

starrotate

starrotate is a tool for measuring stellar rotation periods using
Lomb-Scargle (LS) periodograms, autocorrelation functions (ACFs) and Gaussian
processes (GPs).
It uses the astropy [http://www.astropy.org/] implementation of
Lomb-Scargle periodograms [http://docs.astropy.org/en/stable/stats/lombscargle.html], and the
exoplanet [https://exoplanet.dfm.io/en/stable/] implementation of
fast celerite [https://celerite.readthedocs.io/en/latest/?badge=latest]
Gaussian processes.

starrotate is compatible with any light curve with time, flux and flux
uncertainty measurements, including Kepler, K2 and TESS light curves.
If your light curve is has evenly-spaced (or close to evenly-spaced)
observations, all three of these methods: LS periodograms, ACFs and GPs will
be applicable.
For unevenly spaced light curves like those from the Gaia, or ground-based
observatories, LS periodograms and GPs are preferable to ACFs.

Example usage

import starrotate as sr

rotate = sr.RotationModel(time, flux, flux_err)
lomb_scargle_period = rotate.LS_rotation()
acf_period = rotate.ACF_rotation()
gp_period = rotate.GP_rotation()

User Guide

	Installation
	Dependencies

	API documentation

Tutorials

	A quick starrotate tutorial: measuring the rotation period of a TESS star

License & attribution

Copyright 2018, Ruth Angus.

The source code is made available under the terms of the MIT license.

If you make use of this code, please cite this package and its dependencies.
You can find more information about how and what to cite in the
citation documentation.

	Search Page

Installation

Currently the best way to install starrotate is from github.

From source:

git clone https://github.com/RuthAngus/starrotate.git
cd starrotate
python setup.py install

Dependencies

The dependencies of starrotate are
NumPy [http://www.numpy.org/],
pandas [https://pandas.pydata.org/],
h5py [https://www.h5py.org/],
tqdm [https://tqdm.github.io/],
emcee [http://dfm.io/emcee/current/],
exoplanet [https://exoplanet.readthedocs.io/en/stable/],
astropy [http://www.astropy.org/],
matplotlib [https://matplotlib.org/],
scipy [https://www.scipy.org/], and
kplr [http://dfm.io/kplr/].

These can be installed using pip:

conda install numpy pandas h5py tqdm emcee exoplanet astropy matplotlib
scipy kplr

or

pip install numpy pandas h5py tqdm emcee exoplanet astropy matplotlib
scipy kplr

API documentation

Note

This tutorial was generated from an IPython notebook that can be
downloaded here.

A quick starrotate tutorial: measuring the rotation period of a TESS star

In this tutorial we’ll measure the rotation period of a TESS target.
First we’ll download and plot a light curve using the lightkurve
package.

import numpy as np
import lightkurve as lk

starname = "TIC 10863087"
lcf = lk.search_lightcurvefile(starname).download()

lc = lcf.PDCSAP_FLUX
lc.scatter(alpha=.5, s=.5);

[image: ../_images/Tutorial_3_0.png]
First of all, let’s remove the flares which will limit our ability to
measure a rotation period. Let’s also get rid of any NaN values in the
light curve.

no_nan_lc = lc.remove_nans()
clipped_lc = no_nan_lc.remove_outliers(sigma=3)
clipped_lc.scatter(alpha=.5, s=.5);

[image: ../_images/Tutorial_5_0.png]
Next, let’s import starrotate and set up a RotationModel object.

import starrotate as sr

rotate = sr.RotationModel(clipped_lc.time, clipped_lc.flux, clipped_lc.flux_err)

We can also plot the light curve using the plot_lc function in
starrotate:

rotate.plot_lc()

[image: ../_images/Tutorial_9_0.png]
Now let’s measure a rotation period for this star using the astropy
implementation of the Lomb-Scargle periodogram. This algorithm fits a
single sinusoid to the light curve and reports the squared amplitude of
the sinusoid over a range of frequencies (1/periods).

ls_period = rotate.LS_rotation()

ls_period

0.8607640045552087

We measured a rotation period of 0.86 days by finding the period of the
highest peak in the periodogram. Let’s plot the periodogram.

rotate.pgram_plot()

[image: ../_images/Tutorial_14_0.png]
Now let’s calculate an ACF and measure a rotation period by finding the
highest peak.

tess_cadence = 1./24./30. # This is a TESS 2 minute cadence star.
acf_period = rotate.ACF_rotation(tess_cadence)

/Users/rangus/projects/starrotate/starrotate/rotation_tools.py:158: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use arr[tuple(seq)] instead of arr[seq]. In the future this will be interpreted as an array index, arr[np.array(seq)], which will result either in an error or a different result.
 acf = np.fft.ifft(f * np.conjugate(f), axis=axis)[m].real

acf_period

0.8763888888888888

rotate.acf_plot()

[image: ../_images/Tutorial_18_0.png]
This method estimates a period of 0.88 days, which is very close to the
periodogram method. It is important to note that the LS periodogram
method and the ACF method are not independent, i.e. if you measure a
certain rotation period with one, you are likely to measure the same
rotation period with the other. These two methods should not be used as
independent ‘checks’ to validate a measured rotation period.

Now, let’s calculate a rotation period using the Phase Dispersion
Minimization algorithm of Stellingwerf
(1978) [https://ui.adsabs.harvard.edu/abs/1978ApJ...224..953S/abstract].
This function will return the period with the lowest phase dispersion.

period_grid = np.linspace(.1, 2, 1000)
pdm_period = rotate.PDM(period_grid, pdm_nbins=10) # Set the number of bins to 10
print(pdm_period)

100%|██████████| 1000/1000 [00:05<00:00, 176.93it/s]

0.8607607607607607

rotate.PDM_plot()

[image: ../_images/Tutorial_22_0.png]
The Lomb-Scargle periodogram, ACF, and phase dispersion arrays are
accessible via:

Lomb-Scargle periodogram
period_array = 1./rotate.freq
power_array = rotate.power

Autocorrelation function
ACF_array = rotate.acf
lag_array = rotate.lags

Phase-dispersion minimization
phi_array = rotate.phis # The 'dispersion' plotted in the lower panel above.
period_grid = period_grid # We already defined this above.

These could come in handy because it might be useful to calculate
various peak statistics. We can do that with the get_peak_statistics()
function in rotation_tools, e.g.

import starrotate.rotation_tools as rt

Get peak positions and heights, in order of highest to lowest peak.
peak_positions, peak_heights = rt.get_peak_statistics(1./rotate.freq, rotate.power)
print(peak_positions[0]) # This is the period of the highest peak (which is the default LS period)

0.8607640045552087

For the ACF peak statistics, we might choose either the highest peak as
the period (default in starrotate):

Get peak positions and heights, in order of highest to lowest peak.
acf_peak_positions, acf_peak_heights = rt.get_peak_statistics(rotate.lags, rotate.acf, sort_by="height")
print(acf_peak_positions[0])

0.8763888888888888

Or the first peak:

Get peak positions and heights, in order of lags.
acf_peak_positions, acf_peak_heights = rt.get_peak_statistics(rotate.lags, rotate.acf, sort_by="position")
print(acf_peak_positions[0])

0.8763888888888888

In this example the first and the highest peak are the same.

Finally, let’s measure a rotation period with the exoplanet
implementation of a celerite Gaussian process. This part takes a little
while to run.

gp_results = rotate.GP_rotation()

success: False
initial logp: -54886.575693444596
final logp: -53829.8979901813
sampling...

Sampling 4 chains: 100%|██████████| 308/308 [01:22<00:00, 1.05s/draws]
Sampling 4 chains: 100%|██████████| 108/108 [00:20<00:00, 5.15draws/s]
Sampling 4 chains: 100%|██████████| 208/208 [00:16<00:00, 6.30draws/s]
Sampling 4 chains: 100%|██████████| 408/408 [00:26<00:00, 6.52draws/s]
Sampling 4 chains: 100%|██████████| 808/808 [02:00<00:00, 3.12draws/s]
Sampling 4 chains: 100%|██████████| 1608/1608 [2:02:57<00:00, 4.79draws/s]
Sampling 4 chains: 100%|██████████| 4608/4608 [03:32<00:00, 21.66draws/s]
Sampling 4 chains: 100%|██████████| 208/208 [00:13<00:00, 7.44draws/s]
Multiprocess sampling (4 chains in 4 jobs)
NUTS: [mix, logdeltaQ, logQ0, logperiod, logamp, logs2, mean]
Sampling 4 chains: 54%|█████▍ | 4303/8000 [02:08<01:50, 33.49draws/s]
The number of effective samples is smaller than 25% for some parameters.

We can print the resulting GP rotation period and its associated
uncertainties:

print("GP period = {0:.2f} + {1:.2f} - {2:.2f}".format(rotate.gp_period, rotate.errp, rotate.errm))

GP period = 0.81 + 0.02 - 0.02

And plot the posterior PDF:

rotate.plot_posterior()

[image: ../_images/Tutorial_37_0.png]
We can also plot this manually:

import matplotlib.pyplot as plt
%matplotlib inline

plt.hist(rotate.period_samples);
plt.xlabel("Period [days]")
plt.ylabel("Unnormalized probability")

Text(0, 0.5, 'Unnormalized probability')

[image: ../_images/Tutorial_39_1.png]
And we can plot the posterior prediction:

rotate.plot_prediction()

[image: ../_images/Tutorial_41_0.png]
You can see that there are still outliers in the light curve produced by
flares which is affecting the GP fit. A better outlier removal algorithm
would improve this fit!

 Python Module Index

 s

 		 	

 		
 s	

 	
 	
 stardate	

 	
 	
 starrotate	

Index

 S

S

 	
 	stardate (module)

 	
 	starrotate (module)

 _static/ajax-loader.gif

_images/Tutorial_5_0.png
ML WY
o Vyf‘”?g‘ i W ‘ﬁ;l‘,v ?

0.985 L -+ TIC 10863087
| | | | I |

1385.0 1387.5 1390.0 13925 1395.0 1397.5 1400.0 14025 1405.0
Time - 2457000 [BTJD days]

_images/Tutorial_9_0.png
g
g
=
5
2
=
2
o
a
2
S
2
=
%
2
%
S S S 3
5 g g

XN|4 3AIIR[RY

Time [days]

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_images/Tutorial_39_1.png
0.85

0.80

Period [days]

0.75

g =

b___n_mmp_n_ pazijewuouun

_images/Tutorial_3_0.png
Normalized Flux

TIC 10863087
16

15
141
13
12
11

LOE AAAAAMNAAAAA amAAAAAAAA
1 h ! | ! ! ! 1

1385.0 1387.5 1390.0 13925 1395.0 1397.5 1400.0 1402.5 1405.0
Time - 2457000 [BTJD days]

_images/Tutorial_22_0.png
Flux

Flux

10200 1

10000 1

i

{

1385.0

1387.5

1390.0 1392.5 1395.0 1397.5 1400.0 1402.5 1405.0
Time

10200 1

10000 1

o B o v
s s oy »
g e i - oS, -
o 5o ey

0.6 0.8 1.0
Phase

1.01

Dispersion

0.25

0.50 0.75 1.00 1.95 1.50 1.75 2.00
Period [days]

_images/Tutorial_37_0.png
Posterior density

0.75 0.80 0.85
Rotation period [days]

0.90

_images/Tutorial_41_0.png
100 o P 3 :
5 N , i
_§ 50 L ‘g $ i
- 4 i
2 0 '
= §
]
° H 3
& 50] :
: ; ;
E 8 E g
—100 3 ¢ ¥ 4
1385.0 13875 1390.0 1392.5 1395.0 1397.5 14025

Time [days]

_static/file.png

nav.xhtml

 Table of Contents

 		
 starrotate

 		
 Installation

 		
 Dependencies

 		
 API documentation

 		
 A quick starrotate tutorial: measuring the rotation period of a TESS star

_images/Tutorial_14_0.png
Power

05
log10(Period [days])

1.0

_images/Tutorial_18_0.png
Correlation

o

Period [days]

6

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

