

 [image: _images/License-Apache%202.0-yellow.svg]
 [https://opensource.org/licenses/Apache-2.0][image: _images/StatisKit.svg]
 [https://travis-ci.org/StatisKit/StatisKit][image: _images/master.svg]
 [https://ci.appveyor.com/project/pfernique/statiskit/branch/master]
StatisKit: A Software Suite for Statistical Analyses

StatisKit is a collection of open source software designed to provide an environment for performing statistical analyses in C++ or Python.

General Documentation

This documentation is dedicated to people using the StatisKit software suite.
In this documentation, the following expressions shall have the following meaning:

	User

	means any individual using StatisKit binary files published by maintainers.

	Developer

	means any individual producing StatisKit binary files to be published by maintainers.

	Maintainer

	means any individual publishing StatisKit binary files used by users.

Please, with regard to previous expressions, refers to the subsequent guides.

Note

While developer and maintainer roles seem to be separated, reading the maintainer guide is useful for developer, and vice versa.

More insights on the project can be found on the organization GitHub page [http://github.com/StatisKit]

	User Guide
	Test it !
	Online With Binder

	On Your Computer With Docker

	On Your Computer From a SSH Server

	Install it !
	Prerequisites

	Recommanded Installation

	Frequently Asked Questions

	Developer Guide
	Configure your Computer

	Contribute to a Repository

	Frequently Asked Questions
	How to Organize a Repository ?

	How to Configure my IDE ?

	How to Speed Up Build Time ?

	What is the C++ Style Guide ?

	What is the Python Style Guide ?

	How to Update the Development Environment ?

	Maintainer Guide
	Configure Your Computer

	Create a New Repository

	Frequently Asked Questions

User Guide

Warning

Section under construction.

	Test it !
	Online With Binder

	On Your Computer With Docker

	On Your Computer From a SSH Server

	Install it !
	Prerequisites

	Recommanded Installation

	Frequently Asked Questions

Test it !

In a first stage, you are not compelled to install StatisKit on your computer in order to discover its functionalities.
Using Docker images, Binder servers and Jupyter notebooks, we are able to provide pre-installed interfaces with various examples.

Note

For more information refers to :

	The Jupyter documentation [https://jupyter.readthedocs.io/en/latest/index.html].

	The Binder documentation [http://docs.mybinder.org/].

	The Docker documentation [https://docs.docker.com/].

Online With Binder

To reproduce the various examples from a Binder server, follow this link [https://beta.mybinder.org/v2/gh/statiskit/statiskit/master?filepath=share/jupyter/index.ipynb].

On Your Computer With Docker

To reproduce the various examples with Docker use these images [https://hub.docker.com/r/statiskit/statiskit/tags].
After installing [https://docs.docker.com/engine/installation/] Docker, you can type the following command in a shell:

docker run -i -t -p 8888:8888 statiskit/python-statiskit:latest

Then, follow the given instructions.

Warning

By default, on some operating systems like Ubuntu, docker require to have administration rights.
You can, for example, execute the preceeding lines after typing sudo -i if you are on Ubuntu or follow these instructions [https://docs.docker.com/engine/installation/linux/linux-postinstall/].

Note

If your port 8888 is already used, replace this number in these command lines and instructions given by another one (e.g., 8889).

On Your Computer From a SSH Server

To reproduce the various examples from a SSH server, you can type the following commands in a shell:

ssh -L 8888:localhost:8888 <username>@<servername>
jupyter notebook --ip='*' --port=8888 --no-browser

Note

The username on the SSH server (resp. the SSH servername) is denoted in the following by <username> (resp. <servername>).
Please replace it by the appropriate username (resp. servername).

Then, follow the given instructions.

Note

If your port 8888 is already used, replace this number in these command lines and instructions given by another one (e.g., 8889).

Install it !

Prerequisites

In order to ease the installation of the StatisKit software suite on multiple operating systems, the Conda package and environment management system is used.

Note

For more information refers to the Conda documentation [http://conda.pydata.org/docs].

To install Conda, please refers to this page [https://conda.io/docs/user-guide/install/index.html].
Installers for:

	Miniconda are available on this page [https://conda.io/miniconda.html].

	Anaconda are available on this page [https://www.anaconda.com/download/].

Note

We recommend to:

	Follow the instructions given for the regular installation.

	Install Miniconda if you are only interested by StatisKit.

	Install Conda from .pkg installer on Mac Os X.

	Install Miniconda 3 or Anaconda 3 since the supported version of Statiskit is based on Python 3.

Warning

From that point on, any command line should be typed

	For Windows users, in the Anaconda Prompt console that is available in the Windows start menu.

	For Unix users, in your favorite Terminal configured to use Conda.
To do so, for Linux users, it can be required to type the following command line

echo ". <CONDA_PREFIX>/etc/profile.d/conda.sh" >> ~/.bashrc

where <CONDA_PREFIX> must be replaced by the path where Conda has been installed.

Recommanded Installation

The recommended installation rely on a Conda meta-package.
To install the Python interface, type the following command lines

conda create -n python-statiskit python-statiskit -c statiskit -c defaults --override-channels

Then, to activate the python-statiskit environment, type the following command line

conda activate python-statiskit

Frequently Asked Questions

Here we try to give some answers to questions that regularly pop up or that could pop up on the mailing list.

Developer Guide

Warning

Section under construction.

	Configure your Computer

	Contribute to a Repository

	Frequently Asked Questions
	How to Organize a Repository ?

	How to Configure my IDE ?

	How to Speed Up Build Time ?

	What is the C++ Style Guide ?

	What is the Python Style Guide ?

	How to Update the Development Environment ?

Configure your Computer

In order to ease the development of the StatisKit software suite on multiple operating systems, the Conda package and environment management system is used.
To install Conda refer to the section Prerequisites.

Once Conda is installed, you need to create a development environment called statiskit-toolchain containing the meta-package statiskit-toolchain on your computer.
To do so, type the following command line

conda create -n statiskit-toolchain statiskit-toolchain -c statiskit -c defaults --override-channels

Moreover, for

	Windows users, you must download and install Visual Studio Community 2017 (available on this page [https://visualstudio.microsoft.com/downloads/]).

	Mac Os X users, you must download and install macOS 10.9 SDK.
This can be done using the following command lines

git clone https://github.com/phracker/MacOSX-SDKs.git --depth=1
sudo cp -r MacOSX-SDKs/MacOSX10.9.sdk /opt/MacOSX10.9.sdk
rm -rf MacOSX-SDKs

Warning

From that point on, any command line should be typed from the statiskit-toolchain environment.
To do so, type the following command lines each time you launch a new console

conda activate statiskit-toolchain

Contribute to a Repository

Warning

It is here assumed the statiskit environment has been installed and activated as detailed in the Configure your Computer section.

Note

This section heavily relies on the devops-tools program.
For more information concerning the github, travis_ci and appveyor_ci commands, refer to their documentation [http://devops-tools.rtfd.io].

Official repositories of StatisKit are currently hosted on GitHub.
In order to contribute to an official repository of StatisKit we recommend to proceed as follows.

Note

In the following <REPOSITORY> denote the official repository name.

	Fork the repository from the organization account to your personal account.
If this repository is already forked on your personal account, you can skip this step.
Otherwise, type the following command in your console

github fork <REPOSITORY> --owner=StatisKit

	Clone the repository from your personal account to your computer.
If this repository is already cloned on your computer, you can skip this step.
Otherwise, type the following command in your console

github clone <REPOSITORY>

Warning

After this step, it is assumed that your console working directory is the one of the local repository.
Two remotes are available for this local repository:

	The upstream remote pointing to the repository located on the organization account.

	The origin remote pointing to the repository located on your personal account.

	Activate Continuous Integration and Deployment (CI&D) services for the repository located on your personal account.
This step is not mandatory but is recommended.
To do so, type the following commands in your console

travis_ci init --anaconda-label=main
appveyor_ci init --anaconda-label=main

Warning

To activate CI&D services, you need to have:

	A Travis CI account [https://travis-ci.org].

	A AppVeyor CI account [https://ci.appveyor.com].

	Retrieve the latest code from the repository located on the organization account and push it together with your modifications to the repository located on your personal account.
This step is particularly important if you skipped one of the first two.

To do so, type the following commands in your console

git pull
git push
git pull upstream master
git push

Warning

Before using these commands, it is better to make sure that there are no uncommitted changes nor untracked files on your local repository.
To do so, type the following command in your console

git status

If you want to suppress (permanently) all uncommitted changes, type the following command in your console

git reset --hard

Moreover; if you want to suppress (permanently) all untracked files, type the following command in your console

git clean -fd

	Work on your local repository.
To work on a repository, an issue must first have been published.

Warning

Issues must be published on the repository located on the organization account, not on your personal repository.

To search for existing issues or creating new ones using your Web browser, type the following command

github issues --browser

To display in your console current open issues, type the following command in your console

github issues

To display in your console current open issues that are assigned to yourself (i.e., that you are currently working on), type the following command in your console

github issues --assigned

In the following, we consider that an issue is identified by its number denoted by <ISSUE>.
If this issue corresponds to:

	a bug, the work must typically be situated on a branch named hotfix_<ISSUE> created from the master branch of the repository located on the organization account.
Thus, type the following command in your console

github hotfix --issue=<ISSUE>

Yet, if you do not have the necessary permissions to write on the repository located on the organization account, the branch must be created from the master branch of your personal account.
To do so, type the following command in your console

github hotfix --issue=<ISSUE> --remote=origin

	an enhancement, the work must typically be situated on a branch named feature_<ISSUE> created from the master branch of the repository located on your personal account.
Thus, type the following command in your console

github feature --issue=<ISSUE>

If the enhancement should be assigned to more than one developer (large ones), the branch must be create from the master branch of the organization repository.
To do so, type the following command in your console

github feature --issue=<ISSUE> --remote=upstream

Note

If the bug or the feature covers more than one issue, create a new issue referencing all those issues.
In all those issues:

	add the Duplicate of #<ISSUE> comment,

	add the duplicate label.

Warning

If the branch name given by the github hotfix or github fixture commands corresponds to a remote branch, the remote will be set to the existing remote branch.

For more information concerning how to amend a repository, refer to the Frequently Asked Questions section.
If this step has already been made once on your local repository, type one the following commands in your console

github start hotfix_<ISSUE>

or

github start feature_<ISSUE>

To see all available branches of your local repository, type the following command in your console

git branch

To see all available branches of all repositories, type the following command in your console

git branch -a

An easiest way if you have no concurrent branches is to use the following command line

github start

This command will ensure that you are currently working on the latest branch you edited using these commands.

Warning

If there are untracked files or uncommitted changes on your current local branch, this command will fail.

Similarly, to go back to the local master branch, type the following command

github end

Warning

If there are untracked files or uncommitted changes on your current local branch, this command will fail.

Note

At any point, to seek information about a particular issue using your Web browser, type the following command in your console

github issue <ISSUE> --browser

If you are currently working on a branch and want to seek information about the corresponding issue using your Web browser, type the following command in your console

github issue --browser

This is particularly helpful if you forgot the meaning of an issue number you were working on.

	Retrieve the latest code from the repository located on the organization account and push it together with your modifications to the repository located on your personal account.

To do so, type the following commands in your console

git pull
git push
git pull upstream master
git push

Warning

Before using these commands, it is better to make sure that there are no uncommitted changes nor untracked files on your local repository.
To do so, type the following command in your console

git status

If you want to suppress (permanently) all uncommitted changes, type the following command in your console

git reset --hard

Moreover; if you want to suppress (permanently) all untracked files, type the following command in your console

git clean -fd

	Suggest to maintainers to incorporate your modifications into the master branch of the repository located on the organization account.
To do so, type the following command in your console

github end --suggest

Warning

If your local branch is at least one commit behind the master branch of the repository located on the organization account or is ahead of the corresponding branch on the repository location on your personal account, this command will fail.

Frequently Asked Questions

Here we try to give some answers to questions that regularly pop up or that could pop up on the mailing list.

	How to Organize a Repository ?

	How to Configure my IDE ?

	How to Speed Up Build Time ?

	What is the C++ Style Guide ?

	What is the Python Style Guide ?

	How to Update the Development Environment ?

How to Organize a Repository ?

It is important to have a common structure shared between all repositories.
Yet, this is not currently a rule written in stone since this has not yet been really discussed.
However, here is the current structure emerging from actual repositories

	Directory

	Description

	/

	Repository root directory

	/etc

	Essential files that need to be available for maintainers

	/etc/conda

	Conda recipes for generating Conda binaries

	/etc/docker

	Docker contexts for generating Docker images

	/doc

	Essential files that need to be available for documenters

	/share

	Essential files that need to be available for users

	/share/git

	Git sub-modules that need to be available for users

	/share/jupyter

	Jupyter notebooks that need to be available for users

	/src

	Essential files that need to be available for developers

	/src/cpp

	C++ source code files

	/src/cpp/SConscript

	SCons configuration file for the C++ library installation

	/src/py

	Python source code files

	/src/py/wrapper

	Boost.Python source code for interfacing the C++ library with Python

	/src/py/wrapper/SConscript

	SCons configuration file for the C++/Python binding library generation

	/test

	Test files

	/travis.yml

	Travis CI configuration file

	/.travis.yml

	A symbolic link to the Travis CI configuration file

	/appveyor.yml

	Appveyor CI configuration file

	/SConstruct

	SCons general configuration file

How to Configure my IDE ?

For developers, it can be convenient to use an IDE [https://en.wikipedia.org/wiki/Integrated_development_environment].
Currently, each repository can be used with:

	Sublime Text.
To add a Sublime Text build system compatible with StatisKit repositories, use the following command

build_system sublime_text

Moreover, with Sublime Text, it is recommanded to use the following addons:

	Package Control, see this page <https://packagecontrol.io> for more details.

	Terminal, see this page <https://packagecontrol.io/packages/Terminal> for more details.

	Git, see this page <https://packagecontrol.io/packages/Git> for more details.

	ProjectManager, see this page <https://packagecontrol.io/packages/ProjectManager> for more details.

Note

Any other IDE build system proposal is welcome.

How to Speed Up Build Time ?

For projects using SCons or developers using build systems in IDEs (see the How to Configure my IDE ? section), it is possible to speed up the build time by parallelizing most of C++ compilations.
This is usually done using the -j<CPU_COUNT> flag with SCons:
For example

scons -j6

will use, when possible, \(6\) concurrent compilations.

Warning

It is not recommended to set <CPU_COUNT> to a value superior to your number of processors.
From a console, you can see yout number of processors by typing the following command line in a Python interpreter:

import multiprocessing
multiprocessing.cpu_count()

To avoid using the -j<CPU_COUNT> flag each time, you can type the following command line in your console:

cpu_count

This will automatically set the number of concurrent compilations to your number of processors minus one.
You can manually specify the number of concurrent compilations using the --number <CPU_COUNT> flag.

What is the C++ Style Guide ?

Warning

Section under construction.
Until further notice, please use the Google C++ style guide [https://google.github.io/styleguide/cppguide.html]

	A repository should contain at most \(1\) C++ library.

	The C++ library source code must be located in the scr/cpp directory.

	To install headers of the C++ library, a developer should use the following command in the repository root

scons cpp-dev

	To generate and install the C++ library binaries, a developer should use the following command in the repository root

scons cpp-lib

	The following command

scons cpp

should be equivalent to the following commands

scons cpp-dev
scons cpp-lib

	If the C++ library is interfaced in any other languages (e.g., Python or R), the wrappers should be generated using the following command

scons autowig

Note

In this case, guidelines proposed in the AutoWIG documentation [http://autowig.rtfd.io] are of most importance.

What is the Python Style Guide ?

Warning

Section under construction.
Until further notice, please use the Google Python style guide [http://google.github.io/styleguide/pyguide.html].

	A repository should contain at most \(1\) Python package.

	The Python package source code must be located in the scr/py directory.

	To install the Python package, a developer should use the following command in the repository root

scons py

Note

If this package is an interface of a C++ library, this command should also generate relevant binaries.

How to Update the Development Environment ?

If you need to update your development environment, type the following command line in your console

conda update --all --no-pin -c statiskit/label/develop -c statiskit -c defaults --override-channels

Warning

In this case, the development environment must first be activated

In the worst case scenario, you can first uninstall your development environment and re-install it.
To do so, type the following command lines in your console

conda env remove -n statiskit -y
conda clean --all -y
conda create -n statiskit statiskit -c statiskit/label/develop -c statiskit -c defaults --override-channels

Warning

In this case, the development environment must first be deactivated

Maintainer Guide

Warning

Section under construction.

	Configure Your Computer

	Create a New Repository

	Frequently Asked Questions

Configure Your Computer

In order to ease the deployment of the StatisKit software suite on multiple operating systems, the Conda package and environment management system is used.
To install and configure Conda refer to the section Configure your Computer.

Create a New Repository

Warning

It is here assumed the:code:statiskit-dev environment has been installed and activated as written in Section Configure your Computer.
This section heavily relies on the devops-tools program.
For more information on the github, travis_ci and appveyor_ci commands, refer to their documentation <http://devops-tools.rtfd.io>.

Official repositories of StatisKit are currently hosted on GitHub.
In order to create an official repository of StatisKit we recommend to proceed as follows.

Note

In the following <REPOSITORY> denote the official repository name.

	Initialize the repository on the organization account.
To do so, type the following command in your console

github init <REPOSITORY> --owner=StatisKit --license=apache-2.0

	Clone the repository from the organization account to your computer.
If this repository is already cloned on your computer, you can skip this step.
Otherwise, type the following command in your console

github clone <REPOSITORY> --owner=StatisKit

Warning

After this step, it is assumed that your console working directory is the one of the local repository.

	Activate Continuous Integration and Deployment services for your repository.
Contrarily to user repositories, this step is mandatory for organization account’s repositories.
To do so, type the following commands in your console

travis_ci init --anaconda-label=develop
appveyor_ci init --anaconda-label=develop

	Populate the repository with relevant files.

Warning

Until now, the repository structure has not been clearly set.
More information can be gathered in the Frequently Asked Questions section.
A package is yet under consideration to propose command lines to simplify the process (e.g., layout init).

	Retrieve the latest code from the repository located on the organization account and push your modifications to the repository located on the organization account.

To do so, type the following commands in your console

git pull
git push

Warning

Before using these commands, it is better to make sure that there are no uncommitted changes nor untracked files on your local repository.
To do so, type the following command in your console

git status

If you want to suppress (permanently) all uncommitted changes, type the following command in your console

git reset --hard

Moreover; if you want to suppress (permanently) all untracked files, type the following command in your console

git clean -fd

Note

For more information concerning naming conventions and places for files specific to further repository developments, refer to the Frequently Asked Questions section.

Frequently Asked Questions

Here we try to give some answers to questions that regularly pop up or that could pop up on the mailing list.

Index

 To do so, type the following commands in your console

git pull
git push
git pull upstream master
git push

Warning

Before using these commands, it is better to make sure that there are no uncommitted changes nor untracked files on your local repository.
To do so, type the following command in your console

git status

If you want to suppress (permanently) all uncommitted changes, type the following command in your console

git reset --hard

Moreover; if you want to suppress (permanently) all untracked files, type the following command in your console

git clean -fd

Activate repository services

If you look at the README.rst file of the created repository, some web-services must be activated in order to obtain to respect StatisKit standards.
These services are:

	Travis CI.
This service [https://docs.travis-ci.com/] is used to perform continuous integration [https://en.wikipedia.org/wiki/Continuous_integration] of repositories.

	Coveralls.
This service [https://coveralls.zendesk.com/hc/en-us] is used to show which parts of your code aren’t covered by repository test suites [https://en.wikipedia.org/wiki/Test_suite].

	Landscape.
This service [https://docs.landscape.io/index.html] is used to perform static analysis [https://en.wikipedia.org/wiki/Static_program_analysis] of your code within repositories.

	Read The Docs.
This service [http://docs.readthedocs.io/en/latest/] is used to ensure that documentation of your code is uploaded to repository documentation websites.

Create a development branch

In order to enable code review from mainteners, the development must be short (i.e. one branch for one
task such as new feature, bug fix…).
Moreover, the more the development cycle is long, the more you will risk to have conflicts.

The process of development branch creation is detailed in branch-creation but you can use the equivalent command to create a branch <branchname> according to StatisKit standards.

$ statiskit branch <branchname>

Note

Please choose an explicit name <branchname> for your branch.

[image: Create a development branch]
Steps of the development branch creation.

Repositories of the same color are synchronized.
Before the creation of your development branch, all three repositories are not synchronized.
In:

	Your local master branch is synchronized with the upstream master branch.

git checkout master
git pull upstream master

	Your remote origin master branch is synchronized with your local master branch.

git push

	Since all your master branches are synchronized, the local <branchname> branch is created

git branch <branchname>
git checkout <branchname>

Or equivalently

git checkout -b <branchname>

	Then, the remote origin <branchname> branch is created in order to enable the uploading of future modifications into your <username> GitHub account.

git push --set-upstream origin <branchname>

Warning

After the execution of the statiskit branch command, your local repository has switched on the <branchname> branch.

$ git branch
master
* <branchname>

But there are, at this point, no differences between the master and <branchname> branches.

$ git status
On branch <branchname>
nothing to commit, working directory clean

Note

Once this step is done, refers to the workflow to continue.

Commit your modifications

The commit of modifications with Git is quite different from Subversion.
In particular, Git will not consider that your local <branchname> branch differs from origin <branchname> branch until you committed your modifications (see workflow-state-commit).

[image: ../../../_images/commit.gif]

The repository index

In Git, the repository index notion is primordial (see the this post [http://www.gitguys.com/topics/whats-the-deal-with-the-git-index/] for more details).
In short, files in the repository index are files that would be committed to the repository if you used the git commit command.
However, files in the repository index are not committed to the repository until you use the git commit command.
Therefore, in order to commit your modifications you must first build the repository index using file additions and removals.
For this step the git status, git add and git rm commands are your friends:

	git status

	Tells you what files:

	have been added to the repository index,

	exists in the working tree but are not in the repository index,

	have different contents between the working tree and the repository index.

	git add <pathspec>

	Add the <pathspec> file to the repository index.

Warning

Contrarily to Subversion, with Git the git add command must be performed not only for adding new files but also for modified files.
By default no file is added in the index.

For more details, refers to the Git manual (git add --help).

	git rm <pathspec>

	Remove the <pathspec> file from the working tree and the index.
For more details, refers to the Git manual (git remove --help).

Note

If you do not want to remove the <pathspec> file from you working tree but only in the repository index use git rm --cached <pathspec> instead.

Note

Since the incremental addition or removal of files can be tidious, the commands git add -A can be of most interest.
This command will also add files that were created.
Therefore in order to add only relevant files, the .gitignore file is of most importance (see create).

The Git Commit

Once the index is build as desired, it must be committed in order to make another snapshot of the repository.
This is done using the git commit command.
If you leave off the -m option, this command open your favorite editor (see ../configuration) where you can construct a message associated to the commit.
Two commits are distinguished:

	Backup & service commits

	These commits are not corresponding to particular development stages and can be used when uploading is a neccessity.
For example these commits arise when a developper wants to:

	Remotly save his developments.

	Use a service (see create).

For this type of commits, please use the git commit -m "<shortdesc>" command where <shortdesc> is a short summary of the commit.
This summary should be less that 50 characters.

	Developement commits

	The commits are all commits not considered as backup.
Please avoid the usage of the -m option and produce a nice commit message using the follwing steps (the reader can refer to the A Better Git Commit [https://web-design-weekly.com/2013/09/01/a-better-git-commit/] message to more informations):

	The first line should be a short summary.
Referencing the bug number or the main accomplishment of the change (e.g “Fixes issue #8976″).
This is the title of your commit and should be less than 50 characters.

	Then a line break.

	Followed by a longer detailed description about the things that changed.
This section is a really good place to explain what and why.
You could cover statistics, performance wins, roadblocks, etc. The text should be wrapped at 72 characters.

Note

If you want to add to your index deleted or modified files when committing, you can use the -a flag.
The command

git commit -a

is used for automatically staged files that have been modified and deleted, but new files you have not told Git about are not affected.
In this fact this command is different from the commands

git add -A
git commit

that will also add new files.

Note

Once this step is done, refers to the workflow to continue.

Complete the repository

For now your repository is created but empty.
You need to complete it in order to respect StatisKit standards.
If you used the statiskit create command this will be done automatically.
To commit changes and push them into the remote repository you must enter a short commit message <msg>.

Enter a brief commit message: <msg>

If no commit message is given, the default commit message Initialize and complete the repository is used.

Todo

Add more informations about repository structure

Initialize the repository

First of all, you need to specify which coding languages will be considered in this repository

$ statiskit create --languages <proglang-0> <proglang-1>

For instance, you can replace <proglang-0> by cpp and <proglang-1> by py to produce a repository that will host both C++ and Python sources.

The initialization of a repository is made on GitHub (see this page [https://help.github.com/articles/create-a-repo/] for more details).
Your gitHub credentials (<username> and <password>) are therefore required:

Username for 'https://github.com': <username>
Password for 'https://pfernique@github.com': <password>

Then, the statiskit create will ask you 2 informations that are required to create the package

Enter a repository name: <reponame>
Enter a brief description: <repodesc>

Normally, on GitHub, to create a new repository for the StatisKit organization [https://github.com/StatisKit], you need to click on the [image: the new repository button] [https://github.com/organizations/StatisKit/repositories/new].
This stage is equivalent to the filling the following two fields on the page:

	[image: the repository name field], identified by <reponame>, with a short, memorable and explicit name.
For repositories that are concerning statistical methods, the name must begin with StatisKit-.
For instance StatisKit-Core denote a repository that contains basic statistical classes and methods (dataframes, classical univariate and multivariate distributions or regressions) that will be used in repositories containing more complex statistical methodology (e.g. StatisKit-Tree).

	[image: the repository description field], identified by <repodesc>, with a short and explicit description of the repository purposes.

Warning

At this point, if you use directly the GitHub interface (not recommended):

	Do not add a README ([image: the add readme box not checked]).

	Do not select a .gitignore file ([image: the ignore menu set to :code:`None`]).

	Do not select a license ([image: the license menu set to :code:`None`]).

Submit your modifications

Prepare your pull-request

[image: Create a development branch]
Steps of the development branch creation.

Repositories of the same color are synchronized.

Before submitting your modifications, you must recover changes from upstream master remote branch in your local master branch

git checkout master
git pull upstream master

and upload the changes in your origin master remote branch

git push

Then, you must rebase your local development branch with your local master branch.

git checkout <branchname>
git rebase master

If conflicts occur, fix conflicts for each file and finish rebase

git rebase --continue

Note

Any file modified when fixing conflicts should be added using the git add <pathspec> command.

If anything has gone wrong, you can abort reabase

git rebase --abort

Create your pull-request

[image: Create a development branch]
Steps of the development branch creation.

Repositories of the same color are synchronized

On github interface, select your branch <branchname> and click on pull-request (see this post [https://help.github.com/articles/using-pull-requests/] for more details).

Warning

You must see the following message: “Able to merge. These branches can be automatically merged”.
If it’s not the case, the upstream master has probably diverged.
You must therefore turn back to previous step (see Prepare your pull-request section).

If all steps described in the workflow are respected, your branch is clean and mainteners have absolutely nothing to do to integrate your work (except to review your changes) and so it will certainly be integrated.

Integrate your pull-request

[image: Create a development branch]
Steps of the development branch creation.

Repositories of the same color are synchronized

Note

Once your branch is integrated in the upstream master, it is recommanded to to delete your branch:

	On your local repository,

git checkout master
git branch -d <branchname>

	On your personal repository,

git push origin --delete <branchname>

Warning

Once this step is done, refers to the workflow to continue.

Upload your modifications

Once you have committed your modifications, you can upload them in your <username> GitHub account using the git push command (see workflow-upload-state).

[image: Create a development branch]
Steps of the development branch creation.

Repositories of the same color are synchronized.
Before the creation of your development branch, all three repositories are not synchronized.
In:

Work on your modifications

Todo

This section should refers to coding guidelines and package structure.

Note

Once this step is done, refers to the workflow to continue.

 To do so, type the following commands in your console

git pull
git push

Warning

Before using these commands, it is better to make sure that there are no uncommitted changes nor untracked files on your local repository.
To do so, type the following command in your console

git status

If you want to suppress (permanently) all uncommitted changes, type the following command in your console

git reset --hard

Moreover; if you want to suppress (permanently) all untracked files, type the following command in your console

git clean -fd

 _images/prepare.gif
upstream master

<reponame>

master
<branchname>

origin master
origin <branchname:>

_images/propose.gif
upstream master

<reponame>

master
<branchname>

origin master
origin <branchname:>

_images/plus_new_repository_button.png
+ New repository

_images/upload.gif
upstream master

<reponame>

master
<branchname>

origin master
origin <branchname:>

_static/ajax-loader.gif

_images/repository_desc.png
Description (optional)

_images/repository_name.png
Owner ‘Repository name

T statskite |

_static/comment-bright.png

_images/branch.gif
upstream master origin master

<reponame>

_images/commit.gif
upstream master

<reponame>

master
<branchname>

origin master
origin <branchname:>

_images/add_license_menu.png
Add alicense: None +-

_images/add_readme_box.png
Initialize this repository with a README

_images/integrate.gif
upstream master

<reponame>

master
<branchname>

origin master
origin <branchname:>

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 StatisKit: A Software Suite for Statistical Analyses

 		
 User Guide

 		
 Test it !

 		
 Online With Binder

 		
 On Your Computer With Docker

 		
 On Your Computer From a SSH Server

 		
 Install it !

 		
 Prerequisites

 		
 Recommanded Installation

 		
 Frequently Asked Questions

 		
 Developer Guide

 		
 Configure your Computer

 		
 Contribute to a Repository

 		
 Frequently Asked Questions

 		
 How to Organize a Repository ?

 		
 How to Configure my IDE ?

 		
 How to Speed Up Build Time ?

 		
 What is the C++ Style Guide ?

 		
 What is the Python Style Guide ?

 		
 How to Update the Development Environment ?

 		
 Maintainer Guide

 		
 Configure Your Computer

 		
 Create a New Repository

 		
 Frequently Asked Questions

_static/down.png

_images/add_gitignore_menu.png
Add gitignore: None ~

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

