

Introduction

Why do I need stapled?

stapled is meant to be a helper daemon for HAProxy which doesn’t do OCSP
stapling out of the box. However HAProxy can serve staple files if they are
place in the certificate directory, which is what we use to our benefit.

You may also be able to use stapled for any other proxy that supports
serving .ocsp files but out of the box it will only save those files and
optionally inform a running HAProxy instance of them.

Table of Contents

	Quick start
	Documentation

	System requirements

	Installation
	From github (for developers)

	Upgrading

	Troubleshooting

	Compiling this package
	Build locally

	Docker build

	Packages

	Using stapled
	Named Arguments

	Testing stapled

	Caveats

	Module description

	Daemon documentation
	Source code
	stapled.main

	stapled.core.daemon

	stapled.core.taskcontext

	stapled.core.certfinder

	stapled.core.certparser

	stapled.core.staplerenewer

	stapled.core.stapleadder

	stapled.core.certmodel

	Scheduler documentation
	Scheduler source code
	scheduling

	Exception handling
	stapled.core.exceptions

	stapled.core.excepthandler

Indices and tables

	Index

	Module Index

	Search Page

 [image: Pipeline Status]
 [https://code.greenhost.net/open/stapled/commits/master][image: Stapled logo]
 [https://stapled.readthedocs.io/en/latest/]
Quick start

Table of Contents

	Documentation

	System requirements

	Installation

	From github (for developers)

	Upgrading

	Troubleshooting

	Compiling this package

	Build locally

	Docker build

	Packages

	Using stapled

	Named Arguments

	Testing stapled

	Caveats

Documentation

Read the full documentation on
Read the docs [https://stapled.readthedocs.org/].

System requirements

This application requires Python 3.3+ or Python 2.7.9 and an installed
version of PIP for the Python version you are using. It is also convenient
to have virtualenv installed so you can make a separate environment for
stapled’s dependencies.

Installation

Before installation make sure you have met the System requirements.
You can install the ocsp daemon from the source code repository on our gitlab
instance.

From github (for developers)

Download the source from the repo
git clone --recursive https://github.com/greenhost/stapled.git
OR, as a TIP, which downloads all the repos simultaneously in threads:
git clone --recursive -j5 https://github.com/greenhost/stapled.git
Enter the source directory
cd stapled/
Setup a virtualenv
virtualenv -p python3 env/
Load the virtualenv
source env/bin/activate
Install the current directory with pip. This allows you to edit the code
pip install -e .

Every time you want to run stapled you will need to run
source env/bin/activate to load the virtualenv first. Alternatively you can
start the daemon by running stapled

Upgrading

If you had previously installed a version of stapled from github, to upgrade run
the following:

Deactivate the virtualenv if active
deactivate
Delete the virtualenv (we will start clean)
rm -rf ./env
Make a new virtualenv
virtualenv -p python3 env/
Update to the latest version
git pull
Clone submodules too
git submodule upgrade --init --recursive
Install the current directory with pip. This allows you to edit the code
pip install -e . --upgrade

Troubleshooting

In order to get HAPRoxy to serve staples, any valid staple file should exist
at the moment it is started. If a staple file does not exist for your
certificate stapling will remain disabled until you restart HAProxy. Even if
stapled tries to send HAProxy a valid staple through its socket.

In order to get around this bootstrapping problem, add an empty staple file,
which is also valid according to HAProxy’s documentation by running:

touch [path-to-certificate].pem.ocsp

For each of your domains.

We tested this for HAProxy 1.6, perhaps this behaviour will change in
future versions.

Compiling this package

There are 2 ways to compile the package and various target distributions.

Build locally

Assuming you have the following packages installed on a debian based system:

	build-essential

	python-cffi

	python3-cffi

	libffi-dev

	python-all

	python3-all

	python-dev

	python3-dev

	python-setuptools

	python3-setuptools

	python-pip

	rpm

	tar, gzip & bzip2

	git

	debhelper

	stdeb (pip install --user stdeb)

Or the equivalents of these on another distribution. You can build the packages
by running one or more of the following make commands.

Clear out the cruft from any previous build
make clean
Source distribution
make sdist
Binary distribution
make bdist
RPM package (Fedora, Redhat, CentOS) - untested!
make rpm
Debian source package (Debian, Ubuntu)
make deb-src
Debian package (Debian, Ubuntu)
make deb
All of the above
make all

Everything is tested under Debian Stretch, your mileage may vary.

Docker build

In order to be able to build a package reproducably by anyone, on any platform
we have a Dockerfile that will install an instance of Debian Stretch in a
docker container and can run the build process for you.

Assuming you have docker installed, you can simply run the below commands to
build a package.

make docker-all

Remove any previous docker image and/or container named stapled then buil the
image with the same dependencies we used. Then compile the packages, then
place them in the ./docker-dist dir.

make docker-nuke

Throw away any previous docker image and/or container named stapled.
This is part of the make docker-all target.

make docker-build

Build the docker image. This is part of the make docker-all target.

make docker-compile

Assuming you have a built image, this compiles the packages for you and places
them in docker-dist. This is part of the make docker-all target.

make docker-install

Assuming you have a built image and compiled the packages, this installs the
packages in the docker container. This is part of the make docker-all target.

make docker-run

Assuming you have a built image and compiled the packages, and installed them
in the docker container, this runs the installed binary to test if it works.

Packages

You can download packages here: https://github.com/greenhost/stapled/releases

Using stapled

Update OCSP staples from CA’s and store the result so HAProxy can serve them to clients.

usage: stapled [-h] [-c CONFIG] [--minimum-validity MINIMUM_VALIDITY]
 [-t RENEWAL_THREADS] [--verbosity VERBOSITY] [-v] [-D]
 [--interactive] [--file-extensions FILE_EXTENSIONS]
 [-r REFRESH_INTERVAL] [-l [LOGDIR]] [--syslog] [-q]
 [-s HAPROXY_SOCKETS [HAPROXY_SOCKETS ...]]
 [--no-haproxy-sockets]
 [--haproxy-config HAPROXY_CONFIG [HAPROXY_CONFIG ...]]
 [-p CERT_PATHS [CERT_PATHS ...]] [-R] [--no-recycle]
 [-i IGNORE [IGNORE ...]] [-V]
 [-d DIRECTORIES [DIRECTORIES ...]]

Named Arguments

	-c, --config

	Override the default config file locations (default=/home/docs/checkouts/readthedocs.org/user_builds/stapled/checkouts/latest/docs/source/stapled.conf, ~/.stapled.conf, /etc/stapled/stapled.conf)

	--minimum-validity

	If the staple is valid for less than this time in seconds an attempt will be made to get a new, valid staple (default: 7200).

	-t, --renewal-threads

	Amount of threads to run for renewing staples. (default=2)

	--verbosity

	Verbose output argument should be an integer between 0 and 4, can be overridden by the -v argument.

	-v

	Verbose output, repeat to increase verbosity, overrides the verbosity argument if provided.

	-D, --daemon

	Daemonise the process, release from shell and process group, run under new process group.

	--interactive, --no-daemon

	Disable daemon mode, overrides daemon mode if enabled in the config file, effectively starting interactive mode.

	--file-extensions

	Files with which extensions should be scanned? Comma separated list (default: crt,pem,cer).

	-r, --refresh-interval

	Minimum time to wait between parsing cert dirs and certificates (default=60).

	-l, --logdir

	Enable logging to ‘/var/log/stapled/’. It is possible to supply another directory. Traces of unexpected exceptions are placed here as well.

	--syslog

	Output to syslog.

	-q, --quiet

	Don’t print messages to stdout.

	-s, --haproxy-sockets

	Sockets to connect to HAProxy. Each directory you pass with the directory argument, should have its own haproxy socket. The order of the socket arguments should match the order of the directory arguments.Example:I have a directory /etc/haproxy1 with certificates, and a HAProxy that serves these certificates and has stats socket /etc/haproxy1/haproxy.sock. I have another directory /etc/haproxy2 with certificates and another haproxy instance that serves these and has stats socket /etc/haproxy2/haproxy.sock. I would then start stapled as follows:./stapled /etc/haproxy1 /etc/haproxy2 -s /etc/haproxy1.sock /etc/haproxy2.sock

	--no-haproxy-sockets

	Disable HAProxy sockets, overrides --haproxy-sockets if specified in the config file.

	--haproxy-config

	Path(s) to HAProxy config files, they will be scanned for certificates, certificate directories and HAProxy admin sockets based on bind [..] crt [..] directives and stats [..] socket [..] directives, the crt-base directive isrespected. Multiple config files may be specified separated by a space. See --haproxy-sockets for more information.

	-p, --cert-paths

	Paths to certificates files or directories containing certificates used by HAProxy. Multiple paths may be specified separated by a space.

	-R, --recursive

	Recursively scan given paths.

	--no-recycle

	Don’t re-use existing staples, force renewal.

	-i, --ignore

	Ignore files matching this pattern. Multiple patterns may be specified separated by a space. You can put the pattern in quotes to let stapled evaluate it instead of letting your shell evaluate it. You can use globbing patterns with * or ?. If a pattern starts with / it will be considered absolute, if it does not start with a /, the pattern will be compared to the last part of found files. e.g. the pattern cert/snakeoil.pem matches with path /etc/ssl/cert/snakeoil.pem. Don’t define relative paths as patterns, paths are not patterns, e.g. ../certs/*.pem will not cause pem files in a directory named certs, one directory up from $PATH to be ignored. Instead your pattern will cause a warning and will be ignored.

	-V, --version

	Show the version number and exit.

	-d, --directories

	DEPRECATED, please see --cert-paths.

The daemon will not serve OCSP responses, it can however inform HAPRoxy about the staples it creates using the --haproxy-sockets. argument. Alternatively you can configure HAPRoxy or another proxy (e.g. nginx has support for serving OCSP staples) to serve the OCSP staples manually.

Testing stapled

Testing an application like this is hard, but that is no excuse not to do
testing. We want to have unit tests but to do that correctly we need to run an
OCSP server locally, quite a setup. So until now we didn’t do so yet. Note that
if you have experience with this kind of setup and you want to help this project
move forward, you are welcome to help.

Obviously we do test stapled, admittedly a little bit primitively. You can find a
script in scripts/ called refresh_testdata.sh. It will delete any
directory named testdata in the root of the project and create a fresh one.
Then it will download 3 certificate chains from live servers. These will be
placed in subdirectories with the same name as the domain name.

Next you can run python stapled -vvvv -d testdata/* to get output printed to
your terminal. The testdata/[domain].[tld] directories will be populated
with [domain].[tld].ocsp files.

Caveats

In order to get HAPRoxy to serve staples, any staple valid file should exist
at the moment it is started. If a staple file does not exist for your
certificate stapling will remain disabled until you restart HAProxy. Even if
stapled tries to send HAProxy a valid staple through its socket.

In order to get around this bootstrapping problem, add an empty staple file,
which is also valid according to HAProxy’s documentation by running:

touch [path-to-certificate].pem.ocsp

For each of your domains.

We tested this for HAProxy 1.6, perhaps this behaviour will change in
future versions.

Module description

stapled consists of several modules that interact with each other in order to
keep OCSP staples up-to-date. In short, these are the modules:

	Scheduler

	It is possible to schedule a task with the scheduler. It will wait
for the scheduled moment and add the task to a queue to be handled by one
of the other modules.

	Finder

	Finds certificates in the specified directories. When new file are found,
or existing files are changed it schedules a parsing for these
certificates.

	Parser

	Parses certificates and parses them. If certificates are correct, it
schedules a renewal for these certificates.

	Renewer

	The renewer takes input from the scheduler. It contacts the CA to
renew an OCSP staple. After renewing the staple it schedules a new
renewal and tells the scheduler to call the adder right away.

	Adder

	This is a module that can talk to the HAProxy socket to add OCSP
staples without restarting HAProxy.

This graph explains their interaction. Every arrow passes a
StapleTaskContext instance to the other
module.

[image: digraph { graph [fontsize=10, margin=.001, fontname="helvetica" pad=".001", ranksep="1", nodesep="0.001"]; node [fontname="helvetica"]; edge [fontname="helvetica"]; scheduler [label="\nSchedulerThread\n\n⌚" URL="core.html#stapled.scheduling.SchedulerThread"] finder [label="CertFinderThread" URL="core.html#stapled.core.certfinder.CertFinderThread"] parser [label="CertParserThread" URL="core.html#stapled.core.certparser.CertParserThread"] renewer [label="StapleRenewerThread" URL="core.html#stapled.core.staplerenewer.StapleRenewerThread"] adder [label="StapleAdder" URL="core.html#stapled.core.stapleadder.StapleAdder"] haproxy [label=HAProxy shape=box URL="https://www.haproxy.com/"] ca[label="Certificate Authority" shape=box URL="https://en.wikipedia.org/wiki/Certificate_authority"] finder -> scheduler [label=" schedule next renewal"]; parser -> scheduler [label=" schedule parsing "] scheduler -> parser [dir="both" label=" parse cert "] scheduler -> renewer [dir="both" label=" renew staple "] renewer -> ca [label=" renew staple"] renewer -> scheduler [label=" schedule renewal "] scheduler -> adder [dir="both" label=" add staple "] adder -> haproxy [label=" add staple "] }]

Daemon documentation

Table of Contents

	Source code

	stapled.main

	stapled.core.daemon

	stapled.core.taskcontext

	stapled.core.certfinder

	stapled.core.certparser

	stapled.core.staplerenewer

	stapled.core.stapleadder

	stapled.core.certmodel

Source code

stapled.main

Initialise the stapled module.

This file only contains some variables we need in the stapled name space.

	
stapled.LOCAL_LIB_MODE = True

	If local libs are in use this constant will be True

	
stapled.FILE_EXTENSIONS_DEFAULT = 'crt,pem,cer'

	The extensions the daemon will try to parse as certificate files

	
stapled.DEFAULT_REFRESH_INTERVAL = 60

	The default refresh interval for the
stapled.core.certfinder.CertFinderThread.

	
stapled.MAX_RESTART_THREADS = 3

	How many times should we restart threads that crashed.

	
stapled.LOG_DIR = '/var/log/stapled/'

	Directory where logs and traces will be saved.

	
stapled.DEFAULT_CONFIG_FILE_LOCATIONS = ['/home/docs/checkouts/readthedocs.org/user_builds/stapled/checkouts/latest/docs/source/stapled.conf', '~/.stapled.conf', '/etc/stapled/stapled.conf']

	Default locations to look for config files in order of importance.

stapled.core.daemon

This module bootstraps the stapled process by starting threads for:

	1x stapled.scheduling.SchedulerThread

Can be used to create action queues that where tasks can be added that are
either added to the action queue immediately or at a set time in the future.

	1x stapled.core.certfinder.CertFinderThread

	Finds certificate files in the specified certificate paths at regular
intervals.

	Removes deleted certificates from the context cache in
stapled.core.daemon.run.models.

	Add the found certificate to the the parse action queue of the scheduler
for parsing the certificate file.

	1x stapled.core.certparser.CertParserThread

	Parses certificates and caches parsed certificates in
stapled.core.daemon.run.models.

	Add the parsed certificate to the the renew action queue of the scheduler
for requesting or renewing the OCSP staple.

	2x (or more depending on the -t CLI argument)
stapled.core.staplerenewer.StapleRenewerThread

	Gets tasks from the scheduler in self.scheduler which is a
stapled.scheduling.Scheduler object passed by this module.

	
	For each task:

	
	Validates the certificate chains.

	Renews the OCSP staples.

	Validates the certificate chains again but this time including the OCSP
staple.

	Writes the OCSP staple to disk.

	Schedules a renewal at a configurable time before the expiration of the
OCSP staple.

The main reason for spawning multiple threads for this is that the OCSP
request is a blocking action that also takes relatively long to complete.
If any of these request stall for long, the entire daemon doesn’t stop
working until it is no longer stalled.

	1x stapled.core.stapleadder.StapleAdder (optional)

Takes tasks haproxy-add from the scheduler and communicates OCSP staples
updates to HAProxy through a HAProxy socket.

stapled.core.taskcontext

This module defines an extended version of the general purpose
scheduling.ScheduledTaskContext for use in the OCSP daemon.

	
class stapled.core.taskcontext.StapleTaskContext(task_name, model, sched_time=None, **attributes)

	Adds the following functionality to the
scheduling.ScheduledTaskContext:

	Keep track of the exception that occurred last, and how many times it
occurred.

	Renames ScheduledTaskContext’s subject argument
to model.

	
__init__(task_name, model, sched_time=None, **attributes)

	Initialise a StapleTaskContext with a task name, cert model, and optional
scheduled time.

	Parameters

	
	task_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – A task name corresponding to an existing queue in
the scheduler.

	model (stapled.core.certmodel.CertModel) – A certificate model.

	sched_time (datetime.datetime|int) – Absolute time
(datetime.datetime object) or relative time in seconds (int) to
execute the task or None for processing ASAP.

	attributes (kwargs) – Any data you want to assign to the context,
avoid using names already defined in the context: scheduler,
task_name, subject, model, sched_time, reschedule.

	
set_last_exception(exc)

	Set the exception that occurred just now, this function will return
the amount of times the same exception has occurred in a row.

	Parameters

	exc (Exception [https://docs.python.org/3/library/exceptions.html#Exception]) – The last exception.

	Return int

	Count of same exceptions in a row.

Todo

Make sure two similar exceptions are treated as identical,
e.g. ignore attributes that will be different every time.
https://code.greenhost.net/open/stapled/issues/15

stapled.core.certfinder

This module locates certificate files in the supplied paths and parses
them. It then keeps track of the following:

	If cert is found for the first time (thus also when the daemon is started),
the cert is added to the stapled.core.certfinder.CertFinder.scheduler
so the CertParserThread can parse the
certificate. The file modification time is recorded so file changes can be
detected.

	If a cert is found a second time, the modification time is compared to the
recorded modification time. If it differs, if it differs, the file is added
to the scheduler for parsing again, any scheduled actions for the old file
are cancelled.

	When certificates are deleted from the paths, the entries are removed
from the cache in stapled.core.daemon.run.models. Any scheduled
actions for deleted files are cancelled.

The cache of parsed files is volatile so every time the process is killed
files need to be indexed again (thus files are considered “new”).

	
class stapled.core.certfinder.CertFinderThread(*args, **kwargs)

	This searches paths for certificate files.
When found, models are created for the certificate files, which are wrapped
in a stapled.core.taskcontext.StapleTaskContext which are then
scheduled to be processed by the
stapled.core.certparser.CertParserThread ASAP.

Pass refresh_interval=None if you want to run it only once (e.g. for
testing)

	
__init__(*args, **kwargs)

	Initialise the thread with its parent threading.Thread [https://docs.python.org/3/library/threading.html#threading.Thread] and its
arguments.

	Parameters

	
	models (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dict to maintain a model cache (required).

	cert_paths (iter [https://docs.python.org/3/library/functions.html#iter]) – The paths to index (required).

	scheduler (stapled.scheduling.SchedulerThread) – The scheduler
object where we add new parse tasks to. (required).

	refresh_interval (int [https://docs.python.org/3/library/functions.html#int]) – The minimum amount of time (s)
between search runs, defaults to 10 seconds. Set to None to run
only once (optional).

	file_extensions (array [https://docs.python.org/3/library/array.html#module-array]) – An array containing the file extensions
of file types to check for certificate content (optional).

	
run()

	Start the certificate finder thread.

	
refresh()

	Wrap up the internal CertFinder._update_cached_certs() and
CertFinder._find_new_certs() functions.

Note

This method is automatically called by
CertFinder.run()

	
_find_new_certs(paths, force_cert_path=None)

	Locate new files, schedule them for parsing.

	Parameters

	
	paths (list|tuple) – Paths to scan for certificates.

	force_cert_path (str|Nonetype) – Parent path as specified in the
CLI arguments. Necessary to link certificates found in paths to
any configured sockets.

	Raises

	stapled.core.exceptions.CertFileAccessError – When the
certificate file can’t be accessed.

	
_del_model(filename)

	Delete model from stapled.core.daemon.run.models.

This is done in a thread-safe manner, if another thread deleted it,
we should ignore the KeyError making this function omnipotent.

	Parameters

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – The filename of the model to forget about.

	
_update_cached_certs()

	Check for deleted or changed certificate files.

Loop through the list of files that were already found and check
whether they were deleted or changed.

If a file was modified since it was last seen, the file is added to the
scheduler to get the new certificate data parsed.

Deleted files are removed from the model cache in
stapled.core.daemon.run.models. Any scheduled tasks for the
model’s task context are cancelled.

	Raises

	stapled.core.exceptions.CertFileAccessError – When the
certificate file can’t be accessed.

	
check_ignore(*args, **kwargs)

	Check if a file path matches any pattern in the ignore list.

	Parameters

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to match a pattern in self.ignore.

stapled.core.certparser

This module parses certificate in a queue so the data contained in the
certificate can be used to request OCSP responses. After parsing a new
stapled.core.taskcontext.StapleTaskContext is created for the
stapled.core.oscprenewe.StapleRenewer which is then scheduled to be
processed ASAP.

	
class stapled.core.certparser.CertParserThread(*args, **kwargs)

	This object makes sure certificate files are parsed, after which a task
context is created for the stapled.core.oscprenewer.OCSPRenewer
which is scheduled to be executed ASAP.

	
__init__(*args, **kwargs)

	Initialise the thread with its parent threading.Thread [https://docs.python.org/3/library/threading.html#threading.Thread] and its
arguments.

	Parameters

	
	models (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dict to maintain a model cache (required).

	minimum_validity (int [https://docs.python.org/3/library/functions.html#int]) – The amount of seconds the OCSP staple
should be valid for before a renewal is scheduled (required).

	scheduler (stapled.scheduling.SchedulerThread) – The scheduler
object where we can get parser tasks from and add renew tasks to.
(required).

	no_recycle (bool [https://docs.python.org/3/library/functions.html#bool]) – Don’t recycle existing staples (default=False)

	
run()

	Start the certificate parser thread.

	
parse_certificate(model)

	Parse certificate files and check whether an existing OCSP staple that
is still valid exists. If so, use it, if not request a new OCSP staple.
If the staple is valid but not valid for longer than the
minimum_validity, the staple is loaded but a new request is still
scheduled.

stapled.core.staplerenewer

This module takes renew task contexts from the scheduler which contain
certificate models that consist of parsed certificates. It then generates an
OCSP request and sends it to the OCSP server(s) that is/are found in the
certificate and saves both the request and the response in the model. It also
generates a file containing the respone (the OCSP staple) and creates a new
stapled.core.taskcontext.StapleTaskContext to schedule a renewal
before the staple expires. Optionally creates a
stapled.core.taskcontext.StapleTaskContext task context for the
stapled.core.oscpadder.StapleAdder and schedules it to be run ASAP.

	
class stapled.core.staplerenewer.StapleRenewerThread(*args, **kwargs)

	This object requests OCSP responses for certificates, after which a new
task context is created for the
stapled.core.oscprenewer.StapleRenewer which is scheduled to be
executed before the new staple expires. Optionally a task is created for
the stapled.core.stapleadder.StapleAdder to tell HAProxy about the
new staple.

	
__init__(*args, **kwargs)

	Initialise the thread’s arguments and its parent
threading.Thread [https://docs.python.org/3/library/threading.html#threading.Thread].

	Parameters

	
	minimum_validity (int [https://docs.python.org/3/library/functions.html#int]) – The amount of seconds the OCSP staple is
still valid for, before starting to attempt to request a new OCSP
staple (required).

	scheduler (stapled.scheduling.SchedulerThread) – The scheduler
object where we can get tasks from and add new tasks to.
(required).

	
run()

	Start the renewer thread.

	
schedule_renew(model, sched_time=None)

	Schedule to renew this certificate’s OCSP staple in sched_time
seconds.

	Parameters

	
	context (stapled.core.certmodel.CertModel) – CertModel
instance None to calculate it automatically.

	shed_time (int [https://docs.python.org/3/library/functions.html#int]) – Amount of seconds to wait for renewal or None
to calculate it automatically.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If context.ocsp_staple.valid_until is None

stapled.core.stapleadder

Module for adding OCSP Staples to a running HAProxy instance.

	
class stapled.core.stapleadder.StapleAdder(*args, **kwargs)

	Add OCSP staples to a running HAProxy instance by sending it over a socket.

It runs a thread that keeps connections to sockets open for each of the
supplied haproxy sockets. Code from collectd haproxy connection [https://github.com/wglass/collectd-haproxy/blob/master/collectd_haproxy/connection.py] under
the MIT license, was used for inspiration.

	Tasks are taken from the stapled.scheduling.SchedulerThread, as

	soon as a task context is received, an OCSP response is read from the
model within it, it is added to a HAProxy socket found in
self.socks[<certificate directory>].

	
TASK_NAME = 'proxy-add'

	The name of this task in the scheduler

	
OCSP_ADD = 'set ssl ocsp-response {}'

	The haproxy socket command to add OCSP staples. Use string.format to add
the base64 encoded OCSP staple

	
CONNECT_COMMANDS = ['prompt', 'set timeout cli 86400']

	Predefines commands to send to sockets just after opening them.

	
__init__(*args, **kwargs)

	Initialise the thread and its parent threading.Thread [https://docs.python.org/3/library/threading.html#threading.Thread].

	Parameters

	
	haproxy_socket_mapping (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A mapping from a directory
(typically the directory containing TLS certificates) to a HAProxy
socket that serves certificates from that directory. These sockets
are used to communicate new OCSP staples to HAProxy, so it does not
have to be restarted.

	scheduler (stapled.scheduling.SchedulerThread) – The scheduler
object where we can get “haproxy-adder” tasks from (required).

	
_re_open_socket(path)

	Re-open socket located at path, and return the socket.
Closes open sockets and wraps appropriate logging around the
_open_socket method.

	Parameters

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – A valid HAProxy socket path.

	Return socket.socket

	An open socket.

	:raises :exc:stapled.core.exceptions.SocketError: when the socket can

	not be opened.

	
_open_socket(path)

	Open socket located at path, and return the socket.

Subsequently it asks for a prompt to keep the socket connection open,
so several commands can be sent without having to close and re-open the
socket.

	Parameters

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – A valid HAProxy socket path.

	Return socket.socket

	An open socket.

	:raises :exc:stapled.core.exceptions.SocketError: when the socket can

	not be opened.

	
__del__()

	Close the sockets on exit.

	
run()

	Send any commands that enter the command queue.

This is the stapleadder thread’s main loop.

	
add_staple(model)

	Create and send base64 encoded OCSP staple to the HAProxy.

	Parameters

	model – An object that has a binary string ocsp_staple in it
and a filename filename.

	
static _send(sock, command)

	Send the command through the socket and handle response.

	Parameters

	
	sock (list [https://docs.python.org/3/library/stdtypes.html#list]) – An already opened socket.

	command (str [https://docs.python.org/3/library/stdtypes.html#str]) – String with the HAProxy command. For a list of
possible commands, see the haproxy documentation [http://haproxy.tech-notes.net/9-2-unix-socket-commands/]

	Return list

	List of tuples containing path and response from HAProxy.

	:raises IOError if an error occurs and it’s not errno.EAGAIN or

	errno.EINTR

	
send(paths, command)

	Send the command through the sockets at paths.

	Parameters

	
	paths (str|list) – The path(s) to the socket(s) which should
already be open.

	command (str [https://docs.python.org/3/library/stdtypes.html#str]) – String with the HAProxy command. For a list of
possible commands, see the haproxy documentation [http://haproxy.tech-notes.net/9-2-unix-socket-commands/]

	Return list

	List of tuples containing path and response from HAProxy.

	:raises IOError if an error occurs and it’s not errno.EAGAIN or

	errno.EINTR

stapled.core.certmodel

This module defines the stapled.core.certmodel.CertModel class which is
used to keep track of certificates that are found by the
stapled.core.certfinder.CertFinderThread, then parsed by the
stapled.core.certparser.CertParserThread, an OCSP request is generated
by the stapled.core.staplerenewer.StapleRenewer, a response from an
OCSP server is returned. All data generated and returned like the request and
the response are stored in the context.

The following logic is contained within the context class:

	Parsing the certificate.

	Validating parsed certificates and their chains.

	Generating OCSP requests.

	Sending OCSP requests.

	Processing OCSP responses.

	Validating OCSP responses with the respective certificate and its chain.

	
class stapled.core.certmodel.CertModel(filename, cert_path)

	Model for certificate files.

	
__init__(filename, cert_path)

	Initialise the CertModel model object, and read the certificate data
from the passed filename.

	Raises

	stapled.core.exceptions.CertFileAccessError – When the certificate
file can’t be accessed.

	
parse_crt_file()

	Parse certificate, wraps the
_read_full_chain() and the
_validate_cert() methods.
Wicth extract the certificate (end_entity) and the chain
intermediates*), and validates the certificate chain.

	
recycle_staple(minimum_validity)

	Try to find an existing staple that is still valid for more than the
minimum_validity period. If it is not valid for longer than the
minimum_validity period, but still valid, add it to the context but
still ask for a new one by returning False.

If anything goes wrong during this process, False is returned
without any error handling, we can always try to get a new staple.

	Return bool

	False if a new staple should be requested, True if the
current one is still valid for more than minimum_validity

	
renew_ocsp_staple()

	Renew the OCSP staple, validate it and save it to the file path of the
certificate file (certificate.pem.ocsp).

Note

This method handles a lot of exceptions, some of then are
non-fatal and might lead to retries. When they are fatal,
one of the exceptions documented below is raised. Exceptions are
handled by the stapled.core.excepthandler.stapled_except_handle()
context.

Note

There can be several OCSP URLs. When the first URL fails,
the error handler will increase the url_index and schedule a
new renewal until all URLS have been tried, then continues with
retries from the first again.

	Raises

	
	RenewalRequirementMissing – A requirment for the renewal is
missing.

	OCSPBadResponse – Response is empty, invalid or the status is
not “good”.

	urllib.error.URLError [https://docs.python.org/3/library/urllib.error.html#urllib.error.URLError] – An OCSP url can’t be opened (Python3).

	urllib2.URLError – An OCSP url can’t be opened (Python2).

	Raises

	urllib.error.URLError/urllib2.URLError - when a URL/HTTP error
occurs

	Raises

	socket.error - when a socket error occurs

Todo

Send merge request to ocspbuider, for setting the hostname in
the headers while fetching OCSP records. If accepted the request
library won’t be needed anymore.

	
_check_ocsp_response(ocsp_staple, url)

	Check that the OCSP response says that the status is good. Also
sets stapled.core.certmodel.CertModel.ocsp_staple.valid_until.

	Raises

	OCSPBadResponse – If an empty response is received.

	
_read_full_chain()

	Parses binary data in self.crt_data and parses the content.
The server certificate a.k.a. end_entity is put in
self.end_entity, anything else that has a CA extension is added
to self.intermediates.

Note

At this point it is not clear yet which of the intermediates
is the root and which are actual intermediates.

	Raises

	CertParsingError – If the certificate file can’t be read, it
contains errors or parts of the chain are missing.

	
_validate_cert(ocsp_staple=None)

	Validates the certificate and its chain, including the OCSP staple if
there is one in self.ocsp_staple.

	Parameters

	ocsp_staple (asn1crypto.core.Sequence) – Binary ocsp staple data.

	Return array

	Validated certificate chain.

	Raises

	CertValidationError – If there is any problem with the
certificate chain and/or the staple, e.g. certificate is revoked,
chain is incomplete or invalid (i.e. wrong intermediate with
server certificate), certificate is simply invalid, etc.

Note

At this point it becomes known what the role of the
certiticates in the chain is. With the exception of the root, which
is usually not kept with the intermediates and the certificate
because ever client has its own copy of it.

	
__repr__()

	We return the file name here because this way we can use it as a
short-cut when we assign this object to something.

	
__str__()

	Return a formatted string representation of the object containing:
"<CertModel {}>".format("".join(self.filename))
so it’s clear it’s an object and which file it concerns.

	
__weakref__

	list of weak references to the object (if defined)

Scheduler documentation

Table of Contents

	Scheduler source code

	scheduling

Scheduler source code

scheduling

This is a general purpose scheduler. It does best effort scheduling and
execution of expired items in the order they are added. This also means that
there is no guarantee the tasks will be executed on time every time, in fact
they will always be late, even if just by milliseconds. If you need it to be
done on time, you schedule it early, but remember that it will still be best
effort.

The way this scheduler is supposed to be used is to add a scheduling queue,
then you can add tasks to the queue to either be put in a task queue ASAP, or
at or an absolute time in the future. The queue should be consumed by a worker
thread.

This module defines the following objects:

	
	stapled.scheduling.ScheduledTaskContext

	A context that wraps around any data you want to pass to the scheduler and
which will be added to the task queue when the schedule time expires.

	
	stapled.scheduling.SchedulerThread

	An object that is capable of scheduling and unscheduling tasks that you
can define with stapled.scheduling.ScheduledTaskContext.

	
class stapled.scheduling.ScheduledTaskContext(task_name, subject, sched_time=None, **attributes)

	A context for scheduled tasks, this context can be updated with an
exception count for the last exception, so it can be re-scheduled if it is
the appropriate action.

	
__init__(task_name, subject, sched_time=None, **attributes)

	Initialise a ScheduledTaskContext with a
task name, subject and optional scheduled time. Any remaining keyword
arguments are set as attributes of the task context.

	Parameters

	
	task (str [https://docs.python.org/3/library/stdtypes.html#str]) – A task corresponding to an existing queue in the
target scheduler.

	sched_time (datetime.datetime|int) – Absolute time
(datetime.datetime object) or relative time in seconds (int) to
schedule the task.

	subject (obj) – A subject for the context instance this can be
whatever object you want to pass along to the worker.

	attributes (kwargs) – Any additional data you want to assign to
the context, avoid using names already defined in the context:
scheduler, task, subject, sched_time,
reschedule.

	
scheduler = None

	This attribute will be set automatically when the context is passed
to a scheduler.

	
reschedule(sched_time=None)

	Reschedule this context itself.

	Parameters

	sched_time (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – When should this context be added
back to the task queue

	
__weakref__

	list of weak references to the object (if defined)

	
class stapled.scheduling.SchedulerThread(*args, **kwargs)

	This object can be used to schedule tasks for contexts.

The context should be a ScheduledTaskContext or an
extension of it.. When the scheduled time has passed, the context will be
added back to the internal task queue(s), where it can be consumed by a
worker thread.
When a task is scheduled you can choose to have it added to the task queue
ASAP or at a specified absolute or relative point in time. If you add it
with an absolute time in the past, or a negative relative number, it will
be added to the task queue the first time the scheduler checks expired
tasks schedule times. If you want to run a task ASAP, you probably don’t
that, you should pass sched_time=None instead, it will bypass the
scheduling mechanism and place your task directly into the worker queue.

	
__init__(*args, **kwargs)

	Initialise the thread’s arguments and its parent
threading.Thread [https://docs.python.org/3/library/threading.html#threading.Thread].

	Parameters

	
	queues (iterable) – A list, tuple or any iterable that returns
strings that should be the names of queues.

	sleep (int|float) – The sleep time in seconds between checking the
expired items in the queue (default=1)

	Raises

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If the queue name is already taken (only when queues
kwarg is used).

	
schedule = None

	The schedule contains items indexed by time.

	
scheduled_by_context = None

	Keeping the tasks in reverse order helps for faster unscheduling.

	
scheduled_by_queue = None

	Keeping the tasks per queue name helps faster queue deletion.

	
scheduled_by_subject = None

	To allow removing by subject we keep the scheduled tasks by subject.

	
add_queue(name, max_size=0)

	Add a scheduled queue to the scheduler.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – A unique name for the queue.

	max_size (int [https://docs.python.org/3/library/functions.html#int]) – Maximum queue depth, [default=0 (unlimited)].

	Raises

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If the queue name is already taken.

	
remove_queue(name)

	Remove a scheduled queue from the scheduler.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the existing queue.

	Raises

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If the queue doesn’t exist.

	
add_task(ctx)

	Add a ScheduledTaskContext to be added to the task
queue either ASAP, or at a specific time.

If the context is not unique, the scheduled task will be cancelled
before scheduling the new task.

	Parameters

	ctx (ScheduledTaskContext) – A context containing data for a
worker thread.

	Raises

	
	queue.Queue.Full – If the underlying task queue is full.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If the passed context is not a
ScheduledTaskContext

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If the task queue doesn’t exist.

	
cancel_task(ctx)

	Remove a task from the scheduler.

Note

Tasks that were already queued for a worker to process can’t
be canceled anymore.

	Parameters

	ctx (ScheduledTaskContext) – A context containing data for a
worker thread.

	Return bool

	True for successfully cancelled task or False.

	
get_task(task_name, blocking=True, timeout=None)

	Get a task context from the task queue task.

	Parameters

	
	task_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Task name that refers to an existsing scheduler
queue.

	blocking (bool [https://docs.python.org/3/library/functions.html#bool]) – Wait until there is something to return from the
queue.

	Raises

	
	Queue.Empty – If the underlying task queue is empty and
blocking is False or the timout expires.

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If the task queue does not exist.

	
task_done(task_name)

	Mark a task done on a queue, this up the queue’s counter of completed
tasks.

	Parameters

	task_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The task queue name.

	Raises

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If the task queue does not exist.

	
run()

	Start the scheduler thread.

	
run_all()

	Run all tasks currently queued regardless schedule time.

	
_run(all_tasks=False)

	Runs all scheduled tasks that have a scheduled time < now.

	
cancel_by_subject(subject)

	Cancel scheduled tasks by the task’s context’s subject.

This comes down to: delete anything from the scheduler that relates to
my object X.

	Parameters

	subject (obj) – The object you want all scheduled tasks cancelled
for.

Exception handling

During the OCSP renewal proces lots of things could go wrong, some errors are
recoverable, others can be ignored, still others could be cause by temporary
issues e.g.: a service interruption of the OCSP server in question. So
extensive error handling is done to keep the daemons threads running.

The following is an overview of what can be expected when exceptions occur.

	Exception

	Source

	Raised when?

	Action

	IOError/OSError

	certfinder

	Directory can’t be read.

	Ignore, certfinder will try at every refresh.

	CertFileAccessError

	certfinder

	Certificate file can’t be read.

	Schedule retry 3x n*60s, then 3x, every hour, then ignore. 1

	CertParsingError

	certparser

	Can’t access the certificate file,
doesn’t parse or part of the chain
is missing.

	Ignore, certfinder will try at every refresh.

	StapleBadResponse

	staplerenewer

	The response is empty, invalid or the
status is not “good”.

	Schedule retry 3x n*60s, then 3x, every hour, then twice a day.
indefinately. If it’s not a server issue, wait for the file to change 1

	urllib.error.URLError

	staplerenewer

	An OCSP url can’t be opened.

	We can try again later, maybe there is a server side issue.
Some certificates contain multiple URL’s so we will try each one with
10 seconds intervals and then start from the first again.
Schedule retry 3x n*60s, then 3x, every hour, then then twice a day.

	requests.exceptions.Timeout

	Data didn’t reach us within the expected
time frame.

	requests.exceptions.ReadTimeout

	requests.exceptions.ConnectTimeout

	A connection can’t be established
because the server doesn’t reply within
the expected time frame.

	requests.exceptions.TooManyRedirects

	When the OCSP server redirects us too
many times. Limit is quite high so
probably something is wrong with the
OCSP server.

	requests.exceptions.HTTPError

	A HTTP error code was returned, this can
be a 4xx or 5xx status code.

	requests.exceptions.ConnectionError

	A connection to the OCSP server can’t be
established.

	SocketError

	stapleadder

	A HAProxy socket can not be opened

	Log a critical error. Every “send” action will try to re-open the socket.

	BrokenPipeError

	A HAProxy socket consistently has a
broken pipe

	StapleAdderBadResponse

	HAProxy does not respond with
‘OCSP Response updated!’

	Schedule a retry 3x n*60s, then 3x, every hour, then ignore.

	1(1,2)

	When the certificate file is changed, certfinder will add the file back to the parsing queue.

stapled.core.exceptions

This module holds the application specific exceptions.

	
exception stapled.core.exceptions.OCSPBadResponse

	Raised when a OCSP staple is not valid.

	
exception stapled.core.exceptions.RenewalRequirementMissing

	Raised when a OCSP renewal is run while not all requirements are met.

	
exception stapled.core.exceptions.SocketError

	Raised by the StapleAdder when it is impossible to connect to or
use its socket.

	
exception stapled.core.exceptions.StapleAdderBadResponse

	Raised when HAProxy does not respond with “OCSP Response updated”.

	
exception stapled.core.exceptions.CertFileAccessError

	Raised when a file can’t be accessed at all.

	
exception stapled.core.exceptions.CertParsingError(msg, *args, **kwargs)

	Raised when something went wrong while parsing the certificate file.

	
exception stapled.core.exceptions.CertValidationError

	Raised when validation the certificate chain fails.

stapled.core.excepthandler

This module defines a context in which we can run actions that are likely to
fail because they have intricate dependencies e.g. network connections,
file access, parsing certificates and validating their chains, etc., without
stopping execution of the application. Additionally it will log these errors
and depending on the nature of the error reschedule the task at a time that
seems reasonable, i.e.: we can reasonably expect the issue to be resolved by
that time.

It is generally considered bad practice to catch all remaining exceptions,
however this is a daemon. We can’t afford it to get stuck or crashed. So in the
interest of staying alive, if an exception is not caught specifically, the
handler will catch it, generate a stack trace and save if in a file in the
current working directory. A log entry will be created explaining that there
was an exception, inform about the location of the stack trace dump and that
the context will be dropped. It will also kindly request the administrator to
contact the developers so the exception can be caught in a future release which
will probably increase stability and might result in a retry rather than just
dropping the context.

Dropping the context effectively means that a retry won’t occur and since the
context will have no more references, it will be garbage collected.
There is however still a reference to the certificate model in
core.daemon.run.models. With no scheduled actions it will
just sit idle, until the finder detects that it is either removed – which will
cause the entry in core.daemon.run.models to be deleted, or
it is changed. If the certificate file is changed the finder will schedule
schedule a parsing action for it and it will be picked up again. Hopefully the
issue that caused the uncaught exception will be resolved, if not, if will be
caught again and the cycle continues.

	
stapled.core.excepthandler.LOG_DIR = '/var/log/stapled/'

	This is a global variable that is overridden by stapled.__main__ with
the command line argument: --logdir

	
stapled.core.excepthandler.stapled_except_handle(*args, **kwds)

	Handle lots of potential errors and reschedule failed action contexts.

	
stapled.core.excepthandler.handle_file_error(exc)

	Wrapper for handling IOError and OSError logging..

Can’t use FileNotFoundError and PermissionError because they don’t exist in
Python 2.7.x yet. This won’t be required after we remove Python 2.7.x
support.
:param Exception exc: OSError or IOError to handle logging for.
:return str: Reason for OSError/IOError.

	
stapled.core.excepthandler.delete_ocsp_for_context(ctx)

	When something bad happens, sometimes it is good to delete a related bad
OCSP file so it can’t be served any more.

Todo

Check that HAProxy doesn’t cache this, it probably does, we need
to be able to tell it not to remember it.

	
stapled.core.excepthandler.dump_stack_trace(ctx, exc)

	Examine the last exception and dump a stack trace to a file, if it fails
due to an IOError or OSError, log that it failed so the a sysadmin
may make the directory writeable.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 stapled	

 	
 	
 stapled.core.certfinder	

 	
 	
 stapled.core.certmodel	

 	
 	
 stapled.core.certparser	

 	
 	
 stapled.core.daemon	

 	
 	
 stapled.core.excepthandler	

 	
 	
 stapled.core.exceptions	

 	
 	
 stapled.core.stapleadder	

 	
 	
 stapled.core.staplerenewer	

 	
 	
 stapled.core.taskcontext	

 	
 	
 stapled.scheduling	

Index

 _
 | A
 | C
 | D
 | F
 | G
 | H
 | L
 | M
 | O
 | P
 | R
 | S
 | T

_

 	
 	__del__() (stapled.core.stapleadder.StapleAdder method)

 	__init__() (stapled.core.certfinder.CertFinderThread method)

 	(stapled.core.certmodel.CertModel method)

 	(stapled.core.certparser.CertParserThread method)

 	(stapled.core.stapleadder.StapleAdder method)

 	(stapled.core.staplerenewer.StapleRenewerThread method)

 	(stapled.core.taskcontext.StapleTaskContext method)

 	(stapled.scheduling.ScheduledTaskContext method)

 	(stapled.scheduling.SchedulerThread method)

 	__repr__() (stapled.core.certmodel.CertModel method)

 	__str__() (stapled.core.certmodel.CertModel method)

 	
 	__weakref__ (stapled.core.certmodel.CertModel attribute)

 	(stapled.scheduling.ScheduledTaskContext attribute)

 	_check_ocsp_response() (stapled.core.certmodel.CertModel method)

 	_del_model() (stapled.core.certfinder.CertFinderThread method)

 	_find_new_certs() (stapled.core.certfinder.CertFinderThread method)

 	_open_socket() (stapled.core.stapleadder.StapleAdder method)

 	_re_open_socket() (stapled.core.stapleadder.StapleAdder method)

 	_read_full_chain() (stapled.core.certmodel.CertModel method)

 	_run() (stapled.scheduling.SchedulerThread method)

 	_send() (stapled.core.stapleadder.StapleAdder static method)

 	_update_cached_certs() (stapled.core.certfinder.CertFinderThread method)

 	_validate_cert() (stapled.core.certmodel.CertModel method)

A

 	
 	add_queue() (stapled.scheduling.SchedulerThread method)

 	
 	add_staple() (stapled.core.stapleadder.StapleAdder method)

 	add_task() (stapled.scheduling.SchedulerThread method)

C

 	
 	cancel_by_subject() (stapled.scheduling.SchedulerThread method)

 	cancel_task() (stapled.scheduling.SchedulerThread method)

 	CertFileAccessError

 	CertFinderThread (class in stapled.core.certfinder)

 	CertModel (class in stapled.core.certmodel)

 	
 	CertParserThread (class in stapled.core.certparser)

 	CertParsingError

 	CertValidationError

 	check_ignore() (stapled.core.certfinder.CertFinderThread method)

 	CONNECT_COMMANDS (stapled.core.stapleadder.StapleAdder attribute)

D

 	
 	DEFAULT_CONFIG_FILE_LOCATIONS (in module stapled)

 	DEFAULT_REFRESH_INTERVAL (in module stapled)

 	
 	delete_ocsp_for_context() (in module stapled.core.excepthandler)

 	dump_stack_trace() (in module stapled.core.excepthandler)

F

 	
 	FILE_EXTENSIONS_DEFAULT (in module stapled)

G

 	
 	get_task() (stapled.scheduling.SchedulerThread method)

H

 	
 	handle_file_error() (in module stapled.core.excepthandler)

L

 	
 	LOCAL_LIB_MODE (in module stapled)

 	
 	LOG_DIR (in module stapled)

 	(in module stapled.core.excepthandler)

M

 	
 	MAX_RESTART_THREADS (in module stapled)

O

 	
 	OCSP_ADD (stapled.core.stapleadder.StapleAdder attribute)

 	
 	OCSPBadResponse

P

 	
 	parse_certificate() (stapled.core.certparser.CertParserThread method)

 	
 	parse_crt_file() (stapled.core.certmodel.CertModel method)

R

 	
 	recycle_staple() (stapled.core.certmodel.CertModel method)

 	refresh() (stapled.core.certfinder.CertFinderThread method)

 	remove_queue() (stapled.scheduling.SchedulerThread method)

 	renew_ocsp_staple() (stapled.core.certmodel.CertModel method)

 	RenewalRequirementMissing

 	reschedule() (stapled.scheduling.ScheduledTaskContext method)

 	
 	run() (stapled.core.certfinder.CertFinderThread method)

 	(stapled.core.certparser.CertParserThread method)

 	(stapled.core.stapleadder.StapleAdder method)

 	(stapled.core.staplerenewer.StapleRenewerThread method)

 	(stapled.scheduling.SchedulerThread method)

 	run_all() (stapled.scheduling.SchedulerThread method)

S

 	
 	schedule (stapled.scheduling.SchedulerThread attribute)

 	schedule_renew() (stapled.core.staplerenewer.StapleRenewerThread method)

 	scheduled_by_context (stapled.scheduling.SchedulerThread attribute)

 	scheduled_by_queue (stapled.scheduling.SchedulerThread attribute)

 	scheduled_by_subject (stapled.scheduling.SchedulerThread attribute)

 	ScheduledTaskContext (class in stapled.scheduling)

 	scheduler (stapled.scheduling.ScheduledTaskContext attribute)

 	SchedulerThread (class in stapled.scheduling)

 	send() (stapled.core.stapleadder.StapleAdder method)

 	set_last_exception() (stapled.core.taskcontext.StapleTaskContext method)

 	SocketError

 	StapleAdder (class in stapled.core.stapleadder)

 	StapleAdderBadResponse

 	
 	stapled (module)

 	stapled.core.certfinder (module)

 	stapled.core.certmodel (module)

 	stapled.core.certparser (module)

 	stapled.core.daemon (module)

 	stapled.core.excepthandler (module)

 	stapled.core.exceptions (module)

 	stapled.core.stapleadder (module)

 	stapled.core.staplerenewer (module)

 	stapled.core.taskcontext (module)

 	stapled.scheduling (module)

 	stapled_except_handle() (in module stapled.core.excepthandler)

 	StapleRenewerThread (class in stapled.core.staplerenewer)

 	StapleTaskContext (class in stapled.core.taskcontext)

T

 	
 	task_done() (stapled.scheduling.SchedulerThread method)

 	
 	TASK_NAME (stapled.core.stapleadder.StapleAdder attribute)

 _static/comment-bright.png

_images/stapled_128.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_images/graphviz-851263a915e842bce2cd880e8a99cc306243d925.png
CertFinderThread

schedule next renewal

SchedulerThread
€]

schedule parsing schedule renewal

CertParserThread

renew staple add staple

StapleRenewerThread StapleAdder

renew staple add staple

Certificate Authority HAProxy

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Introduction

 		
 Quick start

 		
 Documentation

 		
 System requirements

 		
 Installation

 		
 From github (for developers)

 		
 Upgrading

 		
 Troubleshooting

 		
 Compiling this package

 		
 Build locally

 		
 Docker build

 		
 Packages

 		
 Using stapled

 		
 Named Arguments

 		
 Testing stapled

 		
 Caveats

 		
 Module description

 		
 Daemon documentation

 		
 Source code

 		
 stapled.main

 		
 stapled.core.daemon

 		
 stapled.core.taskcontext

 		
 stapled.core.certfinder

 		
 stapled.core.certparser

 		
 stapled.core.staplerenewer

 		
 stapled.core.stapleadder

 		
 stapled.core.certmodel

 		
 Scheduler documentation

 		
 Scheduler source code

 		
 scheduling

 		
 Exception handling

 		
 stapled.core.exceptions

 		
 stapled.core.excepthandler

_static/up-pressed.png

_static/up.png

_static/plus.png

