
Luma.OLED Documentation
Release 2.2.4

Richard Hull and contributors

Feb 17, 2017

Contents

1 Introduction 1

2 Python usage 5
2.1 Color Model . 6
2.2 Landscape / Portrait Orientation . 6
2.3 Examples . 6
2.4 Emulators . 7

3 Hardware 9
3.1 Identifying your serial interface . 9
3.2 I2C vs. SPI . 9
3.3 Tips for connecting the display . 9
3.4 Pre-requisites . 10

4 Installation 13
4.1 From PyPI . 13
4.2 From source . 14

5 API Documentation 15
5.1 Breaking changes . 15
5.2 luma.core.device . 16
5.3 luma.core.emulator . 17
5.4 luma.core.error . 21
5.5 luma.core.mixin . 22
5.6 luma.core.render . 22
5.7 luma.core.serial . 22
5.8 luma.core.threadpool . 24
5.9 luma.core.virtual . 25
5.10 luma.oled.device . 28

6 References 33

7 Contributing 35
7.1 GitHub . 35
7.2 Contributors . 35

8 ChangeLog 37

i

9 The MIT License (MIT) 39

Python Module Index 41

ii

CHAPTER 1

Introduction

Interfacing OLED matrix displays with the SSD1306, SSD1322, SSD1325, SSD1331 or SH1106 driver in Python 2
or 3 using I2C/SPI on the Raspberry Pi and other linux-based single-board computers: the library provides a Pillow-
compatible drawing canvas, and other functionality to support:

• scrolling/panning capability,

• terminal-style printing,

• state management,

• color/greyscale (where supported),

• dithering to monochrome

The SSD1306 display pictured below is 128 x 64 pixels, and the board is tiny, and will fit neatly inside the RPi case.

1

https://github.com/rm-hull/luma.oled/wiki/Usage-&-Benchmarking

Luma.OLED Documentation, Release 2.2.4

2 Chapter 1. Introduction

Luma.OLED Documentation, Release 2.2.4

See also:

Further technical information for the specific devices can be found in the datasheets below:

• SSD1306

• SSD1322

• SSD1325

• SSD1331

• SH1106

Benchmarks for tested devices can be found in the wiki.

As well as display drivers for various physical OLED devices there are emulators that run in real-time (with pygame)
and others that can take screenshots, or assemble animated GIFs, as per the examples below (source code for these is
available in the luma.examples git repository:

3

https://github.com/rm-hull/luma.oled/wiki/Usage-&-Benchmarking
https://github.com/rm-hull/luma.examples

Luma.OLED Documentation, Release 2.2.4

4 Chapter 1. Introduction

CHAPTER 2

Python usage

OLED displays can be driven with python using the varous implementations in the luma.oled.device package.
There are several device classes available and usage is very simple if you have ever used Pillow or PIL.

First, import and initialise the device:

from luma.core.serial import i2c, spi
from luma.core.render import canvas
from luma.oled.device import ssd1306, ssd1325, ssd1331, sh1106

rev.1 users set port=0
substitute spi(device=0, port=0) below if using that interface
serial = i2c(port=1, address=0x3C)

substitute ssd1331(...) or sh1106(...) below if using that device
device = ssd1306(serial)

The display device should now be configured for use. The specific luma.oled.device.ssd1306, luma.
oled.device.ssd1325, luma.oled.device.ssd1331, or luma.oled.device.sh1106, classes all
expose a display() method which takes an image with attributes consistent with the capabilities of the device.
However, for most cases, for drawing text and graphics primitives, the canvas class should be used as follows:

with canvas(device) as draw:
draw.rectangle(device.bounding_box, outline="white", fill="black")
draw.text((30, 40), "Hello World", fill="white")

The luma.core.render.canvas class automatically creates an PIL.ImageDraw object of the correct dimen-
sions and bit depth suitable for the device, so you may then call the usual Pillow methods to draw onto the canvas.

As soon as the with scope is ended, the resultant image is automatically flushed to the device’s display memory and
the PIL.ImageDraw object is garbage collected.

5

https://pillow.readthedocs.io/en/latest/
https://pillow.readthedocs.io/en/latest/reference/ImageDraw.html#module-PIL.ImageDraw
https://pillow.readthedocs.io/en/latest/reference/ImageDraw.html#module-PIL.ImageDraw

Luma.OLED Documentation, Release 2.2.4

Color Model

Any of the standard PIL.ImageColor color formats may be used, but since the SSD1306 and SH1106 OLEDs are
monochrome, only the HTML color names "black" and "white" values should really be used; in fact, by default,
any value other than black is treated as white. The luma.core.canvas object does have a dither flag which if
set to True, will convert color drawings to a dithered monochrome effect (see the 3d_box.py example, below).

with canvas(device, dither=True) as draw:
draw.rectangle((10, 10, 30, 30), outline="white", fill="red")

There is no such constraint on the SSD1331 OLED which features 16-bit RGB colors: 24-bit RGB images are down-
sized to 16-bit using a 565 scheme.

The SSD1322 and SSD1325 OLEDs both support 16 greyscale graduations: 24-bit RGB images are downsized to
4-bit using a Luma conversion which is approximately calculated as follows:

Y' = 0.299 R' + 0.587 G' + 0.114 B'

Landscape / Portrait Orientation

By default the display will be oriented in landscape mode (128x64 pixels for the SSD1306, for example). Should you
have an application that requires the display to be mounted in a portrait aspect, then add a rotate=N parameter when
creating the device:

from luma.core.serial import i2c
from luma.core.render import canvas
from luma.oled.device import ssd1306, ssd1325, ssd1331, sh1106

serial = i2c(port=1, address=0x3C)
device = ssd1306(serial, rotate=1)

Box and text rendered in portrait mode
with canvas(device) as draw:

draw.rectangle(device.bounding_box, outline="white", fill="black")
draw.text((10, 40), "Hello World", fill="white")

N should be a value of 0, 1, 2 or 3 only, where 0 is no rotation, 1 is rotate 90° clockwise, 2 is 180° rotation and 3
represents 270° rotation.

The device.size, device.width and device.height properties reflect the rotated dimensions rather than
the physical dimensions.

Examples

After installing the library, head over to the luma.examples repository, and try running the following examples (and
more):

6 Chapter 2. Python usage

https://pillow.readthedocs.io/en/latest/reference/ImageColor.html#module-PIL.ImageColor
https://github.com/rm-hull/luma.examples

Luma.OLED Documentation, Release 2.2.4

Example Description
3d_box.py Rotating 3D box wireframe & color dithering
bounce.py Display a bouncing ball animation and frames per second
carousel.py Showcase viewport and hotspot functionality
clock.py An analog clockface with date & time
colors.py Color rendering demo
crawl.py A vertical scrolling demo, which should be familiar
demo.py Use misc draw commands to create a simple image
game_of_life.py Conway’s game of life
grayscale.py Greyscale rendering demo
invaders.py Space Invaders demo
maze.py Maze generator
perfloop.py Simple benchmarking utility to measure performance
pi_logo.py Display the Raspberry Pi logo (loads image as .png)
savepoint.py Example of savepoint/restore functionality
starfield.py 3D starfield simulation
sys_info.py Display basic system information
terminal.py Simple println capabilities
tv_snow.py Example image-blitting
tweet_scroll.py Using Twitter’s Streaming API to display scrolling notifications
welcome.py Unicode font rendering & scrolling

Further details of how to run the examples is shown in the example repo’s README.

Emulators

There are various display emulators available for running code against, for debugging and screen capture functionality:

• The luma.core.emulator.capture device will persist a numbered PNG file to disk every time its
display method is called.

• The luma.core.emulator.gifanim device will record every image when its displaymethod is called,
and on program exit (or Ctrl-C), will assemble the images into an animated GIF.

• The luma.core.emulator.pygame device uses the pygame library to render the displayed image to a
pygame display surface.

Invoke the demos with:

$ python examples/clock.py -d capture

or:

$ python examples/clock.py -d pygame

Note: Pygame is required to use any of the emulated devices, but it is NOT installed as a dependency by default, and
so must be manually installed before using any of these emulation devices (e.g. pip install pygame).

2.4. Emulators 7

Luma.OLED Documentation, Release 2.2.4

8 Chapter 2. Python usage

CHAPTER 3

Hardware

Identifying your serial interface

You can determine if you have an I2C or a SPI interface by counting the number of pins on your card. An I2C display
will have 4 pins while an SPI interface will have 6 or 7 pins.

If you have a SPI display, check the back of your display for a configuration such as this:

For this display, the two 0 Ohm (jumper) resistors have been connected to “0” and the table shows that “0 0” is 4-wire
SPI. That is the type of connection that is currently supported by the SPI mode of this library.

A list of tested devices can be found in the wiki.

I2C vs. SPI

If you have not yet purchased your display, you may be wondering if you should get an I2C or SPI display. The basic
trade-off is that I2C will be easier to connect because it has fewer pins while SPI may have a faster display update rate
due to running at a higher frequency and having less overhead (see benchmarks).

Tips for connecting the display

• If you don’t want to solder directly on the Pi, get 2.54mm 40 pin female single row headers, cut them to length,
push them onto the Pi pins, then solder wires to the headers.

• If you need to remove existing pins to connect wires, be careful to heat each pin thoroughly, or circuit board
traces may be broken.

9

https://github.com/rm-hull/luma.oled/wiki/Usage-&-Benchmarking
https://github.com/rm-hull/luma.oled/wiki/Usage-&-Benchmarking

Luma.OLED Documentation, Release 2.2.4

• Triple check your connections. In particular, do not reverse VCC and GND.

Pre-requisites

I2C

The P1 header pins should be connected as follows:

OLED Pin Name Remarks RPi Pin RPi Function
1 GND Ground P01-6 GND
2 VCC +3.3V Power P01-1 3V3
3 SCL Clock P01-5 GPIO 3 (SCL)
4 SDA Data P01-3 GPIO 2 (SDA)

You can also solder the wires directly to the underside of the RPi GPIO pins.

See also:

Alternatively, on rev.2 RPi’s, right next to the male pins of the P1 header, there is a bare P5 header which features I2C
channel 0, although this doesn’t appear to be initially enabled and may be configured for use with the Camera module.

OLED Pin Name Remarks RPi Pin RPi Function Location
1 GND Ground P5-07 GND
2 VCC +3.3V Power P5-02 3V3
3 SCL Clock P5-04 GPIO 29 (SCL)
4 SDA Data P5-03 GPIO 28 (SDA)

Ensure that the I2C kernel driver is enabled:

$ dmesg | grep i2c
[4.925554] bcm2708_i2c 20804000.i2c: BSC1 Controller at 0x20804000 (irq 79)
→˓(baudrate 100000)
[4.929325] i2c /dev entries driver

or:

$ lsmod | grep i2c
i2c_dev 5769 0
i2c_bcm2708 4943 0
regmap_i2c 1661 3 snd_soc_pcm512x,snd_soc_wm8804,snd_soc_core

If you have no kernel modules listed and nothing is showing using dmesg then this implies the kernel I2C driver is
not loaded. Enable the I2C as follows:

$ sudo raspi-config
> Advanced Options > A7 I2C

After rebooting re-check that the dmesg | grep i2c command shows whether I2C driver is loaded before pro-
ceeding. You can also enable I2C manually if the raspi-config utility is not available.

Optionally, to improve performance, increase the I2C baudrate from the default of 100KHz to 400KHz by altering
/boot/config.txt to include:

dtparam=i2c_arm=on,i2c_baudrate=400000

Then reboot.

Next, add your user to the i2c group and install i2c-tools:

10 Chapter 3. Hardware

http://elinux.org/RPiconfig#Device_Tree

Luma.OLED Documentation, Release 2.2.4

$ sudo usermod -a -G i2c pi
$ sudo apt-get install i2c-tools

Logout and in again so that the group membership permissions take effect, and then check that the device is commu-
nicating properly (if using a rev.1 board, use 0 for the bus, not 1):

$ i2cdetect -y 1
0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- UU 3c -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

According to the man-page, “UU” means that probing was skipped, because the address was in use by a driver. It
suggest that there is a chip at that address. Indeed the documentation for the device indicates it uses two addresses.

SPI

The GPIO pins used for this SPI connection are the same for all versions of the Raspberry Pi, up to and including the
Raspberry Pi 3 B.

OLED Pin Name Remarks RPi Pin RPi Function
1 VCC +3.3V Power P01-17 3V3
2 GND Ground P01-20 GND
3 D0 Clock P01-23 GPIO 11 (SCLK)
4 D1 MOSI P01-19 GPIO 10 (MOSI)
5 RST Reset P01-22 GPIO 25
6 DC Data/Command P01-18 GPIO 24
7 CS Chip Select P01-24 GPIO 8 (CE0)

Note:

• When using the 4-wire SPI connection, Data/Command is an “out of band” signal that tells the controller if
you’re sending commands or display data. This line is not a part of SPI and the library controls it with a separate
GPIO pin. With 3-wire SPI and I2C, the Data/Command signal is sent “in band”.

• If you’re already using the listed GPIO pins for Data/Command and/or Reset, you can select other pins and pass
a bcm_DC and/or a bcm_RST argument specifying the new BCM pin numbers in your serial interface create
call.

• The use of the terms 4-wire and 3-wire SPI are a bit confusing because, in most SPI documentation, the terms
are used to describe the regular 4-wire configuration of SPI and a 3-wire mode where the input and output lines,
MOSI and MISO, have been combined into a single line called SISO. However, in the context of these OLED
controllers, 4-wire means MOSI + Data/Command and 3-wire means Data/Command sent as an extra bit over
MOSI.

• Because CS is connected to CE0, the display is available on SPI port 0. You can connect it to CE1 to have it
available on port 1. If so, pass port=1 in your serial interface create call.

Enable the SPI port:

3.4. Pre-requisites 11

Luma.OLED Documentation, Release 2.2.4

$ sudo raspi-config
> Advanced Options > A6 SPI

If raspi-config is not available, enabling the SPI port can be done manually.

Ensure that the SPI kernel driver is enabled:

$ ls -l /dev/spi*
crw-rw---- 1 root spi 153, 0 Nov 25 08:32 /dev/spidev0.0
crw-rw---- 1 root spi 153, 1 Nov 25 08:32 /dev/spidev0.1

or:

$ lsmod | grep spi
spi_bcm2835 6678 0

Then add your user to the spi and gpio groups:

$ sudo usermod -a -G spi,gpio pi

Log out and back in again to ensure that the group permissions are applied successfully.

12 Chapter 3. Hardware

http://elinux.org/RPiconfig#Device_Tree

CHAPTER 4

Installation

Warning: Ensure that the Pre-requisites from the previous section have been performed, checked and tested
before proceeding.

Note: The library has been tested against Python 2.7, 3.4 and 3.5.

For Python3 installation, substitute the following in the instructions below.

• pip pip3,

• python python3,

• python-dev python3-dev,

• python-pip python3-pip.

It was originally tested with Raspbian on a rev.2 model B, with a vanilla kernel version 4.1.16+, and has subsequently
been tested on Raspberry Pi model A, model B2 and 3B (Debian Jessie) and OrangePi Zero (Armbian Jessie).

From PyPI

Note: This is the preferred installation mechanism.

Install the latest version of the library directly from PyPI:

$ sudo apt-get install python-dev python-pip libfreetype6-dev libjpeg8-dev
$ sudo -H pip install --upgrade pip
$ sudo -H pip install --upgrade luma.oled

13

https://pypi.python.org/pypi?:action=display&name=luma.oled

Luma.OLED Documentation, Release 2.2.4

From source

For Python 2, from the bash prompt, enter (for Raspbian, other OSes may be different):

$ git clone https://github.com/rm-hull/luma.oled.git
$ cd luma.oled
$ sudo apt-get install python-dev python-pip libfreetype6-dev libjpeg8-dev
$ sudo python setup.py install

14 Chapter 4. Installation

CHAPTER 5

API Documentation

OLED display driver for SSD1306, SSD1322, SSD1325, SSD1331 and SH1106 devices.

luma.core.device.device

luma.core.device.dummy

luma.core.emulator.emulator

luma.oled.device.sh1106

luma.oled.device.ssd1306

luma.oled.device.ssd1322

luma.oled.device.ssd1325

luma.oled.device.ssd1331
luma.core.mixin.capabilities

luma.core.virtual.history

luma.core.virtual.hotspot

luma.core.virtual.viewport

luma.core.emulator.capture

luma.core.emulator.dummy

luma.core.emulator.gifanim

luma.core.emulator.pygame

luma.core.emulator.transformer

luma.core.virtual.snapshot

luma.core.virtual.terminal

Breaking changes

Warning: Version 2.0.0 was released on 11 January 2017: this came with a rename of the project in github from
ssd1306 to luma.oled to reflect the changing nature of the codebase. It introduces some structural changes to the
package structure, namely breaking the library up into smaller components and renaming existing packages.

15

Luma.OLED Documentation, Release 2.2.4

This should largely be restricted to having to update import statements only. To upgrade any existing code that
uses the old package structure:

• rename instances of oled.device to luma.oled.device.

• rename any other usages of oled.* to luma.core.*.

This breaking change was necessary to be able to add different classes of devices, so that they could reuse core
components.

luma.core.device

class luma.core.device.device(const=None, serial_interface=None)
Bases: luma.core.mixin.capabilities

Base class for display driver classes

Warning: Direct use of the command() and data() methods are discouraged: Screen updates should be
effected through the display() method, or preferably with the luma.core.render.canvas context
manager.

capabilities(width, height, rotate, mode=‘1’)

cleanup()
Attempt to switch the device off or put into low power mode (this helps prolong the life of the device),
clear the screen and close resources associated with the underlying serial interface.

This is a managed function, which is called when the python processs is being shutdown, so shouldn’t
usually need be called directly in application code.

clear()
Initializes the device memory with an empty (blank) image.

command(*cmd)
Sends a command or sequence of commands through to the delegated serial interface.

contrast(level)
Switches the display contrast to the desired level, in the range 0-255. Note that setting the level to a low (or
zero) value will not necessarily dim the display to nearly off. In other words, this method is NOT suitable
for fade-in/out animation.

Parameters level (int) – Desired contrast level in the range of 0-255.

data(data)
Sends a data byte or sequence of data bytes through to the delegated serial interface.

display(image)

hide()
Switches the display mode OFF, putting the device in low-power sleep mode.

preprocess(image)

show()
Sets the display mode ON, waking the device out of a prior low-power sleep mode.

16 Chapter 5. API Documentation

https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int

Luma.OLED Documentation, Release 2.2.4

class luma.core.device.dummy(width=128, height=64, rotate=0, mode=’RGB’, **kwargs)
Bases: luma.core.device.device

Pseudo-device that acts like a physical display, except that it does nothing other than retain a copy of the dis-
played image. It is mostly useful for testing. Supports 24-bit color depth.

capabilities(width, height, rotate, mode=‘1’)

cleanup()
Attempt to switch the device off or put into low power mode (this helps prolong the life of the device),
clear the screen and close resources associated with the underlying serial interface.

This is a managed function, which is called when the python processs is being shutdown, so shouldn’t
usually need be called directly in application code.

clear()
Initializes the device memory with an empty (blank) image.

command(*cmd)
Sends a command or sequence of commands through to the delegated serial interface.

contrast(level)
Switches the display contrast to the desired level, in the range 0-255. Note that setting the level to a low (or
zero) value will not necessarily dim the display to nearly off. In other words, this method is NOT suitable
for fade-in/out animation.

Parameters level (int) – Desired contrast level in the range of 0-255.

data(data)
Sends a data byte or sequence of data bytes through to the delegated serial interface.

display(image)
Takes a PIL.Image and makes a copy of it for later use/inspection.

hide()
Switches the display mode OFF, putting the device in low-power sleep mode.

preprocess(image)

show()
Sets the display mode ON, waking the device out of a prior low-power sleep mode.

luma.core.emulator

class luma.core.emulator.capture(width=128, height=64, rotate=0, mode=’RGB’, trans-
form=’scale2x’, scale=2, file_template=’luma_{0:06}.png’,
**kwargs)

Bases: luma.core.emulator.emulator

Pseudo-device that acts like a physical display, except that it writes the image to a numbered PNG file when the
display() method is called. Supports 24-bit color depth.

capabilities(width, height, rotate, mode=‘1’)

cleanup()

clear()
Initializes the device memory with an empty (blank) image.

command(*cmd)
Sends a command or sequence of commands through to the delegated serial interface.

5.3. luma.core.emulator 17

https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int
https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image

Luma.OLED Documentation, Release 2.2.4

contrast(level)
Switches the display contrast to the desired level, in the range 0-255. Note that setting the level to a low (or
zero) value will not necessarily dim the display to nearly off. In other words, this method is NOT suitable
for fade-in/out animation.

Parameters level (int) – Desired contrast level in the range of 0-255.

data(data)
Sends a data byte or sequence of data bytes through to the delegated serial interface.

display(image)
Takes a PIL.Image and dumps it to a numbered PNG file.

hide()
Switches the display mode OFF, putting the device in low-power sleep mode.

preprocess(image)

show()
Sets the display mode ON, waking the device out of a prior low-power sleep mode.

to_surface(image)
Converts a PIL.Image into a pygame.Surface, transforming it according to the transform and
scale constructor arguments.

class luma.core.emulator.dummy(width=128, height=64, rotate=0, mode=’RGB’, trans-
form=’scale2x’, scale=2, **kwargs)

Bases: luma.core.emulator.emulator

Pseudo-device that acts like a physical display, except that it does nothing other than retain a copy of the dis-
played image. It is mostly useful for testing. Supports 24-bit color depth.

capabilities(width, height, rotate, mode=‘1’)

cleanup()

clear()
Initializes the device memory with an empty (blank) image.

command(*cmd)
Sends a command or sequence of commands through to the delegated serial interface.

contrast(level)
Switches the display contrast to the desired level, in the range 0-255. Note that setting the level to a low (or
zero) value will not necessarily dim the display to nearly off. In other words, this method is NOT suitable
for fade-in/out animation.

Parameters level (int) – Desired contrast level in the range of 0-255.

data(data)
Sends a data byte or sequence of data bytes through to the delegated serial interface.

display(image)
Takes a PIL.Image and makes a copy of it for later use/inspection.

hide()
Switches the display mode OFF, putting the device in low-power sleep mode.

preprocess(image)

show()
Sets the display mode ON, waking the device out of a prior low-power sleep mode.

18 Chapter 5. API Documentation

https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int
https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image
https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image
https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int
https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image

Luma.OLED Documentation, Release 2.2.4

to_surface(image)
Converts a PIL.Image into a pygame.Surface, transforming it according to the transform and
scale constructor arguments.

class luma.core.emulator.emulator(width, height, rotate, mode, transform, scale)
Bases: luma.core.device.device

Base class for emulated display driver classes

capabilities(width, height, rotate, mode=‘1’)

cleanup()

clear()
Initializes the device memory with an empty (blank) image.

command(*cmd)
Sends a command or sequence of commands through to the delegated serial interface.

contrast(level)
Switches the display contrast to the desired level, in the range 0-255. Note that setting the level to a low (or
zero) value will not necessarily dim the display to nearly off. In other words, this method is NOT suitable
for fade-in/out animation.

Parameters level (int) – Desired contrast level in the range of 0-255.

data(data)
Sends a data byte or sequence of data bytes through to the delegated serial interface.

display(image)

hide()
Switches the display mode OFF, putting the device in low-power sleep mode.

preprocess(image)

show()
Sets the display mode ON, waking the device out of a prior low-power sleep mode.

to_surface(image)
Converts a PIL.Image into a pygame.Surface, transforming it according to the transform and
scale constructor arguments.

class luma.core.emulator.gifanim(width=128, height=64, rotate=0, mode=’RGB’, trans-
form=’scale2x’, scale=2, filename=’luma_anim.gif’, dura-
tion=0.01, loop=0, max_frames=None, **kwargs)

Bases: luma.core.emulator.emulator

Pseudo-device that acts like a physical display, except that it collects the images when the display() method
is called, and on exit, assembles them into an animated GIF image. Supports 24-bit color depth, albeit with an
indexed color palette.

capabilities(width, height, rotate, mode=‘1’)

cleanup()

clear()
Initializes the device memory with an empty (blank) image.

command(*cmd)
Sends a command or sequence of commands through to the delegated serial interface.

contrast(level)
Switches the display contrast to the desired level, in the range 0-255. Note that setting the level to a low (or

5.3. luma.core.emulator 19

https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image
https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int
https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image

Luma.OLED Documentation, Release 2.2.4

zero) value will not necessarily dim the display to nearly off. In other words, this method is NOT suitable
for fade-in/out animation.

Parameters level (int) – Desired contrast level in the range of 0-255.

data(data)
Sends a data byte or sequence of data bytes through to the delegated serial interface.

display(image)
Takes an image, scales it according to the nominated transform, and stores it for later building into an
animated GIF.

hide()
Switches the display mode OFF, putting the device in low-power sleep mode.

preprocess(image)

show()
Sets the display mode ON, waking the device out of a prior low-power sleep mode.

to_surface(image)
Converts a PIL.Image into a pygame.Surface, transforming it according to the transform and
scale constructor arguments.

write_animation()

class luma.core.emulator.pygame(width=128, height=64, rotate=0, mode=’RGB’, trans-
form=’scale2x’, scale=2, frame_rate=60, **kwargs)

Bases: luma.core.emulator.emulator

Pseudo-device that acts like a physical display, except that it renders to an displayed window. The frame rate
is limited to 60FPS (much faster than a Raspberry Pi can acheive, but this can be overridden as necessary).
Supports 24-bit color depth.

pygame is used to render the emulated display window, and it’s event loop is checked to see if the ESC key
was pressed or the window was dismissed: if so sys.exit() is called.

capabilities(width, height, rotate, mode=‘1’)

cleanup()

clear()
Initializes the device memory with an empty (blank) image.

command(*cmd)
Sends a command or sequence of commands through to the delegated serial interface.

contrast(level)
Switches the display contrast to the desired level, in the range 0-255. Note that setting the level to a low (or
zero) value will not necessarily dim the display to nearly off. In other words, this method is NOT suitable
for fade-in/out animation.

Parameters level (int) – Desired contrast level in the range of 0-255.

data(data)
Sends a data byte or sequence of data bytes through to the delegated serial interface.

display(image)
Takes a PIL.Image and renders it to a pygame display surface.

hide()
Switches the display mode OFF, putting the device in low-power sleep mode.

preprocess(image)

20 Chapter 5. API Documentation

https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int
https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image
https://docs.python.org/2/library/sys.html#sys.exit
https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int
https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image

Luma.OLED Documentation, Release 2.2.4

show()
Sets the display mode ON, waking the device out of a prior low-power sleep mode.

to_surface(image)
Converts a PIL.Image into a pygame.Surface, transforming it according to the transform and
scale constructor arguments.

class luma.core.emulator.transformer(pygame, width, height, scale)
Bases: object

Helper class used to dispatch transformation operations.

identity(surface)
Fast scale operation that does not sample the results

led_matrix(surface)
Transforms the input surface into an LED matrix (1 pixel = 1 LED)

none(surface)
No-op transform - used when scale = 1

scale2x(surface)
Scales using the AdvanceMAME Scale2X algorithm which does a ‘jaggie-less’ scale of bitmap graphics.

seven_segment(surface)

smoothscale(surface)
Smooth scaling using MMX or SSE extensions if available

luma.core.error

Exceptions for this library.

exception luma.core.error.DeviceAddressError
Bases: luma.core.error.Error

Exception raised when an invalid device address is detected.

args

message

exception luma.core.error.DeviceDisplayModeError
Bases: luma.core.error.Error

Exception raised when an invalid device display mode is detected.

args

message

exception luma.core.error.DeviceNotFoundError
Bases: luma.core.error.Error

Exception raised when a device cannot be found.

args

message

exception luma.core.error.DevicePermissionError
Bases: luma.core.error.Error

Exception raised when permission to access the device is denied.

5.4. luma.core.error 21

https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image
https://docs.python.org/2/library/functions.html#object

Luma.OLED Documentation, Release 2.2.4

args

message

exception luma.core.error.Error
Bases: exceptions.Exception

Base class for exceptions in this library.

args

message

luma.core.mixin

class luma.core.mixin.capabilities
Bases: object

capabilities(width, height, rotate, mode=‘1’)

clear()
Initializes the device memory with an empty (blank) image.

display(image)

preprocess(image)

luma.core.render

class luma.core.render.canvas(device, dither=False)
Bases: object

A canvas returns a properly-sized PIL.ImageDraw object onto which the caller can draw upon. As soon as
the with-block completes, the resultant image is flushed onto the device.

By default, any color (other than black) will be _generally_ treated as white when displayed on monochrome
devices. However, this behaviour can be changed by adding dither=True and the image will be converted
from RGB space into a 1-bit monochrome image where dithering is employed to differentiate colors at the
expense of resolution.

luma.core.serial

class luma.core.serial.i2c(bus=None, port=1, address=60)
Bases: object

Wrap an I2C interface to provide data and command methods.

Parameters

• bus – I2C bus instance.

• port (int) – I2C port number.

• address – I2C address.

Raises

• luma.core.error.DeviceAddressError – I2C device address is invalid.

22 Chapter 5. API Documentation

https://docs.python.org/2/library/exceptions.html#exceptions.Exception
https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object
https://pillow.readthedocs.io/en/latest/reference/ImageDraw.html#module-PIL.ImageDraw
https://docs.python.org/2/library/functions.html#object
https://en.wikipedia.org/wiki/I%C2%B2C
https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int

Luma.OLED Documentation, Release 2.2.4

• luma.core.error.DeviceNotFoundError – I2C device could not be found.

• luma.core.error.DevicePermissionError – Permission to access I2C device
denied.

Note:

1.Only one of bus OR port arguments should be supplied; if both are, then bus takes precedence.

2.If bus is provided, there is an implicit expectation that it has already been opened.

cleanup()
Clean up I2C resources

command(*cmd)
Sends a command or sequence of commands through to the I2C address - maximum allowed is 32 bytes
in one go.

data(data)
Sends a data byte or sequence of data bytes through to the I2C address - maximum allowed in one trans-
action is 32 bytes, so if data is larger than this, it is sent in chunks.

class luma.core.serial.noop
Bases: object

Does nothing, used for pseudo-devices / emulators / anything really

noop(*args, **kwargs)

class luma.core.serial.spi(spi=None, gpio=None, port=0, device=0, bus_speed_hz=8000000, trans-
fer_size=4096, bcm_DC=24, bcm_RST=25)

Bases: object

Wraps an SPI interface to provide data and command methods.

Parameters

• spi – SPI interface (must be compatible with py-spidev)

• gpio – GPIO interface (must be compatible with RPi.GPIO). For slaves that dont need
reset or D/C functionality, supply a noop() implementation instead.

• port (int) – SPI port, defaults to 0

• device (int) – SPI device, defaults to 0

• bus_speed_hz – SPI bus speed, defaults to 8MHz

• transfer_size – Max bytes to transfer in one go. Some implementations only support
maxium of 64 or 128 bytes, whereas RPi/py-spidev supports 4096 (default).

• bcm_DC (int) – The BCM pin to connect data/command select (DC) to (defaults to 24).

• bcm_RST (int) – The BCM pin to connect reset (RES / RST) to (defaults to 24).

Raises luma.core.error.DeviceNotFoundError – SPI device could not be found.

cleanup()
Clean up SPI & GPIO resources

command(*cmd)
Sends a command or sequence of commands through to the SPI device.

5.7. luma.core.serial 23

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int
https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int
https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int
https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int

Luma.OLED Documentation, Release 2.2.4

data(data)
Sends a data byte or sequence of data bytes through to the SPI device. If the data is more than 4Kb in size,
it is sent in chunks.

luma.core.threadpool

class luma.core.threadpool.threadpool(num_threads)
Pool of threads consuming tasks from a queue

add_task(func, *args, **kargs)
Add a task to the queue

wait_completion()
Wait for completion of all the tasks in the queue

class luma.core.threadpool.worker(tasks)
Bases: threading.Thread

Thread executing tasks from a given tasks queue

daemon
A boolean value indicating whether this thread is a daemon thread (True) or not (False).

This must be set before start() is called, otherwise RuntimeError is raised. Its initial value is inherited from
the creating thread; the main thread is not a daemon thread and therefore all threads created in the main
thread default to daemon = False.

The entire Python program exits when no alive non-daemon threads are left.

getName()

ident
Thread identifier of this thread or None if it has not been started.

This is a nonzero integer. See the thread.get_ident() function. Thread identifiers may be recycled when a
thread exits and another thread is created. The identifier is available even after the thread has exited.

isAlive()
Return whether the thread is alive.

This method returns True just before the run() method starts until just after the run() method terminates.
The module function enumerate() returns a list of all alive threads.

isDaemon()

is_alive()
Return whether the thread is alive.

This method returns True just before the run() method starts until just after the run() method terminates.
The module function enumerate() returns a list of all alive threads.

join(timeout=None)
Wait until the thread terminates.

This blocks the calling thread until the thread whose join() method is called terminates – either normally
or through an unhandled exception or until the optional timeout occurs.

When the timeout argument is present and not None, it should be a floating point number specifying a
timeout for the operation in seconds (or fractions thereof). As join() always returns None, you must call
isAlive() after join() to decide whether a timeout happened – if the thread is still alive, the join() call timed
out.

24 Chapter 5. API Documentation

https://docs.python.org/2/library/threading.html#threading.Thread

Luma.OLED Documentation, Release 2.2.4

When the timeout argument is not present or None, the operation will block until the thread terminates.

A thread can be join()ed many times.

join() raises a RuntimeError if an attempt is made to join the current thread as that would cause a deadlock.
It is also an error to join() a thread before it has been started and attempts to do so raises the same exception.

name
A string used for identification purposes only.

It has no semantics. Multiple threads may be given the same name. The initial name is set by the construc-
tor.

run()

setDaemon(daemonic)

setName(name)

start()
Start the thread’s activity.

It must be called at most once per thread object. It arranges for the object’s run() method to be invoked in
a separate thread of control.

This method will raise a RuntimeError if called more than once on the same thread object.

luma.core.virtual

luma.core.virtual.calc_bounds(xy, entity)
For an entity with width and height attributes, determine the bounding box if were positioned at (x, y).

class luma.core.virtual.history(device)
Bases: luma.core.mixin.capabilities

Wraps a device (or emulator) to provide a facility to be able to make a savepoint (a point at which the screen
display can be “rolled-back” to).

This is mostly useful for displaying transient error/dialog messages which could be subsequently dismissed,
reverting back to the previous display.

capabilities(width, height, rotate, mode=‘1’)

clear()
Initializes the device memory with an empty (blank) image.

display(image)

preprocess(image)

restore(drop=0)
Restores the last savepoint. If drop is supplied and greater than zero, then that many savepoints are
dropped, and the next savepoint is restored.

savepoint()
Copies the last displayed image.

class luma.core.virtual.hotspot(width, height, draw_fn=None)
Bases: luma.core.mixin.capabilities

A hotspot (a place of more than usual interest, activity, or popularity) is a live display which may be added
to a virtual viewport - if the hotspot and the viewport are overlapping, then the update() method will be
automatically invoked when the viewport is being refreshed or its position moved (such that an overlap occurs).

5.9. luma.core.virtual 25

Luma.OLED Documentation, Release 2.2.4

You would either:

•create a hotspot instance, suppling a render function (taking an PIL.ImageDraw object, width &
height dimensions. The render function should draw within a bounding box of (0, 0, width, height), and
render a full frame.

•sub-class hotspot and override the :func:should_redraw and update() methods. This might be
more useful for slow-changing values where it is not necessary to update every refresh cycle, or your
implementation is stateful.

capabilities(width, height, rotate, mode=‘1’)

clear()
Initializes the device memory with an empty (blank) image.

display(image)

paste_into(image, xy)

preprocess(image)

should_redraw()
Override this method to return true or false on some condition (possibly on last updated member variable)
so that for slow changing hotspots they are not updated too frequently.

update(draw)

luma.core.virtual.range_overlap(a_min, a_max, b_min, b_max)
Neither range is completely greater than the other

class luma.core.virtual.snapshot(width, height, draw_fn=None, interval=1.0)
Bases: luma.core.virtual.hotspot

A snapshot is a type of hotspot, but only updates once in a given interval, usually much less frequently than the
viewport requests refresh updates.

capabilities(width, height, rotate, mode=‘1’)

clear()
Initializes the device memory with an empty (blank) image.

display(image)

paste_into(image, xy)

preprocess(image)

should_redraw()
Only requests a redraw after interval seconds have elapsed

update(draw)

class luma.core.virtual.terminal(device, font=None, color=’white’, bgcolor=’black’, tabstop=4,
line_height=None, animate=True)

Bases: object

Provides a terminal-like interface to a device (or a device-like object that has mixin.capabilities char-
acteristics).

backspace()
Moves the cursor one place to the left, erasing the character at the current position. Cannot move beyound
column zero, nor onto the previous line

carriage_return()
Returns the cursor position to the left-hand side without advancing downwards.

26 Chapter 5. API Documentation

https://pillow.readthedocs.io/en/latest/reference/ImageDraw.html#module-PIL.ImageDraw
https://docs.python.org/2/library/functions.html#object

Luma.OLED Documentation, Release 2.2.4

clear()
Clears the display and resets the cursor position to (0, 0).

erase()
Erase the contents of the cursor’s current postion without moving the cursor’s position.

flush()
Cause the current backing store to be rendered on the nominated device.

newline()
Advances the cursor position ot the left hand side, and to the next line. If the cursor is on the lowest line,
the displayed contents are scrolled, causing the top line to be lost.

println(text=’‘)
Prints the supplied text to the device, scrolling where necessary. The text is always followed by a newline.

putch(ch, flush=True)
Prints the specific character, which must be a valid printable ASCII value in the range 32..127 only.

puts(text)
Prints the supplied text, handling special character codes for carriage return (r), newline (n), backspace (b)
and tab (t).

If the animate flag was set to True (default), then each character is flushed to the device, giving the effect
of 1970’s teletype device.

tab()
Advances the cursor position to the next (soft) tabstop.

class luma.core.virtual.viewport(device, width, height)
Bases: luma.core.mixin.capabilities

add_hotspot(hotspot, xy)
Add the hotspot at (x, y). The hotspot must fit inside the bounds of the virtual device. If it does not then
an AssertError is raised.

capabilities(width, height, rotate, mode=‘1’)

clear()
Initializes the device memory with an empty (blank) image.

display(image)

is_overlapping_viewport(hotspot, xy)
Checks to see if the hotspot at position (x, y) is (at least partially) visible according to the position of the
viewport

preprocess(image)

refresh()

remove_hotspot(hotspot, xy)
Remove the hotspot at (x, y): Any previously rendered image where the hotspot was placed is erased from
the backing image, and will be “undrawn” the next time the virtual device is refreshed. If the specified
hotspot is not found (x, y), a ValueError is raised.

set_position(xy)

5.9. luma.core.virtual 27

Luma.OLED Documentation, Release 2.2.4

luma.oled.device

class luma.oled.device.sh1106(serial_interface=None, width=128, height=64, rotate=0, **kwargs)
Bases: luma.core.device.device

Encapsulates the serial interface to the monochrome SH1106 OLED display hardware. On creation, an initial-
ization sequence is pumped to the display to properly configure it. Further control commands can then be called
to affect the brightness and other settings.

capabilities(width, height, rotate, mode=‘1’)

cleanup()
Attempt to switch the device off or put into low power mode (this helps prolong the life of the device),
clear the screen and close resources associated with the underlying serial interface.

This is a managed function, which is called when the python processs is being shutdown, so shouldn’t
usually need be called directly in application code.

clear()
Initializes the device memory with an empty (blank) image.

command(*cmd)
Sends a command or sequence of commands through to the delegated serial interface.

contrast(level)
Switches the display contrast to the desired level, in the range 0-255. Note that setting the level to a low (or
zero) value will not necessarily dim the display to nearly off. In other words, this method is NOT suitable
for fade-in/out animation.

Parameters level (int) – Desired contrast level in the range of 0-255.

data(data)
Sends a data byte or sequence of data bytes through to the delegated serial interface.

display(image)
Takes a 1-bit PIL.Image and dumps it to the SH1106 OLED display.

hide()
Switches the display mode OFF, putting the device in low-power sleep mode.

preprocess(image)

show()
Sets the display mode ON, waking the device out of a prior low-power sleep mode.

class luma.oled.device.ssd1306(serial_interface=None, width=128, height=64, rotate=0,
**kwargs)

Bases: luma.core.device.device

Encapsulates the serial interface to the monochrome SSD1306 OLED display hardware. On creation, an initial-
ization sequence is pumped to the display to properly configure it. Further control commands can then be called
to affect the brightness and other settings.

capabilities(width, height, rotate, mode=‘1’)

cleanup()
Attempt to switch the device off or put into low power mode (this helps prolong the life of the device),
clear the screen and close resources associated with the underlying serial interface.

This is a managed function, which is called when the python processs is being shutdown, so shouldn’t
usually need be called directly in application code.

28 Chapter 5. API Documentation

https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int
https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image

Luma.OLED Documentation, Release 2.2.4

clear()
Initializes the device memory with an empty (blank) image.

command(*cmd)
Sends a command or sequence of commands through to the delegated serial interface.

contrast(level)
Switches the display contrast to the desired level, in the range 0-255. Note that setting the level to a low (or
zero) value will not necessarily dim the display to nearly off. In other words, this method is NOT suitable
for fade-in/out animation.

Parameters level (int) – Desired contrast level in the range of 0-255.

data(data)
Sends a data byte or sequence of data bytes through to the delegated serial interface.

display(image)
Takes a 1-bit PIL.Image and dumps it to the SSD1306 OLED display.

hide()
Switches the display mode OFF, putting the device in low-power sleep mode.

preprocess(image)

show()
Sets the display mode ON, waking the device out of a prior low-power sleep mode.

class luma.oled.device.ssd1322(serial_interface=None, width=256, height=64, rotate=0,
mode=’RGB’, **kwargs)

Bases: luma.core.device.device

Encapsulates the serial interface to the 4-bit greyscale SSD1322 OLED display hardware. On creation, an
initialization sequence is pumped to the display to properly configure it. Further control commands can then be
called to affect the brightness and other settings.

capabilities(width, height, rotate, mode=‘1’)

cleanup()
Attempt to switch the device off or put into low power mode (this helps prolong the life of the device),
clear the screen and close resources associated with the underlying serial interface.

This is a managed function, which is called when the python processs is being shutdown, so shouldn’t
usually need be called directly in application code.

clear()
Initializes the device memory with an empty (blank) image.

command(cmd, *args)
Sends a command and an (optional) sequence of arguments through to the delegated serial interface. Note
that the arguments are passed through as data.

contrast(level)
Switches the display contrast to the desired level, in the range 0-255. Note that setting the level to a low (or
zero) value will not necessarily dim the display to nearly off. In other words, this method is NOT suitable
for fade-in/out animation.

Parameters level (int) – Desired contrast level in the range of 0-255.

data(data)
Sends a data byte or sequence of data bytes through to the delegated serial interface.

5.10. luma.oled.device 29

https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int
https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image
https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int

Luma.OLED Documentation, Release 2.2.4

display(image)
Takes a 1-bit monochrome or 24-bit RGB PIL.Image and dumps it to the SSD1322 OLED dis-
play, converting the image pixels to 4-bit greyscale using a simplified Luma calculation, based on
Y’=0.299R’+0.587G’+0.114B’.

hide()
Switches the display mode OFF, putting the device in low-power sleep mode.

preprocess(image)

show()
Sets the display mode ON, waking the device out of a prior low-power sleep mode.

class luma.oled.device.ssd1325(serial_interface=None, width=128, height=64, rotate=0,
mode=’RGB’, **kwargs)

Bases: luma.core.device.device

Encapsulates the serial interface to the 4-bit greyscale SSD1325 OLED display hardware. On creation, an
initialization sequence is pumped to the display to properly configure it. Further control commands can then be
called to affect the brightness and other settings.

capabilities(width, height, rotate, mode=‘1’)

cleanup()
Attempt to switch the device off or put into low power mode (this helps prolong the life of the device),
clear the screen and close resources associated with the underlying serial interface.

This is a managed function, which is called when the python processs is being shutdown, so shouldn’t
usually need be called directly in application code.

clear()
Initializes the device memory with an empty (blank) image.

command(*cmd)
Sends a command or sequence of commands through to the delegated serial interface.

contrast(level)
Switches the display contrast to the desired level, in the range 0-255. Note that setting the level to a low (or
zero) value will not necessarily dim the display to nearly off. In other words, this method is NOT suitable
for fade-in/out animation.

Parameters level (int) – Desired contrast level in the range of 0-255.

data(data)
Sends a data byte or sequence of data bytes through to the delegated serial interface.

display(image)
Takes a 1-bit monochrome or 24-bit RGB PIL.Image and dumps it to the SSD1325 OLED dis-
play, converting the image pixels to 4-bit greyscale using a simplified Luma calculation, based on
Y’=0.299R’+0.587G’+0.114B’.

hide()
Switches the display mode OFF, putting the device in low-power sleep mode.

preprocess(image)

show()
Sets the display mode ON, waking the device out of a prior low-power sleep mode.

class luma.oled.device.ssd1331(serial_interface=None, width=96, height=64, rotate=0, **kwargs)
Bases: luma.core.device.device

30 Chapter 5. API Documentation

https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image
https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int
https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image

Luma.OLED Documentation, Release 2.2.4

Encapsulates the serial interface to the 16-bit color (5-6-5 RGB) SSD1331 OLED display hardware. On creation,
an initialization sequence is pumped to the display to properly configure it. Further control commands can then
be called to affect the brightness and other settings.

capabilities(width, height, rotate, mode=‘1’)

cleanup()
Attempt to switch the device off or put into low power mode (this helps prolong the life of the device),
clear the screen and close resources associated with the underlying serial interface.

This is a managed function, which is called when the python processs is being shutdown, so shouldn’t
usually need be called directly in application code.

clear()
Initializes the device memory with an empty (blank) image.

command(*cmd)
Sends a command or sequence of commands through to the delegated serial interface.

contrast(level)
Switches the display contrast to the desired level, in the range 0-255. Note that setting the level to a low (or
zero) value will not necessarily dim the display to nearly off. In other words, this method is NOT suitable
for fade-in/out animation.

Parameters level (int) – Desired contrast level in the range of 0-255.

data(data)
Sends a data byte or sequence of data bytes through to the delegated serial interface.

display(image)
Takes a 24-bit RGB PIL.Image and dumps it to the SSD1331 OLED display.

hide()
Switches the display mode OFF, putting the device in low-power sleep mode.

preprocess(image)

show()
Sets the display mode ON, waking the device out of a prior low-power sleep mode.

5.10. luma.oled.device 31

https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int
https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image

Luma.OLED Documentation, Release 2.2.4

32 Chapter 5. API Documentation

CHAPTER 6

References

• https://learn.adafruit.com/monochrome-oled-breakouts

• https://github.com/adafruit/Adafruit_Python_SSD1306

• http://www.dafont.com/bitmap.php

• http://raspberrypi.znix.com/hipidocs/topic_i2cbus_2.htm

• http://martin-jones.com/2013/08/20/how-to-get-the-second-raspberry-pi-i2c-bus-to-work/

• https://projects.drogon.net/understanding-spi-on-the-raspberry-pi/

• https://pinout.xyz/

• https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi

• http://code.activestate.com/recipes/577187-python-thread-pool/

33

https://learn.adafruit.com/monochrome-oled-breakouts
https://github.com/adafruit/Adafruit_Python_SSD1306
http://www.dafont.com/bitmap.php
http://raspberrypi.znix.com/hipidocs/topic_i2cbus_2.htm
http://martin-jones.com/2013/08/20/how-to-get-the-second-raspberry-pi-i2c-bus-to-work/
https://projects.drogon.net/understanding-spi-on-the-raspberry-pi/
https://pinout.xyz/
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
http://code.activestate.com/recipes/577187-python-thread-pool/

Luma.OLED Documentation, Release 2.2.4

34 Chapter 6. References

CHAPTER 7

Contributing

Pull requests (code changes / documentation / typos / feature requests / setup) are gladly accepted. If you are intending
to introduce some large-scale changes, please get in touch first to make sure we’re on the same page: try to include a
docstring for any new method or class, and keep method bodies small, readable and PEP8-compliant. Add tests and
strive to keep the code coverage levels high.

GitHub

The source code is available to clone at: https://github.com/rm-hull/luma.oled

Contributors

• Thijs Triemstra (@thijstriemstra)

• Christoph Handel (@fragfutter)

• Boeeerb (@Boeeerb)

• xes (@xes)

• Roger Dahl (@rogerdahl)

• Václav Šmilauer (@eudoxos)

• Claus Bjerre (@bjerrep)

35

https://github.com/rm-hull/luma.oled

Luma.OLED Documentation, Release 2.2.4

36 Chapter 7. Contributing

37

Luma.OLED Documentation, Release 2.2.4

CHAPTER 8

ChangeLog

Version Description Date
Upcoming TBC
2.2.4

• Tweaked SSD1325 init set-
tings & replaced constants

• Update dependencies

2017/02/17

2.2.3
• Monochrome rendering on

SSD1322 & SSD1325

2017/02/14

2.2.2
• SSD1325 performance im-

provements (perfloop: 25.50
–> 34.31 FPS)

• SSD1331 performance im-
provements (perfloop: 34.64
–> 51.89 FPS)

2017/02/02

2.2.1
• Support for 256x64 4-bit

greyscale OLED (SSD1322)
• Improved API documentation

(shows inherited members)

2017/01/29

2.1.0
• Simplify/optimize SSD1306

display logic

2017/01/22

2.0.1
• Moved examples to separate

git repo
• Add notes about breaking

changes

2017/01/15

2.0.0
• Package rename to luma.
oled (Note: Breaking
changes)

2017/01/11

1.5.0
• Performance improvements

for SH1106 driver (2x frame
rate!)

• Support for 4-bit greyscale
OLED (SSD1325)

• Landscape/portrait orienta-
tion with rotate=N parameter

2017/01/09

1.4.0
• Add savepoint/restore func-

tionality
• Add terminal functionality
• Canvas image dithering
• Additional & improved ex-

amples
• Load config settings from file

(for examples)
• Universal wheel distribution
• Improved/simplified error re-

porting
• Documentation updates

2016/12/23

1.3.1
• Add ability to adjust bright-

ness of screen
• Fix for wrong value

NORMALDISPLAY for
SSD1331 device

2016/12/11

1.3.0
• Support for 16-bit color

OLED (SSD1331)
• Viewport/scrolling support
• Remove pygame as an install

dependency in setup
• Ensure SH1106 device

collapses color images to
monochrome

• Fix for emulated devices: do
not need cleanup

• Fix to allow gifanim emulator
to process 1-bit images

• Establish a single threadpool
for all virtual viewports

• Fix issue preventing multiple
threads from running concur-
rently

• Documentation updates

2016/12/11

1.2.0
• Add support for 128x32,

96x16 OLED screens
(SSD1306 chipset only)

• Fix boundary condition error
when supplying max-frames
to gifanim

• Bit pattern calc rework
when conveting color ->
monochrome

• Approx 20% performance
improvement in display
method

2016/12/08

1.1.0
• Add animated-GIF emulator
• Add color-mode flag to emu-

lator
• Fix regression in SPI interface
• Rename emulator transform

option ‘scale’ to ‘identity’

2016/12/05

1.0.0
• Add HQX scaling to capture

and pygame emulators
• SPI support (NOTE: contains

breaking changes)
• Improve benchmarking ex-

amples
• Fix resource leakage & noops

on emulated devices
• Additional tests

2016/12/03

0.3.5
• Pygame-based device emula-

tor & screen capture device
emulator

• Add bouncing balls demo,
clock & Space Invaders ex-
amples

• Auto cleanup on exit
• Add bounding_box

attribute to devices
• Demote buffer & pages at-

tributes to “internal use” only
• Replaced SH1106 data sheet

with version that is not “pre-
liminary”

• Add font attribution
• Tests for SSD1306 &

SSH1106 devices
• Add code coverage & upload

to coveralls.io
• flake8 code compliance
• Documentation updates

2016/11/30

0.3.4
• Performance improvements -

render speeds ~2x faster
• Documentation updates

2016/11/15

0.3.3
• Add PyPi badge
• Use smbus2

2016/11/15

0.3.2
• Fix bug in maze example (in-

teger division on python 3)
• Use latest pip
• Add tox & travis config (+

badge)
• Add RTFD config
• Documentation updates

2016/11/13

0.3.1
• Adjust requirements (remove

smbus)
• Default RTFD theme
• Documentation updates

2016/11/13

0.3.0
• Allow SMBus implementa-

tion to be supplied
• Add show, hide and clear

methods
• Catch & rethrow IOError

exceptions
• Fix error in ‘hello world’ ex-

ample
• Cleanup imports
• Allow setting width/height
• Documentation updates

2016/11/13

0.2.0
• Add Python 3 support
• Add options to demos
• Micro-optimizations
• Remove unused optional arg
• Fix bug in rendering image

data
• Added more examples
• Add setup file
• Support SH1106
• Documentation updates

2016/09/06

38 Chapter 8. ChangeLog

CHAPTER 9

The MIT License (MIT)

Copyright (c) 2014-17 Richard Hull & Contributors

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

39

Luma.OLED Documentation, Release 2.2.4

40 Chapter 9. The MIT License (MIT)

Python Module Index

l
luma.core.device, 16
luma.core.emulator, 17
luma.core.error, 21
luma.core.mixin, 22
luma.core.render, 22
luma.core.serial, 22
luma.core.threadpool, 24
luma.core.virtual, 25
luma.oled, 15
luma.oled.device, 28

41

Index

A
add_hotspot() (luma.core.virtual.viewport method), 27
add_task() (luma.core.threadpool.threadpool method), 24
args (luma.core.error.DeviceAddressError attribute), 21
args (luma.core.error.DeviceDisplayModeError attribute),

21
args (luma.core.error.DeviceNotFoundError attribute), 21
args (luma.core.error.DevicePermissionError attribute),

21
args (luma.core.error.Error attribute), 22

B
backspace() (luma.core.virtual.terminal method), 26

C
calc_bounds() (in module luma.core.virtual), 25
canvas (class in luma.core.render), 22
capabilities (class in luma.core.mixin), 22
capabilities() (luma.core.device.device method), 16
capabilities() (luma.core.device.dummy method), 17
capabilities() (luma.core.emulator.capture method), 17
capabilities() (luma.core.emulator.dummy method), 18
capabilities() (luma.core.emulator.emulator method), 19
capabilities() (luma.core.emulator.gifanim method), 19
capabilities() (luma.core.emulator.pygame method), 20
capabilities() (luma.core.mixin.capabilities method), 22
capabilities() (luma.core.virtual.history method), 25
capabilities() (luma.core.virtual.hotspot method), 26
capabilities() (luma.core.virtual.snapshot method), 26
capabilities() (luma.core.virtual.viewport method), 27
capabilities() (luma.oled.device.sh1106 method), 28
capabilities() (luma.oled.device.ssd1306 method), 28
capabilities() (luma.oled.device.ssd1322 method), 29
capabilities() (luma.oled.device.ssd1325 method), 30
capabilities() (luma.oled.device.ssd1331 method), 31
capture (class in luma.core.emulator), 17
carriage_return() (luma.core.virtual.terminal method), 26
cleanup() (luma.core.device.device method), 16
cleanup() (luma.core.device.dummy method), 17

cleanup() (luma.core.emulator.capture method), 17
cleanup() (luma.core.emulator.dummy method), 18
cleanup() (luma.core.emulator.emulator method), 19
cleanup() (luma.core.emulator.gifanim method), 19
cleanup() (luma.core.emulator.pygame method), 20
cleanup() (luma.core.serial.i2c method), 23
cleanup() (luma.core.serial.spi method), 23
cleanup() (luma.oled.device.sh1106 method), 28
cleanup() (luma.oled.device.ssd1306 method), 28
cleanup() (luma.oled.device.ssd1322 method), 29
cleanup() (luma.oled.device.ssd1325 method), 30
cleanup() (luma.oled.device.ssd1331 method), 31
clear() (luma.core.device.device method), 16
clear() (luma.core.device.dummy method), 17
clear() (luma.core.emulator.capture method), 17
clear() (luma.core.emulator.dummy method), 18
clear() (luma.core.emulator.emulator method), 19
clear() (luma.core.emulator.gifanim method), 19
clear() (luma.core.emulator.pygame method), 20
clear() (luma.core.mixin.capabilities method), 22
clear() (luma.core.virtual.history method), 25
clear() (luma.core.virtual.hotspot method), 26
clear() (luma.core.virtual.snapshot method), 26
clear() (luma.core.virtual.terminal method), 26
clear() (luma.core.virtual.viewport method), 27
clear() (luma.oled.device.sh1106 method), 28
clear() (luma.oled.device.ssd1306 method), 28
clear() (luma.oled.device.ssd1322 method), 29
clear() (luma.oled.device.ssd1325 method), 30
clear() (luma.oled.device.ssd1331 method), 31
command() (luma.core.device.device method), 16
command() (luma.core.device.dummy method), 17
command() (luma.core.emulator.capture method), 17
command() (luma.core.emulator.dummy method), 18
command() (luma.core.emulator.emulator method), 19
command() (luma.core.emulator.gifanim method), 19
command() (luma.core.emulator.pygame method), 20
command() (luma.core.serial.i2c method), 23
command() (luma.core.serial.spi method), 23
command() (luma.oled.device.sh1106 method), 28

42

Luma.OLED Documentation, Release 2.2.4

command() (luma.oled.device.ssd1306 method), 29
command() (luma.oled.device.ssd1322 method), 29
command() (luma.oled.device.ssd1325 method), 30
command() (luma.oled.device.ssd1331 method), 31
contrast() (luma.core.device.device method), 16
contrast() (luma.core.device.dummy method), 17
contrast() (luma.core.emulator.capture method), 17
contrast() (luma.core.emulator.dummy method), 18
contrast() (luma.core.emulator.emulator method), 19
contrast() (luma.core.emulator.gifanim method), 19
contrast() (luma.core.emulator.pygame method), 20
contrast() (luma.oled.device.sh1106 method), 28
contrast() (luma.oled.device.ssd1306 method), 29
contrast() (luma.oled.device.ssd1322 method), 29
contrast() (luma.oled.device.ssd1325 method), 30
contrast() (luma.oled.device.ssd1331 method), 31

D
daemon (luma.core.threadpool.worker attribute), 24
data() (luma.core.device.device method), 16
data() (luma.core.device.dummy method), 17
data() (luma.core.emulator.capture method), 18
data() (luma.core.emulator.dummy method), 18
data() (luma.core.emulator.emulator method), 19
data() (luma.core.emulator.gifanim method), 20
data() (luma.core.emulator.pygame method), 20
data() (luma.core.serial.i2c method), 23
data() (luma.core.serial.spi method), 23
data() (luma.oled.device.sh1106 method), 28
data() (luma.oled.device.ssd1306 method), 29
data() (luma.oled.device.ssd1322 method), 29
data() (luma.oled.device.ssd1325 method), 30
data() (luma.oled.device.ssd1331 method), 31
device (class in luma.core.device), 16
DeviceAddressError, 21
DeviceDisplayModeError, 21
DeviceNotFoundError, 21
DevicePermissionError, 21
display() (luma.core.device.device method), 16
display() (luma.core.device.dummy method), 17
display() (luma.core.emulator.capture method), 18
display() (luma.core.emulator.dummy method), 18
display() (luma.core.emulator.emulator method), 19
display() (luma.core.emulator.gifanim method), 20
display() (luma.core.emulator.pygame method), 20
display() (luma.core.mixin.capabilities method), 22
display() (luma.core.virtual.history method), 25
display() (luma.core.virtual.hotspot method), 26
display() (luma.core.virtual.snapshot method), 26
display() (luma.core.virtual.viewport method), 27
display() (luma.oled.device.sh1106 method), 28
display() (luma.oled.device.ssd1306 method), 29
display() (luma.oled.device.ssd1322 method), 29
display() (luma.oled.device.ssd1325 method), 30

display() (luma.oled.device.ssd1331 method), 31
dummy (class in luma.core.device), 16
dummy (class in luma.core.emulator), 18

E
emulator (class in luma.core.emulator), 19
erase() (luma.core.virtual.terminal method), 27
Error, 22

F
flush() (luma.core.virtual.terminal method), 27

G
getName() (luma.core.threadpool.worker method), 24
gifanim (class in luma.core.emulator), 19

H
hide() (luma.core.device.device method), 16
hide() (luma.core.device.dummy method), 17
hide() (luma.core.emulator.capture method), 18
hide() (luma.core.emulator.dummy method), 18
hide() (luma.core.emulator.emulator method), 19
hide() (luma.core.emulator.gifanim method), 20
hide() (luma.core.emulator.pygame method), 20
hide() (luma.oled.device.sh1106 method), 28
hide() (luma.oled.device.ssd1306 method), 29
hide() (luma.oled.device.ssd1322 method), 30
hide() (luma.oled.device.ssd1325 method), 30
hide() (luma.oled.device.ssd1331 method), 31
history (class in luma.core.virtual), 25
hotspot (class in luma.core.virtual), 25

I
i2c (class in luma.core.serial), 22
ident (luma.core.threadpool.worker attribute), 24
identity() (luma.core.emulator.transformer method), 21
is_alive() (luma.core.threadpool.worker method), 24
is_overlapping_viewport() (luma.core.virtual.viewport

method), 27
isAlive() (luma.core.threadpool.worker method), 24
isDaemon() (luma.core.threadpool.worker method), 24

J
join() (luma.core.threadpool.worker method), 24

L
led_matrix() (luma.core.emulator.transformer method),

21
luma.core.device (module), 16
luma.core.emulator (module), 17
luma.core.error (module), 21
luma.core.mixin (module), 22
luma.core.render (module), 22

Index 43

Luma.OLED Documentation, Release 2.2.4

luma.core.serial (module), 22
luma.core.threadpool (module), 24
luma.core.virtual (module), 25
luma.oled (module), 15
luma.oled.device (module), 28

M
message (luma.core.error.DeviceAddressError attribute),

21
message (luma.core.error.DeviceDisplayModeError at-

tribute), 21
message (luma.core.error.DeviceNotFoundError at-

tribute), 21
message (luma.core.error.DevicePermissionError at-

tribute), 22
message (luma.core.error.Error attribute), 22

N
name (luma.core.threadpool.worker attribute), 25
newline() (luma.core.virtual.terminal method), 27
none() (luma.core.emulator.transformer method), 21
noop (class in luma.core.serial), 23
noop() (luma.core.serial.noop method), 23

P
paste_into() (luma.core.virtual.hotspot method), 26
paste_into() (luma.core.virtual.snapshot method), 26
preprocess() (luma.core.device.device method), 16
preprocess() (luma.core.device.dummy method), 17
preprocess() (luma.core.emulator.capture method), 18
preprocess() (luma.core.emulator.dummy method), 18
preprocess() (luma.core.emulator.emulator method), 19
preprocess() (luma.core.emulator.gifanim method), 20
preprocess() (luma.core.emulator.pygame method), 20
preprocess() (luma.core.mixin.capabilities method), 22
preprocess() (luma.core.virtual.history method), 25
preprocess() (luma.core.virtual.hotspot method), 26
preprocess() (luma.core.virtual.snapshot method), 26
preprocess() (luma.core.virtual.viewport method), 27
preprocess() (luma.oled.device.sh1106 method), 28
preprocess() (luma.oled.device.ssd1306 method), 29
preprocess() (luma.oled.device.ssd1322 method), 30
preprocess() (luma.oled.device.ssd1325 method), 30
preprocess() (luma.oled.device.ssd1331 method), 31
println() (luma.core.virtual.terminal method), 27
putch() (luma.core.virtual.terminal method), 27
puts() (luma.core.virtual.terminal method), 27
pygame (class in luma.core.emulator), 20

R
range_overlap() (in module luma.core.virtual), 26
refresh() (luma.core.virtual.viewport method), 27
remove_hotspot() (luma.core.virtual.viewport method),

27

restore() (luma.core.virtual.history method), 25
run() (luma.core.threadpool.worker method), 25

S
savepoint() (luma.core.virtual.history method), 25
scale2x() (luma.core.emulator.transformer method), 21
set_position() (luma.core.virtual.viewport method), 27
setDaemon() (luma.core.threadpool.worker method), 25
setName() (luma.core.threadpool.worker method), 25
seven_segment() (luma.core.emulator.transformer

method), 21
sh1106 (class in luma.oled.device), 28
should_redraw() (luma.core.virtual.hotspot method), 26
should_redraw() (luma.core.virtual.snapshot method), 26
show() (luma.core.device.device method), 16
show() (luma.core.device.dummy method), 17
show() (luma.core.emulator.capture method), 18
show() (luma.core.emulator.dummy method), 18
show() (luma.core.emulator.emulator method), 19
show() (luma.core.emulator.gifanim method), 20
show() (luma.core.emulator.pygame method), 20
show() (luma.oled.device.sh1106 method), 28
show() (luma.oled.device.ssd1306 method), 29
show() (luma.oled.device.ssd1322 method), 30
show() (luma.oled.device.ssd1325 method), 30
show() (luma.oled.device.ssd1331 method), 31
smoothscale() (luma.core.emulator.transformer method),

21
snapshot (class in luma.core.virtual), 26
spi (class in luma.core.serial), 23
ssd1306 (class in luma.oled.device), 28
ssd1322 (class in luma.oled.device), 29
ssd1325 (class in luma.oled.device), 30
ssd1331 (class in luma.oled.device), 30
start() (luma.core.threadpool.worker method), 25

T
tab() (luma.core.virtual.terminal method), 27
terminal (class in luma.core.virtual), 26
threadpool (class in luma.core.threadpool), 24
to_surface() (luma.core.emulator.capture method), 18
to_surface() (luma.core.emulator.dummy method), 18
to_surface() (luma.core.emulator.emulator method), 19
to_surface() (luma.core.emulator.gifanim method), 20
to_surface() (luma.core.emulator.pygame method), 21
transformer (class in luma.core.emulator), 21

U
update() (luma.core.virtual.hotspot method), 26
update() (luma.core.virtual.snapshot method), 26

V
viewport (class in luma.core.virtual), 27

44 Index

Luma.OLED Documentation, Release 2.2.4

W
wait_completion() (luma.core.threadpool.threadpool

method), 24
worker (class in luma.core.threadpool), 24
write_animation() (luma.core.emulator.gifanim method),

20

Index 45

	Introduction
	Python usage
	Color Model
	Landscape / Portrait Orientation
	Examples
	Emulators

	Hardware
	Identifying your serial interface
	I2C vs. SPI
	Tips for connecting the display
	Pre-requisites

	Installation
	From PyPI
	From source

	API Documentation
	Breaking changes
	luma.core.device
	luma.core.emulator
	luma.core.error
	luma.core.mixin
	luma.core.render
	luma.core.serial
	luma.core.threadpool
	luma.core.virtual
	luma.oled.device

	References
	Contributing
	GitHub
	Contributors

	ChangeLog
	The MIT License (MIT)
	Python Module Index

