

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Python Statechart 0.3.1 documentation

Welcome to Python Statechart’s documentation!

Contents:

	Python Statechart

	Installation

	Usage

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	0.2.0 (2016-08-02)

	0.2.1 (2016-08-07)

	0.2.2 (2016-08-08)

	0.2.3 (2016-08-10)

	0.2.4 (2016-08-21)

	0.3.0 (2016-10-16)

	0.3.1 (2016-10-16)

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Leigh McKenzie.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Python Statechart 0.3.1 documentation

Python Statechart

 [https://pypi.python.org/pypi/statechart]
 [https://travis-ci.org/leighmck/statechart][image: Documentation Status]
 [https://readthedocs.org/projects/statechart/?badge=latest]Python UML statechart framework

	Free software: ISC license

	Documentation: https://statechart.readthedocs.org.

 Copyright 2016, Leigh McKenzie.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Python Statechart 0.3.1 documentation

Installation

At the command line:

$ easy_install statechart

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv statechart
$ pip install statechart

 Copyright 2016, Leigh McKenzie.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Python Statechart 0.3.1 documentation

Usage

To use Python Statechart in a project:

import statechart

 Copyright 2016, Leigh McKenzie.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Python Statechart 0.3.1 documentation

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/leighmck/statechart/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

Python Statechart could always use more documentation, whether as part of the
official Python Statechart docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/leighmck/statechart/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up statechart for local development.

	Fork the statechart repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/statechart.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv statechart
$ cd statechart/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests:

$ flake8 statechart tests
$ py.test

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.3, 3.4 and 3.5.

Tips

To run a subset of tests:

$ py.test tests.test_statechart

 Copyright 2016, Leigh McKenzie.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Python Statechart 0.3.1 documentation

Credits

Development Lead

	Leigh McKenzie <maccarav0@gmail.com>

Contributors

None yet. Why not be the first?

 Copyright 2016, Leigh McKenzie.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Python Statechart 0.3.1 documentation

History

0.2.0 (2016-08-02)

	First release on PyPI.

0.2.1 (2016-08-07)

	Final state bug fixes.

0.2.2 (2016-08-08)

	Default transition bug fix.

0.2.3 (2016-08-10)

	Consume event dispatched by child state unless a final state activated.

0.2.4 (2016-08-21)

	Fix internal transition acting like local transition.

0.3.0 (2016-10-16)

	Implement display module to generate Plant UML code of a statechart.

	Raise runtime exception if an action is defined on top level statechart.

0.3.1 (2016-10-16)

	Implement specific statechart deactivate function.

 Copyright 2016, Leigh McKenzie.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Python Statechart 0.3.1 documentation

 Python Module Index

 s

 			

 		
 s	

 	[image: -]
 	
 statechart	

 	
 	
 statechart.action	

 	
 	
 statechart.event	

 	
 	
 statechart.guard	

 	
 	
 statechart.pseudostates	

 	
 	
 statechart.runtime	

 	
 	
 statechart.states	

 	
 	
 statechart.transitions	

 Copyright 2016, Leigh McKenzie.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Python Statechart 0.3.1 documentation

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | M
 | N
 | P
 | R
 | S
 | T

A

 	

 	Action (class in statechart.action)

 	activate (statechart.transitions.Transition attribute)

 	activate() (statechart.pseudostates.ChoiceState method)

 	

 	(statechart.pseudostates.InitialState method)

 	(statechart.pseudostates.PseudoState method)

 	(statechart.pseudostates.ShallowHistoryState method)

 	(statechart.runtime.Metadata method)

 	(statechart.states.CompositeState method)

 	(statechart.states.ConcurrentState method)

 	(statechart.states.State method)

 	

 	add_region() (statechart.states.ConcurrentState method)

 	add_transition() (statechart.pseudostates.ChoiceState method)

 	

 	(statechart.pseudostates.InitialState method)

 	(statechart.states.FinalState method)

 	(statechart.states.State method)

 	(statechart.states.Statechart method)

C

 	

 	CallAction (class in statechart.action)

 	CallGuard (class in statechart.guard)

 	check() (statechart.guard.CallGuard method)

 	

 	(statechart.guard.ElseGuard method)

 	(statechart.guard.EqualGuard method)

 	(statechart.guard.Guard method)

 	ChoiceState (class in statechart.pseudostates)

 	

 	CompositeState (class in statechart.states)

 	ConcurrentState (class in statechart.states)

 	Context (class in statechart.states)

D

 	

 	deactivate() (statechart.runtime.Metadata method)

 	

 	(statechart.states.CompositeState method)

 	(statechart.states.ConcurrentState method)

 	(statechart.states.State method)

 	(statechart.states.Statechart method)

 	dispatch() (statechart.pseudostates.InitialState method)

 	

 	(statechart.states.CompositeState method)

 	(statechart.states.ConcurrentState method)

 	(statechart.states.State method)

 	(statechart.states.Statechart method)

 	

 	do() (statechart.states.State method)

 	

 	(statechart.states.Statechart method)

E

 	

 	ElseGuard (class in statechart.guard)

 	entry() (statechart.states.State method)

 	

 	(statechart.states.Statechart method)

 	EqualGuard (class in statechart.guard)

 	

 	Event (class in statechart.event)

 	execute() (statechart.action.Action method)

 	

 	(statechart.action.CallAction method)

 	(statechart.transitions.InternalTransition method)

 	(statechart.transitions.Transition method)

 	exit() (statechart.states.State method)

 	

 	(statechart.states.Statechart method)

F

 	

 	FinalState (class in statechart.states)

G

 	

 	get_history_state() (statechart.runtime.Metadata method)

 	

 	Guard (class in statechart.guard)

H

 	

 	has_history_info() (statechart.runtime.Metadata method)

I

 	

 	InitialState (class in statechart.pseudostates)

 	InternalTransition (class in statechart.transitions)

 	is_active() (statechart.runtime.Metadata method)

 	

 	(statechart.states.Statechart method)

 	

 	is_allowed() (statechart.transitions.Transition method)

 	is_finished() (statechart.states.CompositeState method)

 	

 	(statechart.states.ConcurrentState method)

 	(statechart.states.Statechart method)

K

 	

 	KwEvent (class in statechart.event)

M

 	

 	Metadata (class in statechart.runtime)

N

 	

 	name (statechart.states.State attribute)

P

 	

 	PseudoState (class in statechart.pseudostates)

R

 	

 	reset() (statechart.runtime.Metadata method)

S

 	

 	ShallowHistoryState (class in statechart.pseudostates)

 	start() (statechart.states.Statechart method)

 	State (class in statechart.states)

 	Statechart (class in statechart.states)

 	statechart (module)

 	statechart.action (module)

 	statechart.event (module)

 	statechart.guard (module)

 	

 	statechart.pseudostates (module)

 	statechart.runtime (module)

 	statechart.states (module)

 	statechart.transitions (module)

 	StateRuntimeData (class in statechart.runtime)

 	stop() (statechart.states.Statechart method)

 	store_history_info() (statechart.runtime.Metadata method)

T

 	

 	Transition (class in statechart.transitions)

 Copyright 2016, Leigh McKenzie.
 Created using Sphinx 1.3.1.

 _modules/statechart/event.html

 Navigation

 		
 index

 		
 modules |

 		Python Statechart 0.3.1 documentation »

 		Module code »

 Source code for statechart.event

-*- coding: utf-8 -*-
#
Copyright (c) 2016, Leigh McKenzie
All rights reserved.
#
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

import logging

[docs]class Event:
 """
 An event is a specification of a type of observable occurrence. The
 occurrence that generates an event instance is assumed to take place at an
 instant in time with no duration.

 Example:
 Create an instance of an event:
 my_event = Event(name='my event')

 Add the event trigger to a transition:
 Transition(start=a, end=b, event=my_event)

 Fire the event:
 statechart.dispatch(event=my_event)

 If the current state has an outgoing transition associated
 with the event, it may be fired if the guard condition allows.

 Args:
 name (str): An identifier for the event.
 """

 def __init__(self, name):
 self._logger = logging.getLogger(self.__class__.__name__)
 self.name = name

 def __eq__(self, event):
 """
 Determine if an event is equal to this event by comparing names.

 Args:
 event (Event): Event to compare.

 Returns:
 True if events are equal.
 """
 if event is None:
 return False

 return self.name == event.name

 def __ne__(self, event):
 """
 Determine if an event is not equal to this event by comparing names.

 Args:
 event (Event): Event to compare.

 Returns:
 True if events are not equal.
 """
 return not self.__eq__(event)

[docs]class KwEvent(Event):
 """
 Extension of the Event base class to facilitate passing kwargs with event.

 When an event is fired, it's data is made available to transition guard and
 actions. If the transition is executed the event data is also made
 available to state entry, do and exit actions.

 Generally, specialised Event classes should be defined to define the data
 structure as actions & guards need to unpack it.

 Example:
 Create an instance of an event:
 my_event = Event(name='my event', a=1, b='2', c=[])

 Add the event trigger to a transition:
 Transition(start=a, end=b, event=my_event)

 Fire the event:
 statechart.dispatch(event=my_event)

 Args:
 name (str): An identifier for the event.
 **kwargs: Arbitrary keyword arguments.
 """

 def __init__(self, name, **kwargs):
 super().__init__(name=name)
 self.kwargs = kwargs

 © Copyright 2016, Leigh McKenzie.
 Created using Sphinx 1.3.1.

_modules/statechart/states.html

 Navigation

 		
 index

 		
 modules |

 		Python Statechart 0.3.1 documentation »

 		Module code »

 Source code for statechart.states

-*- coding: utf-8 -*-
#
Copyright (c) 2016, Leigh McKenzie
All rights reserved.
#
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

import logging

from statechart.runtime import Metadata

[docs]class State:
 """A State is a simple state that has no regions or submachine states.

 Args:
 name (str): State name used to identify this instance for logging.
 A unique name is recommended although not enforced.
 context (Context): The parent context that contains this state.

 Attributes:
 name (str): State name used to identify this instance.
 context (Context): State's parent context.

 Examples:
 * First create the parent context
 statechart = Statechart(name='statechart')

 * Then create the states
 a = State(name='a', context=statechart)
 b = State(name='b', context=statechart)

 * Finally create the transitions between states with any associated
 event triggers, actions or guard conditions.
 Transition(start=a, end=b)

 Note:
 Do not dispatch a synchronous event within the action (enter, do or
 exit) functions. If you need to dispatch an event, do so using the
 async_dispatch function of the statechart.

 Raises:
 RuntimeError: If the parent context is invalid.
 Only a state chart can have no parent context.
 """

 def __init__(self, name, context):
 self._logger = logging.getLogger(self.__class__.__name__)

 self.name = name

 """ Context can be null only for the statechart """
 if context is None and (not isinstance(self, Statechart)):
 raise RuntimeError('Context cannot be null')

 self.context = context

 self._transitions = []

[docs] def entry(self, metadata, event):
 """
 An optional action that is executed whenever this state is
 entered, regardless of the transition taken to reach the state. If
 defined, entry actions are always executed to completion prior to any
 internal activity or transitions performed within the state.

 Args:
 metadata (Metadata): Common statechart metadata.
 event (Event): Event which led to the transition into this state.
 """
 pass

[docs] def do(self, metadata, event):
 """
 An optional action that is executed whilst this state is active.
 The execution starts after this state is entered, and stops either by
 itself, or when the state is exited, whichever comes first.

 Starts an async task. When the task is finished, it may fire an event
 to trigger a state transition. If the task is still in progress when
 this state is deactivated it will be cancelled.

 Args:
 metadata (Metadata): Common statechart metadata.
 event (Event): Event which led to the transition into this state.
 """
 pass

[docs] def exit(self, metadata, event):
 """
 An optional action that is executed upon deactivation of this state
 regardless of which transition was taken out of the state. If defined,
 exit actions are always executed to completion only after all
 internal activities and transition actions have completed execution.
 Initiates cancellation of the state do action if it is still running.

 Args:
 metadata (Metadata): Common statechart metadata.
 event (Event): Event which led to the transition into this state.
 """
 pass

[docs] def add_transition(self, transition):
 """Add a transition from this state.

 Transitions with guards are checked first.

 Args:
 transition (Transition): Transition to add, can be a normal or
 internal transition.

 Raises:
 RuntimeError: If transition is invalid.
 """
 if transition is None:
 raise RuntimeError('Cannot add null transition')

 if transition.guard:
 self._transitions.insert(0, transition)
 else:
 self._transitions.append(transition)

[docs] def activate(self, metadata, event):
 """
 Activate the state.

 Args:
 metadata (Metadata): Common statechart metadata.
 event (Event): Event which led to the transition into this state.

 Returns:
 True if the state was activated.
 """
 self._logger.info('Activate "%s"', self.name)

 if not metadata.is_active(self):
 metadata.activate(self)

 if self.entry:
 self.entry(metadata=metadata, event=event)

 if self.do:
 self.do(metadata=metadata, event=event)

 return True

 return False

[docs] def deactivate(self, metadata, event):
 """
 Deactivate the state.

 Args:
 metadata (Metadata): Common statechart metadata.
 event (Event): Event which led to the transition out of this state.

 Returns:
 True if state deactivated, False if already inactive.
 """
 self._logger.info('Deactivate "%s"', self.name)

 if metadata.is_active(self):

 if self.exit:
 self.exit(metadata=metadata, event=event)

 metadata.deactivate(self)

[docs] def dispatch(self, metadata, event):
 """
 Dispatch transition.

 Args:
 metadata (Metadata): Common statechart metadata.
 event (Event): Transition event trigger.

 Returns:
 True if transition executed, False if transition not allowed,
 due to mismatched event trigger or failed guard condition.
 """
 status = False

 for transition in self._transitions:
 if transition.execute(metadata=metadata, event=event):
 status = True
 break

 return status

[docs]class Context(State):
 """
 Domain of the state. Needed for setting up the hierarchy. This class
 needn't be instantiated directly.

 Args:
 name (str): An identifier for the model element.
 context (Context): The parent context that contains this state.
 """

 def __init__(self, name, context):
 super().__init__(name=name, context=context)
 self.initial_state = None

[docs]class FinalState(State):
 """
 A special kind of state signifying that the enclosing composite state or
 the entire state machine is completed.

 A final state cannot have transitions or dispatch other transitions.

 Args:
 context (Context): The parent context that contains this state.

 Raises:
 RuntimeError: If the model is ill-formed by attempting to add a transition directly from
 the final state.
 """

 def __init__(self, context):
 super().__init__(name='Final', context=context)

[docs] def add_transition(self, transition):
 raise RuntimeError('Cannot add a transition from the final state')

[docs]class ConcurrentState(Context):
 """
 A concurrent state is a state that contains composite state regions,
 activated concurrently.

 Args:
 name (str): An identifier for the model element.
 context (Context): The parent context that contains this state.
 """

 def __init__(self, name, context):
 super().__init__(name, context)
 self._regions = []

[docs] def add_region(self, region):
 """
 Add a new region to the concurrent state.

 Arsg:
 region (CompositeState): Region to add.
 """
 if isinstance(region, CompositeState):
 self._regions.append(region)
 else:
 raise RuntimeError('A concurrent state can only add composite state regions')

[docs] def activate(self, metadata, event):
 """
 Activate the state.

 Args:
 metadata (Metadata): Common statechart metadata.
 event (Event): Event which led to the transition into this state.

 Returns:
 True if state activated, False if already active.
 """
 if super().activate(metadata, event):
 rdata = metadata.active_states[self]

 for region in self._regions:
 if not (region in rdata.state_set):
 # Check if region is activated implicitly via incoming transition.
 region.activate(metadata=metadata, event=event)
 region.initial_state.activate(metadata=metadata, event=event)

 return True

 return False

[docs] def deactivate(self, metadata, event):
 """
 Deactivate child states within regions, then overall state.

 Args:
 metadata (Metadata): Common statechart metadata.
 event: Event which led to the transition out of this state.

 Returns:
 True if state deactivated, False if already inactive.
 """
 self._logger.info('Deactivate "%s"', self.name)

 for region in self._regions:
 if metadata.is_active(region):
 region.deactivate(metadata=metadata, event=event)

 super().deactivate(metadata=metadata, event=event)

[docs] def dispatch(self, metadata, event):
 """
 Dispatch transition.

 Args:
 metadata (Metadata): Common statechart metadata.
 event (Event): Transition event trigger.

 Returns:
 True if transition executed, False if transition not allowed,
 due to mismatched event trigger or failed guard condition.
 """
 if not metadata.active_states[self]:
 raise RuntimeError('Inactive composite state attempting to dispatch transition')

 dispatched = False

 """ Check if any of the child regions can handle the event """
 for region in self._regions:
 if region.dispatch(metadata=metadata, event=event):
 dispatched = True

 if dispatched:
 return True

 """ Check if this state can handle the event by itself """
 for transition in self._transitions:
 if transition.execute(metadata=metadata, event=event):
 dispatched = True
 break

 return dispatched

[docs] def is_finished(self, metadata):
 """"
 Check if all regions within the concurrent state are finished.

 Args:
 metadata (Metadata): Common statechart metadata.

 Returns:
 True if the concurrent state is finished.
 """
 return all(region.is_finished(metadata) for region in self._regions)

[docs]class CompositeState(Context):
 """
 A composite state is a state that contains other state vertices (states,
 pseudostates, etc.).

 Args:
 name (str): An identifier for the model element.
 context (Context): The parent context that contains this state.
 """

 def __init__(self, name, context):
 super().__init__(name=name, context=context)
 self.history = None

 if isinstance(context, ConcurrentState):
 context.add_region(self)

[docs] def activate(self, metadata, event):
 """
 Activate the state.

 If the transition being activated leads to this state, activate
 the initial state.

 Args:
 metadata (Metadata): Common statechart metadata.
 event: Event which led to the transition into this state.
 """
 super().activate(metadata=metadata, event=event)

 if metadata.transition and metadata.transition.end is self:
 self.initial_state.activate(metadata=metadata, event=event)

[docs] def deactivate(self, metadata, event):
 """
 Deactivate the state.

 If this state contains a history state, store the currently active
 state in history so it can be restored once the history state is
 activated.

 Args:
 metadata (Metadata): Common statechart metadata.
 event: Event which led to the transition out of this state.
 """
 state_runtime_data = metadata.active_states[self]

 # If the composite state contains a history pseudostate, preserve the current active child
 # state in history, unless that state is a final state.
 if self.history and not (isinstance(state_runtime_data.current_state, FinalState)):
 metadata.store_history_info(history_state=self.history,
 actual_state=state_runtime_data.current_state)

 if metadata.is_active(state_runtime_data.current_state):
 state_runtime_data.current_state.deactivate(metadata=metadata, event=event)

 super().deactivate(metadata=metadata, event=event)

[docs] def dispatch(self, metadata, event):
 """
 Dispatch transition.

 Args:
 metadata (Metadata): Common statechart metadata.
 event (Event): Transition event trigger.

 Returns:
 True if transition executed, False if transition not allowed,
 due to mismatched event trigger or failed guard condition.
 """
 if not metadata.active_states[self]:
 raise RuntimeError('Inactive composite state attempting to dispatch transition')

 # See if the current child state can handle the event
 data = metadata.active_states[self]
 if data.current_state is None and self.initial_state:
 metadata.activate(self.initial_state)
 data.current_state.activate(metadata=metadata, event=event)

 dispatched = False

 if data.current_state and data.current_state.dispatch(metadata=metadata, event=event):
 dispatched = True

 if dispatched:
 # If the substate dispatched the event and this state is no longer active, return.
 if not metadata.is_active(self):
 return True

 # If the substate dispatched the event and reached a final state, continue to dispatch
 # any default transitions from this state.
 if isinstance(metadata.active_states[self].current_state, FinalState):
 event = None
 else:
 return True

 # Since none of the child states can handle the event, let this state
 # try handling the event.
 for transition in self._transitions:
 # If transition is local, deactivate current state if transition is allowed.
 if self._is_local_transition(transition) and transition.is_allowed(metadata=metadata,
 event=event):
 data.current_state.deactivate(metadata=metadata, event=event)

 if transition.execute(metadata=metadata, event=event):
 return True

 return False

[docs] def is_finished(self, metadata):
 """"
 Check if the composite state has reached it's final state.

 Args:
 metadata (Metadata): Common statechart metadata.

 Returns:
 True if the composite state is finished.
 """
 return isinstance(metadata.active_states[self].current_state, FinalState)

 def _is_local_transition(self, transition):
 """
 Check if a transition is local.

 The transition must meet the following conditions:
 - Not an internal transition.
 - Transition originates from this state, but doesn't leave/deactivate it.

 Returns:
 True if the transition is a local transition, otherwise false.
 """
 if transition.start is transition.end or self in transition.deactivate:
 return False
 else:
 return True

[docs]class Statechart(Context):
 """
 The main entry point for using the statechart framework. Contains all
 necessary methods for delegating incoming events to the substates.

 Args:
 name (str): An identifier for the model element.
 metadata (Metadata): Common statechart metadata.
 """

 def __init__(self, name, metadata=None):
 super().__init__(name=name, context=None)
 self._metadata = metadata or Metadata()

[docs] def start(self):
 """
 Initialises the Statechart in the metadata. Sets the start state.

 Ensure the statechart has at least an initial state.

 Raises:
 RuntimeError if the statechart had already been started.
 """
 self._logger.info('Start "%s"', self.name)
 self._metadata.reset()
 self._metadata.activate(self)
 self._metadata.activate(self.initial_state)
 self.dispatch(None)

[docs] def stop(self):
 """
 Stops the statemachine by deactivating statechart and thus all it's child states.
 """
 self._logger.info('Stop "%s"', self.name)
 self.deactivate(metadata=self._metadata, event=None)

[docs] def deactivate(self, metadata, event):
 """
 Deactivate the statechart.

 Args:
 metadata (Metadata): Common statechart metadata.
 event (Event): Event which led to the transition out of this state.

 Returns:
 True if statechart deactivated, False if already inactive.
 """
 self._logger.info('Deactivate "%s"', self.name)

 if metadata.is_active(self):
 metadata.deactivate(self)

[docs] def dispatch(self, event):
 """
 Calls the dispatch method on the current state.

 Args:
 event (Event): Transition event trigger.

 Returns:
 True if transition executed.
 """
 current_state = self._metadata.active_states[self].current_state
 return current_state.dispatch(metadata=self._metadata, event=event)

[docs] def add_transition(self, transition):
 raise RuntimeError('Cannot add transition to a statechart')

[docs] def entry(self, metadata, event):
 raise RuntimeError('Cannot define an entry action for a statechart')

[docs] def do(self, metadata, event):
 raise RuntimeError('Cannot define an do action for a statechart')

[docs] def exit(self, metadata, event):
 raise RuntimeError('Cannot define an exit action for a statechart')

[docs] def is_active(self, state_name):
 """
 Check if the state name is active

 Args:
 state_name (str): State name to check.

 Returns:
 True if the state name is currently active.
 """
 for state in self._metadata.active_states:
 if state.name == state_name:
 return True

 return False

[docs] def is_finished(self):
 """"
 Check if the statechart has finished

 Returns:
 True if the statechart has finished.
 """
 if isinstance(self._metadata.active_states[self].current_state, FinalState):
 return True
 else:
 return False

 © Copyright 2016, Leigh McKenzie.
 Created using Sphinx 1.3.1.

_static/up.png

_static/down-pressed.png

_modules/statechart/pseudostates.html

 Navigation

 		
 index

 		
 modules |

 		Python Statechart 0.3.1 documentation »

 		Module code »

 Source code for statechart.pseudostates

-*- coding: utf-8 -*-
#
Copyright (c) 2016, Leigh McKenzie
All rights reserved.
#
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

from statechart import CompositeState, State, Statechart

[docs]class PseudoState(State):
 """
 A pseudostate is an abstraction that encompasses different types of
 transient states. They are used, typically, to connect multiple transitions
 into more complex state transitions paths.

 Args:
 name (str): An identifier for the model element.
 context (Context): The parent context that contains this state.
 """

 def __init__(self, name, context):
 super().__init__(name=name, context=context)

[docs] def activate(self, metadata, event):
 """
 Activate the state.

 Args:
 metadata (Metadata): Common statechart metadata.
 event (Event): Event which led to the transition into this state.

 Returns:
 True if the state was activated.
 """
 metadata.activate(self)

 if self.entry:
 self.entry(metadata=metadata, event=event)

 return True

[docs]class InitialState(PseudoState):
 """
 A special kind of state signifying the source for a single transition to
 the default state of the composite state.

 Args:
 context (Context): The parent context that contains this state.
 """

 def __init__(self, context):
 super().__init__(name='Initial', context=context)

 if isinstance(self.context, CompositeState) or isinstance(self.context, Statechart):
 if self.context.initial_state:
 raise RuntimeError('Initial state already present')
 else:
 self.context.initial_state = self
 else:
 raise RuntimeError('Parent not a composite state or statechart')

[docs] def activate(self, metadata, event):
 """
 Activate the state and dispatch transition to the default state of the
 composite state.

 Args:
 metadata (Metadata): Common statechart metadata.
 event (Event): Event which led to the transition into this state.

 Returns:
 True if the state was activated.
 """
 self.dispatch(metadata=metadata, event=None)

 return True

[docs] def dispatch(self, metadata, event):
 """
 Dispatch transition.

 Args:
 metadata (Metadata): Common statechart metadata.
 event (Event): Transition event trigger.

 Returns:
 True if the transition was executed, False if transition was not
 triggered for this event or if the guard condition failed.

 Raises:
 RuntimeError: If the state could not dispatch transition
 """
 if super().dispatch(metadata=metadata, event=event):
 return True
 else:
 raise RuntimeError('Initial state must be able to dispatch transition')

[docs] def add_transition(self, transition):
 """Add a transition from this state.

 An initial state must have a single transition. The transition must not need an
 event trigger or have a guard condition.

 Args:
 transition (Transition): Transition to add, must be an external transition.

 Raises:
 RuntimeError: If transition is invalid, or if transition already exists.
 """
 if len(self._transitions) is not 0:
 raise RuntimeError('There can only be a single transition from an initial state')
 elif transition.event is not None:
 raise RuntimeError('Transition from initial state must not require an event trigger')
 elif transition.guard is not None:
 raise RuntimeError('Transition from initial state cannot have a guard condition')
 else:
 super().add_transition(transition)

[docs]class ShallowHistoryState(PseudoState):
 def __init__(self, context):
 """
 Shallow history is a pseudo state representing the most recent
 substate of a submachine.

 A submachine can have at most one shallow history state. A transition
 with a history pseudo state as target is equivalent to a transition
 with the most recent substate as target. And very importantly, only
 one transition may originate from the history.

 Args:
 context (Context): The parent context that contains this state.
 """
 super().__init__(name='Shallow history', context=context)

 self.state = None

 if isinstance(self.context, CompositeState):
 if self.context.history:
 raise RuntimeError('"History state already present')
 else:
 self.context.history = self
 else:
 raise RuntimeError('Parent not a composite state')

[docs] def activate(self, metadata, event):
 """
 Activate the state and dispatch transition to the default state of the
 composite state.

 Args:
 metadata (Metadata): Common statechart metadata.
 event (Event): Event which led to the transition into this state.

 Returns:
 True if the state was activated.
 """
 if len(self._transitions) > 1:
 raise RuntimeError('History state cannot have more than 1 transition')

 if metadata.has_history_info(self):
 state = metadata.get_history_state(self)

 # Setup transition to the history's target state
 metadata.transition.start = self
 metadata.transition.end = state

 state.activate(metadata=metadata, event=event)
 else:
 self.dispatch(metadata=metadata, event=None)

 return True

[docs]class ChoiceState(PseudoState):
 """
 The Choice pseudo-state is used to compose complex transitional path which,
 which, when reached, result in the dynamic evaluation of the guards of the
 triggers of its outgoing transitions.

 It enables splitting of transitions into multiple outgoing paths.

 Args:
 context (Context): The parent context that contains this state.

 Note:
 It must have at least one incoming and one outgoing Transition.

 If none of the guards evaluates to true, then the model is considered ill-formed.
 To avoid this, it is recommended to define one outgoing transition with a
 predefined "else" guard for every choice vertex.
 """

 def __init__(self, context):
 super().__init__(name='Choice', context=context)

[docs] def activate(self, metadata, event):
 """
 Activate the state and dispatch transition to the default state of the
 composite state.

 Args:
 metadata (Metadata): Common statechart metadata.
 event (Event): Event which led to the transition into this state.

 Returns:
 True if the state was activated.
 """
 for transition in self._transitions:
 if transition.execute(metadata=metadata, event=None):
 return True

 raise RuntimeError('No choice made due to guard conditions, '
 'suggest to add transition with "Else" guard')

[docs] def add_transition(self, transition):
 """Add a transition from this state.

 Transitions are checked in the order they are defined.

 Args:
 transition (Transition): Transition to add.

 Raises:
 RuntimeError: If transition is invalid.
 """
 if transition is None:
 raise RuntimeError('Cannot add null transition')

 self._transitions.append(transition)

 © Copyright 2016, Leigh McKenzie.
 Created using Sphinx 1.3.1.

_modules/statechart/runtime.html

 Navigation

 		
 index

 		
 modules |

 		Python Statechart 0.3.1 documentation »

 		Module code »

 Source code for statechart.runtime

-*- coding: utf-8 -*-
#
Copyright (c) 2016, Leigh McKenzie
All rights reserved.
#
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

import logging

[docs]class StateRuntimeData:
 """
 Holds the runtime specific data for a state in the statechart.
 """

 def __init__(self):
 self._logger = logging.getLogger(self.__class__.__name__)
 self.current_state = None
 self.state_set = list()

[docs]class Metadata:
 """
 Describes runtime specific data of the statechart. The main data is the
 currently active state. For every active state a StateRuntimeData object is
 created which stores specific data for the state. This object is allocated
 only when the state is active, otherwise it is deleted.
 """

 def __init__(self):
 self._logger = logging.getLogger(self.__class__.__name__)
 self.active_states = {}
 self.event = None
 self.transition = None
 self._history_states = {}

[docs] def activate(self, state):
 """
 Activates a state for this Metadata. If the state is not already
 active, it will be added and a new StateRuntimeData created.

 Args:
 state (State): State to activate.
 """
 if not (state in self.active_states):
 self.active_states[state] = StateRuntimeData()

 data = self.active_states[state]
 data.current_state = None

 if state.context:
 if state.context not in self.active_states:
 raise RuntimeError('Parent state not activated')

 data = self.active_states[state.context]
 data.current_state = state

[docs] def deactivate(self, state):
 """
 Deactivates the state and frees the allocated resources.

 Args:
 state (State): State to dactivate.
 """
 if state in self.active_states:
 data = self.active_states[state]
 data.current_state = None
 data = None
 del self.active_states[state]

[docs] def get_history_state(self, history_state):
 """
 Get the last active state when the history state context was
 deactivated.

 Args:
 history_state (HistoryState): History state to lookup

 Returns:
 The most recent state remembered by the specified history state.
 """
 return self._history_states[history_state]

[docs] def has_history_info(self, history_state):
 """
 Check if the active state runtime has history info to restore.

 Args:
 history_state (HistoryState): History state to lookup.

 Returns:
 True if the history state has info of a state to be restored.
 """
 status = False

 if history_state in self._history_states:
 status = True

 return status

[docs] def is_active(self, state):
 """
 Checks whether the given state is active or not.

 Args:
 state (State): State to check.

 Returns:
 True if the state is active.
 """
 status = False

 if state in self.active_states:
 status = True

 return status

[docs] def reset(self):
 """Resets the metadata object for reuse."""
 self.active_states.clear()
 self._history_states.clear()

[docs] def store_history_info(self, history_state, actual_state):
 """"
 Store history for history state when leaving context.

 Args:
 history_state (HistoryState): History state to store. When this state's context is
 reactivated, the history state can be restored in order to recall the actual
 state to recall.
 actual_state: (State): State to recall.
 """
 self._history_states[history_state] = actual_state

 © Copyright 2016, Leigh McKenzie.
 Created using Sphinx 1.3.1.

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/plus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Python Statechart 0.3.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Leigh McKenzie.
 Created using Sphinx 1.3.1.

statechart.html

 Navigation

 		
 index

 		
 modules |

 		Python Statechart 0.3.1 documentation »

statechart package

Submodules

statechart.action module

		
class statechart.action.Action[source]

		Bases: object

		
execute(metadata, event)[source]

		Called by the transition, override for specific behaviour.

		Args:

		metadata (Metadata): Common statechart metadata.
event (Event): The event which triggered this action.

		Raises:

		Not implemented error for abstract class.

		
class statechart.action.CallAction(callback)[source]

		Bases: statechart.action.Action

Generic action configured with a callback function, executed when the Transition is fired.

		Note:

		The callback function must be exception safe and support args for the statechart metadata
and transition event trigger.

e.g. def callback(self, metadata, event):

		
execute(metadata, event)[source]

		Called by the transition, executes the callback function, passing the statechart metadata
and transition event trigger..

		Args:

		metadata (Metadata): Common statechart metadata.
event (Event): The event which triggered this action.

statechart.event module

		
class statechart.event.Event(name)[source]

		Bases: object

An event is a specification of a type of observable occurrence. The
occurrence that generates an event instance is assumed to take place at an
instant in time with no duration.

		Example:

		Create an instance of an event:
my_event = Event(name=’my event’)

Add the event trigger to a transition:
Transition(start=a, end=b, event=my_event)

Fire the event:
statechart.dispatch(event=my_event)

If the current state has an outgoing transition associated
with the event, it may be fired if the guard condition allows.

		Args:

		name (str): An identifier for the event.

		
class statechart.event.KwEvent(name, **kwargs)[source]

		Bases: statechart.event.Event

Extension of the Event base class to facilitate passing kwargs with event.

When an event is fired, it’s data is made available to transition guard and
actions. If the transition is executed the event data is also made
available to state entry, do and exit actions.

Generally, specialised Event classes should be defined to define the data
structure as actions & guards need to unpack it.

		Example:

		Create an instance of an event:
my_event = Event(name=’my event’, a=1, b=‘2’, c=[])

Add the event trigger to a transition:
Transition(start=a, end=b, event=my_event)

Fire the event:
statechart.dispatch(event=my_event)

		Args:

		name (str): An identifier for the event.
**kwargs: Arbitrary keyword arguments.

statechart.guard module

		
class statechart.guard.CallGuard(callback)[source]

		Bases: statechart.guard.Guard

Generic guard configured with a callback function, checked when the Transition is fired.

		Note:

		The callback function must be exception safe and support args for the statechart metadata
and transition event trigger.

e.g. def callback(self, metadata, event):

		
check(metadata, event)[source]

		Called by the transition.

		Args:

		metadata (Metadata): Common statechart metadata.
event (Event): Transition event trigger.

		Returns:

		The result returned by the callback function.

		
class statechart.guard.ElseGuard[source]

		Bases: statechart.guard.Guard

Simple ‘else’ guard condition which always returns True when checked.

Useful guard for outgoing transitions from Choice Pseudostates to ensure there is at least
one path that can be executed.

		
check(metadata, event)[source]

		Called by the transition.

		Args:

		metadata (Metadata): Common statechart metadata.
event (Event): Transition event trigger.

		Returns:

		True.

		
class statechart.guard.EqualGuard(a, b)[source]

		Bases: statechart.guard.Guard

Check if the two inputs ‘a’ and ‘b’ are equal.

		Args:

		a: First input.
b: Second input.

		
check(metadata, event)[source]

		Called by the transition.

		Args:

		metadata (Metadata): Common statechart metadata.
event (Event): Transition event trigger.

		Returns:

		The result of the equality check between ‘a’ and ‘b’.

		
class statechart.guard.Guard[source]

		Bases: object

A guard is a boolean expression that is attached to a transition as a
fine-grained control over its firing. The guard is evaluated when an event
instance is dispatched by the state machine. If the guard is true at that
time, the transition is enabled, otherwise, it is disabled.

Guards should be pure expressions without side effects.

		Example:

		Create a derived class of Guard:

		class GreaterThanZero(Guard):

		
		def check(self, event):

		return event.value > 0

Add guard to transition:

Transition(start=a, end=b, event=my_event, guard=GreaterThanZero())

Fire the event. If the state has a transition that :
statechart.dispatch(Event(name=’my event’, value=10))

		
check(metadata, event)[source]

		Called by the transition, override for specific behaviour

		Args:

		metadata (Metadata): Common statechart metadata.
event (Event): Transition event trigger.

		Note:

		Checking a guard should not have any side effects, therefore don’t
mutate event parameter data.
The evaluation must always be a boolean expression.

		Returns:

		Boolean result of expression.

		Raises:

		Not implemented error for abstract class.

statechart.pseudostates module

		
class statechart.pseudostates.ChoiceState(context)[source]

		Bases: statechart.pseudostates.PseudoState

The Choice pseudo-state is used to compose complex transitional path which,
which, when reached, result in the dynamic evaluation of the guards of the
triggers of its outgoing transitions.

It enables splitting of transitions into multiple outgoing paths.

		Args:

		context (Context): The parent context that contains this state.

		Note:

		It must have at least one incoming and one outgoing Transition.

If none of the guards evaluates to true, then the model is considered ill-formed.
To avoid this, it is recommended to define one outgoing transition with a
predefined “else” guard for every choice vertex.

		
activate(metadata, event)[source]

		Activate the state and dispatch transition to the default state of the
composite state.

		Args:

		metadata (Metadata): Common statechart metadata.
event (Event): Event which led to the transition into this state.

		Returns:

		True if the state was activated.

		
add_transition(transition)[source]

		Add a transition from this state.

Transitions are checked in the order they are defined.

		Args:

		transition (Transition): Transition to add.

		Raises:

		RuntimeError: If transition is invalid.

		
class statechart.pseudostates.InitialState(context)[source]

		Bases: statechart.pseudostates.PseudoState

A special kind of state signifying the source for a single transition to
the default state of the composite state.

		Args:

		context (Context): The parent context that contains this state.

		
activate(metadata, event)[source]

		Activate the state and dispatch transition to the default state of the
composite state.

		Args:

		metadata (Metadata): Common statechart metadata.
event (Event): Event which led to the transition into this state.

		Returns:

		True if the state was activated.

		
add_transition(transition)[source]

		Add a transition from this state.

An initial state must have a single transition. The transition must not need an
event trigger or have a guard condition.

		Args:

		transition (Transition): Transition to add, must be an external transition.

		Raises:

		RuntimeError: If transition is invalid, or if transition already exists.

		
dispatch(metadata, event)[source]

		Dispatch transition.

		Args:

		metadata (Metadata): Common statechart metadata.
event (Event): Transition event trigger.

		Returns:

		True if the transition was executed, False if transition was not
triggered for this event or if the guard condition failed.

		Raises:

		RuntimeError: If the state could not dispatch transition

		
class statechart.pseudostates.PseudoState(name, context)[source]

		Bases: statechart.states.State

A pseudostate is an abstraction that encompasses different types of
transient states. They are used, typically, to connect multiple transitions
into more complex state transitions paths.

		Args:

		name (str): An identifier for the model element.
context (Context): The parent context that contains this state.

		
activate(metadata, event)[source]

		Activate the state.

		Args:

		metadata (Metadata): Common statechart metadata.
event (Event): Event which led to the transition into this state.

		Returns:

		True if the state was activated.

		
class statechart.pseudostates.ShallowHistoryState(context)[source]

		Bases: statechart.pseudostates.PseudoState

		
activate(metadata, event)[source]

		Activate the state and dispatch transition to the default state of the
composite state.

		Args:

		metadata (Metadata): Common statechart metadata.
event (Event): Event which led to the transition into this state.

		Returns:

		True if the state was activated.

statechart.runtime module

		
class statechart.runtime.Metadata[source]

		Bases: object

Describes runtime specific data of the statechart. The main data is the
currently active state. For every active state a StateRuntimeData object is
created which stores specific data for the state. This object is allocated
only when the state is active, otherwise it is deleted.

		
activate(state)[source]

		Activates a state for this Metadata. If the state is not already
active, it will be added and a new StateRuntimeData created.

		Args:

		state (State): State to activate.

		
deactivate(state)[source]

		Deactivates the state and frees the allocated resources.

		Args:

		state (State): State to dactivate.

		
get_history_state(history_state)[source]

		Get the last active state when the history state context was
deactivated.

		Args:

		history_state (HistoryState): History state to lookup

		Returns:

		The most recent state remembered by the specified history state.

		
has_history_info(history_state)[source]

		Check if the active state runtime has history info to restore.

		Args:

		history_state (HistoryState): History state to lookup.

		Returns:

		True if the history state has info of a state to be restored.

		
is_active(state)[source]

		Checks whether the given state is active or not.

		Args:

		state (State): State to check.

		Returns:

		True if the state is active.

		
reset()[source]

		Resets the metadata object for reuse.

		
store_history_info(history_state, actual_state)[source]

		”
Store history for history state when leaving context.

		Args:

		
		history_state (HistoryState): History state to store. When this state’s context is

		reactivated, the history state can be restored in order to recall the actual
state to recall.

actual_state: (State): State to recall.

		
class statechart.runtime.StateRuntimeData[source]

		Bases: object

Holds the runtime specific data for a state in the statechart.

statechart.states module

		
class statechart.states.CompositeState(name, context)[source]

		Bases: statechart.states.Context

A composite state is a state that contains other state vertices (states,
pseudostates, etc.).

		Args:

		name (str): An identifier for the model element.
context (Context): The parent context that contains this state.

		
activate(metadata, event)[source]

		Activate the state.

If the transition being activated leads to this state, activate
the initial state.

		Args:

		metadata (Metadata): Common statechart metadata.
event: Event which led to the transition into this state.

		
deactivate(metadata, event)[source]

		Deactivate the state.

If this state contains a history state, store the currently active
state in history so it can be restored once the history state is
activated.

		Args:

		metadata (Metadata): Common statechart metadata.
event: Event which led to the transition out of this state.

		
dispatch(metadata, event)[source]

		Dispatch transition.

		Args:

		metadata (Metadata): Common statechart metadata.
event (Event): Transition event trigger.

		Returns:

		True if transition executed, False if transition not allowed,
due to mismatched event trigger or failed guard condition.

		
is_finished(metadata)[source]

		”
Check if the composite state has reached it’s final state.

		Args:

		metadata (Metadata): Common statechart metadata.

		Returns:

		True if the composite state is finished.

		
class statechart.states.ConcurrentState(name, context)[source]

		Bases: statechart.states.Context

A concurrent state is a state that contains composite state regions,
activated concurrently.

		Args:

		name (str): An identifier for the model element.
context (Context): The parent context that contains this state.

		
activate(metadata, event)[source]

		Activate the state.

		Args:

		metadata (Metadata): Common statechart metadata.
event (Event): Event which led to the transition into this state.

		Returns:

		True if state activated, False if already active.

		
add_region(region)[source]

		Add a new region to the concurrent state.

		Arsg:

		region (CompositeState): Region to add.

		
deactivate(metadata, event)[source]

		Deactivate child states within regions, then overall state.

		Args:

		metadata (Metadata): Common statechart metadata.
event: Event which led to the transition out of this state.

		Returns:

		True if state deactivated, False if already inactive.

		
dispatch(metadata, event)[source]

		Dispatch transition.

		Args:

		metadata (Metadata): Common statechart metadata.
event (Event): Transition event trigger.

		Returns:

		True if transition executed, False if transition not allowed,
due to mismatched event trigger or failed guard condition.

		
is_finished(metadata)[source]

		”
Check if all regions within the concurrent state are finished.

		Args:

		metadata (Metadata): Common statechart metadata.

		Returns:

		True if the concurrent state is finished.

		
class statechart.states.Context(name, context)[source]

		Bases: statechart.states.State

Domain of the state. Needed for setting up the hierarchy. This class
needn’t be instantiated directly.

		Args:

		name (str): An identifier for the model element.
context (Context): The parent context that contains this state.

		
class statechart.states.FinalState(context)[source]

		Bases: statechart.states.State

A special kind of state signifying that the enclosing composite state or
the entire state machine is completed.

A final state cannot have transitions or dispatch other transitions.

		Args:

		context (Context): The parent context that contains this state.

		Raises:

		
		RuntimeError: If the model is ill-formed by attempting to add a transition directly from

		the final state.

		
add_transition(transition)[source]

		

		
class statechart.states.State(name, context)[source]

		Bases: object

A State is a simple state that has no regions or submachine states.

		Args:

		
		name (str): State name used to identify this instance for logging.

		A unique name is recommended although not enforced.

context (Context): The parent context that contains this state.

		Attributes:

		name (str): State name used to identify this instance.
context (Context): State’s parent context.

		Examples:

		
		First create the parent context

statechart = Statechart(name=’statechart’)

		Then create the states

a = State(name=’a’, context=statechart)
b = State(name=’b’, context=statechart)

		Finally create the transitions between states with any associated

event triggers, actions or guard conditions.
Transition(start=a, end=b)

		Note:

		Do not dispatch a synchronous event within the action (enter, do or
exit) functions. If you need to dispatch an event, do so using the
async_dispatch function of the statechart.

		Raises:

		
		RuntimeError: If the parent context is invalid.

		Only a state chart can have no parent context.

		
activate(metadata, event)[source]

		Activate the state.

		Args:

		metadata (Metadata): Common statechart metadata.
event (Event): Event which led to the transition into this state.

		Returns:

		True if the state was activated.

		
add_transition(transition)[source]

		Add a transition from this state.

Transitions with guards are checked first.

		Args:

		
		transition (Transition): Transition to add, can be a normal or

		internal transition.

		Raises:

		RuntimeError: If transition is invalid.

		
deactivate(metadata, event)[source]

		Deactivate the state.

		Args:

		metadata (Metadata): Common statechart metadata.
event (Event): Event which led to the transition out of this state.

		Returns:

		True if state deactivated, False if already inactive.

		
dispatch(metadata, event)[source]

		Dispatch transition.

		Args:

		metadata (Metadata): Common statechart metadata.
event (Event): Transition event trigger.

		Returns:

		True if transition executed, False if transition not allowed,
due to mismatched event trigger or failed guard condition.

		
do(metadata, event)[source]

		An optional action that is executed whilst this state is active.
The execution starts after this state is entered, and stops either by
itself, or when the state is exited, whichever comes first.

Starts an async task. When the task is finished, it may fire an event
to trigger a state transition. If the task is still in progress when
this state is deactivated it will be cancelled.

		Args:

		metadata (Metadata): Common statechart metadata.
event (Event): Event which led to the transition into this state.

		
entry(metadata, event)[source]

		An optional action that is executed whenever this state is
entered, regardless of the transition taken to reach the state. If
defined, entry actions are always executed to completion prior to any
internal activity or transitions performed within the state.

		Args:

		metadata (Metadata): Common statechart metadata.
event (Event): Event which led to the transition into this state.

		
exit(metadata, event)[source]

		An optional action that is executed upon deactivation of this state
regardless of which transition was taken out of the state. If defined,
exit actions are always executed to completion only after all
internal activities and transition actions have completed execution.
Initiates cancellation of the state do action if it is still running.

		Args:

		metadata (Metadata): Common statechart metadata.
event (Event): Event which led to the transition into this state.

		
name = None

		Context can be null only for the statechart

		
class statechart.states.Statechart(name, metadata=None)[source]

		Bases: statechart.states.Context

The main entry point for using the statechart framework. Contains all
necessary methods for delegating incoming events to the substates.

		Args:

		name (str): An identifier for the model element.
metadata (Metadata): Common statechart metadata.

		
add_transition(transition)[source]

		

		
deactivate(metadata, event)[source]

		Deactivate the statechart.

		Args:

		metadata (Metadata): Common statechart metadata.
event (Event): Event which led to the transition out of this state.

		Returns:

		True if statechart deactivated, False if already inactive.

		
dispatch(event)[source]

		Calls the dispatch method on the current state.

		Args:

		event (Event): Transition event trigger.

		Returns:

		True if transition executed.

		
do(metadata, event)[source]

		

		
entry(metadata, event)[source]

		

		
exit(metadata, event)[source]

		

		
is_active(state_name)[source]

		Check if the state name is active

		Args:

		state_name (str): State name to check.

		Returns:

		True if the state name is currently active.

		
is_finished()[source]

		”
Check if the statechart has finished

		Returns:

		True if the statechart has finished.

		
start()[source]

		Initialises the Statechart in the metadata. Sets the start state.

Ensure the statechart has at least an initial state.

		Raises:

		RuntimeError if the statechart had already been started.

		
stop()[source]

		Stops the statemachine by deactivating statechart and thus all it’s child states.

statechart.transitions module

		
class statechart.transitions.InternalTransition(state, event=None, guard=None, action=None)[source]

		Bases: statechart.transitions.Transition

A transition that executes without exiting or re-entering the state in which it is defined.
This is true even if the state machine is in a nested state within this state.

		Args:

		
		state (State): The state which owns this transition. The transition executes without

		exiting or re-entering this state.

event (Event|str): The event or event name that fires the transition.
guard (Guard): A boolean predicate that must be true for the transition to be fired.

It is evaluated at the time the event is dispatched.

action (Action): An optional procedure to be performed when the transition fires.

		
execute(metadata, event)[source]

		Attempt to execute the transition.
Evaluate if the transition is allowed by checking the guard condition.
If the transition is allowed perform transition action.

		Args:

		metadata (Metadata): Common statechart metadata.
event (Event): The event that fires the transition.

		Returns:

		True if the transition was executed.

		
class statechart.transitions.Transition(start, end, event=None, guard=None, action=None)[source]

		Bases: object

A transition is a directed relationship between a source state and a target
state. It may be part of a compound transition, which takes the state
machine from one state configuration to another, representing the complete
response of the state machine to a particular event instance.

		Args:

		
		start (State): The originating state (or pseudostate) of the

		transition.

end (State): The target state (or pseudostate) that is reached when the
transition is executed.
event (Event|str): The event or event name that fires the transition.
guard (Guard): A boolean predicate that must be true for the

transition to be fired. It is evaluated at the time the event is
dispatched.

		action (Action): An optional procedure to be performed when the

		transition fires.

		
activate = None

		Used to store the states that will get de-activated

		
execute(metadata, event)[source]

		Attempt to execute the transition.
Evaluate if the transition is allowed by checking the guard condition.
If the transition is allowed, deactivate source states, perform
transition action and activate all target states.

		Args:

		metadata (Metadata): Common statechart metadata.
event (Event): The event that fires the transition.

		Returns:

		True if the transition was executed.

		
is_allowed(metadata, event)[source]

		”
Check if the transition is allowed.

		Args:

		metadata (Metadata): Common statechart metadata.
event (Event): The event that fires the transition.

		Returns:

		True if the transition is allowed.

Module contents

 © Copyright 2016, Leigh McKenzie.
 Created using Sphinx 1.3.1.

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

modules.html

 Navigation

 		
 index

 		
 modules |

 		Python Statechart 0.3.1 documentation »

statechart

		statechart package
		Submodules

		statechart.action module

		statechart.event module

		statechart.guard module

		statechart.pseudostates module

		statechart.runtime module

		statechart.states module

		statechart.transitions module

		Module contents

 © Copyright 2016, Leigh McKenzie.
 Created using Sphinx 1.3.1.

_static/minus.png

_modules/statechart/transitions.html

 Navigation

 		
 index

 		
 modules |

 		Python Statechart 0.3.1 documentation »

 		Module code »

 Source code for statechart.transitions

-*- coding: utf-8 -*-
#
Copyright (c) 2016, Leigh McKenzie
All rights reserved.
#
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

import logging

from statechart import Event
from statechart import Statechart

[docs]class Transition:
 """
 A transition is a directed relationship between a source state and a target
 state. It may be part of a compound transition, which takes the state
 machine from one state configuration to another, representing the complete
 response of the state machine to a particular event instance.

 Args:
 start (State): The originating state (or pseudostate) of the
 transition.
 end (State): The target state (or pseudostate) that is reached when the
 transition is executed.
 event (Event|str): The event or event name that fires the transition.
 guard (Guard): A boolean predicate that must be true for the
 transition to be fired. It is evaluated at the time the event is
 dispatched.
 action (Action): An optional procedure to be performed when the
 transition fires.
 """

 def __init__(self, start, end, event=None, guard=None, action=None):
 self._logger = logging.getLogger(self.__class__.__name__)
 self.start = start
 self.end = end
 self.event = event
 self.guard = guard
 self.action = action

 if isinstance(event, str):
 self.event = Event(event)

 """ Used to store the states that will get activated """
 self.activate = list()

 """ Used to store the states that will get de-activated """
 self.deactivate = list()

 self._calculate_state_set(start=start, end=end)

 start.add_transition(self)

[docs] def execute(self, metadata, event):
 """
 Attempt to execute the transition.
 Evaluate if the transition is allowed by checking the guard condition.
 If the transition is allowed, deactivate source states, perform
 transition action and activate all target states.

 Args:
 metadata (Metadata): Common statechart metadata.
 event (Event): The event that fires the transition.

 Returns:
 True if the transition was executed.
 """
 if not self.is_allowed(metadata=metadata, event=event):
 return False

 metadata.event = event
 metadata.transition = self

 if event:
 self._logger.info('Transition from "%s" to "%s" due to event trigger "%s"',
 self.start.name, self.end.name, event.name)
 else:
 self._logger.info('Default transition from "%s" to "%s"',
 self.start.name, self.end.name)

 for state in self.deactivate:
 state.deactivate(metadata=metadata, event=event)

 if self.action:
 self.action.execute(metadata=metadata, event=event)

 for state in self.activate:
 state.activate(metadata=metadata, event=event)

 metadata.transition = None
 metadata.event = None

 return True

[docs] def is_allowed(self, metadata, event):
 """"
 Check if the transition is allowed.

 Args:
 metadata (Metadata): Common statechart metadata.
 event (Event): The event that fires the transition.

 Returns:
 True if the transition is allowed.
 """
 if self.event != event:
 return False

 if self.guard and not self.guard.check(metadata=metadata, event=event):
 return False

 return True

 def _calculate_state_set(self, start, end):
 """
 Calculate all the states which must be deactivated and then activated
 when triggering the transition.

 Args:
 start (State): The originating state (or pseudostate) of the transition.
 end (State): The target state (or pseudostate) that is reached when the transition is
 executed.
 """
 start_states = list()
 end_states = list()

 """ Recursively get all the context start states """
 s = start
 while s is not None:
 start_states.insert(0, s)
 context = s.context
 if context and not isinstance(context, Statechart):
 s = context
 else:
 s = None

 """ Recursively get all the context end states """
 e = end
 while e is not None:
 end_states.insert(0, e)
 context = e.context
 if context and not isinstance(context, Statechart):
 e = context
 else:
 e = None

 """ Get the Least Common Ancestor (LCA) of the start and end states """
 min_state_count = min(len(start_states), len(end_states))
 lca = min_state_count - 1

 if start is not end:
 lca = 0
 while lca < min_state_count:
 if start_states[lca] is not end_states[lca]:
 break
 lca += 1

 """ Starting from the LCA get the states that will be deactivated """
 i = lca
 while i < len(start_states):
 self.deactivate.insert(0, start_states[i])
 i += 1

 """ Starting from the LCA get the states that will be activated """
 i = lca
 while i < len(end_states):
 self.activate.append(end_states[i])
 i += 1

[docs]class InternalTransition(Transition):
 """
 A transition that executes without exiting or re-entering the state in which it is defined.
 This is true even if the state machine is in a nested state within this state.

 Args:
 state (State): The state which owns this transition. The transition executes without
 exiting or re-entering this state.
 event (Event|str): The event or event name that fires the transition.
 guard (Guard): A boolean predicate that must be true for the transition to be fired.
 It is evaluated at the time the event is dispatched.
 action (Action): An optional procedure to be performed when the transition fires.
 """

 def __init__(self, state, event=None, guard=None, action=None):
 super().__init__(start=state, end=state, event=event, guard=guard, action=action)
 self.deactivate.clear()
 self.activate.clear()

[docs] def execute(self, metadata, event):
 """
 Attempt to execute the transition.
 Evaluate if the transition is allowed by checking the guard condition.
 If the transition is allowed perform transition action.

 Args:
 metadata (Metadata): Common statechart metadata.
 event (Event): The event that fires the transition.

 Returns:
 True if the transition was executed.
 """
 if not self.is_allowed(metadata=metadata, event=event):
 return False

 if self.action:
 self.action.execute(metadata=metadata, event=event)

 return True

 © Copyright 2016, Leigh McKenzie.
 Created using Sphinx 1.3.1.

_modules/statechart/guard.html

 Navigation

 		
 index

 		
 modules |

 		Python Statechart 0.3.1 documentation »

 		Module code »

 Source code for statechart.guard

-*- coding: utf-8 -*-
#
Copyright (c) 2016, Leigh McKenzie
All rights reserved.
#
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

import abc

[docs]class Guard(metaclass=abc.ABCMeta):
 """
 A guard is a boolean expression that is attached to a transition as a
 fine-grained control over its firing. The guard is evaluated when an event
 instance is dispatched by the state machine. If the guard is true at that
 time, the transition is enabled, otherwise, it is disabled.

 Guards should be pure expressions without side effects.

 Example:
 Create a derived class of Guard:

 class GreaterThanZero(Guard):
 def check(self, event):
 return event.value > 0

 Add guard to transition:

 Transition(start=a, end=b, event=my_event, guard=GreaterThanZero())

 Fire the event. If the state has a transition that :
 statechart.dispatch(Event(name='my event', value=10))
 """

 @abc.abstractmethod
[docs] def check(self, metadata, event):
 """
 Called by the transition, override for specific behaviour

 Args:
 metadata (Metadata): Common statechart metadata.
 event (Event): Transition event trigger.

 Note:
 Checking a guard should not have any side effects, therefore don't
 mutate event parameter data.
 The evaluation must always be a boolean expression.

 Returns:
 Boolean result of expression.

 Raises:
 Not implemented error for abstract class.
 """
 raise NotImplementedError

[docs]class CallGuard(Guard):
 """
 Generic guard configured with a callback function, checked when the Transition is fired.

 Note:
 The callback function must be exception safe and support args for the statechart metadata
 and transition event trigger.

 e.g. def callback(self, metadata, event):
 """

 def __init__(self, callback):
 self._callback = callback

[docs] def check(self, metadata, event):
 """
 Called by the transition.

 Args:
 metadata (Metadata): Common statechart metadata.
 event (Event): Transition event trigger.

 Returns:
 The result returned by the callback function.
 """
 return bool(self._callback(metadata=metadata, event=event))

[docs]class ElseGuard(Guard):
 """
 Simple 'else' guard condition which always returns True when checked.

 Useful guard for outgoing transitions from Choice Pseudostates to ensure there is at least
 one path that can be executed.
 """

[docs] def check(self, metadata, event):
 """
 Called by the transition.

 Args:
 metadata (Metadata): Common statechart metadata.
 event (Event): Transition event trigger.

 Returns:
 True.
 """
 return True

[docs]class EqualGuard(Guard):
 """
 Check if the two inputs 'a' and 'b' are equal.

 Args:
 a: First input.
 b: Second input.
 """

 def __init__(self, a, b):
 self._a = a
 self._b = b

[docs] def check(self, metadata, event):
 """
 Called by the transition.

 Args:
 metadata (Metadata): Common statechart metadata.
 event (Event): Transition event trigger.

 Returns:
 The result of the equality check between 'a' and 'b'.
 """
 return self._a == self._b

 © Copyright 2016, Leigh McKenzie.
 Created using Sphinx 1.3.1.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Python Statechart 0.3.1 documentation »

 All modules for which code is available

		statechart.action

		statechart.event

		statechart.guard

		statechart.pseudostates

		statechart.runtime

		statechart.states

		statechart.transitions

 © Copyright 2016, Leigh McKenzie.
 Created using Sphinx 1.3.1.

_modules/statechart/action.html

 Navigation

 		
 index

 		
 modules |

 		Python Statechart 0.3.1 documentation »

 		Module code »

 Source code for statechart.action

-*- coding: utf-8 -*-
#
Copyright (c) 2016, Leigh McKenzie
All rights reserved.
#
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

import abc

[docs]class Action(metaclass=abc.ABCMeta):
 @abc.abstractmethod
[docs] def execute(self, metadata, event):
 """
 Called by the transition, override for specific behaviour.

 Args:
 metadata (Metadata): Common statechart metadata.
 event (Event): The event which triggered this action.

 Raises:
 Not implemented error for abstract class.
 """
 raise NotImplementedError

[docs]class CallAction(Action):
 """
 Generic action configured with a callback function, executed when the Transition is fired.

 Note:
 The callback function must be exception safe and support args for the statechart metadata
 and transition event trigger.

 e.g. def callback(self, metadata, event):
 """

 def __init__(self, callback):
 self._callback = callback

[docs] def execute(self, metadata, event):
 """
 Called by the transition, executes the callback function, passing the statechart metadata
 and transition event trigger..

 Args:
 metadata (Metadata): Common statechart metadata.
 event (Event): The event which triggered this action.
 """
 self._callback(metadata=metadata, event=event)

 © Copyright 2016, Leigh McKenzie.
 Created using Sphinx 1.3.1.

