
Static Timing by Example
Documentation

Jeremiah C Leary

Sep 22, 2019

Contents:

1 Overview 1
1.1 Why Write This? . 1

2 Principles 3
2.1 Clock . 3
2.2 Path . 3

3 Source Synchronous Input Timing 5
3.1 Waveform . 6
3.2 Source Device Variables . 6
3.3 Trace delays . 6
3.4 Device Delays . 7
3.5 Derive Hold Equation . 8
3.6 Derive Setup Equation . 8
3.7 Writing Timing Constraints . 8
3.8 Validating Timing Report . 11

4 Indices and tables 17

i

ii

CHAPTER 1

Overview

1.1 Why Write This?

Static Timing is a task that can be very difficult to perform correctly. The tools themselves will let you write any
constraint. However, they can not tell you if your constraints are correct.

I have seen many instances of incorrect timing constraints. Sometimes they are benign. Other times there are part
failures at temperature extremes.

This document is an attempt to provide the practical working knowledge of static timing. I intend to provide a thorough
examination of a timing example. This will include:

• Deriving the equations

• Writing the timing constraints

• Validating the timing constraints

It is also my goal to provide TCL constraints which can be freely used to perform aspects of STA.

1

Static Timing by Example Documentation

2 Chapter 1. Overview

CHAPTER 2

Principles

There are many aspects to STA. However, there are a few basic principles which should be followed. If things are not
making any sense, fall back to these principles and you will typically find your issue.

2.1 Clock

[CLOCK-001] All valid timings must trace back to the same clock source

2.2 Path

[PATH-001] All paths must be complete

3

Static Timing by Example Documentation

4 Chapter 2. Principles

CHAPTER 3

Source Synchronous Input Timing

A source synchronous input is an interface in which the data is co-incident with a clock. In addition, there is a known
relationship between the clock and the data. The diagram below illustrates the timing elements involved:

These can be divided into three major groups:

• Source Device Variables

• Trace Delays

• Device Delays

5

Static Timing by Example Documentation

3.1 Waveform

The timing diagram below shows the setup and hold edges.

Data is launched from the rising edge of the launch clock. Data is captured on the risinge edge of the capture clock.

This means the setup check is from edge 1 to edge c. Data must be stable before edge C to pass the setup check at the
capture flop.

The hold check is from edge 1 to edge a. Data must be held stable after edge A to pass the hold check at the capture
flop.

3.2 Source Device Variables

Source device variables refer to constraints imposed on the input path by the device sending data. In a source syn-
chronous interface the variables are:

• clock period

• clock to out (cko)

3.2.1 Clock Period

Setup checks are dependent on the frequency of the clock and will use the clock period variable. Hold checks are
frequency independent, and will not use the clock period variable.

3.2.2 Clock to Out

The clock to out variable defines the relationship between the launching edge of the clock and the data. There will be
maximum and minimum values.

The maximum is the time from the launching clock to the latest data will be valid. The minimum is the time from the
launching clock to the earliest data will be invalid.

The difference between the two numbers defines the region in which data is unstable.

set t_cko_max 2.8
set t_cko_min 1.2

3.3 Trace delays

Trace delays represent the latency of signals from one device to another. They are also known as board delays or flight
times.

Each trace will have a maximum and minimum delay. If there is a bus, then a maximum and minimum delay over the
entire bus is typically calculated.

There will be delays for both data and clock.

6 Chapter 3. Source Synchronous Input Timing

Static Timing by Example Documentation

set t_data_trace_max 1.2
set t_data_trace_min 0.4

set t_clock_trace_max 1.2
set t_clock_trace_min 0.4

3.4 Device Delays

Device delays represent the delays and constraints inside the device we are timing. They can be broken out into three
distinct types:

• Pad Delays

• Routing Delays

• Setup and Hold Constraints

3.4.1 Pad Delays

Pad delays are the delays through the input pad. This was broken out seperately to illustrate different elements within
the device.

Both the clock and data will have a maximum and minimum time through the pad.

set t_data_pad_max 1.2
set t_data_pad_min 0.4

set t_clock_pad_max 1.2
set t_clock_pad_min 0.4

3.4.2 Routing Delays

Routing delays are the delays each signal takes from the pad to the destination. For the data path, it includes any
combinatorial logic and buffers to the D input of a capturing flop. For the clock path, it includes routing through the
clock tree, any clock managers (DLLs, PLLs, etc. . .) to the clock input of the capturing flop.

set t_data_routing_max 1.2
set t_data_routing_min 0.4

set t_clock_routing_max 1.2
set t_clock_routing_min 0.4

3.4.3 Setup and Hold Constraints

The setup and hold constraints on the capturing flop represent the minimum times data must be stable on either side
of the capturing clock edge. Setup defines the required stable time before the clock edge. Hold defines the required
stable time after the clock edge.

set t_setup 0.5
set t_hold 0.5

3.4. Device Delays 7

Static Timing by Example Documentation

3.5 Derive Hold Equation

For a hold check, the data must be held stable for some time after the clock transitions. To derive the hold equation, we
need to check the worst case timing arcs. This requires using the least (fastest) data delay against the most (slowest)
clock delay.

𝑑𝑎𝑡𝑎𝑚𝑖𝑛 + 𝑐𝑘𝑜𝑚𝑖𝑛 > 𝑐𝑙𝑜𝑐𝑘𝑚𝑎𝑥 + 𝑡ℎ𝑜𝑙𝑑

The equation is an inequality and we can re-arrange the equation:

𝑑𝑎𝑡𝑎𝑚𝑖𝑛 + 𝑐𝑘𝑜𝑚𝑖𝑛 − 𝑐𝑙𝑜𝑐𝑘𝑚𝑎𝑥 − 𝑡ℎ𝑜𝑙𝑑 > 0

We can see from this equation that if the data delay helps a hold check while clock delay and a positive hold require-
ments hurts.

Expanding the data and clock path yields:

𝑐𝑘𝑜𝑚𝑖𝑛 + 𝑑𝑎𝑡𝑎𝑡𝑟𝑎𝑐𝑒𝑚𝑖𝑛
+ 𝑑𝑎𝑡𝑎𝑝𝑎𝑑𝑚𝑖𝑛

+ 𝑑𝑎𝑡𝑎𝑟𝑜𝑢𝑡𝑖𝑛𝑔𝑚𝑖𝑛
− 𝑐𝑙𝑜𝑐𝑘𝑡𝑟𝑎𝑐𝑒𝑚𝑎𝑥

− 𝑐𝑙𝑜𝑐𝑘𝑝𝑎𝑑𝑚𝑎𝑥
− 𝑐𝑙𝑜𝑐𝑘𝑟𝑜𝑢𝑡𝑖𝑛𝑔𝑚𝑎𝑥

− 𝑡ℎ𝑜𝑙𝑑 > 0

This equation tells us if the is enough slack in the hold timing check.

A negative slack indicates the data path is not long enough to meet the hold requirement on the capturing flop. To fix
this, either increase the delay in the data path and/or decrease the delay in the clock path.

3.6 Derive Setup Equation

For a setup check the data must be stable for some time before the clock transistions. To derive the setup equation, we
need to check the worst case timing arcs. This requires using the most (slowest) data delay against the least (fastest)
clock delay.

𝑑𝑎𝑡𝑎𝑚𝑎𝑥 + 𝑐𝑘𝑜𝑚𝑎𝑥 + 𝑡𝑠𝑒𝑡𝑢𝑝 < 𝑐𝑙𝑜𝑐𝑘𝑚𝑖𝑛 + 𝑐𝑙𝑜𝑐𝑘𝑝𝑒𝑟𝑖𝑜𝑑

The equation is an inequality and we can re-arrange it to produce a slack equation:

0 < 𝑐𝑙𝑜𝑐𝑘𝑚𝑖𝑛 + 𝑐𝑙𝑜𝑐𝑘𝑝𝑒𝑟𝑖𝑜𝑑 − 𝑑𝑎𝑡𝑎𝑚𝑎𝑥 − 𝑐𝑘𝑜𝑚𝑎𝑥 − 𝑡𝑠𝑒𝑡𝑢𝑝

We can see from this equation that clock delay helps a setup check while data delay and a positive setup requirement
hurts.

Exanding the data and clock paths yields:

𝑐𝑙𝑜𝑐𝑘𝑡𝑟𝑎𝑐𝑒𝑚𝑖𝑛 + 𝑐𝑙𝑜𝑐𝑘𝑝𝑎𝑑𝑚𝑖𝑛 + 𝑐𝑙𝑜𝑐𝑘𝑟𝑜𝑢𝑡𝑖𝑛𝑔𝑚𝑖𝑛 + 𝑐𝑙𝑜𝑐𝑘𝑝𝑒𝑟𝑖𝑜𝑑 − 𝑐𝑘𝑜𝑚𝑎𝑥 − 𝑑𝑎𝑡𝑎𝑡𝑟𝑎𝑐𝑒𝑚𝑎𝑥 − 𝑑𝑎𝑡𝑎𝑝𝑎𝑑𝑚𝑎𝑥 − 𝑑𝑎𝑡𝑎𝑟𝑜𝑢𝑡𝑖𝑛𝑔𝑚𝑎𝑥 − 𝑡𝑠𝑒𝑡𝑢𝑝 > 0

This equation tells us if there is enough slack in the setup timing check.

3.7 Writing Timing Constraints

The previous sections described the timing arcs and derived the equations. Now we need to write timing contraints to
ensure the interface will be timed correctly. Writing the constraints involves the following steps:

• Create the receive clock

• Apply delays to input data path

It is important to write the constraints to match reality. The following will step through every command and explain
why it is used.

8 Chapter 3. Source Synchronous Input Timing

Static Timing by Example Documentation

3.7.1 Create Receive Clock

We will use the create_clock command to create the receive clock.

create_clock -period $clock_period -name $clock_pin [get_pins $clock_pin]

When the command is issued, the clock is placed on the input pin, point A in the diagram below:

However, we need to move the clock to point B in the diagram below:

We move the clock to the output of the transmitting device using the set_clock_latency command:

set_clock_latency -source -max $t_clock_trace_max [get_clocks $clock_pin]
set_clock_latency -source -min $t_clock_trace_min [get_clocks $clock_pin]

The -max sets the maximum trace delay on the clock, while the -min will set the minimum trace delay on the clock.
the -source indicates the delay on the clock is before the point the clock is defined.

3.7.2 Apply Delays to Data Path

We need to model the external world for the timing en By adding the just the trace delay, we will be placing the data
at point A in the diagram below:

However, principle CLK-001 states for valid timing we must be able to trace back to the same clock point. We need
to move the launching to point B in the diagram below:

We do this by adding the clock to out to the trace delay: The data path and clock path now originate from the same
point so the timing analysis will be valid.

We will use the set_input_delay command to add the clock to out and data trace delay to the data pins. This command
will also bind the clock to the data pins.

3.7. Writing Timing Constraints 9

Static Timing by Example Documentation

10 Chapter 3. Source Synchronous Input Timing

Static Timing by Example Documentation

set_input_delay -clock [get_clocks $clock_pin] -max -source_latency_included [expr $t_
→˓cko_max + $t_data_trace_max] [get_pins $data_pins]
set_input_delay -clock [get_clocks $clock_pin] -min -source_latency_included [expr $t_
→˓cko_min + $t_data_trace_max] [get_pins $data_pins]

The -clock argument tells the timing tool the delays are relative to the clock specified. The -source_latency_included
argument tells the timing tool we have added source latency to the clock path using the set_clock_latency command.

3.8 Validating Timing Report

It is crucial to validate the timing report generated by the STA tool. Various elements must be checked to ensure they
match what we expect. This includes:

• launch clock edge

• capture clock edge

• input delay values

• clock pessimism recovery

• clock uncertainty

• data path cells

• clock path cells

• slack

3.8.1 Setup Report

Below is an example setup report for this interface:

3.8. Validating Timing Report 11

Static Timing by Example Documentation

12 Chapter 3. Source Synchronous Input Timing

Static Timing by Example Documentation

To validate this report against the constraints, we will be performing the following steps:

1. Validate Clock Edges

2. Validate Clock Source Latency

3. Validate Input Delay

3.8.2 Validate Clock Edges

First thing we do is validate the timing edges:

Refering to the waveform at the beginning, we expect the capture edge to be one clock cycle, 20 ns, from the launching
edge. In the report, we see the launch edge is at 0.000 ns and the capture edge is at 20.000 ns. This validates we are
using the correct edges.

3.8.3 Validate Clock Source Latency

Next we check the clock source latency is included:

We check there is no clock latency reported in the data path. In this report, the clock_network_delay is set to 0.000
ns.

We check the source latency we defined is included in the clock path. In our case, t_clock_trace_min is defined as
0.400 ns. This matches the source latency value.

We also check the Element is the clock pin we expect. In this report, the clock path starts at the pin I_CLK

3.8. Validating Timing Report 13

Static Timing by Example Documentation

14 Chapter 3. Source Synchronous Input Timing

Static Timing by Example Documentation

Everything is as we expected. This validates we have created the clock and the source clock latency has been applied
correctly.

3.8.4 Validate Input Delay

Next we check the input delay in included:

We check trhe input delay value is included and the correct value. In this report, iExt is the input delay value and is
4.000 ns. This matchtes the data latency where t_cko_max, 2.8 ns, plus t_data_trace_max, 1.2 ns, is equal to 4.000
ns.

We also check the Element is the data pin we expect. In this report, the data path starts at pin I_DATA.

Everything is as we expected. This validates the input delay is the correct value and has been applied to the correct
pin.

3.8. Validating Timing Report 15

Static Timing by Example Documentation

16 Chapter 3. Source Synchronous Input Timing

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

17

	Overview
	Why Write This?

	Principles
	Clock
	Path

	Source Synchronous Input Timing
	Waveform
	Source Device Variables
	Trace delays
	Device Delays
	Derive Hold Equation
	Derive Setup Equation
	Writing Timing Constraints
	Validating Timing Report

	Indices and tables

