
STON Documentation
Release 2.3.4

WineSOFT Inc.

February 01, 2017

Contents

1 0. Overview 3

2 1. Basics 15

3 2. HTTP Caching 35

4 3. Advanced Features 77

5 4. Management & Operation 155

6 Appendix 201

i

ii

STON Documentation, Release 2.3.4

Author WineSOFT Inc.

Version 2.4.3, Jan 20, 2017

Contents 1

STON Documentation, Release 2.3.4

2 Contents

CHAPTER 1

0. Overview

1.1 Chapter 1. STON Edge Server

1.1.1 Principles of Service Design

The success of a service depends on availability, speed, and scalability. Kate Matsudaira, author of “Building Scalable
Web Architecture and Distributed Systems”, also emphasized these three principles.

Availability

A service must always be available. In the event of failure, ninety percent of users will move on to competitors. While
there is no such thing as a perfect system, recovering from failures must be quick.

Speed

In business, time is money, and in e-commerce, high latency will lead to a drop in sales. For every 0.1 second of
latency, there is a one percent decrease in revenue. 47 percent of Amazon.com customers want a website loaded on
their screen within two seconds.

Scalability

Regardless of the number of users, the service must always be reliable. Scalability is the effort required to increase
the system’s capacity to handle more load, and can also refer to how easy it is to add more storage or how many
more transactions can be processed. Scalability in maintenance is also important: it should be easy to diagnose and
understand problems and implement updates or fixes.

The service is most effective when all the principles can be upheld at the smallest possible cost. Cost is not limited to
just money, but also includes time, effort, and training.

A successful service must grow, and when it does, it must be able to manage more clients and more content. However,
as the system grows, it becomes harder to uphold these principles. What can be done to uphold these principles at the
smallest possible cost?

1.1.2 The Growth of the Service

A test or pilot service generally begins with one or two servers, and when it begins to grow, the number of servers will
increase accordingly. Content renewal must be meticulously carried out one server at a time. It may be a laborious
task, but it is not an impossible one as of yet.

As the service begins to expand with more users and more accumulated data, managing each server one by one
becomes even more difficult. At this point, high-cost storage (e.g. NAS, SAN, DAS) is introduced to collect all
the data in one system. Expensive but reliable storage systems make content renewal easier, because servers can
automatically acquire updated content from storage.

3

STON Documentation, Release 2.3.4

However, as the service sharply grows, the number of servers increases. More servers mean more data from storage,
leading to data transfer overload. A new storage system that supports higher bandwidth can be even more expensive,
so it’s questionable if one would want to invest in it.

A potential solution to the problem is synchronization. Getting all the data ready is impractical, so the storage system
must be able to sort the content. Management is essential to achieve precise content control. Synchronization across a
few servers may be easy, but the more servers and files to sync, the harder it becomes. Synchronization can become
slower, harder, and even more unstable as the system expands.

Moreover, content is constantly changing. The more files there are to add or delete, the longer the synchronization
time becomes. A larger-scale service inevitably requires a bigger and more complicated synchronization managing
system. Any problems in the management system may eventually lead to total service failure.

A simpler method to quickly and flexibly deliver content to servers is necessary.

1.1.3 Service Scalability and Content Delivery

As shown in the figure below, a service can be broken down into two layers.

In the center is the storage layer, which manages data. Above it is the application layer, which implements the service
logic and can also process content delivery for a small number of customers. In the beginning stages, the service can
be set up with only the storage and application layers.

As the service grows, the total cost will change. In the beginning stages, the biggest expense is in logic development,
while in the growth stages, the biggest expense is in data management in accordance with the number of users.
However, as the service matures, the main concern becomes content delivery, making it a huge hurdle for service
expansion. How can the exploding bandwidth be taken care of?

1.1.4 The Edge: The Delivery Layer

When the service reaches maturity, the burden of content delivery will increase exponentially. Shopping mall content
numbers in the billions, and the video service content has long since begun to use terabytes. To expand a service, the
scalability of content delivery must definitely be taken into account.

4 Chapter 1. 0. Overview

STON Documentation, Release 2.3.4

The edge layer is the outermost layer of the service in which clients will be able to experience speed and availability.
No matter the circumstances, the content requested by the users must always be delivered to them. Broken images or
unavailable pages on the user’s screen is fatal to the reputation of the service. By handling content delivery via the
edge, there is less of a burden on the application and storage layers.

Having an easily and efficiently expandable edge layer removes the need to expand other high-cost layers. Meanwhile,
expanding the storage layer or the application layer is a poor choice due to its high cost and low efficiency.

In that case, how does the STON Edge Server make content delivery quicker and easier?

1.1.5 The Behavior of the Edge Server: Caching

The scale of data delivery is proportional to the number of users and the size of content. The service can detect how
many users are requesting what content most quickly within the edge layer. Because the bottom-up workflow from
edge layer is the most efficient, the edge server implements caching behavior that responds on demand to the users’
requests, without any need for management systems. The procedure is as follows.

When the edge server receives its first content delivery request, it obtains the content from the storage layer and then
transfers the content to the user. This transferred content is also saved in the edge server itself. On future requests, the
saved content can immediately be delivered to the users from the edge server itself. The saved content will only be
available during the preset Time To Live (TTL) period.

In this way, the edge server can handle a considerable amount of content. It can allow for quick mass distribution of
data while minimizing the need to expand the application and storage layers. Any growing service should take the
edge server into consideration.

1.1. Chapter 1. STON Edge Server 5

STON Documentation, Release 2.3.4

6 Chapter 1. 0. Overview

STON Documentation, Release 2.3.4

The STON Edge Server is software that aims to provide an unrestricted and unconditional environment. The server is
designed to provide maximum performance on any type of hardware platform.

CPU: Optimized for multi-core processors. Throughput is proportional to the number of CPU cores.

Memory: Larger memory allows for faster processing and cuts down on Disk I/O.

Disk: I/O is evenly distributed to cache more data.

NIC: Guaranteed bandwidth of either 4 Gbps NIC Bonding or 10 Gbps NIC.

The STON Edge Server supports powerful live monitoring and logging. The administrator can check the current
service status in real time with statistics updated every second. The real-time statistics are offered in universal formats
such as JSON, XML, and SNMP.

STON offers simple installation for the sake of administrators, because STON’s design principle is to be an edge
server made with administrators in mind. An intuitive installation method is provided via the Web Management page.
More detailed settings can be configured by editing only two XML files.

1.1.6 Benefits of the Edge Server

The benefits of the edge server are listed below.

• Provides simple and convenient service acceleration

• Shields the service origin from external access (Origin Shielding)

• Allows the other layers to concentrate on their fundamental roles

The advantages of adopting the edge server can be seen in the following application examples.

Gaming

Gaming services require a large amount of bandwidth. There are a variety of categories in gaming, from “masterpiece”
games to casual games. Smartphone games have become especially popular, further diversifying the forms of services.

1.1. Chapter 1. STON Edge Server 7

STON Documentation, Release 2.3.4

• High Bandwidth Throughput

A universal method to acquire high bandwidth with a single server is bonding 1 Gbps NIC (Network
Interface Controller). With this, up to 4 Gbps can be achieved. Recently, 10Gbps NICs have also
become common.

STON guarantees full bandwidth for both 4 Gbps NIC Bonding and 10 Gbps NIC.

• Max User Bandwidth Guaranteed

Everyone wants to play games as soon as possible, so they will want to download their games as
fast as possible. Users with fiber optic LAN may complain if their speed falls under 100 Mbps. As
long as a server’s bandwidth isn’t physically exceeded, it must be able to guarantee maximum speed
equally to every user.

STON guarantees maximum transmission speed to all users.

• Processing Large Files

Nowadays, a game with a file size of about 4 GB can’t even be considered a large game; there exist
games with dozens of GB in file size. If the files are too large to cache in the server memory, critical
service failure is likely. The worst-case scenario is when every user is each downloading a different
part of a massive file from the server.

STON caching has no limit to file size, and will always guarantee high performance by swapping
between memory and disk when appropriate.

• Processing Range Requests

As files to deliver are growing larger, the P2P solution, based on the grid delivery method, has become
widely used. This solution shreds a single file into small pieces to send or receive, thus making a huge
number of HTTP range requests from the server. Theoretically, ten thousand clients can all request
different ranges from a 10 GB file. The service must be able to respond immediately, regardless of
what is being requested. However, the size of the transferred data must not exceed the size of the
original file.

STON is loaded with a file system that is optimized for range requests. STON also guarantees faster
responses via multi-download. It will not download a single unnecessary byte from the origin server.

E-commerce

In the case of online shopping malls, accessibility of the website is directly related to the amount of total sales.
Recently, mobile shopping via smartphones has become just as common as the traditional PC-based online shopping.

8 Chapter 1. 0. Overview

STON Documentation, Release 2.3.4

A service will face difficulty if it cannot handle not just various shopping environments but also an infinitely growing
number of files.

• Numerous Small Files

An expensive storage system is necessary when it comes to storing files that seem like they’re con-
stantly increasing. However, because being economical is important to the edge server, this solution
is not preferred. There could be a service that consists of a billion 1 KB files, and caching all of them
is not possible. Therefore, a method that keeps hold of frequently requested files while minimizing
load on the origin server is necessary.

STON uses available memory and disk resources to their greatest capacity for caching. It manages the
access frequency of all files in real time and removes older files based on the LRU (Least Recently
Used) algorithm.

• Millions of Users

An online shopping mall must be able to handle the requests of multiple users at once. There are times
when bursts of website traffic can occur due to a sudden event. Servers must be able to withstand
these bursts and remain stable after them.

STON guarantees CPU scalability, with performance proportional to the number of resources. It can
guarantee stability even during bursts using flexible HTTP keep-alive and socket handling.

• Responsiveness

Pleasant online shopping experiences occur when pages load quickly and the customers don’t have
to wait. If a page doesn’t load within three seconds, the user will most often move to a different site.
Even though the main page is generally made up of about a hundred files, it must still load perfectly
in a second.

STON guarantees swift responses through real-time file indexing. Responsiveness is maximized by
having seamless file replacement with no dependence on the origin server. Logs and statistics are
offered for all HTTP responses (Time to First Byte, transaction completions) to detect declines in
performance in real time.

• Page TTL

The majority of users follow a route that goes from the main page, to the upper category page, to the
lower category page, and then to the product details page. Each page must be different not just in
their exposure frequencies but also in their refresh cycles. A smart method of caching and refreshing
is necessary.

STON can allocate separate TTLs to each URL. It also offers various refreshing methods such as
Purge, Expire, ExpireAfter, and HardPurge to be used to fit the given situation.

1.1. Chapter 1. STON Edge Server 9

STON Documentation, Release 2.3.4

Media

Exclusive media protocols are starting to lose their place, while the simple but powerful combination of HTTP and
MP4 is gaining influence. Taking into consideration the variable connection statuses of mobile devices, HTTP-based
streaming is likely to become the norm.

• Media Recognition

Media files should no longer be seen as just one huge chunk of file. Bandwidth can be reduced
and various additional functions can be linked only when the format of the media file is correctly
recognized. If the server requires the entire file to determine its format, then during the time the
server takes to acquire the file, the user will most likely quit waiting.

STON supports the MP4, MP3, M4A, and FLV formats. As soon as the server starts downloading a
media file, it prioritizes the sections required for HTTP pseudo-streaming.

• Media Header Reordering

If the header is located at the end of the file, HTTP pseudo-streaming is unavailable. An exclusive
media player would be necessary for these types of files, but this can make users easily frustrated.

If the header is placed at the end after encoding an MP4 file, an additional action to move it to the
front is necessary. STON provides the service of automatically moving the header to the front.

• Adjustable Bandwidth

Not many users watch the entire video clip to the end. Therefore, an efficient streaming method
would be to use only smallest amount of bandwidth necessary for smooth playback. Though the
video may be the same, it can be watched in varying bitrates ranging from 360p to 1080p.

STON uses bandwidth throttling to optimize the bandwidth used during media file delivery.

• Multi/Single Part Trimming

Some preview/highlight/sharing services provide only a specific part of the file instead of the whole.
It would be a waste of time and storage space to extract parts for every file. Furthermore, there are
cases where the extracted part may be different for each user. Some media players also implement a
skip function for segment playback.

STON can trim a media file to extract parts that can be used as complete files themselves.

News / Forums

There are many points of interest for sites that have secured a large loyal user base. As these websites are where people
of similar interests gather, users will stay on pages for long periods of time and exchanges will occur with vigor. The

10 Chapter 1. 0. Overview

STON Documentation, Release 2.3.4

service patterns of these sites vary by their subjects and it is tricky to meet their service requirements.

• 304 Not Modified

Because these users are loyal to the website, most files will already be cached in local storage.
Therefore, checking for updates will be more frequent than actual file transfer.

STON ensures that frequently accessed files are always kept in memory. Checking for updates can be
processed immediately without waiting.

• Bypass

There are a certain category of pages that cannot be cached, such as user-specific pages or pages with
new posts or replies. Even in these cases, a single domain is usually delegated to a reverse proxy
instead of separating it into multiple domains.

STON elaborately classifies bypass targets based on various conditions. The server also maintains
login sessions using the Origin Affinity and Private functions.

• Origin Shield

Websites owned by individuals or small or mid-size businesses cannot afford expensive equipment,
infrastructure, or labor force. Server failure can occur relatively frequently, and it is often uneconom-
ical to try and improve server quality.

STONwill detect server overload or failure and automatically execute exclusion/recovery of the origin
server. It will also extend TTL upon server failure and minimize dependence on the origin server.

• Image Processing

The same image may need to be displayed in different ways depending on the user environment.
Search results may display images as thumbnails, while news sites may watermark their images.
Processing every image into a specific format is a waste of time, storage, and effort.

STON‘s DIMS function can generate desired image formats from a single image using only URL
calls.

File-based Server

The edge server is based on the reverse proxy structure. The fundamental concept of the reverse proxy is to
copy/modify/manage files from the remote server to local storage. If STON can integrate with a service’s server,
it can resolve both storage centralization and synchronization issues. This will also decrease service development time
and improve service reliability, killing two birds with one stone.

• File I/O Support

1.1. Chapter 1. STON Edge Server 11

STON Documentation, Release 2.3.4

If an exclusive protocol is required, the server becomes subordinate to the corresponding module.
Even the module was integrated with the server, if performance falls, it is dead weight. The stage
between the module and the server must be reduced to a minimum.

STON can adopt standard file I/O. Only a Linux Kernel (VFS) is placed between STON and the
exclusive server to guarantee high performance.

• Web Server Integration

Standard reverse proxies may be hard to implement if any special expansion modules are installed
on standard web servers (Apache, Lighttpd, NginX). For example, it is hard for a file service or a
payment service linked with DB/WAS to expand.

If Apache’s DocumentRoot is assigned to STON, Apache will recognize STON as a physical disk
and nothing will need to be configured.

• Wowza Integration

Wowza is considered to be a standard in the media service field. However, Wowza’s HTTP caching
function is not just inconvenient but also limited. In addition, other “exclusive”; protocols besides
HTTP are fading away from the market.

STON can be mounted as a local disk. Moreover, all functions, such as MP4 header conversion and
trimming, are available.

• Resource Management

A server that acquires back-end files and delivers them to front-end users will always have problems
with file synchronization. Exclusive servers such as game or SNS servers have always had these
issues during development. Because these servers must stay running for long periods of time without
interruption, memory and disk use must be strictly controlled.

STON can easily control memory and disk use. Even when STON is mounted on a disk, all other
functions will work in the same manner, so complicated services can be configured with a minimal
solution.

The following Korean services are actively making use of the above attributes to grow with STON.

12 Chapter 1. 0. Overview

STON Documentation, Release 2.3.4

1.1. Chapter 1. STON Edge Server 13

STON Documentation, Release 2.3.4

14 Chapter 1. 0. Overview

CHAPTER 2

1. Basics

2.1 Chapter 2. Getting Started

This chapter will cover the installation and configuration of the system as well as how to set up a sample virtual host.
A simple text editor is all that is necessary.

STON was developed to run on standard Linux servers, and minimize dependence on the hardware, OS, or file system,
among others. However, it is still important to choose the most suitable equipment for the job, in order to set up the
server to match the service’s individual qualities.

2.1.1 Setting Up the Server

Generally, setting up a server means considering the CPU, memory, and disk. For example, if a service requires high
performance on the level of 10 Gbps throughput, then each component must meet the requirements to reach the desired
performance.

• CPU A CPU with at least four cores (quad-core) is recommended. Because STON gains scalability when
it comes to multi-core CPUs, the per-second throughput increases with more cores. However, higher
throughput does not necessarily mean higher traffic.

Fig. 2.1: The more clients there are, the more useful it is to have many CPUs.

Transferring a 4 KB file around 260,000 times takes the same amount of bandwidth as transferring a 1
GB file once. The most important criterion in choosing a CPU is the number of parallel connections the
service must make.

• Memory At least 4GB of memory is recommended to be used in memory indexing (see also Memory Structure).
Content that is frequently accessed will always be stored in memory, but content that is not will have to be
loaded from disk. As such, if there is a lot of content with a large spread (a long-tailed distribution), then
the load on the disk will be higher and performance may decline. If disk I/O load is high because of the
size of the content, regardless of the amount of content, then memory can simply be added to decrease the
load.

15

STON Documentation, Release 2.3.4

• Disk At least three disks, including the OS, is recommended. As one would expect, more disks lead to better
performance, as I/O load will be dispersed and more content can be cached.

Fig. 2.2: The OS and STON will always be installed on a disk separate from the content.

In general, STON will be installed on the same disk as the OS. The log is also generally installed on the
same disk. Because the log must record the service status in real time, it will always create write load.

The STON disks will be used in the RAID 0 setting. The correlation between performance and RAID changes
depending on the client service’s qualities. However, if file changes are infrequent and content size is much
larger than physical memory, increasing read speed with RAID may be effective.

2.1.2 Setting Up the OS

In its most basic form, STON will operate normally on standard 64-bit Linux distributions (CentOS 6.2 or higher,
Ubuntu 10.04 or higher), and does not require any particular package.

2.1.3 Installation

1. Download the latest version of STON.

[root@localhost ~]# wget http://foobar.com/ston/ston.2.0.0.rhel.2.6.32.x64.tar.gz
--2014-06-17 13:29:14-- http://foobar.com/ston/ston.2.0.0.rhel.2.6.32.x64.tar.gz
Resolving foobar.com... 192.168.0.14
Connecting to foobar.com|192.168.0.14|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 71340645 (68M) [application/x-gzip]
Saving to: “ston.2.0.0.rhel.2.6.32.x64.tar.gz”

100%[===>] 71,340,645 42.9M/s in 1.6s

2014-06-17 13:29:15 (42.9 MB/s) - “ston.2.0.0.rhel.2.6.32.x64.tar.gz” saved [71340645/71340645]

2. Extract the downloaded package.

16 Chapter 2. 1. Basics

STON Documentation, Release 2.3.4

[root@localhost ~]# tar -zxf ston.2.0.0.rhel.2.6.32.x64.tar.gz

3. Run the installation script.

[root@localhost ~]# ./ston.2.0.0.rhel.2.6.32.x64.sh

4. All installation processes are recorded in the install.log file. Any problems that occur during the installation
process will be noted there.

#DownloadURL: http://foobar.com/ston/ston.2.0.0.rhel.2.6.32.x64.tar.gz
#DownloadTime: 13 sec
#Target: STON 2.0.0
#Date: 2014.03.03 16:48:35
Prepare for STON 2.0.0 install process

Stopping STON...
STON stopped

[Copying files]
`./fuse.conf' -> `/etc/fuse.conf'
`./libfuse.so.2' -> `/usr/local/ston/libfuse.so.2'
`./libtbbmalloc_proxy.so' -> `/usr/local/ston/libtbbmalloc_proxy.so'
`./start-stop-daemon' -> `/usr/sbin/start-stop-daemon'
`./libtbbmalloc_proxy.so.2' -> `/usr/local/ston/libtbbmalloc_proxy.so.2'
`./libtbbmalloc.so' -> `/usr/local/ston/libtbbmalloc.so'
`./libtbbmalloc.so.2' -> `/usr/local/ston/libtbbmalloc.so.2'
`./libtbb.so' -> `/usr/local/ston/libtbb.so'
`./libtbb.so.2' -> `/usr/local/ston/libtbb.so.2'
`./stond' -> `/usr/local/ston/stond'
`./stonx' -> `/usr/local/ston/stonx'
`./stonr' -> `/usr/local/ston/stonr'
`./stonu' -> `/usr/local/ston/stonu'
`./stonapi' -> `/usr/local/ston/stonapi'
`./server.xml.default' -> `/usr/local/ston/server.xml.default'
`./vhosts.xml.default' -> `/usr/local/ston/vhosts.xml.default'
`./ston_format.sh' -> `/usr/local/ston/ston_format.sh'
`./ston_diskinfo.sh' -> `/usr/local/ston/ston_diskinfo.sh'
`./wm.sh' -> `/usr/local/ston/wm.sh'

[Exporting config files]
#Export so directory
/usr/local/ston/ to ld.so.conf
#Export sysctl to /etc/sysctl.conf
vm.swappiness=0
vm.min_free_kbytes=524288
#Export sudoers for WM
Defaults !requiretty
winesoft ALL=NOPASSWD: /etc/init.d/ston stop, /etc/init.d/ston start, /bin/ps -ef

[Configuring STON daemon script]
STON deamon activate in run-level 2345.

[Installing sub-packages]
curl installed.
libjpeg installed.
libgomp installed.
rrdtool installed.

[Installing WM]
Stopping WM...
WM stopped
`./wm.server_default.xml' -> `/usr/local/ston/wm/tmp/conf/server_default.xml'
`./wm.vhost_default.xml' -> `/usr/local/ston/wm/tmp/conf/vhost_default.xml'
WM configuration found. Current WM port : 8500
PHP module for Legacy(CentOS 5.5) installed

2.1. Chapter 2. Getting Started 17

STON Documentation, Release 2.3.4

`./libphp5.so.5.5' -> `/usr/local/ston/wm/modules/libphp5.so'
WM installation almost complete. Changing WM privileges.

Installation successfully complete

2.1.4 Obtaining a License

New clients can obtain a license via this process.

1. Fill out the application form.

2. Email the completed form to license@winesoft.co.kr.

3. The license will be issued after confirmation.

The license file (license.xml) must be in the installation directory for STON to run properly.

2.1.5 Update

Use the “stonu” command to update STON to the latest version.

./stonu 2.0.1

See also Update to Latest Version from Chapter 13. WM (Web Management) to easily update STON.

2.1.6 Run

STON will be installed in the following default directory.

/usr/local/ston/

If any of the following files is missing or has invalid XML syntax, STON will not run.

• license.xml

• server.xml

• vhosts.xml

After the initial installation, not every XML file will be present. In this case, the distributed license.xml file should be
placed in the directory. The server.xml.default and vhosts.xml.default files should also be placed in the directory. The
*.default files are always included in the latest package.

2.1.7 Hello World

Open vhosts.xml and edit with the following code.

18 Chapter 2. 1. Basics

http://ston.winesoft.co.kr/EULR.doc
mailto:license@winesoft.co.kr

STON Documentation, Release 2.3.4

<Vhosts>
<Vhost Name="www.example.com">

<Origin>
<Address>hello.winesoft.co.kr</Address>

</Origin>
</Vhost>

</Vhosts>

Running STON

1. Copy license.xml to the installation directory.

2. Open server.xml and configure <Storage>.

<Server>
<Cache>

<Storage>
<Disk>/cache1/</Disk>
<Disk>/cache2/</Disk>

</Storage>
</Cache>

</Server>

Note: STON normally uses disk storage. A disk must be configured in order to run STON. Disk set-up details can be
found in the next chapter.

3. Run STON.

[root@localhost ~]# service ston start

To stop STON, use the “stop” command.

[root@localhost ~]# service ston stop

Checking the Virtual Host

(For Windows 7) Add www.example.com in the C:\Windows\System32\drivers\etc\hosts file as shown below.

192.168.0.100 www.example.com

If all settings are correctly configured, the following page will be displayed on the browser when www.example.com
is accessed.

If WM is Slow or the Graph Isn’t Displayed

RRDtool is dynamically downloaded and installed during installation, and may not be installed properly under a
restricted network. Moreover, Chapter 13. WM (Web Management) may run very slowly or Appendix A: Graph may
not work at all. To fix these issues, follow the steps below.

1. Check Installation Status

Checking the installation status of RRDtool can be done as follows.

2.1. Chapter 2. Getting Started 19

STON Documentation, Release 2.3.4

[root@localhost ston]# yum install rrdtool
Loaded plugins: fastestmirror, security
Loading mirror speeds from cached hostfile

* base: centos.mirror.cdnetworks.com

* elrepo: ftp.ne.jp

* epel: mirror.premi.st

* extras: centos.mirror.cdnetworks.com

* updates: centos.mirror.cdnetworks.com
Setting up Install Process
Package rrdtool-1.3.8-6.el6.x86_64 already installed and latest version
Nothing to do

(For Ubuntu)

root@ubuntu:~# apt-get install rrdtool
Reading package lists... Done
Building dependency tree
Reading state information... Done
rrdtool is already the newest version.
The following packages were automatically installed and are no longer required:
libgraphicsmagick3 libgraphicsmagick++3 libgraphicsmagick1-dev libgraphics-magick-perl libgraphicsmagick++1-dev

Use 'apt-get autoremove' to remove them.
0 upgraded, 0 newly installed, 0 to remove and 102 not upgraded.

2. RRD Manual Install

If yum is unable to install RRDtool, the administrator should download the right package for the OS and proceed
with manual installation.

20 Chapter 2. 1. Basics

http://pkgs.repoforge.org/rrdtool/

STON Documentation, Release 2.3.4

Name Last Modified Size Description
tcl-rrdtool-1.4.7-1.el5.rf.i386.rpm 06-Apr-2012 16:57 36K RHEL5 and CentOS-5 x86 32bit
tcl-rrdtool-1.4.7-1.el5.rf.x86_64.rpm 06-Apr-2012 16:57 37K RHEL5 and CentOS-5 x86 64bit
tcl-rrdtool-1.4.7-1.el6.rfx.i686.rpm 06-Apr-2012 16:57 35K RHEL6 and CentOS-6 x86 32bit
tcl-rrdtool-1.4.7-1.el6.rfx.x86_64.rpm 06-Apr-2012 16:57 35K RHEL6 and CentOS-6 x86 64bit

2.1.8 Origin Server

The purpose of the virtual host is to provide content in place of the origin server. Various types of origin servers can
be accessed in various ways, depending on what is most suitable for the service platform.

<Vhosts>
<Vhost Name="www.example.com">

<Origin>
<Address>1.1.1.1</Address>
<Address>1.1.1.2</Address>

</Origin>
</Vhost>

</Vhosts>

• <Address>

The address of the origin server from which the virtual host will copy content. There is no limit to the number
of addresses that can be added. If there are more than two addresses, selection follows the active/active model
(round-robin). If the origin server port is 80, it can be omitted.

For example, if the origin server is using a different port such as 8080, then the port number must be specified as
1.1.1.1:8080. There are eight different ways to format addresses using the {IP|Domain}{Port}{Path} format.

Address Host Header
1.1.1.1 Virtual host name
1.1.1.1:8080 Virtual host name:8080
1.1.1.1/account/dir Virtual host name
1.1.1.1:8080/account/dir Virtual host name:8080
example.com example.com
example.com:8080 example.com:8080
example.com/account/dir example.com
example.com:8080/account/dir example.com:8080

As long as the host header is not specified in the Origin Request Default Header, the host header from the table above
will be transmitted.:

<Vhosts>
<Vhost Name="www.example.com">

<Origin>
<Address>origin.com:8888/account/dir</Address>

</Origin>
</Vhost>

</Vhosts>

For example, the above configuration will request the following to the origin server.

GET / HTTP/1.1
Host: origin.com:8888

2.1. Chapter 2. Getting Started 21

STON Documentation, Release 2.3.4

Note: If a path is added to the origin server’s address (e.g. example.com/account/dir), then the requested URL will be
placed after the path. If a client requests /img.jpg, the resulting address becomes example.com/account/dir/img.jpg.

Standby Origin Server Address

The standby origin server can be configured as follows.:

<Vhosts>
<Vhost Name="www.example.com">

<Origin>
<Address>1.1.1.1</Address>
<Address>1.1.1.2</Address>
<Address2>1.1.1.3</Address2>
<Address2>1.1.1.4</Address2>

</Origin>
</Vhost>

</Vhosts>

• <Address2>

If all <Address> es are working without problems, <Address2> will not be used. However, if any failures
are detected in the active servers, a standby server will be used as a replacement until the failed server recovers.
If a failure occurs in a standby server, the server will never be used until it can recover.

2.1.9 API Call

STON provides HTTP-based API. API calls are authorized by Administrator Settings. If a call is unauthorized, the
connection will be terminated immediately.

The STON version can be checked as follows.

http://127.0.0.1:10040/version

The same API can be called with Linux shell commands.

./stonapi version

Note: The ampersand (&) is recognized as a delimiter for QueryStrings in the HTTP API, but it means something
different in a Linux console. When running commands or using arguments that contain &s, you must wrap the string
in quotes (“/...&...”).

2.1.10 Hardware Status

The following will look up hardware information.

http://127.0.0.1:10040/monitoring/hwinfo

The results are returned in JSON format.

{
"version": "1.1.9",
"method": "hwinfo",

22 Chapter 2. 1. Basics

STON Documentation, Release 2.3.4

"status": "OK",
"result":
{

"OS" : "Linux version 3.3.0 ...(omitted)...",
"STON" : "1.1.9",
"CPU" :
{

"ProcCount": "4",
"Model": "Intel(R) Xeon(R) CPU E5606 @ 2.13GHz",
"MHz": "1200.000",
"Cache": "8192 KB"

},
"Memory" : "8 GB",
"NIC" :
[

{
"Dev" : "eth1",
"Model" : "Intel Corporation 82574L Gigabit Network Connection",
"IP" : "192.168.0.13",
"MAC" : "00:25:90:36:f4:cb"

}
],
"Disk" :
[

{
"Dev" : "sda",
"Model" : "HP DG0146FAMWL (scsi)",
"Total" : "238787584",
"Usage" : "40181760"

},
{

"Dev" : "sdb",
"Model" : "HITACHI HUC103014CSS600 (scsi)",
"Total" : "144706478080",
"Usage" : "2101075968"

},
{

"Dev" : "sdc",
"Model" : "HITACHI HUC103014CSS600 (scsi)",
"Total" : "144706478080",
"Usage" : "2012160000"

}
]

}
}

2.1.11 Restart/Quit

The following commands restart or quit STON. To avoid unintended results, STON asks for confirmation for
restart/quit commands on the web page.

http://127.0.0.1:10040/command/restart
http://127.0.0.1:10040/command/restart?key=JUSTDOIT // Immediately executes command
http://127.0.0.1:10040/command/terminate
http://127.0.0.1:10040/command/terminate?key=JUSTDOIT // Immediately executes command

2.1. Chapter 2. Getting Started 23

STON Documentation, Release 2.3.4

2.1.12 Caching Reset

The following commands stop the service and discard all cached content. The commands will format all disks and
resume the service when completed.

http://127.0.0.1:10040/command/cacheclear
http://127.0.0.1:10040/command/cacheclear?key=JUSTDOIT // Immediately executes command

In the console window, the following commands will reset all or one of the virtual hosts.

./stonapi reset

./stonapi reset/ston.winesoft.co.kr

2.2 Chapter 3. Configuration

This chapter will explain the configuration structure of the STON Edge Server and how to apply the settings. Under-
standing the configuration structure is important in not only setting up the server quickly but also troubleshooting any
problems that occur.

Configuration consists of global (server.xml) and virtual host (vhosts.xml) configuration.

Fig. 2.3: Two XML files are all that is needed.

The two XML files are what comprise most of the service. Various TXT files are used for exception handling for each
virtual host and for listing certain functions. The following illustrates the complete form of the XML.

<Server>
<VHostDefault>

<Options>
<CaseSensitive>ON</CaseSensitive>

</Options>
</VHostDefault>

</Server>

24 Chapter 2. 1. Basics

STON Documentation, Release 2.3.4

However, explaining functions using this format is rather inconvenient, so it will instead be explained in this simplified
format.

server.xml - <Server><VHostDefault><Options>

<CaseSensitive>ON</CaseSensitive>

Note: The license file (license.xml) is not a configuration file.

2.2.1 Reload Settings

After changing the settings, the administrator must make a call to the API. Aside from system or performance settings,
most settings will immediately be applied without interrupting the service.

http://127.0.0.1:10040/conf/reload

Any changes from settings will be recorded in the Info Log.

2.2.2 Global Settings (server.xml)

The server.xml file is the global settings file and can be found in the same path as the execution file. It is an XML
format text file.

server.xml

<Server>
<Host> ... </Host>
<Cache> ... </Cache>
<VHostDefault> ... </VHostDefault>

</Server>

We will first cover the configuration structure and basic functions. While Chapter 14. Access Control and Chapter 11.
SNMP are also part of global settings, they will be explained in their respective chapters.

Administrator Settings

The following configures the administrator settings of the system.

server.xml - <Server>

<Host>
<Name>stream_07</Name>
<Admin>admin@example.com</Admin>
<Manager Port="10040" HttpMethod="ON" Role="Admin" UploadMultipartName="confile">

<Allow>192.168.1.1</Allow>
<Allow Role="Admin">192.168.2.1-255</Allow>
<Allow Role="User">192.168.3.0/24</Allow>
<Allow Role="Looker">192.168.4.0/255.255.255.0</Allow>

</Manager>
</Host>

• <Name> This configures the server name. If left blank, it will use the system name.

2.2. Chapter 3. Configuration 25

STON Documentation, Release 2.3.4

• <Admin> This configures the administrator’s information (name or email address). This item is only used for
the SNMP inquiry.

• <Manager> This configures the manager port and the ACL (Access Control List) for administrative purposes.
The ACL supports the four forms of IP, IP range, BitMask, and Subnet. If the IP address of the connected
session is not authorized by the <Allow> list, the server will block the connection. An IP that calls an API
must be configured in the <Allow> list.

After the access conditions, the access authorization (Role) can also be configured. Any requests without
authorization will be responded to with a 401 Unauthorized message. If Role properties are not declared
in <Allow> conditions, the Role property from the <Manager> tag will be applied.

– Admin All API calls are allowed.

– User Only Chapter 10. Monitoring & Statistics and Appendix A: Graph API calls are allowed.

– Looker Only Appendix A: Graph API calls are allowed.

In addition, there are other minor administrative properties.

– HttpMethod

* ON (default) HTTP Method will check ACL when called.

* OFF HTTP Method will not check ACL when called.

– UploadMultipartName Configures variable names in Configuration Upload.

Storage Settings

This section will explain the setup of storage that will store cached content.

server.xml - <Server>

<Cache>
<Storage DiskFailSec="60" DiskFailCount="10" OnCrash="hang">

<Disk>/user/cache1</Disk>
<Disk>/user/cache2</Disk>
<Disk Quota="100">/user/cache3</Disk>

</Storage>
</Cache>

• <Storage> This configures the disk that will store the content. There is no limit to the number of subordinate
<Disk> s.

Because the disk is where problems are most likely to happen, it is recommended to set specific fail
conditions. If a disk operation fails more than DiskFailCount (default: 10) times within
DiskFailSec (default: 60) seconds, then that disk will be excluded from the service. The
status of that disk will be shown as “invalid”.

If all disks are excluded, then the server will operate according to the OnCrash property.

– hang (default) Will put all the excluded disks back to work. This behavior is more likely to
protect the origin server rather than return to normal service.

– bypass All requests will be passed to the origin server. If the disk recovers, STON will start taking
care of the service as soon as it can.

– selfkill STON will be shut down.

The maximum caching capacity for each disk can be configured with the Quota (unit: GB) property. Even
when not specifically configured, the LRU (Least Recently Used) algorithm is used to automatically delete old content

26 Chapter 2. 1. Basics

STON Documentation, Release 2.3.4

to ensure that there is always space on the disk. Therefore, there is no large effect on performance regardless of the
file system the administrator chooses to use.

Memory Restriction

This configures the maximum available memory and the ratio of loaded content.

server.xml - <Server>

<Cache>
<SystemMemoryRatio>100</SystemMemoryRatio>
<ContentMemoryRatio>50</ContentMemoryRatio>

</Cache>

• <SystemMemoryRatio> (default: 100%) This ratio will configure the maximum amount of system
memory that STON will use. For example, if this property is set to 50% with 16 GB of memory, the system
will operate as if there were only 8 GB of memory. This option is especially useful when used together
with other processes such as Chapter 17 File System.

• <ContentMemoryRatio> (default: 50%) STON improves service quality by caching as much of
the Body data as possible from disk to memory. This ratio can be adjusted to optimize the quality of the
service according to its type.

Fig. 2.4: The ratio of memory is configured using the ContentMemoryRatio property.

Using the gaming example, if there are not many files but there is a lot of content, it places a burden on
File I/O. In this case, raising the <ContentMemoryRatio> value allows more data to reside in memory,
thus improving service quality.

Fig. 2.5: If ContentMemoryRatio is raised, I/O load decreases.

Other Caching Settings

This section covers other caching service functions.

server.xml - <Server>

<Cache>
<Cleanup>

<Time>02:00</Time>
<Age>0</Age>

2.2. Chapter 3. Configuration 27

STON Documentation, Release 2.3.4

</Cleanup>
<Listen>0.0.0.0</Listen>
<ConfigHistory>30</ConfigHistory>

</Cache>

• <Cleanup> The server carries out system optimization once a day. The optimization procedure mainly con-
sists of disk cleanup, which creates I/O load. In order to prevent a drop in service quality, optimization is
performed gradually.

– <Time> (default: 2 AM) Configures when cleanup is performed. A 24-hour clock is used,
so for example, 11:10 PM should be written as 23:10.

– <Age> (default: 0, unit: days) If set to a value greater than zero, content that has
not been accessed in the specified amount of time will be deleted. This is for the sake of securing
available space on the disk in advance to lower the possibility that there will not be enough space
during service time.

• <Listen> Assigns a list of IP addresses for all virtual hosts to listen to. The default Listen setting of *:80 for
all virtual hosts stands for 0.0.0.0:80. The following is an example of enabling specific IP addresses.

server.xml - <Server>

<Cache>
<Listen>10.10.10.10</Listen>
<Listen>10.10.10.11</Listen>
<Listen>127.0.0.2</Listen>

</Cache>

• <ConfigHistory> (default: 30 days) STON backs up the configuration settings when changes
are made. The configuration files will be compressed into one file and saved at ./conf/. The file will be
named in a “DATE_TIME_HASH.tgz” format, as follows.

20130910_174843_D62CA26F16FE7C66F81D215D8C52266AB70AA5C8.tgz

If two files have identical hash values, it means they have identical settings. Even if Restore Configuration
is called, it will be saved as a new configuration. A backup file will only be stored for the set amount of
time after Cleanup is performed. There is no limit to the amount of time that backups can be stored.

Forced Cleanup

Cleanup is executed with an API call. An <Age> parameter can be attached.

http://127.0.0.1:10040/command/cleanup
http://127.0.0.1:10040/command/cleanup?age=10

If <Age> is zero, cleanup will be performed only when there is insufficient disk space. If <Age> is greater than 0,
then content that has not been accessed for that amount of days will be deleted.

Virtual Host Default Settings

Administrators can configure each virtual host with different settings. However, it can be exhausting to set identical
settings for new virtual hosts. All virtual hosts will inherit <VHostDefault> .

In the figure above, www.example.com does not override any value and thus has the values A=1 and B=2. Meanwhile,
img.example.com has overridden the value of B and thus has the values A=1 and B=3. Administrators will normally
keep services with similar attributes on the same server, making inheritance extremely effective.

28 Chapter 2. 1. Basics

STON Documentation, Release 2.3.4

Fig. 2.6: A simple inheritance.

<VHostDefault> consists of five function-based subordinate tags.

server.xml - <Server>

<VHostDefault>
<Options> ... </Options>
<OriginOptions> ... </OriginOptions>
<Media> ... </Media>
<Stats> ... </Stats>
<Log> ... </Log>

</VHostDefault>

For example, the function for Chapter 16. Media is configured in the <Media> tag.

2.2.3 Virtual Host Settings (vhosts.xml)

The vhosts.xml file is recognized as the virtual host settings file and can be found in the same path as the execution
file. There is no limit to the amount of virtual hosts that are allowed.

vhosts.xml

<Vhosts>
<Vhost Status="Active" Name="www.example.com"> ... </Vhost>
<Vhost Status="Active" Name="img.example.com"> ... </Vhost>
<Vhost Status="Active" Name="vod.example.com"> ... </Vhost>

</Vhosts>

Create/Remove Virtual Host

Virtual hosts are set up with the <Vhost> tag within the <Vhosts> tag.

vhosts.xml - <Vhosts>

<Vhost Status="Active" Name="www.example.com">
<Origin>

<Address>10.10.10.10</Address>
</Origin>

</Vhost>

• <Vhost> configures the virtual host.

– Status (default: Active) An inactive status means the virtual host does not run. Cached con-
tent is still stored.

2.2. Chapter 3. Configuration 29

STON Documentation, Release 2.3.4

– Name The name of the virtual host. Identical names cannot be used.

If a <Vhost> tag is erased then the corresponding virtual host is deleted, along with all of its stored content. Even if
the virtual host is readded, the deleted content cannot be restored.

Discovering a Virtual Host

The following is the simplest form of an HTTP request.

GET / HTTP/1.1
Host: www.example.com

Most web servers will discover virtual hosts with a Host header. If a virtual host wants to operate under different
names, the <Alias> tag can be used.

vhosts.xml - <Vhosts>

<Vhost Name="example.com">
<Alias>another.com</Alias>
<Alias>*.sub.example.com</Alias>

</Vhost>

• <Alias> This option configures the alias of a virtual host. There is no limit to the amount of aliases that can
be assigned. Aliases can be assigned using both specific domain names (another.com) or patterned domain
names (*.sub.example.com). For patterned domain names, only a simple format with an asterisk as a prefix
is supported.

When discovering a virtual host, follow the procedures below.

1. Does the Name of the <Vhost> match?

2. Does the specific <Alias> match?

3. Does the patterned <Alias> match?

Facade Virtual Host

Because <Alias> is just a nickname for the virtual host, it will not provide separate statistics and logs. If you want
to use the same virtual host but obtain different Client Statistics and Access Log depending on the domain, a Facade
Virtual Host can be configured.

vhosts.xml - <Vhosts>

<Vhost Name="example.com">
...

</Vhost>

<Vhost Name="another.com" Status="facade:example.com">
...

</Vhost>

This can be done by inputting facade: + virtual host into the Status property. In the previous example, the
Client Statistics and Access Log will be recorded for clients that request another.com, not example.com.

Sub-Path

A single virtual host can have different sub-paths. These sub-paths can be configured to be handled by separate virtual
hosts.

30 Chapter 2. 1. Basics

STON Documentation, Release 2.3.4

vhosts.xml - <Vhosts>

<Vhost Name="sports.com">
<Sub Status="Active">
<Path Vhost="baseball.com">/baseball/<Path>
<Path Vhost="football.com">/football/<Path>
<Path Vhost="photo.com">/*.jpg<Path>

</Sub>
</Vhost>

<Vhost Name="baseball.com" />
<Vhost Name="football.com" />
<Vhost Name="photo.com" />

• If the page path or pattern matches the <Sub> input, then it will be sent to the corresponding virtual host. If
they do not match, then the page will be handled by the current virtual host.

– Status (default: Active) Sub-paths are ignored when inactive.

– <Path> If the URI requested by the client and the path match, the request will be sent to Vhost. Only
paths or patterns are allowed.

<Path Vhost="baseball.com">baseball<Path>
<Path Vhost="photo.com">*.jpg<Path>

If input as above, they will be parsed as /baseball/ and /*.jpg, respectively.

For example, if the client requests the following, the request will be sent to the football.com virtual host.

GET /football/rank.html HTTP/1.1
Host: sports.com

Default Virtual Host

A default virtual host can be assigned for cases when a virtual host cannot be found for a request. If a default virtual
host is not assigned, the request will be abandoned.

vhosts.xml

<Vhosts>
<Vhost Status="Active" Name="www.example.com"> ... </Vhost>
<Vhost Status="Active" Name="img.example.com"> ... </Vhost>
<Default>www.example.com</Default>

</Vhosts>

• <Default> Configures the name of the default virtual host. It must use a string identical to the Name property
from a <Vhost> tag.

Service Address

This section explains how to configure the service address.

vhosts.xml - <Vhosts>

<Vhost Name="www.example.com">
<Listen>*:80</Listen>

</Vhost>

2.2. Chapter 3. Configuration 31

STON Documentation, Release 2.3.4

• <Listen> (default: *:80) The service address is configured in an {IP}:{Port} format. If written
as *:80, for example, then all requests that arrive at port 80 from the NIC will be handled. If a service is
supposed to process only requests from a specific address (1.1.1.1) and port (90), then the following setting
will do.

vhosts.xml - <Vhosts>

<Vhost Name="www.example.com">
<Listen>1.1.1.1:90</Listen>

</Vhost>

Note: If you do not wish to open the service port, you can configure with the OFF setting.

vhosts.xml - <Vhosts>

<Vhost Name="www.example.com">
<Listen>OFF</Listen>

</Vhost>

Virtual Host - Exceptions (.txt)

There are some cases during the service when the following exceptions should be allowed.

• POST requests are not allowed in general, but a POST request from a specific URL should be allowed.

• STON responds to all GET requests in general, but requests from a specific IP band may want to be be be
bypassed to the origin server.

• A limit should be placed on transmission speeds for specific countries.

These exceptions are not configured in the XML file; rather, settings are saved as TXT files under the ./svc/virtualhost/
directory. Each virtual host has its own independent exception settings. Exceptions will be explained in more detail in
the relevant section.

2.2.4 Checking the Virtual Host List

This command queries the virtual host list.

http://127.0.0.1:10040/monitoring/vhostslist

The result is returned in JSON format.

{
"version": "1.1.9",
"method": "vhostslist",
"status": "OK",
"result": ["www.example.com","www.foobar.com", "site1.com"]

}

2.2.5 Confirm Configuration

The next step is to confirm the configuration files. Each TXT file must be clearly assigned to a specific virtual host.

32 Chapter 2. 1. Basics

STON Documentation, Release 2.3.4

http://127.0.0.1:10040/conf/server.xml
http://127.0.0.1:10040/conf/vhosts.xml
http://127.0.0.1:10040/conf/querystring.txt?vhost=www.example.com
http://127.0.0.1:10040/conf/bypass.txt?vhost=www.example.com
http://127.0.0.1:10040/conf/ttl.txt?vhost=www.example.com
http://127.0.0.1:10040/conf/expires.txt?vhost=www.example.com
http://127.0.0.1:10040/conf/acl.txt?vhost=www.example.com
http://127.0.0.1:10040/conf/headers.txt?vhost=www.example.com
http://127.0.0.1:10040/conf/throttling.txt?vhost=www.example.com
http://127.0.0.1:10040/conf/postbody.txt?vhost=www.example.com

2.2.6 Configuration History

The following command allows you to browse backup configuration histories.

http://127.0.0.1:10040/conf/latest
http://127.0.0.1:10040/conf/history

The result is returned in JSON format. Checking only the latest configuration is fastest using /conf/latest.

{
"history" :
[

{
"id" : "5",
"conf-date" : "2013-11-06",
"conf-time" : "15:26:37",
"type" : "loaded",
"size" : "16368",
"hash" : "D62CA26F16FE7C66F81D215D8C52266AB70AA5C8",
"ver": "1.2.8"

},
{

"id" : "6",
"conf-date" : "2013-11-07",
"conf-time" : "07:02:21",
"type" : "modified",
"size" : "27544",
"hash" : "F81D215D8C52266AB70AA5C8D62CA26F16FE7C66",
"ver": "1.2.8"

}
]

}

• id The unique identification number (+1 per reload).

• conf-date Configuration modified date.

• conf-time Configuration modified time.

• type When settings take effect.

– loaded When STON is loaded.

– modified When a configuration is modified (by administrator or WM).

– uploaded When a configuration file is uploaded via API.

– restored When a configuration file is restored via API.

2.2. Chapter 3. Configuration 33

STON Documentation, Release 2.3.4

• size The size of a configuration file.

• hash The hash value of the configuration file using the SHA-1 algorithm.

2.2.7 Restore Configuration

This command restores the configuration to when a certain hash value or id was created. If both the hash value and
id are stated in the command, the hash value takes precedence. If rollback occurs successfully, the result will be “200
OK”, while a failure will result in “500 Internal Error”.

http://127.0.0.1:10040/conf/restore?hash=...
http://127.0.0.1:10040/conf/restore?id=...

2.2.8 Configuration Download

This command will download a configuration of a time when a hash value or id was created. If both the hash value and
id are stated in the command, the hash value takes precedence. The Content-Type will be displayed as “application/x-
compressed”. If a hash value is not stated and the id cannot be found, the command will return “404 NOT FOUND”.

http://127.0.0.1:10040/conf/download?hash=...
http://127.0.0.1:10040/conf/download?id=...

2.2.9 Configuration Upload

This command will upload the configuration file using the HTTP Post method (Multipart supported).

http://127.0.0.1:10040/conf/upload

The address, Content-Length, and Content-Type (=”multipart/form-data”) must be clearly stated in the command as
shown below.

POST /conf/upload
Content-Length: 16455
Content-Type: multipart/form-data; boundary=......

When the upload is completed, the configuration file will be extracted and applied to the system immediately.

In the multipart method, “confile” is used as a default name. This name can be changed in the
UploadMultipartName property of the <Manager> tag.

<form enctype="multipart/form-data" action="http://127.0.0.1:10040/conf/upload" method="POST">
<input name="confile" type="file" />
<input type="submit" value="Upload" />

</form>

34 Chapter 2. 1. Basics

CHAPTER 3

2. HTTP Caching

3.1 Chapter 4. Caching Policy

This chapter will cover the Time To Live (TTL), the Caching Key, and the expiration policy, which are fundamental
to the service. Stored content is only available for the amount of time given by the TTL. Standard HTTP protocol
specifies that Cache-Control can be used to set the TTL. Service quality can be improved through the use of various
TTL policies and Chapter 5. Content Purge.

HTTP has various standards to classify content. As such, various Caching Keys exist as well. Not only will there
be less load on the origin server with less content changes, but the service will be easier to scale up as well. In this
chapter, we will discuss various ways to set up optimized expiration policies for a service.

If you want to apply the upcoming configurations to all virtual hosts as a default configuration, you can do so under
the <VHostDefault> To do the opposite and apply them to specific virtual hosts, use the <Vhost> tag.

The Caching-Key is a distinct value that classifies content. It is similar to how a file system classifies files using a
distinct path (e.g. ./user/conf.txt). It is easy to confuse Caching Keys with URLs. However, depending on the various
functions of HTTP, identical URLs could return different content.

3.1.1 Time To Live (TTL)

The TTL is the amount of time stored content stays available. A longer TTL setting will reduce load on the origin
server, but modifications will take longer to be applied because they must wait until the TTL expires. Conversely, a
shorter TTL will mean higher load on the origin server due to more frequent requests for modification checks. The
service can run smoothly when an appropriate TTL setting is found and the origin server load is decreased. When
a TTL is set, it will not change until it expires. A new TTL is only applied to a file when the old TTL expires.
Administrators can use API functions such as Purge, Expire, ExpireAfter, and HardPurge to change the TTL.

Default TTL

By default, the TTL is set based on the response of the origin server. The stored content will be provided until the TTL
expires. When the TTL expires, a check request for modified content (If-Modified-Since or If-None-Match) will be
sent to the origin server. If the origin server returns a 304 Not Modified response, the TTL is extended.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<TTL>
<Res2xx Ratio="20" Max="86400">1800</Res2xx>
<NoCache Ratio="0" Max="5" MaxAge="0">5</NoCache>

35

STON Documentation, Release 2.3.4

<Res3xx>300</Res3xx>
<Res4xx>30</Res4xx>
<Res5xx>30</Res5xx>
<ConnectTimeout>3</ConnectTimeout>
<ReceiveTimeout>3</ReceiveTimeout>
<OriginBusy>3</OriginBusy>

</TTL>

Except for Ratio (0~100), all units are in seconds.

• <Res2xx> (default: 1800 sec, Ratio: 20, Max: 86400) Sets the TTL when the origin
server responds with 200 OK. When content is first stored, it is set to expire after <Res2xx> seconds. After the
TTL expires, if the content on the origin server has not changed (304 Not Modified), then the TTL is extended
according to the Ratio value (0~100). The TTL can be increased up to Max seconds.

• <NoCache> (default: 5 sec, Ratio: 0, Max: 5, MaxAge: 0) This function works
identically to <Res2xx>, but is only used when the origin server responds with “no-cache”.

cache-control: no-cache or private or must-revalidate

If MaxAge is greater than 0, max-age can be applied.

Fig. 3.1: Files are cached for Max-Age seconds.

• <Res3xx> (default: 300 sec) Sets the TTL when the origin server responds with “3xx”. This func-
tion is frequently used for redirects.

• <Res4xx> (default: 30 sec) Sets the TTL when the origin server responds with “4xx”. Responses
are often 404 Not Found.

• <Res5xx> (default: 30 sec) Sets the TTL when the origin server responds with “5xx”. This usually
occurs due to an internal error in the origin server.

• <ConnectTimeout> (default: 3 sec) Sets the TTL when the origin server cannot be reached. If
the content is already saved, then the TTL is extended for <ConnectTimeout> seconds. If the content is not
saved, then an error status will be returned for <ConnectTimeout> seconds. The intention is to lessen the
burden on the origin server for a TTL amount of time, not to provide an error status to the service.

• <ReceiveTimeout> (default: 3 sec) Sets the TTL when the connection is successful but data
could not be acquired. The intention is the same as <ConnectTimeout>.

• <OriginBusy> (default: 3 sec) If the Overload Detection condition is satisfied, then the TTL of
expired content will be extended for the set amount of time without making requests to the origin server. This is
so that additional load is not placed on the origin server.

Note: If the TTL is set to zero, content will expire as soon as it is provided. If you want to have the origin server
respond to all requests, a bypass is recommended.

36 Chapter 3. 2. HTTP Caching

STON Documentation, Release 2.3.4

Custom TTL

Separate TTLs can be set for each URL. Fixed TTLs can be set for content that match specific URLs or patterned
URLs. This can be configured in /svc/{virtual host name}/ttl.txt.

/svc/www.example.com/ttl.txt
Commas (,) are used as delimiters and the unit of time is seconds.

*.jsp, 10
/,5
/index.html, 5
/script/*.js, 300
/image/ad.jpg, 1800

Even if you add *.html to set separate TTLs for all pages (e.g. html, php, jsp), this will not set the TTL for the first
page (/). The HTTP protocol cannot identify what page is set as the first page (e.g. index.php, default.jsp) for the
origin server. Therefore, in order to set a TTL for every page, a “/” should always be added.

TTL Priority

The order in which TTL is applied can be configured.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<TTL Priority="cc_nocache, custom, cc_maxage, rescode">
... (omitted) ...

</TTL>

This can be configured using the Priority (default: cc_nocache, custom, cc_maxage,
rescode) item in the <TTL> tag.

• cc_nocache When the origin server responds with “Cache-Control: no-cache”.

• custom Custom TTL.

• cc_maxage When the origin server displays maxage in Cache-Control.

• rescode The default TTL for response codes from the origin server.

Abnormal TTL Extension

It’s obvious that an error has occurred if there is no response from the origin server, but there are cases when an error
will have occurred while the server continues to respond normally at times. For example, it may lose connection with
the storage that has the content, or it may decide that regular service is unavailable. The response will usually be a 4xx
response (usually 404 Not Found) for the former or a 5xx response (usually 500 Internal Error) for the latter.

However, if the content is already stored, then it is more effective to extend the TTL to prevent total service failure
rather than rely the origin server’s responses.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<TTLExtensionBy4xx>OFF</TTLExtensionBy4xx>
<TTLExtensionBy5xx>ON</TTLExtensionBy5xx>

• <TTLExtensionBy4xx>

– OFF (default) Updates content with a 4xx response.

3.1. Chapter 4. Caching Policy 37

STON Documentation, Release 2.3.4

– ON Acts as if the response was a 304 Not Modified.

You should also check to see if the 4xx response was intentional.

• <TTLExtensionBy5xx>

– ON (default) Acts as if the response was a 304 Not Modified.

– OFF Updates content with a 5xx response.

A normal server will not return a 5xx response, as it is used to reduce the load on the origin server by invalidating
content from a temporary server error.

3.1.2 Update Policy

Content will be updated after the TTL expires and the update check is confirmed at the origin server.

Fig. 3.2: A response after checking for modifications.

1. The TTL is valid and an immediate response is given.

2. The TTL has expired, so a modification check (If-Modified-Since) is requested to the origin server. There is no
response to the client until this check is performed.

3. When a response is returned by the origin server, either the TTL is extended or the content is swapped. With
confirmation from the origin server, a response will be made to the client.

4. An immediate response is given for the checked content until its TTL expires.

For services like HD videos or games where transfer speed is more important than the response rate, this process is
not very meaningful. With bulk data, it doesn’t matter that the origin server can respond within ten seconds because
the transfer time takes much longer. Rather, since it is content that isn’t accessed frequently, it will need more renewal
checks.

Meanwhile, online shopping malls are a different story. Web pages loading quickly is more important than anything
else. The client’s screen must load in 1~2 seconds. In other words, the transfer time is more important than the
response rate.

At this point, if the TTL expires and a update check must be performed, it could cause a huge delay. Considering the
fact that most shopping malls must handle millions of items of content simultaneously, you must assume that update
checks are constantly occurring on the origin server.

What we want is to stably transfer cached content regardless of any origin server error or delay.

These different requirements have led to the development of the background content renewal function.

38 Chapter 3. 2. HTTP Caching

STON Documentation, Release 2.3.4

Fig. 3.3: We’re not afraid of errors!

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<RefreshExpired>ON</RefreshExpired>

• <RefreshExpired>

– ON (default) Responds after the modification check.

– OFF Responds without waiting for the modification check response. Content will be swapped when new
content is downloaded.

OFF The OFF setting is generally used because content is not changed very often.

Fig. 3.4: There is no need to wait if content is not sensitive to changes.

As seen in the above image, because updating from the origin server takes place in the background, the cached content
can be immediately sent to the client without waiting. If the origin server responds with 304 Not Modified, the TTL
is extended. When the file is updated and the origin server responds with 200 OK, the file is smoothly replaced after it
is fully downloaded. After the file is updated, users will receive the new file (colored yellow). Regardless of variables
such as network failures or server failures, content updating will take place in the background and result in no service
delays.

TTL Expiration when Clients Request no-cache

If there is at least one no-cache setting in the client’s HTTP request, then content can be made to expire right away.

GET /logo.jpg HTTP/1.1
...
cache-control: no-cache or cache-control:max-age=0

3.1. Chapter 4. Caching Policy 39

STON Documentation, Release 2.3.4

pragma: no-cache
...

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<NoCacheRequestExpire>OFF</NoCacheRequestExpire>

• <NoCacheRequestExpire>

– OFF (default) The request is ignored.

– ON The TTL is made to expire right away.

The expired content follows the Update Policy.

3.1.3 Accept-Encoding Header

Even though HTTP requests may be for the same URL, depending on the existence of an Accept-Encoding header,
different content may be cached. When STON sends a request to the origin server, it has no idea of knowing if the file
is compressed or not, and it can’t check for compression every time, either.

Fig. 3.5: It’s impossible to know what kind of response the origin server will give.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<AcceptEncoding>ON</AcceptEncoding>

• <AcceptEncoding>

– ON (default) Will recognize the Accept-Encoding header sent by the HTTP client.

– OFF Will ignore the Accept-Encoding header sent by the HTTP client.

If the origin server does not support compression, or if the bulk file does not require compression, then it is recom-
mended to set <AcceptEncoding> to OFF.

3.1.4 Case Sensitivity

STON is unable to tell on its own if the origin server can differentiate between upper and lower case letters.

40 Chapter 3. 2. HTTP Caching

STON Documentation, Release 2.3.4

Fig. 3.6: Either the content is the same or a 404 will occur.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<CaseSensitive>ON</CaseSensitive>

• <CaseSensitive>

– ON (default) Differentiates between upper and lower case letters.

– OFF Does not differentiate. All letters are processed as lower case.

3.1.5 QueryString Differentiation

It is not necessary to identify a query string unless the content is dynamically created by the query string If a URL
contains a meaningless random value or a constantly changing time value, then it can create a lot of load on the origin
server.

Fig. 3.7: If the content is not dynamic, it is more likely to be identical.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<ApplyQueryString Collective="OFF">ON</ApplyQueryString>

• <ApplyQueryString>

– ON (default) Identifies query strings. If one of the exception cases is met, the query string is ignored.

3.1. Chapter 4. Caching Policy 41

STON Documentation, Release 2.3.4

– OFF Ignores query strings. If one of the exception cases is met, the query string is identified.

Query string exception cases are saved at /svc/{virtual host name}/querystring.txt.

./svc/www.example.com/querystring.txt

/private/personal.jsp?login=ok*
/image/ad.jpg

Note that the exception case changes in meaning depending on the setting of <ApplyQueryString>. Specific or
patterned URLs (only * patterns are allowed) can be used in the configuration.

The Collective property comes into play when the Chapter 5. Content Purge API is called.

• Collective

– OFF (default) Only the URL parameter will be targeted.

– ON All content with URLs containing query strings will be targeted, not just the URL parameter.

If the Collective property is set to ON and there are many files, CPU load will become higher. It may take longer
to search for the correct files, and unforeseen problems may occur. It is recommended to call the Chapter 5. Content
Purge API using clearly defined URLs with query strings as much as possible.

3.1.6 Vary Header

Content can be classified through the use of Vary headers. Generally, Vary headers are the primary cause of sudden
drops in performance on the cache server.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<VaryHeader />

• <VaryHeader>

Configures the list of Vary headers to be supported among the ones returned by the origin server. Commas (,)
are used as delimiters.

For example, if the origin server returns the following as the Vary header, it will be ignored because it is not set in
<VaryHeader>.

Vary: Accept-Encoding, Accept, User-Agent

To exclude User-Agent and only recognize Accept-Encoding and Accept headers, do the following.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<VaryHeader>Accept-Encoding, Accept</VaryHeader>

To recognize all Vary headers sent by the origin server, do the following.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<VaryHeader>*</VaryHeader>

42 Chapter 3. 2. HTTP Caching

STON Documentation, Release 2.3.4

3.1.7 POST Request Caching

POST requests can be configured so that they are cached. POST requests have the same characteristics as URLs, but
may differ in Body data.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<PostRequest MaxContentLength="102400" BodySensitive="ON">OFF</PostRequest>

• <PostRequest>

– OFF (default) If a POST request arrives, the session ends.

– ON POST requests are cached.

Most POST request processing cases use the Body data as Caching Keys. Detailed configuration can be made using
the BodySensitive property and exception cases.

• BodySensitive

– ON (default) Body data is recognized as a Caching Key. Maximum length is set by the
MaxContentLength (default: 102400 bytes) property. If one of the exception cases is
met, the Body data is ignored.

– OFF Body data is ignored. If one of the exception cases is met, the Body data is recognized.

POST request exceptions can be set in the file /svc/{virtual host name}/postbody.txt.

/svc/www.example.com/postbody.txt

/bigsale/*.php?nocache=*
/goods/search.php

Note that the exception case changes in meaning depending on the setting of BodySensitive. Specific or patterned
URLs (only * patterns are allowed) can be used in the configuration.

It is possible to mix up this setting with GET/POST Bypass. POST requests may not be cached at all depend-
ing on the <BypassPostRequest> (default: ON) setting. As such, to cache POST requests, either
<BypassPostRequest> must be set to OFF or an exception case must be set. In order of priority:

• Bypasses the origin server if bypass conditions (GET/POST Bypass) are met.

• Terminates the connection if there is no Content-Length header.

• Caches files if PostRequest is set to ON and Content-Length does not exceed MaxContentLength.

• Terminates the request if none of the above scenarios are encountered.

Note: If MaxContentLength is set to too high of a value, a lot of memory will be needed to manage the Caching
Key. It is best to set it as small as possible.

3.2 Chapter 5. Content Purge

This chapter will explain how to purge cached content. Because there are many different conditions and environments,
many different parts of the API are necessary.

3.2. Chapter 5. Content Purge 43

STON Documentation, Release 2.3.4

Content cached from the origin server have update cycles based on the Time To Live (TTL). However, if the administra-
tor wishes to immediately have the changes be effective, there is no need to wait until the Time To Live (TTL) expires.
By using Purge/Expire/HardPurge, content can immediately be purged.

The purge API can be called by the browser, but in most cases it is automated. For example, when an FTP file upload
is completed, Purge is called immediately. Administrators can configure behaviors in several ways as shown below.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<Purge2Expire>NONE</Purge2Expire>
<RootPurgeExpire>ON</RootPurgeExpire>
<ResCodeNoCtrlTarget>200</ResCodeNoCtrlTarget>

• <Purge2Expire> (default: NONE)

Purge requests will be processed as Expire depending on the setting. For example, if a pattern (*.jpg) used
alongside Purge , the deletion of an unexpectedly large amount of content can cause immense load on the origin
server. In this case, if all the requests are processed as Expire requests, that server load can be prevented.

– NONE Does not process requests as Expire.

– ROOT Processes requests for only the root directory (/) as Expire .

– PATTERN Processes requests with patterns as Expire.

– ALL Processes all requests as Expire.

• <RootPurgeExpire> (default: ON)

An unintentional Purge/Expire request on the root directory can also cause load on the origin server. This setting
can intercept Purge/Expire requests and prevent them. This setting takes precedence over <Purge2Expire>.

– ON Purge/Expire is allowed.

– PURGE Only Purge is allowed.

– EXPIRE Only Expire is allowed.

– OFF All Purge/Expire requests are prevented.

• <ResCodeNoCtrlTarget> (default: 200)

Sets the HTTP response code for when Purge, Expire, HardPurge, and ExpireAfter have no target object.

Targets can be either URLs or patterns.

example.com/logo.jpg // URL
example.com/img/ // URL
example.com/img/*.jpg // pattern
example.com/img/* // pattern

While patterned URLs can be called, the amount of actual content being targeted cannot be known until the command
is executed. Therefore, the administrator may underestimate the amount of content and try to purge too many targets,
consuming more CPU than expected and causing strain on the system.

As such, it is strongly recommended to use only specific URLs. Patterned representations should only be used for the
sake of administrative purposes when the service is not running.

Note: For security reasons, accessing specific directories (e.g. example.com/files/) is forbidden and returns 403
FORBIDDEN. However, the root directory is exempt: that is, if a user accesses example.com, their browser will
request the root directory (/).

44 Chapter 3. 2. HTTP Caching

STON Documentation, Release 2.3.4

GET / HTTP/1.1
Host: example.com

The web server will respond with the default page set by the administrator (e.g. index.html). Most web services will
return a page, not a directory, for the root directory (/).

However, when the cache server accesses the root directory, it will think it has received a 200 OK page, and won’t
even be able to know what page was returned. In other words, to the cache server, a directory is just another URL.

example.com/img/ // The resulting page from accessing /img/ on the example.com virtual host
example.com/ // The default page (/) for the example.com virtual host
example.com/img/* // The /img/ directory and all pages below it on the example.com virtual host
example.com/* // All content on the example.com virtual host

3.2.1 Purge

Purges the target in order to have it be redownloaded from the origin server. Content will be cached again when it is
first accessed after a purge. If the content is not available on the origin server due to an error, the purged content will
be restored to keep the service running. This restored content will be updated after the time set by ConnectTimeout.

http://127.0.0.1:10040/command/purge?url=...

Target content can be designated with URLs and patterns, and can also be designated with vertical bars (“|”) to indicate
multiple domains and multiple targets. If the domain name is omitted, the most recently used domain name is used.

http://127.0.0.1:10040/command/purge?url=http://www.site1.com/image.jpg
http://127.0.0.1:10040/command/purge?url=www.site1.com/image.jpg
http://127.0.0.1:10040/command/purge?url=www.site1.com/image/bmp/
http://127.0.0.1:10040/command/purge?url=www.site1.com/image/*.bmp
http://127.0.0.1:10040/command/purge?url=www.site1.com/image1.jpg|/css/style.css|/script.js
http://127.0.0.1:10040/command/purge?url=www.site1.com/image1.jpg|www.site2.com/page/*.html

The results are returned in JSON format. The number and size of purged items, as well as the elapsed time (units: ms)
will be displayed. Content that has already been purged will not be purged again.

{
"version": "2.0.0",
"method": "purge",
"status": "OK",
"result": { "Count": 24, "Size": 3747491, "Time": 12 }

}

Using the <Purge2Expire> tag, Purge can be set to Expire under certain conditions. For a response with no results,
the HTTP response code can be set with <ResCodeNoCtrlTarget>.

Note: If all origin servers are down due to errors, Purge will not work, as content is unable to be updated.

3.2.2 Expire

The TTL of the target content is set to expire immediately. A check for modification is made when the content is first
accessed after expiring. If there is no change, there is no redownload; only the TTL is extended.

3.2. Chapter 5. Content Purge 45

STON Documentation, Release 2.3.4

http://127.0.0.1:10040/command/expire?url=...

Everything else is identical to Purge.

3.2.3 ExpireAfter

The TTL of the target content is set so that the content expires the input number of seconds after the API is called.
ExpireAfter can make the expiration time earlier and make content update faster, or it can make the expiration time
later and reduce load on the origin server.

http://127.0.0.1:10040/command/expireafter?sec=86400&url=...

Though the function call format resembles Purge and Expire, the sec parameter (in seconds) can also set the expiration
date. If the sec parameter is omitted, the default value of 1 day (86400 s) is applied, and setting it to 0 is not allowed.
For a response with no results, the HTTP response code can be set with <ResCodeNoCtrlTarget>.

Note: ExpireAfter only sets the current expiration time, and does not affect custom TTLs or default TTLs. There is
no change to cached content after an ExpireAfter call.

If the url parameter is entered first, the sec parameter may be recognized as a query string of the url parameter.
Therefore, it is recommended to set enter the sec parameter first.

3.2.4 HardPurge

If there is an error in the origin server, Purge/Expire/ExpireAfter will retain the content and continue normally. In
contrast, HardPurge means the content is permanently deleted. As HardPurge is the most powerful deletion method,
deleted content cannot be restored if there is an error. For a response with no results, the HTTP response code can be
set with <ResCodeNoCtrlTarget>.

http://127.0.0.1:10040/command/hardpurge?url=...

3.2.5 Default Purge Behavior

The behavior of content restoration after a Purge API call can be configured.

server.xml - <Server><Cache>

<Purge>Normal</Purge>

• <Purge>

– Normal (default) Behaves as if it was Purge. (Content is restored if there is an error.)

– Hard Behaves as if it was HardPurge. (Content is not restored if there is an error.)

3.2.6 HTTP Method

The purge API can be called with an extended HTTP Method.

PURGE /sample.dat HTTP/1.1
host: ston.winesoft.co.kr

46 Chapter 3. 2. HTTP Caching

STON Documentation, Release 2.3.4

HTTP methods fundamentally work under the manager port and the service port (80). HTTP Method requests sent to
the service port can be configured in Administrator Settings.

3.2.7 POST Standard

The purge API can be called with POST, as shown below.

POST /command/purge HTTP/1.1
Content-Length: 37

url=http://ston.winesoft.co.kr/sample.dat

3.3 Chapter 6. Handling HTTP Requests

This chapter will explain the HTTP client session and methods of handling HTTP requests. Parts of this chapter may
be difficult to follow without some understanding of HTTP. However, as these functions are not critical to the service,
you can simply use the default settings without affecting the quality of service at all.

3.3.1 Session Management

An HTTP session is created when an HTTP client connects to the STON server. Content saved on the server is
delivered to the client through the HTTP session. The process from the request to the response is called an HTTP
transaction. An HTTP session handles multiple HTTP transactions in succession.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<ConnectionHeader>keep-alive</ConnectionHeader>
<ClientKeepAliveSec>10</ClientKeepAliveSec>
<KeepAliveHeader Max="0">ON</KeepAliveHeader>

• <ConnectionHeader> (default: keep-alive) Configures the Connection header
(keep-alive or close) of the HTTP response sent to the client.

• <ClientKeepAliveSec> (default: 10 sec) Terminates a session when there is no transaction
with the client session for the given amount of time. If the time is set to too large a value, then the number of
sessions that are not transacting can grow unexpectedly. Maintaining a large number of sessions can cause load
on the system.

• <KeepAliveHeader>

– ON (default) Specifies the Keep-Alive header in the HTTP response. If Max (default: 0) is
set to greater than zero, then the Max value will be used for the Keep-Alive header. Each HTTP transaction
will reduce the value by one.

– OFF Omits the Keep-Alive header in the HTTP response.

HTTP Session Maintenance Polices

STON follows Apache policies as much as possible. Specifically, there are many variables in the session maintenance
policies based on the value of the HTTP header. The following is a list of items that can influence HTTP session
maintenance policies.

• The Connection header specified in the HTTP response (“Keep-Alive” or “Close”)

3.3. Chapter 6. Handling HTTP Requests 47

STON Documentation, Release 2.3.4

• Virtual host <Connection> setting

• Virtual host session Keep-Alive time setting

• Virtual host <Keep-Alive> setting

1. When “Connection: Close” is specified in the client HTTP request:

GET / HTTP/1.1
...(omitted)...
Connection: Close

For an HTTP request like this, a “Connection: Close” response will be returned regardless of the virtual host
settings. The Keep-Alive header will not be specified.

HTTP/1.1 200 OK
...(omitted)...
Connection: Close

When this HTTP transaction is completed, the connection is terminated.

2. When <ConnectionHeader> is set to Close:

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<ConnectionHeader>Close</ConnectionHeader>

A “Connection: Close” response will be returned regardless of the client’s HTTP requests. The Keep-Alive
header will not be specified.

HTTP/1.1 200 OK
...(omitted)...
Connection: Close

3. When <KeepAliveHeader> is set to OFF:

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<ConnectionHeader>Keep-Alive</ConnectionHeader>
<KeepAliveHeader>OFF</KeepAliveHeader>

The Keep-Alive header will not be specified. The HTTP session can be continuously reused.

HTTP/1.1 200 OK
...(omitted)...
Connection: Keep-Alive

4. When <KeepAliveHeader> is set to ON:

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<ConnectionHeader>Keep-Alive</ConnectionHeader>
<ClientKeepAliveSec>10</ClientKeepAliveSec>
<KeepAliveHeader>ON</KeepAliveHeader>

The Keep-Alive header will be specified. The Keep-Alive time setting of the session is used for the timeout
value.

48 Chapter 3. 2. HTTP Caching

STON Documentation, Release 2.3.4

HTTP/1.1 200 OK
...(omitted)...
Connection: Keep-Alive
Keep-Alive: timeout=10

Note: The Relationship between <Keep-Alive> and <ClientKeepAliveSec>

The <Keep-Alive> setting references the <ClientKeepAliveSec> setting, but
<ClientKeepAliveSec> is related to a more fundamental problem. The most important issue in
terms of performance or resources is the issue of when to terminate idle sessions, or sessions where HTTP
transactions are no longer occurring. HTTP header settings can be changed dynamically and can occa-
sionally be omitted, but the termination of idle sessions is a more complicated problem. Because of this,
<ClientKeepAliveSec> is not unified with <KeepAliveHeader> and exists separately.

5. When the Max property of <KeepAliveHeader> is set:

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<ConnectionHeader>Keep-Alive</ConnectionHeader>
<ClientKeepAliveSec>10</ClientKeepAliveSec>
<KeepAliveHeader Max="50">ON</KeepAliveHeader>

The max value will be specified in the Keep-Alive header. The session can be used for the number set by the
Max property, and each HTTP transaction will decrease the value by one.

HTTP/1.1 200 OK
...(omitted)...
Connection: Keep-Alive
Keep-Alive: timeout=10, max=50

6. When the max value of Keep-Alive runs out:

As mentioned above, if the max value is set, it will gradually decrease until it hits one.

HTTP/1.1 200 OK
...(omitted)...
Connection: Keep-Alive
Keep-Alive: timeout=10, max=1

This means that only one more HTTP transaction is possible in the current session. After one more HTTP
request, the response will be “Connection: Close” as shown below.

HTTP/1.1 200 OK
...(omitted)...
Connection: Close

3.3.2 Client Cache-Control

This section covers the settings related to client cache-control.

Age Header

The age header stands for the elapsed time (in seconds) from the moment something is cached, ans is calculated by
RFC2616 - 13.2.3 Age Calculations.

3.3. Chapter 6. Handling HTTP Requests 49

http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.2.3

STON Documentation, Release 2.3.4

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<AgeHeader>OFF</AgeHeader>

• <AgeHeader>

– OFF (default) Omits Age header.

– ON Specifies Age header.

Expires Header

The following refreshes the Expires header.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<RefreshExpiresHeader Base="Access">OFF</RefreshExpiresHeader>

• <RefreshExpiresHeader>

– OFF (default) Specifies the Expires header returned by the origin server to the client. If the Expires
header is omitted in the origin server, it will also be omitted in the response to the client.

– ON The Expires conditions will be reflected in the Expires header. The OFF setting will be applied for
content that does not satisfy the conditions.

The Expires condition behaves identically to the mod_expires of Apache. You can also configure the Expires header
and Cache-Control values of content that matches special conditions (such as URL or MIME Type). The max-age
value of the Cache-Control is the difference between the given Expires time and the requested time.

The Expires conditions can be set in /svc/{virtual host name}/expires.txt.

/svc/www.exmaple.com/expires.txt
The delimiter is a comma (,), and the format is {condition},{time},{reference}.

$URL[/test.jpg], 86400
/test.jpg, 86400

*, 86400, access
/test/1.gif, 60 sec
/test/*.dat, 30 min, modification
$MIME[application/shockwave], 1 years
$MIME[application/octet-stream], 7 weeks, modification
$MIME[image/gif], 3600, modification

• Condition The condition can be set to either a URL or a MIME Type. $URL[...] is used for URL, and
$MIME[...] is used for MIME Type. Patterned expressions can also be used, and if the $ format is not
used, the condition will be recognized as a URL.

• Time Sets the Expires expiration time. Common units of time are supported, and if the units are not specified,
seconds will be used.

• Reference Configures the reference point for the Expires expiration time. If a separate reference point is not
specified, then it will use the Access as a reference. Access uses the current time as a reference. The
following example indicates that for files that have a MIME Type of image/gif, the Expires header value
will be set to 1 day and 12 hours after the access time.

$MIME[image/gif], 1 day 12 hours, access

50 Chapter 3. 2. HTTP Caching

http://httpd.apache.org/docs/2.2/mod/mod_expires.html

STON Documentation, Release 2.3.4

Modification uses the Last-Modified time sent by the origin server as a reference. The following example
indicates that for all JPG files, the Expires value will be set to 30 minutes after the Last-Modified time.

*.jpg, 30 min, modification

For Modification, if the calculated time turns out to be in the past relative to the current time, then the
current time is used. If the origin server does not provide a Last-Modified header, then an Expires header
will not be sent.

ETag Header

The ETag header in the HTTP response sent to the client can be configured.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<ETagHeader>ON</ETagHeader>

• <ETagHeader>

– ON (default) Specified ETag header.

– OFF Omits ETag header.

3.3.3 Response Headers

Origin Nonstandard Header

For the sake of performance and security, out of the headers sent by the origin server, only the standard headers will
be recognized.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<OriginalHeader>OFF</OriginalHeader>

• <OriginalHeader>

– OFF (default) Ignores nonstandard headers.

– ON Saves all headers (with the exception of cookie, set-cookie, and set-cookie2) and sends them to the
client. However, this option can consume more memory.

Via Header

The Via header in the HTTP response sent to the client can be configured.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<ViaHeader>ON</ViaHeader>

• <ViaHeader>

– ON (default) Specifies the Via header as follows.

3.3. Chapter 6. Handling HTTP Requests 51

STON Documentation, Release 2.3.4

Via: STON/2.0.0

– OFF Omits the Via header.

Server Header

The Server header in the HTTP response sent to the client can be configured.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<ServerHeader>ON</ServerHeader>

• <ServerHeader>

– ON (default) Specifies the Server header of the origin server.

– OFF Omits the Server header.

3.3.4 Client Request/Response Header Modification

The client’s requests and responses can be modified based on certain conditions.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<ModifyHeader FirstOnly="OFF">OFF</ModifyHeader>

• <ModifyHeader>

– OFF (default) Does not modify.

– ON Modifies the header based on the header modification conditions.

The following explains the points when the header is modified.

• HTTP Request Header Modification Point The header is modified when the client’s HTTP request is first
recognized. If the header gets modified, then it will be handled in its modified state by the cache module.
However, the Host header cannot have its URI modified.

• HTTP Response Header Modification Point The header is modified just before the response to the client.
However, the Content-Length cannot be changed.

Header modification conditions can be set in /svc/{virtual host name}/headers.txt. Multiple conditions can be set, and
if header meets all the conditions, then all modifications will be applied in order.

If only the first condition should be applied, then the FirstOnly property should be set to ON. If different conditions
attempt to modify the same header, then the result will be Last-Win from set or specified by put or append.

/svc/www.example.com/headers.txt
The delimiter is a comma (,).

Request Modification
The format is {Match}, {$REQ}, {Action(set|put|append|unset)}.
$IP[192.168.1.1], $REQ[SOAPAction], unset
$IP[192.168.2.1-255], $REQ[accept-encoding: gzip], set
$IP[192.168.3.0/24], $REQ[cache-control: no-cache], append
$IP[192.168.4.0/255.255.255.0], $REQ[x-custom-header], unset
$IP[AP], $REQ[X-Forwarded-For], unset
$HEADER[user-agent: *IE6*], $REQ[accept-encoding], unset

52 Chapter 3. 2. HTTP Caching

STON Documentation, Release 2.3.4

$HEADER[via], $REQ[via], unset
$URL[/source/*.zip], $REQ[accept-encoding: deflate], set

Response Modification
The format is {Match}, {$RES}, {Action(set|put|append|unset)}, {condition}.
{condition} can modify the header based on special response codes, but is not mandatory.
$IP[192.168.1.1], $RES[via: STON for CDN], set
$IP[192.168.2.1-255], $RES[X-Cache], unset, 200
$IP[192.168.3.0/24], $RES[cache-control: no-cache, private], append, 3xx
$IP[192.168.4.0/255.255.255.0], $RES[x-custom-header], unset
$HEADER[user-agent: *IE6*], $RES[vary], unset
$HEADER[x-custom-header], $RES[cache-control: no-cache, private], append, 5xx
$URL[/source/*], $RES[cache-control: no-cache], set, 404
/secure/*.dat, $RES[x-custom], unset, 200
/*.mp4, $RES[Access-Control-Allow-Origin: example1.com], set
/*.mp4, $RES[Access-Control-Allow-Origin: example2.com], put

{Match} can be set to IP, GeoIP, Header, and URL forms.

• IP The format is $IP[...] and supports the formats of IP, IP Range, Bitmask, and Subnet.

• GeoIP The format is $IP[...] and GeoIP must be configured in advance. The country codes ISO 3166-1 alpha-2
and ISO 3166-1 alpha-3 are permitted.

• Header The format $HEADER[Key : Value]. The Value can be either a specific expression or a pattern. If the
Value is omitted, the condition will be the existence of a header corresponding to the Key.

• URL The format is $URL[...] and can be omitted. It can be either a specific expression or a pattern.

{$REQ} and {$RES} configure how to modify the header. set, put, and append configure the header to {Key:
Value}, and if the Value is omitted, an empty value (“”) will be input. unset will only input the {Key}.

{Action} can be set to one of the four settings: set , put , append , unset.

• set The Key and Value defined in the request/response header is added to the header. If the same Key is used,
the new Value overwrites the old.

• put (resembles set) If the same Key is used, the new Value is added in a new line instead of overwriting the
old Value.

• append (resembles set) If the same Key is used, the old Value and the new Value are attached with a comma
(,).

• unset The Key defined in the request/response header is deleted from the header.

{Condition} can be set to a specific response code like 200 or 304 or can be set to a group of codes like 2xx, 3xx, 4xx,
or 5xx. If {Match} matches but {Condition} does not, then the modification does not take place. If {Condition} is
omitted, the response code is not checked.

3.3.5 URL Preprocessing

Regular expressions are used to modify the requested URLs. If URL preprocessing is defined, all client requests
(HTTP or File I/O) must pass through the URL Rewriter.

Fig. 3.8: The request can only reach the virtual host by passing through the URL Rewriter.

3.3. Chapter 6. Handling HTTP Requests 53

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-3
http://en.wikipedia.org/wiki/Regular_expression

STON Documentation, Release 2.3.4

If an approaching Host name is modified by the URL Rewriter, then it will consider it as if the Host header was
modified by the client’s HTTP request. URL preprocessing is configured in the virtual host settings (vhosts.xml).
While most settings are under the virtual host, URL preprocessing can change the name of the Host requested by the
client, so the settings must be on the same level as the virtual host.

vhosts.xml

<Vhosts>
<Vhost ...> ... </Vhost>
<Vhost ...> ... </Vhost>
<URLRewrite ...> ... </URLRewrite>
<URLRewrite ...> ... </URLRewrite>

</Vhosts>

Multiple configurations are allowed, and the regular expressions will be checked in order.

vhosts.xml - <Vhosts>

<URLRewrite AccessLog="Replace">
<Pattern>www.example.com/([^/]+)/(.*)</Pattern>
<Replace>#1.example.com/#2</Replace>

</URLRewrite>

• <URLRewrite>

Configures URL preprocessing. AccessLog (default: Replace) Configures URLs that will be
recorded in the Access log. Replace records URLs after processing (/logo.jpg), while Pattern records
URLs after processing (/baseball/logo.jpg).

3.3.6 Compression

STON can compress and deliver content in place of the origin server. Content must be categorized by the Accept-
Encoding Header.

Accept-Encoding: gzip, deflate

Fig. 3.9: Files are compressed and delivered in real time.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

54 Chapter 3. 2. HTTP Caching

STON Documentation, Release 2.3.4

<Compression Method="gzip" Level="6" SourceSize="2-2048">OFF</Compression>

• <Compression>

– OFF (default) The compression function is not used.

– ON The compression function is used with the following properties.

* Method (default: gzip) Assigns the compression method. For now, only gzip is supported.

* Level (default: 6) Assigns the compression level. This value varies based on the Method
used. Only 1~9 are available for gzip. A lower number means compression is faster but worse, while
a higher number means compression is slower but better.

* SourceSize (default: 2-2048, unit: KB) Assigns a range for the source size. If
files are too small, then files might be hardly compressed, while if files are too big, too much CPU
might be consumed.

Compressed content is recognized and stored separately from the original content, and requests for the same content
will not cause the content to be compressed again. The files to be compressed can be configured in /svc/{virtual host
name}/compression.txt. The files will be compressed in that order.

/svc/www.example.com/compression.txt
The delimiter is a comma (,).
The format is {URL condition}, {Method}, {Level}.

/sample.css, no // No compression

*.css // Compress *.css with default method and level

*.htm, gzip // Compress *.html with gzip (default level)

*.xml, , 9 // Compress *.xml with level 9 (default method)

*.js, gzip, 5 // Compress *.js with gzip level 5.

Compression is a function that consumes a large amount of CPU. The following is a performance test done on gzip
(level 9) with files of different sizes.

• OSCentOS 6.3 (Linux version 2.6.32-279.el6.x86_64 (mockbuild@c6b9.bsys.dev.centos.org) (gcc version 4.4.6
20120305(Red Hat 4.4.6-4) (GCC)) #1 SMP Fri Jun 22 12:19:21 UTC 2012)

• CPU Intel(R) Xeon(R) CPU E5-2603 0 @ 1.80GHz (8 processors)

• RAM 8GB

• HDD SAS 275GB X 5EA

Size Comp.
Ratio(%)

Files La-
tency(ms)

Client
Traffic(Mbps)

Origin
Traffic(Mbps)

1KB 26.25 5288 6.72 40.58 55.02
2KB 57.45 5238 7.20 41.52 97.58
4KB 76.94 5236 7.18 42.44 184.04
8KB 87.61 5021 7.53 41.87 337.80
16KB 93.32 4608 8.30 41.19 616.83
32KB 96.26 3495 13.55 34.53 924.22
64KB 97.79 1783 24.50 20.71 938.83
bootstrap.css(20KB) 86.87 3944 9.67 83.79 638.25
boot-
strap.min.js(36KB)

73.00 1791 51.50 139.00 514.86

If <Compression> is turned on, only uncompressed files will be requested from the origin server. In other words,
the responses from the origin server will be to requests that have omitted the Accept-Encoding header. If the origin

3.3. Chapter 6. Handling HTTP Requests 55

mailto:mockbuild@c6b9.bsys.dev.centos.org
http://www.cpubenchmark.net/cpu.php?cpu=Intel%20Xeon%20E5-2603%20@%201.80GHz

STON Documentation, Release 2.3.4

server specifies a Content-Encoding header to a request for uncompressed content, STON will recognize the content
as already compressed and will not compress it again.

Note: Content that is already compressed on the origin server that matches <Compression> conditions may be
compressed again. Since this can cause problems, this policy is followed.

1. New content will be compressed.

2. If the content is compressed on the origin server, it will not be compressed again.

3. If the content is not compressed on the origin server, the corresponding content will be purged and compressed
again.

3.4 Chapter 7. Origin Server

This chapter will explain the relationship between STON and the origin server. The origin server generally refers to
the web server that abides by the HTTP standard. For the sake of protecting the origin server, administrators should
have a thorough understanding of the contents of this chapter. Doing so will enable you to establish a service that’s
flexible and resistant to origin server errors.

The origin server must be protected. With a variety of ways errors can occur, there are a variety of countermeasures to
deal with them. Having a proper protection policy for the origin server will make it easier during inspection.

3.4.1 Error Detection and Recovery

If an error occurs in the origin server during caching, the server is automatically excluded. When the server is judged
to be stable, it will be brought back into the service.

server.xml - <Server><VHostDefault><OriginOptions>
vhosts.xml - <Vhosts><Vhost><OriginOptions>

<ConnectTimeout>3</ConnectTimeout>
<ReceiveTimeout>10</ReceiveTimeout>
<Exclusion>3</Exclusion>
<Recovery Cycle="10" Uri="/" ResCode="0" Log="ON">5</Recovery>

• <ConnectTimeout> (default: 3 sec)

If a connection to the origin server cannot be made within the set amount of time, it will be considered a
connection failure.

• <ReceiveTimeout> (default: 10 sec)

If the origin server does not return an HTTP response for a normal HTTP request within the set amount of time,
it will be considered a transaction failure.

• <Exclusion> (default: 3 times)

If an error occurs (<ConnectTimeout> or <ReceiveTimeout>) consecutively for the set number of
times, the corresponding server will be excluded from the available server list. The value will be reset to 0 if a
successful communication occurs before exclusion.

• <Recovery> (default: 5 times)

If the origin server responds with ResCode when Uri is requested every Cycle consecutively for the set
number of times, the corresponding server will be restored. If this value is set to zero, the server will not be
restored.

56 Chapter 3. 2. HTTP Caching

STON Documentation, Release 2.3.4

– Cycle (default: 10 sec) Makes a new request after the set amount of seconds.

– Uri (default: /) The Uri to be sent in the request.

– ResCode (default: 0) The response code to be identified as normal. If set to 0, any response
will be considered a success regardless of the response code. If set to 200, the response code must be 200
for the response to be identified as normal. Commas (,) can be used to set multiple response codes. For
example, if set to “200, 206, 404”, then any one of those response codes will be identified as normal.

– Log (default: ON) Records the HTTP transaction that was used for recovery to the Origin Log.

3.4.2 Health-Checker

Error Detection and Recovery responds to errors that occur during the caching process. <Recovery> will terminate
an HTTP transaction as soon as a response code is received. However, Health-Checker checks for a successful HTTP
transaction.

vhosts.xml - <Vhosts><Vhost>

<Origin>
<Address> ... </Address>
<HealthChecker ResCode="0" Timeout="10" Cycle="10"

Exclusion="3" Recovery="5" Log="ON">/</HealthChecker>
<HealthChecker ResCode="200, 404" Timeout="3" Cycle="5"

Exclusion="5" Recovery="20" Log="ON">/alive.html</HealthChecker>
</Origin>

• <HealthChecker> (default: /)

Configures Health-Checker. Multiple configurations are allowed. Uri is used as the input, and CDATA is used
for invalid XML characters.

– ResCode (default: 0) The correct response code (multiple codes can be assigned with commas).

– Timeout (default: 10 sec) The available time from the socket connection until the HTTP
transaction is completed.

– Cycle (default: 10 sec) The execution period.

– Exclusion (default: 3 times) The number of consecutive failures before excluding the
server.

– Recovery (default: 5 times) The number of consecutive successes before reintroducing the
server.

– Log (default: ON) Records the HTTP Transaction to the Origin Log.

Health-Checker can be configured in multiple ways and can be executed independently of client requests. It does not
share information with Error Detection and Recovery or other Health-Checkers and uses only its own information to
decide exclusion and recovery.

3.4.3 Origin Address Use Policy

The following factors are considered in deciding how to use the origin address (IP).

• Origin Server address format (IP or domain) and standby address

• Error Detection and Recovery

• Health-Checker

3.4. Chapter 7. Origin Server 57

STON Documentation, Release 2.3.4

As a service is run, the origin address being excluded and recovered will occur frequently. STON uses IP Table-based
origin addresses and provides information via the Origin Status Monitoring API.

It is simpler to set the origin address with an IP instead of a domain.

• Nothing will be able to change the IP list except for configuration changes.

• The IP address will not expire based on the TTL.

• Exclusion/recovery will work based on the IP address.

If the origin address is set with a domain, it must be resolved in order to obtain the IP. (This will be saved in the DNS
Log.) The IP list will be able to be changed dynamically, and IPs will only be valid during the TTL.

• The domain will be resolved periodically (1~10 s).

• The IP Table to be used will be organized based on the resolving results.

• All IPs will be valid during the TTL and will not be used when the TTL expires.

• If an identical IP is resolved, the TTL will be refreshed.

• The IP Table cannot be empty. Even if the TTL is expired, the last IP will never be deleted.

Even if the origin address is set to a domain, error/recovery will work based on the IP address. Here there is something
to keep in mind. The DNS client (STON) is unable to know the exact IP list for a domain. If a domain consists of only
unavailable IP addresses, then it may constantly be in a state of error.

The domain address error/recovery policy is as follows.

• If all known IP addresses for a domain are excluded (Inactive), then the corresponding domain will also be
excluded.

• Even if a new IP is resolved, if the domain is excluded then the IP address will also be excluded.

• Even if the TTLs of all IPs expire, this will not change the state of the excluded domain.

• At least one IP of an excluded domain must be recovered for that domain to also be recovered.

It is recommended to improve your understanding of service behavior through the Origin Status Monitoring API.

3.4.4 Origin Status Monitoring

An API is used to monitor the state of a virtual host’s origin server.

http://127.0.0.1:10040/monitoring/origin // All virtual hosts
http://127.0.0.1:10040/monitoring/origin?vhost=www.example.com

The results are given in JSON format.

{
"origin" :
[

{
"VirtualHost" : "example.com",
"Address" :
[

{ "1.1.1.1" : "Active" },
{ "1.1.1.2" : "Active" }

],
"Address2" : [],
"ActiveIP" :
[

{ "1.1.1.1" : 0 },

58 Chapter 3. 2. HTTP Caching

STON Documentation, Release 2.3.4

{ "1.1.1.2" : 0 }
] ,
"InactiveIP" : []

},
{

"VirtualHost" : "foobar.com",
"Address" :
[

{ "origin.foobar.com" : "Active" }
],
"Address2" : [],
"ActiveIP" :
[

{ "5.5.5.5" : 21 },
{ "5.5.5.6" : 60 },
{ "5.5.5.7" : 37 }

],
"InactiveIP" :
[

{ "5.5.5.8" : 10 },
{ "5.5.5.9" : 184 }

]
}

]
}

• VirtualHost The virtual host name.

• Address Origin Server. It will return Active if the address is being used, and Inactive if not being used
(due to an error).

• Address2 Standby Origin Server Address. It will return Active if the address is being used, and Inactive
if not being used.

• ActiveIP The list of IPs in use and their TTLs. If the origin server is set with an IP address, an identical IP
will be shown in Address with a TTL of 0. If set with a domain, the values depend on the resolving results.
Various IPs and TTLs are used.

• InactiveIP The list of IPs not in use and their TTLs. Even though they are not in use, they can still be in a
recovery status or being managed by Health-Checker. If the address is not recovered within the TTL, it will be
removed.

3.4.5 Origin Status Reset

An API is used to reset the exclusion/recovery of origin servers of a virtual host. The current session will not be
reused, and a new connection will be created instead.

http://127.0.0.1:10040/command/resetorigin // All virtual hosts
http://127.0.0.1:10040/command/resetorigin?vhost=www.example.com

3.4.6 Overload Detection

Content requested for the first time must always be retrieved from the origin server. However, content already cached
can be taken care of more flexibly. If STON detects that the origin server is overloaded, renewal of content can be
postponed so as to not increase server load.

3.4. Chapter 7. Origin Server 59

STON Documentation, Release 2.3.4

server.xml - <Server><VHostDefault><OriginOptions>
vhosts.xml - <Vhosts><Vhost><OriginOptions>

<BusySessionCount>100</BusySessionCount>

• <BusySessionCount> (default: 100) If the number of HTTP transactions taking place on the ori-
gin server exceeds the set value, it will be considered an overload. So that the origin server isn’t further accessed
to renew expired content, the TTL is extended by the value of <OriginBusy> in Time To Live (TTL). This
value can be set to a very large number if you want all requests to go to the origin server.

3.4.7 Origin Selection

This configures the origin server selection policy in the case when the origin server consists of multiple addresses (two
or more).

server.xml - <Server><VHostDefault><OriginOptions>
vhosts.xml - <Vhosts><Vhost><OriginOptions>

<BalanceMode>RoundRobin</BalanceMode>

• <BalanceMode> (default: RoundRobin)

– RoundRobin (default) The server will be chosen via round-robin so that all origin servers receive
requests uniformly. Connected idle sessions are only used when a request to the corresponding server is
necessary.

– Session A session will be used if it can be reused. If a new session is necessary, the next server will be
chosen via round-robin.

– Hash Content will be requested in a dispersed way following the consistent hashing algorithm. If a server
is chosen, the current session will be reused; if there is no session, a new one will be created.

/ RoundRobin Session
Load
(Requests)

Load is divided equally across servers Higher load on servers with better
responsiveness and reusability

Connection
cost

High (Finds a connection or attempts a new
one for each server)

Low (Only connects when the session can’t be
reused)

Reusability Low (Server division is prioritized) High (Already-connected sessions are
prioritized)

Session
count

Many (Sum of simultaneous HTTP
transactions for each server)

Few (Only as many sessions as there are HTTP
transactions)

3.4.8 Session Recycle

If the origin server supports the Keep-Alive setting, then the connected session will always be reused. However, the
origin server can unilaterally terminate connections to recycled sessions. As a result, the connection will need to be
recovered, which can potentially lower user responsiveness. This is especially the case for sessions that haven’t been
used in a while. To prevent this, sessions that aren’t reused for the set number of seconds will have their connection
be automatically terminated.

server.xml - <Server><VHostDefault><OriginOptions>
vhosts.xml - <Vhosts><Vhost><OriginOptions>

<ReuseTimeout>60</ReuseTimeout>

60 Chapter 3. 2. HTTP Caching

http://en.wikipedia.org/wiki/Consistent_hashing

STON Documentation, Release 2.3.4

• <ReuseTimeout> (default: 60 s) Terminates sessions that have not been used within the set
amount of time. If set to zero, origin server sessions will not be reused.

3.4.9 Range Request

Configures how much content is downloaded at a time. If the content is generally viewed from the front, such as
videos, then setting a limit to the download size can reduce unnecessary origin traffic.

server.xml - <Server><VHostDefault><OriginOptions>
vhosts.xml - <Vhosts><Vhost><OriginOptions>

<PartSize>0</PartSize>

• <PartSize> (default: 0 MB) If set to greater than zero, a range request will be used to download the
set value (MB) starting from the point requested by the client.

Another reason to use <PartSize> is to save disk space. Under default settings, STON generates a file with the
same size as the original on the disk. However, as long as <PartSize> is not zero, the file will be partitioned to the
given size and saved.

For example, if a client watches the first minute (10 MB) of a one-hour (600 MB) video, only 10 MB of the disk space
will be used. There is some benefit in saving disk space, but because the file is saved in parts, the disk load increases
a little.

Note: When content is downloaded for the first time, the content length is unknown and a range request cannot be
made. Therefore, if <PartSize> is configured, the connection will be closed after the set size is downloaded.

3.4.10 Initializing the Entire Range

Generally, whether a file is downloaded for the first time or is being checked for renewal on the origin server, the same
simple GET request is sent.

GET /file.dat HTTP/1.1

However, origin servers configured to always modify files for general GET requests may have issues because the
original file cannot be cached in its original form.

One of the most common examples is when the Apache web server embeds external modules such as
mod_h.264_streaming. The Apache web server will always respond using the mod_h.264_streaming module. As
such, the client (in this case, STON) will not receive the file as it originally was but a file modified by the module.

Fig. 3.10: The mod_h.264_streaming module always modifies the original file.

A range request can be used to bypass the module and download the original.

3.4. Chapter 7. Origin Server 61

STON Documentation, Release 2.3.4

server.xml - <Server><VHostDefault><OriginOptions>
vhosts.xml - <Vhosts><Vhost><OriginOptions>

<FullRangeInit>OFF</FullRangeInit>

• <FullRangeInit>

– OFF (default) A normal HTTP request is sent.

– ON A range request that begins with 0 is sent. In Apache, if the range header is specified, the module is
bypassed.

GET /file.dat HTTP/1.1
Range: bytes=0-

Because the Range can’t be known when a file is cached for the first time, Full-Range (starting with 0) is
requested. You must verify that a normal response (206 OK) is returned for range requests.

If content is being renewed, the If-Modified-Since header will also be specified as below. The origin server must
properly respond with 304 Not Modified.

GET /file.dat HTTP/1.1
Range: bytes=0-
If-Modified-Since: Sat, 29 Oct 1994 19:43:31 GMT

Note: The following is a list of web servers where <FullRangeInit> is confirmed to work properly.

• Microsoft-IIS/7.5

• nginx/1.4.2

• lighttpd/1.4.32

• Apache/2.2.22

3.4.11 Keeping Client Requests

You can configure whether client requests are kept or changed via the Caching-Key.

server.xml - <Server><VHostDefault><OriginOptions>
vhosts.xml - <Vhosts><Vhost><OriginOptions>

<WholeClientRequest>OFF</WholeClientRequest>

• <WholeClientRequest>

– OFF (default) The Caching-Key is used as the URL requested to the origin server.

– ON The URL requested by the client is requested to the origin server.

To raise the Hit Ratio, the following settings are used to select the Caching-Key.

• Case Sensitivity

• QueryString Differentiation

• POST Request Caching

Therefore, the URL and Caching-Key requested to the origin server is determined in the following way.

62 Chapter 3. 2. HTTP Caching

STON Documentation, Release 2.3.4

Setting Client Requested URL Origin Requested URL / Caching-Key
Case Sensitivity OFF /Image/LOGO.png /image/logo.png
Case Sensitivity ON /Image/LOGO.png /Image/LOGO.png
QueryString Differentiation OFF /view/list.php?type=A /view/list.php
QueryString Differentiation ON /view/list.php?type=A /view/list.php?type=A

If <WholeClientRequest> is set to ON, the URL sent by the client will be sent as is to the origin, regardless of
the Caching-Key.

Setting Client/Origin Requested URL Caching-Key
Case Sensitivity OFF /Image/LOGO.png /image/logo.png
Case Sensitivity ON /Image/LOGO.png /Image/LOGO.png
QueryString Differentiation OFF /view/list.php?type=A /view/list.php
QueryString Differentiation ON /view/list.php?type=A /view/list.php?type=A

When POST requests are cached and requested to the origin server, the body data of the POST request sent by the
client is transmitted without modification.

Note: Because URLs sent by the client are not modified in anyway, QueryStrings added using functions such as
Trimming will also be sent wihout modification.

3.4.12 Origin Request Default Header

Host Header

Configures the Host header of the HTTP request sent to the origin server. If not specified, the virtual host name will
be used.

server.xml - <Server><VHostDefault><OriginOptions>
vhosts.xml - <Vhosts><Vhost><OriginOptions>

<Host />

• <Host> Configures the Host header sent to the origin server. If the origin server uses a port other than 80, the
port must be specified.

server.xml - <Server><VHostDefault><OriginOptions>
vhosts.xml - <Vhosts><Vhost><OriginOptions>

<Host>www.example2.com:8080</Host>

If you want to send the Host header from the client to the origin, * is used.

User-Agent Header

Configures the User-Agent header of the HTTP request sent to the origin server.

server.xml - <Server><VHostDefault><OriginOptions>
vhosts.xml - <Vhosts><Vhost><OriginOptions>

<UserAgent>STON</UserAgent>

• <UserAgent> (default: STON) Configures the User-Agent header sent to the origin server.

If you want to send the User-Agent header from the client to the origin, * is used.

3.4. Chapter 7. Origin Server 63

STON Documentation, Release 2.3.4

XFF (X-Forwarded-For) Header

If STON is placed between the client and the origin server, the origin server will not be able to obtain the client’s IP.
Therefore, all HTTP requests sent by STON to the origin server have an X-Forwarded-For header.

server.xml - <Server><VHostDefault><OriginOptions>
vhosts.xml - <Vhosts><Vhost><OriginOptions>

<XFFClientIPOnly>OFF</XFFClientIPOnly>

• <XFFClientIPOnly>

– OFF (default) Appends the client’s IP to the XFF header sent by the client (IP: 128.134.9.1). If the
client did not send an XFF header, only the client IP is displayed.

X-Forwarded-For: 220.61.7.150, 61.1.9.100, 128.134.9.1

– ON Sends the first address of the XFF header to the origin server.

X-Forwarded-For: 220.61.7.150

ETag Header Recognition

Configures the recognition of the ETag header returned by the origin server.

server.xml - <Server><VHostDefault><OriginOptions>
vhosts.xml - <Vhosts><Vhost><OriginOptions>

<OriginalETag>OFF</OriginalETag>

• <OriginalETag>

– OFF (default) The ETag header is ignored.

– ON The ETag header is recognized and an If-None-Match header is appended on content renewal.

3.4.13 Origin Request Header Modification

The HTTP header can be changed when sending HTTP requests to the origin server based on certain conditions.

server.xml - <Server><VHostDefault><OriginOptions>
vhosts.xml - <Vhosts><Vhost><OriginOptions>

<ModifyHeader FirstOnly="OFF">OFF</ModifyHeader>

• <ModifyHeader>

– OFF (default) Keeps the original header.

– ON The header changes based on conditions.

The point in time the header is changed is when the HTTP request packet is completed, just before it is sent to the
origin server. However, range requests cannot be changed.

This function is a sub-function of Client Request/Response Header Modification. The $ORGREQ keyword is used for
header changes.

64 Chapter 3. 2. HTTP Caching

STON Documentation, Release 2.3.4

/svc/www.example.com/headers.txt

$URL[/*.mp4], $ORGREQ[x-media-type: video/mp4], set
$IP[1.1.1.1], $ORGREQ[user-agent: media_probe], put

*, $ORGREQ[If-Modified-Since], unset

*, $ORGREQ[If-None-Match], unset

Note: If the If-Modified-Since and If-None-Match headers are set to unset, content will always be downloaded
when their TTL expires.

3.4.14 Redirect Tracking

If the origin server returns responses from the Redirect category (301, 302, 303, 307), the Location header is tracked
to request content.

Fig. 3.11: Clients will not know if they are redirected or not.

server.xml - <Server><VHostDefault><OriginOptions>
vhosts.xml - <Vhosts><Vhost><OriginOptions>

<RedirectionTrace>OFF</RedirectionTrace>

• <RedirectionTrace>

– OFF (default) Saves as a 3xx response.

– ON Downloads content from the address given in the Location header. If the format of the header is
incorrect or there is no header, then tracking will fail. In order to prevent infinite redirection, STON will
only redirect once.

3.5 Chapter 8. Bypass (Pass-through)

This chapter will explain how to set a bypass that delegates client request handling to the origin server. Bypasses can
be divided into conditions and behaviors.

Bypass takes priority over the caching policy. If a service did not consider the edge server during the design state,
it most likely cannot distinguish between static and dynamic resources. In this case, it can be configured so that all

3.5. Chapter 8. Bypass (Pass-through) 65

STON Documentation, Release 2.3.4

client requests are bypassed, caching only content that is frequently requested according to the log. In general, even a
few hours of logging can dramatically decrease the load on the origin server. The real-time information provided by
Chapter 10. Monitoring & Statistics is there to allow you to tune the service in real time.

Bypasses are not only fast, but they also work on the level of HTTP transactions. No matter how personalized a site is,
it will generally be composed of a main page (.html) that changes dynamically, with the remaining 99% being made up
of statis resources. A bypass version of Origin Request Default Header exists separately to match up with the actions
of the origin server.

3.5.1 No-Cache Request Bypass

If the client sends a no-cache request, it will be bypassed.

GET / HTTP/1.1
cache-control: no-cache or cache-control:max-age=0
pragma: no-cache

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<BypassNoCacheRequest>OFF</BypassNoCacheRequest>

• <BypassNoCacheRequest>

– OFF (default) The request is handled by the cache module.

– ON The request is bypassed to the origin server.

Note: This setting is judged by the client’s action (likely Ctrl+F5). As a result, a large number of bypasses can
cause strain on the origin server.

3.5.2 GET/POST Bypass

A bypass can be set to be the default action of GET/POST requests. It is important to keep in mind that because GET
and POST are used differently, their actions will be different as well.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<BypassPostRequest>ON</BypassPostRequest>
<BypassGetRequest>OFF</BypassGetRequest>

• <BypassPostRequest>

– ON (default) The POST request is bypassed to the origin server.

– OFF The POST request is handled by STON.

• <BypassGetRequest>

– OFF (default) The GET request is handled by STON.

– ON The GET request is bypassed to the origin server.

Bypasses support the same conditions as Virtual Host ACL. Exception cases for bypasses can be set in /svc/{virtual
host name}/bypass.txt.

66 Chapter 3. 2. HTTP Caching

STON Documentation, Release 2.3.4

/svc/www.example.com/bypass.txt
$IP[192.168.2.1-255]
/index.html

If cache or bypass conditions are not specified, the opposite of the default setting will be applied. For example,
if <BypassGetRequest> is set to ON, the exception cases become the caching list. There is a lot of room for
confusion, but the second parameter can be set to explicitly state the conditions.

/svc/www.winesoft.co.kr/bypass.txt

$HEADER[cookie: *ILLEGAL*], cache // Always cache
!HEADER[referer:] // Depends on the default setting
!HEADER[referer] & !HEADER[user-agent], bypass // Always bypass
$URL[/source/public.zip] // Depends on the default setting

The priority of actions is as follows.

1. No-Cache bypass

2. Bypass is specified in bypass.txt

3. Default setting of bypass.txt

3.5.3 Fixed Origin Servers

Some transactions, such as login status, require a one-to-one communication between the origin server and the client.
Properties of GET/POST Bypass can be used to fix the origin server to the client.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<BypassPostRequest OriginAffinity="ON">...</BypassPostRequest>
<BypassGetRequest OriginAffinity="ON">...</BypassGetRequest>

• OriginAffinity

– ON (default) Guarantees that the client’s requests will always be bypassed to the same origin server.
However, it is not guaranteed to be the same socket.

There is always the possibility that all the sockets of an origin server will lose connection. How-
ever, if this occurs, a new socket connection will simply be requested from the corresponding
server.

Fig. 3.12: Requests will always be bypassed to the same server.

If the origin server being bypassed to ends up being excluded due to errors or dropped from DNS, requests
will be bypassed to a new server instead.

– OFF Will not guarantee which server the client requests will bypass to.

3.5. Chapter 8. Bypass (Pass-through) 67

STON Documentation, Release 2.3.4

Fig. 3.13: Requests will follow Origin Selection.

3.5.4 Fixed Origin Sessions

Each client socket will use a one-to-one bypass session with the origin server.

Fig. 3.14: The client will have their own origin session.

Properties of GET/POST Bypass can be used to fix the origin session to the client.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<BypassPostRequest Private="OFF">...</BypassPostRequest>
<BypassGetRequest Private="OFF">...</BypassGetRequest>

• Private

– ON The client session will have their own private session on the origin server. Requests will always be
bypassed to the same server. Either the client or the origin server can terminate the session, at which point
the session will be terminated on the other end as well.

– OFF (default) Private sessions are not used.

Just as origin servers hold on to the user’s login information within a session, it is helpful if the client handles requests
within the same socket as well.

Note: If too many requests are bypassed with Private, there will be as many origin server connections as there are
clients, creating an immense amount of load. Also, because origin sessions connected in this way are owned by the
clients, it could endanger the server to malicious attacks.

68 Chapter 3. 2. HTTP Caching

STON Documentation, Release 2.3.4

Timeout

There are many cases when a bypass responds with results dynamically processed in the origin server. As such, there
are many cases when processing speed is slower than static content. Setting a timeout specifically for bypasses is
recommended to avoid the system prematurely assuming an error situation.

server.xml - <Server><VHostDefault><OriginOptions>
vhosts.xml - <Vhosts><Vhost><OriginOptions>

<BypassConnectTimeout>5</BypassConnectTimeout>
<BypassReceiveTimeout>300</BypassReceiveTimeout>

• <BypassConnectTimeout> (default: 5 sec) If the bypass is unable to connect to the origin
server within the set time, it will be considered a connection timeout.

• <BypassReceiveTimeout> (default: 5 sec) If there is no response from the origin server within
the set time during a bypass, it will be considered a reception timeout.

3.5.5 Bypass Header

A bypass header configures whether or not to apply the bypass setting of Origin Request Default Header.

server.xml - <Server><VHostDefault><OriginOptions>
vhosts.xml - <Vhosts><Vhost><OriginOptions>

<UserAgent Bypass="OFF">...</UserAgent>
<Host Bypass="ON"/>
<XFFClientIPOnly Bypass="ON">...</XFFClientIPOnly>

• Bypass Property

– ON Specifies the configured header.

– OFF Specifies the relative headers sent by the clients.

3.5.6 Port Bypass

With a port bypass, the packets from a specific TCP port will all be bypassed to the origin server. This setting is
exclusive to virtual hosts.

vhosts.xml - <Vhosts>

<Vhost Name="www.example">
<PortBypass>443</PortBypass>
<PortBypass Dest=”1935”>1935</PortBypass>

</Vhost>

• <PortBypass> Bypasses all packets from the designated port to the same port on the origin server. The Dest
property configures the destination port on the origin server.

For example, bypassing port 443 will have an effect similar to creating a direct SSL connection with the origin server.
Ports being bypassed can never have multiple redundant settings.

Note: Structurally, port bypasses take place in the TCP, a layer beneath HTTP. The reason for setting up a port bypass
under a specific virtual host is that the virtual host is needed to collect statistics.

3.5. Chapter 8. Bypass (Pass-through) 69

STON Documentation, Release 2.3.4

3.6 Chapter 9. HTTPS

This chapter will explain how to configure HTTPS. STON supports up to TLS 1.2, but allows SSL 2.0 only for
upgrades due to security reasons. HTTPS is used only between the client and STON. STON does not communicate
with the origin server using HTTPS, because it wouldn’t be suitable for security and performance reasons if STON
used HTTPS as a relay. If the origin server must use HTTPS to communicate, using Port Bypass is recommended.

3.6.1 Service Configuration

As long as a specific IP or port is not designated, the default binding service address is “*.443”. This is configured in
the global configuration (server.xml).

server.xml - <Server>

<Https>
<Cert>/usr/ssl/cert.pem</Cert>
<Key>/usr/ssl/certkey.pem</Key>
<CA>/usr/ssl/CA.pem</CA>

</Https>

<Https Listen="1.1.1.1:443">
<Cert>/usr/ssl_ip_port/cert.pem</Cert>
<Key>/usr/ssl_ip_port/certkey.pem</Key>
<CA>/usr/ssl_ip_port/CA.pem</CA>

</Https>

<Https Listen="*:886">
<Cert>/usr/ssl_port/cert.pem</Cert>
<Key>/usr/ssl_port/certkey.pem</Key>
<CA>/usr/ssl_port/CA.pem</CA>

</Https>

• <Https> Configures HTTPS.

– <Cert> Server certificate.

– <Key> The private key for server certification. Encrypted formatting not supported.

– <CA> Certificate authority (CA) chain certificate.

Even if the same port is used, more specific expressions will take priority.

For example, if there are multiple NICs as in the example above, a client that connects using 1.1.1.1:443 will be given
service using the second and more specific certificate (1.1.1.1:443), while a client that connects to 1.1.1.4:443 will be
given service with the first and more general certificate (omitted, or *:443). If the certificate is overwritten with a file
of the same name, the changes will be reflected upon reload.

Note: Only the PEM (Privacy Enhanced Mail) format is supported for certificates, and RSA for the asymmetric key
algorithm.

3.6.2 SSL/TLS Acceleration

SSL/TLS can be accelerated using CPU (AES-NI). A CPU that supports AES-NI will prioritize the AES algorithm for
SSL/TLS. If AES-NI is recognized, the following will be recorded in the Info.log file.

70 Chapter 3. 2. HTTP Caching

STON Documentation, Release 2.3.4

AES-NI : ON (SSL/TLS accelerated)

Administrators can select whether to use AES-NI or not.

server.xml - <Server><Cache>

<AES-NI>ON</AES-NI>

• <AES-NI> (default: ON) Decides whether or not AES-NI is used.

3.6.3 CipherSuite Selection

The following CipherSuites are supported.

Cipher Suite TLS1.2 TLS1.1/1.0 SSL3.0
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (0xc02F) O
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 (0xC027) O
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xC014) O O
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (0xC013) O O
TLS_RSA_WITH_AES_128_GCM_SHA256 (0x009C) O
TLS_RSA_WITH_AES_256_CBC_SHA256 (0x003D) O
TLS_RSA_WITH_AES_128_CBC_SHA256 (0x003C) O
TLS_RSA_WITH_AES_256_CBC_SHA (0x0035) O O
TLS_RSA_WITH_AES_128_CBC_SHA (0x002F) O O
TLS_RSA_WITH_3DES_EDE_CBC_SHA (0x000A) O O
TLS_RSA_WITH_RC4_128_SHA (0x0005) O
TLS_RSA_WITH_RC4_128_MD5 (0x0004) O

The CipherSuite to be used can be configured in the CipherSuite property of <Https>.

server.xml - <Server>

<Https CipherSuite="ALL:!ADH:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP">
<Cert>/usr/ssl/cert.pem</Cert>
<Key>/usr/ssl/certkey.pem</Key>
<CA>/usr/ssl/CA.pem</CA>

</Https>

• CipherSuite Follows the SSLCipherSuite Directive in Apache mod_ssl.

A higher level of security can be obtained by ensuring forward secrecy (refer to links below).

• SSL Labs: Deploying Forward Secrecy

• SSL/TLS & Perfect Forward Secrecy

• Configuring Apache, Nginx, and OpenSSL for Forward Secrecy

By default, a CipherSuite that ensures forward secrecy (FS) is prioritized.

server.xml - <Server>

<Https FS="ON"> ... </Https>

• FS

– ON (default) A CipherSuite that ensures forward secrecy is prioritized.

– OFF Selects in the order specified by ClientHello.

3.6. Chapter 9. HTTPS 71

http://httpd.apache.org/docs/2.2/mod/mod_ssl.html#sslciphersuite
https://en.wikipedia.org/wiki/Forward_secrecy
https://community.qualys.com/blogs/securitylabs/2013/06/25/ssl-labs-deploying-forward-secrecy
http://vincent.bernat.im/en/blog/2011-ssl-perfect-forward-secrecy.html
https://community.qualys.com/blogs/securitylabs/2013/08/05/configuring-apache-nginx-and-openssl-for-forward-secrecy

STON Documentation, Release 2.3.4

The FS property takes priority over the CipherSuite property.

Note: Due to performance reasons, only ECDHE is supported. DHE is not supported.

3.6.4 Checking the CipherSuite

The results of configuring the CipherSuite can be checked. CipherSuite expression follows OpenSSL 1.0.0E.

http://127.0.0.1:10040/monitoring/ssl?ciphersuite=...

The results are returned in JSON format.

{
"version": "2.0.0",
"method": "ssl",
"status": "OK",
"result":
[

{
"Name" : "AES128-SHA",
"Ver" : "SSLv3",
"Kx" : "RSA",
"Au" : "RSA",
"Enc" : "AES(128)",
"Mac" : "SHA1"

},
{

"Name" : "AES256-SHA",
"Ver" : "SSLv3",
"Kx" : "RSA",
"Au" : "RSA",
"Enc" : "AES(256)",
"Mac" : "SHA1"

}
]

}

3.6.5 Multi-Domain Configuration

SSL configurations can cause problems when a single server runs multiple services simultaneously. Most Web/Cache
servers decide which virtual host is used for the service by examining the Host header of the HTTP request.

Generally, the SSL identifies the server name (winesoft.co.kr) that the client (browser) tries to connect to using the
certificate. However, if identification cannot be done with the certificate (e.g. the certificate is wrong or expired), then
the user will be asked whether to trust the website or not (though there are cases when the site is blocked entirely).
Though normal identification could not be done, SSL communication can still be established with the client’s trust.

If there is only one virtual host on the server that uses SSL, no problems will occur. However, multiple virtual hosts
running simultaneously on a server can cause problems. This is because when the server sends the certificate to the
client (“2. Certificate Transmission” in “General HTTPS communication”), the server is unable to know which host
the client is trying to reach.

The following show some typical solutions for this issue.

72 Chapter 3. 2. HTTP Caching

https://www.openssl.org/docs/apps/ciphers.html

STON Documentation, Release 2.3.4

Fig. 3.15: General HTTPS communication.

Fig. 3.16: It is left to the client to judge.

3.6. Chapter 9. HTTPS 73

STON Documentation, Release 2.3.4

Method Pros Cons
SNI Works with only server settings

(standard)
Windows XP and IE6 unsupported

Multi
Certificate

Works by replacing only the certificate Main domain or service subject must be the same for
faster reissuing

Multi Port Works by changing only the port HTTPS port must be specified on the web page
Multi NIC Works with only server settings (most

widely used)
Configuration of NIC and IP adding required

SNI (Server Name Indication)

This method makes use of the SNI (Server Name Indication) expansion field of SSL/TLS. This function is used by
specifying the target virtual host like the Host header of an HTTP request when the client requests an SSL connection
from the server. Though this is the most elegant solution, there can be some compatibility issues. The following lists
the clients that do not support SNI (source: Wikipedia - Server Name Indication).

• Internet Explorer (any version) on Windows XP or Internet Explorer 6 or earlier

• Safari on Windows XP

• BlackBerry Browser

• Windows Mobile up to 6.5

• Android default browser on Android 2.x[34] (Fixed in Honeycomb for tablets and Ice Cream Sandwich for
phones)

• wget before 1.14

• Java before 1.7

Realistically, SNI cannot be used, and STON does not support SNI.

Multi Certificate

This method places multiple domains or wildcards (i.e. *.winesoft.co.kr) in the certificate so that multiple domains
can be identified with only one certificate.

Fig. 3.17: Multiple domains can be certified with one certificate.

This method is effective if the subjects of the service are the same, but if there is no relation, sharing the certificate is
rather difficult. As this method can be used just by replacing the certificate, there is no need to configure anything in
STON (see also DigiCert).

74 Chapter 3. 2. HTTP Caching

http://en.wikipedia.org/wiki/Server_Name_Indication
http://en.wikipedia.org/wiki/Server_Name_Indication#Client_side
http://www.digicert.com/wildcard-ssl-certificates.htm

STON Documentation, Release 2.3.4

Multi Port

SSL uses port 443 by default. By setting up a port that does not overlap with the SSL port, multiple certificates can be
installed. The port can be specified on the client to request an SSL connection.

https://winesoft.co.kr:543/

Multiple certificates can be set up in STON by specifying the ports in the Listen property, as shown below.

server.xml - <Server>

<Https> ..Certificate A.. </Https>
<Https Listen="*:543"> ..Certificate B.. </Https>
<Https Listen="*:544"> ..Certificate C.. </Https>

Though this is the most economical solution, there is the problem of having to specify the HTTPS port on all webpage
links.

Multi NIC

If the server has multiple NICs, a different IP can be assigned to each NIC. A different certificate will be installed for
each server IP, and STON will be configured to choose the certificate based on the IP accessed by the client. In STON,
the IP can be specified in the Listen property to allow multiple certificates to be configured.

server.xml - <Server>

<Https Listen="10.10.10.10"> ..Certificate A.. </Https>
<Https Listen="10.10.10.11"> ..Certificate B.. </Https>
<Https Listen="10.10.10.12"> ..Certificate C.. </Https>

This method is the most widely used.

Note: If configurations are made public, problems can be caused by knowledge of IP addresses. In this case, NIC
names can be used in place of IPs.

server.xml - <Server>

<Https Listen="eth0"> ... </Https>
<Https Listen="eth1"> ... </Https>
<Https Listen="eth2"> ... </Https>

3.6.6 Enabling Security Protocol

The protocol can be established for each <Https>.

server.xml - <Server>

<Https TLS1.2="ON" TLS1.1="ON" TLS1.0="ON" SSL3.0="ON"> ... </Https>

• TLS1.2 (default: ON) Uses TLS1.2.

• TLS1.1 (default: ON) Uses TLS1.1.

• TLS1.0 (default: ON) Uses TLS1.0.

• SSL3.0 (default: ON) Uses SSL3.0.

3.6. Chapter 9. HTTPS 75

STON Documentation, Release 2.3.4

3.6.7 HSTS

HSTS (HTTP Strict Transport Security) can be easily set up using Client Request/Response Header Modification.

/svc/www.example.com/headers.txt

*, $RES[Strict-Transport-Security: max-age=31536000; includeSubDomains], set

The Qualys SSL Server Test only returns an A+ rating for sites with HSTS enabled.

admin/img/qualys_a_plus.png

Fig. 3.18: STON can receive A+s starting from v2.2.

76 Chapter 3. 2. HTTP Caching

https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
https://www.ssllabs.com/ssltest/

CHAPTER 4

3. Advanced Features

4.1 Chapter 10. Monitoring & Statistics

This chapter will cover monitoring and statistics. While monitoring and statistics can be interpreted differently based
on how they are used, they are similar in that they both use numbers to describe the system.

The most important feature is that it updates in real time. It is important to be able to view real-time status updates,
and even a five-minute delay is too long. It is also important to know if the many policies are taking effect when they
are applied. All statistics are collected every second.

Statistics are collected for each virtual host and are provided in real time (every second), with an average being
provided every five minutes. The results are provided in JSON and XML formats for the users to analyze and process
the results easily.

http://127.0.0.1:10040/monitoring/realtime?type=[JSON or XML]
http://127.0.0.1:10040/monitoring/average?type=[JSON or XML]

• realtime Displays the service status from one second ago.

• average Displays the average of five minutes of statistics.

4.1.1 Data Range

The range of data to be collected can be configured.

server.xml - <Server><VHostDefault>
vhosts.xml - <Vhosts><Vhost>

<Stats>
<DirDepth>0</DirDepth>
<DirDepthAccum>OFF</DirDepthAccum>
<HttpsTraffic>OFF</HttpsTraffic>
<ClientLocal>OFF</ClientLocal>
<OriginLocal>OFF</OriginLocal>

</Stats>

• <DirDepth> (default: 0) Collects statistics for each directory. If set to zero, statistics will be col-
lected in the root (/) directory. If set to one, statistics will be collected in directories one level down.

Note: Though there is no limit to the value that can be set, collecting statistics for too many directories
can cause memory problems.

77

STON Documentation, Release 2.3.4

• <DirDepthAccum> Configures whether or not to accumulate statistics in the parent directory when collect-
ing the statistics for each directory. If <DirDepth> is set to zero, this setting is ignored.

– OFF (default) Statistics are not accumulated in the parent directory.

– ON Statistics are accumulated in the parent directory.

For example, let’s assume that <DirDepth> is set to two and all directories have ten lines of traffic. If
<DirDepthAccum> is set to OFF, then statistics will be collected in each directory where traffic occurs,
as shown in the left diagram. If set to ON, statistics from lower directories are accumulated in parent
directories, as shown in the right diagram.

Fig. 4.1: Accumulated statistics in the parent directory.

In this example, the sum of the traffic in the /img directory and its subdirectories is 30, which is accumu-
lated into the parent directory.

• <HttpsTraffic>

– OFF (default) HTTPS traffic is only collected in SSL statistics.

– ON HTTPS traffic is collected into both SSL and HTTP statistics.

Generally, traffic that passes through the SSL layer is stored separately as SSL statistics. However, HTTPS
will be processed as HTTP in upper protocols, so more detailed statistics can be collected. Because SSL
and HTTP statistics can overlap, it is recommended to only trust HTTP statistics.

• <ClientLocal> The traffic between the Loopback client and STON can be included in statistics.

– OFF (default) Will not be included.

– ON Will be included.

• <OriginLocal> The traffic between STON and the Loopback origin server will be included.

– OFF (default) Will not be included.

– ON Will be included.

4.1.2 Host Aggregate Statistics

Host statistics are the aggregate statistics of all the virtual hosts that run on the lowest level. The statistics can be
provided in JSON and XML formats.

{ <Host
"Host": Version="2.0.0"
{ Name="localhost"
"Version":"2.0.0", State="Healthy"
"Name":"localhost", Uptime="155986"
"State":"Healthy", OriginSession="32"
"Uptime":155996, OriginActiveSession="20"

78 Chapter 4. 3. Advanced Features

STON Documentation, Release 2.3.4

"OriginSession":33, OriginInbound="1140741"
"OriginActiveSession":20, OriginOutbound="10059"
"OriginInbound":688177, OriginReqCount="42"
"OriginOutbound":14184, OriginResTotalCount="42"
"OriginReqCount":62, OriginResTotalTimeRes="5071"
"OriginResTotalCount":62, OriginResTotalTimeComplete="10288"
"OriginResTotalTimeRes":2375, OriginRes2xxCount="19"
"OriginResTotalTimeComplete":2509, OriginRes2xxTimeRes="9989"
"OriginRes2xxCount":54, OriginRes2xxTimeComplete="21521"
"OriginRes2xxTimeRes":2327, OriginRes3xxCount="23"
"OriginRes2xxTimeComplete":2481, OriginRes3xxTimeRes="1008"
"OriginRes3xxCount":8, OriginRes3xxTimeComplete="1008"
"OriginRes3xxTimeRes":2700, OriginRes4xxCount="0"
"OriginRes3xxTimeComplete":2700, OriginRes4xxTimeRes="0"
"OriginRes4xxCount":0, OriginRes4xxTimeComplete="0"
"OriginRes4xxTimeRes":0, OriginRes5xxCount="0"
"OriginRes4xxTimeComplete":0, OriginRes5xxTimeRes="0"
"OriginRes5xxCount":0, OriginRes5xxTimeComplete="0"
"OriginRes5xxTimeRes":0, ClientSession="165"
"OriginRes5xxTimeComplete":0, ClientActiveSession="80"
"ClientSession":155, ClientInbound="14792"
"ClientActiveSession":80 ClientOutbound="1981700"
"ClientInbound":35748, ClientReqCount="64"
"ClientOutbound":972906, ClientResTotalCount="64"
"ClientReqCount":152, ClientResTotalTimeRes="5535"
"ClientResTotalCount":152, ClientResTotalTimeComplete="6840"
"ClientResTotalTimeRes":1411, ClientRes2xxCount="44"
"ClientResTotalTimeComplete":1479, ClientRes2xxTimeRes="8050"
"ClientRes2xxCount":93, ClientRes2xxTimeComplete="9943"
"ClientRes2xxTimeRes":2305, ClientRes3xxCount="20"
"ClientRes2xxTimeComplete":2409, ClientRes3xxTimeRes="5"
"ClientRes3xxCount":59, ClientRes3xxTimeComplete="15"
"ClientRes3xxTimeRes":3, ClientRes4xxCount="0"
"ClientRes3xxTimeComplete":13, ClientRes4xxTimeRes="0"
"ClientRes4xxCount":0, ClientRes4xxTimeComplete="0"
"ClientRes4xxTimeRes":0, ClientRes5xxCount="0"
"ClientRes4xxTimeComplete":0, ClientRes5xxTimeRes="0"
"ClientRes5xxCount":0, ClientRes5xxTimeComplete="0"
"ClientRes5xxTimeRes":0, RequestHitRatio="6923"
"ClientRes5xxTimeComplete":0, ByteHitRatio="4243">
"RequestHitRatio":6387, <HttpCountSum
"ByteHitRatio":2926, OriginReqCount="0"
"HttpCountSum" : OriginResTotalCount="0"
{ OriginRes2xxCount="0"

"OriginReqCount" : 0, OriginRes3xxCount="0"
"OriginResTotalCount" : 0, OriginRes4xxCount="0"
"OriginRes2xxCount" : 0, OriginRes5xxCount="0"
"OriginRes3xxCount" : 0, ClientReqCount="0"
"OriginRes4xxCount" : 0, ClientResTotalCount="0"
"OriginRes5xxCount" : 0, ClientRes2xxCount="0"
"ClientReqCount" : 0, ClientRes3xxCount="0"
"ClientResTotalCount" : 0, ClientRes4xxCount="0"
"ClientRes2xxCount" : 0, ClientRes5xxCount="0"/>
"ClientRes3xxCount" : 0, <HttpRequestHitSum
"ClientRes4xxCount" : 0, TCP_NONE="0"
"ClientRes5xxCount" : 0 TCP_HIT="0"

}, TCP_IMS_HIT="0"
"HttpRequestHitSum" : TCP_REFRESH_HIT="0"

4.1. Chapter 10. Monitoring & Statistics 79

STON Documentation, Release 2.3.4

{ TCP_REF_FAIL_HIT="0"
"TCP_NONE" : 0, TCP_NEGATIVE_HIT="0"
"TCP_HIT" : 0, TCP_REDIRECT_HIT="0"
"TCP_IMS_HIT" : 0, TCP_MISS="0"
"TCP_REFRESH_HIT" : 0, TCP_REFRESH_MISS="0"
"TCP_REF_FAIL_HIT" : 0, TCP_CLIENT_REFRESH_MISS="0"
"TCP_NEGATIVE_HIT" : 0, TCP_DENIED="0"
"TCP_REDIRECT_HIT" : 0, TCP_ERROR="0"/>
"TCP_MISS" : 0, <FileSystem>
"TCP_REFRESH_MISS" : 0, <RequestHitRatio>0</RequestHitRatio>
"TCP_CLIENT_REFRESH_MISS" : 0, <ByteHitRatio>0</ByteHitRatio>
"TCP_DENIED" : 0, <Outbound>0</Outbound>
"TCP_ERROR" : 0 <Session>0</Session>

}, </FileSystem>
"FileSystem": <System> ... </System>
{ <VirtualHost> ... </VirtualHost>

"RequestHitRatio":0, <VirtualHost> ... </VirtualHost>
"ByteHitRatio":0, <VirtualHost> ... </VirtualHost>
"Outbound":0, <View> ... </View>
"Session":0 <View> ... </View>

}, </Host>
"System":{ ... },
"VirtualHost": [...]
"View": [...]

}
}

• Version STON version.

• Name The host name. If not defined, the system name will be used.

• State Service status. (Healthy=Normal service, Inactive=Inactive license, Emergency)

• Uptime (unit: seconds) The service running time.

• OriginSession The number of origin sessions.

• OriginActiveSession The number of transmitting origin sessions.

• OriginInbound (unit: bytes, average) The amount of data received from the origin server.

• OriginReqCount (average) The amount of requests to the origin server.

• OriginOutbound (unit: bytes, average) The amount of data transmitted to the origin server.

• OriginResTotalCount (average) The number of responses from the origin server.

• OriginResTotalTimeRes (unit: 0.01 ms, average) The origin server response time (from
HTTP request to first HTTP response).

• OriginResTotalTimeComplete (unit: 0.01 ms, average) The origin server HTTP transac-
tion completion time (from HTTP request to HTTP response completion).

• OriginRes2xxCount (average) The number of 2xx responses from the origin server.

• OriginRes2xxTimeRes (unit: 0.01 ms, average) The origin server 2xx response time.

• OriginRes2xxTimeComplete (unit: 0.01 ms, average) The origin server 2xx transaction
completion time.

• OriginRes3xxCount (average) The number of 3xx responses from the origin server.

• OriginRes3xxTimeRes (unit: 0.01 ms, average) The origin server 3xx response time.

80 Chapter 4. 3. Advanced Features

STON Documentation, Release 2.3.4

• OriginRes3xxTimeComplete (unit: 0.01ms, average) The origin server 3xx transaction
completion time.

• OriginRes4xxCount (average) The number of 4xx responses from the origin server.

• OriginRes4xxTimeRes (unit: 0.01 ms, average) The origin server 4xx response time.

• OriginRes4xxTimeComplete (unit: 0.01ms, average) The origin server 4xx transaction
completion time.

• OriginRes5xxCount (average) The number of 5xx responses from the origin server.

• OriginRes5xxTimeRes (unit: 0.01 ms, average) The origin server 5xx response time.

• OriginRes5xxTimeComplete (unit: 0.01 ms, average) The origin server 5xx transaction
completion time.

• ClientSession The number of client sessions.

• ClientActiveSession The number of transmitting client sessions.

• ClientInbound (unit: bytes, average) The amount of inbound data from clients.

• ClientOutbound (unit: bytes, average) The amount of outbound data to clients.

• ClientReqCount (average) The number of client requests.

• ClientResTotalCount (average) The number of client responses.

• ClientResTotalTimeRes (unit: 0.01 ms, average) The client response time (from HTTP re-
quest to first HTTP response).

• ClientResTotalTimeComplete (unit: 0.01 ms, average) The client HTTP transaction
completion time (from HTTP request to HTTP response completion).

• ClientRes2xxCount (average) The number of 2xx responses from the client.

• ClientRes2xxTimeRes (unit: 0.01 ms, average) The client 2xx response time.

• ClientRes2xxTimeComplete (unit: 0.01 ms, average) The client 2xx transaction comple-
tion time.

• ClientRes3xxCount (average) The number of 3xx responses from the client.

• ClientRes3xxTimeRes (unit: 0.01 ms, average) The client 3xx response time.

• ClientRes3xxTimeComplete (unit: 0.01 ms, average) The client 3xx transaction comple-
tion time.

• ClientRes4xxCount (average) The number of 4xx responses from the client.

• ClientRes4xxTimeRes (unit: 0.01 ms, average) The client 4xx response time.

• ClientRes4xxTimeComplete (unit: 0.01 ms, average) The client 4xx transaction comple-
tion time.

• ClientRes5xxCount (average) The number of 5xx responses from the client.

• ClientRes5xxTimeRes (unit: 0.01 ms, average) The client 5xx response time.

• ClientRes5xxTimeComplete (unit: 0.01 ms, average) The client 5xx transaction comple-
tion time.

• RequestHitRatio (unit: 0.01%, average) Hit ratio. If a caching object is created and the cor-
responding object is initialized, it is considered a hit. On the other hand, if the caching object is missing or the
object is not initialized from the origin server, it does not count as a hit. The response code is unrelated to the
hit ratio.

4.1. Chapter 10. Monitoring & Statistics 81

STON Documentation, Release 2.3.4

Fig. 4.2: HTTP and File I/O share the virtual host.

The RequestHitRatio of File I/O accessed via Apache will become 0%. The HTTP server, however, accesses
cached files due to File I/O, making the RequestHitRatio 100%. ByteHitRatio is calculated as the ratio of the
origin inbound to either HTTP outbound or File I/O outbound.

• ByteHitRatio (unit: 0.01%, average) The transfer ratio of the origin server to the client.

(Client Outbound - Origin Server Inbound) / Client Outbound

If the origin server is much faster or the client session closes quickly, then the total ratio can become a negative
value.

• FileSystem Independent FileSystem statistics that do not count other stat values.

– RequestHitRatio (unit: 0.01%, average) Hit ratio based on File I/O.

– ByteHitRatio (unit: 0.01%, average) Transfer ratio of origin server to File I/O.

– Outbound (unit: bytes, average) Size of data that goes through File I/O.

– Session (average) The number of threads in the File I/O process.

Note: These statistics are only provided in five-minute increments.

• HttpCountSum The total number of HTTP transactions.

• HttpRequestHitSum The cache hit results.

4.1.3 System Statistics

The statistics of the system and global resources can be provided in JSON and XML formats.

"System": <System>
{ <CPU

"CPU": Kernel="689"
{ User="1316"
"Kernel":689, Idle="7993"
"User":1316, ProcKernel="570"
"Idle":7993, ProcUser="1216"
"ProcKernel":570, Nice="0"
"ProcUser":1216, IOWait="52"
"Nice":0, IRQ="10"
"IOWait":52, SoftIRQ="12"
"IRQ":10, Steal="0" />

82 Chapter 4. 3. Advanced Features

STON Documentation, Release 2.3.4

"SoftIRQ":12, <Mem Free="5914644" STON="9785800"/>
"Steal":0 <Storage>

}, <Disk
"Mem": Path="/cache1"
{ Status="Normal"
"Free":5914644, Read="23"
"STON":9785800 ReadMerged="0"

}, ReadSectors="344"
"Storage": ReadTime="117"
{ Write="24"
"Disk": WriteMerged="93"
[WriteSectors="936"

{ WriteTime="256"
"Path":"/cache1", IOProgress="0"
"Status":"Normal", IOTime="173"
"Read":23, IOWeightedTime="373"/>
"ReadMerged":0, <Disk
"ReadSectors":344, Path="/cache2"
"ReadTime":117, Status="Normal"
"Write":24, Read="27"
"WriteMerged":93, ReadMerged="1"
"WriteSectors":936, ReadSectors="488"
"WriteTime":256, ReadTime="144"
"IOProgress":0, Write="24"
"IOTime":173, WriteMerged="86"
"IOWeightedTime":373 WriteSectors="880"

}, WriteTime="254"
{ IOProgress="0"

"Path":"/cache2", IOTime="189"
"Status":"Normal", IOWeightedTime="380"/>
"Read":27, </Storage>
"ReadMerged":1, <ServerSocket
"ReadSectors":488, Total="42"
"ReadTime":144, Established="2"
"Write":24, Accepted="1"
"WriteMerged":86, Closed="0"/>
"WriteSectors":880, <ClientSocket
"WriteTime":254, Total="1"
"IOProgress":0, Established="0"
"IOTime":189, Connected="0"
"IOWeightedTime":380 Closed="0"/>

} <TCPSocket
] Established="30"

}, Timewait="2"
"ServerSocket": Orphan="0"
{ Alloc="0"
"Total":42, Mem="20"/>
"Established":1, <EQ>0</EQ>
"Accepted":0, <RQ>1000000</RQ>
"Closed":0 <WaitingFiles2Write>0</WaitingFiles2Write>

}, <ServiceAccess Allow="60" Deny="2"/>
"ClientSocket": <SystemLoadAverage Min1="0" Min5="0" Min15="0"/>
{ <URLRewrite>57</URLRewrite>
"Total":1, </System>
"Established":0,
"Connected":0,
"Closed":0

},

4.1. Chapter 10. Monitoring & Statistics 83

STON Documentation, Release 2.3.4

"TCPSocket":
{
"Established":30,
"Timewait":2,
"Orphan":0,
"Alloc":0,
"Mem":20

},
"EQ":0,
"RQ":1000000,
"WaitingFiles2Write":0,
"ServiceAccess":{"Allow":60, "Deny":2}
"SystemLoadAverage":
{
"Min1":0,
"Min5":0,
"Min15":0

},
"URLRewrite":57

}

• CPU (unit: 0.01%) CPU usage. Total CPU usage can be calculated by Kernel + User.

– Kernel CPU (Kernel) usage.

– User CPU (User) usage.

– Idle Idle CPU.

– ProcKernel CPU (Kernel) usage by STON.

– ProcUser CPU (User) usage by STON.

– Nice Time spent running ‘niced’ user processes.

– IOWait Time spent waiting for I/O to complete.

– IRQ Time spent servicing interrupts.

– SoftIRQ Time spent servicing software interrupts.

– Steal Time spent while other CPUs are serviced.

• Mem (unit: bytes) Memory usage.

– Free Size of free memory in the system.

– STON Size of memory used by STON.

• Disk Disk performance stats.

– Path Disk path.

– Status Disk status (Normal: normal, Invalid: excluded due to failure, Unmounted: unmounted by ad-
ministrator).

– Read The number of successful reads.

– ReadMerged The number of merged reads.

– ReadSectors The number of read sectors.

– ReadTime (unit: ms) The elapsed time per read.

– Write The number of successful writes.

84 Chapter 4. 3. Advanced Features

STON Documentation, Release 2.3.4

– WriteMerged The number of merged writes.

– WriteSectors The number of written sectors.

– WriteTime (unit: ms) The elapsed time per write.

– IOProgress The number of running I/Os.

– IOTime (unit: ms) The elapsed time per I/O.

– IOWeightedTime (unit: ms) The elapsed time per I/O (weight applied).

• ServerSocket Server socket (between client and STON) information.

– Total The total number of server sockets.

– Established The number of connected server sockets.

– Accepted The number of newly connected server sockets.

– Closed The number of closed server sockets.

• ClientSocket Client socket (between STON and the origin server) information.

– Total The total number of client sockets.

– Established The number of connected client sockets.

– Connected The number of newly connected client sockets.

– Closed The number of closed client sockets.

• TCPSocket TCP status information provided by the system (OS).

– Established The number of established status TCP connections.

– Timewait The number of TIME_WAIT status TCP connections.

– Orphan The number of orphaned TCP connections (not attached to a file handle).

– Alloc The number of allocated TCP sockets.

– Mem The amount of memory used by TCP sockets.

• EQ The number of unprocessed events in the STON Framework.

• RQ The number of events saved in the recently serviced content reference queue.

• WaitingFiles2Write The number of disk write pending files.

• ServiceAccess The number of sockets allowed and denied by ServiceAccess.

• SystemLoadAverage The 1/5/15 minute average of the System Load Average.

• URLRewrite The number of successful conversions made by the URL preprocessor.

4.1.4 Virtual Host Statistics

Statistics are provided for each virtual host. There are four types of virtual host statistics: HTTP transfer (per direc-
tory), URL bypass, port bypass, and SSL.

"VirtualHost": <VirtualHost
[Name="image.11st.co.kr"

{ Uptime="155956"
"Name":"image.11st.co.kr", OriginSession="12"
"Uptime":155966, OriginActiveSession="6"
"OriginSession":12, OriginInbound="106914"

4.1. Chapter 10. Monitoring & Statistics 85

STON Documentation, Release 2.3.4

"OriginActiveSession":6, OriginOutbound="3238"
"OriginInbound":169, OriginReqCount="42"
"OriginOutbound":269, OriginResTotalCount="13"
"OriginReqCount":62, OriginResTotalTimeRes="1553"
"OriginResTotalCount":1, OriginResTotalTimeComplete="6630"
"OriginResTotalTimeRes":3300, OriginRes2xxCount="1"
"OriginResTotalTimeComplete":3300, OriginRes2xxTimeRes="3300"
"OriginRes2xxCount":0, OriginRes2xxTimeComplete="69300"
"OriginRes2xxTimeRes":0, OriginRes3xxCount="12"
"OriginRes2xxTimeComplete":0, OriginRes3xxTimeRes="1408"
"OriginRes3xxCount":1, OriginRes3xxTimeComplete="1408"
"OriginRes3xxTimeRes":3300, OriginRes4xxCount="0"
"OriginRes3xxTimeComplete":3300, OriginRes4xxTimeRes="0"
"OriginRes4xxCount":0, OriginRes4xxTimeComplete="0"
"OriginRes4xxTimeRes":0, OriginRes5xxCount="0"
"OriginRes4xxTimeComplete":0, OriginRes5xxTimeRes="0"
"OriginRes5xxCount":0, OriginRes5xxTimeComplete="0"
"OriginRes5xxTimeRes":0, ClientSession="30"
"OriginRes5xxTimeComplete":0, ClientActiveSession="12"
"ClientSession":26, ClientInbound="4113"
"ClientActiveSession":16, ClientOutbound="895937"
"ClientInbound":13968, ClientReqCount="64"
"ClientOutbound":110398, ClientResTotalCount="18"
"ClientReqCount":152, ClientResTotalTimeRes="666"
"ClientResTotalCount":52, ClientResTotalTimeComplete="4377"
"ClientResTotalTimeRes":94, ClientRes2xxCount="10"
"ClientResTotalTimeComplete":107, ClientRes2xxTimeRes="1200"
"ClientRes2xxCount":1, ClientRes2xxTimeComplete="7870"
"ClientRes2xxTimeRes":4700, ClientRes3xxCount="8"
"ClientRes2xxTimeComplete":4800, ClientRes3xxTimeRes="0"
"ClientRes3xxCount":51, ClientRes3xxTimeComplete="12"
"ClientRes3xxTimeRes":3, ClientRes4xxCount="0"
"ClientRes3xxTimeComplete":15, ClientRes4xxTimeRes="0"
"ClientRes4xxCount":0, ClientRes4xxTimeComplete="0"
"ClientRes4xxTimeRes":0, ClientRes5xxCount="0"
"ClientRes4xxTimeComplete":0, ClientRes5xxTimeRes="0"
"ClientRes5xxCount":0, ClientRes5xxTimeComplete="0"
"ClientRes5xxTimeRes":0, RequestHitRatio="10000"
"ClientRes5xxTimeComplete":0, ByteHitRatio="8806">
"RequestHitRatio":10000, <FileSystem>
"ByteHitRatio":9984, <RequestHitRatio>0</RequestHitRatio>
"FileSystem": <ByteHitRatio>0</ByteHitRatio>
{ <Outbound>0</Outbound>

"RequestHitRatio":0, <Session>0</Session>
"ByteHitRatio":0, </FileSystem>
"Outbound":0, <Memory>784786700</Memory>.
"Session":0 <SecuredMemory>0</SecuredMemory>.

}, <Disk> ... </Disk>
"Memory":785740769, <Session> ... </Session>
"SecuredMemory":0, <Dims> ... </Dims>
"Disk": { ... }, <Compression> ... </Compression>
"Session": { ... }, <File Total="458278" Opened="15" Instance="458292"/>
"Dims": { ... }, <Cached> ... </Cached>
"Compression": { ... }, <CacheFileEvent> ... </CacheFileEvent>
"FileTotal":458308, <WaitingFiles2Delete>1087593</WaitingFiles2Delete>
"FileOpened":15, <CacheFileEvent Create=\"%u\" Swap=\"%u\" Erase=\"%u\" Purge=\"%u\" Expire=\"%u\" />
"FileInstance":458320, <ClientHttpReqBypass Sum="8100">27</ClientHttpReqBypass>
"Cached": { ... }, <ClientHttpReqDenied Sum="400">1</ClientHttpReqDenied>

86 Chapter 4. 3. Advanced Features

STON Documentation, Release 2.3.4

"CacheFileEvent": { ... }, <OriginTraffic> ... </OriginTraffic>
"WaitingFiles2Delete":1087595, <PortBypass> ... </PortBypass>
"ClientHttpReqBypassSum":8100, <ClientTraffic> ... </ClientTraffic>
"ClientHttpReqBypass":27, <UrlBypass> ... </UrlBypass>
"ClientHttpReqDeniedSum":400, </VirtualHost>
"ClientHttpReqDenied":1, <VirtualHost> ... </VirtualHost>
"OriginTraffic": { ... }, <VirtualHost> ... </VirtualHost>
"PortBypass": { ... }, <VirtualHost> ... </VirtualHost>
"ClientTraffic": { ... },
"UrlBypass": { ... }

},
...

]

Note: The values will be the same as host statistics from Name to FileSystem.

• Memory (unit: bytes) The amount of content loaded into memory.

• SecuredMemory (unit: bytes) The amount of content deleted from memory.

• Disk Disk information.

• Session Session information.

• Dims DIMS conversion statistics.

• Compression Compression statistics.

• FileTotal The total number of files.

• FileOpened The number of opened local files.

• FileInstance The number of caching files.

• Cached Caching information.

• CacheFileEvent A caching file event.

• WaitingFiles2Delete The number of files pending deletion.

• ClientHttpReqBypass The number of bypassed client HTTP requests.

• ClientHttpReqDenied The number of denied HTTP requests.

• OriginTraffic Origin server traffic statistics.

• PortBypass Port bypass traffic statistics.

• ClientTraffic Client traffic statistics.

• UrlBypass HTTP traffic statistics bypassed to the origin server via URL matching or
<BypassNoCacheRequest>.

Note: These statistics are only provided in five-minute increments.

• ClientHttpReqBypassSum The total number of bypassed HTTP requests.

• ClientHttpReqDeniedSum The total number of denied HTTP requests.

4.1. Chapter 10. Monitoring & Statistics 87

STON Documentation, Release 2.3.4

Disk Statistics

Provides disk statistics used by virtual hosts.

"Disk": <Disk>
{ <TotalSize>22003701435</TotalSize>

"TotalSize":22004057982, <Create>1</Create>
"Create":0, <Open>10</Open>
"Open":1, <Delete>0</Delete>
"Delete":0, <ReadCount>9</ReadCount>
"ReadCount":1, <ReadSize>735726</ReadSize>
"ReadSize":104744, <WriteCount>1</WriteCount>
"WriteCount":0, <WriteSize>157145</WriteSize>
"WriteSize":0, <Distribution
"Distribution": U1K="45725"
{ U2K="192523"
"U1K="45725, U4K="137055"
"U2K="192523, U8K="39740"
"U4K="137055, U16K="13408"
"U8K="39740, U32K="12303"
"U16K="13408, U64K="11462"
"U32K="12303, U128K="2560"
"U64K="11462, U256K="22"
"U128K="2560, U512K="0"
"U256K="22, U1M="45725"
"U512K="0, U2M="192523"
"U1M="45725, U4M="137055"
"U2M="192523, U8M="39740"
"U4M="137055, U16M="13408"
"U8M="39740, U32M="12303"
"U16M="13408, U64M="11462"
"U32M="12303, U128M="2560"
"U64M="11462, U256M="22"
"U128M="2560, U512M="0"
"U256M="22, U1G="0"
"U512M="0, U2G="0"
"U1G="0, U4G="0"
"U2G="0, U8G="0"
"U4G="0, U16G="0"
"U8G="0, O16G="0" />
"U16G":0, </Disk>
"O16G":0

}
}

• TotalSize (unit: bytes) The total size of local files.

• Create The number of created local files.

• Open The number of opened local files.

• Delete The number of deleted local files.

• ReadCount The number of times a local file is read.

• ReadSize (unit: bytes) The total size of read local files.

• WriteCount The number of times a local file is written.

• WriteSize (unit: bytes) The total size of written local files.

88 Chapter 4. 3. Advanced Features

STON Documentation, Release 2.3.4

• Distribution Distribution of local files based on size.

– U1K The number of files under 1 KB.

– U2K The number of files under 2 KB.

– U4K The number of files under 4 KB.

– U8K The number of files under 8 KB.

– U16K The number of files under 16 KB.

– U32K The number of files under 32 KB.

– U64K The number of files under 64 KB.

– U128K The number of files under 128 KB.

– U256K The number of files under 256 KB.

– U512K The number of files under 512 KB.

– U1M The number of files under 1 MB.

– U2M The number of files under 2 MB.

– U4M The number of files under 4 MB.

– U8M The number of files under 8 MB.

– U16M The number of files under 16 MB.

– U32M The number of files under 32 MB.

– U64M The number of files under 64 MB.

– U128M The number of files under 128 MB.

– U256M The number of files under 256 MB.

– U512M The number of files under 512 MB.

– U1G The number of files under 1 GB.

– U2G The number of files under 2 GB.

– U4G The number of files under 4 GB.

– U8G The number of files under 8 GB.

– U16G The number of files under 16 GB.

– O16G The number of files over 16 GB.

Session Statistics

Provides the session statistics.

"Session": <Session
{ Client="30"

"Client":30, ActiveClient="20"
"ActiveClient":20, Origin="12"
"Origin":12, ActiveOrigin="7" />
"ActiveOrigin":7

},

• Client The number of total HTTP client sessions.

4.1. Chapter 10. Monitoring & Statistics 89

STON Documentation, Release 2.3.4

• ActiveClient The number of transmitting sessions among HTTP clients.

• Origin The number of total origin server sessions.

• ActiveOrigin The number of transmitting sessions among origin server sessions.

DIMS Statistics

Provides DIMS performance statistics.

"Dims": <Dims
{ Requests="30"

"Requests": 30, Converted="29"
"Converted": 29, Failed="1"
"Failed": 1, AvgSrcSize="1457969"
"AvgSrcSize": 1457969, AvgDestSize="598831"
"AvgDestSize": 598831, AvgTime="34" />
"AvgTime": 34

},

• Requests The number of conversion requests.

• Converted The number of conversion successes.

• Failed The number of conversion failures.

• AvgSrcSize (unit: bytes) The average size of source images.

• AvgDestSize (unit: bytes) The average size of converted images.

• AvgTime (unit: ms) The elapsed time for conversion.

Compression Statistics

Provides compression performance statistics.

"Compression": <Compression
{ Requests="30"

"Requests": 30, Converted="29"
"Converted": 29, Failed="1"
"Failed": 1, AvgSrcSize="1457969"
"AvgSrcSize": 1457969, AvgDestSize="598831"
"AvgDestSize": 598831, AvgTime="34" />
"AvgTime": 34

},

• Requests The number of compression requests.

• Converted The number of compression statistics.

• Failed The number of compression failures.

• AvgSrcSize (unit: bytes) The average size of source files.

• AvgDestSize (unit: bytes) The average size of compressed files.

• AvgTime (unit: ms) The elapsed time for compression.

90 Chapter 4. 3. Advanced Features

STON Documentation, Release 2.3.4

Origin Server Statistics

Provides statistics for the traffic between STON and the origin server.

"OriginTraffic": <OriginTraffic>
{ <HttpReqCount Sum="600">2</HttpReqCount>

"HttpReqCountSum":0, <HttpReqHeaderSize>3238</HttpReqHeaderSize>
"HttpReqCount":0, <HttpReqBodySize>0</HttpReqBodySize>
"HttpReqHeaderSize":269, <HttpResHeaderSize>2020</HttpResHeaderSize>
"HttpReqBodySize":0, <HttpResBodySize>104894</HttpResBodySize>
"HttpResHeaderSize":169, <Response>
"HttpResBodySize":0, <ResTotal>
"Response": <Count Sum="8100">13</Count>
{ <Completed Sum="8100">12</Completed>
"ResTotal": <TimeRes>1553</TimeRes>
{ <TimeComplete>6630</TimeComplete>

"CountSum":0, </ResTotal>
"Count":1, <Res2xx>
"CompletedSum":0, <Count Sum="8100">1</Count>
"Completed":1, <Completed Sum="8100">1</Completed>
"TimeRes":3300, <TimeRes>3300</TimeRes>
"TimeComplete":3300 <TimeComplete>69300</TimeComplete>

}, </Res2xx>
"Res2xx": <Res3xx>
{ <Count Sum="8100">12</Count>

"CountSum":0, <Completed Sum="8100">11</Completed>
"Count":0, <TimeRes>1408</TimeRes>
"CompletedSum":0, <TimeComplete>1408</TimeComplete>
"Completed":0, </Res3xx>
"TimeRes":0, <Res4xx>
"TimeComplete":0 <Count Sum="8100">0</Count>

}, <Completed Sum="8100">0</Completed>
"Res3xx": <TimeRes>0</TimeRes>
{ <TimeComplete>0</TimeComplete>

"CountSum":0, </Res4xx>
"Count":1, <Res5xx>
"CompletedSum":0, <Count Sum="8100">0</Count>
"Completed":1, <Completed Sum="8100">0</Completed>
"TimeRes":3300, <TimeRes>0</TimeRes>
"TimeComplete":3300 <TimeComplete>0</TimeComplete>

}, </Res5xx>
"Res4xx": <ConnectTimeout Sum="8100">0</ConnectTimeout>
{ <ReceiveTimeout Sum="8100">0</ReceiveTimeout>

"CountSum":0, <Close Sum="8100">0</Close>
"Count":0, </Response>
"CompletedSum":0, <Connect>
"Completed":0, <Count>0</Count>
"TimeRes":0, <AvgDNSQueryTime>0</AvgDNSQueryTime>
"TimeComplete":0 <AvgConnTime>0</AvgConnTime>

}, </Connect>
"Res5xx": </OriginTraffic>
{

"CountSum":0,
"Count":0,
"CompletedSum":0,
"Completed":0,
"TimeRes":0,
"TimeComplete":0

},

4.1. Chapter 10. Monitoring & Statistics 91

STON Documentation, Release 2.3.4

"ConnectTimeoutSum":0,
"ConnectTimeout":0,
"ReceiveTimeoutSum":0,
"ReceiveTimeout":0,
"CloseSum":0,
"Close":0

},
"Connect":
{
"Count":0,
"AvgDNSQueryTime":0,
"AvgConnTime":0

}
},

• HttpReqCount The number of HTTP requests sent to the origin server.

• HttpReqHeaderSize (unit: bytes) The size of the HTTP header sent to the origin server.

• HttpReqBodySize (unit: bytes) The size of the HTTP body sent to the origin server.

• HttpResHeaderSize (unit: bytes) The size of the HTTP header received by the origin server.

• HttpResBodySize (unit: bytes) The size of the HTTP body received by the origin server.

• Response The responses from the origin server.

– ResXXX The statistics for the type of response (2xx, 3xx, 4xx, 5xx, total).

* Count The number of responses.

* Completed The number of properly transferred HTTP transactions.

* TimeRes The HTTP response time.

* TimeComplete The completion time for HTTP transactions.

– ConnectTimeout The number of connection failures.

– ReceiveTimeout The number of transmission delays.

– Close The number of times the origin server closes the socket during transmissions.

• Connect Origin server connection statistics.

– Count The number of connections.

– AvgDNSQueryTime (unit: 0.01 ms) The average DNS query time.

– AvgConnTime (unit: 0.01 ms) The average connection time (from TCP SYN transmission to
TCP SYN ACK reception).

Note: These statistics are only provided in five-minute increments.

• HttpReqCountSum The total number of HTTP requests.

• CountSum The total number of HTTP responses.

• CompletedSum The total number of completed HTTP transactions.

• ConnectTimeoutSum The total number of origin server connection failures.

• ReceiveTimeoutSum The total number of origin server transmission delays.

• CloseSum The total number of connections closed by the origin server.

92 Chapter 4. 3. Advanced Features

STON Documentation, Release 2.3.4

Port Bypass Statistics

Provides statistics on traffic from <PortBypass>

"PortBypass": <PortBypass SrcPort="1935" DestPost="1935">
[<Session>0</Session>

{ <Hit Established="0"
"SrcPort":1935, "DestPort":1935, "Session":0, ClientClosed="0"
"Hit": OriginClosed="0"
{ OriginCT="0" />

"Established":0, "ClientClosed":0, <ClientTraffic In="0" Out="0"/>
"OriginClosed":0, "OriginCT":0 <OriginTraffic In="0" Out="0"/>

}, </PortBypass>
"ClientTraffic": { "In":0, "Out":0 }, <PortBypass SrcPort="1936" DestPost="1936">
"OriginTraffic": { "In":0, "Out":0 } <Session>17</Session>

}, ...
{ </PortBypass>
"SrcPort":1936, "DestPort":1936, "Session":17,
...

}
],

• SrcPort/DestPort The bypassed STON/origin server port.

• Session The number of currently connected sessions.

• Hit Bypass connection statistics.

– Established The number of established connections.

– ClientClosed The number of connections closed by clients.

– OriginClosed The number of connections closed by the origin server.

– OriginCT The number of origin server connection failures.

• ClientTraffic (unit: bytes) Client traffic (In=Inbound, Out=Outbound).

• OriginTraffic (unit: bytes) Origin server traffic (In=Inbound, Out=Outbound).

Client Statistics

Client traffic can be portrayed in Traffic in multiple ways depending on the statistics configuration for each direc-
tory. If directory statistics have not been configured, all traffic will be counted as the root (/) directory. If they have
been configured, only the root directory and directories with traffic will be displayed.

"ClientTraffic": <ClientTraffics Depth="0" Accum="OFF" HttpsTraffic="OFF">
{ <TrafficCount>1</TrafficCount>

"Depth":0, <Traffic RequestHitRatio="0">
"Accum":"OFF", <Path>/</Path>
"HttpsTraffic":"OFF", <HttpReqCount Sum="0">0</HttpReqCount>
"TrafficCount":1, <HttpReqHeaderSize>4113</HttpReqHeaderSize>
"Traffic": <HttpReqBodySize>0</HttpReqBodySize>
[<HttpResHeaderSize>3066</HttpResHeaderSize>
{ <HttpResBodySize>892871</HttpResBodySize>

"RequestHitRatio" : 9984, <Response>
"Path":"/", <ResTotal>
"HttpReqCountSum":0, <Count Sum="0">18</Count>
"HttpReqCount":100, <Completed Sum="0">18</Completed>
"HttpReqHeaderSize":13968, <TimeRes>666</TimeRes>
"HttpReqBodySize":0, <TimeComplete>4377</TimeComplete>

4.1. Chapter 10. Monitoring & Statistics 93

STON Documentation, Release 2.3.4

"HttpResHeaderSize":5654, </ResTotal>
"HttpResBodySize":104744, <Res2xx>
"Response": <Count Sum="0">10</Count>
{ <Completed Sum="0">10</Completed>

"ResTotal": <TimeRes>1200</TimeRes>
{ <TimeComplete>7870</TimeComplete>
"CountSum":0, </Res2xx>
"Count":52, <Res3xx>
"CompletedSum":0, <Count Sum="0">8</Count>
"Completed":52, <Completed Sum="0">8</Completed>
"TimeRes":94, <TimeRes>0</TimeRes>
"TimeComplete":107 <TimeComplete>12</TimeComplete>

}, </Res3xx>
"Res2xx": <Res4xx>
{ <Count Sum="0">0</Count>
"CountSum":0, <Completed Sum="0">0</Completed>
"Count":1, <TimeRes>0</TimeRes>
"CompletedSum":0, <TimeComplete>0</TimeComplete>
"Completed":1, </Res4xx>
"TimeRes":4700, <Res5xx>
"TimeComplete":4800 <Count Sum="0">0</Count>

}, <Completed Sum="0">0</Completed>
"Res3xx": <TimeRes>0</TimeRes>
{ <TimeComplete>0</TimeComplete>
"CountSum":0, </Res5xx>
"Count":51, </Response>
"CompletedSum":0, <SSL RecvSize="0" SendSize="0"/>
"Completed":51, <RequestHit
"TimeRes":3, TCP_NONE="0"
"TimeComplete":15 TCP_HIT="0"

}, TCP_IMS_HIT="0"
"Res4xx": TCP_REFRESH_HIT="0"
{ TCP_REF_FAIL_HIT="0"
"CountSum":0, TCP_NEGATIVE_HIT="0"
"Count":0, TCP_REDIRECT_HIT="0"
"CompletedSum":0, TCP_MISS="0"
"Completed":0, TCP_REFRESH_MISS="0"
"TimeRes":0, TCP_CLIENT_REFRESH_MISS="0"
"TimeComplete":0 TCP_DENIED="0"

}, TCP_ERROR="0"/>
"Res5xx": <RequestHitSum
{ TCP_NONE="0"
"CountSum":0, TCP_HIT="0"
"Count":0, TCP_IMS_HIT="0"
"CompletedSum":0, TCP_REFRESH_HIT="0"
"Completed":0, TCP_REF_FAIL_HIT="0"
"TimeRes":0, TCP_NEGATIVE_HIT="0"
"TimeComplete":0 TCP_REDIRECT_HIT="0"

} TCP_MISS="0"
}, TCP_REFRESH_MISS="0"
"SSL": TCP_CLIENT_REFRESH_MISS="0"
{ TCP_DENIED="0"

"RecvSize":0, TCP_ERROR="0"/>
"SendSize":0 </Traffic>

}, <FileSystem>
"RequestHit": <GetAttr
{ TimeRes="0"

"TCP_NONE":0, FileCount="0"

94 Chapter 4. 3. Advanced Features

STON Documentation, Release 2.3.4

"TCP_HIT":0, DirCount="0"
"TCP_IMS_HIT":0, FailCount="0">0</GetAttr>
"TCP_REFRESH_HIT":0, <Open TimeRes="0">0</Open>
"TCP_REF_FAIL_HIT":0, <Read
"TCP_NEGATIVE_HIT":0, TimeRes="0"
"TCP_REDIRECT_HIT":0, BufferSize="0"
"TCP_MISS":0, BufferFilled="0">0</Read>
"TCP_REFRESH_MISS":0, <RequestHit
"TCP_CLIENT_REFRESH_MISS":0, TCP_NONE="0"
"TCP_DENIED":0, TCP_HIT="0"
"TCP_ERROR":0 TCP_IMS_HIT="0"

}, TCP_REFRESH_HIT="0"
"RequestHitSum": TCP_REF_FAIL_HIT="0"
{ TCP_NEGATIVE_HIT="0"

"TCP_NONE":0, TCP_REDIRECT_HIT="0"
"TCP_HIT":0, TCP_MISS="0"
"TCP_IMS_HIT":0, TCP_REFRESH_MISS="0"
"TCP_REFRESH_HIT":0, TCP_CLIENT_REFRESH_MISS="0"
"TCP_REF_FAIL_HIT":0, TCP_DENIED="0"
"TCP_NEGATIVE_HIT":0, TCP_ERROR="0"/>
"TCP_REDIRECT_HIT":0, <RequestHitSum
"TCP_MISS":0, TCP_NONE="0"
"TCP_REFRESH_MISS":0, TCP_HIT="0"
"TCP_CLIENT_REFRESH_MISS":0, TCP_IMS_HIT="0"
"TCP_DENIED":0, TCP_REFRESH_HIT="0"
"TCP_ERROR":0 TCP_REF_FAIL_HIT="0"

}, TCP_NEGATIVE_HIT="0"
"FileSystem": TCP_REDIRECT_HIT="0"
{ TCP_MISS="0"

"GetAttr" : TCP_REFRESH_MISS="0"
{ TCP_CLIENT_REFRESH_MISS="0"
"TimeRes" : 0, TCP_DENIED="0"
"FileCount" : 0, TCP_ERROR="0"/>
"DirCount" : 0, </FileSystem>
"FailCount" : 0, </ClientTraffics>
"TotalCount" : 0

},
"Open" :
{
"TimeRes" : 0,
"Count" : 0

},
"Read" :
{
"TimeRes" : 0,
"BufferSize" : 0,
"BufferFilled" : 0,
"Count" : 0

},
"RequestHit":
{
"TCP_NONE":0,
"TCP_HIT":0,
"TCP_IMS_HIT":0,
"TCP_REFRESH_HIT":0,
"TCP_REF_FAIL_HIT":0,
"TCP_NEGATIVE_HIT":0,
"TCP_REDIRECT_HIT":0,

4.1. Chapter 10. Monitoring & Statistics 95

STON Documentation, Release 2.3.4

"TCP_MISS":0,
"TCP_REFRESH_MISS":0,
"TCP_CLIENT_REFRESH_MISS":0,
"TCP_DENIED":0,
"TCP_ERROR":0

},
"RequestHitSum":
{
"TCP_NONE":0,
"TCP_HIT":0,
"TCP_IMS_HIT":0,
"TCP_REFRESH_HIT":0,
"TCP_REF_FAIL_HIT":0,
"TCP_NEGATIVE_HIT":0,
"TCP_REDIRECT_HIT":0,
"TCP_MISS":0,
"TCP_REFRESH_MISS":0,
"TCP_CLIENT_REFRESH_MISS":0,
"TCP_DENIED":0,
"TCP_ERROR":0

}
}

}
]

}

• Depth The directory depth for statistics to be collected.

• Accum Whether or not directory statistics are accumulated in parent directories.

• HttpsTraffic Whether or not HTTPS traffic is included in HTTP traffic.

• TrafficCount The aggregated traffic count.

• Traffic Statistics for each directory. The root (/) always has traffic.

– Path The service directory.

– HttpReqCount (unit: bytes) The number of HTTP requests sent by clients.

– HttpReqHeaderSize (unit: bytes) The size of HTTP request headers sent by clients.

– HttpReqBodySize (unit: bytes) The size of HTTP request bodies sent by clients.

– HttpResHeaderSize (unit: bytes) The size of HTTP response headers sent by STON.

– HttpResBodySize (unit: bytes) The size of HTTP response bodies sent by STON.

– Response Responses sent by STON.

* Count The number of responses.

* Completed The number of properly completed HTTP transactions.

* TimeRes The HTTP response time.

* TimeComplete The HTTP transaction completion time.

• SSL (unit: bytes) HTTPS traffic (RecvSize=received size, SendSize=transmitted size).

• RequestHit The cache HIT result.

• FileSystem FileSystem access.

96 Chapter 4. 3. Advanced Features

STON Documentation, Release 2.3.4

– GetAttr The getattr function call count and response time (FileCount: File response, DirCount: Dir
response, FailCount: failure response).

– Open The open function call count and response time.

– Read The read function call count, response time, requested size (BufferSize), and response size (Buffer-
Filled).

– RequestHit (File I/O access) The cache HIT result.

Note: These statistics are only provided in five-minute increments.

• HttpReqCountSum The total number of HTTP requests.

• CountSum The total number of HTTP responses.

• CompletedSum The total number of completed HTTP transactions.

• RequestHitSum The cache HIT result.

4.1.5 View

View is a method that ties multiple virtual hosts into one to extract statistics. The concept came from viewing multiple
tables as one table in a database. As shown below, the setup is very simple.

vhosts.xml

<Vhosts>
<Vhost> ... </Vhost>
<Vhost> ... </Vhost>
... (omitted) ...
<View Name="SK">
<Vhost>...</Vhost>
<Vhost>...</Vhost>

</View>
<View Name="KT">
<Vhost>...</Vhost>
<Vhost>...</Vhost>
<Vhost>...</Vhost>

</View>
<View Name="LG">
<Vhost>...</Vhost>
<Vhost>...</Vhost>

</View>
</Vhosts>

View can even be set up with virtual hosts that don’t exist. The following are the formats that View provides statistics
in.

- Realtime XML/JSON
- SNMP - cache(1.3.6.1.4.1.40001.1.4).10 ~ 12

Let’s explore an example where View can be used. Say there are three administrators running communities for their
favorite sports: baseball.com, basketball.com, and football.com.

vhosts.xml

<Vhosts>

4.1. Chapter 10. Monitoring & Statistics 97

STON Documentation, Release 2.3.4

<Vhost Name="baseball.com"> ... </Vhost>
<Vhost Name="basketball.com"> ... </Vhost>
<Vhost Name="football.com"> ... </Vhost>

</Vhosts>

They decide to come together to open a combined sports community service, choosing sports.com as the domain name
to encompass all the different sports. The objectives that must be met by the development/management team are as
follows.

• The combined service must be provided through sports.com.

• The existing domains and services must be maintained for the existing users.

• The development teams must be combined. The management teams must be combined.

• Only the home page should be developed, connecting to existing services via links.

To realistically meet these demands, the development team decides to specify the existing domains as part of the first
directory, as shown below.

Existing services
http://baseball.com/standing/list.html
http://basketball.com/stats/2014/view.html
http://football.com/player/messi.php

Combined service
http://sports.com/baseball/standing/list.html
http://sports.com/basketball/stats/2014/view.html
http://sports.com/football/player/messi.php

This can easily be configured using the URL preprocessor.

vhosts.xml

<Vhosts>
<Vhost Name="baseball.com"> ... </Vhost>
<Vhost Name="basketball.com"> ... </Vhost>
<Vhost Name="football.com"> ... </Vhost>
<URLRewrite>
<Pattern>sports.com/(.*)/(.*)</Pattern>
<Replace>#1.com/#2</Replace>

</URLRewrite>
</Vhosts>

The newly merged management team must now monitor not only their individual services but also the combined
service (e.g. traffic, session, response codes). Most administrators familiar with SNMP will set up View to obtain
these combined statistics.

vhosts.xml

<Vhosts>
<Vhost Name="baseball.com"> ... </Vhost>
<Vhost Name="basketball.com"> ... </Vhost>
<Vhost Name="football.com"> ... </Vhost>
<URLRewrite>

<Pattern>sports.com/(.*)/(.*)</Pattern>
<Replace>#1.com/#2</Replace>

</URLRewrite>
<View Name="sports.com">

<Vhost>baseball.com</Vhost>
<Vhost>basketball.com</Vhost>

98 Chapter 4. 3. Advanced Features

STON Documentation, Release 2.3.4

<Vhost>football.com</Vhost>
</View>

</Vhosts>

As seen in the above example, the combination of URL Rewrite and View can effectively tie existing sites together
into a single service.

View Statistics

Provides statistics identical to the virtual host statistics, with the only difference being the names of the tags, as shown
below.

"View": <View ...>
[...

{ ... }, </View>
{ ... }, <View> ... </View>

] <View> ... </View>

4.1.6 Checking the Virtual Host List

The virtual host list can be checked.

http://127.0.0.1:10040/monitoring/vhostslist

The results are returned in JSON format.

{
"version": "2.0.0",
"method": "vhostslist",
"status": "OK",

4.1. Chapter 10. Monitoring & Statistics 99

STON Documentation, Release 2.3.4

"result": ["www.example.com","www.winesoft.com", "site1.com"]
}

4.1.7 Caching Information

The status of files being cached can be monitored. Generally, files can be distinguished by URLs, but if the same URL
can have different options (e.g. Accept-Encoding), then there may also be multiple files.

http://127.0.0.1:10040/monitoring/fileinfo?url=example.com/sample.dat

The results are returned in JSON format. The following is the result of looking up the information of a /sample.dat
file.

{
"version": "2.0.0",
"method": "fileinfo",
"status": "OK",
"result":
[

{
"URI": "/sample.dat",
"Accept-Encoding": "N",
"RefCount": 0,
"Disk-Index": 0,
"Size": 2100267,
"FID": 24267,
"LocalPath": "/cache1/example.com/000i/q3.bin",
"File-Opened ": "N",
"File-Updating": "-",
"Downloader-Count": "0",
"LastAccess": "[2012.09.03 14:29:50, -2]",
"UpdateTime": "[2012.09.03 13:53:43, -2169]",
"TTL-Left": "[2012.10.03 13:53:43, 2589831]",
"ResponseCode": 200,
"ContentType": "text/plain",
"LastModifiedTime": "[2010.11.22 20:31:47, -56224685]",
"ExpireTime": "[0, 0]",
"CacheControl": "not-specified",
"ETag": "502dd614:200c2b",
"CustomTTL": 0,
"NoMoreExist": "N",
"LocalFileExist": "Y",
"SmallFile": "N",
"State": "Cached",
"Deleted": "N",
"AddedSize": "Y",
"TransferEncoding": "N",
"Compression": "-",
"Purge": "N",
"Ignore-IMS ": "N",
"Redirect-Location ": "-",
"Content-Disposition ": "-",
"NoCache": "N"

}
]

}

100 Chapter 4. 3. Advanced Features

STON Documentation, Release 2.3.4

• URI The file URI.

• Accept-Encoding (“Y” or “N”) “Y” if Accept-Encoding is supported.

• RefCount The file reference count.

• Size (bytes) The file size.

• Disk-Index (starts from 0) The saved disk index.

• FID The file ID.

• LocalPath The local path.

• File-Opened (“Y” or “N”) “Y” if a local file is opened.

• File-Updating Specifies the pointer to the updated object if a file is being updated.

• Downloader-Count The number of sessions downloading this file from the origin server.

• LastAccess (last accessed time, last accessed time - current time) [2012.09.03 14:29:50, -2] would mean
that the file was last accessed 2 seconds before the current time, on 2012.09.03 14:29:50.

• UpdateTime (modified time, modified time - current time) The last time the file was modified. A 304 Not
Modified response also updates the time.

• TTL-Left (expiration time, expiration time - current time) The time left until the content expires. The value
is positive if there is still TTL left, and negative if already expired.

• ResponseCode The origin server response code.

• ContentType The MIME Type.

• LastModifiedTime (Last Modified Time, Last Modified Time - current time) The Last Modified Time sent
by the origin server. If the origin server did not send this value, it will return zero.

• ExpireTime (Expire Time, Expire Time - current time) The Expire Time sent by the origin server. If the
origin server did not send this value, it will return zero.

• CacheControl (“no-cache” or “not-specified” or an integer) The Cache-Control value sent by the origin
server.

• ETag The ETag created by STON.

• CustomTTL Custom TTL. If not configured, zero is returned.

• NoMoreExist (“Y” or “N”) “Y” if file is pending deletion.

• LocalFileExist (“Y” or “N”) “Y” if the file exists locally (files not 200 OK are always “Y”).

• SmallFile (“Y” or “N”) “Y” is the file is considered a small file (for development purposes).

• State (“Not Init” or “Cached” or “Error”) The file status.

• Deleted (“Y” or “N”) “Y” if the file is deleted (for development purposes).

• AddedSize (“Y” or “N”) “Y” if the size is reflected in the statistics (for development purposes).

• TransferEncoding (“Y” or “N”) “Y” if Transfer-Encoding is supported.

• Compression The compression method.

• Purge (“Y” or “N”) “Y” if purged.

• Ignore-IMS (“Y” or “N”) “Y” if not configured to send an If-Modified-Since header during updates.

• Redirect-Location The Location header value.

• Content-Disposition The Content-Disposition header value.

4.1. Chapter 10. Monitoring & Statistics 101

STON Documentation, Release 2.3.4

• NoCache (“Y” or “N”) “Y” if the origin server responds with no-cache.

4.1.8 Log Trace

Receives the log in real time while it’s being recorded. Access, Origin, and Monitoring logs must specify a virtual
host.

http://127.0.0.1:10040/monitoring/logtrace/info
http://127.0.0.1:10040/monitoring/logtrace/deny
http://127.0.0.1:10040/monitoring/logtrace/sys
http://127.0.0.1:10040/monitoring/logtrace/originerror
http://127.0.0.1:10040/monitoring/logtrace/access?vhost=www.site1.com
http://127.0.0.1:10040/monitoring/logtrace/origin?vhost=www.site1.com
http://127.0.0.1:10040/monitoring/logtrace/monitoring?vhost=www.site1.com

4.2 Chapter 11. SNMP

This chapter will explain the Simple Network Management Protocol (SNMP). All values in Chapter 10. Monitoring &
Statistics can also be provided by SNMP. Moreover, SNMP can provide more subdivided time units and more detailed
system status information. Real-time statistics and statistics averaged over a number of minutes (up to 60) per each
virtual host can be provided.

• No additional package is required.

• SNMP is not run separately.

• Supports SNMP v1 and v2c.

4.2.1 Variables

Values that can be changed by a configuration or intentionally by the administrator will be specified as [variable name].
For example, if multiple disks exist, each disk will be represented by a number, assigned in order starting from one.
This variable will be labeled as [diskIndex].

• [diskIndex] Stands for the disks configured in storage.

server.xml - <Server><Cache>

<Storage>
<Disk>/cache1</Disk>
<Disk>/cache2</Disk>
<Disk>/cache3</Disk>

</Storage>

In the above environment with three configured disks, /cache1 has a [diskIndex] of 1 while /cache3
has a [diskIndex] of 3. For example, the OID that refers to the entire volume of /cache1 is sys-
tem.diskInfo.diskInfoTotalSize.1 (1.3.6.1.4.1.40001.1.2.18.1.3.1). The last .1 refers to the first disk.

• [vhostIndex] Automatically assigned when virtual hosts are loaded.

vhosts.xml

<Vhosts>
<Vhost Status="Active" Name="kim.com"> ... </Vhost>
<Vhost Status="Active" Name="lee.com"> ... </Vhost>

102 Chapter 4. 3. Advanced Features

STON Documentation, Release 2.3.4

<Vhost Status="Active" Name="park.com" StaticIndex="10300"> ... </Vhost>
</Vhosts>

In the example above, the first three virtual hosts loaded will be assigned a [vhostIndex] in order
starting from 1. The virtual host will remember this [vhostIndex], and the indexes will not change
even if virtual hosts are deleted. If virtual host deletion and loading take place at the same time, deletion
will occur first, and the new new loaded virtual host will be assigned the empty [vhostIndex].

Fig. 4.3: Behavior of [vhostIndex]

• [diskMin] , [vhostMin] Refers to time in minutes. A value of 5 refers to an average over the last 5
minutes, while a value of 60 refers to an average over the last 60 minutes. This value has a range of 0 to
60, where 0 refers to real-time (1 second) data.

SNMP uses table structures for items with values that can change dynamically. For example, the number of values
in “total disk size” can change with the number of disks, so a table is used. STON provides virtual host statistics in
minute increments, allowing for more complex expressions such as “[vhostMin] . [vhostIndex]”.

This expression allows you to request statistics for each virtual host at your desired time increment, but because
there are two variables, it is hard to represent in a table. This problem can be solved by setting a default value for
[vhostMin] for SNMPWalk to run.

4.2.2 Activation

SNMP behavior and ACL can be configured in global settings (server.xml).

server.xml - <Server><Host>

<SNMP Port="161" Status="Inactive">
<Allow>192.168.5.1</Allow>
<Allow>192.168.6.0/24</Allow>

</SNMP>

• <SNMP> SNMP behavior can be configured using these properties.

– Port (default: 161) SNMP service port.

– Status (default: Inactive) Activates SNMP when set to Active.

• <Allow> Configures IP addresses that allow SNMP access. Designated IP, designated IP range, bitmask, and
subnet forms are supported. If the connected socket is not one of the approved IPs, no response is returned.

4.2. Chapter 11. SNMP 103

STON Documentation, Release 2.3.4

4.2.3 Virtual Host/View Variables

The number of virtual host/View variables and default time (minutes) provided by SNMP can be configured.

server.xml - <Server><Host>

<SNMP VHostCount=0, VHostMin=5 ViewCount=0, ViewMin=5 />

• VHostCount (default: 0) If set to 0, only existing virtual hosts respond. If greater than 0, all config-
ured virtual hosts will respond whether they exist or not.

• ViewCount (default: 0) Applies to View. (Same as VHostCount)

• VHostMin (default: 5 min, maximum: 60 min) Configures the value of [vhostMin]. Has
a range of 0 to 60, with 0 resulting in real-time data and 1~60 resulting in an average over the set amount of
time.

• ViewMin (default: 0) Applies to View. (Same as VHostMin)

In an example with three configured virtual hosts, SNMPWalk’s behavior can differ.

• If VHostCount=0

SNMPv2-SMI::enterprises.40001.1.4.2.1.2.1 = STRING: "web.winesoft.co.kr"
SNMPv2-SMI::enterprises.40001.1.4.2.1.2.2 = STRING: "img.winesoft.co.kr"
SNMPv2-SMI::enterprises.40001.1.4.2.1.2.3 = STRING: "vod.winesoft.co.kr"

• If VHostCount=5

SNMPv2-SMI::enterprises.40001.1.4.2.1.2.1 = STRING: "web.winesoft.co.kr"
SNMPv2-SMI::enterprises.40001.1.4.2.1.2.2 = STRING: "img.winesoft.co.kr"
SNMPv2-SMI::enterprises.40001.1.4.2.1.2.3 = STRING: "vod.winesoft.co.kr"
SNMPv2-SMI::enterprises.40001.1.4.2.1.2.4 = ""
SNMPv2-SMI::enterprises.40001.1.4.2.1.2.5 = ""

Other Variables

Other variables can be configured.

server.xml - <Server><Host>

<SNMP GlobalMin="5" DiskMin="5" ConfCount="10" />

• GlobalMin (default: 5 min, maximum: 60 min) Sets the value of [globalMin].

• DiskMin (default: 5 min, maximum: 60 min) Sets the value of [diskMin].

• ConfCount (default: 10) Browses previous configuration lists. Has a range of 1 to 100. 1 will browse
only the current configuration, and 2 will browse the current and previous configurations. Therefore, a value of
100 allows you to browse the current configuration and the past 99 configurations.

4.2.4 Community

Community can be configured to allow/deny access to the given OIDs.

server.xml - <Server><Host>

<SNMP UnregisteredCommunity="Allow">
<Community Name="example1" OID="Allow">

104 Chapter 4. 3. Advanced Features

STON Documentation, Release 2.3.4

<OID>1.3.6.1.4.1.40001.1.4.1</OID>
<OID>1.3.6.1.4.1.40001.1.4.2</OID>
<OID>1.3.6.1.4.1.40001.1.4.4</OID>

</Community>
<Community Name="example2" OID="Deny">

<OID>1.3.6.1.4.1.40001.1.4.3.1.11.11.10.1-61</OID>
</Community>

</SNMP>

If the UnregisteredCommunity value in <SNMP> is set to “Deny”, unregistered Community requests will be
blocked.

• <Community> Configures Community.

– Name The Community name.

– OID (default: Allow) Configures the access of the <OID> tags below. If set to Allow, only the
<OID> tags below will be allowed access. If set to Deny, the <OID> tags below will be denied access.

Specific OID (1.3.6.1.4.1.40001.1.4.4) and ranged OID (1.3.6.1.4.1.40001.1.4.3.1.11.11.10.1-61) formats are sup-
ported. When OIDs are allowed/denied, all OIDs set below will be configured the same way.

4.2.5 meta

OID = 1.3.6.1.4.1.40001.1.1

Provides meta information.

OID Name Type Description
.1 manufacture String “WineSOFT Inc.”
.2 software String “STON”
.3 version String Version
.4 hostname String Host Name
.5 state String “Healthy” or “Inactive” or “Emergency”
.6 uptime Integer Runtime (seconds)
.7 admin String <Admin> ... </Admin>
.10 Conf OID Conf expansion

meta.conf

OID = 1.3.6.1.4.1.40001.1.1.10

[confIndex] is set in the ConfCount property of <SNMP>. A [confIndex] of 1 always refers to the current
configuration values, while 2 refers to the previous configuration values. If [confIndex] is 10, the ninth past
configuration values will be returned.

4.2. Chapter 11. SNMP 105

STON Documentation, Release 2.3.4

OID Name Type Description
.1.
[confIndex]

ID Inte-
ger

Configuration ID

.2.
[confIndex]

Time Inte-
ger

Configuration time (Unix time)

.3.
[confIndex]

Type Inte-
ger

Configuration type (0 = Unknown, 1 = STON start, 2 = /conf/reload, 3 =
/conf/upload, 4 = /conf/restore)

.4.
[confIndex]

Size Inte-
ger

Configuration file size

.5.
[confIndex]

Hash String Configuration file Hash string

.6.
[confIndex]

Path String Saved path of the configuration file

.7.
[confIndex]

Ver String STON version of the configuration

4.2.6 system

OID = 1.3.6.1.4.1.40001.1.2

Provides information about the system running STON. The [sysMin] variable can be set from 0~60 minutes, al-
lowing either real-time or averaged data. The [sysMin] in SNMPWalk can also be set to 0 to provide current
information.

OID Name Type Description
.1. [sysMin] cpuTotal Integer Total CPU usage (100%)
.2. [sysMin] Total CPU usage (10000%)
.3. [sysMin] cpuKernel Integer CPU(Kernel) usage (100%)
.4. [sysMin] CPU(Kernel) usage (10000%)
.5. [sysMin] cpuUser Integer CPU(User) usage (100%)
.6. [sysMin] CPU(User) usage (10000%)
.7. [sysMin] cpuIdle Integer CPU(Idle) usage (100%)
.8. [sysMin] CPU(Idle) usage (10000%)
.9 memTotal Integer Total system memory (KB)
.10. [sysMin] memUse Integer Used system memory (KB)
.11. [sysMin] memFree Integer Free system memory (KB)
.12. [sysMin] memSTON Integer Memory used by STON (KB)
.13. [sysMin] memUseRatio Integer System memory usage (100%)
.14. [sysMin] System memory usage (10000%)
.15. [sysMin] memSTONRatio Integer STON memory usage (100%)
.16. [sysMin] STON memory usage (10000%)
.17 diskCount Integer Disk count
.18.1 diskInfo OID diskInfo expansion
.19.1 diskPerf OID diskPerf expansion
.20. [sysMin] cpuProcKernel Integer Usage of CPU(Kernel) by STON (100%)
.21. [sysMin] Usage of CPU(Kernel) by STON (10000%)
.22. [sysMin] cpuProcUser Integer Usage of CPU(User) by STON (100%)
.23. [sysMin] Usage of CPU(User) by STON (10000%)
.24. [sysMin] sysLoadAverage Integer Load Average of 1 minute (0.01)
.25. [sysMin] Load Average of 5 minutes (0.01)
.26. [sysMin] Load Average ot 15 minutes (0.01)

Continued on next page

106 Chapter 4. 3. Advanced Features

STON Documentation, Release 2.3.4

Table 4.1 – continued from previous page
OID Name Type Description
.27. [sysMin] cpuNice Integer CPU(Nice) (100%)
.28. [sysMin] CPU(Nice) (10000%)
.29. [sysMin] cpuIOWait Integer CPU(IOWait) (100%)
.30. [sysMin] CPU(IOWait) (10000%)
.31. [sysMin] cpuIRQ Integer CPU(IRQ) (100%)
.32. [sysMin] CPU(IRQ) (10000%)
.33. [sysMin] cpuSoftIRQ Integer CPU(SoftIRQ) (100%)
.34. [sysMin] CPU(SoftIRQ) (10000%)
.35. [sysMin] cpuSteal Integer CPU(Steal) (100%)
.36. [sysMin] Integer CPU(Steal) (10000%)
.40. [sysMin] TCPSocket.Established. [globalMin] Integer Number of established TCP connections
.41. [sysMin] TCPSocket.Timewait. [globalMin] Integer Number of TIME_WAIT TCP connections
.42. [sysMin] TCPSocket.Orphan. [globalMin] Integer Number of orphaned TCP connections
.43. [sysMin] TCPSocket.Alloc. [globalMin] Integer Number of allocated TCP connections
.44. [sysMin] TCPSocket.Mem. [globalMin] Integer TCP connection memory usage

system.diskInfo

OID = 1.3.6.1.4.1.40001.1.2.18.1

Provides disk information.

OID Name Type Description
.2. [diskIndex] diskInfoPath String Disk path
.3. [diskIndex] diskInfoTotalSize Integer Total disk size (MB)
.4. [diskIndex] diskInfoUseSize Integer Disk usage (MB)
.5. [diskIndex] diskInfoFreeSize Integer Free disk size (MB)
.6. [diskIndex] diskInfoUseRatio Integer Disk usage ratio (100%)
.7. [diskIndex] Disk usage ratio (10000%)
.8. [diskIndex] diskInfoStatus String “Normal” or “Invalid” or “Unmounted”

system.diskPerf

OID = 1.3.6.1.4.1.40001.1.2.19.1

Provides disk performance status.

4.2. Chapter 11. SNMP 107

STON Documentation, Release 2.3.4

OID Name Type Description
.2. [diskMin] .
[diskIndex]

diskPerfReadCount Inte-
ger

Successful Read count

.3. [diskMin] .
[diskIndex]

diskPerfReadMerged-
Count

Inte-
ger

Merged Read count

.4. [diskMin] .
[diskIndex]

diskPerfReadSec-
torsCount

Inte-
ger

Read sectors count

.5. [diskMin] .
[diskIndex]

diskPerfReadTime Inte-
ger

Elapsed Read time (ms)

.6. [diskMin] .
[diskIndex]

diskPerfWriteCount Inte-
ger

Successful Write count

.7. [diskMin] .
[diskIndex]

diskPerfWriteMerged-
Count

Inte-
ger

Merged Write count

.8. [diskMin] .
[diskIndex]

diskPerfWriteSec-
torsCount

Inte-
ger

Written sectors count

.9. [diskMin] .
[diskIndex]

diskPerfWriteTime Inte-
ger

Elapsed Write time (ms)

.10. [diskMin] .
[diskIndex]

diskPerfIOProgressCount Inte-
ger

Number of IO in progress

.11. [diskMin] .
[diskIndex]

diskPerfIOTime Inte-
ger

Elapsed IO time (ms)

.12. [diskMin] .
[diskIndex]

diskPerfIOTimeWeighted Inte-
ger

Elapsed IO time (ms, weighted
values)

4.2.7 global

OID = 1.3.6.1.4.1.40001.1.3

Provides resource information (e.g. sockets, events) shared by all modules.

• ServerSocket The client-STON connection. This socket is used by STON to process client requests.

• ClientSocket The STON-origin server connection. This socket is used by STON to send requests to the origin
server.

108 Chapter 4. 3. Advanced Features

STON Documentation, Release 2.3.4

OID Name Type Description
.5 EQ. [globalMin] Inte-

ger
The number of unprocessed Events in the STON Framework

.6 RQ. [globalMin] Inte-
ger

The number of Events saved in the recently serviced content
reference queue

.7 waitingFiles2Write.
[globalMin]

Inte-
ger

The number of write pending files

.10 ServerSocket.Total.
[globalMin]

Inte-
ger

Total number of server sockets

.11 ServerSocket.Established.
[globalMin]

Inte-
ger

Total number of connected server sockets

.12 ServerSocket.Accepted.
[globalMin]

Inte-
ger

Total number of newly connected server sockets

.13 ServerSocket.Closed.
[globalMin]

Inte-
ger

The number of closed server sockets

.20 ClientSocket.Total.
[globalMin]

Inte-
ger

Total number of client sockets

.21 ClientSocket.Established.
[globalMin]

Inte-
ger

Total number of connected client sockets

.22 ClientSocket.Accepted.
[globalMin]

Inte-
ger

Total number of newly connected client sockets

.23 ClientSocket.Closed.
[globalMin]

Inte-
ger

The number of closed client sockets

.30 ServiceAccess.Allow.
[globalMin]

Inte-
ger

The number of allowed(Allow) sockets by ServiceAccess

.31 ServiceAccess.Deny.
[globalMin]

Inte-
ger

The number of denied(Deny) sockets by ServiceAccess

4.2.8 cache

OID = 1.3.6.1.4.1.40001.1.4

Cache service statistics are collected and provided in detail for each virtual host.

OID Name Type Description
.1 host OID Host (expansion)
.2 vhostCount Integer The number of virtual hosts
.3.1 vhost OID Statistics for each virtual host
.4 vhostIndexMax Integer Max value of [vhostIndex]. SNMPWalk works based on this value.
.10 viewCount Integer View count
.11.1 view OID Stats per View
.12 viewIndexMax Integer Max value of [viewIndex]. SNMPWalk works based on this value.

cache.host

OID = 1.3.6.1.4.1.40001.1.4.1

Provides information of all virtual hosts.

4.2. Chapter 11. SNMP 109

STON Documentation, Release 2.3.4

OID Name Type Description
.2 name String Host name
.3 status String “Healthy” or “Inactive”
.4 uptime Integer STON runtime (seconds)
.10 contents OID Content information (expansion)
.11 traffic OID Stats (expansion)

cache.host.contents

OID = 1.3.6.1.4.1.40001.1.4.1.10

Provides statistics for content in the service for all virtual hosts.

OID Name Type Description
.1 memory Integer Memory caching size (KB)
.2 filesTotalCount Integer The number of files in service
.3 filesTotalSize Integer Total size of files in service (MB)
.10 filesCountU1KB Integer The number of files smaller than 1KB
.11 filesCountU2KB Integer The number of files smaller than 2KB
.12 filesCountU4KB Integer The number of files smaller than 4KB
.13 filesCountU8KB Integer The number of files smaller than 8KB
.14 filesCountU16KB Integer The number of files smaller than 16KB
.15 filesCountU32KB Integer The number of files smaller than 32KB
.16 filesCountU64KB Integer The number of files smaller than 64KB
.17 filesCountU128KB Integer The number of files smaller than 128KB
.18 filesCountU256KB Integer The number of files smaller than 256KB
.19 filesCountU512KB Integer The number of files smaller than 512KB
.20 filesCountU1MB Integer The number of files smaller than 1MB
.21 filesCountU2MB Integer The number of files smaller than 2MB
.22 filesCountU4MB Integer The number of files smaller than 4MB
.23 filesCountU8MB Integer The number of files smaller than 8MB
.24 filesCountU16MB Integer The number of files smaller than 16MB
.25 filesCountU32MB Integer The number of files smaller than 32MB
.26 filesCountU64MB Integer The number of files smaller than 64MB
.27 filesCountU128MB Integer The number of files smaller than 128MB
.28 filesCountU256MB Integer The number of files smaller than 256MB
.29 filesCountU512MB Integer The number of files smaller than 512MB
.30 filesCountU1GB Integer The number of files smaller than 1GB
.31 filesCountU2GB Integer The number of files smaller than 2GB
.32 filesCountU4GB Integer The number of files smaller than 4GB
.33 filesCountU8GB Integer The number of files smaller than 8GB
.34 filesCountU16GB Integer The number of files smaller than 16GB
.35 filesCountO16GB Integer The number of files larger than 16GB

cache.host.traffic

OID = 1.3.6.1.4.1.40001.1.4.1.11

Provides cache service and traffic statistics for all virtual hosts. Traffic statistics are provided as an average of up to
60 minutes. If the time value is omitted or set to 0, statistics will be provided in real time.

110 Chapter 4. 3. Advanced Features

STON Documentation, Release 2.3.4

OID Name Type Description
.1. [vhostMin] requestHitRatio Integer Request Hit Ratio (100%)
.2. [vhostMin] Request Hit Ratio (10000%)
.3. [vhostMin] bytesHitRatio Integer Bytes Hit Ratio (100%)
.4. [vhostMin] Bytes Hit Ratio (10000%)
.10 origin OID Origin traffic information (expansion)
.11 client OID Client traffic information (expansion)

cache.host.traffic.origin

OID = 1.3.6.1.4.1.40001.1.4.1.11.10

Provides origin server traffic statistics. Origin server traffic is divided into HTTP traffic and port bypass traffic.

OID Name Type Description
.1. [vhostMin] inbound Integer Average traffic received from the origin server (bytes)
.2. [vhostMin] outbound Integer Average traffic sent to the origin server (bytes)
.3. [vhostMin] sessionAverage Integer Average origin server session count
.4. [vhostMin] activesessionAverage Integer Average origin server transmitting session count
.10 http OID Origin server HTTP traffic information
.10.1. [vhostMin] http.inbound Integer Average HTTP traffic received from the origin server (bytes)
.10.2. [vhostMin] http.outbound Integer Average HTTP traffic sent to the origin server (bytes)
.10.3. [vhostMin] http.sessionAverage Integer Average origin server HTTP session count
.10.4. [vhostMin] http.reqHeaderSize Integer Average HTTP Header traffic sent to the origin server (bytes)
.10.5. [vhostMin] http.reqBodySize Integer Average HTTP Body traffic sent to the origin server (bytes)
.10.6. [vhostMin] http.resHeaderSize Integer Average HTTP Header traffic received from the origin server (bytes)
.10.7. [vhostMin] http.resBodySize Integer Average HTTP Body traffic received from the origin server (bytes)
.10.8. [vhostMin] http.reqAverage Integer Average number of HTTP requests sent to the origin server
.10.9. [vhostMin] http.reqCount Integer Total number of HTTP requests sent to the origin server
.10.10. [vhostMin] http.resTotalAverage Integer Average number of all HTTP responses received from the origin server
.10.11. [vhostMin] http.resTotalCompleteAverage Integer Average number of successful HTTP transactions from the origin server
.10.12. [vhostMin] http.resTotalTimeRes Integer Average elapsed time to receive a response header from the origin server (0.01 ms)
.10.13. [vhostMin] http.resTotalTimeComplete Integer Average completion time of HTTP transactions from the origin server (0.01 ms)
.10.14. [vhostMin] http.resTotalCount Integer Total number of all HTTP responses received from the origin server
.10.15. [vhostMin] http.resTotalCompleteCount Integer Total number of successful HTTP transactions from the origin server
.10.20. [vhostMin] http.res2xxAverage Integer Number of 2xx responses from the origin server
.10.21. [vhostMin] http.res2xxCompleteAverage Integer Number of successful 2xx transactions from the origin server
.10.22. [vhostMin] http.res2xxTimeRes Integer Average elapsed time to receive a 2xx header from the origin server (0.01 ms)
.10.23. [vhostMin] http.res2xxTimeComplete Integer Average completion time of 2xx transactions from the origin server (0.01 ms)
.10.24. [vhostMin] http.res2xxCount Integer Total number of 2xx responses from the origin server
.10.25. [vhostMin] http.res2xxCompleteCount Integer Total number of successful 2xx transactions from the origin server
.10.30. [vhostMin] http.res3xxAverage Integer Number of 3xx responses from the origin server
.10.31. [vhostMin] http.res3xxCompleteAverage Integer Number of successful 3xx transactions from the origin server
.10.32. [vhostMin] http.res3xxTimeRes Integer Average elapsed time to receive a 3xx header from the origin server (0.01 ms)
.10.33. [vhostMin] http.res3xxTimeComplete Integer Average completion time of 3xx transactions from the origin server (0.01 ms)
.10.34. [vhostMin] http.res3xxCount Integer Total number of 3xx responses from the origin server
.10.35. [vhostMin] http.res3xxCompleteCount Integer Total number of successful 3xx transactions from the origin server
.10.40. [vhostMin] http.res4xxAverage Integer Number of 4xx responses from the origin server
.10.41. [vhostMin] http.res4xxCompleteAverage Integer Number of successful 4xx transactions from the origin server
.10.42. [vhostMin] http.res4xxTimeRes Integer Average elapsed time to receive a 4xx header from the origin server (0.01 ms)
.10.43. [vhostMin] http.res4xxTimeComplete Integer Average completion time of 4xx transactions from the origin server (0.01 ms)

Continued on next page

4.2. Chapter 11. SNMP 111

STON Documentation, Release 2.3.4

Table 4.2 – continued from previous page
OID Name Type Description
.10.44. [vhostMin] http.res4xxCount Integer Total number of 4xx responses from the origin server
.10.45. [vhostMin] http.res4xxCompleteCount Integer Total number of successful 4xx transactions from the origin server
.10.50. [vhostMin] http.res5xxAverage Integer Number of 5xx responses from the origin server
.10.51. [vhostMin] http.res5xxCompleteAverage Integer Number of successful 5xx transactions from the origin server
.10.52. [vhostMin] http.res5xxTimeRes Integer Average elapsed time to receive a 5xx header from the origin server (0.01 ms)
.10.53. [vhostMin] http.res5xxTimeComplete Integer Average completion time of 5xx transactions from the origin server (0.01 ms)
.10.54. [vhostMin] http.res5xxCount Integer Total number of 5xx responses from the origin server
.10.55. [vhostMin] http.res5xxCompleteCount Integer Total number of successful 5xx transactions from the origin server
.10.60. [vhostMin] http.connectTimeoutAverage Integer Average number of origin server connection timeouts
.10.61. [vhostMin] http.receiveTimeoutAverage Integer Average number of origin server reception timeouts
.10.62. [vhostMin] http.connectAverage Integer Average number of origin server connection successes
.10.63. [vhostMin] http.dnsQueryTime Integer Average DNS query time when connecting to the origin server
.10.64. [vhostMin] http.connectTime Integer Origin server average connection time (0.01 ms)
.10.65. [vhostMin] http.connectTimeoutCount Integer Total number of origin server connection timeouts
.10.66. [vhostMin] http.receiveTimeoutCount Integer Total number of origin server reception timeouts
.10.67. [vhostMin] http.connectCount Integer Total number of origin server connection successes
.10.68. [vhostMin] http.closeAverage Integer Average number of sockets closed by the origin server during transmission
.10.69. [vhostMin] http.closeCount Integer Total number of sockets closed by the origin server during transmission
.11 portbypass OID Port bypass origin server traffic information
.11.1. [vhostMin] portbypass.inbound Integer Average traffic received from the origin server via port bypass (bytes)
.11.2. [vhostMin] portbypass.outbound Integer Average traffic sent to the origin server via port bypass (bytes)
.11.3. [vhostMin] portbypass.sessionAverage Integer Average number of origin server sessions in port bypass
.11.4. [vhostMin] portbypass.closedAverage Integer Average number of connections closed by the origin server during port bypass
.11.5. [vhostMin] portbypass.connectTimeoutAverage Integer Average number of origin server connection timeouts during port bypass
.11.6. [vhostMin] portbypass.closedCount Integer Total number of connections closed by the origin server during port bypass
.11.7. [vhostMin] portbypass.connectTimeoutCount Integer Total number of origin server connection timeouts during port bypass

cache.host.traffic.client

OID = 1.3.6.1.4.1.40001.1.4.1.11.11

Provides client traffic statistics. Client traffic is divided into HTTP traffic, SSL traffic, and port bypass traffic. SNMP
does not provide statistics for each directory. Even if directory statistics are configured, the data will be accumulated
before being provided.

OID Name Type Description
.1. [vhostMin] inbound Integer Average traffic received from clients (bytes)
.2. [vhostMin] outbound Integer Average traffic sent to clients (bytes)
.3. [vhostMin] sessionAverage Integer Average client session count
.4. [vhostMin] activesessionAverage Integer Average client transmitting session count
.10 http OID Client HTTP traffic information
.10.1. [vhostMin] http.inbound Integer Average HTTP traffic received from clients (bytes)
.10.2. [vhostMin] http.outbound Integer Average HTTP traffic sent to clients (bytes)
.10.3. [vhostMin] http.sessionAverage Integer Average client HTTP session count
.10.4. [vhostMin] http.reqHeaderSize Integer Average HTTP Header traffic received from clients (bytes)
.10.5. [vhostMin] http.reqBodySize Integer Average HTTP Body traffic received from clients (bytes)
.10.6. [vhostMin] http.resHeaderSize Integer Average HTTP Header traffic sent to clients (bytes)
.10.7. [vhostMin] http.resBodySize Integer Average HTTP Body traffic sent to clients (bytes)
.10.8. [vhostMin] http.reqAverage Integer Average number of HTTP requests received from clients

Continued on next page

112 Chapter 4. 3. Advanced Features

STON Documentation, Release 2.3.4

Table 4.3 – continued from previous page
OID Name Type Description
.10.9. [vhostMin] http.reqCount Integer Total number of HTTP requests received from clients
.10.10. [vhostMin] http.resTotalAverage Integer Average number of all HTTP responses sent to clients
.10.11. [vhostMin] http.resTotalCompleteAverage Integer Average number of HTTP transactions completed by clients
.10.12. [vhostMin] http.resTotalTimeRes Integer Average elapsed time of client responses (0.01ms)
.10.13. [vhostMin] http.resTotalTimeComplete Integer Average elapsed time of client HTTP transactions (0.01 ms)
.10.14. [vhostMin] http.resTotalCount Integer Total number of all HTTP responses sent to clients
.10.15. [vhostMin] http.resTotalCompleteCount Integer Total number of HTTP transactions completed by clients
.10.20. [vhostMin] http.res2xxAverage Integer Average number of 2xx responses sent to clients
.10.21. [vhostMin] http.res2xxCompleteAverage Integer Average number of 2xx transactions completed by clients
.10.22. [vhostMin] http.res2xxTimeRes Integer Average elapsed time of client 2xx responses (0.01 ms)
.10.23. [vhostMin] http.res2xxTimeComplete Integer Average completion time of client 2xx transactions (0.01 ms)
.10.24. [vhostMin] http.res2xxCount Integer Total number of 2xx responses sent to clients
.10.25. [vhostMin] http.res2xxCompleteCount Integer Total number of 2xx transactions completed by clients
.10.30. [vhostMin] http.res3xxAverage Integer Average number of 3xx responses sent to clients
.10.31. [vhostMin] http.res3xxCompleteAverage Integer Average number of 3xx transactions completed by clients
.10.32. [vhostMin] http.res3xxTimeRes Integer Average elapsed time of client 3xx responses (0.01 ms)
.10.33. [vhostMin] http.res3xxTimeComplete Integer Average completion time of client 3xx transactions (0.01 ms)
.10.34. [vhostMin] http.res3xxCount Integer Total number of 3xx responses sent to clients
.10.35. [vhostMin] http.res3xxCompleteCount Integer Total number of 3xx transactions completed by clients
.10.40. [vhostMin] http.res4xxAverage Integer Average number of 4xx responses sent to clients
.10.41. [vhostMin] http.res4xxCompleteAverage Integer Average number of 4xx transactions completed by clients
.10.42. [vhostMin] http.res4xxTimeRes Integer Average elapsed time of client 4xx responses (0.01 ms)
.10.43. [vhostMin] http.res4xxTimeComplete Integer Average completion time of client 4xx transactions (0.01 ms)
.10.44. [vhostMin] http.res4xxCount Integer Total number of 4xx responses sent to clients
.10.45. [vhostMin] http.res4xxCompleteCount Integer Total number of 4xx transactions completed by clients
.10.50. [vhostMin] http.res5xxAverage Integer Average number of 5xx responses sent to clients
.10.51. [vhostMin] http.res5xxCompleteAverage Integer Average number of 5xx transactions completed by clients
.10.52. [vhostMin] http.res5xxTimeRes Integer Average elapsed time of client 5xx responses (0.01 ms)
.10.53. [vhostMin] http.res5xxTimeComplete Integer Average completion time of client 5xx transactions (0.01 ms)
.10.54. [vhostMin] http.res5xxCount Integer Total number of 5xx responses sent to clients
.10.55. [vhostMin] http.res5xxCompleteCount Integer Total number of 5xx transactions completed by clients
.10.60. [vhostMin] http.reqDeniedAverage Integer Average number of denied requests
.10.61. [vhostMin] http.reqDeniedCount Integer Total number of denied requests
.11 portbypass OID Port bypass client traffic information
.11.1. [vhostMin] portbypass.inbound Integer Average traffic received from clients via port bypass (bytes)
.11.2. [vhostMin] portbypass.outbound Integer Average traffic sent to clients via port bypass (bytes)
.11.3. [vhostMin] portbypass.sessionAverage Integer Average number of client sessions in port bypass
.11.4. [vhostMin] portbypass.closedAverage Integer Average number of connections closed by clients during port bypass
.11.5. [vhostMin] portbypass.closedCount Integer Total number of connections closed by clients during port bypass
.12 ssl OID SSL client traffic information
.12.2. [vhostMin] ssl.inbound Integer Average traffic received from clients via SSL (bytes)
.12.3. [vhostMin] ssl.outbound Integer Average traffic sent to clients via SSL (bytes)
.13 requestHitAverage OID Average number of cache HIT results
.13.1. [vhostMin] requestHitAverage.TCP_HIT Integer TCP_HIT
.13.2. [vhostMin] requestHitAverage.TCP_IMS_HIT Integer TCP_IMS_HIT
.13.3. [vhostMin] requestHitAverage.TCP_REFRESH_HIT Integer TCP_REFRESH_HIT
.13.4. [vhostMin] requestHitAverage.TCP_REF_FAIL_HIT Integer TCP_REF_FAIL_HIT
.13.5. [vhostMin] requestHitAverage.TCP_NEGATIVE_HIT Integer TCP_NEGATIVE_HIT
.13.6. [vhostMin] requestHitAverage.TCP_MISS Integer TCP_MISS

Continued on next page

4.2. Chapter 11. SNMP 113

STON Documentation, Release 2.3.4

Table 4.3 – continued from previous page
OID Name Type Description
.13.7. [vhostMin] requestHitAverage.TCP_REFRESH_MISS Integer TCP_REFRESH_MISS
.13.8. [vhostMin] requestHitAverage.TCP_CLIENT_REFRESH_MISS Integer TCP_CLIENT_REFRESH_MISS
.13.9. [vhostMin] requestHitAverage.TCP_DENIED Integer TCP_DENIED
.13.10. [vhostMin] requestHitAverage.TCP_ERROR Integer TCP_ERROR
.13.11. [vhostMin] requestHitAverage.TCP_REDIRECT_HIT Integer TCP_REDIRECT_HIT
.14 requestHitCount OID Total number of cache HIT results
.14.1. [vhostMin] requestHitCount.TCP_HIT Integer TCP_HIT
.14.2. [vhostMin] requestHitCount.TCP_IMS_HIT Integer TCP_IMS_HIT
.14.3. [vhostMin] requestHitCount.TCP_REFRESH_HIT Integer TCP_REFRESH_HIT
.14.4. [vhostMin] requestHitCount.TCP_REF_FAIL_HIT Integer TCP_REF_FAIL_HIT
.14.5. [vhostMin] requestHitCount.TCP_NEGATIVE_HIT Integer TCP_NEGATIVE_HIT
.14.6. [vhostMin] requestHitCount.TCP_MISS Integer TCP_MISS
.14.7. [vhostMin] requestHitCount.TCP_REFRESH_MISS Integer TCP_REFRESH_MISS
.14.8. [vhostMin] requestHitCount.TCP_CLIENT_REFRESH_MISS Integer TCP_CLIENT_REFRESH_MISS
.14.9. [vhostMin] requestHitCount.TCP_DENIED Integer TCP_DENIED
.14.10. [vhostMin] requestHitCount.TCP_ERROR Integer TCP_ERROR
.14.11. [vhostMin] requestHitCount.TCP_REDIRECT_HIT Integer TCP_REDIRECT_HIT

cache.host.traffic.filesystem

OID = 1.3.6.1.4.1.40001.1.4.1.11.20

Provides File I/O statistics of hosts.

OID Name Type Description
.1. [vhostMin] requestHitRatio Integer Request Hit Ratio (100%)
.2. [vhostMin] Request Hit Ratio (10000%)
.3. [vhostMin] byteHitRatio Integer Byte Hit Ratio (100%)
.4. [vhostMin] Byte Hit Ratio (10000%)
.5. [vhostMin] outbound Integer Average traffic sent to File I/O (bytes)
.6. [vhostMin] session Integer Average number of threads in File I/O
.7 requestHitAverage OID Average number of cache HIT results
.7.1. [vhostMin] requestHitAverage.TCP_HIT Integer TCP_HIT
.7.2. [vhostMin] requestHitAverage.TCP_IMS_HIT Integer TCP_IMS_HIT
.7.3. [vhostMin] requestHitAverage.TCP_REFRESH_HIT Integer TCP_REFRESH_HIT
.7.4. [vhostMin] requestHitAverage.TCP_REF_FAIL_HIT Integer TCP_REF_FAIL_HIT
.7.5. [vhostMin] requestHitAverage.TCP_NEGATIVE_HIT Integer TCP_NEGATIVE_HIT
.7.6. [vhostMin] requestHitAverage.TCP_MISS Integer TCP_MISS
.7.7. [vhostMin] requestHitAverage.TCP_REFRESH_MISS Integer TCP_REFRESH_MISS
.7.8. [vhostMin] requestHitAverage.TCP_CLIENT_REFRESH_MISS Integer TCP_CLIENT_REFRESH_MISS
.7.9. [vhostMin] requestHitAverage.TCP_DENIED Integer TCP_DENIED
.7.10. [vhostMin] requestHitAverage.TCP_ERROR Integer TCP_ERROR
.7.11. [vhostMin] requestHitAverage.TCP_REDIRECT_HIT Integer TCP_REDIRECT_HIT
.8 requestHitCount OID Total number of cache HIT results
.8.1. [vhostMin] requestHitCount.TCP_HIT Integer TCP_HIT
.8.2. [vhostMin] requestHitCount.TCP_IMS_HIT Integer TCP_IMS_HIT
.8.3. [vhostMin] requestHitCount.TCP_REFRESH_HIT Integer TCP_REFRESH_HIT
.8.4. [vhostMin] requestHitCount.TCP_REF_FAIL_HIT Integer TCP_REF_FAIL_HIT
.8.5. [vhostMin] requestHitCount.TCP_NEGATIVE_HIT Integer TCP_NEGATIVE_HIT

Continued on next page

114 Chapter 4. 3. Advanced Features

STON Documentation, Release 2.3.4

Table 4.4 – continued from previous page
OID Name Type Description
.8.6. [vhostMin] requestHitCount.TCP_MISS Integer TCP_MISS
.8.7. [vhostMin] requestHitCount.TCP_REFRESH_MISS Integer TCP_REFRESH_MISS
.8.8. [vhostMin] requestHitCount.TCP_CLIENT_REFRESH_MISS Integer TCP_CLIENT_REFRESH_MISS
.8.9. [vhostMin] requestHitCount.TCP_DENIED Integer TCP_DENIED
.8.10. [vhostMin] requestHitCount.TCP_ERROR Integer TCP_ERROR
.8.11. [vhostMin] requestHitCount.TCP_REDIRECT_HIT Integer TCP_REDIRECT_HIT
.10. [vhostMin] getattr.filecount Integer (getattr function call) Number of FILE responses
.11. [vhostMin] getattr.dircount Integer (getattr function call) Number of DIR responses
.12. [vhostMin] getattr.failcount Integer (getattr function call) Number of failure responses
.13. [vhostMin] getattr.timeres Integer (getattr function call) Response time (0.01 ms)
.14. [vhostMin] open.count Integer Number of open function calls
.15. [vhostMin] open.timeres Integer Response time of the open function (0.01 ms)
.16. [vhostMin] read.count Integer Number of read function calls
.17. [vhostMin] read.timeres Integer Response time of the read function (0.01 ms)
.18. [vhostMin] read.buffersize Integer Size of the buffer requested by the read function (bytes)
.19. [vhostMin] read.bufferfilled Integer Size of filled space in the buffer requested by the read function (bytes)

cache.host.traffic.dims

OID = 1.3.6.1.4.1.40001.1.4.1.11.21

Provides DIMS conversion statistics of hosts.

OID Name Type Description
.1. [vhostMin] requests Integer Number of DIMS conversion requests
.2. [vhostMin] converted Integer Number of conversion successes
.3. [vhostMin] failed Integer Number of conversion failures
.4. [vhostMin] avgsrcsize Integer Average size of origin images (bytes)
.5. [vhostMin] avgdestsize Integer Average size of converted images (bytes)
.6. [vhostMin] avgtime Integer Conversion time (ms)

cache.host.traffic.compression

OID = 1.3.6.1.4.1.40001.1.4.1.11.22

Provides compression statistics of hosts.

OID Name Type Description
.1. [vhostMin] requests Integer Number of compression requests
.2. [vhostMin] converted Integer Number of compression successes
.3. [vhostMin] failed Integer Number of compression failures
.4. [vhostMin] avgsrcsize Integer Average size of origin files (bytes)
.5. [vhostMin] avgdestsize Integer Average size of compressed files (bytes)
.6. [vhostMin] avgtime Integer Compression time (ms)

4.2.9 cache.vhost

OID = 1.3.6.1.4.1.40001.1.4.3.1

4.2. Chapter 11. SNMP 115

STON Documentation, Release 2.3.4

Provides virtual host information. [vhostIndex] starts at 1 and ranges up to the number of virtual hosts.

OID Name Type Description
.2. [vhostIndex] name String Virtual host name
.3. [vhostIndex] status String “Healthy” or “Inactive” or “Emergency”
.4. [vhostIndex] uptime Integer Virtual host runtime (seconds)
.10 contents OID Content information (expansion)
.11 traffic OID Statistics (expansion)

cache.vhost.contents

OID = 1.3.6.1.4.1.40001.1.4.3.1.10

Provides statistics for content in the service for a virtual host.

OID Name Type Description
.1. [vhostIndex] memory Integer Memory caching size (KB)
.2. [vhostIndex] filesTotalCount Integer The number of files in service
.3. [vhostIndex] filesTotalSize Integer Total size of files in service (MB)
.10. [vhostIndex] filesCountU1KB Integer The number of files smaller than 1KB
.11. [vhostIndex] filesCountU2KB Integer The number of files smaller than 2KB
.12. [vhostIndex] filesCountU4KB Integer The number of files smaller than 4KB
.13. [vhostIndex] filesCountU8KB Integer The number of files smaller than 8KB
.14. [vhostIndex] filesCountU16KB Integer The number of files smaller than 16KB
.15. [vhostIndex] filesCountU32KB Integer The number of files smaller than 32KB
.16. [vhostIndex] filesCountU64KB Integer The number of files smaller than 64KB
.17. [vhostIndex] filesCountU128KB Integer The number of files smaller than 128KB
.18. [vhostIndex] filesCountU256KB Integer The number of files smaller than 256KB
.19. [vhostIndex] filesCountU512KB Integer The number of files smaller than 512KB
.20. [vhostIndex] filesCountU1MB Integer The number of files smaller than 1MB
.21. [vhostIndex] filesCountU2MB Integer The number of files smaller than 2MB
.22. [vhostIndex] filesCountU4MB Integer The number of files smaller than 4MB
.23. [vhostIndex] filesCountU8MB Integer The number of files smaller than 8MB
.24. [vhostIndex] filesCountU16MB Integer The number of files smaller than 16MB
.25. [vhostIndex] filesCountU32MB Integer The number of files smaller than 32MB
.26. [vhostIndex] filesCountU64MB Integer The number of files smaller than 64MB
.27. [vhostIndex] filesCountU128MB Integer The number of files smaller than 128MB
.28. [vhostIndex] filesCountU256MB Integer The number of files smaller than 256MB
.29. [vhostIndex] filesCountU512MB Integer The number of files smaller than 512MB
.30. [vhostIndex] filesCountU1GB Integer The number of files smaller than 1GB
.31. [vhostIndex] filesCountU2GB Integer The number of files smaller than 2GB
.32. [vhostIndex] filesCountU4GB Integer The number of files smaller than 4GB
.33. [vhostIndex] filesCountU8GB Integer The number of files smaller than 8GB
.34. [vhostIndex] filesCountU16GB Integer The number of files smaller than 16GB
.35. [vhostIndex] filesCountO16GB Integer The number of files larger than 16GB

cache.vhost.traffic

OID = 1.3.6.1.4.1.40001.1.4.3.1.11

Provides cache service and traffic statistics for a virtual host. Traffic statistics are provided as an average of up to 60
minutes. If the time value is omitted or set to 0, statistics will be provided in real time.

116 Chapter 4. 3. Advanced Features

STON Documentation, Release 2.3.4

OID Name Type Description
.1. [vhostMin] . [vhostIndex] requestHitRatio Integer Request Hit Ratio (100%)
.2. [vhostMin] . [vhostIndex] Request Hit Ratio (10000%)
.3. [vhostMin] . [vhostIndex] bytesHitRatio Integer Bytes Hit Ratio (100%)
.4. [vhostMin] . [vhostIndex] Bytes Hit Ratio (10000%)
.10 origin OID Origin traffic information (expansion)
.11 client OID Client traffic information (expansion)

cache.vhost.traffic.origin

OID = 1.3.6.1.4.1.40001.1.4.3.1.11.10

Provides origin server traffic statistics. Origin server traffic is divided into HTTP traffic and port bypass traffic.

OID Name Type Description
.1. [vhostMin] . [vhostIndex] inbound Integer Average traffic received from the origin server (bytes)
.2. [vhostMin] . [vhostIndex] outbound Integer Average traffic sent to the origin server (bytes)
.3. [vhostMin] . [vhostIndex] sessionAverage Integer Average origin server session count
.4. [vhostMin] . [vhostIndex] activesessionAverage Integer Average origin server transmitting session count
.10 http OID Origin server HTTP traffic information
.10.1. [vhostMin] . [vhostIndex] http.inbound Integer Average HTTP traffic received from the origin server (bytes)
.10.2. [vhostMin] . [vhostIndex] http.outbound Integer Average HTTP traffic sent to the origin server (bytes)
.10.3. [vhostMin] . [vhostIndex] http.sessionAverage Integer Average origin server HTTP session count
.10.4. [vhostMin] . [vhostIndex] http.reqHeaderSize Integer Average HTTP Header traffic sent to the origin server (bytes)
.10.5. [vhostMin] . [vhostIndex] http.reqBodySize Integer Average HTTP Body traffic sent to the origin server (bytes)
.10.6. [vhostMin] . [vhostIndex] http.resHeaderSize Integer Average HTTP Header traffic received from the origin server (bytes)
.10.7. [vhostMin] . [vhostIndex] http.resBodySize Integer Average HTTP Body traffic received from the origin server (bytes)
.10.8. [vhostMin] . [vhostIndex] http.reqAverage Integer Average number of HTTP requests sent to the origin server
.10.9. [vhostMin] . [vhostIndex] http.reqCount Integer Total number of HTTP requests sent to the origin server
.10.10. [vhostMin] . [vhostIndex] http.resTotalAverage Integer Average number of all HTTP responses received from the origin server
.10.11. [vhostMin] . [vhostIndex] http.resTotalCompleteAverage Integer Average number of successful HTTP transactions from the origin server
.10.12. [vhostMin] . [vhostIndex] http.resTotalTimeRes Integer Average elapsed time to receive a response header from the origin server (0.01 ms)
.10.13. [vhostMin] . [vhostIndex] http.resTotalTimeComplete Integer Average completion time of HTTP transactions from the origin server (0.01 ms)
.10.14. [vhostMin] . [vhostIndex] http.resTotalCount Integer Total number of all HTTP responses received from the origin server
.10.15. [vhostMin] . [vhostIndex] http.resTotalCompleteCount Integer Total number of successful HTTP transactions from the origin server
.10.20. [vhostMin] . [vhostIndex] http.res2xxAverage Integer Number of 2xx responses from the origin server
.10.21. [vhostMin] . [vhostIndex] http.res2xxCompleteAverage Integer Number of successful 2xx transactions from the origin server
.10.22. [vhostMin] . [vhostIndex] http.res2xxTimeRes Integer Average elapsed time to receive a 2xx header from the origin server (0.01 ms)
.10.23. [vhostMin] . [vhostIndex] http.res2xxTimeComplete Integer Average completion time of 2xx transactions from the origin server (0.01 ms)
.10.24. [vhostMin] . [vhostIndex] http.res2xxCount Integer Total number of 2xx responses from the origin server
.10.25. [vhostMin] . [vhostIndex] http.res2xxCompleteCount Integer Total number of successful 2xx transactions from the origin server
.10.30. [vhostMin] . [vhostIndex] http.res3xxAverage Integer Number of 3xx responses from the origin server
.10.31. [vhostMin] . [vhostIndex] http.res3xxCompleteAverage Integer Number of successful 3xx transactions from the origin server
.10.32. [vhostMin] . [vhostIndex] http.res3xxTimeRes Integer Average elapsed time to receive a 3xx header from the origin server (0.01 ms)
.10.33. [vhostMin] . [vhostIndex] http.res3xxTimeComplete Integer Average completion time of 3xx transactions from the origin server (0.01 ms)
.10.34. [vhostMin] . [vhostIndex] http.res3xxCount Integer Total number of 3xx responses from the origin server
.10.35. [vhostMin] . [vhostIndex] http.res3xxCompleteCount Integer Total number of successful 3xx transactions from the origin server
.10.40. [vhostMin] . [vhostIndex] http.res4xxAverage Integer Number of 4xx responses from the origin server
.10.41. [vhostMin] . [vhostIndex] http.res4xxCompleteAverage Integer Number of successful 4xx transactions from the origin server
.10.42. [vhostMin] . [vhostIndex] http.res4xxTimeRes Integer Average elapsed time to receive a 4xx header from the origin server (0.01 ms)
.10.43. [vhostMin] . [vhostIndex] http.res4xxTimeComplete Integer Average completion time of 4xx transactions from the origin server (0.01 ms)

Continued on next page

4.2. Chapter 11. SNMP 117

STON Documentation, Release 2.3.4

Table 4.5 – continued from previous page
OID Name Type Description
.10.44. [vhostMin] . [vhostIndex] http.res4xxCount Integer Total number of 4xx responses from the origin server
.10.45. [vhostMin] . [vhostIndex] http.res4xxCompleteCount Integer Total number of successful 4xx transactions from the origin server
.10.50. [vhostMin] . [vhostIndex] http.res5xxAverage Integer Number of 5xx responses from the origin server
.10.51. [vhostMin] . [vhostIndex] http.res5xxCompleteAverage Integer Number of successful 5xx transactions from the origin server
.10.52. [vhostMin] . [vhostIndex] http.res5xxTimeRes Integer Average elapsed time to receive a 5xx header from the origin server (0.01 ms)
.10.53. [vhostMin] . [vhostIndex] http.res5xxTimeComplete Integer Average completion time of 5xx transactions from the origin server (0.01 ms)
.10.54. [vhostMin] . [vhostIndex] http.res5xxCount Integer Total number of 5xx responses from the origin server
.10.55. [vhostMin] . [vhostIndex] http.res5xxCompleteCount Integer Total number of successful 5xx transactions from the origin server
.10.60. [vhostMin] . [vhostIndex] http.connectTimeoutAverage Integer Average number of origin server connection timeouts
.10.61. [vhostMin] . [vhostIndex] http.receiveTimeoutAverage Integer Average number of origin server reception timeouts
.10.62. [vhostMin] . [vhostIndex] http.connectAverage Integer Average number of origin server connection successes
.10.63. [vhostMin] . [vhostIndex] http.dnsQueryTime Integer Average DNS query time when connecting to the origin server
.10.64. [vhostMin] . [vhostIndex] http.connectTime Integer Origin server average connection time (0.01 ms)
.10.65. [vhostMin] . [vhostIndex] http.connectTimeoutCount Integer Total number of origin server connection timeouts
.10.66. [vhostMin] . [vhostIndex] http.receiveTimeoutCount Integer Total number of origin server reception timeouts
.10.67. [vhostMin] . [vhostIndex] http.connectCount Integer Total number of origin server connection successes
.10.68. [vhostMin] . [vhostIndex] http.closeAverage Integer Average number of sockets closed by the origin server during transmission
.10.69. [vhostMin] . [vhostIndex] http.closeCount Integer Total number of sockets closed by the origin server during transmission
.11 portbypass OID Port bypass origin server traffic information
.11.1. [vhostMin] . [vhostIndex] portbypass.inbound Integer Average traffic received from the origin server via port bypass (bytes)
.11.2. [vhostMin] . [vhostIndex] portbypass.outbound Integer Average traffic sent to the origin server via port bypass (bytes)
.11.3. [vhostMin] . [vhostIndex] portbypass.sessionAverage Integer Average number of origin server sessions in port bypass
.11.4. [vhostMin] . [vhostIndex] portbypass.closedAverage Integer Average number of connections closed by the origin server during port bypass
.11.5. [vhostMin] . [vhostIndex] portbypass.connectTimeoutAverage Integer Average number of origin server connection timeouts during port bypass
.11.6. [vhostMin] . [vhostIndex] portbypass.closedCount Integer Total number of connections closed by the origin server during port bypass
.11.7. [vhostMin] . [vhostIndex] portbypass.connectTimeoutCount Integer Total number of origin server connection timeouts during port bypass

cache.vhost.traffic.client

OID = 1.3.6.1.4.1.40001.1.4.3.1.11.11

Provides client traffic statistics. Client traffic is divided into HTTP traffic, SSL traffic, and port bypass traffic. SNMP
does not provide statistics for each directory. Even if directory statistics are configured, the data will be accumulated
before being provided.

OID Name Type Description
.1. [vhostMin] . [vhostIndex] inbound Integer Average traffic received from clients (bytes)
.2. [vhostMin] . [vhostIndex] outbound Integer Average traffic sent to clients (bytes)
.3. [vhostMin] . [vhostIndex] sessionAverage Integer Average client session count
.4. [vhostMin] . [vhostIndex] activesessionAverage Integer Average client transmitting session count
.10 http OID Client HTTP traffic information
.10.1. [vhostMin] . [vhostIndex] http.inbound Integer Average HTTP traffic received from clients (bytes)
.10.2. [vhostMin] . [vhostIndex] http.outbound Integer Average HTTP traffic sent to clients (bytes)
.10.3. [vhostMin] . [vhostIndex] http.sessionAverage Integer Average client HTTP session count
.10.4. [vhostMin] . [vhostIndex] http.reqHeaderSize Integer Average HTTP Header traffic received from clients (bytes)
.10.5. [vhostMin] . [vhostIndex] http.reqBodySize Integer Average HTTP Body traffic received from clients (bytes)
.10.6. [vhostMin] . [vhostIndex] http.resHeaderSize Integer Average HTTP Header traffic sent to clients (bytes)
.10.7. [vhostMin] . [vhostIndex] http.resBodySize Integer Average HTTP Body traffic sent to clients (bytes)
.10.8. [vhostMin] . [vhostIndex] http.reqAverage Integer Average number of HTTP requests received from clients

Continued on next page

118 Chapter 4. 3. Advanced Features

STON Documentation, Release 2.3.4

Table 4.6 – continued from previous page
OID Name Type Description
.10.9. [vhostMin] . [vhostIndex] http.reqCount Integer Total number of HTTP requests received from clients
.10.10. [vhostMin] . [vhostIndex] http.resTotalAverage Integer Average number of all HTTP responses sent to clients
.10.11. [vhostMin] . [vhostIndex] http.resTotalCompleteAverage Integer Average number of HTTP transactions completed by clients
.10.12. [vhostMin] . [vhostIndex] http.resTotalTimeRes Integer Average elapsed time of client responses (0.01ms)
.10.13. [vhostMin] . [vhostIndex] http.resTotalTimeComplete Integer Average elapsed time of client HTTP transactions (0.01 ms)
.10.14. [vhostMin] . [vhostIndex] http.resTotalCount Integer Total number of all HTTP responses sent to clients
.10.15. [vhostMin] . [vhostIndex] http.resTotalCompleteCount Integer Total number of HTTP transactions completed by clients
.10.20. [vhostMin] . [vhostIndex] http.res2xxAverage Integer Average number of 2xx responses sent to clients
.10.21. [vhostMin] . [vhostIndex] http.res2xxCompleteAverage Integer Average number of 2xx transactions completed by clients
.10.22. [vhostMin] . [vhostIndex] http.res2xxTimeRes Integer Average elapsed time of client 2xx responses (0.01 ms)
.10.23. [vhostMin] . [vhostIndex] http.res2xxTimeComplete Integer Average completion time of client 2xx transactions (0.01 ms)
.10.24. [vhostMin] . [vhostIndex] http.res2xxCount Integer Total number of 2xx responses sent to clients
.10.25. [vhostMin] . [vhostIndex] http.res2xxCompleteCount Integer Total number of 2xx transactions completed by clients
.10.30. [vhostMin] . [vhostIndex] http.res3xxAverage Integer Average number of 3xx responses sent to clients
.10.31. [vhostMin] . [vhostIndex] http.res3xxCompleteAverage Integer Average number of 3xx transactions completed by clients
.10.32. [vhostMin] . [vhostIndex] http.res3xxTimeRes Integer Average elapsed time of client 3xx responses (0.01 ms)
.10.33. [vhostMin] . [vhostIndex] http.res3xxTimeComplete Integer Average completion time of client 3xx transactions (0.01 ms)
.10.34. [vhostMin] . [vhostIndex] http.res3xxCount Integer Total number of 3xx responses sent to clients
.10.35. [vhostMin] . [vhostIndex] http.res3xxCompleteCount Integer Total number of 3xx transactions completed by clients
.10.40. [vhostMin] . [vhostIndex] http.res4xxAverage Integer Average number of 4xx responses sent to clients
.10.41. [vhostMin] . [vhostIndex] http.res4xxCompleteAverage Integer Average number of 4xx transactions completed by clients
.10.42. [vhostMin] . [vhostIndex] http.res4xxTimeRes Integer Average elapsed time of client 4xx responses (0.01 ms)
.10.43. [vhostMin] . [vhostIndex] http.res4xxTimeComplete Integer Average completion time of client 4xx transactions (0.01 ms)
.10.44. [vhostMin] . [vhostIndex] http.res4xxCount Integer Total number of 4xx responses sent to clients
.10.45. [vhostMin] . [vhostIndex] http.res4xxCompleteCount Integer Total number of 4xx transactions completed by clients
.10.50. [vhostMin] . [vhostIndex] http.res5xxAverage Integer Average number of 5xx responses sent to clients
.10.51. [vhostMin] . [vhostIndex] http.res5xxCompleteAverage Integer Average number of 5xx transactions completed by clients
.10.52. [vhostMin] . [vhostIndex] http.res5xxTimeRes Integer Average elapsed time of client 5xx responses (0.01 ms)
.10.53. [vhostMin] . [vhostIndex] http.res5xxTimeComplete Integer Average completion time of client 5xx transactions (0.01 ms)
.10.54. [vhostMin] . [vhostIndex] http.res5xxCount Integer Total number of 5xx responses sent to clients
.10.55. [vhostMin] . [vhostIndex] http.res5xxCompleteCount Integer Total number of 5xx transactions completed by clients
.10.60. [vhostMin] . [vhostIndex] http.reqDeniedAverage Integer Average number of denied requests
.10.61. [vhostMin] . [vhostIndex] http.reqDeniedCount Integer Total number of denied requests
.11 portbypass OID Port bypass client traffic information
.11.1. [vhostMin] . [vhostIndex] portbypass.inbound Integer Average traffic received from clients via port bypass (bytes)
.11.2. [vhostMin] . [vhostIndex] portbypass.outbound Integer Average traffic sent to clients via port bypass (bytes)
.11.3. [vhostMin] . [vhostIndex] portbypass.sessionAverage Integer Average number of client sessions in port bypass
.11.4. [vhostMin] . [vhostIndex] portbypass.closedAverage Integer Average number of connections closed by clients during port bypass
.11.5. [vhostMin] . [vhostIndex] portbypass.closedCount Integer Total number of connections closed by clients during port bypass
.12 ssl OID SSL client traffic information
.12.2. [vhostMin] . [vhostIndex] ssl.inbound Integer Average traffic received from clients via SSL (bytes)
.12.3. [vhostMin] . [vhostIndex] ssl.outbound Integer Average traffic sent to clients via SSL (bytes)
.13 requestHitAverage OID Average number of cache HIT results
.13.1. [vhostMin] . [vhostIndex] requestHitAverage.TCP_HIT Integer TCP_HIT
.13.2. [vhostMin] . [vhostIndex] requestHitAverage.TCP_IMS_HIT Integer TCP_IMS_HIT
.13.3. [vhostMin] . [vhostIndex] requestHitAverage.TCP_REFRESH_HIT Integer TCP_REFRESH_HIT
.13.4. [vhostMin] . [vhostIndex] requestHitAverage.TCP_REF_FAIL_HIT Integer TCP_REF_FAIL_HIT
.13.5. [vhostMin] . [vhostIndex] requestHitAverage.TCP_NEGATIVE_HIT Integer TCP_NEGATIVE_HIT
.13.6. [vhostMin] . [vhostIndex] requestHitAverage.TCP_MISS Integer TCP_MISS

Continued on next page

4.2. Chapter 11. SNMP 119

STON Documentation, Release 2.3.4

Table 4.6 – continued from previous page
OID Name Type Description
.13.7. [vhostMin] . [vhostIndex] requestHitAverage.TCP_REFRESH_MISS Integer TCP_REFRESH_MISS
.13.8. [vhostMin] . [vhostIndex] requestHitAverage.TCP_CLIENT_REFRESH_MISS Integer TCP_CLIENT_REFRESH_MISS
.13.9. [vhostMin] . [vhostIndex] requestHitAverage.TCP_DENIED Integer TCP_DENIED
.13.10. [vhostMin] . [vhostIndex] requestHitAverage.TCP_ERROR Integer TCP_ERROR
.13.11. [vhostMin] . [vhostIndex] requestHitAverage.TCP_REDIRECT_HIT Integer TCP_REDIRECT_HIT
.14 requestHitCount OID Total number of cache HIT results
.14.1. [vhostMin] . [vhostIndex] requestHitCount.TCP_HIT Integer TCP_HIT
.14.2. [vhostMin] . [vhostIndex] requestHitCount.TCP_IMS_HIT Integer TCP_IMS_HIT
.14.3. [vhostMin] . [vhostIndex] requestHitCount.TCP_REFRESH_HIT Integer TCP_REFRESH_HIT
.14.4. [vhostMin] . [vhostIndex] requestHitCount.TCP_REF_FAIL_HIT Integer TCP_REF_FAIL_HIT
.14.5. [vhostMin] . [vhostIndex] requestHitCount.TCP_NEGATIVE_HIT Integer TCP_NEGATIVE_HIT
.14.6. [vhostMin] . [vhostIndex] requestHitCount.TCP_MISS Integer TCP_MISS
.14.7. [vhostMin] . [vhostIndex] requestHitCount.TCP_REFRESH_MISS Integer TCP_REFRESH_MISS
.14.8. [vhostMin] . [vhostIndex] requestHitCount.TCP_CLIENT_REFRESH_MISS Integer TCP_CLIENT_REFRESH_MISS
.14.9. [vhostMin] . [vhostIndex] requestHitCount.TCP_DENIED Integer TCP_DENIED
.14.10. [vhostMin] . [vhostIndex] requestHitCount.TCP_ERROR Integer TCP_ERROR
.14.11. [vhostMin] . [vhostIndex] requestHitCount.TCP_REDIRECT_HIT Integer TCP_REDIRECT_HIT

cache.vhost.traffic.filesystem

OID = 1.3.6.1.4.1.40001.1.4.3.1.11.20

Provides File I/O statistics of a virtual host.

OID Name Type Description
.1. [vhostMin] . [vhostIndex] requestHitRatio Integer Request Hit Ratio (100%)
.2. [vhostMin] . [vhostIndex] Request Hit Ratio (10000%)
.3. [vhostMin] . [vhostIndex] byteHitRatio Integer Byte Hit Ratio (100%)
.4. [vhostMin] . [vhostIndex] Byte Hit Ratio (10000%)
.5. [vhostMin] . [vhostIndex] outbound Integer Average traffic sent to File I/O (bytes)
.6. [vhostMin] . [vhostIndex] session Integer Average number of threads in File I/O
.7 requestHitAverage OID Average number of cache HIT results
.7.1. [vhostMin] . [vhostIndex] requestHitAverage.TCP_HIT Integer TCP_HIT
.7.2. [vhostMin] . [vhostIndex] requestHitAverage.TCP_IMS_HIT Integer TCP_IMS_HIT
.7.3. [vhostMin] . [vhostIndex] requestHitAverage.TCP_REFRESH_HIT Integer TCP_REFRESH_HIT
.7.4. [vhostMin] . [vhostIndex] requestHitAverage.TCP_REF_FAIL_HIT Integer TCP_REF_FAIL_HIT
.7.5. [vhostMin] . [vhostIndex] requestHitAverage.TCP_NEGATIVE_HIT Integer TCP_NEGATIVE_HIT
.7.6. [vhostMin] . [vhostIndex] requestHitAverage.TCP_MISS Integer TCP_MISS
.7.7. [vhostMin] . [vhostIndex] requestHitAverage.TCP_REFRESH_MISS Integer TCP_REFRESH_MISS
.7.8. [vhostMin] . [vhostIndex] requestHitAverage.TCP_CLIENT_REFRESH_MISS Integer TCP_CLIENT_REFRESH_MISS
.7.9. [vhostMin] . [vhostIndex] requestHitAverage.TCP_DENIED Integer TCP_DENIED
.7.10. [vhostMin] . [vhostIndex] requestHitAverage.TCP_ERROR Integer TCP_ERROR
.7.11. [vhostMin] . [vhostIndex] requestHitAverage.TCP_REDIRECT_HIT Integer TCP_REDIRECT_HIT
.8 requestHitCount OID Total number of cache HIT results
.8.1. [vhostMin] . [vhostIndex] requestHitCount.TCP_HIT Integer TCP_HIT
.8.2. [vhostMin] . [vhostIndex] requestHitCount.TCP_IMS_HIT Integer TCP_IMS_HIT
.8.3. [vhostMin] . [vhostIndex] requestHitCount.TCP_REFRESH_HIT Integer TCP_REFRESH_HIT
.8.4. [vhostMin] . [vhostIndex] requestHitCount.TCP_REF_FAIL_HIT Integer TCP_REF_FAIL_HIT
.8.5. [vhostMin] . [vhostIndex] requestHitCount.TCP_NEGATIVE_HIT Integer TCP_NEGATIVE_HIT

Continued on next page

120 Chapter 4. 3. Advanced Features

STON Documentation, Release 2.3.4

Table 4.7 – continued from previous page
OID Name Type Description
.8.6. [vhostMin] . [vhostIndex] requestHitCount.TCP_MISS Integer TCP_MISS
.8.7. [vhostMin] . [vhostIndex] requestHitCount.TCP_REFRESH_MISS Integer TCP_REFRESH_MISS
.8.8. [vhostMin] . [vhostIndex] requestHitCount.TCP_CLIENT_REFRESH_MISS Integer TCP_CLIENT_REFRESH_MISS
.8.9. [vhostMin] . [vhostIndex] requestHitCount.TCP_DENIED Integer TCP_DENIED
.8.10. [vhostMin] . [vhostIndex] requestHitCount.TCP_ERROR Integer TCP_ERROR
.8.11. [vhostMin] . [vhostIndex] requestHitCount.TCP_REDIRECT_HIT Integer TCP_REDIRECT_HIT
.10. [vhostMin] . [vhostIndex] getattr.filecount Integer (getattr function call) Number of FILE responses
.11. [vhostMin] . [vhostIndex] getattr.dircount Integer (getattr function call) Number of DIR responses
.12. [vhostMin] . [vhostIndex] getattr.failcount Integer (getattr function call) Number of failure responses
.13. [vhostMin] . [vhostIndex] getattr.timeres Integer (getattr function call) Response time (0.01 ms)
.14. [vhostMin] . [vhostIndex] open.count Integer Number of open function calls
.15. [vhostMin] . [vhostIndex] open.timeres Integer Response time of the open function (0.01 ms)
.16. [vhostMin] . [vhostIndex] read.count Integer Number of read function calls
.17. [vhostMin] . [vhostIndex] read.timeres Integer Response time of the read function (0.01 ms)
.18. [vhostMin] . [vhostIndex] read.buffersize Integer Size of the buffer requested by the read function (bytes)
.19. [vhostMin] . [vhostIndex] read.bufferfilled Integer Size of filled space in the buffer requested by the read function (bytes)

cache.vhost.traffic.dims

OID = 1.3.6.1.4.1.40001.1.4.3.1.11.21

Provides DIMS conversion statistics of a virtual host.

OID Name Type Description
.1. [vhostMin] . [vhostIndex] requests Integer Number of DIMS conversion requests
.2. [vhostMin] . [vhostIndex] converted Integer Number of conversion successes
.3. [vhostMin] . [vhostIndex] failed Integer Number of conversion failures
.4. [vhostMin] . [vhostIndex] avgsrcsize Integer Average size of origin images (bytes)
.5. [vhostMin] . [vhostIndex] avgdestsize Integer Average size of converted images (bytes)
.6. [vhostMin] . [vhostIndex] avgtime Integer Conversion time (ms)

cache.vhost.traffic.compression

OID = 1.3.6.1.4.1.40001.1.4.3.1.11.22

Provides compression statistics of a virtual host.

OID Name Type Description
.1. [vhostMin] . [vhostIndex] requests Integer Number of compression requests
.2. [vhostMin] . [vhostIndex] converted Integer Number of compression successes
.3. [vhostMin] . [vhostIndex] failed Integer Number of compression failures
.4. [vhostMin] . [vhostIndex] avgsrcsize Integer Average size of origin files (bytes)
.5. [vhostMin] . [vhostIndex] avgdestsize Integer Average size of compressed files (bytes)
.6. [vhostMin] . [vhostIndex] avgtime Integer Compression time (ms)

4.2.10 cache.view

OID = 1.3.6.1.4.1.40001.1.4.11.1

4.2. Chapter 11. SNMP 121

STON Documentation, Release 2.3.4

Provides information identical to the virtual host statistics. [viewIndex] starts at 1 and ranges up to the number of
Views.

• 1.3.6.1.4.1.40001.1.4.3 - Virtual host statistics

• 1.3.6.1.4.1.40001.1.4.11 - View statistics

4.3 Chapter 12. Log

This chapter will explain the logs. A service both starts and ends with the logs. The logs can act as valuable assets to
keep, laws to abide by, and arbitrators of system failure.

Logs are divided into global logs and virtual host logs. All logs can be configured to be on or off and share identical
properties.

<XXX Type="time" Unit="1440" Retention="10" Compression="OFF">ON</XXX>

• Type (default: time) , Unit (default: 1440 min) Sets the rolling conditions for logs

– time Rolls the log file for every configured unit of time (unit: min).

– size Rolls the log file for every configured unit of size (unit: MB).

– both Using a comma, time and size can be configured at the same time. For example, a configuration of
Unit="1440, 100" rolls the log file every 24 hours (1440 minutes) or every 100 MB.

• Retention (default: 10 files) Keeps up to the set number of log files.

• Compression (default: OFF) Compresses the log when rolling. For example, when the file ac-
cess_20140715_0000.log is rolling, it is compressed and saved as access_20140715_0000.log.gz.

If Type is set to “time” and Unit set to 10, the log will be rolled on every multiple of 10 minutes. That is, even if
the service started at 2:18, the log will be rolled at 2:20, 2:30, 2:40, and so on. Likewise, if you want to roll the log
every day at midnight, you can set Unit to 1440 (60 min * 20 hours). If Type is set to “time”, the logs will be rolled
at least once a day, and Unit cannot be set above 1440.

If the log is rolled with a maximum value of 24 hours (Unit="1440"), the log will be recorded as seen below.

4.3.1 Install Log

All details during installation/update will be recorded in the file install.log. No extra configuration is needed for this
log.

122 Chapter 4. 3. Advanced Features

STON Documentation, Release 2.3.4

#DownloadURL: http://foobar.com/ston/ston.2.0.0.rhel.2.6.32.x64.tar.gz
#DownloadTime: 13 sec
#Target: STON 2.0.0
#Date: 2014.03.03 16:48:35
Prepare for STON 2.0.0 install process

Stopping STON...
STON stopped

[Copying files]
`./fuse.conf' -> `/etc/fuse.conf'
`./libfuse.so.2' -> `/usr/local/ston/libfuse.so.2'
`./libtbbmalloc_proxy.so' -> `/usr/local/ston/libtbbmalloc_proxy.so'
`./start-stop-daemon' -> `/usr/sbin/start-stop-daemon'
`./libtbbmalloc_proxy.so.2' -> `/usr/local/ston/libtbbmalloc_proxy.so.2'
`./libtbbmalloc.so' -> `/usr/local/ston/libtbbmalloc.so'
`./libtbbmalloc.so.2' -> `/usr/local/ston/libtbbmalloc.so.2'
`./libtbb.so' -> `/usr/local/ston/libtbb.so'
`./libtbb.so.2' -> `/usr/local/ston/libtbb.so.2'
`./stond' -> `/usr/local/ston/stond'
`./stonx' -> `/usr/local/ston/stonx'
`./stonr' -> `/usr/local/ston/stonr'
`./stonu' -> `/usr/local/ston/stonu'
`./stonapi' -> `/usr/local/ston/stonapi'
`./server.xml.default' -> `/usr/local/ston/server.xml.default'
`./vhosts.xml.default' -> `/usr/local/ston/vhosts.xml.default'
`./ston_format.sh' -> `/usr/local/ston/ston_format.sh'
`./ston_diskinfo.sh' -> `/usr/local/ston/ston_diskinfo.sh'
`./wm.sh' -> `/usr/local/ston/wm.sh'

[Exporting config files]
#Export so directory
/usr/local/ston/ to ld.so.conf
#Export sysctl to /etc/sysctl.conf
vm.swappiness=0
vm.min_free_kbytes=524288
#Export sudoers for WM
Defaults !requiretty
winesoft ALL=NOPASSWD: /etc/init.d/ston stop, /etc/init.d/ston start, /bin/ps -ef

[Configuring STON daemon script]
STON deamon activate in run-level 2345.

[Installing sub-packages]
curl installed.
libjpeg installed.
libgomp installed.
rrdtool installed.

[Installing WM]
Stopping WM...
WM stopped
`./wm.server_default.xml' -> `/usr/local/ston/wm/tmp/conf/server_default.xml'
`./wm.vhost_default.xml' -> `/usr/local/ston/wm/tmp/conf/vhost_default.xml'
WM configuration found. Current WM port : 8500
PHP module for Legacy(CentOS 5.5) installed
`./libphp5.so.5.5' -> `/usr/local/ston/wm/modules/libphp5.so'
WM installation almost complete. Changing WM privileges.

Installation successfully complete

4.3.2 Info Log

The Info log can be configured in global settings (server.xml).

4.3. Chapter 12. Log 123

STON Documentation, Release 2.3.4

server.xml - <Server><Cache>

<InfoLog Type="size" Unit="1" Retention="5">ON</InfoLog>

• <InfoLog> (default: ON, Type: size, Unit: 1) Records operation and configuration
changes in STON.

4.3.3 Deny Log

The Deny log can be configured in global settings (server.xml).

server.xml - <Server><Cache>

<DenyLog Type="size" Unit="1" Retention="5">ON</DenyLog>

• <DenyLog> (default: ON, Type: size, Unit: 1)

Records IP addresses denied by Server Access Control.

#Fields: date time c-ip deny
2012.11.15 07:06:10 1.1.1.1 AP
2012.11.15 07:06:26 2.2.2.2 GIN
2012.11.15 07:06:30 3.3.3.3 3.3.3.1-255

Fields are separated by spaces, and each field refers to the following:

– date Date.

– time Time.

– c-ip Client IP.

– deny Denial condition.

4.3.4 OriginError Log

The OriginError log can be configured in global settings (server.xml).

server.xml - <Server><Cache>

<OriginErrorLog Type="size" Unit="5" Retention="5" Warning="OFF">ON</OriginErrorLog>

• <OriginErrorLog> (default: OFF, Type: size, Unit: 5, Warning: OFF)

Records errors that occur in the origin server for all virtual hosts. Errors can be either connection timeouts and
reception timeouts, and results of origin server exclusion/recovery are also logged.

#Fields: date time vhostname level s-domain s-ip cs-method cs-uri time-taken sc-error sc-resinfo
2012.11.15 07:06:10 [example.com] [ERROR] 192.168.0.13 192.168.0.13 GET /Upload/ProductImage/stock/1716439_SM.jpg 20110 Connect-Timeout -
2012.11.15 07:06:26 [example.com] [ERROR] 192.168.0.13 192.168.0.13 GET /Upload/ProductImage/stock/1716439_SM.jpg 20110 Connect-Timeout -
2012.11.15 07:06:30 [example.com] [ERROR] 192.168.0.13 192.168.0.13 GET /Upload/ProductImage/stock/1716439_SM.jpg 20110 Connect-Timeout -
#2012.11.15 07:06:30 [example.com] 192.168.0.13 excluded from service
#2012.11.15 07:06:31 [example.com] Origin server list: 192.168.0.14
#2012.11.15 07:11:11 [example.com] 192.168.0.13 recovered back in service
#2012.11.15 07:11:12 [example.com] Origin server list: 192.168.0.13

Fields are separated by spaces, and each field refers to the following:

– date Date of error.

124 Chapter 4. 3. Advanced Features

STON Documentation, Release 2.3.4

– time Time of error.

– vhostname [Virtual host].

– level [Error level (Error or Warning)].

– s-domain Origin server domain.

– s-ip Origin server IP.

– cs-method HTTP Method sent by STON to the origin server.

– cs-uri URI sent by STON to the origin server.

– time-taken Amount of time elapsed until the system error.

– sc-error Type of error.

– sc-resinfo Information of server response when error occurred (separated by commas).

If the Warning property is set to ON, HTTP communication errors will be logged as follows.

2012.11.15 07:09:03 [example.com] [WARNING] 10.10.10.10 121.189.63.219 GET /716439_SM.jpg 20110 PartialResponseOnNormalRequest Res=206,Len=2635
2012.11.15 07:09:03 [example.com] [WARNING] 10.10.10.10 121.189.63.219 GET /716439_SM.jpg 20110 ClosedWithoutResponse -

HTTP communication errors can occur in the following ways.

– ClosedWithoutResponse Connection closed by the origin server. HTTP response was not returned.

– ClosedWhenDownloading Connection closed by the origin server. Desired Content-Length was not
downloaded.

– NotPartialResponseOnRangeRequest The response code to a Range request was not 206.

– DifferentContentLengthOnRangeRequest The requested Range and Content-Length were dif-
ferent.

– PartialResponseOnNormalRequest The response code to a non-Range request was 206.

4.3.5 SysLog Transfer

Logs can be forwarded to UDP in real time using the syslog protocol. All logs can be configured to be transferred via
syslog.

server.xml - <Server><Cache>

<InfoLog SysLog="OFF">ON</InfoLog>
<DenyLog SysLog="OFF">ON</DenyLog>
<OriginErrorLog SysLog="OFF">ON</OriginErrorLog>

• SysLog

– OFF (default) syslog is not used.

– ON Uses the <SysLog> tag configured within the current tag to transfer logs.

The following is an example of configuring syslog when <OriginErrorLog> is being logged.

server.xml - <Server><Cache>

<OriginErrorLog SysLog="ON">
<SysLog Priority="local3.info" Dest="192.168.0.1:514" />
<SysLog Priority="user.alert" Dest="192.168.0.2" />
<SysLog Priority="mail.debug" Dest="log.example.com" />

</OriginErrorLog>

4.3. Chapter 12. Log 125

http://en.wikipedia.org/wiki/Syslog

STON Documentation, Release 2.3.4

1. The SysLog property of <OriginErrorLog> is set to ON.

2. The <SysLog> tag is created within <OriginErrorLog>. Logs can be transferred to any number of servers.

3. The Priority property of <SysLog> is configured. This property is expressed with a combination of Facility
Levels and Severity levels.

4. The Dest property of <SysLog> is configured. This is the syslog reception server, and the reception port can
be omitted if it is 514.

The syslog example recorded from the above settings can be seen below. The syslog tag is recorded as STON/{log
name}.

Mar 12 11:24:24 192.168.0.1 STON/ORIGINERROR: 2013-03-12 14:09:20 [ERROR] [example.com] - 192.168.0.14 GET /1.gifd 1996 Connect-Timeout -
Mar 12 11:24:24 192.168.0.1 STON/ORIGINERROR: 2013-03-12 14:09:22 [ERROR] [example.com] - 192.168.0.14 GET /favicon.ico 1995 Connect-Timeout -
Mar 12 11:24:24 192.168.0.1 STON/ORIGINERROR: 2013-03-12 14:09:24 [ERROR] [example.com] - 192.168.0.14 GET /1.gifd22 2020 Connect-Timeout -
Mar 12 11:24:24 192.168.0.1 STON/ORIGINERROR: #2013 .03.12 14:09:24 [example.com] 192.168.0.14:102 excluded from service
Mar 12 11:24:24 192.168.0.1 STON/ORIGINERROR: #2013 .03.12 14:09:24 [example.com] Origin server list:

4.3.6 Saving Virtual Host Logs

Logs are recorded separately for each virtual host. Even if the log is set to OFF, Log Trace will work as normal.

server.xml - <Server><VHostDefault>
vhosts.xml - <Vhosts><Vhost>

<Log Dir="/cache_log">
... (omitted) ...

</Log>

• <Log> The Dir property configures the directory in which the logs will be recorded. The logs are saved in
virtual host directories that are created under the set directory.

4.3.7 DNS Log

If the origin server is set to a Domain, the results of Resolving are recorded in the DNS log.

server.xml - <Server><VHostDefault><Log>
vhosts.xml - <Vhosts><Vhost><Log>

<Dns Type="size" Unit="10" Retention="10" SysLog="OFF" Compression="OFF">ON</Dns>

#Fields: date time domain ttl ip-list ip-count time-taken result
2014-07-30 12:10:33 example.com 157 173.194.127.15,173.194.127.23,173.194.127.24,173.194.127.31 4 5007 success
2014-07-30 12:10:38 example.com 152 173.194.127.23,173.194.127.24,173.194.127.31,173.194.127.15 4 9 success
2014-07-30 12:11:03 example.com 127 173.194.127.31,173.194.127.15,173.194.127.23,173.194.127.24 4 15007 success
2014-07-30 12:12:53 example.com 17 173.194.127.15,173.194.127.23,173.194.127.24,173.194.127.31 4 6 success
2014-07-30 12:23:16 test.com 0 - 0 10008 fail
2014-07-30 12:23:21 test.com 0 - 0 5007 fail
2014-07-30 12:23:26 test.com 0 - 0 5011 fail
2014-07-30 12:24:38 example.com 152 173.194.127.23,173.194.127.24,173.194.127.31,173.194.127.15 4 9 success
2014-07-30 12:25:03 example.com 127 173.194.127.31,173.194.127.15,173.194.127.23,173.194.127.24 4 15007 success

Fields are separated by spaces, and each field refers to the following:

• date Date.

126 Chapter 4. 3. Advanced Features

http://en.wikipedia.org/wiki/Syslog#Facility_levels
http://en.wikipedia.org/wiki/Syslog#Facility_levels
http://en.wikipedia.org/wiki/Syslog#Severity_levels

STON Documentation, Release 2.3.4

• time Time.

• domain Target domain.

• ttl Time to live (Time when record is valid).

• ip-list IP list.

• ip-count IP count.

• time-taken Runtime.

• result “success” or “fail”.

4.3.8 Access Log

Records the HTTP transactions of all clients. The log is recorded when an HTTP transaction ends, whether the transfer
is completed or interrupted.

server.xml - <Server><VHostDefault><Log>
vhosts.xml - <Vhosts><Vhost><Log>

<Access Type="time" Unit="1440" Retention="10" XFF="on" Form="ston" Local="Off">ON</Access>

• XFF

– ON (default) Records values of the XFF (X-Forwarded For) header sent by the client together with
the client IP. If there is no header, it will be the same as OFF.

– OFF Records the client IP.

– TrimCIP Records the client IP if there is no XFF header, but records the XFF header without the client
IP if there is a header.

• Form

– ston (default) W3C standard + expansion field

– apache Apache format

– iis IIS format

– custom admin-log-access-custom

• Local

– OFF (default) Local communications (loopback) are not logged).

– ON Local communications (loopback) are logged.

#Fields: date time s-ip cs-method cs-uri-stem cs-uri-query s-port cs-username c-ip cs(User-Agent) sc-status sc-bytes time-taken cs-referer sc-resinfo cs-range sc-cachehit cs-acceptencoding session-id sc-content-length
2012.06.27 16:52:24 220.134.10.5 GET /web/h.gif - 80 - 61.50.7.9 Chrome/19.0.1084.56 200 98141 5 - Bypass+gzip+SSL3 - TCP_HIT gzip+deflate 7 1273735
2012.06.27 16:52:26 220.134.10.5 GET /favicon.ico - 80 - 61.50.7.9 Chrome/19.0.1084.56 200 949 2 - - - TCP_HIT gzip+deflate 35 14875
2012.06.27 17:00:06 220.168.0.13 GET /setup.Eexe - 80 - 61.168.0.102 Mozilla/5.0+(Windows+NT+6.1;+WOW64)+AppleWebKit/536.11+(KHTML,+like+Gecko)+Chrome/20.0.1132.57+Safari/536.11 206 20971800 7008 - - 398458880-419430399 TCP_HIT - 41 89764358

Fields are separated by spaces, and each field refers to the following:

• date Date of HTTP transaction completion.

• time Time of HTTP transaction completion.

• s-ip Server IP.

• cs-method HTTP Method sent by the client.

• cs-uri-stem URL sent by the client (excluding QueryString).

4.3. Chapter 12. Log 127

STON Documentation, Release 2.3.4

• cs-uri-query QueryString of the URL sent by the client.

• s-port Server port.

• cs-username Client username.

• c-ip Client IP. If XFF is set to ON, the X-Forwarded-For header is recorded with the IP.

• cs(User-Agent) HTTP User-Agent sent by the client.

• sc-status Server response code.

• sc-bytes Bytes sent from the server (header + content).

• time-taken Total elapsed time until an HTTP transaction is completed (ms).

• cs-referer HTTP Referer sent by the client.

• sc-resinfo Additional information, separated by the “+” character. If the service provides encoded content,
the encoding option (gzip or deflate) is specified. For secured communications, the SSL protocol version (SSL3,
TLS1, TLS1.1, TLS1.2) is specified. For bypassed communications, “Bypass” is specified.

• cs-range Records the Range header sent by the client.

• sc-cachehit Cache HIT results.

• cs-acceptencoding Accept-Encoding header sent by the client.

• session-id HTTP client sesion ID (unsigned int64).

• sc-content-length Value of server response Content-Length header.

The access log records all HTTP transactions regardless of the success or failure of the transfer. An HTTP transaction
begins when a client sends an HTTP request. If the HTTP connection is closed before STON sends a response to the
client, then the transaction will still be considered completed. Both sc-status and sc-bytes will be recorded
as 0. A log like this is recorded when the client closes the connection before the STON receives a response from the
origin server.

4.3.9 Custom Access Log Format

The format of the access log can be customized.

server.xml - <Server><VHostDefault><Log>
vhosts.xml - <Vhosts><Vhost><Log>

<Access Form="custom">ON</Access>
<AccessFormat>%a %A %b id=%{userid}C %f %h %H "%{user-agent}i" %m %P "%r" %s %t %T %X %I %O %R %e %S %K</AccessFormat>

• <Access> The Form property is set to custom.

• <AccessFormat> The custom log format.

With the above configuration, the access log will be recorded as follows. (#Fields are not recorded.)

192.168.0.88 192.168.0.12 163276 id=winesoft; image.jpg example.com HTTP "STON" GET 80 "GET /ston/image.jpg?type=png HTTP/1.1" 200 2014-04-03 21:21:54 1 C 204 163276 1 2571978 TCP_MISS HTTP/1.1
192.168.0.88 192.168.0.12 63276 id=winesoft; vod.mp4 example.com HTTP "STON" POST 80 "GET /ston/vod.mp4?start=10 HTTP/1.1" 200 2014-04-03 21:21:54 12 C 304 363276 2 2571979 TCP_REFRESH_HIT HTTP/1.1
192.168.0.88 192.168.0.12 3634276 id=ston; news.html example.com HTTPS "STON" GET 443 "GET /news.html HTTP/1.1" 200 2014-04-03 21:21:54 30 X 156 2632576 1 2571980 TCP_MISS HTTP/1.1
192.168.0.88 192.168.0.12 6332476 id=winesoft; style.css example.com HTTP "STON" HEAD 80 "GET /style.css HTTP/1.1" 200 2014-04-03 21:21:54 10 X 234 653276 2 2571981 TCP_REFRESH_HIT HTTP/1.1
192.168.0.88 192.168.0.12 6276 id=ston; ui.js example.com HTTP "STON" GET 80 "GET /ui.js HTTP/1.1" 200 2014-04-03 21:21:54 1 X 233 63276 1 2571982 TCP_MISS HTTP/1.1
192.168.0.88 192.168.0.12 626 id=winesoft; hls.m4u8 example.com HTTP "STON" GET 80 "GET /hls.m4u8 HTTP/1.1" 200 2014-04-03 21:21:54 2 X 124 6312333276 2 2571983 TCP_REFRESH_HIT HTTP/1.1

This configuration was developed based on the Apache log format and there are several expansion fields. There is no
restriction to the delimiters that can be used, but quotation marks (”...”) should be used for items that may include
spaces, such as a User-Agent.

128 Chapter 4. 3. Advanced Features

https://httpd.apache.org/docs/2.2/ko/mod/mod_log_config.html

STON Documentation, Release 2.3.4

• %...a Client IP.

192.168.0.66

• %...A Server IP Address.

192.168.0.14

• %...b Byte size of transfer, excluding the HTTP header.

1024

• %...{foobar}C The content of the “foobar” cookie in the request received by the server.

If input as %{id=}c, the cookie value corresponding to id= is recorded.

• %...D Elapsed time to process the request (ms).

3000

• %...f File name.

If /mp4/iu.mp4, iu.mp4 will be recorded.

• %...h HostName.

example.com

• %...H Request protocol.

http or https

• %...{foobar}i The content of the “foobar” header in the request received by the client.

If input as %{User-Agent}i, the User-Agent value is recorded.

• %...m Request Method.

GET or POST or HEAD

• %...P Server PORT

80

• %...q QueryString

Id=10&value=20

• %...r The first line of the request (Request Line).

GET /img.jpg HTTP/1.1

• %...s Response code.

200

• %...t STON default time format.

2014-01-01 15:27:02

• %...{format}t Date shown using “format”.

If input as %{%Y-%m-%d %H:%M:%S}T, the output will be 2014-08-07 06:12:23.

4.3. Chapter 12. Log 129

STON Documentation, Release 2.3.4

• %...T TimeTaken (sec).

10

• %...U ShortURI.

/img/img.jpg

• %...u FullURI.

/img/img.jpg?session=1232&id=37

• %...X Status when transaction is completed.

– X Closed before the response is completed.

– C Response is completed.

C

• %...I Received bytes, including the request header.

2048

• %...O Received bytes, including the response header.

2048

• %...R Response time (ms).

2

• %...e Session-ID.

1

• %...S Cache HIT results.

TCP_HIT

• %...K Request HTTP version.

HTTP/1.1

• %...y Request HTTP header size.

488

• %...z Response HTTP header size.

362

If there is no value for the configured field, it will be recorded as “-”. If the format is wrong, the STON default format
(Form=”ston”) will be used instead.

The ”...” in the above notations for the fields (e.g. %h %U %r %b) can be left blank, or a condition for recording
can be used. If the condition is not met, “-” will be recorded. HTTP status codes can be used for conditions, and
exclamation points (!) can be used for NOT conditions.

The following example only records a User-Agent when there is a 400 (Bad Request) or a 501 (Not Implemented)
response.

"%400,501{User-agent}i"

The following example logs Referers for all abnormal responses.

130 Chapter 4. 3. Advanced Features

STON Documentation, Release 2.3.4

"%!200,304,302{Referer}i"

4.3.10 Origin Log

Records all HTTP transactions in the origin server. The log is recorded when an HTTP transaction ends, whether the
transfer is completed or interrupted.

server.xml - <Server><VHostDefault><Log>
vhosts.xml - <Vhosts><Vhost><Log>

<Origin Type="time" Unit="1440" Retention="10" Local="Off">ON</Origin>

#Fields: date time cs-sid cs-tcount c-ip cs-method s-domain cs-uri s-ip sc-status cs-range sc-sock-error sc-http-error sc-content-length cs-requestsize sc-responsesize sc-bytes time-taken time-dns time-connect time-firstbyte time-complete cs-reqinfo cs-acceptencoding sc-cachecontrol s-port sc-contentencoding session-id session-type
2012.06.27 17:40:00 357 899 192.168.0.13 GET i.example.com /t/2.gif 115.71.9.136 200 - - - 3874 197 271 3874 20 0 0 17 3 - gzip+deflate - 80 gzip 7 cache
2012.06.27 17:40:00 357 900 192.168.0.13 GET i.example.com /ex1.gif 115.71.9.136 200 - - - 5673 223 272 5673 24 0 0 21 3 - - - 80 - 8 cache
2012.06.27 17:40:00 357 901 192.168.0.13 GET i.example.com /exB.jpg 115.71.9.136 200 - - - 8150 189 273 8150 13 0 0 9 4 Bypass - - 80 - 7 cache
#[ERROR:01] 2012.06.27 17:40:01 220.73.216.5 220.73.216.5 GET /web/nmb/img/main/v1/h1.gif 1824 Connect-Timeout - 11 cache
2012.06.27 17:40:00 357 901 192.168.0.13 GET i.example.com /exB1.jpg 115.71.9.136 200 - - - 8150 189 273 8150 13 0 0 9 4 - max-age=3600 80 - 12 cache
2012.06.27 17:40:00 357 901 192.168.0.13 GET i.example.com /exB2.jpg 115.71.9.136 200 - - - 8150 189 273 8150 13 0 0 9 4 - no-cache 80 - 35 cache
2012.06.27 17:40:00 357 901 192.168.0.13 GET i.example.com /exB3.jpg 115.71.9.136 200 - - - 8150 189 273 8150 13 0 0 9 4 - - 80 - 35 cache

If there is an origin server failure, an error log starting with #[ERROR:xx] will be recorded. Fields are separated by
spaces, and each field refers to the following:

Fig. 4.4: Origin time measurements

• date Date of HTTP transaction completion.

• time Time of HTTP transaction completion.

• cs-sid Session unique ID. HTTP transactions processed (recycled) by the same session will have the same
value.

• cs-tcount Transaction count. Records how many transactions the current session has processed. Transac-
tions with the same cs-sid value cannot have the same cs-tcount value.

• c-ip STON IP.

• cs-method HTTP Method sent to the origin server.

• s-domain Origin server domain.

• cs-uri URI sent to the origin server.

• s-ip Origin server IP.

4.3. Chapter 12. Log 131

STON Documentation, Release 2.3.4

• sc-status Origin server HTTP response code.

• cs-range Value of Range request sent to the origin server.

• sc-sock-error Socket error code (1=Transfer timeout, 2=Transfer delay, 3=Connection close).

• sc-http-error Log of response code when origin server returns either 4xx or 5xx responses.

• sc-content-length Content Length sent by the origin server.

• cs-requestsize (unit: bytes) Size of the HTTP request header sent to the origin server.

• sc-responsesize (unit: bytes) Size of the HTTP header of the origin server’s response.

• sc-bytes (unit: bytes) Received content size (header excluded).

• time-taken (unit: ms) Total elapsed time until the HTTP transaction is completed. If the session is
not recycled, the socket connection time is included.

• time-dns (unit: ms) Elapsed time during DNS query.

• time-connect (unit: ms) Elapsed time until a socket is established with the origin server.

• time-firstbyte (unit: ms) Elapsed time from a sent request to a received response.

• time-complete (unit: ms) Elapsed time from the first response to completion.

• cs-reqinfo Additional information. Separated by the “+” character. Recorded as “Bypass” for bypass
communications and “PrivateBypass” for private bypass communications.

• cs-acceptencoding Recorded as “gzip+deflate” if compressed content is requested from the origin server.

• sc-cachecontrol Cache-control header sent by the origin server.

• s-port Origin server port.

• sc-contentencoding Content-Encoding header sent by the origin server.

• session-id HTTP client session ID that created the origin server request (unsigned int64).

• session-type Session type requested from the origin server.

– cache Sessions used for caching.

– recovery Sessions used for recovery in Error Detection and Recovery.

– healthcheck Sessions used by Health-Checker.

4.3.11 Monitoring Log

Records the average statistics of the last five minutes.

server.xml - <Server><VHostDefault><Log>
vhosts.xml - <Vhosts><Vhost><Log>

<Monitoring Type="size" Unit="10" Retention="10" Form="json">ON</Monitoring>

• Form Assigns the log format. (json or xml)

4.3.12 FileSystem Log

Records all File I/O transactions generated using the Chapter 17. File System.

132 Chapter 4. 3. Advanced Features

STON Documentation, Release 2.3.4

server.xml - <Server><VHostDefault><Log>
vhosts.xml - <Vhosts><Vhost><Log>

<FileSystem Type="time" Unit="1440" Retention="10">ON</FileSystem>

Logging occurs when the File I/O transaction is completed. The time of completion differs based on the type of
cs-method.

#Fields: date time cs-method cs-path sc-status sc-bytes response-time time-taken sc-cachehit attr session-id
2012.06.27 16:52:24 ATTR /t 200 0 100 100 TCP_HIT FOLDER 1
2012.06.27 16:52:24 ATTR /t/2.gif 200 0 100 100 TCP_HIT FILE 1
2012.06.27 16:52:24 OPEN /file.txt 200 0 100 2000 TCP_HIT FILE 2
2012.06.27 16:52:24 READ /file.txt 200 1024768 100 2000 TCP_HIT FILE 2

• date Date of File I/O transaction completion.

• time Time of File I/O transaction completion.

• cs-method File I/O access type. One of the following three can be used:

– ATTR getattr function call. Logs when the function is returned.

– OPEN File is opened but not READ. Logs when the file is closed.

– READ File is opened and READ. Logs when the file is closed.

• cs-path Access path.

• sc-status Response code. The following show the failure codes, as well as the code for normal service
(200).

– 200 Normal service.

– 301 Bypass required.

– 302 Service denied.

– 303 Redirect required.

– 400 Invalid request.

– 401 Unable to find the virtual host.

– 402 Initialization failure from the origin server.

– 500 Object initialization failure.

– 501 Object open failure.

– 502 Save path generation failure.

– 503 Memory initialization failure.

– 504 Emergency status.

– 600 Timeout during file service standby.

– 601 Timeout during file data service standby.

– 602 File initialization failure during file service standby.

– 603 Data initialization failure during file data service standby.

– 701 Invalid offset.

– 702 Specific file section load failure.

– 703 Not enough memory.

4.3. Chapter 12. Log 133

STON Documentation, Release 2.3.4

– 704 Origin session generation failure.

• sc-bytes Read byte size.

• response-time Elapsed time from the function call to the connection to the service object.

• time-taken Elapsed time from the function call to the completion of the File I/O transaction.

• sc-cachehit Cache HIT results.

• attr FILE or FOLDER.

• session-id File I/O session ID (unsigned int64).

Note: session-id is assigned when the Client (HTTP or File I/O) Context is generated. In the general file
process flow of Open -> Read -> Close, the Client Context is constructed at Open and destructed at Close. On
the other hand the getattr function is an “atomic function”, so the Client Context is created/destructed every
time, and a new session-id is always assigned.

4.3.13 FTP Transfer

When the log is rolled, it is also uploaded using the designated FTP client.

FTP Client

Configures the FTP client. Rolled logs are uploaded to the FTP server in real time.

Fig. 4.5: FTP client structure and operation.

FTP clients exist outside of STON, as seen in the image above. STON is responsible for inputting logs stored locally
into the FTP client queue, and has no effect on FTP operation. The FTP client can then process the uploads based on
its own configuration.

The FTP clients can be configured in global settings (server.xml).

server.xml - <Server>

<Ftp Name="backup1">
<Mode>Passive</Mode>
<Address>ftp.winesoft.co.kr:21</Address>
<Account>

134 Chapter 4. 3. Advanced Features

STON Documentation, Release 2.3.4

<ID>test</ID>
<Password>12345abc</Password>

</Account>
<ConnectTimeout>10</ConnectTimeout>
<TransferTimeout>600</TransferTimeout>
<TrafficCap>0</TrafficCap>
<DeleteUploaded>OFF</DeleteUploaded>
<BackupOnFail>OFF</BackupOnFail>
<UploadPath>/log_backup/%v/%s-%e.%p.log</UploadPath>
<Transfer Time="Rotate" />

</Ftp>

<Ftp Name="backup2">
<Mode>Active</Mode>
<Address>192.168.0.14:21</Address>
<Account>

<ID>test</ID>
<Password>qwerty</Password>

</Account>
<ConnectTimeout>3</ConnectTimeout>
<TransferTimeout>100</TransferTimeout>
<TrafficCap>10240</TrafficCap>
<DeleteUploaded>ON</DeleteUploaded>
<BackupOnFail>ON</BackupOnFail>
<Transfer Time="Static">04:00</Transfer>

</Ftp>

• <Ftp> Configures FTP clients. Individual names can be configured with the Name property.

– Mode (default: Passive) Connection mode (Passive or Active).

– Address FTP address.

– Account FTP account. To encrypt the password (e.g. qwerty), the API below can be used.

/command/encryptpassword?plain=qwerty

The encrypted password can then be configured as follows.

<Password Type="enc">dXR9k0xNUZVVYQsK5Bi1cg==</Password>

– ConnectTimeout Connection pending time.

– TransferTimeout Transfer pending time.

– TrafficCap (unit: KB) If set to greater than 0, the maximum transfer bandwidth is configured.

– DeleteUploaded (default: OFF) Deletes the corresponding log after transfer completion.

– BackupOnFail (default: OFF) Backs up the corresponding log in the following path so that the
log is not deleted on a transfer failure.

/usr/local/ston/stonb/backup/

Backup logs are not retransmitted and will not be deleted unless done deliberately by the administrator.

– UploadPath Configures the upload path. If not configured, the path becomes “/virtual host/”. For
example, logs for example.com are uploaded to the /example.com/ directory.

* %{time format}s Log start time.

* %{time format}e Log end time.

4.3. Chapter 12. Log 135

STON Documentation, Release 2.3.4

* %p Prefix.

* %v Virtual host name.

* %h Device HOST name.

For example, if the following configuration is used,

server.xml - <Server><Ftp>

<UploadPath>/log_backup/%v/%s-%e.%p.log</UploadPath>

the upload path will be as follows.

/log_backup/example.com/200140722_0000-200140722_2300.access.log

– Transfer Determines the log transfer time. The Type property determines the format of the value.

* Rotate (default) Transfers the log immediately after rolling. Does not require a value.

* Static Transfers the log once a day at a specific time. For example, if set to 04:00, a transfer will
occur every day at 4 am.

* Interval Transfers the log after every set interval of time. For example, if set to 4, a transfer will
occur every four hours.

It is important to configure a proper logging policy to ensure that rolling does not occur while logs are
being transferred.

FTP clients use curl.

FTP Log

FTP logs are merged and saved in /usr/local/ston/sys/stonb/stonb.log.

#Fields: date time local-path cs-url file-size time-taken sc-status sc-error-msg
2014-04-23 17:10:20 /ston_log/winesoft.co.kr/origin_20140423_080000.log ftp://ftp.winesoft.co.kr:21/winesoft.co.kr/origin_20140423_080000.log 381 10006 fail "curl: (7) couldn't connect to host"
2014-04-23 17:10:20 /ston_log/winesoft.co.kr/access_20140423_1700.log ftp://192.168.0.14:21/winesoft.co.kr/access_20140423_1700.log 260 60 success "-"
2014-04-23 17:11:00 /ston_log/winesoft.co.kr/origin_20140423_080000.log ftp://ftp.winesoft.co.kr:21/winesoft.co.kr/origin_20140423_080000.log 381 10008 fail "curl: (7) couldn't connect to host"
2014-04-23 17:11:00 /ston_log/winesoft.co.kr/filesystem_20140423_080000.log ftp://192.168.0.14:21/winesoft.co.kr/filesystem_20140423_080000.log 179 60 success "-"

Fields are separated by spaces, and each field refers to the following:

• date Date.

• time Time.

• local-path Local path of the log to be transferred.

• cs-url FTP address to transfer the log to.

• file-size Transfer file size.

• time-taken (unit: ms) Elapsed time of transfer.

• sc-status Transfer success/failure.

• sc-error-msg Curl error message on transfer failure.

Log FTP Transfer

When the log is rolling, the designated FTP client will be used to upload the log. If separated by commas, multiple
FTP clients can be used at the same time.

136 Chapter 4. 3. Advanced Features

STON Documentation, Release 2.3.4

server.xml - <Server><VHostDefault>
vhosts.xml - <Vhosts><Vhost>

<Log>
<Access Ftp="backup1, backup2">ON</Access>
<Origin Ftp="backup_org">ON</Origin>
<Monitoring Ftp="backup1">ON</Monitoring>
<FileSystem Ftp="backup2">ON</FileSystem>

</Log>

• Ftp The FTP client to be used.

The log is uploaded to ftp://{FTP server address}/{virtual host name}/{rolled log name}. For example, the upload ad-
dress of the rolled log “access_20140424_0000.log” of the virtual host “example.com” in the server “ftp.dummy.com”
will be ftp://ftp.dummy.com/example.com/access_20140424_0000.log.

4.4 Chapter 13. WM (Web Management)

This chapter will introduce Web Management (WM), a tool for web management using an API. Using WM, not only
can you intuitively set up the service, you can also organize clusters to manage a large number of STON instances
together.

When STON is installed, WM is installed in the /usr/local/ston/wm directory. WM is implemented with Apache
2.2.24 + PHP 5.3.24. Because WM uses Apache, you can change the settings (e.g. HTTPS) as desired by editing the
/usr/local/ston/wm/confg/httpd.conf file. WM and STON are not strongly connected. As in the figure below, WM uses
STON configuration files and API to set the behavior of STON.

Fig. 4.6: WM uses STON configuration files and API.

There may exist better management techniques that improve on WM using a similar method.

4.4.1 Connection

WM uses port 8500 by default. If the IP of STON is set to 192.168.0.100, the WM connection address will be
http://192.168.0.100:8500. As previously mentioned, this can be customized by editing the httpd.conf file.

4.4.2 Account

The default account is set to [ID: admin, Password: ston]. If the login succeeds, the dashboard page will be displayed,
showing the general status of STON.

4.4. Chapter 13. WM (Web Management) 137

ftp:/
http://192.168.0.100:8500

STON Documentation, Release 2.3.4

Fig. 4.7: WM Start Page

4.4.3 Update to Latest Version

When a new version is released, an “Update Available” message will be shown as seen below.

Clicking the message brings you to a page where you can update to the latest version. Depending on the status of the
service, the safety level of performing the update will be shown.

When the update is completed, all services will automatically restart.

4.4.4 Menu Structure

Drop-down menus can be expanded/shrunk with mouse clicks.

1. Global Settings All functions except for virtual host default settings can be configured in global settings
(server.xml).

2. Virtual Host Management You can add/suspend/delete virtual hosts and view the status of all virtual hosts in
the service.

3. Cluster You can create/manage/destruct clusters, and all services in a cluster can be viewed by servers and
services.

4. Content Control You can control the content in the service with functions such as Purge.

5. Server Status You can monitor global settings such as the system status. All graphs use global resource graphs.

6. Service Status You can monitor the service status of virtual hosts. All graphs use virtual host graphs.

7. File System STON can be mounted on Linux VFS.

138 Chapter 4. 3. Advanced Features

STON Documentation, Release 2.3.4

Fig. 4.8: WM Dashboard

Fig. 4.9: A new update is available.

4.4. Chapter 13. WM (Web Management) 139

STON Documentation, Release 2.3.4

Fig. 4.10: WM Update could be dangerous.

140 Chapter 4. 3. Advanced Features

STON Documentation, Release 2.3.4

Fig. 4.11: WM Menu

4.4. Chapter 13. WM (Web Management) 141

STON Documentation, Release 2.3.4

4.4.5 Global Settings

All functions except for virtual host default settings can be configured in global settings (server.xml).

Fig. 4.12: WM Global Settings - General

4.4.6 Virtual Host Management

All virtual hosts in the service can be configured in detail, and new virtual hosts can be added. All virtual hosts
that aren’t configured independently will use the settings of the default virtual host (VHostDefault). This concept is
identical to inheritance on object-oriented programming. The virtual hosts can override most parameters.

New

Creates a new virtual host for the service. If a cluster is configured, then multiple virtual hosts can be created in every
server at the same time. All virtual hosts will inherit from the default virtual host (VHostDefault), so a virtual host can
be ready to enter the service after only setting its name and origin server address. There are eight different sub-options
that can be expanded with the Expand button to show more detailed settings.

List

You can monitor the status of all virtual hosts that are a part of the service. You can also start/stop each virtual host.
If a cluster is configured, you can control the virtual hosts of all servers at the same time. The default virtual host can
also be selected.

142 Chapter 4. 3. Advanced Features

STON Documentation, Release 2.3.4

Fig. 4.13: WM Virtual Host Management - New

4.4. Chapter 13. WM (Web Management) 143

STON Documentation, Release 2.3.4

Fig. 4.14: WM Virtual Host Management - List

Detailed Configuration

Here you can configure the default virtual host (VHostDefault) or individual virtual hosts. A virtual host can be
selected after selecting the combo box in the upper left corner. “Default Virtual Host” is the default configurations
that all virtual hosts will inherit. Therefore, any configurations that do not override this will be affected by changes to
the “Default Virtual Host”.

Fig. 4.15: WM Virtual Host Configuration - Top Menu

As in the above figure, there are many submenus, with the selected submenu colored red. Clicking on each menu will
load a detailed configuration page, as shown in the figure below. All configurations will be reflected after “Apply” or
“Apply to All Clusters” is clicked.

Almost all items in this section can be overridden, so you should have a through understanding of how it works. For
example, if the TTL value of the default virtual host is set to 60, all virtual hosts will inherit this value. However, if
this value is overridden, the corresponding virtual host will use the overridden TTL value.

The three possibilities are explained below.

• Override with another value While the default TTL is 60, the service for User A will use the overridden value
of 180. This will not be affected by any changes to the default virtual host.

• Override with the same value Though the values are the same, this will be processed as an override and the
service for User B will use the overridden value of 60. However, even if the default virtual host’s TTL is
changed to 30, this will not affect User B’s overridden setting of 60.

144 Chapter 4. 3. Advanced Features

STON Documentation, Release 2.3.4

Fig. 4.16: WM Virtual Host Configuration - Origin Server

4.4. Chapter 13. WM (Web Management) 145

STON Documentation, Release 2.3.4

• Do not override If a specific value is omitted, the service for User C will use the default value of 60. If the
default virtual host’s TTL is changed to 30, the TTL used for User C will also change to 30.

In WM, colors are used to identify overrides. A white background identifies inheritance of the default virtual host
configuration. Overridden values use an apricot background to distinguish it from default values. All override settings
have an X button on the right, which will remove the override when clicked.

4.4.7 Cluster

Multiple instances of STON can be merged into one cluster for integrated management/operation. All instances of
STON are configured to have equal authority, so logging into any instance in the cluster will allow you to manage the
entire cluster.

Structure

A cluster can be created, or a server can be added to an existing cluster. Adding to a cluster requires authentication
for the WM account. If WM is configured with identical account information (ID and password), the authentication
procedure is skipped.

Fig. 4.17: Creating a new cluster.

When a cluster is set up, the “Apply to All Clusters” button can be used when managing virtual hosts to configure
multiple hosts at the same time. In addition, you can duplicate and apply configurations from one server to another in
the same server. If you want to put a server into a different cluster, it must be removed and reconfigured.

Cluster Port

When first configured, WM will use the same port as the cluster. Though it has the benefit of allowing clustering with
only the WM account, this can pose problems in the restriction of access IPs.

• For security purposes, WM places a restriction so that only designated IPs can access it.

• All servers must specifically allow the IPs of the other servers to allow clustering.

• If there are too many servers or the server IPs are dynamic, it would be virtually impossible to properly fill out
the IP list.

This problem can be resolved by using a separate port for clustering. Servers can then recognize each other not with
a license file separate from the WM account. Clusters will only be possible between servers with the same license,
which increases security.

1. [Apache server] httpd.conf Multi-port configuration

146 Chapter 4. 3. Advanced Features

STON Documentation, Release 2.3.4

Fig. 4.18: Cluster list.

4.4. Chapter 13. WM (Web Management) 147

STON Documentation, Release 2.3.4

(For default installation) Open /usr/local/ston/wm/conf/httpd.conf and add ports as shown below.

After saving, restart the Apache server to put the changes into effect.

2. [WM] Clustering

If multi-port configuration was successful, the “Allocate Clustering Port” button can be found.

Click the button.

3. [WM] Cluster Port Selection

A list of ports that can be used will be shown. Select a port to configure.

All servers in the same cluster must use the same port.

148 Chapter 4. 3. Advanced Features

STON Documentation, Release 2.3.4

Server Status

The status and service condition of all STON servers in a cluster can be checked. You can click on each item in the
server list to view detailed information.

Virtual Host Status

The MRTG of all virtual hosts in the cluster can be put together in one screen and checked. The virtual hosts can all
be started/stopped at the same time. You can click on each item in the virtual host list to view detailed information.

4.4.8 Content Control

You can browse/control content currently in the service or perform cleanup. If a cluster is configured, content in all of
the servers can be browsed or controlled at the same time.

4.4.9 System Information

You can look into the system information of the server in operation.

4.4.10 Service Status

You can monitor the service status of each virtual host.

4.4. Chapter 13. WM (Web Management) 149

STON Documentation, Release 2.3.4

Fig. 4.19: Status for each server.

150 Chapter 4. 3. Advanced Features

STON Documentation, Release 2.3.4

Fig. 4.20: Status for each virtual host.

Fig. 4.21: Caching status check

4.4. Chapter 13. WM (Web Management) 151

STON Documentation, Release 2.3.4

Fig. 4.22: API call (e.g. Purge)

152 Chapter 4. 3. Advanced Features

STON Documentation, Release 2.3.4

Fig. 4.23: Service status of virtual host.

4.4. Chapter 13. WM (Web Management) 153

STON Documentation, Release 2.3.4

154 Chapter 4. 3. Advanced Features

CHAPTER 5

4. Management & Operation

5.1 Chapter 14. Advanced Virtual Host Configuration

This chapter will discuss advanced topics related to virtual host configuration.

Each virtual host is supposed to match its origin. (a domain or an IP) But sometimes a virtual host has to be connected
to others, or the other way round. Depending on functionalities, Client Statistics / Access Log policies might be
different.

5.1.1 URL Preprocessing

Regular expressions are used to modify the requested URLs. If URL preprocessing is defined, all client requests
(HTTP or File I/O) must pass through the URL Rewriter.

Fig. 5.1: The request can only reach the virtual host by passing through the URL Rewriter.

If an approaching Host name is modified by the URL Rewriter, then it will consider it as if the Host header was
modified by the client’s HTTP request. URL preprocessing is configured in the virtual host settings (vhosts.xml).
While most settings are under the virtual host, URL preprocessing can change the name of the Host requested by the
client, so the settings must be on the same level as the virtual host.

vhosts.xml

<Vhosts>
<Vhost ...> ... </Vhost>
<Vhost ...> ... </Vhost>
<URLRewrite ...> ... </URLRewrite>
<URLRewrite ...> ... </URLRewrite>

</Vhosts>

Multiple configurations are allowed, and the regular expressions will be checked in order.

vhosts.xml - <Vhosts>

<URLRewrite AccessLog="Replace">
<Pattern>www.example.com/([^/]+)/(.*)</Pattern>

155

http://en.wikipedia.org/wiki/Regular_expression

STON Documentation, Release 2.3.4

<Replace>#1.example.com/#2</Replace>
</URLRewrite>

• <URLRewrite>

Configures URL preprocessing. AccessLog (default: Replace) Configures URLs that will be
recorded in the Access log. Replace records URLs after processing (/logo.jpg), while Pattern records
URLs after processing (/baseball/logo.jpg).

– <Pattern> Configures the patterns to be matched. A single pattern is expressed with parentheses ().

– <Replace> Configures the conversion format. Patterns that match can be used with expressions like #1
and #2. #0 stands for the entire requested URL. A maximum of nine patterns (up to #9) can be configured.

Throughput is provided by Chapter 10. Monitoring & Statistics and can also be checked via Successful URL Prepro-
cessing. URL preprocessing can work alongside Trimming and MP4 HLS to simplify expressions further.

vhosts.xml - <Vhosts>

<URLRewrite>
<Pattern>example.com/([^/]+)/(.*)</Pattern>
<Replace>example.com/#1.php?id=#2</Replace>

</URLRewrite>
// Pattern : example.com/releasenotes/1.3.4
// Replace : example.com/releasenotes.php?id=1.3.4

<URLRewrite>
<Pattern>example.com/download/(.*)</Pattern>
<Replace>download.example.com/#1</Replace>

</URLRewrite>
// Pattern : example.com/download/1.3.4
// Replace : download.example.com/1.3.4

<URLRewrite>
<Pattern>example.com/img/(.*\.(jpg|png).*)</Pattern>
<Replace>example.com/#1/STON/composite/watermark1</Replace>

</URLRewrite>
// Pattern : example.com/img/image.jpg?date=20140326
// Replace : example.com/image.jpg?date=20140326/STON/composite/watermark1

<URLRewrite>
<Pattern>example.com/preview/(.*)\.(mp3|mp4|m4a)$</Pattern>
<Replace><![CDATA[example.com/#1.#2?&end=30&boost=10&bandwidth=2000&ratio=100]]></Replace>

</URLRewrite>
// Pattern : example.com/preview/audio.m4a
// Replace : example.com/audio.m4a?end=30&boost=10&bandwidth=2000&ratio=100

<URLRewrite>
<Pattern>example.com/(.*)\.mp4\.m3u8$</Pattern>
<Replace>example.com/#1.mp4/mp4hls/index.m3u8</Replace>

</URLRewrite>
// Pattern : example.com/video.mp4.m3u8
// Replace : example.com/video.mp4/mp4hls/index.m3u8

<URLRewrite>
<Pattern>example.com/(.*)_(.*)_(.*)</Pattern>
<Replace>example.com/#0/#1/#2/#3</Replace>

</URLRewrite>
// Pattern : example.com/video.mp4_10_20
// Replace : example.com/example.com/video.mp4_10_20/video.mp4/10/20

156 Chapter 5. 4. Management & Operation

STON Documentation, Release 2.3.4

If one of the five special XML characters are used, then the pattern must be surrounded with a <![CDATA[...]]> tag.
If configured using Chapter 13. WM (Web Management), all patterns are processed as CDATA.

5.1.2 Facade Virtual Host

Because <Alias> is just a nickname for the virtual host, it will not provide separate statistics and logs. If you want
to use the same virtual host but obtain different Client Statistics and Access Log depending on the domain, a Facade
Virtual Host can be configured.

vhosts.xml - <Vhosts>

<Vhost Name="example.com">
...

</Vhost>

<Vhost Name="another.com" Status="facade:example.com">
...

</Vhost>

This can be done by inputting facade: + virtual host into the Status property. In the previous example, the
Client Statistics and Access Log will be recorded for clients that request another.com, not example.com.

5.1.3 Sub-Path

A single virtual host can have different sub-paths. These sub-paths can be configured to be handled by separate virtual
hosts.

vhosts.xml - <Vhosts>

<Vhost Name="sports.com">
<Sub Status="Active">
<Path Vhost="baseball.com">/baseball/<Path>
<Path Vhost="football.com">/football/<Path>
<Path Vhost="photo.com">/*.jpg<Path>

</Sub>
</Vhost>

<Vhost Name="baseball.com" />
<Vhost Name="football.com" />
<Vhost Name="photo.com" />

• If the page path or pattern matches the <Sub> input, then it will be sent to the corresponding virtual host. If
they do not match, then the page will be handled by the current virtual host.

– Status (default: Active) Sub-paths are ignored when inactive.

– <Path> If the URI requested by the client and the path match, the request will be sent to Vhost. Only
paths or patterns are allowed.

<Path Vhost="baseball.com">baseball<Path>
<Path Vhost="photo.com">*.jpg<Path>

If input as above, they will be parsed as /baseball/ and /*.jpg, respectively.

For example, if the client requests the following, the request will be sent to the football.com virtual host.

5.1. Chapter 14. Advanced Virtual Host Configuration 157

STON Documentation, Release 2.3.4

GET /football/rank.html HTTP/1.1
Host: sports.com

5.1.4 Redirect Tracing

When the origin server responds with the Redirect responses (301, 302, 303, 307), the location header is tracked to
request the content.

Fig. 5.2: The redirection is hidden from the client.

server.xml - <Server><VHostDefault><OriginOptions>
vhosts.xml - <Vhosts><Vhost><OriginOptions>

<RedirectionTrace>OFF</RedirectionTrace>

• <RedirectionTrace>

– OFF (default) Saved as 3xx responses.

– ON Downloads content from the address specified in the location header.

Works only if matched to the format or with a valid Location header. Traced only once to prevent infinite
redirects.

5.1.5 Virtual Host Link

Even if the content is distributed across multiple origins, the service is still operable as if the content were integrated
using virtual host links. It is particularly useful in environments where content is scattered due to on-premise to cloud
storage migration, storage capacity, and cost.

vhosts.xml - <Vhosts><Vhost>

<VhostLink Condition="...">...</VhostLink>

• <VhostLink> The virtual host name to delegate requests to. If the original response to the content satisfies ‘‘
Condition‘‘, the request is delegated to the specified virtual host. Only one can be set.

– Condition HTTP response code / pattern (1xx, 2xx, 3xx, 4xx, 5xx), fail (If failed to cache from source)

158 Chapter 5. 4. Management & Operation

STON Documentation, Release 2.3.4

Fig. 5.3: Content missing from cloud.com is delivered by nas.com.

Even if the client request is delegated to another virtual host, the: ref: monitoring_stats_vhost_client and: ref:‘ admin-
log-access‘ are recorded in the virtual host accessed by the client.

Note: Please note that if the virtual hosts’ configurations in the link are different from each other, it may operate in
unintentional ways.

If the virtual host link is concatenated with A (simple caching) -> B (image compression) Images processed in A
are not compressed, but images processed in B are compressed.

For example, if you are moving content from nas.com to cloud.com, you can only send requests to nas.com for content
not on cloud.com (= 404 Not Found). In the following cases: ref: monitoring_stats_vhost_client and: ref:‘ admin-log-
access‘ are recorded on cloud.com, even if the request is handled by nas.com.

vhosts.xml - <Vhosts>

// Content not on cloud.com (= 404 Not Found) will be served on nas.com.
<Vhost Name="cloud.com">

<VhostLink Condition="404">nas.com</VhostLink>
</Vhost>

<Vhost Name="nas.com">
</Vhost>

The vhostlink field of: ref: admin-log-access will tell you which virtual host the client request was processed on. “-”
means the request is not linked, and “nas.com” means that the request has been linked and processed at nas.com.

#Fields: date time s-ip cs-method cs-uri-stem ...(...)... vhostlink
2016.11.24 16:52:24 220.134.10.5 GET /web/h.gif ...(...)... -
2016.11.24 16:52:26 220.134.10.5 GET /favicon.ico ...(...)... nas.com

If the link has occurred multiple times, all virtual hosts linked with “+” delimiters are specified. In this case, the last
virtual host is the virtual host that processed the last request.

You can link multiple virtual hosts to different conditions as follows:

5.1. Chapter 14. Advanced Virtual Host Configuration 159

STON Documentation, Release 2.3.4

vhosts.xml - <Vhosts>

// When the origin server responds with 5xx or fails to cache (= fail), it delegates the request to bar.com.
<Vhost Name="foo.com">
<VhostLink Condition="5xx,fail">bar.com</VhostLink>

</Vhost>

// Delegates the request to helloworld.com when the origin server responds with 4xx.
<Vhost Name="bar.com">
<VhostLink Condition="4xx">helloworld.com</VhostLink>

</Vhost>

// When the origin server responds with 403, 404, or 5xx, it delegates the request to example.com.
<Vhost Name="helloworld.com">
<VhostLink Condition="403,404,5xx">example.com</VhostLink>

</Vhost>

// Does not delegate any more.
<Vhost Name="example.com">
</Vhost>

Fig. 5.4: It might look akward but not impossible.

In the above example, the: ref: admin-log-access of foo.com looks like this:

#Fields: date time s-ip cs-method cs-uri-stem ...(...)... vhostlink
2016.11.24 16:52:24 220.134.10.5 GET /test.jpg ...(...)... bar.com+helloworld.com+example.com

In the following cases, the link is immediately terminated.

• If the target virtual host does not exist (foo.com ->?)

• If you specified yourself as the destination virtual host (foo.com -> foo.com)

• If a recursive link occurs (foo.com -> bar.com -> foo.com)

160 Chapter 5. 4. Management & Operation

STON Documentation, Release 2.3.4

5.2 Chapter 14. Access Control

This chapter will explain how to deny access to unwanted clients. Denying access can be done by setting up a blacklist
in the Access Control List (ACL), but for the sake of convenience, a whitelist can also be configured.

Access control can be divided into server access control, which occurs during connection, and virtual host access
control, which can be configured for each virtual host. Because the access time and standards are different for each
level, it is important to choose what is most effective. All access control is logged.

5.2.1 Server Access Control

When the client connects to the server, the server decides whether to deny access based on the IP address. As this
occurs during connection, the process is decisive and swift. This can be configured in global settings (server.xml) and
has the highest priority.

server.xml - <Server><Host>

<ServiceAccess Default="Allow">
<Deny>192.168.7.9-255</Deny>
<Deny>192.168.8.10/255.255.255.0</Deny>

</ServiceAccess>

• <ServiceAccess> Configures ACL using the IP address. Supports the four formats of IP, IP Range,
Bitmask, and Subnet. The order is important, with the highest configuration taking priority. Default
(default: Allow) Configures how to process requests that do not meet any of the conditions. If set
to Deny, IP addresses to be allowed should be specified in <Allow> tags.

Denied IP addresses are logged in the Deny Log.

5.2.2 GeoIP

GeoIP can be used to deny access based on geographical location. Binary databases in GeoIP databases are linked to
GEOIP_MEMORY_CACHE and GEOIP_CHECK_CACHE to apply changes in real time.

server.xml - <Server><Host>

<ServiceAccess GeoIP="/var/ston/geoip/">
<Deny>AP</Deny>
<Deny>GIN</Deny>

</ServiceAccess>

The directory for GeoIP databases is configured in the GeoIP property of <ServiceAccess>. The supported
country codes are <http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2>‘_ and ISO 3166-1 alpha-3.

Note: Because GeoIP has a reserved file name, you must use the local path it is stored in. Also, because service
changes go into effect automatically, there is no need to reload the configuration deliberately.

If GeoIP is configured, the following will check for the files in the given directory. If it is not configured, a 404 NOT
FOUND response is returned.

http://127.0.0.1:10040/monitoring/geoiplist

The results are returned in JSON format.

5.2. Chapter 14. Access Control 161

http://dev.maxmind.com/geoip/legacy/downloadable/
http://dev.maxmind.com/geoip/legacy/benchmarks/
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-3

STON Documentation, Release 2.3.4

{
"version": "2.0.0",
"method": "geoiplist",
"status": "OK",
"result":
{

"path" : "/usr/ston/geoip/",
"files" :
[

{
"file" : "GeoIP.dat",
"size" : 766255

},
{

"file" : "GeoLiteCity.dat",
"size" : 12826936

}
]

}
}

5.2.3 Virtual Host Access Control

Controls access for each virtual host. The virtual host decides whether to deny access when the client sends an HTTP
request. This is because the virtual host cannot be found without an HTTP request.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<AccessControl Default="Allow" DenialCode="401">OFF</AccessControl>

• <AccessControl>

– OFF (default) The ACL is not activated. All client requests are allowed.

– ON The ACL is activated. Denied requests are responded to with the code set in the DenialCode prop-
erty. If the Default (default: Allow) property is set to Allow, the ACL is used as a blacklist.
If it is set to Deny, the ACL is used as a whitelist.

Denied requests are logged in the Access Log as TCP_DENY.

Virtual Host ACL

Determines whether client HTTP requests are allowed/denied/redirected. You can also configure different response
codes for each condition. For redirected requests, the response will be 302 Moved Temporarily. The ACL is config-
ured in the /svc/{virtual host name}/acl.txt file.

/svc/www.example.com/acl.txt
Commas (,) are delimiters, and the order is {condition},{keyword = allow|deny|redirect}.
If set to deny, the response code can be set after the keyword.
If not specified, the DenialCode of <AccessControl> is used.
If set to redirect, the URL to be redirected to can be set after the keyword (stated as a value of a Location header).
Multiple conditions can be combined (AND) with an & sign.

$IP[192.168.1.1], allow
$IP[192.168.2.1-255]
$IP[192.168.3.0/24], deny

162 Chapter 5. 4. Management & Operation

STON Documentation, Release 2.3.4

$IP[192.168.4.0/255.255.255.0]
$IP[AP] & !HEADER[referer], allow
$IP[GIN], redirect, /page/illegal_access.html
$HEADER[cookie: *ILLEGAL*], deny, 404
$HEADER[via: Apache]
$HEADER[x-custom-header]
$HEADER[referer:], redirect, http://another-site.com
!HEADER[referer] & !HEADER[user-agent] & !HEADER[host], deny
$URL[/source/public.zip], allow
$URL[/source/*]
/profile.zip, deny, 500
/secure/*.dat

A condition can be formated as an IP, GeoIP, Header, or URL.

• IP Represented as $IP[...], in which an IP, IP Range, Bitmask, or Subnet can be input.

• GeoIP Represented as $IP[...] and can only be used if GeoIP is configured.

• Header Represented as $HEADER[Key : Value]. The Value can recognize specific or patterned expressions. If
Value is an empty string but the colon is there ($HEADER[Key:]), then it refers to an empty header value.
If the Key is specified without the colon ($HEADER[Key]), then the condition will refer to any request
that has the corresponding header.

• URL Represented as $URL[...] and can be omitted. Specific and patterned expressions can be used.

$ means “if the condition is met, perform the action”, while ! means “if the condition is not met, perform the action”.
The following negative conditions are supported.

If the country is not KOR, deny.
!IP[KOR], deny

If the referer header is missing, deny.
!HEADER[referer], deny

If not under the /secure/ path, allow.
!URL[/secure/*], allow

When redirecting, the URI that the client requests might be needed. This can be obtained with the #URI keyword.

If the referer header is missing, the URI is appended to example.com and redirected.
Client requests begin with /, so there's no need to add a / to the redirect URL.
!HEADER[referer], redirect, http://example.com#URI

5.3 Chapter 15. Bandwidth

This chapter will explain various ways to set bandwidth limits for each virtual host. In the past, the objective was
generally to prevent bandwidth from exceeding a fixed limit. However, the idea has changed into regulating bandwidth
to be effective. It is now possible to analyze content in real time to optimize the use of bandwidth.

5.3.1 Virtual Host Bandwidth Limits

Limits the maximum bandwidth of a virtual host. This is a concrete method that has the highest priority.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

5.3. Chapter 15. Bandwidth 163

STON Documentation, Release 2.3.4

<TrafficCap Session="0">0</TrafficCap>

• <TrafficCap> (default: 0 Mbps) Configures the maximum bandwidth of a virtual host in Mbps.
A value of 0 will not limit the bandwidth. The‘‘Session (default: 0 Kbps)‘‘ property configures the maximum
bandwidth that can be transferred in each client session.

For example, setting <TrafficCap> to 50 (Mbps) will have the same effect has installing 50 Mbps NIC. The total
bandwidth of all clients that connect to the virtual host will be unable to exceed 50 Mbps.

Session behaves as follows.

1. Even if Session is configured, the total client bandwidth cannot exceed <TrafficCap>.

2. Even if Bandwidth Throttling is configured, the maximum speed of each client session cannot exceed the
Session value.

5.3.2 Bandwidth Throttling

Bandwidth Throttling (BT) is a function that can dynamically regulate the client transfer bandwidth for each session.
Media files are generally comprised of Video (V) and Audio (A) headers, as seen below.

Fig. 5.5: BT is not concerned with headers.

The headers get bigger when the play-time is longer or the key frame cycle is shorter. Therefore, if the media file can
be recognized, the headers are transferred without a bandwidth limit for smoother playback. As seen in the following
image, it is after the headers are fully transferred that BT starts.

Fig. 5.6: Operation scenario

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<BandwidthThrottling>
<Settings>

<Bandwidth Unit="kbps">1000</Bandwidth>

164 Chapter 5. 4. Management & Operation

STON Documentation, Release 2.3.4

<Ratio>100</Ratio>
<Boost>5</Boost>

</Settings>
<Throttling>OFF</Throttling>

</BandwidthThrottling>

<BandwidthThrottling> Default operation is configured in the subtags.

• <Settings> Configures default operation.

– <Bandwidth> (default: 1000 Kbps) Configures client transfer bandwidth. The Unit prop-
erty is used to configure the default unit (kbps, ‘‘mbps, bytes, kb, mb).

– <Ratio> (default: 100%) Configures bandwidth by applying the ratio to the <Bandwidth>
setting.

– <Boost> (default: 5 s) Transfers data to clients with unlimited speed for the set amount of
time. The amount of data can be calculated with the equation <Boost> x <Bandwidth> x <Ratio>.

• <Throttling>

– OFF (default) Does not apply BT.

– ON Applies BT if the conditions are met.

Bandwidth Throttling Condition List

Configures the BT condition list. Conditions must be met for BT to be applied. The list is checked in order to see if
any conditions are met. This transfer policy is saved in the file /svc/{virtual host name}/throttling.txt.

/svc/www.example.com/throttling.txt
Commas (,) are delimiters, and the order is {condition},{bandwidth},{ratio},{boost}.
All fields except for {condition} can be omitted.
Omitted fields use the default values set in <Settings>.
All condition formats are identical to settings in acl.txt.
The unit for {bandwidth} is the same as the Unit property of <Bandwidth> under <Settings>.

Transfers data with unlimited speed for 3 seconds, and then limits to to 3 Mbps (3000 Kbps = 2000 Kbps x 150%).
$IP[192.168.1.1], 2000, 150, 3

Only defines bandwidth. Transfers data with unlimited speed for 5 seconds (default), and then limits to 800 Kbps.
!HEADER[referer], 800

Only defines boost. Transfers data with unlimited speed for 10 seconds, and then limits to 1000 Kbps.
HEADER[cookie], , , 10

Does not apply BT for files with the m4a extension.
$URL[*.m4a], no

By analyzing media files (MP4, M4A, MP3), bandwidth can be obtained from the encoding rate. The file extension
must be one of .mp4, .m4a, or .mp3. In order to dynamically extract the bandwidth, you can add an x to the bandwidth
value, as shown below.

Finds the bandwidth for /vod/*.mp4 files. If the bandwidth cannot be found, 1000 is used instead.
$URL[/vod/*.mp4], 1000x, 120, 5

Finds the bandwidth if the user-agent header is missing. If the bandwidth cannot be found, 500 is used instead.
!HEADER[user-agent], 500x

5.3. Chapter 15. Bandwidth 165

STON Documentation, Release 2.3.4

Finds the bandwidth for /low_quality/* files. If the bandwidth cannot be found, the default value is used instead.
$URL[/low_quality/*], x, 200

QueryString Priority Condition

Uses a predetermined QueryString to dynamically configure <Bandwidth>, <Ratio>, and <Boost>. This con-
figuration takes priority over BT conditions.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<BandwidthThrottling>
<Settings>

<Bandwidth Param="mybandwidth" Unit="mbps">2</Bandwidth>
<Ratio Param="myratio">100</Ratio>
<Boost Param="myboost">3</Boost>

</Settings>
<Throttling QueryString="ON">ON</Throttling>

</BandwidthThrottling>

• Param in <Bandwidth>, <Ratio>, <Boost>

Configures the QueryString key with a different meaning for each tag.

• QueryString in <Throttling>

– OFF (default) Does not redefine conditions as QueryStrings.

– ON Redefines conditions as QueryStrings.

The above configuration allows BT to be dynamically configured based on the URLs requested by clients, as seen
below.

Transfers data with unlimited speed for 10 seconds, and then limits to 1.3 Mbps (1 Mbps x 130%).
http://www.winesoft.co.kr/video/sample.wmv?myboost=10&mybandwidth=1&myratio=130

Not all parameters need to be specified.

http://www.winesoft.co.kr/video/sample.wmv?myratio=150

If some conditions are omitted as in the above example, the remaining fields (in this example, bandwidth and boost)
are chosen using a condition list. If there is no condition that matches, then the default values in <Settings> are
used. Even if a QueryString is specified, if the condition list is set to not apply (no), then BT will not be applied.

There is potential for confusion with QueryString Differentiation when using QueryStrings. If QueryString Differenti-
ation is set to ON, the QueryStrings in URLs requested by clients will all be recognized except for BandwidthParam,
BoostParam, and RatioParam.

GET /video.mp4?mybandwidth=2000&myratio=130&myboost=10
GET /video.mp4?tag=3277&myboost=10&date=20130726

For example, the above QueryStrings are only used to decide BT and are removed when creating a Caching-Key or
sending a request to the origin server. Therefore, they will be recognized as the following.

GET /video.mp4
GET /video.mp4?tag=3277&date=20130726

166 Chapter 5. 4. Management & Operation

STON Documentation, Release 2.3.4

5.4 Chapter 16. Media

This chapter will explain how to intelligently handle media in the service. Due to there being various client environ-
ments and service diversity, there will be many cases where content must be processed in various ways. As such,
identical content will exist on the origin server in different forms. This method will not just require more processing
time and storage space, it is also hard to maintain.

5.4.1 Reordering MP4/M4A Header

Normally, the header of an MP4 file cannot be completed during the encoding process, and so is attached at the end
of the file after encoding is done. An extra step is necessary to move the header to the front. If the header is at the
end, Pseudo-Streaming will be unavailable for media players that do not support that format. However, reordering the
header can easily allow for Pseudo-Streaming support.

The header reordering only occurs during the transfer stage and will not modify the original format. It will also not
take up extra storage space.

server.xml - <Server><VHostDefault><Media>
vhosts.xml - <Vhosts><Vhost><Media>

<UpfrontMP4Header>OFF</UpfrontMP4Header>
<UpfrontM4AHeader>OFF</UpfrontM4AHeader>

• <UpfrontMP4Header>

– OFF (default) Nothing happens.

– ON If the extension is .mp4 and the header is at the end of the file, the header will be moved to the front of
the file before transfer.

• <UpfrontM4AHeader>

– OFF (default) Nothing happens.

– ON If the extension is .m4a and the header is at the end of the file, the header will be moved to the front of
the file before transfer.

If content with headers that need to be moved are being requested for the first time, the parts necessary for reordering
will be downloaded first. This method is not only smart, but also occurs quickly. The client will receive the file as if
the header had always been in the front, without having to see any of the complicated processes occurring backstage.

Note: If the file is broken or unable to be analyzed, it will be transferred as is.

5.4.2 Trimming

Extracts desired parts of a media file using time values. Trimming only occurs during the transfer stage and will not
modify the original format. It will also not take up extra storage space.

server.xml - <Server><VHostDefault><Media>
vhosts.xml - <Vhosts><Vhost><Media>

<MP4Trimming StartParam="start" EndParam="end" AllTracks="off">OFF</MP4Trimming>
<M4ATrimming StartParam="start" EndParam="end" AllTracks="off">OFF</M4ATrimming>
<MP3Trimming StartParam="start" EndParam="end">OFF</MP3Trimming>

• <MP4Trimming> <MP3Trimming> <M4ATrimming>

5.4. Chapter 16. Media 167

STON Documentation, Release 2.3.4

– OFF (default) Nothing happens.

– ON If the extension matches (.mp4, .mp3, .m4a), the file will be trimmed to the desired section. The section
to be trimmed can be configured with the StartParam and EndParam properties.

– AllTracks property

* OFF (default) Trims only audio/video tracks (Mod-H264 format).

* ON Trims all tracks. Media player compatibility must be checked before using this setting.

Parameters can input via client QueryStrings. For example, to trim a certain section of a 10-minute video clip, you
would specify the desired times (unit: seconds) in QueryStrings.

http://vod.wineosoft.co.kr/video.mp4 // 10 minutes: trim entire video
http://vod.wineosoft.co.kr/video.mp4?end=60 // 1 minute: trim from start to 1 minute (60 seconds)
http://vod.wineosoft.co.kr/video.mp4?start=120 // 8 minutes: trim from 2 minutes (120 seconds) to end
http://vod.wineosoft.co.kr/video.mp4?start=3&end=13 // 10 minutes: trim from 3 seconds to 13 seconds

If the StartParam value is larger than the EndParam value, the section will be considered undefined. This function
was developed to facilitate the Skip function for media players that support HTTP Pseudo-Streaming. As such, STON
will recognize keyframes and times to extract the sections so the video can play properly, instead of trimming the file
based on the offset, as when processing a Range request.

The file delivered to the client is in the form of a complete MP4 file with a recreated MP4 header, as shown below.

Fig. 5.7: The file is transferred in the form of a complete file.

The extracted section is recognized as a separate file, so a 200 OK response is returned. If the Range header is specified
as shown below, the Range will be calculated from the extracted file and a 206 Partial Content response is returned.

Fig. 5.8: It is processed like a normal Range request.

168 Chapter 5. 4. Management & Operation

STON Documentation, Release 2.3.4

Because trimming parameters use the QueryString format, there is a possibility for confusion with QueryString Differ-
entiation. If <ApplyQueryString> is set to ON, the QueryStrings of URLs requested by clients will be recognized,
but StartParam and EndParam will be removed.

GET /video.mp4?start=30&end=100
GET /video.mp4?tag=3277&start=30&end=100&date=20130726

In the above example, if start and end are entered for StartParam and EndParam, respectively, the values will
only be used to extract a section and are removed when creating a Caching-Key or sending a request to the origin
server. They will then be recognized as below.

GET /video.mp4
GET /video.mp4?tag=3277&date=20130726

Expansion modules and CDN solutions can also affect how QueryStrings are used.

Fig. 5.9: Module/CDN references provided by the JW Player

In addition, the ngx_http_mp4_module in nginx and the Mod-H264-Streaming-Testing-Version2 in lighttpd use start
as a QueryString.

5.4.3 Multi-Trimming

Multiple sections of a video clip are stitched into a single one using time values as a basis.

Fig. 5.10: /video.mp4?trimming=0-30,210-270,525-555

The function behaves in much the same way as Trimming except for how the sections are chosen.

5.4. Chapter 16. Media 169

http://nginx.org/en/docs/http/ngx_http_mp4_module.html
http://h264.code-shop.com/trac/wiki/Mod-H264-Streaming-Testing-Version2

STON Documentation, Release 2.3.4

server.xml - <Server><VHostDefault><Media>
vhosts.xml - <Vhosts><Vhost><Media>

<MP4Trimming MultiParam="trimming" MaxRatio="50">OFF</MP4Trimming>
<M4ATrimming MultiParam="trimming">OFF</M4ATrimming>

• <MP4Trimming> <M4ATrimming>

– MultiParam (default: "trimming") The set name is used for the QueryString key to deter-
mine the sections to be extracted. Each section is represented by “start - end”, and separated by a comma
(,).

– MaxRatio (default: 50%) The video trimmed by Multi-Trimming can only be as large as the
MaxRatio (max: 100%) of the original video. Segments that exceed the MaxRatio are ignored.

For example, the following call will create a 3-minute video.

http://example.com/video.mp4?trimming=10-70,560-620,1245-1305

Videos can also be made with the same clip repeating, or the front and back switched.

http://example.com/video.mp4?trimming=17-20,17-20,17-20,17-20
http://example.com/video.mp4?trimming=1000-1200,500-623,1900-2000
http://example.com/video.mp4?trimming=600-,400-600

If the time values are not input, it will refer to the start and end times of the original video.

Note: Multi-Trimming takes priority over Trimming. If the Multi-Trimming key is seen in the QueryString, the
Trimming key will be ignored.

5.4.4 MP4 HLS

MP4 files can be provided in the service with HTTP Live Streaming (HLS). The origin server no longer needs to split
files for the HLS service. Regardless of the location of the MP4 file header, the file can be converted in real time to
.m3u8/.ts while downloading the file.

Note:

MP4HLS is not a transcoding that converts elementary streams (video or audio). Therefore, smooth
playback is only possible for MP4 files encoded for HLS. If a file is not encoded for HLS, the video may
freeze or the audio may not play. The video/audio encoding format given by Apple at the time of writing
(2014/2/20) is shown below.

What are the specifics of the video and audio formats supported? Although the protocol specification does not limit
the video and audio formats, the current Apple implementation supports the following formats:

[Video] H.264 Baseline Level 3.0, Baseline Level 3.1, Main Level 3.1, and High Profile Level 4.1.

[Audio] HE-AAC or AAC-LC up to 48 kHz, stereo audio MP3 (MPEG-1 Audio Layer 3) 8 kHz to 48 kHz, stereo
audio AC-3 (for Apple TV, in pass-through mode only)

Note: iPad, iPhone 3G, and iPod touch (2nd generation and later) support H.264 Baseline 3.1. If your app runs on
older versions of iPhone or iPod touch, however, you should use H.264 Baseline 3.0 for compatibility. If your content
is intended solely for iPad, Apple TV, iPhone 4 and later, and Mac OS X computers, you should use Main Level 3.1.

170 Chapter 5. 4. Management & Operation

STON Documentation, Release 2.3.4

For existing methods, the following origin files are necessary for Pseudo-Streaming and HLS. In this case, STON will
copy the origin files as is and provide them to the clients. However, as the play time gets longer, more derivative files
will be created, making it harder to manage.

Fig. 5.11: A laborious way to provide HLS

Meanwhile, <MP4HLS> can dynamically create the necessary files from the original for the HLS service.

Fig. 5.12: A smarter way to provide HLS

All .m3u8/.ts files will be derived from the original file and will not consume any extra storage space. The file will
only temporarily be created in memory when in use, and automatically discarded when not in use.

server.xml - <Server><VHostDefault><Media>
vhosts.xml - <Vhosts><Vhost><Media>

<MP4HLS Status="Inactive" Keyword="mp4hls">
<Index Ver="3" Alternates="off">index.m3u8</Index>
<Sequence>0</Sequence>
<Duration>10</Duration>
<AlternatesName>playlist.m3u8</AlternatesName>

</MP4HLS>

• <MP4HLS>

– Status (default: Inactive) Active only when set to Active.

– Keyword (default: mp4hls) HLS service keyword.

5.4. Chapter 16. Media 171

STON Documentation, Release 2.3.4

• <Index> (default: index.m3u8) HLS index file name (.m3u8).

– Ver (default: 3) Index file version. If the version is 3, the header will be specified as
#EXT-X-VERSION:3 and the time value of #EXTINF will be given to the third decimal. If the ver-
sion is 1, there is no #EXT-X-VERSION header, and the time value of #EXTINF is rounded up to a
whole number.

– Alternates (default: OFF) Turns Stream Alternates on or off.

admin/img/hls_alternates_off.png

Fig. 5.13: OFF. The TS list is provided by <Index>.

admin/img/hls_alternates_on.png

Fig. 5.14: ON. The TS list is provided by <AlternatesName>.

• <Sequence> (default: 0) The starting number for .ts files. The number will start with the given value
and increment by 1 with every file.

• <Duration> (default: 10 s) Splits the MP4 file for HLS with the given time (in seconds). The
basis for splitting are the keyframes in video/audio. Because the keyframes can be uneven, equal splitting is
not always possible. If you attempt to split using 10 seconds but either 9 or 12 seconds is possible due to the
keyframes, the closer value (9 seconds) will be chosen.

• <AlternatesName> (default: playlist.m3u8) Stream Alternates file name.

http://www.example.com/video.mp4/mp4hls/playlist.m3u8

For example, if the service address is as follows, Pseudo-Streaming can be performed with this address.

http://www.example.com/video.mp4

The virtual host will use the configured Keyword in <MP4HLS> to perform the HLS service. If the following URL
is called, an index.m3u8 file will be created from /video.mp4.

http://www.example.com/video.mp4/mp4hls/index.m3u8

If the Alternates property is set to ON, the <Index> file will provide the <AlternatesName> file in the
service.

#EXTM3U
#EXT-X-VERSION:3
#EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=200000,RESOLUTION=720x480
/video.mp4/mp4hls/playlist.m3u8

The Bandwidth and Resolution in #EXT-X-STREAM-INF are provided dynamically by analyzing the video.

172 Chapter 5. 4. Management & Operation

STON Documentation, Release 2.3.4

Note: Though Stream Alternates is provided, index.m3u8 in the current version will always provide only one sub-
index file (playlist.m3u8). This is because the cache can’t tell that video_1080.mp4 and video_720.mp4 are the same
video (with only the encoding being different).

The final .ts list (version 3) that is created is as follows.

#EXTM3U
#EXT-X-TARGETDURATION:10
#EXT-X-VERSION:3
#EXT-X-MEDIA-SEQUENCE:0
#EXTINF:11.637,
/video.mp4/mp4hls/0.ts
#EXTINF:10.092,
/video.mp4/mp4hls/1.ts
#EXTINF:10.112,
/video.mp4/mp4hls/2.ts

... (omitted)...

#EXTINF:10.847,
/video.mp4/mp4hls/161.ts
#EXTINF:9.078,
/video.mp4/mp4hls/162.ts
#EXT-X-ENDLIST

There are three policies for splitting.

• If the keyframe interval is smaller than <Duration> If the keyframe is 3 seconds and <Duration> is 20
seconds, the largest multiple of the 3 (the keyframe) that does not exceed 20 (the duration) will be used to split
the video (in this case, 18).

• If the keyframe interval is close to <Duration> If the keyframe is 9 seconds and <Duration> is 10
seconds, the largest multiple of the 9 (the keyframe) that does not exceed 10 (the duration) will be used to split
the video (in this case, 9).

• If the keyframe interval is larger than <Duration> The keyframe interval is used to split the video.

Let’s understand how STON will behave according to the following client request.

GET /video.mp4/mp4hls/99.ts HTTP/1.1
Range: bytes=0-512000
Host: www.winesoft.com

1. STON Initial loading. (Nothing has been cached yet.)

2. Client HTTP Range request. (Requests the first 500 KB of the 100th file.)

3. STON Creates a caching object of the /video.mp4 file.

4. STON Downloads from the origin server the portion necessary to analyze the /video.mp4 file.

5. STON Downloads from the origin server the portion necessary to provide the 100th file (99.ts).

6. STON Creates the 100th file (99.ts) and proceeds with the Range service.

7. STON Discards the 99.ts file after completing the service.

Note: If MP4Trimming is set to ON, MP4 files that have been trimmed can also be converted to HLS. (HLS video
files cannot be trimmed. Note that HLS is not MP4 but MPEG2TS.) The most natural way of converting a trimmed
video to HLS is the following.

5.4. Chapter 16. Media 173

STON Documentation, Release 2.3.4

/video.mp4?start=0&end=60/mp4hls/index.m3u8

Though this will not cause any problems, it is HTTP policy to put the QueryString at the end. To adhere to this policy,
the following forms will produce the same effect.

/video.mp4/mp4hls/index.m3u8?start=0&end=60
/video.mp4?start=0/mp4hls/index.m3u8?end=60

5.4.5 MP3 HLS

MP3 files can also be provided in the service with HLS.

server.xml - <Server><VHostDefault><Media>
vhosts.xml - <Vhosts><Vhost><Media>

<MP3HLS Status="Inactive" Keyword="mp3hls">
<Index Ver="3" Alternates="off">index.m3u8</Index>
<Sequence>0</Sequence>
<Duration>10</Duration>
<AlternatesName>playlist.m3u8</AlternatesName>

</MP3HLS>

All settings and behaviors are identical to MP4 HLS.

Note: If MP4 HLS and MP3 HLS are configured to use the same Keyword, then MP3 HLS will not operate.

5.4.6 DIMS

The Dynamic Image Management System (DIMS) is a function that can process images into various other forms.
DIMS is an expansion based on mod_dims. A total of seven forms (optimize, crop, thumbnail, resize, reformat,
quality, composite) are available and can also be combined.

Fig. 5.15: Various ways of image processing

174 Chapter 5. 4. Management & Operation

https://code.google.com/p/moddims/wiki/WebserviceApi

STON Documentation, Release 2.3.4

The image is generated dynamically and can be called by placing the keyword and the processing option at the end of
the URL. The processed image will be cached and will not be reprocessed as long as the original image is not changed.

For example, if the original file is /img.jpg, the following formats can be used to process the image. (“12AB” is the
configured keyword.)

http://image.example.com/img.jpg // Original image
http://image.example.com/img.jpg/12AB/optimize
http://image.example.com/img.jpg/12AB/resize/500x500/
http://image.example.com/img.jpg/12AB/crop/400x400/
http://image.example.com/img.jpg/12AB/composite/watermark1/

If <Dims> is not specifically configured, none of the following will be activated.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<Dims Status="Active" Keyword="dims" MaxSourceSize="10" OnFailure="message" />

• <Dims>

– Status DIMS activation (Active or Inactive).

– Keyword The keyword to differentiate between the original and DIMS.

– MaxSourceSize (default: 10 MB) Maximum original image size (in MB).

– OnFailure Behavior when image conversion fails.

* message (default) Responds with a 500 Internal Error. A more specific error message will be
included.

· The original file was not successfully downloaded.

· The original file size is too large.

· The original file loading failed.

· Image converting failed or invalid DIMS command.

* redirect Performs a 302 Redirect to the original image URL.

Optimization

Optimization reduces the size of the image file while maintaining its quality. Only JPEG, JPEG-2000, and Lossless-
JPEG file formats are supported. Images that have already been optimized by another tool will most likely be unable
to be optimized further.

http://image.example.com/img.jpg/dims/optimize

Optimization does not require any extra options besides the keyword. As such, it is suggested to place it at the very
end when combining with other options.

http://image.example.com/img.jpg/dims/resize/100x100/optimize

All the other DIMS functions use a lot of system resources, but optimization is the most resource-intensive process.
The following is the result of a performance test with various images with a HitRatio of 0%.

• OS CentOS 6.2 (Linux version 2.6.32-220.el6.x86_64 (mockbuild@c6b18n3.bsys.dev.centos.org) (gcc version
4.4.6 20110731 (Red Hat 4.4.6-3) (GCC)) #1 SMP Tue Dec 6 19:48:22 GMT 2011)

• CPU Intel(R) Xeon(R) CPU E3-1230 v3 @ 3.30GHz (8 processors)

5.4. Chapter 16. Media 175

mailto:mockbuild@c6b18n3.bsys.dev.centos.org
http://www.cpubenchmark.net/cpu.php?cpu=Intel+Xeon+E3-1230+v3+%40+3.30GHz

STON Documentation, Release 2.3.4

• RAM 16GB

• HDD SMC2108 SAS 275GB X 3EA

Size Conver-
sion

Response time
(ms)

Client traffic
(Mbps)

Origin traffic
(Mbps)

Traffic reduction
(%)

16KB 720 19.32 46.32 92.62 49.99
32KB 680 20.68 86.42 165.08 47.65
64KB 285 50.16 80.67 150.96 46.56
128KB 274 57.80 164.35 276.52 40.56
256KB 210 80.74 99.42 432.35 77.00
512KB 113 156.18 160.54 436.04 63.18
1MB 20 981.07 90.62 179.88 49.62

With about a 50% reduction in traffic, the function is very effective. As stated before, optimization is a very resource-
intensive process. As can be seen in the above table, the size of the file is the most important variable.

Because of this, applying optimization without careful consideration can cause huge problems. A situation with a good
Request hit ratio is recommended; otherwise, you must make sure that there are enough CPU resources in accordance
with the scale of the service.

Crop

With the upper left corner as the origin, the image is cropped to the desired dimensions. The dimensions are formatted
as widthxheight{+-}x{+-}y{%}. The following is an example of cropping a section of width=100, height=200 starting
from x=20, y=30.

http://image.example.com/img.jpg/dims/crop/100x200+20+30/

Generating Thumbnails

This function generates thumbnails. The size and options are formatted as widthxheight{%} {@} {!} {<} {>}. In
general, the width and height of the original image are used as the maximum values for the function. Whether the
image is being enlarged or shrunk, the aspect ratio will always be preserved. To resize an image to a specific size, an
exclamation point (!) can be added to the end of the size. For example, 640X480! means that a thumbnail of exactly
size 640x480 will be generated. If either the width or the height is omitted, the omitted value will be automatically
calculated based on the aspect ratio.

For example, /thumbnail/100/ will determine the height of the thumbnail using the width, while /thumbnail/x200/
will determine the width using the height. The thumbnail size can also be expressed as a percentage (%) of the original
image. To enlarge the image, a value larger than 100 (e.g. 125%) is used, while a value lower than 100 will shrink the
image. It is important to keep in mind that the % character is encoded as %25 in the URL Encoding policy.

For example, 50% is encoded as 50%25. The following example generates a thumbnail with width=78, height=110.

http://image.example.com/img.jpg/dims/thumbnail/78x110/

Resizing

This function changes the size of the image. The new size is formatted as width x height. Even if the image is
changed, the aspect ratio will be preserved. The following example resizes the original image to a size of width=200,
height=200.

http://image.example.com/img.jpg/dims/resize/200x200/

176 Chapter 5. 4. Management & Operation

STON Documentation, Release 2.3.4

Converting Format

This function converts the format of the image. The supported formats are “png”, “jpg”, and “gif”. The following
example converts from a JPG to a PNG.

http://image.example.com/img.jpg/dims/format/png/

Adjusting Image Quality

This function adjusts the image quality. This function is effective because it can reduce the volume of the transferring
image. The allowed range is from 0 to 100. The following example adjusts the quality of an image to 25%.

http://image.example.com/img.jpg/dims/quality/25/

Image Composition

This function composites two or more images. Unlike the previous functions, the settings for this function must be
configured in advanced. This function is helpful when placing a watermark on an image.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<Dims Status="Active" Keyword="dims" port="8500">
<Composite Name="water1" File="/img/small.jpg" />
<Composite Name="water2" File="/img/medium.jpg" Gravity="se" Geometry="+0+0" Dissolve="50" />
<Composite Name="water_ratio" File="/img/wmark_s.png" Gravity="s" Geometry="+0+15%" Dissolve="100" />

</Dims>

• <Composite>

Configures the settings for image composition. The function is configured by its properties,
and will take no extra values.

– Name Designates the name of the image to be called. The “/” character cannot be used. This
option will be located after “/composite/” in the URL.

– File Designates the path of the image to be composited.

– Gravity (default: c) Starting from the upper left, there are nine points (nw, n, ne, w,
c, e, sw, s, se) where composition can be applied.

Fig. 5.16: Gravity reference points

5.4. Chapter 16. Media 177

STON Documentation, Release 2.3.4

– Geometry (default: +0+0) Uses Gravity as the origin to determine the location
where composition is applied. The format is {+-}x{+-}y. The red circles are the points
specified by the Gravity property and +0+0, and can be moved towards the center of the
image as the values of +x+y increase. The green arrow indicates +x, and the purple arrow
indicates +y. If -x-y is used, it will refer to a point outside of the image dimensions, and the
composited image will not show up. This property may seem rather convoluted, but because
it can automatically calculate the size of images, it is effective in creating consistent results.
Furthermore, the % option can be used as in +x%+y% to use ratios as values.

– Dissolve (default: 50) Opacity of the image to be composited (0~100).

If <Composite> is configured, the Name property can be called to composite the images.

http://image.example.com/img.jpg/dims/composite/water1/

Original Image Conditions

Options will be dynamically applied in different ways based on the conditions of the original image. For example, if
you want to lower the quality to 50% for images that are smaller than 1024x768 and resize images to 1024x768 for
images that are larger, you can configure <ByOriginal> as follows.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<Dims Status="Active" Keyword="dims" port="8500">
<ByOriginal Name="size1">

<Condition Width="1024" Height="768">/quality/50/</Condition>
<Condition>/resize/1024x768/</Condition>

</ByOriginal>
</Dims>

• <ByOriginal> Called with the Name property. Various conditions can be configured below with
<Condition>.

• <Condition> Changes will be applied to images that satisfy the conditions.

– Width If the width is smaller than the set value, the change is applied.

– Height If the height is smaller than the set value, the change is applied.

If no conditions are set, changes will be applied regardless of the image size.

<Condition> tags are applied in the order they are configured. Therefore, the condition for smaller images should
be set first. This can be called with the following.

http://image.example.com/img.jpg/dims/byoriginal/size1/

For another example, different <Composite> conditions can be made for different image sizes. In this case, the
following example uses the different Name‘‘s of ‘‘<Composite>.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<Dims Status="Active" Keyword="dims" port="8500">
<Composite Name="water1" File="/img/small.jpg" />
<Composite Name="water2" File="/img/medium.jpg" Gravity="se" Geometry="+0+0" Dissolve="50" />
<Composite Name="water3" File="/img/big.jpg" Gravity="se" Geometry="+10+10" Dissolve="50" />
<ByOriginal Name="size_water">

<Condition Width="400">/composite/water1/</Condition>
<Condition Width="800">/composite/water2/</Condition>

178 Chapter 5. 4. Management & Operation

STON Documentation, Release 2.3.4

<Condition>/composite/water3/</Condition>
</ByOriginal>

</Dims>

When called with the following, a different composite will be made depending on the image size.

http://image.example.com/img.jpg/dims/byoriginal/size_water/

Animated GIF

All DIMS conversions apply identically to animated GIFs. The order of processing is as follows.

1. The frames of the GIF are loaded as multiple images.

2. Each image is converted.

3. The converted frames are put back together in a single GIF.

The more frames there are, the more processing there needs to be done, which can lower service quality. In this case,
you can configure the process to convert only the first frame, lowering the cost of processing.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<Dims FirstFrameOnly="OFF" />

• FirstFrameOnly (default: OFF) When set to ON, only the first frame of the animated GIF is con-
verted.

If the following URL is called, the FirstFrameOnly can be specifically designated as well.

http://image.example.com/img.jpg/dims/firstframeonly/on/resize/200x200/
http://image.example.com/img.jpg/dims/firstframeonly/off/resize/200x200/

If called with the URL above, it will take precedence over the configuration.

Other

The above default functions can be combined to process images in more complex ways. For example, you can generate
a thumbnail (78x110), convert the format from JPG to PNG, and change the quality to 50% all in one step.

http://image.example.com/img.jpg/dims/thumbnail/78x110/format/png/quality/50/

DIMS can process images using URL calls. As such, it is important to take note of other options that can affect URLs
and cause unwanted results.

• If QueryString Differentiation is set to OFF, QueryStrings found after keywords are ignored.

http://image.example.com/img.jpg?session=5234&type=37/dims/resize/200x200/

If it is set to ``ON``, it will be understood as is, but if it is set to ``OFF``, the URL will be understood as the following. ::

http://image.example.com/img.jpg/dims/resize/200x200/

• If Case Sensitivity is set to OFF, all URLs will be converted to lowercase and then processed. Therefore, if DIMS
keywords contain uppercase letters, they will not be recognized when called. It is recommended to always use
only lowercase letters for keywords.

5.4. Chapter 16. Media 179

STON Documentation, Release 2.3.4

5.5 Chapter 17. File System

This chapter will explain how to utilize STON as if it were a local disk. STON is based on FUSE and is mounted on
the Linux VFS (Virtual File System). All files in the mounted directory will be cached the moment they are accessed,
but other processes will not notice. You can consider this system as a ReadOnly disk with a Caching function.

Fig. 5.17: Fuse structure.

If the Linux Kernel delivers structural File I/O function calls directly to STON, no other elements (e.g. physical File
I/O, socket transmission) can interfere with the process. This architecture makes extremely high performance possible.
Using STON’s memory caching, you can expect performance that’s better than physical disk access.

5.5.1 Mount

Mount is configured in global settings (server.xml).

server.xml - <Server><Cache>

<FileSystem Mount="/cachefs" DotDir="OFF" Separator="^">OFF</FileSystem>

• <FileSystem>

– OFF (default) Does nothing.

– ON STON will be mounted onto the path given by the Mount property.

This was developed in such a way that the existing HTTP structure is preserved, but a file system that can access the
cache module is added. As such, regardless of where the access comes from, caching occurs only once and is given
service by either HTTP or File I/O. The file system is a new bridge added that allows access to the cache module.

180 Chapter 5. 4. Management & Operation

http://fuse.sourceforge.net/

STON Documentation, Release 2.3.4

Fig. 5.18: HTTP and File I/O share a cache module.

The content on the origin server can be accessed not only by HTTP but also by File I/O. Using this, you can increase
the availability of solutions that are based on local files.

Fig. 5.19: Any server is OK.

The current list of functions that support the STON File System is as follows.

FUSE C LINUX
open fopen open
release fclose close
read fseek, fread seek, read
getattr fstat stat
unlink remove unlink

File I/O goes through several internal steps. It is important to understand what goes on at each step to obtain the best
performance.

5.5. Chapter 17. File System 181

STON Documentation, Release 2.3.4

5.5.2 Searching for Virtual Hosts

The first step is searching for the virtual host to be accessed. In an HTTP header, the Host header is specified as below,
making it easy to find the virtual host.

GET /ston.jpg HTTP/1.1
host: example.com

This can be done in the file system using its first directory. For example, if STON is mounted on the /cachefs directory,
local files can be accessed with the following path.

/cachefs/example.com/ston.jpg

Discovering a Virtual Host will work in the same way. If the <Alias> of example.com is set to *.example.com, then
the following paths will access the same file.

/cachefs/example.com/ston.jpg
/cachefs/img.example.com/ston.jpg
/cachefs/example.example.com/ston.jpg

For example, in order to link example.com to the Apache server, you must set the DocumentRoot to
/cachefs/example.com/.

5.5.3 File/Directory

The file system can be configured for each virtual host. Alternatively, a default virtual host can be configured to give
all virtual hosts the same settings.

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<FileSystem Status="Active" DotDir="OFF">
<FileTime>origin</FileTime>
<FileStatus>200</FileStatus>
<DirStatus>301, 302, 400, 401, 403</DirStatus>
<Unlink>Purge</Unlink>

</FileSystem>

• <FileTime> (default: Origin) Returns the Last-Modified time from the origin server when set to
Origin, or the local cached time when set to Local. If the origin server does not return a Last-Modified time
when set to Origin, then the file time will be returned as the Unix epoch as seen below.

admin/img/fs_filetime.png

• <FileSystem> The file system cannot be accessed if Status is Inactive. It must be set to Active.

• <FileStatus> (default: 200) Configures the origin server HTTP response code that will be recog-
nized as a file. Generally, 200 is used, but there are no specific restrictions.

• <DirStatus> (default: 301, 302, 400, 401, 403) Configures the origin server HTTP re-
sponse code that will be recognized as a directory. The default values are usually 301, 302, 400, 401, or
403.

182 Chapter 5. 4. Management & Operation

STON Documentation, Release 2.3.4

• <Unlink> (default: Purge) Configures the behavior to be used for a file deletion request, choosing
from Purge, Expire, or HardPurge.

Each origin server can interpret HTTP response codes in different ways. As such, it is important to configure how
each HTTP response code should be interpreted.

In most cases, if a file exists on the origin server the response will be 200 OK. If a directory is accessed, the response
will be 403 Forbidden or a redirect to another page with 302 Found. Multiple response codes can be set with commas
(,) to identify the Body of corresponding HTTP response codes as files or directories. Response codes that are not
configured will be considered non-existing, and File I/O will fail.

5.5.4 File Properties

In general, the first step of File I/O is to obtain the properties of the file. It is obvious to obtain the file information
before opening the file. The process of the Kernel providing the file properties as seen by STON is portrayed in the
figure below. (/cachefs is the mounted directory and is omitted by the Kernel.)

Fig. 5.20: The process of obtaining the file properties.

In Linux, files are not distinguished from directories, so obtaining the file properties can be more complicated than it
seems. As can be seen from the above figure, as the number of subfolders increases, more unnecessary virtual host
searches and file accesses will occur, lowering performance. In particular, requests for inaccessible directories like

5.5. Chapter 17. File System 183

STON Documentation, Release 2.3.4

/one or /one/two will be made, causing load on the origin server. Of course, if the file is cached, the origin server will
not be accessed during the TTL, but it is clear that this is not an elegant solution.

A heuristic solution for this structural load is to add a DotDir property. DotDir is a function that will recognize
paths without a dot (.) as a directory. The above figure is the result of DotDir having been set to OFF. If DotDir is
set to ON, the following will occur.

Fig. 5.21: Enabling (ON) the global DotDir.

There is no change in the process or number of Kernel calls. However, if the requested paths do not contain a dot (.),
it will not go all the way to the virtual host and instead return immediately as a directory, allowing the virtual host
and files to be accessed only when necessary. This function is based on the observation that most programmers do not
assign extensions to directories. It is important that you check how directories are set up before using this function.

DotDir is a global property of <FileSystem>. In other words, if none of the virtual hosts use dots (.) for
directories, it will be very effective to set DotDir to ON. Of course, even if DotDir is set to OFF, you can still
configure it on each virtual host separately. Doing so can lower performance slightly, as shown below.

Virtual host searches will still occur, but files will only be accessed if there is a dot (.). As the system’s performance is
affected by how many times it is called, it is highly recommended to understand this function thoroughly.

184 Chapter 5. 4. Management & Operation

STON Documentation, Release 2.3.4

Fig. 5.22: Enabling (ON) the virtual host DotDir.

5.5. Chapter 17. File System 185

STON Documentation, Release 2.3.4

5.5.5 Reading Files

Though the process to obtain file properties is complicated, reading files is much simpler. First, the file is opened. All
files will of course be read-only, so accessing a file with write permissions will fail. When a file is accessed for the
first time, the file will be cached from the origin server just like the HTTP service. While downloading the requested
file, the File I/O service is run concurrently so that the process is not delayed.

Fig. 5.23: Opening a file.

Once a file is opened, the behavior will be identical to the HTTP service. HTTP is more advantaged in file transfer
because sequential file access occurs from an initially determined range. On the other hand, File I/O can generate a
large number of read accesses on the scale of 1 KB regardless of file size. STON has implemented Readahead in the
cache module in order to maximize performance, especially File I/O performance.

If the function to close a file (e.g. fclose) is called or a process is terminated, the file handle is turned in by the Kernel,
which is the same as an HTTP transaction being closed.

5.5.6 Deleting Files

Cached files are managed by STON, but the process can send a request to delete a file. STON offers several Purge
methods to respond to these requests.

For example, if <Unlink> is set to expire, the corresponding file will be expired upon a file deletion request. If
the Kernel tries to access the file again, the file must be checked for modification on the origin server because the file
is expired. If the file was not modified, it can then be provided again.

5.5.7 File Expansion

HTTP can dynamically process a file using an URL as seen below.

Trims a 0-60 second section of /video.mp4 via HTTP.
http://www.example.com/video.mp4?start=0&end=60

This QueryString format can be used in the same way for both HTTP and the file system.

Accesses the local file made from trimming a 0-60 second section of /video.mp4.
/cachefs/www.example.com/video.mp4?start=0&end=60

However, putting the processing options at the end of a URL as seen in MP4HLS and DLS can cause problems in File
I/O.

186 Chapter 5. 4. Management & Operation

http://en.wikipedia.org/wiki/Readahead

STON Documentation, Release 2.3.4

/cachefs/image.winesoft.com/img.jpg/12AB/resize/500x500/
/cachefs/www.winesoft.com/video.mp4/mp4hls/index.m3u8

As explained in “File Properties”, Linux asks for the properties of each directory in a path. STON is unable to tell
whether additional directories are added to the end of a path, so unprocessed files will end up in the service.

To resolve this issue, STON uses the Separator (default: ^) property to differentiate.

/cachefs/image.winesoft.com/img.jpg^12AB^resize^500x500^
/cachefs/www.winesoft.com/video.mp4^mp4hls^index.m3u8

Fig. 5.24: MP4HLS access.

Within STON, the Separator s are switched to slashes (/) in order to use the HTTP call standard. Using this can
eliminate unnecessary File I/O access, as shown below.

Fig. 5.25: Extremely optimized access.

5.5.8 Wowza Integration

Wowza can be integrated using the file system. All you need to do is configure the path that STON is mounted on as
the file path for Wowza.

5.5. Chapter 17. File System 187

STON Documentation, Release 2.3.4

1. [STON - Global settings] Turn on the file system configuration Set <FileSystem> to ON in the global
settings (server.xml). (In this example, the mount path will be set to “/cachefs”.)

server.xml - <Server><Cache>

<FileSystem Mount="/cachefs" DotDir="OFF" Separator="^">ON</FileSystem>

Alternatively, in WM, go to Global Settings -> File System and set the file system to “On”.

Fig. 5.26: STON must be restarted after configuration for mounting to be successful.

2. [STON - Virtual host] Configure file system access permissions and response codes File system access for
virtual hosts should be set to Active. The recognition of files/directories based on origin server response
codes should also be set. The following uses the virtual host default settings (server.xml) as an example,
but this can also be configured individually for each virtual host (vhosts.xml).

server.xml - <Server><VHostDefault><Options>
vhosts.xml - <Vhosts><Vhost><Options>

<FileSystem Status="Active" DotDir="OFF">
<FileStatus>200</FileStatus>
<DirStatus>301, 302, 400, 401, 403</DirStatus>

</FileSystem>

Alternatively, in WM, go to Virtual Host -> Configuration (File System) and set the virtual host to “acces-
sible”.

3. [Wowza] Storage path configuration In the Wowza installed path, the /Conf/Application.xml file should be
edited to refer to the path that STON is mounted on, as shown below.

<Streams>
<StreamType>default</StreamType>
<StorageDir>/cachefs/example.com</StorageDir>
<KeyDir>${com.wowza.wms.context.VHostConfigHome}/keys</KeyDir>

</Streams>

4. [Wowza] VOD path configuration In the Wowza installed path, the /Conf/vod/Application.xml file should be
edited to refer to the path that STON is mounted on, as shown below.

<Streams>
<StreamType>default</StreamType>
<StorageDir>/cachefs/example.com</StorageDir>
<KeyDir>${com.wowza.wms.context.VHostConfigHome}/keys</KeyDir>

</Streams>

5. Player test Using the Wowza test player, videos not saved in local storage (that STON must cache) can be
played with RTMP.

188 Chapter 5. 4. Management & Operation

STON Documentation, Release 2.3.4

Fig. 5.27: Response codes can be configured here.

5.6 Chapter 18. Optimization and More

This chapter will discuss optimization and other miscellaneous advanced topics. Optimization is a method used to
obtain high performance, which is biggest merit that we are pursuing. In an enterprise environment, if hardware is
high-performance, it can also mean that it uses as much resources as possible.

Among those resources is memory, the resource that is most important to all plans and policies. Memory indexing
(finding requested URLs quickly) is especially important to understand, because indexing is what determines the
quality of the service. The following table, displaying the default values based on the physical memory size, will be
referred back to by the rest of the section.

Physical RAM System Free Contents Caching Count Sockets
1GB 409.60MB 188.37MB 219,469 5,000
2GB 819.20MB 446.74MB 520,494 10,000
4GB 1.60GB 963.49MB 1,122,544 20,000
8GB 3.20GB 2.05GB 2,440,422 20,000
16GB 6.40GB 4.45GB 5,303,733 20,000
32GB 12.80GB 9.25GB 11,030,356 20,000
64GB 25.60GB 18.85GB 22,483,603 20,000
128GB 51.20GB 38.05GB 45,390,095 20,000

5.6.1 Indexing

In order to explain indexing, you must first understand the idea of “hot” and “cold” content.

Content cached from the origin server is saved on the local disk. If that content must be read from the disk whenever
it is accessed, performance will definitely decrease. As such, we can obtain higher performance by loading frequently
requested content into memory. We will refer to content loaded into memory as hot content, and content located only
on the disk as cold content.

Indexing refers to the process of locating hot and cold content and directly affects performance. The default is memory
indexing.

5.6. Chapter 18. Optimization and More 189

STON Documentation, Release 2.3.4

Fig. 5.28: The test needs a good video clip to play.

190 Chapter 5. 4. Management & Operation

STON Documentation, Release 2.3.4

server.xml - <Server><Cache>

<Indexing>Memory</Indexing>

Memory indexing does not keep a record of cold content. Information about all files is loaded into memory, so if a file
cannot be found, it will be downloaded from the origin server. Because the search time is very short, we can obtain
an increase in performance and service quality. However, this is limited by the memory storage size as well as the
caching count, which is listed in the above table.

In disk indexing, if the requested file is not in hot content, it will look in cold content before going to the origin server.

server.xml - <Server><Cache>

<Indexing>Disk</Indexing>

This method is not limited by memory and therefore is not limited by the caching count. It can guarantee speed if the
content is hot, but it will be relatively slower if the content is slow, due to it having to use the disk. In other words, hot
content is based on memory speed, and cold content is based on disk speed.

If using disk indexing, it is highly recommended that you also use a solid-state drive (SSD). Indexing is only performed
on the disk that STON is installed on. Because STON is generally installed on the same disk as the OS, you can expect
high performance just by using an SSD for the OS disk.

Note: SSD endurance is determined not by access frequency but by the amount that can be written. SSDs from Intel
or Samsung can guarantee a write endurance of 600 TB. In other words, if 20 GB is written in a day, then the SSD can
last for about 10 years. 99% of STON’s writing operations is logging. Therefore, it is recommended to log on disks
other than SSDs (such as SAS or SATA) to ensure the disk’s endurance.

Warning: Indexing cannot be changed dynamically, and even if it is changed, it will not guarantee stability.
Therefore, you must perform Caching Reset in order to safely proceed with the service.

5.6.2 Memory Structure

The cache server can have the same behaviors as a general web server, but their objectives are quite different. Even
better service optimization is possible if you can thoroughly understand the structure and behaviors of STON. The
purpose of optimization is as follows.

High throughput. Handling tens of thousands of sessions simultaneously without a drop in performance.

Fast responsiveness. Providing a service to clients without delay.

Reduction in origin server load. Preventing an overload on the origin server in advance.

The following figures represent the memory structure of STON with 8 GB and 16 GB memory.

Memory is divided into memory used by STON and free memory not used by STON. Like files and sockets, the
memory used by STON can change based on the scale of the service.

Note: The basis of system load is disk I/O. You will have to consider how much content should be cached in order to
reduce disk I/O.

5.6. Chapter 18. Optimization and More 191

STON Documentation, Release 2.3.4

5.6.3 Memory Management

Memory Structure will automatically be calculated based on the size of physical memory.

server.xml - <Server><Cache>

<SystemMemoryRatio>100</SystemMemoryRatio>

• <SystemMemoryRatio> (default: 100) Configures the ratio of memory used by STON using phys-
ical memory as the basis.

For example, if memory is 8 GB and <SystemMemoryRatio> is set to 50, it will act as if there is 4 GB of physical
memory. This can be useful if STON is run alongside other processes that take up space in memory.

It can be even more effective to adjust the ratio of content stored in memory based on the specifics of the service.

server.xml - <Server><Cache>

<ContentMemoryRatio>50</ContentMemoryRatio>

• <ContentMemoryRatio> (default: 50)Configures the ratio of memory used for content to the total
memory used by STON.

For example, if the file count is small but the content size is huge (like a game portal), you can increase this value to
reduce file I/O. Conversely, if you have a lot of very small files, decreasing this value will be more useful.

5.6.4 System Free Memory

If the operating system (OS) is slow, no program will be able to obtain good performance. STON will set aside a
portion of memory for the OS. This is to maximize the performance of the OS and is called system free memory.

192 Chapter 5. 4. Management & Operation

STON Documentation, Release 2.3.4

Physical RAM System Free
1GB 409.6MB
2GB 819.2MB
4GB 1.6GB
8GB 3.2GB
16GB 6.4GB
32GB 12.8GB
64GB 25.6GB
128GB 51.2GB

An experienced user will be able to adjust the free memory to what’s best for their service. Reducing free memory
will mean loading more content into memory.

server.xml - <Server><Cache>

<SystemFreeMemoryRatio>40</SystemFreeMemoryRatio>

• <SystemFreeMemoryRatio> (default: 40, max: 40) Configures the ratio of memory set
aside for free memory using physical memory as a basis.

5.6.5 Caching Service Memory

This is the memory that caches content that is delivered to clients. Content loaded into memory once will continue to
exist in memory, as long as there is enough space. The problem is that there will often not be enough space.

As seen in the above figure, the disk can be full of deliverable content, but the actual capacity of memory is limited.
Even if you have 32 GB of physical memory, when you consider the size of game clients or HD video clips, it isn’t
that much. No matter how efficiently you manage memory, it will only amount to the speed of the physical disk I/O.

The most effective method is to use as much available content memory space and reduce disk I/O. The following is a
table of STON’s default settings for maximum content memory size based on physical memory.

Physical RAM Contents Caching Count
1GB 188.37MB 219,469
2GB 446.74MB 520,494
4GB 963.49MB 1,122,544
8GB 2.05GB 2,440,422
16GB 4.45GB 5,303,733
32GB 9.25GB 11,030,356
64GB 18.85GB 22,483,603
128GB 38.05GB 45,390,095

5.6.6 Socket Memory

Sockets also use memory. If you have at least 4 GB of physical memory, then STON will by default generate at least
twenty thousand sockets. With one socket equaling 10 KB, ten thousand sockets will use about 97.6 MB. About 195

5.6. Chapter 18. Optimization and More 193

STON Documentation, Release 2.3.4

MB of memory will be alloted to sockets by default.

Physical RAM Socket Count Socket Memory
1GB 5,000 97.6MB
2GB 10,000 195MB
4GB or more 20,000 390MB

If all the sockets are used as in the following figure, more sockets will automatically created.

If, like the above figure, more sockets are installed to bring the number up to thirty thousand, that will mean about 240
MB will be alloted to sockets. There doesn’t seem to be any problem with using only the number of sockets that we
need. However, setting up more sockets than we need to use is just a waste of memory. For example, to guarantee 10
Mbps for each client from 10 Gbps NIC, the following equation gives us a maximum simultaneous user count of one
thousand people.

10,000 Mbps / 10 Mbps = 1,000 Sessions

In this case, out of the twenty thousand sockets created by STON, only nineteen thousand are used, wasting about 148
MB. This 148 MB could be used for content, increasing efficiency. By setting the smallest possible number of sockets,
we can gain use memory much more efficiently.

Minimum number of sockets. Refers to the number of initially alloted sockets.

Sockets that are installed later. Installs more sockets if all current sockets are established.

Another important factor is the Keep-Alive time setting for the client (see Session Management).

Not all connected sockets will be in the middle of transferring data. In browsers like IE or Chrome, sockets are
maintained in an accessed state to prepare for the next HTTP transfer that will occur. Among the connected sessions
in online shopping, the percentage of sessions that aren’t transferring any data ranges from 50% to 80%.

194 Chapter 5. 4. Management & Operation

STON Documentation, Release 2.3.4

If the Keep-Alive time is long, the reusability of the socket is better, but there will be more idle sockets and more
memory waste. As such, it is important to configure a client Keep-Alive time that works best for the service.

5.6.7 TCP Segmentation Offload

Important: If you’re using 10 Gbps NIC, it is recommended that you configure TCP Segmentation Offload (TCP) to
OFF.

In TCP, packets go under segmentation; TSO configures it so that this process is done not by the CPU but by NIC.
(The default setting is ON.) However, we have experienced many errors related to this in a 10 Gbps NIC service
environment.

• TCP packet loss and delay

• TCP connection timeout

• Unnatural increase in the load average

In conclusion, we can assume that TSO is unable to provide the high performance we expected from it. (These
problems did not occur when changing NIC to 1 Gbps.) When TSO was set to OFF, the service returned to normal.
This is not a point of concern about the usage of CPU but a good benchmark for the scale of the service.

The TSO setting can be configured/checked with the following. (The K is case-sensitive.)

ethtool -K ethX tso off // TSO OFF setting
ethtool -k ethX // Setting check
...
tcp segmentation offload: on
...

Tip: Please refer to the following links for more information.

• http://sandilands.info/sgordon/segmentation-offloading-with-wireshark-and-ethtool

• http://www.linuxfoundation.org/collaborate/workgroups/networking/tso

• http://www.packetinside.com/2013/02/mtu-1500.html

5.6.8 Client Request Limit

If you allow unlimited client requests, it can cause excessive load on the system. System overload is a very possible
error. This can protect the system by preventing client requests over a certain number.

server.xml - <Server><Cache>

<MaxSockets Reopen="75">80000</MaxSockets>

• <MaxSockets> (default: 80000, max: 100000) The maximum number of client sockets that
will be allowed. If the socket count falls below the Reopen (default: 75%) ratio in <MaxSockets>,
access will be reallowed.

Using the default settings, if the total client socket count exceeds 80,000, connections from new clients will immedi-
ately be closed. If the total client socket count falls to 60,000 (75% of 80,000), connections will be reallowed.

For example, there are thirty thousand client sessions and the origin servers have reached their limit, setting this value
to thirty or forty thousand is recommended. Doing so, the available benefits are as follows.

5.6. Chapter 18. Optimization and More 195

http://sandilands.info/sgordon/segmentation-offloading-with-wireshark-and-ethtool
http://www.linuxfoundation.org/collaborate/workgroups/networking/tso
http://www.packetinside.com/2013/02/mtu-1500.html

STON Documentation, Release 2.3.4

• There is no need for a separate network setup (such as L4 session control).

• Prevents unnecessary client requests (that can’t be processed due to origin load).

• Raises service credibility. There will be no need for restarting or inspection during service bursts.

5.6.9 HTTP Client Session Count

Configures the initial/additional session count to process HTTP client connections.

server.xml - <Server><Cache>

<HttpClientSession>
<Init>20000</Init>
<TopUp>6000</TopUp>

</HttpClientSession>

• <Init> The number of sockets initially generated when STON is started.

• <TopUp> The number of additional sockets generated when the initial sockets are all in use.

When not specifically configured, the settings will be automatically configured based on the size of physical memory.

Physical RAM <Init>, <TopUp>
1GB 5 thousand, 1 thousand
2GB 10 thousand, 2 thousand
4GB 20 thousand, 4 thousand
8GB or more 20 thousand, 6 thousand

If service is still possible with a smaller number of sockets in a limited environment, you can save on memory by
lowering this socket count.

5.6.10 Request hit ratio

First, you must understand how client HTTP requests are processed. Caching processing results use the TCP_* format
just like Squid, and each expression refers to how the cache server processed the request.

• TCP_HIT The requested resource (not expired) is cached and will respond immediately.

196 Chapter 5. 4. Management & Operation

STON Documentation, Release 2.3.4

• TCP_IMS_HIT The resource requested with the If-Modified-Since (IMS) header is not expired and still cached,
and will respond with 304 NOT MODIFIED. This will also apply when TTLExtensionBy4xx or TTLExten-
sionBy5xx is set to ON.

• TCP_REFRESH_HIT The requested resource is expired and will respond after checking the origin server (origin
not modified, 304 N OT MODIFIED). The expiration time of the resource is extended.

• TCP_REF_FAIL_HIT The origin server check during the TCP_REFRESH_HIT result fails (connection fail-
ure, transfer delay) and will respond with expired content.

• TCP_NEGATIVE_HIT The requested resource is abnormal (origin server connection/transfer failure, 4xx re-
sponse, 5xx response) and will respond with its currently cached form.

• TCP_REDIRECT_HIT Responds with a Redirect according to the service’s allow/deny/redirect conditions.

• TCP_MISS The requested resource is not cached (requested for the first time) and will respond with the result
of accessing the origin server.

• TCP_REF_MISS The requested resource is expired and will respond after an origin server check (origin change,
200 OK). The new resource is cached.

• TCP_CLIENT_REFRESH_MISS The request is bypassed to the origin server.

• TCP_ERROR The requested resource is not cached (requested for the first time). Due to an origin server error
(connection failure, transfer delay, origin exclusion) the resource was not cached. Responds with a 500 Internal
Error to the client.

• TCP_DENIED The request is denied.

The request hit ratio can be calculated using the above results, and the formula is shown below.

TCP_HIT + TCP_IMS_HIT + TCP_REFRESH_HIT + TCP_REF_FAIL_HIT + TCP_NEGATIVE_HIT + TCP_REDIRECT_HIT
--

SUM(TCP_*)

5.6.11 Byte hit ratio

The byte hit ratio is the ratio of the client outbound traffic to the origin inbound traffic. A negative number can arise if
the origin inbound traffic is higher than client outbound traffic.

Client Outbound - Origin Inbound

Client Outbound

5.6.12 Origin Server Failure Policy

One of the goals of the development team was to have the customer be able to examine the origin server at all times.
If an error occurs on an origin server, the corresponding server will be excluded and go into restoration mode. Even if
the server is reactivated, normal service operation must be confirmed before it can be put back into the service.

If all origin servers somehow end up in an error status, the service continues with only the content that was cached at
the time. Expired content will have their TTLs extended until the origin server is restored. Even purged content can
be restored if it cannot be cached from the origin server, in order to proceed with a smooth service. The goal is to not
expose the error status of the servers to the clients as much as possible. If a request for new content is made with a
complete error status, the following error page and reason will be displayed.

5.6. Chapter 18. Optimization and More 197

STON Documentation, Release 2.3.4

Fig. 5.29: You’d want to avoid showing this page as much as possible.

5.6.13 Time Units and Expressions

For values with a base unit of “seconds”, a string can instead be used for easier time expression. The following are the
supported time expressions as well as their values converted to seconds.

Expression Conversion
year(s) 31536000 sec (365 days)
month(s) 2592000 sec (30 days)
week(s) 604800 sec (7 days)
day(s) 86400 sec (24 hours)
hour(s) 3600 sec (60 min)
minute(s), min(s) 60 sec
second(s), sec(s), (omitted) 1 sec

The following expression, using combined units, can be used for time.

1year 3months 2weeks 4days 7hours 10mins 36secs

This can currently be used for the following values.

• Time expression of Custom TTL

• Everything but the Ratio of TTL

• ClientKeepAliveSec

• ConnectTimeout

• ReceiveTimeout

• BypassConnectTimeout

• BypassReceiveTimeout

• ReuseTimeout

• Cycle property of Recovery

• Bandwidth Throttling

5.6.14 Emergency Mode

Internally, all virtual hosts share MemoryBlocks to manage data. If new memory is necessary, old MemoryBlocks
that aren’t being used can be reused as new memory. This process is called Memory-Swap. Using this structure can
guarantee stability even for long periods of service.

Like in the right diagram of the above image, a situation may occur where all MemoryBlocks are in use with no
reusable MemoryBlocks. In this case, Memory-Swap will be unavailable. For example, if all the clients are each
downloading different parts of data at the same time, and the origin server is transferring different parts of data, then

198 Chapter 5. 4. Management & Operation

STON Documentation, Release 2.3.4

Fig. 5.30: Content is loaded onto a MemoryBlock before being delivered.

this worst-case scenario can occur. In this case, one solution is to have the system allot more memory to use. However,
if the situation continues, memory usage can easily increase. An excessive use of memory can lead to a system memory
swap or, at worst, the OS forcing STON to quit.

Note: Emergency mode refers to the mode where, when there is not enough memory, STON temporarily prevents
new MemoryBlocks from being alloted.

STON will be put into emergency mode to prevent excessive memory usage, and the mode will be automatically lifted
when enough reusable MemoryBlocks can be guaranteed.

server.xml - <Server><Cache>

<EmergencyMode>OFF</EmergencyMode>

• <EmergencyMode>

– OFF (default) Emergency mode is not used.

– ON Emergency mode is used.

In emergency mode, STON behaves as follows.

• Content that is already loaded will be provided normally.

• Bypasses will work normally.

• Content not loaded will return 503 service temporarily unavailable. TCP_ERROR statuses will increase.

• Idle client sockets will be quickly taken care of.

• New content will be unable to be cached.

• Expired content will not be renewed.

• The cache.vhost.status in SNMP and the Host.State value in XML/JSON statistics will return “Emergency”.

• The info log will record the activation/inactivation of emergency mode as below.

2013-08-07 21:10:42 [WARNING] Emergency mode activated. (Memory overused: +100.23MB)
...(omitted)...
2013-08-07 21:10:43 [NOTICE] Emergency mode inactivated.

5.6. Chapter 18. Optimization and More 199

STON Documentation, Release 2.3.4

5.6.15 Disk Hot-Swap

Swaps the disks without stopping the service. The parameters must be the same as those in <Disk>.

http://127.0.0.1:10040/command/unmount?disk=...
http://127.0.0.1:10040/command/umount?disk=...

The excluded disk is immediately inactivated and all content saved on the disk is invalidated. The status of the disk
excluded by the administrator is set to “Unmounted”.

To reactivate the disk, the following should be called.

http://127.0.0.1:10040/command/mount?disk=...

All content in the reactivated disk is invalidated.

5.6.16 SyncStale

After an abnormal service termination, content that has been invalidated by Purge, Expire, or HardPurge may be
skipped over by indexing (due to performance reasons). To make up for this, the API calls will be logged and go into
effect when the service is restarted.

server.xml - <Server><Cache>

<SyncStale>ON</SyncStale>

• <SyncStale>

– ON (default) Synchronizes on restart.

– OFF Ignores.

The log can be found at ./stale.log and is initialized upon normal termination or regular indexing.

200 Chapter 5. 4. Management & Operation

CHAPTER 6

Appendix

6.1 Appendix A: Graph

All MRTG statistics are shown as PNG-format graphs. The call format is the resource and then the unit.

5 types of CPU graphs (dash, day, week, month, year)
http://127.0.0.1:10040/graph/cpu_dash.png
http://127.0.0.1:10040/graph/cpu_day.png
http://127.0.0.1:10040/graph/cpu_week.png
http://127.0.0.1:10040/graph/cpu_month.png
http://127.0.0.1:10040/graph/cpu_year.png

All graphs are provided in 5 different types.

Type Size Time unit Period
dash 205 X 175 5 min 12 hours
day 580 X 203 5 min 2 days (48 hours)
week 580 X 203 30 min 2 weeks (14 days)
month 580 X 203 2 hours 7 weeks
year 580 X 203 1 day 18 months

A graph can have from one to three lines. The Main line is drawn in green, while the Sub line is drawn in blue. In
graphs for “Week” and above, a Peak line is also displayed. The Peak line draws the highest value from smaller units
in pink.

Note: If too many graphs are made at once, CPU usage will increase sharply and affect the service quality. To prevent
this, please make sure to only draw one graph at a time.

6.1.1 Global Resource

The global resource graph shows the system status or resources related to STON. Below, the asterisk can be replaced
with one of five types: dash, day, week, month, or year.

CPU

/graph/cpu_*.png

• Main Kernel + User

201

STON Documentation, Release 2.3.4

• Sub Kernel

STON CPU

/graph/stoncpu_*.png

• Main Kernel + User

• Sub Kernel

Memory

/graph/mem_*.png

• Main Total usage

• Sub STON usage

IO Wait

/graph/iowait_*.png

• Main IO Wait

Load Average

/graph/loadavg_*.png

• Main Load Average

Server Socket Event (Client -> STON)

/graph/ssockevent_*.png

• Main Accepted

• Sub Closed

Server Socket Usage (Client -> STON)

/graph/ssockusage_*.png

• Main Total server sockets

• Sub Established server sockets

Client Socket Event (STON -> Origin Server)

/graph/csockevent_*.png

• Main Connected client sockets

• Sub Closed client sockets

202 Chapter 6. Appendix

STON Documentation, Release 2.3.4

Client Socket Usage (STON -> Origin Server)

/graph/csockusage_*.png

• Main Total client sockets

• Sub Established client sockets

Denied IP Accesses

/graph/acldenied_*.png

• Main Denied clients

Event Queue

/graph/eq_*.png

• Main Length of event queue

Write Pending

/graph/wf2w_*.png

• Main Number of write-pending files

Successful URL Preprocessing

/graph/urlrewrite_*.png

• Main Number of preprocessed URLs

TCP Socket

/graph/tcpsocket_*.png

6.1.2 Virtual Host

The virtual host graph shows the status of all hosts or individual hosts. The vhost parameter can be used to choose a
specific virtual host, but if it is omitted then it will provide the statistics of all virtual hosts.

http://127.0.0.1:10040/graph/vhost/mem_day.png?vhost=example.com

Below, the asterisk can be replaced with one of five types: dash, day, week, month, or year.

6.1. Appendix A: Graph 203

STON Documentation, Release 2.3.4

Hit Ratio

/graph/vhost/hitratio_*.png

• Main Request Hit Ratio

• Sub Byte Hit Ratio

Amount of Content

/graph/vhost/filecount_*.png

Content Memory

/graph/vhost/mem_*.png

• Main Amount of content data loaded into memory

Delete Pending

/graph/vhost/wf2d_*.png

• Main Number of delete-pending files

Client Bypass

/graph/vhost/client_httpreq_bypass_*.png

• Main Bypassed client HTTP requests

Denied Client Requests

/graph/vhost/client_httpreq_denied_*.png

• Main Denied client requests

Client Sessions

/graph/vhost/client_http_session_*.png

• Main Total client sessions

• Sub Client sessions in the middle of transfer

204 Chapter 6. Appendix

STON Documentation, Release 2.3.4

Client Traffic

/graph/vhost/client_traffic_*.png

• Main Inbound

• Sub Outbound

Client Responses

/graph/vhost/client_http_res_*.png

• Main Number of client HTTP responses

• Sub Number of client HTTP requests

Detailed Client Responses

/graph/vhost/client_http_res_detail_*.png

Client Transaction Completions

/graph/vhost/client_http_res_complete_*.png

• Main Number of completed client HTTP responses

• Sub Number of client HTTP requests

Client Response Time

/graph/vhost/client_http_res_time1_*.png

• Main HTTP response time for a client request

Client Completion Time

/graph/vhost/client_http_res_time2_*.png

• Main HTTP transaction completion time for a client request

Client Caching Response

/graph/vhost/client_http_res_hit_*.png

6.1. Appendix A: Graph 205

STON Documentation, Release 2.3.4

Client SSL Traffic

/graph/vhost/client_traffic_ssl_*.png

• Main Inbound

• Sub Outbound

Origin Server Sessions

/graph/vhost/origin_http_session_*.png

• Main Total origin sessions

• Sub Origin sessions in the middle of transfer

Origin Server Traffic

/graph/vhost/origin_traffic_*.png

• Main Inbound

• Sub Outbound

Origin Server Responses

/graph/vhost/origin_http_res_*.png

• Main Number of origin HTTP responses

• Sub Number of origin HTTP requests

Detailed Origin Server Responses

/graph/vhost/origin_http_res_detail_*.png

Origin Server Transaction Completions

/graph/vhost/origin_http_res_complete_*.png

• Main Number of completed origin HTTP responses

• Sub Number of origin HTTP requests

Origin Server Response Time

/graph/vhost/origin_http_res_time1_*.png

• Main HTTP response time for requests sent to the origin server

206 Chapter 6. Appendix

STON Documentation, Release 2.3.4

Origin Server Completion Time

/graph/vhost/origin_http_res_time2_*.png

• Main HTTP transaction completion time for requests sent to the origin server

6.2 Appendix B: Cacti Monitoring

This appendix will explain how to set up monitoring of multiple instances of STON using Cacti‘s Graph Tree. The
following two prerequisites are required.

• A server with Cacti installed

• SNMP activation (see Chapter 11. SNMP)

6.2.1 Adding Templates

Using the Host Template provided by STON, the monitoring environment can easily be set up (download).

Fig. 6.1: Select [Import Templates].

6.2.2 Device Registration

Register STON as a Cacti device.

1. Input the name used for STON.

2. Input STON’s IP address.

3. Select “STON”.

4. Select “Public”.

5. Input the default port of 161.

6.2. Appendix B: Cacti Monitoring 207

http://www.cacti.net/
http://webhard.winesoft.co.kr/ston/monitoring/cacti/ston_host_template.xml

STON Documentation, Release 2.3.4

Fig. 6.2: Import cacti_host_template_ston.xml.

Fig. 6.3: Select [Devices].

Fig. 6.4: Click the [Add] button in the [Devices] menu.

208 Chapter 6. Appendix

STON Documentation, Release 2.3.4

Fig. 6.5: Fill in the device options.

6.2. Appendix B: Cacti Monitoring 209

STON Documentation, Release 2.3.4

Click the “Create” button to engage the device.

Fig. 6.6: Engaged successfully.

Fig. 6.7: Engagement error.

Note: If the SNMP engagement fails:

• Check STON to make sure SNMP is enabled.

• Check to see if the SNMP port number matches STON’s SNMP port number.

If the device engagement succeeds, you can use 18 different types of graph provided by the STON template.

Fig. 6.8: Click “Create Graphs for this Host”.

Click the [Create] button and check the graphs that were created.

6.2.3 Graph Tree Creation

Create Graph Trees.

You can add STON to the Graph Tree.

1. Select “Host”.

210 Chapter 6. Appendix

STON Documentation, Release 2.3.4

Fig. 6.9: There are 18 types of graphs provided.

Fig. 6.10: The graphs have been created.

6.2. Appendix B: Cacti Monitoring 211

STON Documentation, Release 2.3.4

Fig. 6.11: Select [Graph Trees].

Fig. 6.12: Click the [Add] button on the right side.

Fig. 6.13: Create Graph Trees.

212 Chapter 6. Appendix

STON Documentation, Release 2.3.4

Fig. 6.14: Click the [Add] button in the [Tree Items] menu.

Fig. 6.15: Select the [Tree Items] options.

2. Select the devices you will add.

3. Select “Graph Template”.

6.2.4 Graph Check

Select [Graphs] in the upper left side to check if the graphs are displaying correctly.

6.3 Appendix C: Dynamic Page Exceptions

Dynamic pages are web pages developed using web programming languages (e.g. JSP, PHP), and they can change
based on client requests. If the following types of dynamic pages are cached for appropriate lengths of time, it will
create an exceptional decrease in the load for web servers, WAS, and databases.

• Real-time orderings (Trending search terms or rankings)

• Search results

• API for inquiries

• Detailed product pages (stock)

Pages that cannot be cached are as follows.

• Private accounts Caching a page means that if a person reads a page, other people can also read that page.
Nobody wants their private information exposed to other people. From a technical standpoint, most web

6.3. Appendix C: Dynamic Page Exceptions 213

STON Documentation, Release 2.3.4

Fig. 6.16: Check regularly that the graphs are showing properly.

214 Chapter 6. Appendix

STON Documentation, Release 2.3.4

sites will not allow you to view private information without first logging in. The condition that checks for
login status on web servers should be configured in STON’s bypasses.

• Payment There are services that allow users to pay without logging in. All pages that are used for payment
should be configured under caching exceptions.

• Cookie creation Cookies often contain information essential to the client. If a cookie created by User A is
given to User B, a huge disaster will occur.Because of this, STON is configured to ignore all cookie
headers given by the origin server.

• Write API The Read API can be effective with even 1 second of caching, but the Write API can malfunction
if it is cached and a bad result is returned.

• Ticket problems Refers to reservations made in order like for concert tickets. There are many cases where this
is done using WAS or a private server.

6.4 Appendix D: Release Notes

6.4.1 v2.4.x

2.4.3 (JAN 20, 2017)

Bug Fix

• Fixed infrequent Content-Encoding headers missing from compressed content responses

2.4.2 (JAN 18, 2017)

Feature/Policy Updates

• Vhost-Link feature added

Bug Fixes

• Fixed the unintended termination with negative Content-Length header value from origin servers

• Fixed the unintended termination from unstable origin server communications for MP3HLS packetizing

2.4.1 (NOV 24, 2016)

Feature/Policy Updates

• Processes origin HTTP responses with missing Reason-Phrase’s

• DIMS: supports canvas resizing

Bug Fixes

• Compression integrity improved

• VLC media player compatibility for M4A HLS playback

• Abnormal termination from missing DIMS resize dimensions

6.4. Appendix D: Release Notes 215

STON Documentation, Release 2.3.4

2.4.0 (NOV 07, 2016)

Feature/Policy Updates

• Modify HTTP request URL to origin.

• Support M4A HLS

Bug Fix

• Enhanced processing for invalid MP4 size headers.

6.4.2 v2.3.x

2.3.9 (OCT 28, 2016)

Bug Fix

• TTL: Content was not updated few seconds in some circumstances

2.3.8 (OCT 13, 2016)

Bug Fix

• Enhanced processing for invalid MP4 size headers

2.3.7 (SEP 26, 2016)

Feature/Policy Updates

• DIMS: allocates system resource for image conversion

• Origin Health Checker: also includes stand-by origin servers

Bug Fix

• Compression on/off

2.3.6 (AUG 16, 2016)

Feature/Policy Updates

• Client socket processing policy update

• DIMS: PNG alpha compositing update for JPG conversion

Bug Fix

• Unintended termination from a Hardpurge API call in DIMS processing

2.3.5 (JUL 1, 2016)

Feature/Policy Updates

• Improved native HLS player compatibility

• DIMS image cropping in the unfixed aspect ratio

Bug Fix

216 Chapter 6. Appendix

STON Documentation, Release 2.3.4

• Unintended termination upon an origin status reset API call with Origin Health-Checker activated

2.3.4 (JUN 3, 2016)

Feature/Policy Updates

• Supports large MP4 files with 32-bit mdat atoms (4GB or more)

• Supports Host header value in unknown access logs

• WM installation : Apache Manual folder deleted for security

• WM installation : “winesoft” Apache account as nologin

Bug Fixes

• HLS: CPU overload upon some videos

• Termination upon bypassing HTTP requests

• Client IP shown as 0.0.0.0 in access logs

• Configuration backup failure for over 260 virtualhosts generated

2.3.3 (APR 26, 2016)

Bug Fixes

• Unintended 404 responses upon origin host, DIMS and compression configured [2.3.0 ~ 2.3.2]

• Unintended CPU overload upon SNMP View deletion

• WM - 0 value input error from SNMP GlobalMIn

2.3.2 (MAR 22, 2016)

Feature/Policy Update

• HLS index file compatibility improved

Bug Fixes

• Unintended termination from encryption/decryption with a bad SSL handshake

• Occasional termination from active ACLs

2.3.1 (FEB 23, 2016)

• Supports MP3 streaming in HLS

Feature/Policy Updates

• Custom access log format

%..y Request HTTP header size
%..z Response HTTP header size

Bug Fix

• WM : unintended failure in no destination port configured

6.4. Appendix D: Release Notes 217

STON Documentation, Release 2.3.4

2.3.0 (FEB 3, 2016)

• Supports on-the-fly compression.

Bug Fixes

• Expires Header: incorrect max-age value from modification

• DIMS Statistics: incorrect average value from faulty denominator

6.4.3 v2.2.x

2.2.5 (JAN 12, 2016)

Feature/Policy Updates

• HTTP response code update: “451 Unavailable For Legal Reasons”

Bug Fix

• TLS : unintended termination upon attacking packets

2.2.4 (DEC 11, 2015)

Bug Fix

• HLS : playback termination upon media segmentation

2.2.3 (DEC 4, 2015)

Bug Fix

• Virtualhost generation failure from Web Management in 2.2.2

2.2.2 (DEC 3, 2015)

• Modifies HTTP request header to origin

Feature/Policy Updates

• HTTP request/response header modification : ‘put’ action added, which inserts the header

2.2.1 (NOV 19, 2015)

Bug Fixes

• TLS-Handshake: overlapping ChangeCipherSpec return upon separate ChangeCipherSpec and ClientFinished
messages

• DIMS : size ratio malfuction from Animated GIF resizing

218 Chapter 6. Appendix

STON Documentation, Release 2.3.4

2.2.0 (NOV 4, 2015)

• Supports TLS 1.2 (including Forward Secrecy and other security policy updates)

Bug Fixes

• Abnormal termination upon no disk information

• TLS-Handshake version choice Before. TLSPlaintext.version After. ClientHello.client.version

6.4.4 v2.1.x

2.1.9 (OCT 15, 2015)

Bug Fix

• MP4 HLS : Video playback malfunction from 2.1.7

2.1.8 (OCT 14, 2015)

Bug Fix

• Abnormal termination upon manager port access from blocked IPs (2.1.6 ~ 7)

2.1.7 (OCT 7, 2015)

• Multi-Trimming : Stitches multiple segments trimmed from the origin videos.

Feature/Policy Updates

• Access Log : Supports TrimCIP option for X-Forwarded-For header

Bug Fixes

• MP4 HLS : Video jittering from few profiles

• DIMS : B 500 Internal Error responses with zero TTLs

• Unintended space characters in X-Forwarded-For c-ip logging

2.1.6 (SEP 9, 2015)

Feature/Policy Updates

• DIMS : Converts only the first frames for Animated GIF

Bug Fixes

• Chapter 14. Access Control : IP access control malfuction

• DIMS : ‘+’ coordinate malfuction for cropping images

2.1.5 (AUG 18, 2015)

• Virtualhost Sub-Path : Supports virtualhost sub-path by accessing paths

• Facade Virtual Host: Supports separate client traffic statstics and access logs by accessing domains

6.4. Appendix D: Release Notes 219

STON Documentation, Release 2.3.4

2.1.4 (JUL 31, 2015)

Feature/Policy Updates

• Less CPU usage

• https-multi-nic: listening on multiple NICs

• URI policy change for Access Control Before. keywords omitted (such as MP4HLS) from URIs After. the
whole URIs

Bug Fixes

• DIMS : encoded strings unrecognized

• HardPurge : case-sensitive error

• Configuration History: POST request exception missing

2.1.3 (JUN 25, 2015)

Feature/Policy Updates

• SyncStale : All content control (Purge , Expire and HardPurge) API calls tracked and logged (synchronization
with stale logs and index when restarted)

• %u expression added to Custom Access Log Format (full-length URIs from client requests logged)

Bug Fixes

• DIMS : image revalidation failure with no Last-Modified header from origin

• Trimming : CPU overload for >4GB trimmed MP4s

• Via header missing in error page responses

2.1.2 (MAY 29, 2015)

Web Management - English support

Feature/Policy Updates

• Single-core CPU support

Bug Fix

• Customized module malfunction in the Indexing mode

2.1.1 (MAY 7, 2015)

MP4 HLS : Provides bandwidth and resolution information in StreamAlternates

Bug Fix

• Abnormal termination caused by broken header MP4 video analysis

220 Chapter 6. Appendix

https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/StreamingMediaGuide/art/indexing_2x.png

STON Documentation, Release 2.3.4

2.1.0 (APR 15, 2015)

Indexing added
Animated GIF DIMS supported
DIMS statistics supported

Feature/Policy Updates

• Directory expression removed from Chapter 5. Content Purge (purge, expire, hardpurge, expireafter)
URL by directory expression (example.com/img/) caches the returned file from the origin. Directory
expression (example.com/img/) merged with pattern (example.com/img/*)

• API expressions added

/monitoring/average.xml
/monitoring/average.json
/monitoring/realtime.xml
/monitoring/realtime.json
/monitoring/fileinfo.json
/monitoring/hwinfo.json
/monitoring/cpuinfo.json
/monitoring/vhostslist.json
/monitoring/geoiplist.json
/monitoring/ssl.json
/monitoring/cacheresource.json
/monitoring/origin.json
/monitoring/coldfiledist.json

• WM - resolv.conf editing removed

6.4.5 v2.0.x

2.0.7 (JUN 25, 2015)

Bug Fixes

• DIMS : image revalidation failure with no Last-Modified header from origin

• Trimming : CPU overload for >4GB trimmed MP4s

• Via header missing in error page responses

2.0.6 (APR 28, 2015)

Feature/Policy Updates

• WM - resolv.conf editing removed

Bug Fix

• abnormal termination from MP4 analysis with broken headers

6.4. Appendix D: Release Notes 221

STON Documentation, Release 2.3.4

2.0.5 (APR 1, 2015)

Feature/Policy Updates

• Serves trimmed MP4 by HLS The following expressions trim the original media file (/vod.mp4)
from 0 to 60 seconds and serve in HLS. | /vod.mp4?start=0&end=60/mp4hls/index.m3u8 |
/vod.mp4**/mp4hls/index.m3u8**?start=0&end=60 | /vod.mp4?start=0/mp4hls/index.m3u8?end=60

• HLS index file (.m3u8) update Before. Version 1 After. Version 3 (changeable back to version 1)

Bug Fixes

• abnormal termination in HLS conversion with HTTP encoded special characters

• overloaded CPU for MP4 media with broken headers

• audio/video synchronization failure while serving MP4 with uneven audio keyframe in HLS

• RRD - statistics bug: average response time shown in total

• WM - forcing formatting new disks removed

2.0.4 (FEB 27, 2015)

Feature/Policy Updates

• Hash algorithm update at Origin Selection

Before. hash(URL) / servers
After. Consistent Hashing

• Client requested URI is usable as a parameter when redirecting by Virtual Host Access Control.

Bug Fix

• Disk full due to unremoved caching files

2.0.3 (FEB 9, 2015)

Feature/Policy Updates

• DIMS internalization and enhancement

• WM - traffic alert messages added

Bug Fix

• WM - Virtual host generation failure

2.0.2 (Jan 28, 2015)

• Able to pass User-Agent header value from clients when requesting to the origin server.

Bug Fixes

• Failed to trim MP4 files with MDAT length 1.

• WM - failed to show other clustered servers’ graph.

• WM - showing other clustered server’s status as the relevant one.

222 Chapter 6. Appendix

http://en.wikipedia.org/wiki/Consistent_hashing

STON Documentation, Release 2.3.4

2.0.1 (DEC 30, 2014)

Bug Fix

• No HitRatio graph value

2.0.0 (DEC 17, 2014)

• Disk space optimization: just as downloaded from the origins. (please refer to Range Request)

• Memory Restriction added

• TLS 1.1 support

• SSL/TLS Acceleration support by AES-NI.

• ECDHE CipherSuite support (please refer to CipherSuite Selection)

• DNS Log added

• Policy Update: Seprate TTLs for each IP if the origin server is configured by domain

• origin Error Detection and Recovery added

• origin Health-Checker added

• System Free Memory added

• etc.

– Supported operating system updaated: CentOS 6.2 or later, Ubuntu 10.01 or later

– NSCD daemon included in the installation package

– DIMS included

– Restart required after Caching Reset

– <DNSBackup> removed

– <MaxFileCount> removed

– <Distribution> removed, integrated into Origin Selection

6.4. Appendix D: Release Notes 223

STON Documentation, Release 2.3.4

224 Chapter 6. Appendix

	0. Overview
	1. Basics
	2. HTTP Caching
	3. Advanced Features
	4. Management & Operation
	Appendix

