
The starman library
Release 0.0.1

Rich Wareham

April 05, 2016

Contents

1 Introduction 1
1.1 Features . 1
1.2 Why “starman”? . 1

2 State estimation 3
2.1 The Kalman filter . 3

3 Feature Association 9
3.1 Scott and Longuet-Higgins association . 9

4 Programmer’s Reference 13
4.1 State estimation . 13
4.2 Feature association . 15
4.3 Representation of state estimates . 15
4.4 Helper functions for linear systems . 16

Bibliography 17

Python Module Index 19

i

ii

CHAPTER 1

Introduction

The starman library provides implementation of algorithms commonly used to estimate state and to
track targets over time in the presence of noisy measurements.

Those wanting to dive in and see what is supported may take a look at the Programmer’s Reference
for all the gory details.

1.1 Features

Starman provides a Kalman filter implementation which can be used to track the hidden true state of
a linear system over time given zero or more noisy measurements for each time step.

A Rauch-Tung-Striebel smoother (RTS) implementation is provided which, when combined with the
Kalman filter, can produce very smooth estimates of state. Unlike the Kalman filter which provides
an estimate of state for each time step based only on measurements up until that time step, the RTS
smoother requires all measurements to have been recorded.

For associating multiple measurements per frame to multiple targets, an implementation of the Scott
and Longuet-Higgins feature association algorithm is provided. This algorithm can be used to “join
the dots” when tracking multiple targets.

1.2 Why “starman”?

Starman implements the Kalman filter. The Kalman filter was used for trajectory estimation in the
Apollo spaceflight programme. Starman is thus a blend of “star”, signifying space, and “Kalman”.
That and “kalman” was already taken as a package name on the PyPI.

1

The starman library, Release 0.0.1

2 Chapter 1. Introduction

CHAPTER 2

State estimation

It is often easy enough to write down equations determining the dynamics of a system: how its state
varies over time. Given a system at time k we can predict what state it will be in at time k+1. We can
also take measurements on the system at time k+1. The process of fusing zero or measurements of a
system with predictions of its state is called state estimation.

2.1 The Kalman filter

A very popular state estimation algorithm is the Kalman filter. The Kalman filter can be used when
the dynamics of a system are linear and measurements are some linear function of state.

2.1.1 Problem formulation

Let’s first refresh the goal of the Kalman filter and its formulation. The Kalman filter attempts to
update an estimate of the “true” state of a system given noisy measurements of the state. The state is
assumed to evolve in a linear way and measurements are assumed to be linear functions of the state.
Specifically, it is assumed that the “true” state at time k + 1 is a function of the “true” state at time k:

xk+1 = Fkxk + Bkuk + wk

where wk is a sample from a zero-mean Gaussian process with covariance Qk. We term Qk the process
covariance. The matrix Fk is termed the state-transition matrix and determines how the state evolves.
The matrix Bk is the control matrix and determines the contribution to the state of the control input, uk.

At time instant k we may have zero or more measurements of the state. Each measurement, zk is
assumed to be a linear function of the state:

zk = Hkxk + vk

where Hk is termed the measurement matrix and vk is a sample from a zero-mean Gaussian process
with covariance Rk. We term Rk the measurement covariance.

The Kalman filter maintains for time instant, k, an a priori estimate of state, x̂k|k−1 covariance of this
estimate, Pk|k−1. The initial values of these parameters are given when the Kalman filter is created.
The filter also maintains an a posteriori estimate of state, x̂k|k, and covariance, Pk|k. This is updated for
each measurement, zk.

2.1.2 Example: the constant velocity model

The Kalman filter is implemented in Starman in the starman.KalmanFilter class. This section
provides an example of use.

3

https://en.wikipedia.org/wiki/Kalman_filter

The starman library, Release 0.0.1

Generating the true states

We will implement a simple 2D state estimation problem using the constant velocity model. The state
transition matrix is constant throughout the model:

Import numpy and matplotlib functions into global namespace
from matplotlib.pylab import *

Our state is x-position, y-position, x-velocity and y-velocity.
The state evolves by adding the corresponding velocities to the
x- and y-positions.
F = array([

[1, 0, 1, 0], # x <- x + vx
[0, 1, 0, 1], # y <- y + vy
[0, 0, 1, 0], # vx is constant
[0, 0, 0, 1], # vy is constant

])

Specify the length of the state vector
STATE_DIM = F.shape[0]

Let’s generate some sample data by determining the process noise covariance:

Specify the process noise covariance
Q = diag([1e-2, 1e-2, 1e-1, 1e-1]) ** 2

How many states should we generate?
N = 100

Generate some "true" states
from starman.linearsystem import generate_states
true_states = generate_states(N, process_matrix=F, process_covariance=Q)
assert true_states.shape == (N, STATE_DIM)

We can plot the true states we’ve just generated:

0 20 40 60 80 100
Time step

30

20

10

0

10

20

30

40

50

X
co

-o
rd

in
at

e

0 20 40 60 80 100
Time step

30

20

10

0

10

20

30

40

50

Y
co

-o
rd

in
at

e

0 20 40 60 80 100
Time step

1.0

0.5

0.0

0.5

1.0

1.5

X
ve

lo
ci

ty

0 20 40 60 80 100
Time step

1.0

0.5

0.0

0.5

1.0

1.5

Y
ve

lo
ci

ty

4 Chapter 2. State estimation

The starman library, Release 0.0.1

Generating measurements

We will use a measurement model where the velocity is a “hidden” state and we can only directly
measure position. We’ll also specify a measurement error covariance.

We only measure position
H = array([

[1, 0, 0, 0],
[0, 1, 0, 0],

])

And we measure with some error. Note that we have difference
variances for x and y.
R = diag([1.0, 2.0]) ** 2

Specify the measurement vector length
MEAS_DIM = H.shape[0]

From the measurement matrix and measurement error we can generate noisy measurements from the
true states.

Measure the states
from starman.linearsystem import measure_states
measurements = measure_states(true_states, measurement_matrix=H,

measurement_covariance=R)

Let’s plot the measurements overlaid on the true states.

25

20

15

10

5

0

5

X
po

si
tio

n

Measurements of true state

True
Measured

0 20 40 60 80 100
Time step

10

0

10

20

30

40

50

Y
po

si
tio

n

Using the Kalman filter

We can create an instance of the starman.KalmanFilter to filter our noisy measurements.

2.1. The Kalman filter 5

The starman library, Release 0.0.1

from starman import KalmanFilter, MultivariateNormal

Create a kalman filter with constant process matrix and covariances.
kf = KalmanFilter(state_length=STATE_DIM,

process_matrix=F, process_covariance=Q)

For each time step
for k, z in enumerate(measurements):

Predict state for this timestep
kf.predict()

Update filter with measurement
kf.update(measurement=MultivariateNormal(mean=z, cov=R),

measurement_matrix=H)

The starman.KalmanFilter class has a number of attributes which give useful information on the
filter:

Check that filter length is as expected
assert kf.state_count == N

Check that the filter state dimension is as expected
assert kf.state_length == STATE_DIM

Now we’ve run the filter, we can see how it has performed. We also shade the three sigma regions for
the estimates.

0 20 40 60 80 100
Time step

30

20

10

0

10

20

30

40

50

X
co

-o
rd

in
at

e

True
Measured
Estimated

20 0 20 40 60 80 100
Time step

30

20

10

0

10

20

30

40

50

Y
co

-o
rd

in
at

e

0 20 40 60 80 100
Time step

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

X
ve

lo
ci

ty

20 0 20 40 60 80 100
Time step

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Y
ve

lo
ci

ty

We see that the estimates of position and velocity improve over time.

2.1.3 Rauch-Tung-Striebel smoothing

The Rauch-Tung-Striebel (RTS) smoother provides a method of computing the “all data” a posteriori
estimate of states (as opposed to the “all previous data” estimate). Assuming there are n time points

6 Chapter 2. State estimation

https://en.wikipedia.org/wiki/Kalman_filter#Rauch.E2.80.93Tung.E2.80.93Striebel

The starman library, Release 0.0.1

in the filter, then the RTS computes the a posteriori state estimate at time k after all the data for n time
steps are known, x̂k|n, and corresponding covariance, Pk|n, recursively:

x̂k|n = x̂k|k + Ck(x̂k+1|n − x̂k+1|k), Pk|n = Pk|k + Ck(Pk+1|n − Pk+1|k)C
T
k

with Ck = Pk|kFT
k+1P−1

k+1|k.

The RTS smoother is an example of an “offline” algorithm in that the estimated state for time step k
depends on having seen all of the measurements rather than just the measurements up until time k.

Using RTS smoothing

We’ll start by assuming that the steps in Example: the constant velocity model have been performed.
Namely that we have some true states in true_states, measurements in measurements and a
starman.KalmanFilter instance in kf.

Following on from that example, we can use the starman.rts_smooth() function to compute the
smoothed state estimates given all of the data.

from starman import rts_smooth

Compute the smoothed states given all of the data
rts_estimates = rts_smooth(kf)

Again, we can plot the estimates and shade the three sigma region.

0 20 40 60 80 100
Time step

30

20

10

0

10

20

30

40

50

X
co

-o
rd

in
at

e

True
Measured
Kalman
RTS

20 0 20 40 60 80 100
Time step

30

20

10

0

10

20

30

40

50

Y
co

-o
rd

in
at

e

0 20 40 60 80 100
Time step

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

X
ve

lo
ci

ty

20 0 20 40 60 80 100
Time step

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Y
ve

lo
ci

ty

We can see how the RTS smoothed states are far smoother than the forward estimated states. But that
the true state values are still very likely to be within our three sigma band.

2.1.4 Mathematical overview

The Kalman filter alternates between a predict step for each time step and zero or more update steps.
The predict step forms an a priori estimate of the state given the dynamics of the system and the update

2.1. The Kalman filter 7

The starman library, Release 0.0.1

step refines an a posteriori estimate given the measurement.

A Priori Prediction

At time k we are given a state transition matrix, Fk, and estimate of the process noise, Qk. Our a priori
estimates are then given by:

x̂k|k−1 = Fk x̂k−1|k−1 + Bkuk, Pk|k−1 = FkPk−1|k−1FT
k + Qk.

Innovation

At time k we are given a matrix, Hk, which specifies how a given measurement is derived from the state
and some estimate of the measurement noise covariance, Rk. We may now compute the innovation,
yk, of the measurement from the predicted measurement and our expected innovation covariance, Sk:

yk = zk − Hk x̂k|k−1, Sk = HkPk|k−1HT
k + Rk.

Update

We now update the state estimate with the measurement via the so-called Kalman gain, Kk:

Kk = Pk|k−1HT
k S−1

k .

Merging is straightforward. Note that if we have no measurement, our a posteriori estimate reduces to
the a priori one:

x̂k|k = x̂k|k−1 + Kkyk, Pk|k = Pk|k−1 − Kk HkPk|k−1.

8 Chapter 2. State estimation

CHAPTER 3

Feature Association

When estimating the state of a single system, techniques such as Kalman filtering can be extremely
useful. Real situations often have several systems acting independently each of which can generate a
measurement. Sometimes it is clear which measurement has arisen from which system. Sometimes it is
not. Feature association is the process of associating actual measurements with predicted measurements
from a set of tracked systems.

3.1 Scott and Longuet-Higgins association

The Scott and Longuet-Higgins algorithm [SLH] is an elegant algorithm for associating two sets of fea-
tures by considering the Gaussian weighted distances between each pair of features. Since it considers
pair-wise distances, and then uses an SVD, its computational complexity is approximately O(n2).

In tracking problems we can use the SLH algorithm when we have good estimates of the predicted
measurement estimate covariance and actual measurement covariance.

3.1.1 Example: 2D tracking

Let’s first of all create a list of “true” 2D locations of some set of targets. We’ll simply sample their
location uniformly from the interval (0, 10]× (0, 10]:

Import plotting and numpy functions
from matplotlib.pylab import *

How many targets?
n_targets = 25

Sample the ground truth (gt) positions
gt_positions = 10 * np.random.rand(n_targets, 2)

We will simulate some tracking problem by assuming we’ve been tracking the targets and creating
some estimates of state. We’ll let a certain proportion of the ground truth states be “new” states.

from numpy.random import multivariate_normal as sample_mvn
from starman import MultivariateNormal

def simulate_tracking_state(ground_truth):
"""Given a ground truth location, return a MultivariateNormal
representing a simulated tracking state."""

Sample estimate covariance.
cov = 1e-1 * np.diag(5e-1 + np.random.rand(2))
cov[1, 0] = cov[0, 1] = 1e-1 * (np.random.rand() - 0.5)

Sample mean of estimate based on covariance

9

The starman library, Release 0.0.1

mean = sample_mvn(mean=ground_truth, cov=cov)

return MultivariateNormal(mean, cov)

Sample our simulated state estimates. There's a probability of 0.1 that
the ground truth state is a new one for this time step.
estimates = [simulate_tracking_state(s)

for s in gt_positions if np.random.rand() < 0.9]

Now we’ll simulate measurements on the ground truth states. Again there is a proportion of states
which we do not measure but each measurement has the same covariance.

from starman.linearsystem import measure_states

Set measurement covariance
measurement_covariance = np.diag([1e-1, 1e-1]) ** 2

Get list of MultivariateNormal instances for each measurement. We have
a probability of 0.1 of missing a state.
gt_measurements = measure_states(gt_positions, np.eye(2),

measurement_covariance)
measurements = [

MultivariateNormal(mean=measurement, cov=measurement_covariance)
for measurement in gt_measurements if np.random.rand() < 0.9

]

Let’s take a look at out ground truth positions and current tracking state estimates. We’ll plot a 2-sigma
ellipse around each state estimate and each measurement.

2 0 2 4 6 8 10 12
X co-ordinate

2

0

2

4

6

8

10

12

Y
co

-o
rd

in
at

e

Ground truth locations, state estimates and measurements

Ground truth
State estimates
Measurements

The SLH algorithm is implemented in the slh_associate() function. It takes as non-optional
arguments two lists of MultivariateNormal instances which should be associated. It also takes an
optional parameter giving the maximum number of standard deviations two features can be separated

10 Chapter 3. Feature Association

The starman library, Release 0.0.1

before they are considered to be impossible to associate. In this example we’ll use the default 5-sigma
separation threshold.

from starman import slh_associate

Use slh_associate to associate state estimates with measurements.
associations = slh_associate(estimates, measurements)

Associations are represented by an Nx2 array of indices into the two
lists.
assert associations[:, 0].max() < len(estimates)
assert associations[:, 1].max() < len(measurements)

The associations are returned as a two-column array. The first column contains indices into the first
list of features and the second column contains indices into the second list. For example we could turn
the associations into a list of state estimate mean, measurement pairs:

associated_positions = []
for est_idx, meas_idx in associations:

associated_positions.append([
estimates[est_idx].mean, measurements[meas_idx].mean

])

2 0 2 4 6 8 10 12
X co-ordinate

2

0

2

4

6

8

10

12

Y
co

-o
rd

in
at

e

SLH associations

Ground truth
State estimates
Measurements

3.1.2 Mathematical overview

The SLH algorithm starts by assuming that there are two sets of features. Each feature is parametrised
by a mean and covariance. We shall notate the i-th mean of group k as µ

(k)
i and the i-th covariance of

3.1. Scott and Longuet-Higgins association 11

The starman library, Release 0.0.1

group k as Σ(k)
i . We then form a Gaussian weighted proximity matrix, G, where

Gij = exp
(
−1

2

(
µ
(1)
i − µ

(2)
j

)T (
Σ(1)

i + Σ(2)
j

)−1 (
µ
(1)
i − µ

(2)
j

))
.

Our intution is that “true” associations are represented by a) a value close to 1 in G and b) that value
being the largest in both its row and column. The “ideal” G is one where there is at most a single 1 in
each row an column and every other element is zero. (This ideal matrix being orthogonal.) The SLH
algorithm attempts to magnify the orthogonality of G by way of the singular value decomposition
(SVD).

One firstly takes the SVD of G which finds U, S and V such that

U S VT = G.

The matrix of singular values S only has non-zero elements on its diagonal. Form a new matrix Λ
from S by setting all non-zero elements to 1. Then form P as

P = U Λ VT .

Associate feature i in list 1 with feature j in list 2 if and only if:

1. Element Pij is the maximum in its row and column.

2. Gij is greater than some association threshold, α.

In practice the association threshold is set with reference to some number of standard deviations, σ.
So, α = exp(−σ2/2).

The SLH algorithm can be interpreted as minimising the sum of squared distances between features
where those distances are normalised by the covariance matrices of the features.

12 Chapter 3. Feature Association

CHAPTER 4

Programmer’s Reference

Below is a description of the public API of starman separated by functionality. In-depth discussion
how to use the API can be found in the appropriate sections of the documentation.

4.1 State estimation

class starman.KalmanFilter(initial_state_estimate=None, process_matrix=None, pro-
cess_covariance=None, control_matrix=None, state_length=None)

A KalmanFilter maintains an estimate of true state given noisy measurements.

The filter is initialised to have no state estimates. (Time step “-1” if you will.) Before calling
update(), predict() must be called at least once.

The filter represents its state estimates as frozen MultivariateNormal instances.

Parameters

• initial_state_estimate (None or MultivariateNormal) – The ini-
tial estimate of the true state used for the first predict() step. If None,
state_length must be specified and the initial state estimate is initialised to zero
mean and a covariance of the identity matrix muiltiplied by a large value.
(Specifically the value of KalmanFilter.LARGE_COVARIANCE.)

• process_matrix (array or None) – The process matrix to use if none is
passed to predict().

• process_covariance (array or None) – The process noise covariance to
use if none is passed to predict().

• control_matrix – (array or None): The control matrix to use if none is
passed to predict().

• state_length (None or int) – Must only be specified if ini-
tial_state_estimate is None. In which case, this is used as the length of
the state vector.

Raises ValueError – The passed matrices have inconsistent or invalid shapes.

prior_state_estimates
list of MultivariateNormal

Element k is the the a priori state estimate for time step k.

posterior_state_estimates
list of MultivariateNormal

Element k is the the a posteriori state estimate for time step k.

13

The starman library, Release 0.0.1

measurements
list of list of MultivariateNormal

Element k is a list of MultivariateNormal instances. These are the instances passed to
update() for time step k.

process_matrices
list of array

Element k is the process matrix used by predict() at time step k.

process_covariances
list of array

Element k is the process covariance used by predict() at time step k.

measurement_matrices
list of list of array

Element k is a list of the measurement matrices passed to each call to update() for that
time step.

state_length
int

Number of elements in the state vector.

clone()
Return a new KalmanFilter instance which is a shallow clone of this one. By “shallow”,
although the lists of measurements, etc, are cloned, the MultivariateNormal instances
within them are not. Since predict() and update() do not modify the elements of these
lists, it is safe to run two cloned filters in parallel as long as one does not directly modify
the states.

Returns (KalmanFilter) – A new KalmanFilter instance.

measurement_count
Property returning the total number of measurements which have been passed to this filter.

predict(control=None, control_matrix=None, process_matrix=None, process_covariance=None)
Predict the next a priori state mean and covariance given the last posterior. As a special
case the first call to this method will initialise the posterior and prior estimates from the
initial_state_estimate and initial_covariance arguments passed when this object was created.
In this case the process_matrix and process_covariance arguments are unused but are still
recorded in the process_matrices and process_covariances attributes.

Parameters

• control (array or None) – If specified, the control input for this predict
step.

• control_matrix (array or None) – If specified, the control matrix to use
for this time step.

• process_matrix (array or None) – If specified, the process matrix to
use for this time step.

• process_covariance (array or None) – If specified, the process covari-
ance to use for this time step.

state_count
Property returning the number of states/time steps this filter has processed. Since the first
time step is always 0, the final index will always be state_count - 1.

truncate(new_count)
Truncate the filter as if only new_count predict(), update() steps had been performed.
If new_count is greater than state_count then this function is a no-op.

14 Chapter 4. Programmer’s Reference

The starman library, Release 0.0.1

Measurements, state estimates, process matrices and process noises which are truncated are
discarded.

Parameters new_count (int) – Number of states to retain.

update(measurement, measurement_matrix)
After each predict(), this method may be called repeatedly to provide additional mea-
surements for each time step.

Parameters

• measurement (MultivariateNormal) – Measurement for this time step
with specified mean and covariance.

• measurement_matrix (array) – Measurement matrix for this measure-
ment.

starman.rts_smooth(kalman_filter, state_count=None)
Compute the Rauch-Tung-Striebel smoothed state estimates and estimate covariances for a
Kalman filter.

Parameters

• kalman_filter (KalmanFilter) – Filter whose smoothed states should be
returned

• state_count (int or None) – Number of smoothed states to return. If
None, use kalman_filter.state_count.

Returns (list of MultivariateNormal) – List of multivariate normal distributions. The
mean of the distribution is the estimated state and the covariance is the covariance
of the estimate.

4.2 Feature association

starman.slh_associate(a_features, b_features, max_sigma=5)
An implementation of the Scott and Longuet-Higgins algorithm for feature association.

This function takes two lists of features. Each feature is a MultivariateNormal instance
representing a feature location and its associated uncertainty.

Parameters

• a_features (list of MultivariateNormal) –

• b_features (list of MultivariateNormal) –

• max_sigma (float or int) – maximum number of standard deviations two
features can be separated and still considered “associated”.

Returns (array) – A Nx2 array of feature associations. Column 0 is the index into the
a_features list, column 1 is the index into the b_features list.

4.3 Representation of state estimates

class starman.MultivariateNormal(mean=None, cov=None)
MultivariateNormal represents a multivariate normal (or “Gaussian”) distribution parametrised
in terms of a mean and covariance. The mean is a length-N vector and the covariance is a NxN
matrix.

If mean is unspecified, it defaults to a zero-filled vector whose dimension matches the covariance.

If the covariance is unspecified, it defaults to an identity matrix whose shape matches the di-
mension of the mean.

4.2. Feature association 15

The starman library, Release 0.0.1

If neither mean or covariance are specified, default values of 0 and 1 are used.

Parameters

• mean (None or array) – Distribution mean.

• cov (None or array) – Distribution covariance.

rvs(size=1)
Convenience method to sample from this distribution.

Parameters size (int or tuple) – Shape of return value. Each element is
drawn independently from this distribution.

4.4 Helper functions for linear systems

The starman.linearsystem module contains some helper functions for systems with linear dy-
namics and a linear measurement model.

starman.linearsystem.generate_states(state_count, process_matrix, process_covariance,
initial_state=None)

Generate states by simulating a linear system with constant process matrix and process noise
covariance.

Parameters

• state_count (int) – Number of states to generate.

• process_matrix (array) – Square array

• process_covariance (array) – Square array specifying process noise co-
variance.

• initial_state (array or None) – If omitted, use zero-filled vector as ini-
tial state.

starman.linearsystem.measure_states(states, measurement_matrix, measure-
ment_covariance)

Measure a list of states with a measurement matrix in the presence of measurement noise.

Parameters

• states (array) – states to measure. Shape is NxSTATE_DIM.

• measurement_matrix (array) – Each state in states is measured with this
matrix. Should be MEAS_DIMxSTATE_DIM in shape.

• measurement_covariance (array) – Measurement noise covariance.
Should be MEAS_DIMxMEAS_DIM.

Returns (array) – NxMEAS_DIM array of measurements.

16 Chapter 4. Programmer’s Reference

Bibliography

[SLH] Scott, Guy L., and H. Christopher Longuet-Higgins. “An algorithm for associating the features
of two images.” Proceedings of the Royal Society of London B: Biological Sciences 244.1309 (1991):
21-26.

17

The starman library, Release 0.0.1

18 Bibliography

Python Module Index

s
starman.linearsystem, 16

19

The starman library, Release 0.0.1

20 Python Module Index

Index

C
clone() (starman.KalmanFilter method), 14

G
generate_states() (in module star-

man.linearsystem), 16

K
KalmanFilter (class in starman), 13

M
measure_states() (in module star-

man.linearsystem), 16
measurement_count (starman.KalmanFilter at-

tribute), 14
measurement_matrices (KalmanFilter attribute),

14
measurements (KalmanFilter attribute), 13
MultivariateNormal (class in starman), 15

P
posterior_state_estimates (KalmanFilter at-

tribute), 13
predict() (starman.KalmanFilter method), 14
prior_state_estimates (KalmanFilter attribute), 13
process_covariances (KalmanFilter attribute), 14
process_matrices (KalmanFilter attribute), 14

R
rts_smooth() (in module starman), 15
rvs() (starman.MultivariateNormal method), 16

S
slh_associate() (in module starman), 15
starman.linearsystem (module), 16
state_count (starman.KalmanFilter attribute), 14
state_length (KalmanFilter attribute), 14

T
truncate() (starman.KalmanFilter method), 14

U
update() (starman.KalmanFilter method), 15

21

	Introduction
	Features
	Why ``starman''?

	State estimation
	The Kalman filter

	Feature Association
	Scott and Longuet-Higgins association

	Programmer's Reference
	State estimation
	Feature association
	Representation of state estimates
	Helper functions for linear systems

	Bibliography
	Python Module Index

