

Welcome to State Representation Learning Zoo’s documentation!

A collection of State Representation Learning (SRL) methods for
Reinforcement Learning, written using PyTorch.

Github repo: https://github.com/araffin/srl-zoo

Note

This repo is part of the S-RL Toolbox [https://s-rl-toolbox.readthedocs.io]

Available methods:

	SRL with Robotic Priors + extensions (stereovision, additional
priors)

	Denoising Autoencoder (DAE)

	Variational Autoencoder (VAE) and beta-VAE

	PCA

	Supervised Learning

	Forward, Inverse Models

	Triplet Network (for stereovision only)

	Reward loss

	Combination and stacking of methods

	Random Features

	[experimental] Reward Prior, Episode-prior, Perceptual Similarity
loss (DARLA), Mutual Information loss

Related papers:

	“S-RL Toolbox: Environments, Datasets and Evaluation Metrics for
State Representation Learning” (Raffin et al., 2018)
https://arxiv.org/abs/1809.09369

	“State Representation Learning for Control: An Overview” (Lesort et
al., 2018), link:
https://arxiv.org/pdf/1802.04181.pdf

	“Learning State Representations with Robotic Priors” (Jonschkowski
and Brock, 2015), link:
http://tinyurl.com/gly9sma

Guide

	Installation
	Using Anaconda

	Using Docker

	Learning a State Representation
	Examples

	Stacking/Splitting Models Instead of Combining Them

	Predicting States on the Whole Dataset

	Predicting Reward Using a Trained Model

	Config Files
	Base Config

	Dataset config

	Experiment Config

	Dataset Format

	SRL Baselines
	Supervised Learning

	Principal Components Analysis

	Multiple Cameras
	Stacked Observations

	Triplets of Observations

	Evaluation and Plotting
	Learned Space Visualization

	Create a Report

	Plot a Learned Representation

	Interactive Plot

	Create a KNN Plot and Compute KNN-MSE

	Running Tests

	Changelog
	Release 1.0 (2018-10-09)

	Release 0.4 (2018-09-25)

Indices and tables

	Index

	Module Index

	Search Page

Installation

Recommended configuration: Ubuntu 16.04 with python >=3.5 (or python
2.7)

Using Anaconda

Python 3

Please use environment.yml file from
https://github.com/araffin/robotics-rl-srl
To create a conda environment from this file:

conda env create -f environment.yml

Python 2

Create the new environment srl from environment.yml file:

conda env create -f environment.yml

Then activate it using:

source activate srl

Using Docker

We provide docker images to work with our repository, please read
Installation using docker from
https://github.com/araffin/robotics-rl-srl
for more information.

Learning a State Representation

To learn a state representation, you need to enforce constrains on the
representation using one or more losses. For example, to train an
autoencoder, you need to use a reconstruction loss. Most losses are not
exclusive, that means you can combine them.

All losses are defined in losses/losses.py. The available losses
are:

	autoencoder: reconstruction loss, using current and next observation

	denoising autoencoder (dae): same as for the auto-encoder, except
that the model reconstruct inputs from noisy observations containing
a random zero-pixel mask

	vae: (beta)-VAE loss (reconstruction + kullback leiber divergence
loss)

	inverse: predict the action given current and next state

	forward: predict the next state given current state and taken action

	reward: predict the reward (positive or not) given current and next
state

	priors: robotic priors losses (see “Learning State Representations
with Robotic Priors”)

	triplet: triplet loss for multi-cam setting (see Multiple Cameras
section)

[Experimental]

	reward-prior: Maximises the correlation between states and rewards
(does not make sense for sparse reward)

	episode-prior: Learn an episode-agnostic state space, thanks to a
discriminator distinguishing states from same/different episodes

	perceptual similarity loss (for VAE): Instead of the reconstruction
loss in the beta-VAE loss, it uses the distance between the
reconstructed input and real input in the embedding of a pre-trained
DAE.

	mutual information loss: Maximises the mutual information between
states and rewards

All possible arguments can be display using python train.py --help.
You can limit the training set size (--training-set-size argument),
change the minibatch size (-bs), number of epochs (--epochs),
…

Examples

Train an inverse model:

python train.py --data-folder data/path/to/dataset --losses inverse

Train an autoencoder:

python train.py --data-folder data/path/to/dataset --losses autoencoder

Combining an autoencoder with an inverse model is as easy as:

python train.py --data-folder data/path/to/dataset --losses autoencoder inverse

You can as well specify the weight of each loss:

python train.py --data-folder data/path/to/dataset --losses autoencoder:1 inverse:10

Train a vae with the perceptual similarity loss:

python train.py --data-folder data/path/to/dataset --losses vae perceptual --path-to-dae logs/path/to/pretrained_dae/srl_model.pth --state-dim-dae ST_DIM_DAE

Stacking/Splitting Models Instead of Combining Them

Because losses do not optimize the same objective and can be opposed, it
may make sense to stack representations learned with different
objectives, instead of combining them. For instance, you can stack an
autoencoder (with a state dimension of 20) with an inverse model (of
dimension 2) using the previous weights:

python train.py --data-folder data/path/to/dataset --losses autoencoder:1:20 inverse:10:2 --state-dim 22

The details of how models are splitted can be found inside the
SRLModulesSplit class, defined in models/modules.py. All models
share the same encoder or features extractor, that maps observations
to states.

Addtional example: split and combine losses.
Reward loss on 50 dimensions and forward + inverse losses on 2 dimensions
(note the -1 that specify that losses are applied on the same split):

python train.py --data-folder data/path/to/dataset --losses reward:1:50 inverse:1:2 forward:1:-1 --state-dim 52

Predicting States on the Whole Dataset

If you trained your model on a subset of a dataset, you can predict
states for the whole dataset (or on a subset) using:

python -m evaluation.predict_dataset --log-dir logs/path/to/log_folder/

use -n 1000 to predict on the first 1000 samples only.

Predicting Reward Using a Trained Model

If you want to predict the reward (train a classifier for positive or
null reward) using ground truth states or learned states, you can use
evaluation/predict_reward.py script. Ground Truth:

python -m evaluation.predict_reward --data-folder data/dataset_name/ --training-set-size 50000

On Learned States:

python -m evaluation.predict_reward --data-folder data/dataset_name/ -i log/path/to/states_rewards.npz

Config Files

Base Config

Config common to all dataset can be found in
configs/default.json [https://github.com/araffin/srl-zoo/blob/master/configs/default.json].

Dataset config

All datasets must be placed in the data/ folder. Each dataset must
contain a dataset_config.json file, an example can be found
here [https://github.com/araffin/srl-zoo/blob/master/configs/example_dataset_config.json]. This config file
describes specific variables to this dataset.

Experiment Config

Experiment config file is generated by the pipeline.py script. An
example can be found here [https://github.com/araffin/srl-zoo/blob/master/configs/example_exp_config.json].

Dataset Format

In order to use SRL methods on a dataset, this dataset must be
preprocessed and formatted as in the example
dataset [https://drive.google.com/open?id=154qMJHgUnzk0J_Hxmr2jCnV1ipS7o1D5].
We recommend you downloading this example dataset to have a concrete and
working example of what a preprocessed dataset looks like.

Note

If you use data generated with the RL Repo [https://github.com/araffin/robotics-rl-srl], the dataset will
be already preprocessed, so you don’t need to bother about this step.

The dataset format is as follows:

	You must provide a dataset config file (see previous section) that
contains at least if the ground truth is the relative position or not

	Images are grouped by episode in different folders (record_{03d}/
folders)

	At the root of the dataset folder, preprocessed_data.npz contains
np.ndarrays (‘episode_starts’, ‘rewards’, ‘actions’)

	At the root of the dataset folder, ground_truth.npz contains
np.ndarrays (‘target_positions’, ‘ground_truth_states’,
‘images_path’)

The exact format for each np.ndarray can be found in the example dataset
(or in the RL Repo [https://github.com/araffin/robotics-rl-srl]).
Note: the variables ‘arm_states’ and ‘button_positions’ were renamed
‘ground_truth_states’ and ‘target_positions’

SRL Server for Reinforcement Learning [Experimental]

This feature is currently experimental. It will launch a server that will learn a srl model and send a response to the RL client when it is ready.

python server.py

SRL Baselines

SRL Baseline models are saved in logs/nameOfTheDataset/baselines/
folder.

Supervised Learning

Example:

python -m baselines.supervised --data-folder path/to/data/folder

Principal Components Analysis

PCA:

python -m baselines.pca --data-folder path/to/data/folder --state-dim 3

Multiple Cameras

Stacked Observations

Using the custom_cnn and mlp architecture, it is possible to
pass pairs of images from different views stacked along the channels’
dimension i.e of dim (224,224,6).

To use this functionality to perform state representation learning,
enable --multi-view (see usage of script train.py), and use a
dataset generated for the purpose.

Triplets of Observations

Similarly, it is possible to learn representation of states using a
dataset of triplets, i.e tuples made of an anchor, a positive and a
negative observation.

The anchor and the positive observation are views of the scene at the
same time step, but from different cameras.

The negative example is an image from the same camera as the anchor but
at a different time step selected randomly among images in the same
record.

In our case, enable triplet as a loss (--losses) to use the
TCN-like architecture made of a pre-trained ResNet with an extra fully
connected layer (embedding).

To use this functionality also enable --multi-view, and use a
dataset generated for the purpose. Related papers:

	“Time-Contrastive Networks: Self-Supervised Learning from Video” (P.
Sermanet et al., 2017), paper:
https://arxiv.org/abs/1704.06888

Evaluation and Plotting

Learned Space Visualization

To view the learned state and play with the latent space of a trained
model, you may use:

python -m enjoy.enjoy_latent --log-dir logs/nameOfTheDataset/nameOfTheModel

Create a Report

A report contains knn-mse, ground-truth correlation (GTC and GTC_mean) and information about each model present in a log folder.

Create a csv report file using:

python -m evaluation.gather_results -i logs/nameOfTheDataset/

Plot a Learned Representation

usage: representation_plot.py [-h] [-i INPUT_FILE] [--data-folder DATA_FOLDER]
 [--color-episode] [--plot-against]
 [--pretty-plot-against] [--correlation]
 [--projection] [--print-corr]

Plotting script for representation

optional arguments:
 -h, --help show this help message and exit
 -i INPUT_FILE, --input-file INPUT_FILE
 Path to a npz file containing states and rewards
 --data-folder DATA_FOLDER
 Path to a dataset folder, it will plot ground truth
 states
 --color-episode Color states per episodes instead of reward
 --plot-against Plot against each dimension
 --pretty-plot-against
 Plot against each dimension (diagonals are
 distributions + cleaner look)
 --correlation Plot correlation coeff against each dimension
 --projection Plot 1D projection of predicted state on ground truth
 --print-corr Only print correlation measurements

You can plot a learned representation with:

python -m plotting.representation_plot -i path/to/states_rewards.npz

You can also plot ground truth states with:

python -m plotting.representation_plot --data-folder path/to/datasetFolder/

To have a different color per episode, you have to pass
--data-folder argument along with --color-episode.

Plotting each dimension of the state representation against another:

python -m plotting.representation_plot -i path/to/states_rewards.npz --plot-against

[Evaluation plot] Plotting the matrix of correlation with the ground
truth states:

python -m plotting.representation_plot -i path/to/states_rewards.npz --data-folder path/to/datasetFolder/ --correlation

[Ground Truth Correlation] It measures the maximum correlation (in absolute value) in the learned representation
for each dimension of the ground truth states. GTC_mean is the mean of the GTC vector. :

python -m plotting.representation_plot -i path/to/states_rewards.npz --data-folder path/to/datasetFolder/ --correlation --print-corr

Interactive Plot

You can have an interactive plot of a learned representation using:

python -m plotting.interactive_plot --data-folder path/to/datasetFolder/ -i path/to/states_rewards.npz

When you click on a state in the representation plot (left click for 2D,
right click for 3D plots!), it shows the corresponding image along
with the reward and the coordinates in the space.

Pass --multi-view as argument to visualize in case of multiple
cameras.

You can also plot ground truth states when you don’t specify a npz file:

python -m plotting.interactive_plot --data-folder path/to/datasetFolder/

Create a KNN Plot and Compute KNN-MSE

Usage:

python evaluation/knn_images.py [-h] --log-folder LOG_FOLDER [--seed SEED]
 [-k N_NEIGHBORS] [-n N_SAMPLES] [--n-to-plot N_TO_PLOT]
 [--relative-pos] [--ground-truth] [--multi-view]

KNN plot and KNN MSE

optional arguments:
 -h, --help show this help message and exit
 --log-folder LOG_FOLDER
 Path to a log folder
 --seed SEED random seed (default: 1)
 -k N_NEIGHBORS, --n-neighbors N_NEIGHBORS
 Number of nearest neighbors (default: 5)
 -n N_SAMPLES, --n-samples N_SAMPLES
 Number of test samples (default: 5)
 --n-to-plot N_TO_PLOT
 Number of samples to plot (default: 5)
 --relative-pos Use relative position as ground_truth
 --ground-truth Compute KNN-MSE for ground truth
 --multi-view To deal with multi view data format

Example:

python evaluation/knn_images.py --log-folder path/to/an/experiment/log/folder

Running Tests

Download the test datasets
kuka_gym_test [https://drive.google.com/open?id=154qMJHgUnzk0J_Hxmr2jCnV1ipS7o1D5]
and
kuka_gym_dual_test [https://drive.google.com/open?id=15Fhqr4-kai4b8qQWiq2mEAWW5ZqH5qID]
and put it in data/ folder.

./run_tests.sh

Changelog

For download links, please look at Github release page [https://github.com/araffin/srl-zoo/releases].

Release 1.0 (2018-10-09)

Stable Baselines Version + Documentation

	added doc

Release 0.4 (2018-09-25)

First Stable Version

Initial release.

Index

 _static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to State Representation Learning Zoo’s documentation!

 		
 Installation

 		
 Using Anaconda

 		
 Python 3

 		
 Python 2

 		
 Using Docker

 		
 Learning a State Representation

 		
 Examples

 		
 Stacking/Splitting Models Instead of Combining Them

 		
 Predicting States on the Whole Dataset

 		
 Predicting Reward Using a Trained Model

 		
 Config Files

 		
 Base Config

 		
 Dataset config

 		
 Experiment Config

 		
 Dataset Format

 		
 SRL Baselines

 		
 Supervised Learning

 		
 Principal Components Analysis

 		
 Multiple Cameras

 		
 Stacked Observations

 		
 Triplets of Observations

 		
 Evaluation and Plotting

 		
 Learned Space Visualization

 		
 Create a Report

 		
 Plot a Learned Representation

 		
 Interactive Plot

 		
 Create a KNN Plot and Compute KNN-MSE

 		
 Running Tests

 		
 Changelog

 		
 Release 1.0 (2018-10-09)

 		
 Release 0.4 (2018-09-25)

_static/ajax-loader.gif

