

 Navigation

 	
 index

 	
 next |

 	StackStrap 0.2.2 documentation

StackStrap documentation

A tool that uses vagrant + salt to make development more awesome.

Overview

Let’s face it, writing code is awesome, but writing code in a team without
a great strategy and a solid devops team supporting you can get really
frustrating when trying to manage development environments within the
team.

Vagrant [http://vagrantup.com/] does an amazing job of automating the task of bringing up virtual
machines for development, but it doesn’t do too much in the way of configuring
the operating system. Enter it’s provisioners [http://docs.vagrantup.com/v2/provisioning/index.html], these allow you the ability
to configure the system after Vagrant creates it but knowing how you should be
configuring the system is a whole other question.

StackStrap aims to ease this situation by utilizing the Salt [http://saltstack.com/] provisioner in
Vagrant along with a community repository [https://github.com/stackstrap/stackstrap-salt] of Salt [http://saltstack.com/] states that allow you to
quickly and reliably create development environments using our simple macros.
These macros are coupled with a Jinja [http://jinja.pocoo.org] parsed Template [https://github.com/stackstrap/stackstrap-django] that lays out your ideal
project file structure. This way you can easily strap your favourite framework
in just the way your team likes to use it. You can have a bootable development
ready environment to play with in minutes.

Here be dragons

January 1st, 2014: New year, new approach. We’ve done a complete 180 degree
turn on the approach for how stackstrap works. If you used it prior to Jan 1
2014 please make sure to read the docs again to familiarize yourself with the
changes. They are drastic.

Getting Help

You can find us in #stackstrap on freenode if you want to chat or need help.

There is also a Google Group [https://groups.google.com/d/forum/stackstrap] (stackstrap@googlegroups.com).

Contents

	Installing StackStrap
	Installing Vagrant

	Installing StackStrap

	Using StackStrap
	Adding a template

	Creating a new project

	Command line help

	Project Templates
	Project Template meta-data

	Salt Files

 Copyright 2014, Evan Borgstrom.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	StackStrap 0.2.2 documentation

Installing StackStrap

StackStrap is a command line tool written in Python. It will install on any
Mac OS X or Linux computer. Windows usage is definitely possible but has not
been documented yet.

Installing Vagrant

Since StackStrap uses Vagrant [http://vagrantup.com/] for the management of the virtual machine images
that will be used for development you will need to have Vagrant [http://vagrantup.com/] installed on
your workstation. See the Vagrant Installation Documentation [http://docs.vagrantup.com/v2/installation/index.html] for
instructions.

Installing StackStrap

It’s very easy to install StackStrap as it’s a standard Python package that’s
available on the cheeseshop [http://pypi.python.org/pypi/stackstrap/].

The documentation will install it globally using easy_install but you can
certainly install it using pip to a virtualenv if you desire.

Easy Installation

To install StackStrap we’re going to be using the easy_install command as
root so that StackStrap will be globally available.

Open up a terminal and run the following command:

sudo easy_install stackstrap

This will install StackStrap and all of it’s dependencies. It will place a
command named stackstrap in your $PATH so that you can use it from
any where on your system.

The better way - pip

The Easy Installation method is a very fast way to get up and running with
StackStrap, but using easy_install is not the best way to install and
manage packages on your system. You should be using pip to do this. For
background on why check out this Stack Overflow question: Why use pip over
easy_install? [http://stackoverflow.com/questions/3220404/why-use-pip-over-easy-install]

However, unlike easy_install you must first install pip before it can
be used.

Mac OS X

On OS X you first need to have the developer command line tools [http://stackoverflow.com/a/9329325] installed.
Then you need to decide between between two different package managers.

Homebrew [http://brew.sh/] is a newer package manager that integrates into your base OS X
system libraries and allows for quick & easy installation of packages into a
specific directory, named Cellar, so that it can easily be removed if
necessary.

To get running with Homebrew [http://brew.sh/]:

	Install Homebrew [https://github.com/Homebrew/homebrew/wiki/Installation]

	brew install python

	pip install stackstrap

Mac Ports [http://www.macports.org/] is package manager that has been around for a longer time and does
not integrate with the base OS X system libraries (the FAQ explains why [http://trac.macports.org/wiki/FAQ#ownlibs]). It
allows for easy installation and use of multiple Python versions (ie. 2.6, 2.7,
3.2 & 3.3).

To get running with Mac Ports [http://www.macports.org/] and Python 2.7:

	Install Mac Ports [http://www.macports.org/install.php]

	sudo port selfupdate

	sudo port install py27-pip

	sudo port select --set pip pip27

	sudo pip install stackstrap

Note

IMHO
This section contains the opinions of the developers of StackStrap. These
are not the only two methods of installing pip on OS X. You can also install
pip directly to the base OS X system or use Fink. (Plus probably some
others)

Linux

If you’re on a Linux system your package manage will most likely have a package
for pip ready for you to use.

On Debian based systems:

sudo apt-get install python-pip

On RedHat based systems with yum:

sudo yum install python-pip

Windows

If you’re on a Windows sytem then you’ll need to install the setuptools and pip
packages after install python.

See the following StackOverflow question for info: How to install pip on
windows? [http://stackoverflow.com/a/12476379]

 Copyright 2014, Evan Borgstrom.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	StackStrap 0.2.2 documentation

Using StackStrap

Once StackStrap has been installed you’ll have the stackstrap command
available to you in the terminal. You’ll use this command to create new
projects from a template repository.

Adding a template

To add a template use the stackstrap template add command and provide it
a name along with the GIT URL of a StackStrap template:

stackstrap template add django https://github.com/stackstrap/stackstrap-django.git

Creating a new project

To create a project use the stackstrap create command and provide it a
project name and the name of an available template:

stackstrap create myproject django

Command line help

The stackstrap command has built in documentation, run it with the -h
or --help flag for more information on the options you can set from the
command line.

You can also get help about a specific command by passing it help:

stackstrap create --help

 Copyright 2014, Evan Borgstrom.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	StackStrap 0.2.2 documentation

Project Templates

Project Templates are GIT repositories that contain a base layout for a project
and are coupled with pillar & state data that Salt uses to provision the
project.

The files inside the template can be parsed as Jinja templates, by marking
them to be parsed in the meta-data, if you need any of your files to be
updated (which you pretty much always do).

You can also apply the same template logic to path names so that you can apply
transformations to the filesystem to ensure that best practicies for naming
and consistency are applied.

The fact that we have Project Templates and Jinja has a template engine that
we use for files can become confusing. To help with the confusion we will
always refer to our Project Templates with uppercase letters and to Jinja
templates with a lowercase ‘t’.

Project Template meta-data

The meta-data for Project Templates is stored within a file at the root of
the project named stackstrap.yml. This directory only exists in the
Template itsef and is not present in the projects that are generated.

stackstrap.yml

When loaing a Template into a Project, Stackstrap will take time to parse files
and paths with the Jinja template engine. This allows you to seed your Template
with project specific name spacing and other goodies like secrets.

Defining your Template for Stackstrap

Give StackStrap some information about your Template so that it can help you set
it up.

	`template_name` - a short name to describe the Project Template

	`template_author` - your name (formatted as “Full Name <email@address>”)

	`template_description` - a longer multi-line description of the Project Template

Example:

template_name: "Flask with Capistrano (nginx + uwsgi)"
template_author: "Brent Smyth <brent@fatbox.ca>"
template_description:
 This template contains a Flask app with Flask Script for managing it.
 It is deployed using nginx as the HTTP endpoint and uwsgi as the
 application server.

Cleaning up files

You may have files in your Template which you do not want in your Projects.
Perhaps you have a README that is only for the Template and another that
you want to use for the Project. In this case just remove the README here
and move the other one into place with a path transform (below):

stackstrap:
 cleanup:
 - README

Parsing files as Jinja templates

To tell StackStrap that a file should be passed through the Jinja template
engine when creating a project instance you need to define a list named
file_templates inside the stackstrap name space containing the file
paths relative to the root of the project:

stackstrap:
 file_templates:
 - .ruby-gemset
 - deployment/deploy.rb
 - deployment/js_compress.json
 - foundation/config.rb

Transforming filesystem paths

To tell StackStrap that filesystem paths should be transformed based on the
context data when creating a project instance you need to define a dictionary
named path_templates inside the stackstrap name space containing the
original path name as the key and the transformed path name, using the
available context variables, as the value:

stackstrap:
 path_templates:
 - PROJECT-README: README
 - 'project_app/something/else': 'project_app/something/{{ project.id }}'
 - 'project_app': '{{ project.slug }}_app'

Filesystem paths are transformed in the order they are listed, so list your
more specific matches first as in the example above. Also, the filesystem
transforms are applied after the file_templates (above) so if you’re
specifying a file to both be treated as a template and have its filesystem
path transformed specify the original path name in the file_templates
list and not the transformed one.

Available context variables

When the pillar data and your templates are parsed the following variables are
made available in the context:

	`name` - The computer friendly name which you chose for the project.
You can use this to seed your project’s files and paths.

Salt Files

The salt macros and pillar data are stored in a folder called salt at the
root of the project.

TODO: Document this better.

 Copyright 2014, Evan Borgstrom.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	StackStrap 0.2.2 documentation

Index

 Copyright 2014, Evan Borgstrom.
 Created using Sphinx 1.2.2.

 _static/plus.png

development.html

 Navigation

 		
 index

 		StackStrap 0.2.2 documentation »

Development of StackStrap

You need to have the following software installed on your machine:

		VirtualBox [http://virtualbox.org/] (4.3.0 or greater)

		Vagrant [http://vagrantup.com/] (1.3.5 or greater)

Get the code

Clone this repository to a local directory on your workstation and then fetch
the submodules:

git clone https://github.com/stackstrap/stackstrap.git
git submodule init
git submodule update

The salt states are developed in a community repository [https://github.com/stackstrap/stackstrap-salt] and tracked as a
submodule of the main repository.

Setting up the salt master keys

If this is the first time this vagrant instance will be brought up then you
need to generate your master & minion keys so that hey can be preseeded:

openssl genrsa -out salt/keys/master.pem 2048
openssl rsa -in salt/keys/master.pem -pubout > salt/keys/master.pub
openssl genrsa -out salt/keys/minion.pem 2048
openssl rsa -in salt/keys/minion.pem -pubout > salt/keys/minion.pub

Once you have done this you can halt and up the vagrant instance all you want.
The keys are marked to be ignored by git so you’ll need to do this for each
development instance you setup.

Bringing up the master

A simple vagrant up should bring up your master instance and run the salt
provisioner on it.

Working with the Django project

Since StackStrap is a Django [http://djangoproject.com/] project it means you’ll often need to run
commands via the django-admin.py script we’ve bundled a handy shortcut
in a fabfile.py file for use with Fabric [http://fabfile.org/].

The fabfile.py adds a new command django_admin which will pass the
argument to the actual django-admin.py script with the proper environment
setup.

Example:

fab django_admin:syncdb

For multiple arguments quote the whole argument:

fab "django_admin:runserver 0:6000"

There’s also a shortcut called runserver that starts the development
server on the correct port:

fab runserver

 © Copyright 2014, Evan Borgstrom.
 Created using Sphinx 1.2.2.

_static/comment.png

search.html

 Navigation

 		
 index

 		StackStrap 0.2.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Evan Borgstrom.
 Created using Sphinx 1.2.2.

_static/comment-close.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up.png

_static/down.png

_static/down-pressed.png

_static/file.png

_static/minus.png

