distributed.properties etc/schema-registry/
→˓connect-avro-distributed-json.properties
vi etc/schema-registry/connect-avro-distributed-json.properties

Replace the following 4 entries in the config

key.converter=io.confluent.connect.avro.AvroConverter
key.converter.schema.registry.url=http://localhost:8081
value.converter=io.confluent.connect.avro.AvroConverter
value.converter.schema.registry.url=http://localhost:8081

with the following

key.converter=org.apache.kafka.connect.json.JsonConverter
key.converter.schemas.enable=false
value.converter=org.apache.kafka.connect.json.JsonConverter
value.converter.schemas.enable=false

Now let’s restart the connect instance:

#start a new instance of connect
$bin/start-connect.sh

Use the CLI to remove the old MongoDB Sink:

bin/connect-cli rm mongo-sink

and start the new Sink with the json properties files to read from the a different topic with json as the payload.

#start the connector for mongo
bin/connect-cli create mongo-sink-orders-json < mongo-sink-orders-json.properties

You should see in the terminal where you started Kafka Connect the following entries in the log:

[2016-11-06 23:53:09,881] INFO MongoConfig values:
connect.mongo.retry.interval = 60000
connect.mongo.kcql = UPSERT INTO orders_json SELECT id, product as product_name,

→˓price as value FROM orders-topic-json PK id
connect.mongo.connection = mongodb://localhost:27017
connect.mongo.error.policy = THROW
connect.mongo.db = connect
connect.mongo.batch.size = 10
connect.mongo.max.retires = 20

(com.datamountaineer.streamreactor.connect.mongodb.config.MongoConfig:178)
[2016-11-06 23:53:09,927] INFO

____ _ __ __ _ _
| _ \ __ _| |_ __ _| \/ | ___ _ _ _ __ | |_ __ _(_)_ __ ___ ___ _ __
| | | |/ _` | __/ _` | |\/| |/ _ \| | | | '_ \| __/ _` | | '_ \ / _ \/ _ \ '__|
| |_| | (_| | || (_| | | | | (_) | |_| | | | | || (_| | | | | | __/ __/ |

1.2. Kafka Connect 163

StreamReactor Documentation, Release 0.1

|____/ __,_|____,_|_| |_|___/ __,_|_| |_|____,_|_|_| |_|___|___|_|
__ __ ____ _ ____ _ _ by Stefan Bocutiu

| \/ | ___ _ __ __ _ ___ | _ \| |__ / ___|(_)_ __ | | __
| |\/| |/ _ \| '_ \ / _` |/ _ \| | | | '_ \ ___ \| | '_ \| |/ /
| | | | (_) | | | | (_| | (_) | |_| | |_) | ___) | | | | | <
|_| |_|___/|_| |_|__, |___/|____/|_.__/ |____/|_|_| |_|_|_\

. (com.datamountaineer.streamreactor.connect.mongodb.sink.MongoSinkTask:51)
[2016-11-06 23:53:10,270] INFO Initialising Mongo writer.Connection to mongodb://
→˓localhost:27017 (com.datamountaineer.streamreactor.connect.mongodb.sink.MongoWriter
→˓$:126)

Now it’s time to produce some records. This time we will use the simple kafka-consoler-consumer to put simple json
on the topic:

${CONFLUENT_HOME}/bin/kafka-console-producer --broker-list localhost:9092 --topic
→˓orders-topic-json

{"id": 1, "created": "2016-05-06 13:53:00", "product": "OP-DAX-P-20150201-95.7",
→˓"price": 94.2}
{"id": 2, "created": "2016-05-06 13:54:00", "product": "OP-DAX-C-20150201-100", "price
→˓": 99.5}
{"id": 3, "created": "2016-05-06 13:55:00", "product": "FU-DATAMOUNTAINEER-20150201-
→˓100", "price":10000}

Following the command you should have something similar to this in the logs for your connect:

[2016-11-07 00:08:30,200] INFO Setting newly assigned partitions [orders-topic-json-
→˓0] for group connect-mongo-sink-orders-json (org.apache.kafka.clients.consumer.
→˓internals.ConsumerCoordinator:231)
[2016-11-07 00:08:30,324] INFO Opened connection [connectionId{localValue:3,
→˓serverValue:9}] to localhost:27017 (org.mongodb.driver.connection:71)

Let’s check the mongo db database for the new records:

#Open a new terminal and navigate to the mongodb installation folder
./bin/mongo

> show databases
connect 0.000GB
local 0.000GB

> use connect
switched to db connect

> show collections
dummy
orders
orders_json

> db.orders_json.find()
{ "_id" : ObjectId("581fc5fe53b2c9318a3c1004"), "created" : "2016-05-06 13:53:00",

→˓ "id" : NumberLong(1), "product_name" : "OP-DAX-P-20150201-95.7", "value" : 94.2 }
{ "_id" : ObjectId("581fc5fe53b2c9318a3c1005"), "created" : "2016-05-06 13:54:00",

→˓ "id" : NumberLong(2), "product_name" : "OP-DAX-C-20150201-100", "value" : 99.5 }
{ "_id" : ObjectId("581fc5fe53b2c9318a3c1006"), "created" : "2016-05-06 13:55:00",

→˓ "id" : NumberLong(3), "product_name" : "FU-DATAMOUNTAINEER-20150201-100", "value"
→˓: NumberLong(10000) }

Bingo, our 3 rows!

164 Chapter 1. Components

StreamReactor Documentation, Release 0.1

Features

The sink connector will translate the SinkRecords to json and will insert each one in the database. We support to insert
modes: INSERT and UPSERT. All of this can be expressed via KCQL (our own SQL like syntax for configuration.
Please see below the section for Kafka Connect Query Language)

The sink supports:

1. Field selection - Kafka topic payload field selection is supported, allowing you to have choose selection of fields
or all fields written to MongoDb.

2. Topic to table routing. Your sink instance can be configured to handle multiple topics and collections. All you
have to do is to set your configuration appropriately. Below you will find an example

connect.mongo.kcql = INSERT INTO orders SELECT * FROM orders-topic; UPSERT INTO
→˓customers SELECT * FROM customer-topic PK customer_id; UPSERT INTO invoiceid as
→˓invoice_id, customerid as customer_id, value a SELECT invoice_id, FROM invoice-topic

3. Error policies for handling failures.

Kafka Connect Query Language

K afka C onnect Q uery L, KCQL allows for routing and mapping using a SQL like syntax, consolidating typically
features in to one configuration option.

MongoDb sink supports the following:

INSERT INTO <database>.<target collection> SELECT <fields> FROM <source topic> <PK
→˓field name>

Example:

#Insert mode, select all fields from topicA and write to tableA
INSERT INTO collectionA SELECT * FROM topicA

#Insert mode, select 3 fields and rename from topicB and write to tableB with primary
→˓key as the field id from the topic
INSERT INTO tableB SELECT x AS a, y AS b and z AS c FROM topicB PK id

Error Polices

The sink has three error policies that determine how failed writes to the target database are handled. The error policies
affect the behaviour of the schema evolution characteristics of the sink. See the schema evolution section for more
information.

Throw

Any error on write to the target database will be propagated up and processing is stopped. This is the default behaviour.

Noop

Any error on write to the target database is ignored and processing continues.

1.2. Kafka Connect 165

StreamReactor Documentation, Release 0.1

Warning: This can lead to missed errors if you don’t have adequate monitoring. Data is not lost as it’s still in
Kafka subject to Kafka’s retention policy. The sink currently does not distinguish between integrity constraint
violations and or other exceptions thrown by drivers..

Retry

Any error on write to the target database causes the RetryIterable exception to be thrown. This causes the Kafka
connect framework to pause and replay the message. Offsets are not committed. For example, if the database is offline
it will cause a write failure, the message can be replayed. With the Retry policy the issue can be fixed without stopping
the sink.

The length of time the sink will retry can be controlled by using the connect.mongo.max.retires and the
connect.mongo.retry.interval.

Topic Routing

The sink supports topic routing that maps the messages from topics to a specific collection. For example map a
topic called “bloomberg_prices” to a collection called “prices”. This mapping is set in the connect.mongo.kcql
option. You don’t need to set up multiple sinks for each topic or collection. The same sink instance can be configured
to handle multiple collections. For example your configuration in this case:

connect.mongo.kcql = INSERT INTO orders SELECT * FROM orders-topic; UPSERT INTO
→˓customers SELECT * FROM customer-topic PK customer_id; UPSERT INTO invoiceid as
→˓invoice_id, customerid as customer_id, value a SELECT invoice_id, FROM invoice-topic

Field Selection

The sink supports selecting fields from the source topic or selecting all. There is an option to rename a field as well.
All of this can be easily expressed with KCQL:

• Select all fields from topic fx_prices and insert into the fx collection: INSERT INTO fx SELECT * FROM
fx_prices.

• Select all fields from topic fx_prices and upsert into the fx collection, The assumption is there will be a ticker
field in the incoming json: UPSERT INTO fx SELECT * FROM fx_prices PK ticker.

• Select specific fields from the topic sample_topic and insert into the sample collection: INSERT INTO
sample SELECT field1,field2,field3 FROM sample_topic.

• Select specific fields from the topic sample_topic and upsert into the sample collection: UPSERT INTO
sample SELECT field1,field2,field3 FROM sample_fopic PK field1.

• Rename some fields while selecting all from the topic sample_topic and insert into the sample col-
lection: INSERT INTO sample SELECT *, field1 as new_name1,field2 as new_name2
FROM sample_topic.

• Rename some fields while selecting all from the topic sample_topic and upsert into the sample col-
lection: UPSERT INTO sample SELECT *, field1 as new_name1,field2 as new_name2
FROM sample_topic PK new_name1.

• Select specific fields and rename some of them from the topic sample_topic and insert into the sam-
ple collection: INSERT INTO sample SELECT field1 as new_name1,field2, field3 as
new_name3 FROM sample_topic.

166 Chapter 1. Components

StreamReactor Documentation, Release 0.1

• Select specific fields and rename some of them from the topic sample_topic and upsert into the sam-
ple collection: INSERT INTO sample SELECT field1 as new_name1,field2, field3 as
new_name3 FROM sample_fopic PK new_name3.

TLS/SSL

TLS/SSL is support by setting ?ssl=true in the connect.mongo.connection option. The MongoDB driver
will then load attempt to load the truststore and keystore using the JVM system properties.

You will need to set several JVM system properties to ensure that the client is able to validate the SSL certificate
presented by the server:

javax.net.ssl.trustStore: the path to a trust store containing the certificate of the
→˓signing authority
javax.net.ssl.trustStorePassword: the password to access this trust store

The trust store is typically created with the keytool command line program provided as part of the JDK. For example:

keytool -importcert -trustcacerts -file <path to certificate authority file> -
→˓keystore <path to trust store> -storepass <password>

You will also need to set several JVM system properties to ensure that the client presents an SSL certificate to the
MongoDB server:

javax.net.ssl.keyStore: the path to a key store containing the client’s SSL
→˓certificates
javax.net.ssl.keyStorePassword: the password to access this key store

The key store is typically created with the keytool or the openssl command line program.

Authentication Mechanism

All authentication methods are supported, X.509, LDAP Plain, Kerberos (GSSAPI), Mongodb-CR and SCRAM-
SHA-1. The default as of MongoDB version 3.0 SCRAM-SHA-1. To set the authentication mechanism set the
authMechanism in the connect.mongo.connection option.

Note: The mechanism can either be set in the connection string but this requires the password to be in plain text in
the connection string or via the connect.mongo.auth.mechanism option.

If the username is set it overrides the username/password set in the connection string and the connect.mongo.
auth.mechanism has precedence.

e.g.

default of scram
mongodb://host1/?authSource=db1
scram explict
mongodb://host1/?authSource=db1&authMechanism=SCRAM-SHA-1
mongo-cr
mongodb://host1/?authSource=db1&authMechanism=MONGODB-CR
x.509
mongodb://host1/?authSource=db1&authMechanism=MONGODB-X509
kerberos
mongodb://host1/?authSource=db1&authMechanism=GSSAPI

1.2. Kafka Connect 167

StreamReactor Documentation, Release 0.1

ldap
mongodb://host1/?authSource=db1&authMechanism=PLAIN

Configurations

Configurations parameters:

connect.mongo.db

The target MongoDb database name.

• Data type: string

• Optional : no

connect.mongo.connection

The mongodb endpoints connections in the format mongodb://host1[:port1][,host2[:port2],...[,hostN[:portN]]][/[database][?options]]

• Data type: string

• Optional : no

Note: Setting username and password in the endpoints is not secure, they will be pass to Connect as plain text before
being given to the driver. Use the connect.mongo.username and connect.mongo.password options.

connect.mongo.batch.size

The number of records the sink would push to mongo at once (improved performance)

• Data type: int

• Optional : yes

• Default: 100

connect.mongo.kcql

Kafka connect query language expression. Allows for expressive topic to collectionrouting, field selection and renam-
ing.

Examples:

INSERT INTO TABLE1 SELECT * FROM TOPIC1;INSERT INTO TABLE2 SELECT field1, field2,
→˓field3 as renamedField FROM TOPIC2

• Data Type: string

• Optional : no

connect.mongo.username

The username to use for authentication. If the username is set it overrides the username/password set in the connection
string and the connect.mongo.auth.mechanism has precedence.

• Data Type: string

• Option: yes

• Default:

168 Chapter 1. Components

StreamReactor Documentation, Release 0.1

connect.mongo.password

The password to use for authentication.

• Data Type: string

• Optional: yes

• Default:

connect.mongo.auth.mechanism

The mechanism to use for authentication. GSSAPI (Kerberos), PLAIN (LDAP), X.509 or SCRAM-SHA-1.

• Data Type: string

• Optional: yes

• Default: SCRAM-SHA-1

connect.mongo.error.policy

Specifies the action to be taken if an error occurs while inserting the data.

There are three available options, NOOP, the error is swallowed, THROW, the error is allowed to propagate and
retry. For RETRY the Kafka message is redelivered up to a maximum number of times specified by the connect.
mongo.max.retires option. The connect.mongo.retry.interval option specifies the interval between
retries.

The errors will be logged automatically.

• Type: string

• Importance: high

• Default: throw

connect.mongo.max.retires

The maximum number of times a message is retried. Only valid when the connect.mongo.error.policy is
set to TRHOW.

• Type: string

• Importance: high

• Default: 10

connect.mongo.retry.interval

The interval, in milliseconds between retries if the sink is using connect.mongo.error.policy set to RETRY.

• Type: int

• Importance: medium

• Default : 60000 (1 minute)

connect.progress.enabled

Enables the output for how many records have been processed.

• Type: boolean

• Importance: medium

• Optional: yes

• Default : false

1.2. Kafka Connect 169

StreamReactor Documentation, Release 0.1

Example

name=mongo-sink-orders
connector.class=com.datamountaineer.streamreactor.connect.mongodb.sink.
→˓MongoSinkConnector
tasks.max=1
topics=orders-topic
connect.mongo.kcql=INSERT INTO orders SELECT * FROM orders-topic
connect.mongo.db=connect
connect.mongo.connection=mongodb://localhost:27017
connect.mongo.batch.size=10

Schema Evolution

Upstream changes to schemas are handled by Schema registry which will validate the addition and removal or fields,
data type changes and if defaults are set. The Schema Registry enforces Avro schema evolution rules. More informa-
tion can be found here.

Deployment Guidelines

TODO

TroubleShooting

Please review the FAQs and join our slack channel.

Kafka Connect Redis

A Connector and Sink to write events from Kafka to Redis. The connector takes the value from the Kafka Connect
SinkRecords and inserts a new entry to Redis.

The Sink supports:

1. The KCQL routing querying - Kafka topic payload field selection is supported, allowing you to select fields
written to Redis.

2. Topic to table routing via KCQL.

3. RowKey selection - Selection of fields to use as the row key, if none specified the topic name, partition and
offset are used via KCQL.

4. Error policies for handling failures.

Prerequisites

• Confluent 3.2

• Jedis 2.8.1

• Java 1.8

• Scala 2.11

170 Chapter 1. Components

http://docs.confluent.io/3.0.1/schema-registry/docs/api.html#compatibility
https://slackpass.io/datamountaineers

StreamReactor Documentation, Release 0.1

Setup

Redis Setup

Download and install Redis.

wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
sudo make install

Start Redis

bin/redis-server

Check Redis is running:

redis-cli ping
PONG

sudo service redis-server status

Confluent Setup

Follow the instructions here.

Sink Connector QuickStart

We will start the connector in distributed mode. Each connector exposes a rest endpoint for stopping, starting and
updating the configuration. We have developed a Command Line Interface to make interacting with the Connect Rest
API easier. The CLI can be found in the Stream Reactor download under the bin folder. Alternatively the Jar can be
pulled from our GitHub releases page.

Starting the Connector (Distributed)

Download, unpack and install the Stream Reactor. Follow the instructions here if you haven’t already done so. All
paths in the quickstart are based in the location you installed the Stream Reactor.

Start Kafka Connect in distributed more by running the start-connect.sh script in the bin folder.

bin/start-connect.sh

Once the connector has started we can now use the kafka-connect-tools cli to post in our distributed properties file for
Redis. If you are using the dockers you will have to set the following environment variable to for the CLI to connect
to the Rest API of Kafka Connect of your container.

export KAFKA_CONNECT_REST="http://myserver:myport"

bin/connect-cli create redis-sink < conf/redis-sink.properties
#Connector name=`redis-sink`
connect.redis.host=localhost
connect.redis.port=6379
connector.class=com.datamountaineer.streamreactor.connect.redis.sink.
→˓RedisSinkConnector

1.2. Kafka Connect 171

https://github.com/datamountaineer/kafka-connect-tools/releases

StreamReactor Documentation, Release 0.1

tasks.max=1
topics=redis-topic
connect.redis.kcql=INSERT INTO TABLE1 SELECT * FROM redis-topic
#task ids: 0

The redis-sink.properties file defines:

1. The name of the sink.

2. The name of the redis host to connect to.

3. The redis port to connect to.

4. The Sink class.

5. The max number of tasks the connector is allowed to created. Should not be greater than the number of partitions
in the Source topics otherwise tasks will be idle.

6. The Source kafka topics to take events from.

7. The KCQL routing querying.

Warning: If your redis server is requiring the connection to be authenticated you will need to provide an extra
setting:

connect.redis.connection.password=$REDIS_PASSWORD

Don’t set the value to empty if no password is required.

If you switch back to the terminal you started the Connector in you should see the Redis Sink being accepted and the
task starting.

We can use the CLI to check if the connector is up but you should be able to see this in logs as-well.

#check for running connectors with the CLI
bin/connect-cli ps

redis-sink

[2016-05-08 22:37:05,616] INFO
____ __ __ ___ __ _

/ __ ____ _/ /_____ _/ |/ /___ __ ______ / /_____ _(_)___ ___ ___ _____
/ / / / __ `/ __/ __ `/ /|_/ / __ \/ / / / __ \/ __/ __ `/ / __ \/ _ \/ _ \/ ___/

/ /_/ / /_/ / /_/ /_/ / / / / /_/ / /_/ / / / / /_/ /_/ / / / / / __/ __/ /
/_____/__,_/__/__,_/_/ /_/____/__,_/_/ /_/__/__,_/_/_/ /_/___/___/_/

____ ___ _____ _ __
/ __ ___ ____/ (_)____/ ___/(_)___ / /__

/ /_/ / _ \/ __ / / ___/__ \/ / __ \/ //_/
/ _, _/ __/ /_/ / (__)___/ / / / / / ,<

/_/ |_|___/__,_/_/____//____/_/_/ /_/_/|_|

(com.datamountaineer.streamreactor.connect.redis.sink.config.RedisSinkConfig:165)
[2016-05-08 22:37:05,641] INFO Settings:
RedisSinkSettings(RedisConnectionInfo(localhost,6379,None),RedisKey(FIELDS,
→˓WrappedArray(firstName, lastName)),PayloadFields(false,Map(firstName -> firstName,
→˓lastName -> lastName, age -> age, salary -> income)))

(com.datamountaineer.streamreactor.connect.redis.sink.RedisSinkTask:65)
[2016-05-08 22:37:05,687] INFO Sink task org.apache.kafka.connect.runtime.
→˓WorkerSinkTask@44b24eaa finished initialization and start (org.apache.kafka.connect.
→˓runtime.WorkerSinkTask:155)

172 Chapter 1. Components

StreamReactor Documentation, Release 0.1

Test Records

Now we need to put some records it to the test_table topics. We can use the kafka-avro-console-producer
to do this.

Start the producer and pass in a schema to register in the Schema Registry. The schema has a firstname field of
type string, a lastname field of type string, an age field of type int and a salary field of type double.

${CONFLUENT_HOME}/bin/kafka-avro-console-producer \
--broker-list localhost:9092 --topic redis-topic \
--property value.schema='{"type":"record","name":"User","namespace":"com.

→˓datamountaineer.streamreactor.connect.redis"
,"fields":[{"name":"firstName","type":"string"},{"name":"lastName","type":"string"},

→˓{"name":"age","type":"int"},{"name":"salary","type":"double"}]}'

Now the producer is waiting for input. Paste in the following:

{"firstName": "John", "lastName": "Smith", "age":30, "salary": 4830}

Check for records in Redis

Now check the logs of the connector you should see this:

INFO Received record from topic:redis-topic partition:0 and offset:0 (com.
→˓datamountaineer.streamreactor.connect.redis.sink.writer.RedisDbWriter:48)
INFO Empty list of records received. (com.datamountaineer.streamreactor.connect.redis.
→˓sink.RedisSinkTask:75)

Check in Redis.

redis-cli

127.0.0.1:6379> keys *
1) "John.Smith"
2) "11"
3) "10"
127.0.0.1:6379>
127.0.0.1:6379> get "John.Smith"
"{\"firstName\":\"John\",\"lastName\":\"Smith\",\"age\":30,\"income\":4830.0}"

Now stop the connector.

Features

The Redis Sink writes records from Kafka to Redis.

The Sink supports:

1. Field selection - Kafka topic payload field selection is supported, allowing you to select fields written to Redis.

2. Topic to table routing.

3. RowKey selection - Selection of fields to use as the row key, if none specified the topic name, partition and
offset are used.

1.2. Kafka Connect 173

StreamReactor Documentation, Release 0.1

4. Error policies for handling failures.

Kafka Connect Query Language

K afka C onnect Q uery L anguage found here GitHub repo allows for routing and mapping using a SQL like syntax,
consolidating typically features in to one configuration option.

The Redis Sink supports the following:

INSERT INTO <table> SELECT <fields> FROM <source topic> <PK> primary_key_cols

Example:

#Insert mode, select all fields from topicA and write to tableA and use the default
→˓rowkey (topic name, partition, offset)
INSERT INTO tableA SELECT * FROM topicA

#Insert mode, select 3 fields and rename from topicB and write to tableB, use field y
→˓from the topic as the primary key
INSERT INTO tableB SELECT x AS a, y AS b and z AS c FROM topicB PK y

This is set in the connect.redis.kcql option.

Error Polices

The Sink has three error policies that determine how failed writes to the target database are handled. The error policies
affect the behaviour of the schema evolution characteristics of the sink. See the schema evolution section for more
information.

Throw

Any error on write to the target database will be propagated up and processing is stopped. This is the default behaviour.

Noop

Any error on write to the target database is ignored and processing continues.

Warning: This can lead to missed errors if you don’t have adequate monitoring. Data is not lost as it’s still in
Kafka subject to Kafka’s retention policy. The Sink currently does not distinguish between integrity constraint
violations and or other expections thrown by drivers.

Retry

Any error on write to the target database causes the RetryIterable exception to be thrown. This causes the Kafka
connect framework to pause and replay the message. Offsets are not committed. For example, if the table is offline it
will cause a write failure, the message can be replayed. With the Retry policy the issue can be fixed without stopping
the sink.

The length of time the Sink will retry can be controlled by using the connect.redis.max.retries and the
connect.redis.retry.interval.

Configurations

connect.redis.kcql

174 Chapter 1. Components

https://github.com/datamountaineer/kafka-connector-query-language

StreamReactor Documentation, Release 0.1

Kafka connect query language expression. Allows for expressive topic to table routing, field selection and renaming.
Fields to be used as the row key can be set by specifing the PK. The below example uses field1 as the primary key.

• Data type : string

• Importance: high

• Optional : no

Examples:

INSERT INTO TABLE1 SELECT * FROM TOPIC1;INSERT INTO TABLE2 SELECT * FROM TOPIC2 PK
→˓field1

Examples:

INSERT INTO TABLE1 SELECT * FROM TOPIC1;INSERT INTO TABLE2 SELECT * FROM TOPIC2 PK
→˓field1, field2

connect.redis.host

Specifies the Redis server.

• Data type : string

• Importance: high

• Optional : no

connect.redis.port

Specifies the Redis server port number.

• Data type : int

• Importance: high

• Optional : no

connect.redis.password

Specifies the authorization password.

• Data type : string

• Importance: high

• Optional : yes

• Description: If you don’t have a password set up on the redis server don’t provide the value or you will see this
error: “ERR Client sent AUTH, but no password is set”

connect.redis.error.policy

Specifies the action to be taken if an error occurs while inserting the data.

There are three available options, noop, the error is swallowed, throw, the error is allowed to propagate and retry. For
retry the Kafka message is redelivered up to a maximum number of times specified by the connect.redis.max.
retries option. The connect.redis.retry.interval option specifies the interval between retries.

The errors will be logged automatically.

• Type: string

• Importance: medium

• Optional: yes

1.2. Kafka Connect 175

StreamReactor Documentation, Release 0.1

• Default: RETRY

connect.redis.max.retries

The maximum number of times a message is retried. Only valid when the connect.redis.error.policy is
set to retry.

• Type: string

• Importance: medium

• Optional: yes

• Default: 10

connect.redis.retry.interval

The interval, in milliseconds between retries if the Sink is using connect.redis.error.policy set to RETRY.

• Type: int

• Importance: high

• Optional: no

• Default : 60000 (1 minute)

connect.progress.enabled

Enables the output for how many records have been processed.

• Type: boolean

• Importance: medium

• Optional: yes

• Default : false

Example

name=redis-sink
connect.redis.host=localhost
connect.redis.port=6379
connector.class=com.datamountaineer.streamreactor.connect.redis.sink.
→˓RedisSinkConnector
tasks.max=1
topics=redis-topic
connect.redis.kcql=INSERT INTO TABLE1 SELECT * FROM redis-topic

Schema Evolution

Upstream changes to schemas are handled by Schema registry which will validate the addition and removal or fields,
data type changes and if defaults are set. The Schema Registry enforces Avro schema evolution rules. More informa-
tion can be found here.

The Redis Sink will automatically write and update the Redis table if new fields are added to the Source topic, if fields
are removed the Kafka Connect framework will return the default value for this field, dependent of the compatibility
settings of the Schema registry. This value will be put into the Redis column family cell based on the connect.
redis.kcql mappings.

176 Chapter 1. Components

http://docs.confluent.io/3.0.1/schema-registry/docs/api.html#compatibility

StreamReactor Documentation, Release 0.1

Deployment Guidelines

TODO

TroubleShooting

Please review the FAQs and join our slack channel.

Kafka Connect ReThink

A Connector and Sink to write events from Kafka to RethinkDb. The connector takes the value from the Kafka Connect
SinkRecords and inserts a new entry to RethinkDb.

The Sink supports:

1. The KCQL routing querying - Kafka topic payload field selection is supported, allowing you to select fields
written to RethinkDb.

2. Topic to table routing via KCQL.

3. RowKey selection - Selection of fields to use as the row key, if none specified the topic name, partition and
offset are used via KCQL.

4. RethinkDB write modes via KCQL.

5. Error policies for handling failures.

6. Payload support for Schema.Struct and payload Struct, Schema.String and Json payload and Json payload with
no schema

The Sink supports three Kafka payloads type:

Connect entry with Schema.Struct and payload Struct. If you follow the best practice while producing the events,
each message should carry its schema information. Best option is to send Avro. Your connect configurations should
be set to value.converter=io.confluent.connect.avro.AvroConverter. You can find an example
here. To see how easy is to have your producer serialize to Avro have a look at this. This requires the SchemaRegistry
which is open source thanks to Confluent! Alternatively you can send Json + Schema. In this case your connect con-
figuration should be set to value.converter=org.apache.kafka.connect.json.JsonConverter.
This doesn’t require the SchemaRegistry.

Connect entry with Schema.String and payload json String. Sometimes the producer would find it easier, despite
sending Avro to produce a GenericRecord, to just send a message with Schema.String and the json string.

Connect entry without a schema and the payload json String. There are many existing systems which are publish-
ing json over Kafka and bringing them in line with best practices is quite a challenge. Hence we added the support.

Prerequisites

• Confluent 3.2

• RethinkDb 2.3.3

• Java 1.8

• Scala 2.11

1.2. Kafka Connect 177

https://slackpass.io/datamountaineers
https://github.com/confluentinc/kafka-connect-blog/blob/master/etc/connect-avro-standalone.properties
http://docs.confluent.io/3.0.1/schema-registry/docs/serializer-formatter.html?highlight=kafkaavroserializer

StreamReactor Documentation, Release 0.1

Setup

Rethink Setup

Download and install RethinkDb. Follow the instruction here dependent on your operating system.

Confluent Setup

Follow the instructions here.

Sink Connector QuickStart

We will start the connector in distributed mode. Each connector exposes a rest endpoint for stopping, starting and
updating the configuration. We have developed a Command Line Interface to make interacting with the Connect Rest
API easier. The CLI can be found in the Stream Reactor download under the bin folder. Alternatively the Jar can be
pulled from our GitHub releases page.

Starting the Connector (Distributed)

Download, unpack and install the Stream Reactor. Follow the instructions here if you haven’t already done so. All
paths in the quickstart are based in the location you installed the Stream Reactor.

Start Kafka Connect in distributed more by running the start-connect.sh script in the bin folder.

bin/start-connect.sh

Once the connector has started we can now use the kafka-connect-tools cli to post in our distributed properties file for
ReThinkDB. If you are using the dockers you will have to set the following environment variable to for the CLI to
connect to the Rest API of Kafka Connect of your container.

export KAFKA_CONNECT_REST="http://myserver:myport"

bin/connect-cli create rethink-sink < rethink-sink.properties
#Connector name=`rethink-sink`
name=rethink-sink
connect.rethink.db=dbname
connect.rethink.host=localhost
connect.rethink.port=28015
connector.class=com.datamountaineer.streamreactor.connect.rethink.sink.
→˓ReThinkSinkConnector
tasks.max=1
topics=rethink-topic
connect.rethink.kcql=INSERT INTO TABLE1 SELECT * FROM rethink_topic
#task ids: 0

The rethink-sink.properties file defines:

1. The name of the sink.

2. The name of the rethink database.

3. The name of the rethink host to connect to.

4. The rethink port to connect to.

178 Chapter 1. Components

https://rethinkdb.com/docs/install/
https://github.com/datamountaineer/kafka-connect-tools/releases

StreamReactor Documentation, Release 0.1

5. The Sink class.

6. The max number of tasks the connector is allowed to created. Should not be greater than the number of partitions
in the Source topics otherwise tasks will be idle.

7. The Source kafka topics to take events from.

8. The KCQL routing querying.

If you switch back to the terminal you started the Connector in you should see the ReThinkDB Sink being accepted
and the task starting.

We can use the CLI to check if the connector is up but you should be able to see this in logs as-well.

#check for running connectors with the CLI
bin/connect-cli ps

rethink-sink

[2016-05-08 22:37:05,616] INFO
____ __ __ ___ __ _

/ __ ____ _/ /_____ _/ |/ /___ __ ______ / /_____ _(_)___ ___ ___ _____
/ / / / __ `/ __/ __ `/ /|_/ / __ \/ / / / __ \/ __/ __ `/ / __ \/ _ \/ _ \/ ___/

/ /_/ / /_/ / /_/ /_/ / / / / /_/ / /_/ / / / / /_/ /_/ / / / / / __/ __/ /
/_____/__,_/__/__,_/_/ /_/____/__,_/_/ /_/__/__,_/_/_/ /_/___/___/_/

____ ________ _ __ ____ ____
/ __ ___/_ __/ /_ (_)___ / /__/ __ \/ __)

/ /_/ / _ \/ / / __ \/ / __ \/ //_/ / / / __ |
/ _, _/ __/ / / / / / / / / / ,< / /_/ / /_/ /

/_/ |_|___/_/ /_/ /_/_/_/ /_/_/|_/_____/_____/

(com.datamountaineer.streamreactor.connect.rethink.sink.config.RethinkSinkConfig)

Test Records

Now we need to put some records it to the test_table topics. We can use the kafka-avro-console-producer
to do this.

Start the producer and pass in a schema to register in the Schema Registry. The schema has a firstname field of
type string a lastname field of type string, an age field of type int and a salary field of type double.

${CONFLUENT_HOME}/bin/kafka-avro-console-producer \
--broker-list localhost:9092 --topic rethink_topic \
--property value.schema='{"type":"record","name":"User","namespace":"com.

→˓datamountaineer.streamreactor.connect.rethink"
,"fields":[{"name":"firstName","type":"string"},{"name":"lastName","type":"string"},

→˓{"name":"age","type":"int"},{"name":"salary","type":"double"}]}'

Now the producer is waiting for input. Paste in the following:

{"firstName": "John", "lastName": "Smith", "age":30, "salary": 4830}

Check for records in Rethink

Now check the logs of the connector you should see this:

1.2. Kafka Connect 179

StreamReactor Documentation, Release 0.1

INFO Received record from topic:person_rethink partition:0 and offset:0 (com.
→˓datamountaineer.streamreactor.connect.rethink.sink.writer.rethinkDbWriter:48)
INFO Empty list of records received. (com.datamountaineer.streamreactor.connect.
→˓rethink.sink.RethinkSinkTask:75)

Check for records in Rethink

Now stop the connector.

Features

The ReThinkDb Sink writes records from Kafka to RethinkDb.

The Sink supports:

1. Field selection - Kafka topic payload field selection is supported, allowing you to select fields written to Re-
thinkDb.

2. Topic to table routing.

3. RowKey selection - Selection of fields to use as the row key, if none specified the topic name, partition and
offset are used.

4. RethinkDB write modes.

5. Error policies for handling failures.

Kafka Connect Query Language

K afka C onnect Q uery L anguage found here GitHub repo allows for routing and mapping using a SQL like syntax,
consolidating typically features in to one configuration option.

The ReThink Sink supports the following:

<write mode> INTO <target table> SELECT <fields> FROM <source topic> <AUTOCREATE> <PK_
→˓FIELD>

Example:

#Insert mode, select all fields from topicA and write to tableA
INSERT INTO tableA SELECT * FROM topicA

#Insert mode, select 3 fields and rename from topicB and write to tableB
INSERT INTO tableB SELECT x AS a, y AS b and z AS c FROM topicB

#Upsert mode, select all fields from topicC, auto create tableC and auto evolve, use
→˓field1 as the primary key
UPSERT INTO tableC SELECT * FROM topicC AUTOCREATE PK field1

Write Modes

The Sink support two write modes insert and upsert which map to RethinkDb’s conflict policies, insert to ERROR
and upsert to REPLACE.

180 Chapter 1. Components

https://github.com/datamountaineer/kafka-connector-query-language

StreamReactor Documentation, Release 0.1

Error Polices

The Sink has three error policies that determine how failed writes to the target database are handled. The error policies
affect the behaviour of the schema evolution characteristics of the sink. See the schema evolution section for more
information.

Throw

Any error on write to the target database will be propagated up and processing is stopped. This is the default behaviour.

Noop

Any error on write to the target database is ignored and processing continues.

Warning: This can lead to missed errors if you don’t have adequate monitoring. Data is not lost as it’s still in
Kafka subject to Kafka’s retention policy. The Sink currently does not distinguish between integrity constraint
violations and or other expections thrown by drivers.

Retry

Any error on write to the target database causes the RetryIterable exception to be thrown. This causes the Kafka
connect framework to pause and replay the message. Offsets are not committed. For example, if the table is offline it
will cause a write failure, the message can be replayed. With the Retry policy the issue can be fixed without stopping
the sink.

The length of time the Sink will retry can be controlled by using the connect.rethink.max.retries and the
connect.rethink.retry.interval.

Topic Routing

The Sink supports topic routing that allows mapping the messages from topics to a specific table. For example, map
a topic called “bloomberg_prices” to a table called “prices”. This mapping is set in the connect.rethink.kcql
option.

Example:

//Select all
INSERT INTO table1 SELECT * FROM topic1; INSERT INTO tableA SELECT * FROM topicC

Field Selection

The ReThink Sink supports field selection and mapping. This mapping is set in the connect.rethink.kcql
option.

Examples:

//Rename or map columns
INSERT INTO table1 SELECT lst_price AS price, qty AS quantity FROM topicA

//Select all
INSERT INTO table1 SELECT * FROM topic1

Tip: Check you mappings to ensure the target columns exist.

1.2. Kafka Connect 181

StreamReactor Documentation, Release 0.1

Auto Create Tables

The Sink supports auto creation of tables for each topic. This mapping is set in the connect.rethink.kcql
option.

A user specified primary can be set in the PK clause for the connect.rethink.kcql option. Only one key is
supported. If more than one is set only the first is used. If no primary keys are set the default primary key called id is
used. The value for the default key is the topic name, partition and offset of the records.

#AutoCreate the target table
INSERT INTO table1 SELECT * FROM topic AUTOCREATE PK field1

Note: The fields specified as the primary keys must be in the SELECT clause or all fields must be selected

The Sink will try and create the table at start up if a schema for the topic is found in the Schema Registry. If no schema
is found the table is created when the first record is received for the topic.

Error Polices

The Sink has three error policies that determine how failed writes to the target database are handled. The error policies
affect the behaviour of the schema evolution characteristics of the sink. See the schema evolution section for more
information.

Throw

Any error on write to the target database will be propagated up and processing is stopped. This is the default behaviour.

Noop

Any error on write to the target database is ignored and processing continues.

Warning: This can lead to missed errors if you don’t have adequate monitoring. Data is not lost as it’s still in
Kafka subject to Kafka’s retention policy. The Sink currently does not distinguish between integrity constraint
violations and or other expections thrown by drivers..

Retry

Any error on write to the target database causes the RetryIterable exception to be thrown. This causes the Kafka
connect framework to pause and replay the message. Offsets are not committed. For example, if the table is offline it
will cause a write failure, the message can be replayed. With the Retry policy the issue can be fixed without stopping
the sink.

The length of time the Sink will retry can be controlled by using the connect.rethink.max.retries and the
connect.cassandra.retry.interval.

Configurations

connect.rethink.kcql

Kafka connect query language expression. Allows for expressive topic to table routing, field selection and renaming.
Fields to be used as the row key can be set by specifing the PK. The below example uses field1 as the primary key.

• Data type : string

182 Chapter 1. Components

StreamReactor Documentation, Release 0.1

• Importance: high

• Optional : no

Examples:

INSERT INTO TABLE1 SELECT * FROM TOPIC1;INSERT INTO TABLE2 SELECT * FROM TOPIC2 PK
→˓field1

connect.rethink.host

Specifies the rethink server.

• Data type : string

• Importance: high

• Optional : no

connect.rethink.port

Specifies the rethink server port number.

• Data type : int

• Importance: high

• Optional : yes

connect.rethink.db

Specifies the rethink database to connect to.

• Data type : string

• Importance: high

• Optional : yes

• Default : connect_rethink_sink

connect.rethink.cert.file

Certificate file to connect to a TLS enabled ReThink cluster. Cannot be used in conjunction with username/password.
connect.rethink.auth.key must be set.

• Data type: string

• Optional : yes

connect.rethink.auth.key

Authentication key to connect to a TLS enabled ReThink cluster. Cannot be used in conjunction with user-
name/password. connect.rethink.cert.file must be set.

• Data type: string

• Optional : yes

connect.rethink.username

Username to connect to ReThink with.

• Data type: string

• Optional : yes

connect.rethink.password

Password to connect to ReThink with.

1.2. Kafka Connect 183

StreamReactor Documentation, Release 0.1

• Data type: string

• Optional : yes

connect.rethink.ssl.enabled

Enables SSL communication against an SSL enabled Rethink cluster.

• Data type: boolean

• Optional : yes

• Default : false

connect.rethink.trust.store.password

Password for truststore.

• Data type: string

• Optional : yes

connect.rethink.key.store.path

Path to truststore.

• Data type: string

• Optional : yes

connect.rethink.key.store.password

Password for key store.

• Data type: string

• Optional : yes

connect.rethink.ssl.client.cert.auth

Path to keystore.

• Data type: string

• Optional : yes

connect.rethink.error.policy

Specifies the action to be taken if an error occurs while inserting the data.

There are three available options, noop, the error is swallowed, throw, the error is allowed to propagate and retry. For
retry the Kafka message is redelivered up to a maximum number of times specified by the connect.rethink.
max.retries option. The connect.rethink.retry.interval option specifies the interval between re-
tries.

The errors will be logged automatically.

• Type: string

• Importance: high

• Optional : yes

• Default: RETRY

connect.rethink.max.retries

The maximum number of times a message is retried. Only valid when the connect.rethink.error.policy
is set to retry.

184 Chapter 1. Components

StreamReactor Documentation, Release 0.1

• Type: string

• Importance: medium

• Optional : yes

• Default: 10

connect.rethink.retry.interval

The interval, in milliseconds between retries if the Sink is using connect.rethink.error.policy set to
RETRY.

• Type: int

• Importance: medium

• Optional : yes

• Default : 60000 (1 minute)

connect.progress.enabled

Enables the output for how many records have been processed.

• Type: boolean

• Importance: medium

• Optional: yes

• Default : false

Example

name=rethink-sink
connect.rethink.db=dbname
connect.rethink.host=localhost
connect.rethink.port=28015
connector.class=com.datamountaineer.streamreactor.connect.rethink.sink.
→˓ReThinkSinkConnector
tasks.max=1
topics=person_rethink
connect.rethink.kcql=INSERT INTO TABLE1 SELECT * FROM person_rethink

Schema Evolution

Upstream changes to schemas are handled by Schema registry which will validate the addition and removal or fields,
data type changes and if defaults are set. The Schema Registry enforces Avro schema evolution rules. More informa-
tion can be found here.

The rethink Sink will automatically write and update the rethink table if new fields are added to the Source topic, if
fields are removed the Kafka Connect framework will return the default value for this field, dependent of the compati-
bility settings of the Schema registry.

Deployment Guidelines

TODO

1.2. Kafka Connect 185

http://docs.confluent.io/3.0.1/schema-registry/docs/api.html#compatibility

StreamReactor Documentation, Release 0.1

TroubleShooting

Please review the FAQs and join our slack channel.

Kafka Connect VoltDB

A Connector and Sink to write events from Kafka to VoltDB. The connector used the built in stored procedures for
inserts and upserts but requires the tables to be pre-created.

The Sink supports:

1. The KCQL routing querying - Kafka topic payload field selection is supported, allowing you to select fields
written to VoltDB.

2. Topic to table routing via KCQL.

3. Voltdb write modes, upsert and insert via KCQL.

4. Error policies for handling failures.

Prerequisites

• Confluent 3.2

• VoltDB 6.4

• Java 1.8

• Scala 2.11

Setup

VoltDB Setup

Download VoltDB from here

Unzip the archive

tar -xzf voltdb-ent-*.tar.gz

Start VoltDB:

cd voltdb-ent-*
bin/voltdb create

Build: 6.5 voltdb-6.5-0-gd1fe3fa-local Enterprise Edition
Initializing VoltDB...

_ __ ____ ____ ____
| | / /___ / / /_/ __ \/ __)
| | / / __ \/ / __/ / / / __ |
| |/ / /_/ / / /_/ /_/ / /_/ /
|___/____/_/__/_____/_____/

186 Chapter 1. Components

https://slackpass.io/datamountaineers
http://learn.voltdb.com/DLSoftwareDownload.html/

StreamReactor Documentation, Release 0.1

Connecting to VoltDB cluster as the leader...
Host id of this node is: 0
Starting VoltDB with trial license. License expires on Sep 11, 2016.
Initializing the database and command logs. This may take a moment...
WARN: This is not a highly available cluster. K-Safety is set to 0.

Confluent Setup

Follow the instructions here.

Sink Connector QuickStart

We will start the connector in distributed mode. Each connector exposes a rest endpoint for stopping, starting and
updating the configuration. We have developed a Command Line Interface to make interacting with the Connect Rest
API easier. The CLI can be found in the Stream Reactor download under the bin folder. Alternatively the Jar can be
pulled from our GitHub releases page.

Create Voltdb Table

At present the Sink doesn’t support auto creation of tables so we need to login to VoltDb to create one. In the directory
you extracted Voltdb start the sqlcmd shell and enter the following DDL statement. This creates a table called person.

create table person(firstname varchar(128), lastname varchar(128), age int, salary
→˓float, primary key (firstname, lastname));

bin ./sqlcmd
SQL Command :: localhost:21212
1> create table person(firstname varchar(128), lastname varchar(128), age int, salary
→˓float, primary key (firstname, lastname));
Command succeeded.
2>

Starting the Connector (Distributed)

Download, unpack and install the Stream Reactor. Follow the instructions here if you haven’t already done so. All
paths in the quickstart are based in the location you installed the Stream Reactor.

Start Kafka Connect in distributed more by running the start-connect.sh script in the bin folder.

bin/start-connect.sh

Once the connector has started we can now use the kafka-connect-tools cli to post in our distributed properties file for
VoltDB. If you are using the dockers you will have to set the following environment variable to for the CLI to connect
to the Rest API of Kafka Connect of your container.

export KAFKA_CONNECT_REST="http://myserver:myport"

bin/connect-cli create voltdb-sink < conf/voltdb-sink.properties

#Connector `voltdb-sink`:

1.2. Kafka Connect 187

https://github.com/datamountaineer/kafka-connect-tools/releases

StreamReactor Documentation, Release 0.1

name=voltdb-sink
connector.class=com.datamountaineer.streamreactor.connect.voltdb.VoltSinkConnector
max.tasks=1
topics=sink-test
connect.volt.servers=localhost:21212
connect.volt.kcql=INSERT INTO person SELECT * FROM sink-test
connect.volt.password=
connect.volt.username=
#task ids:

The voltdb-sink.properties file defines:

1. The name of the sink.

2. The Sink class.

3. The max number of tasks the connector is allowed to created.

4. The topics to read from (Required by framework)

5. The name of the voltdb host to connect to.

6. Username to connect as.

7. The password for the username.

8. The KCQL routing querying.

If you switch back to the terminal you started the Connector in you should see the VoltDb Sink being accepted and the
task starting.

We can use the CLI to check if the connector is up but you should be able to see this in logs as-well.

#check for running connectors with the CLI
bin/connect-cli ps

voltdb-sink

[2016-08-21 20:31:36,398] INFO Finished starting connectors and tasks (org.apache.
→˓kafka.connect.runtime.distributed.DistributedHerder:769)
[2016-08-21 20:31:36,406] INFO
_____ _

(____ \ _ _ (_)
_ \ \ ____| |_ ____ ____ ___ _ _ ____ | |_ ____ _ ____ ____ ____ ____

| | | / _ | _)/ _ | \ / _ \| | | | _ \| _)/ _ | | _ \ / _) _)/ ___)
| |__/ ((| | |_((| | | | | |_| | |_| | | | | |_((| | | | | ((/ ((/ /| |
|_____/ _||_|___)_||_|_|_|_|___/ ____|_| |_|___)_||_|_|_| |_|____)____)_|

by Stefan Bocutiu
_ _ _ _____ _ _ _ _

| | | | | |_ (____ \ | | | | (_) | |
| | | |__ | | |_ _ \ \| | _ \ \ _ ____ | | _
\ \/ / _ \| | _)| | | | || \ \ \| | _ \| | /)
\ / |_| | | |__| |__/ /| |_)) _____)) | | | | |< (

\/ ___/|_|___)_____/ |____/ (______/|_|_| |_|_| _)
(com.datamountaineer.streamreactor.connect.voltdb.VoltSinkTask:44)

[2016-08-21 20:31:36,407] INFO VoltSinkConfig values:
connect.volt.error.policy = THROW
connect.volt.retry.interval = 60000
connect.volt.kcql = INSERT INTO person SELECT * FROM sink-test
connect.volt.max.retires = 20
connect.volt.servers = localhost:21212
connect.volt.username =

188 Chapter 1. Components

StreamReactor Documentation, Release 0.1

connect.volt.password =
(com.datamountaineer.streamreactor.connect.voltdb.config.VoltSinkConfig:178)

[2016-08-21 20:31:36,501] INFO Settings:com.datamountaineer.streamreactor.connect.
→˓voltdb.config.VoltSettings$@34c34c3e (com.datamountaineer.streamreactor.connect.
→˓voltdb.VoltSinkTask:71)
[2016-08-21 20:31:36,565] INFO Connecting to VoltDB... (com.datamountaineer.
→˓streamreactor.connect.voltdb.writers.VoltConnectionConnectFn$:28)
[2016-08-21 20:31:36,636] INFO Connected to VoltDB node at: localhost:21212 (com.
→˓datamountaineer.streamreactor.connect.voltdb.writers.VoltConnectionConnectFn$:46)

Test Records

Now we need to put some records it to the test_table topics. We can use the kafka-avro-console-producer
to do this.

Start the producer and pass in a schema to register in the Schema Registry. The schema has a firstname field of
type string a lastname field of type string, an age field of type int and a salary field of type double.

${CONFLUENT_HOME}/bin/kafka-avro-console-producer \
--broker-list localhost:9092 --topic sink-test \
--property value.schema='{"type":"record","name":"User","namespace":"com.

→˓datamountaineer.streamreactor.connect.voltdb"
,"fields":[{"name":"firstName","type":"string"},{"name":"lastName","type":"string"},

→˓{"name":"age","type":"int"},{"name":"salary","type":"double"}]}'

Now the producer is waiting for input. Paste in the following:

{"firstName": "John", "lastName": "Smith", "age":30, "salary": 4830}

Check for records in VoltDb

Now check the logs of the connector you should see this:

[2016-08-21 20:41:25,361] INFO Writing complete (com.datamountaineer.streamreactor.
→˓connect.voltdb.writers.VoltDbWriter:61)
[2016-08-21 20:41:25,362] INFO Records handled (com.datamountaineer.streamreactor.
→˓connect.voltdb.VoltSinkTask:86)

In Voltdb sqlcmd terminal

SELECT * FROM PERSON;

FIRSTNAME LASTNAME AGE SALARY
---------- --------- ---- -------
John Smith 30 4830.0

(Returned 1 rows in 0.01s)

Now stop the connector.

Features

The Sink supports:

1.2. Kafka Connect 189

StreamReactor Documentation, Release 0.1

1. Field selection - Kafka topic payload field selection is supported, allowing you to select fields written to VoltDB.

2. Topic to table routing.

3. Voltdb write modes, upsert and insert.

4. Error policies for handling failures.

Kafka Connect Query Language

K afka C onnect Q uery L anguage found here GitHub repo allows for routing and mapping using a SQL like syntax,
consolidating typically features in to one configuration option.

The Voltdb Sink supports the following:

INSERT INTO <table> SELECT <fields> FROM <source topic>
UPSERT INTO <table> SELECT <fields> FROM <source topic>

Example:

#Insert mode, select all fields from topicA and write to tableA
INSERT INTO tableA SELECT * FROM topicA

#Insert mode, select 3 fields and rename from topicB and write to tableB
INSERT INTO tableB SELECT x AS a, y AS b and z AS c FROM topicB

#Upsert mode, select 3 fields and rename from topicB and write to tableB
UPSERT INTO tableB SELECT x AS a, y AS b and z AS c FROM topicB

This is set in the connect.volt.kcql option.

Error Polices

The Sink has three error policies that determine how failed writes to the target database are handled. The error policies
affect the behaviour of the schema evolution characteristics of the sink. See the schema evolution section for more
information.

Throw

Any error on write to the target database will be propagated up and processing is stopped. This is the default behaviour.

Noop

Any error on write to the target database is ignored and processing continues.

Warning: This can lead to missed errors if you don’t have adequate monitoring. Data is not lost as it’s still in
Kafka subject to Kafka’s retention policy. The Sink currently does not distinguish between integrity constraint
violations and or other expections thrown by drivers..

Retry

Any error on write to the target database causes the RetryIterable exception to be thrown. This causes the Kafka
connect framework to pause and replay the message. Offsets are not committed. For example, if the table is offline it
will cause a write failure, the message can be replayed. With the Retry policy the issue can be fixed without stopping
the sink.

190 Chapter 1. Components

https://github.com/datamountaineer/kafka-connector-query-language

StreamReactor Documentation, Release 0.1

The length of time the Sink will retry can be controlled by using the connect.volt.max.retries and the
connect.volt.retry.interval.

Topic Routing

The Sink supports topic routing that allows mapping the messages from topics to a specific table. For example, map a
topic called “bloomberg_prices” to a table called “prices”. This mapping is set in the connect.volt.kcql option.

Example:

//Select all
INSERT INTO table1 SELECT * FROM topic1; INSERT INTO tableA SELECT * FROM topicC

Write Modes

The Sink supports both insert and upsert modes. This mapping is set in the connect.volt.kcql option.

Insert

Insert is the default write mode of the sink.

Insert Idempotency

Kafka currently provides at least once delivery semantics. Therefore, this mode may produce errors if unique con-
straints have been implemented on the target tables. If the error policy has been set to NOOP then the Sink will
discard the error and continue to process, however, it currently makes no attempt to distinguish violation of integrity
constraints from other exceptions such as casting issues.

Upsert

The Sink support VoltDB upserts which replaces the existing row if a match is found on the primary keys.

Upsert Idempotency

Kafka currently provides at least once delivery semantics and order is a guaranteed within partitions.

This mode will, if the same record is delivered twice to the sink, result in an idempotent write. The existing record
will be updated with the values of the second which are the same.

If records are delivered with the same field or group of fields that are used as the primary key on the target table, but
different values, the existing record in the target table will be updated.

Since records are delivered in the order they were written per partition the write is idempotent on failure or restart.
Redelivery produces the same result.

Configurations

connect.volt.kcql

KCQL expression describing field selection and routes.

• Data type : string

• Importance : high

• Optional : no

connect.volt.servers

Comma separated server[:port].

1.2. Kafka Connect 191

StreamReactor Documentation, Release 0.1

• Type : string

• Importance : high

• Optional : no

connect.volt.username

The user to connect to the volt database.

• Type : string

• Importance : high

• Optional : no

connect.volt.password

The password for the voltdb user.

• Type : string

• Importance : high

• Optional : no

connect.volt.error.policy

Specifies the action to be taken if an error occurs while inserting the data.

There are three available options, noop, the error is swallowed, throw, the error is allowed to propagate and retry. For
retry the Kafka message is redelivered up to a maximum number of times specified by the connect.volt.max.
retries option. The connect.volt.retry.interval option specifies the interval between retries.

The errors will be logged automatically.

• Type: string

• Importance: high

• Default: throw

connect.volt.max.retries

The maximum number of times a message is retried. Only valid when the connect.volt.error.policy is set
to retry.

• Type: string

• Importance: medium

• Optional: yes

• Default: 10

connect.volt.retry.interval

The interval, in milliseconds between retries if the Sink is using connect.volt.error.policy set to RETRY.

• Type: int

• Importance: medium

• Optional: yes

• Default : 60000 (1 minute)

192 Chapter 1. Components

StreamReactor Documentation, Release 0.1

connect.volt.batch.size

Specifies how many records to insert together at one time. If the connect framework provides less records when it is
calling the Sink it won’t wait to fulfill this value but rather execute it.

• Type : int

• Importance : medium

• Optional: yes

• Defaults : 1000

connect.progress.enabled

Enables the output for how many records have been processed.

• Type: boolean

• Importance: medium

• Optional: yes

• Default : false

Schema Evolution

Upstream changes to schemas are handled by Schema registry which will validate the addition and removal or fields,
data type changes and if defaults are set. The Schema Registry enforces Avro schema evolution rules. More informa-
tion can be found here.

No schema evolution is handled by the Sink yet on changes in the upstream topics.

Deployment Guidelines

TODO

TroubleShooting

Please review the FAQs and join our slack channel.

Tools

Helper tools and libraries for interacting with the components of the architecture, Kafka Connect and Schema Registry.

Kafka Connect CLI

This is a tiny command line interface (CLI) around the Kafka Connect REST Interface to manage connectors.
It is used in a git like fashion where the first program argument indicates the command: it can be one of
[ps|get|rm|create|run].

1.3. Tools 193

http://docs.confluent.io/3.0.1/schema-registry/docs/api.html#compatibility
https://slackpass.io/datamountaineers
https://github.com/datamountaineer/kafka-connect-tools/releases/tag/v0.5
http://docs.confluent.io/3.0.1/connect/userguide.html#rest-interface

StreamReactor Documentation, Release 0.1

The CLI is meant to behave as a good unix citizen: input from stdin; output to stdout; out of band info to stderr
and non-zero exit status on error. Commands dealing with configuration expect or producedata in .properties style:
key=value lines and comments start with a #.

kafka-connect-cli 0.5
Usage: kafka-connect-cli [ps|get|rm|create|run|status] [options] [<connector-name>]

--help
prints this usage text

-e <value> | --endpoint <value>
Kafka Connect REST URL, default is http://localhost:8083/

Command: ps
list active connectors names.

Command: get
get the configuration of the specified connector.

Command: rm
remove the specified connector.

Command: create
create the specified connector with the .properties from stdin; the connector cannot
→˓already exist.

Command: run
create or update the specified connector with the .properties from stdin.

Command: status
get connector and it's task(s) state(s).

<connector-name>
connector name

You can override the default endpoint by setting an environment variable KAFKA_CONNECT_REST i.e.

export KAFKA_CONNECT_REST=”http://myserver:myport“

Requirements

• Java 1.8

To Build

gradle fatJar

Usage

Clone this repository, do a mvn package and run the jar in a way you prefer, for example with the provided cli
shell script. The CLI can be used as follows.

Get Active Connectors

Command: ps

194 Chapter 1. Components

http://myserver:myport

StreamReactor Documentation, Release 0.1

Example:

$./cli ps
twitter-source

Get Connector Information

Command: get

Example:

$./cli get twitter-source
#Connector `twitter-source`:
name=twitter-source
tasks.max=1

(snip)

track.terms=test
#task ids: 0

Delete a Connector

Command: rm

Example:

$./cli rm twitter-source

Create a New Connector

The connector cannot already exist.

Command: create

Example:

$./cli create twitter-source <twitter.properties
#Connector `twitter-source`:
name=twitter-source
tasks.max=1

(snip)

track.terms=test
#task ids: 0

Create or Update a Connector

Either starts a new connector if it did not exist, or update an existing connector.

Command: run

Example:

1.3. Tools 195

StreamReactor Documentation, Release 0.1

$./cli run twitter-source <twitter.properties
#Connector `twitter-source`:
name=twitter-source
tasks.max=1

(snip)

track.terms=test
#task ids: 0

Schema Registry CLI

This repository contains a CLI and Go client for the REST API of Confluent’s Kafka Schema Registry.

CLI

To install the CLI, assuming a properly setup Go installation, do:

go get github.com/datamountaineer/schema-registry/schema-registry-cli

After that, the CLI is found in $GOPATH/bin/schema-registry-cli. Running schema-registry-cli without arguments
gives:

A command line interface for the Confluent schema registry

Usage:
schema-registry-cli [command]

Available Commands:
add registers the schema provided through stdin
exists checks if the schema provided through stdin exists for the subject
get retrieves a schema specified by id or subject
subjects lists all registered subjects
versions lists all available versions

Flags:
-h, --help help for schema-registry-cli
-e, --url string schema registry url (default "http://localhost:8081")
-v, --verbose be verbose

Use "schema-registry-cli [command] --help" for more information about a command.

Client

The documentation of the package can be found [here](https://godoc.org/github.com/datamountaineer/
schema-registry).

Fast Data UI’s (Landoop)

Landoop has a number of UI’s available to visually data in Kafka and schemas in the Schema Registry.

You can either build from their GitHub repo or install and run the docker images.

196 Chapter 1. Components

https://godoc.org/github.com/datamountaineer/schema-registry
https://godoc.org/github.com/datamountaineer/schema-registry

StreamReactor Documentation, Release 0.1

• Kafka Topics Browser

• Schema Registry

• Kafka Connect

Kafka Connect UI

The Kafka Connect UI lets you:

• Visualise your connect cluster sink & sources.

• Create new connectors with few clicks.

• Update & Delete connectors configuration.

• View workers tasks health & failures.

For the Connect UI please contact Landoop.

Add new connectors.

Kafka Topic Browser

The Kafka Topic Browser allows you to look into topic without having to write code or use the command line console
consumers.

Supported features are:

• Find topics & browse topic data (kafka messages)

• View topic metadata

• View topic configuration

• Download data

1.4. Fast Data UI’s (Landoop) 197

https://github.com/Landoop/kafka-topics-ui
https://github.com/Landoop/schema-registry-ui
http://kafka-connect-ui.landoop.com/#/
https://www.landoop.com/

StreamReactor Documentation, Release 0.1

198 Chapter 1. Components

StreamReactor Documentation, Release 0.1

1.4. Fast Data UI’s (Landoop) 199

StreamReactor Documentation, Release 0.1

Schema Registry Browser

The Schema Registry is an integral part of the Kafka Streaming Platform.

Schema Registry provides a serving layer for your metadata. It provides a RESTful interface for storing and retrieving
Avro schemas. It stores a versioned history of all schemas, provides multiple compatibility settings and allows evolu-
tion of schemas according to the configured compatibility setting. It provides serializers that plug into Kafka clients
that handle schema storage and retrieval for Kafka messages that are sent in the Avro format.

Our web tool for schema registry allows:

• Visibility of schemas and their versions in the topics

• Schema validation

• Ability to add new schemas

• Ability to track changes with a graphical diff.

Install

For docker, pull the images:

docker pull landoop/kafka-topics-ui
docker pull landoop/schema-registry-ui

To run

docker run --rm -it -p 8000:8000 \
-e "SCHEMAREGISTRY_URL=http://confluent-schema-registry-host:port" \
landoop/schema-registry-ui

docker run --rm -it -p 8000:8000 \
-e "KAFKA_REST_PROXY_URL=http://kafka-rest-proxy-host:port" \

landoop/kafka-topics-ui

#Start both in one docker
#docker run --rm -it -p 8000:8000 \
-e "SCHEMAREGISTRY_UI_URL=http://confluent-schema-registry-host:port" \
-e "KAFKA_REST_PROXY_URL=http://kafka-rest-proxy-host:port" \
landoop/kafka-topics-ui

Your schema-registry service will need to allow CORS (!!)

To do that, and in /opt/confluent-3.0.0/etc/schema-registry/schema-registry.
properties

access.control.allow.methods=GET,POST,OPTIONS
access.control.allow.origin=*

FAQS

I have JSON. Can I still use DataMountaineer Sink Connectors?

Kafka Connect has two converters for both the key and payload from Kafka. These are Json and Avro, the Json
converter is part of the Kafka distribution and the Avro converter from Confluents schema registry. These converters

200 Chapter 1. Components

StreamReactor Documentation, Release 0.1

convert the records in Kafka to SinkRecords, most of our Sinks rely of the data in Kafka being Avro and written with
the Confluent Avro Serializers. This is best practice. This allows the Connectors to receive SinkRecords with schemas
for the payloads to mapping, filtering can take place based on the The KCQL routing querying provided.

However, it is possible sink Json messages from Kafka with some of our Sinks by using the JsonConverter from
Kafka. If your Json messages have a schema field the converter will deliver the records to the Sink with a schema. If
no schema tag is present the records will be delivered with a schema of type SCHEMA.String.

Note: You must be using at least Cassandra 3.0.9 to have JSON support!

Can I run on multiple nodes?

Yes, Kafka Connect has two modes, standalone and distributed. Both allow for scaling by setting the max.tasks
property.

In distributed mode each work joins a Connect cluster defined in the etc/schema-registry/connect-avro-
distributed.properties file that is part of the Confluent distribution. Within this file a property called group.id
controls this.

The group ID is a unique identifier for the set of workers that form a single Kafka
→˓Connect
cluster
group.id=connect-cluster

ClassNotFoundException

The start-connect.sh in the Stream Reactor download adds all the jars from the libs folder to the CLASSPATH
automatically. If you are not using this start script it is more than likely you have not add the relevant Connector jar to
the CLASSPATH properly.

Explicit add the relevant jar to the classpath and restart Kafka Connect

export CLASSPATH=my_connector.jar

You can ask a running instance of Kafka Connect what Connector classes are on the classpath with the CLI <cli>

bin/connect-cli loaded

Guava version

The Elastic Search and HBase use different versions of guava, as does the Hive libraries supplied by Confluent with
the HDFS Connector. This can cause version clashes.

Explicit add the relevant jar to the classpath and restart Kafka Connect. This sets our jars first and should solve the
issues.

#For Elastic
#export CLASSPATH=kafka-connect-elastic-0.2.3-3.0.1.jar

#For HBASE
#export CLASSPATH=kafka-connect-hbase-0.2.3-3.0.1.jar

Redis authentication

If your redis server is requiring the connection to be authenticated you will need to provide an extra setting:

connect.redis.connection.password=$REDIS_PASSWORD

1.5. FAQS 201

StreamReactor Documentation, Release 0.1

Don’t set the value to empty if no password is required.

InfluxDb Port already in use

InfluxDB starts an Admin web server listening on port 8083 by default. For this quickstart this will collide with Kafka
Connects default port of 8083. Since we are running on a single node we will need to edit the InfluxDB config.

#create config dir
sudo mkdir /etc/influxdb
#dump the config
influxd config > /etc/influxdb/influxdb.generated.conf

Now change the following section to a port 8087 or any other free port.

[admin]
enabled = true
bind-address = ":8087"
https-enabled = false
https-certificate = "/etc/ssl/influxdb.pem"

How get multiple worker on different hosts to for a Connect Cluster

For workers to join a Connect cluster, set the group.id in the $CONFLUENT_HOME/etc/schema-registry/connect-
avro-distributed.properties file.

The group ID is a unique identifier for the set of workers that form a single Kafka
→˓Connect
cluster
group.id=connect-cluster

HBase Sink isn’t connecting to Zookeeper Quroum*

Ensure you have your HBase clusters hbase-site.xml in your classpath.

export CLASSPATH=hbase-site.xml

202 Chapter 1. Components

	Components

