

    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.





          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  
Introduction

[image: _images/logo-wide.png]Squidex Logo


What is Squidex??


A content management hub for all your data.




Squidex is a content management hub to manage all your content, for example:


	Dynamic elements for your mobile apps.


	Blog posts and articles for your website.


	Configuration data for your backend.


	Rich and structured data for your application.





How does it work?

The core of Squidex is a web service. It provides APIs to manage the structure of your content, languages, settings and of course the content itself. You can consume the content from your backend, mobile apps, website and other other client applications. Of course we also provide a rich user interface for end users (Management UI).




Event Sourcing

We use event sourcing to store all information. Instead of just holding the actual state we generate events, whenever you make a change. For example when you update a content we create a ContentUpdatedEvent that holds the changed data. We never delete any data. When you delete a content element we just create a ContentDeletedEvent. This means you cannot lose any data and we have the full history of all changes. These events are also handled by event consumers which are responsible to create an optimized representation of your content which can be queried through the API.




Custom content representation

We think it is impossible to develop a system that is able to handle every kind of queries in a fast and efficient way. You know best what technology you need for your business case. Think about sql database servers. You need to configure indices by yourself, because creating them automatically is a very hard problem. If you need your content in another representation or in another storage you can subscribe to the content events and push your content to another database, whenever it has changed. For example: If you build a travel portal you can manage your hotels in Squidex. To allow your users to search for hotels you can push the data to elastic search to make use of the full text search capabilities.




Contact Us

You have the following options to contact us:


	Join our support forum: https://support.squidex.io












          

      

      

    

  

    
      
          
            
  
Table of contents


	Introduction





Introduction


	What is Squidex?







Getting Started


	Installation


	Install with IIS


	Install with Docker


	Install on Azure


	Install Identity


	Configuration







Development


	Building


	Developing







Concepts


	Schemas


	Localization


	Permissions


	Rules







Next


	Roadmap


	API Compatibility







Guides


	CLI


	API


	Postman


	Troubleshooting


	Assets


	Scripting


	Custom Editors


	Custom Workflows


	Preview Content







Architecture


	Overview


	Extensions










          

      

      

    

  

    
      
          
            
  Backups lets you save all your content.

You will get a ZIP archive with all events that happened in your system and t he corresponding assets. If you need your content in a more useful format, like CSV, JSON or EXCEL you have to write an exporter or use the CLI.

Please contact us via http://support.squidex.io if you want to restore a backup to the cloud.



          

      

      

    

  

    
      
          
            
  Clients are other applications or services that can access your content. Clients have to request a bearer token to access the content. This token expires after 30 days and has to be requested again.

You can use the the following roles:


	Reader: can view contents and assets.


	Editor: Can also create, update and delete contents and assets.


	Developer: Can also create, modify and delete schemas and rules.


	Owner: Can also manage settings and manage contributors and subscriptions.




Be careful with the Owner role and only use it if absolutely necessary, because this role has access to all data and settings.



          

      

      

    

  

    
      
          
            
  A contributor is a user who has access to your app.

You can use the the following roles:


	Reader: can view contents and assets.


	Editor: Can also create, update and delete contents and assets.


	Developer: Can also create, modify and delete schemas and rules.


	Owner: Can also manage settings and manage contributors and subscriptions.




A user needs an account before you add him or her to your app.



          

      

      

    

  

    
      
          
            
  Define in which languages your content is available. Fields can be marked as localizable to manage them in multiple languages.

Some important facts:


	A language can be marked as optional. When a field is marked as required you can keep the field empty for this language.


	A language can have fallback languages. When you request ca content in a specific language and no value is available for a localizable field and the requested field we try the fallback languages in the defined order before we try the master language.






          

      

      

    

  

    
      
          
            
  Patterns are regular expressions that can be used to define custom formats for string fields, for example when a phone number must be entered in a very specific way.

Please not that when you use a pattern for a field and update it here it is not automatically updated in the field as well.

You can the following tool to test your custom patterns: https://regex101.com/.



          

      

      

    

  

    
      
          
            
  Roles define the permissions for your clients and contributors.

You can use the default roles:


	Reader: can view contents and assets.


	Editor: Can also create, update and delete contents and assets.


	Developer: Can also create, modify and delete schemas and rules.


	Owner: Can also manage settings and manage contributors and subscriptions.




Read more about our permission system before you create custom roles.



          

      

      

    

  

    
      
          
            
  Rules allow you to react to events in your app and to synchronize contents and assets with other systems.

A rule has two elements:


	Trigger: Define when a rule is executed, for example when a content is created.


	Action: Defines what will be executed when the rule is triggered.




Almost all text settings for actions support placeholder. At the moment the following placehold are supported:


	$APP_ID: The id of your app (guid).


	$APP_NAME: The name of your app.


	$USER_ID: The id of the user (or client name).


	$USER_NAME: The display name of the user (or client name).


	$USER_EMAIL: The email address of the user (or client name).


	$TIMESTAMP_DATE: The date when the event has happened (usually different from the time when the rule is executed) in the following format: yyyy-MM-dd.


	$TIMESTAMP_DATETIME; The date when the event has happened (usually different from the time when the rule is executed) in the following format: yyyy-MM-dd-hh-mm-ss.




For ContentChangedTrigger:


	$SCHEMA_ID: The id of the schema.


	$SCHEMA_NAME: The name of the schema.


	$CONTENT_URL: The url to the content in the administration tool.


	$CONTENT_ACTION: The content event (created, updated, deleted).




You can also use javascript expressions with

`Script('<MY-SCRIPT>')`





Squidex will make several attempts to execute an rule:


	After a few seconds.


	After 5 minutes


	After 1 hour.


	After 6 hours.


	After 12 hours.




A rule execution will be treated as failed if it does not complete successfully within 2 seconds. If your target system is slow (e.g. a webhook) you should use a queue between Squidex and your application.

Rule executions will be stored as events for 2 days for debugging and will be deleted automatically.

Read more about rules in the Documentation.


Webhooks

Webhooks are the most flexible rule actions and define a custom HTTP endpoint that will be invoked by Squidex with a POST request.


Request Headers


	X-Application and User-Agent




Used to identity the sender and has the static value: Squidex Webhook


	X-Signature




The signature can be used to verify that a request is from Squidex and not from a potential attacker. The signature is calculated in the following way:

ToBase64String(Sha256(RequestBody + Secret))





Do not expose the secret to the public and keep it private.




Request Body

The request body has the following format (example):

{
   "type":"GreetingsCreated",
   "payload":{
      "$type":"EnrichedContentEvent",
      "type":"Created",
      "id":"39885f2a-0393-4c8f-ae48-5add0de0b0ef",
      "created":"2019-05-07T17:27:55Z",
      "lastModified":"2019-05-07T17:27:55Z",
      "createdBy":"subject:5cc82941de5c0c5aa46c9f04",
      "lastModifiedBy":"subject:5cc82941de5c0c5aa46c9f04",
      "data":{
         "text":{
            "iv":"Hello Squidex"
         }
      },
      "status":"Draft",
      "schemaId":"d5ebc338-4ce7-4c9e-a9c1-6f41b2c0c854,greetings",
      "actor":"subject:5cc82941de5c0c5aa46c9f04",
      "appId":"4111766f-4ae5-4831-9ce6-e89b5eb530a8,test2",
      "timestamp":"2019-05-07T17:27:55Z",
      "name":"GreetingsCreated",
      "version":0
   },
   "timestamp":"2019-05-07T17:27:55Z"
}











          

      

      

    

  

    
      
          
            
  A schema defines the structure of the content.

Each field can have the following states:


	Locked: The field cannot be updated or deleted.


	Hidden: The field will not be returned by the api and only visible in the Management UI.


	Disabled: The field content cannot be edited in the Management UI. Do not use it for required fields.




You have to publish your schema before you can create content.

Read more about schemas in the Documentation.



          

      

      

    

  

    
      
          
            
  
Overview


Concepts

Squidex is implemented based on the following concepts:


CQRS

CQRS stands for Command Query Responsibility Segregation. It’s a pattern that was first described by Greg Young. At its heart is the idea that you can use a different model to update information than the model you use to read information. Typical yo use event sourcing as the primarily source of truth for your data and then you subscribe to the events to create read models that can be used to query and fetch information about your entities.

Read more from Martin Fowler [https://martinfowler.com/bliki/CQRS.html]




Event Sourcing

We can query an application’s state to find out the current state of the world, and this answers many questions. However there are times when we don’t just want to see where we are, we also want to know how we got there.

Event Sourcing ensures that all changes to application state are stored as a sequence of events. Not just can we query these events, we can also use the event log to reconstruct past states, and as a foundation to automatically adjust the state to cope with retroactive changes.

A traditional representation of database state can be entirely recreated by reprocessing this event log. Event sourcing’s benefits include strong auditing, creation of historic state, and replaying of events for debugging and analysis. Event sourcing has been around for a while, but we think it is used much less than it should be.

Although this approach adds a lot of complexity to the system it also has a lot of advantages:


	You have a history of all your changes.


	You can consume the events to create your custom storages, e.g. you can use the Elastic Search Stack for full text search or statistics.


	We never delete data and even for bigger bugs we can provide fixes that restore all your content.


	We don’t have to care about data migration when we change the read models with a new version; you just have to run the event consumers from the beginning to populate the read store with the updated data.









Frameworks and Tools

Squidex is based on the following frameworks and tools:


	ASP.NET Core for the backend.


	Angular for the Management UI


	MongoDB for the event Store and persistency


	Orleans as a backend technology.




Of course we use a dozens of external dependencies, because we do not want to reinvent the wheel, but it would just be too much to list them here.

Slides about the current architecture (June 2019): https://www.slideshare.net/secret/yUk1EmYlw8pLZF







          

      

      

    

  

    
      
          
            
  
Extensions

This document describes how to write extensions for Squidex. We use interfaces for all components that could be replaced and register them in the service locator.

We use the standard dependency injection (see https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection).

Our recommendation is to create a custom extension method for your services.

public static class MyServices
{
    public static void AddCustomizedServices(this IServiceCollection services)
    {
        services.AddSingletonAs<SqlEventStore>()
            .As<IEventStore>()
            .As<IExternalSystem>();
    }
}

// Add your services to AppServices.cs

public static class AppServices
{
    public static void AddAppServices(this IServiceCollection services, IConfiguration config)
    {
        services.AddHttpClient();
        // ....
        services.AddCustomizedServices();
    }
}






Infrastructure Extensions


IAssetStore

The Squidex.Infrastructure.Assets.IAssetStore interface is used to encapsulate storage solutions for assets. Currently there are the following implementations:


	AzureBlobAssetStore: Store the assets in azure blob storage.


	Read more: https://azure.microsoft.com/en-us/services/storage/blobs/






	GoogleCloudAssetStore: Store the assets in Google cloud.


	Read more: https://cloud.google.com/storage/






	FolderAssetStore: Store the assets in the file system.




Recommended implementations:


	Amazon S3







IEventStore

The Squidex.Infrastructure.CQRS.Events.IEventStore is our abstraction for different event store implementations. You can append to events, query them or subscribe to events. Dependending on your implementation you might want to use the pub-sub system for subscriptions. The notification mechanism is provided by the Squidex.Infrastructure.CQRS.Events.IEventNotifier interface. Currently there are the following implementations:


	Squidex.Infrastructure.CQRS.Events.MongoEventStore: Implementation for MongoDb.


	Read more: https://docs.mongodb.com/ecosystem/drivers/csharp/






	Squidex.Infrastructure.CQRS.Events.GetEventStore: Implementation for EventStore.


	Read more: https://geteventstore.com/








Recommended implementations:


	SQL Databases




The Squidex.Infrastructure.CQRS.Events.IEventConsumerInfoRepository defines the contract for a system to store the current state of each event consumer.




IAssetThumbnailGenerator

The Squidex.Infrastructure.Assets.IAssetThumbnailGenerator interface encapsulates image transformations. We only have an implementation for ImageSharp: https://github.com/SixLabors/ImageSharp






Repositories

You can provide other implementations for repositories, e.g. for Elastic Search or SQL:


	Squidex.Domain.Apps.Entities.Assets.Repositories.IAssetRepository: Stores metadata about assets such as names and sizes, but not the content itself. Can be challenging to implement the filtering.


	Squidex.Domain.Apps.Entities.Contents.Repositoriess.IContentRepository: Stores the content itself. Can be challenging to implement the filtering.


	Squidex.Domain.Apps.Read.History.Repositories.IHistoryEventRepository: Stores basic history events to show them in the UI.


	Squidex.Domain.Apps.Entities.Rules.Repositories.IRuleEventRepository: Stores the rule events, like an internal job queue.


	Squidex.Infrastructure.States.IStore: Key value store for json objects. Contains everything else like comments, apps, schemas, rules, custom indices and settings.


	Squidex.Infrastructure.UsageTracking.IUsageTracking: Stores historic usage information and performance metrics.







Command Handlers

Command handlers are used to handle commands. They can be compared with ASP.NET Core Middlewares and run in a pipeline.

namespace Squidex.Infrastructure.CQRS.Commands
{
    public interface ICommandHandler
    {
        Task HandleAsync(CommandContext context, Func<Task> next);
    }
}





They accept two parameters. The first is the command context, that also includes a reference to the command. The next is a function to call the next command handler. Typical use cases are changes to one domain object, for example default fields for new schemas.


Example 1: Handle command

If you can accept the command, handle it and call Complete().

class MyHandler : ICommandHandler
{
    public async Task HandleAsync(CommandContext context, Func<Task> next) 
    {
        if (context.Command is MyCommand myCommand)
        {
            await Handle(myCommand);
            context.Complete();
        }
        else
        {
            await next();
        }
    }
}








Example 2: Measure Performance

class MyHandler : ICommandHandler
{
    public async Task HandleAsync(CommandContext context, Func<Task> next) 
    {
        var watch = Stopwatch.StartNew();

        try
        {
            await next();
        }
        finally
        {
            watch.Stop();

            Log(watch);
        }
    }
}








Example 3: Enrich Command

class MyHandler : ICommandHandler
{
    public async Task HandleAsync(CommandContext context, Func<Task> next) 
    {
        if (context.Command is UserCommand userCommand)
        {
            userCommand.UserId = await GetUserIdAsync();
        }

        await next();
    }
}










Event Consumers

Event consumers are invoked when new events are created or when an event consumer is restarted and old events are replayed. You should not raise new events, but of course you can create a new events.

namespace Squidex.Infrastructure.CQRS.Events
{
    public interface IEventConsumer
    {
        // The name of the event consumer to display in the UI.
        string Name { get; }

        // Filter events by the stream name. Use regular expressions.
        string EventsFilter { get; }

        // Will be invoked when the event consumer is restarted.
        Task ClearAsync();

        // Will be called for each new or replayed event.
        Task On(Envelope<IEvent> @event);
    }
}











          

      

      

    

  

    
      
          
            
  
Localization

Localization allows you to define content in multiple languages.


Basic concept

You can define per field if the field is localizable or not. We call this system partitioning, but more about that later.

It is easy to understand when you have a look to an content object from the API:

{ 
    "id": "01",
    "created": "2017-02-25T19:56:35Z",
    "createdBy": "...",
    "lastModified": "2017-02-25T19:56:35Z",
    "lastModifiedBy": "...",
    "data": {
        "name": {
            "en": "Copenhagen",
            "sv": "Köpenhamn",
            "fi": "Kööpenhamina",
        },
        "population": {
            "iv": 1400000
        }
    }
}





Each field value is a set of values that are associated to keys. In javascript it is called a object, other programming langauges call it HashMap or Dictionary. The keys must be unique. Depending whether the field is localizable or not the API accepts different keys.


	The population field is not localizable. Therefore the only allowed key is iv, which stands for “invariant”.


	The name field is localizable. The allowed keys are the language codes for the languages you have configured.




The languages an fallback rules can be configured in the Management UI:

[image: ../_images/settings.png]Settings

In this example we have 3 languages:


	English (en): Our master language. Whenever a fields is not available in a language it falls back to the master language.


	Finnish (fi): Our newest language. It fallsback to swedish. This means that whenever a value for a localizable fields is not available Squidex tries to resolve the value from swedish first and then from the master language (English). Finish is also marked as optional, which mean that required fields can be omitted. This is useful when you introduce a new language. You can save contents with required fields even if the field value has not been entered for the optional language.


	Swedish (sv): One of our main langauges which falls back to to master language (english).







How to retrieve the correct languages?

The rest endpoint provides two headers that can be used to query the correct language.


X-Languages Header

You can filter the languages with the X-Languages header. Other languages will be omitted. We do not use the Accept-Language header because we want to avoid compatibility issues. If you define a language that is not supported, this language will be ignored. For example: If you set: X-Languages: en,sv,de for our example above you will only retrieve English (en) and Swedish (sv).

X-Languages: en,sv
{ 
    ...,
    "data": {
        "name": {
            "en": "Copenhagen",
            "sv": "Köpenhamn"
        },
        "population": {
            "iv": 1400000
        }
    }
}





If none of the specified languages is provided you will retrieve the master language only.

X-Languages: de
{ 
    ...,
    "data": {
        "name": {
            "en": "Copenhagen"
        },
        "population": {
            "iv": 1400000
        }
    }
}








X-Flatten Header

If you add this header, fields that only have a single value will be flattened. So the example above will be transformed to:

X-Flatten: true
{ 
    ...,
    "data": {
        "name": {
            "de": "Copenhagen",
            "sv": "Köpenhamn"
        },
        "population": 1400000
    }
}





Both headers can be combined. If you define a single language with the X-Languages header the localizable fields will contain only one value each and therefore they can be flattened as well. If you provide an unsupported language you will just get the master language.

So our example from above might look like:

X-Languages: de
X-Flatten: true
{ 
    ...,
    "data": {
        "name": "Copenhagen",
        "population": 1400000
    }
}





It basically means that you can just forward the user language and Squidex will handle the rest.


NOTE: The headers above are not supported by the graphql endpoint, because in graphql the output should be defined the query only









Why do you call it partitioning?

It basically means that the a value is partitioned into multiple subvalues. When we implemented the localization feature we realized that it might be very helpful to extend this feature to other type of keys, for example you could…


	… define your prices for different currencies.


	… write your texts for different countries.


	… define customer groups.




So we implemented the localization feature with the idea in mind that we might extend it in coming versions.







          

      

      

    

  

    
      
          
            
  
Permissions

The purpose of a permission is to control the ability of the users to view, change and delete contents, assets and settings.


Concept

Squidex uses a fine granular permission system. Permissions are defined with a dot-notation:


	squidex


	squidex.apps.{app}.clients


	squidex.apps.{app}.clients.read


	squidex.apps.{app}.contents


	squidex.apps.{app}.contents.{schema}


	squidex.apps.{app}.contents.{schema}.read


	squidex.apps.{app}.contents.{schema}.create




{app} and {schema} are placeholder that will be replaced with your current app name or schema name.

The full list of permissions can be found here: https://github.com/Squidex/squidex/blob/master/src/Squidex.Shared/Permissions.cs

The system is expressed as a hierarchy. If you visualize them as a tree you get the following structure


	squidex


	apps


	{app}


	clients


	reader






	contents


	{schema}


	read


	create
























This means…


	That squidex gives you all permissions and makes you an adminstrator.


	That squidex.apps.{app} gives you all permissions for a specific app and makes you the app owner.







Defining permissions

The permission system also allows wildcards:

squidex.apps.{app}.contents.*.read gives you read access to all schemas in your app, but now write access.

It also it allows alternatives:

squidex.apps.{app}.contents.pages|posts|articles.* gives you full access to the three schemas pages, posts and articles.

And furthermore exceptions (not implemented yet):

squidex.apps.{app}.contents.^settings.* gives you full access to all schemas except to the settings schema.


Special permissions

If you have a look to the list of available permissions [https://github.com/Squidex/squidex/blob/master/src/Squidex.Shared/Permissions.cs] the meaning should be obvious, but there is one exception:

squidex.apps.{app}.common gives you the minimum permissions to access and app. If you create a role that can view content only, this role also needs the permissions to query the configured languages and published schemas for an app. Therefore all app roles have this permissions implicitly.






Roles

Roles are used to assign permissions to users.


Default roles

Squidex defines four default roles that cannot be deleted. {app} is your app name.




Owner


	squidex.apps.{app}: All permissions







Developer


	squidex.apps.{app}.api: Can use the api section the Management UI


	squidex.apps.{app}.assets: Can view and manage assets


	squidex.apps.{app}.contents: Can view and manage contents.


	squidex.apps.{app}.patterns: Can view and manage patterns.


	squidex.apps.{app}.rules: Can view and manage rules.


	squidex.apps.{app}.schemas: Can manage schemas (Viewing schemas is an implicit permission).







Editor


	squidex.apps.{app}.assets: Can view and manage assets


	squidex.apps.{app}.contents: Can view and manage content.







Reader


	squidex.apps.{app}.contents.*.read: Can view content.







Custom roles

You can define custom roles in the Management UI by choosing a name first and then assigning the permissions to this role. All permissions will be prefixed with squidex.apps.{app} automatically, otherwise you would be able to create roles that give you permissions to another app.

[image: concepts/../.gitbook/assets/roles%20%281%29.png]Custom roles






Administration

As an administrator you can also assign permissions to users individually:

[image: ../_images/administration.png]Custom permissions

There are some restrictions to the system:


	When you assign permissions to a user manually, this user has to logout and login again, because these permissions are stored as claims in the cookie.


	Even if a user has the admin permission (squidex) or permissions for alls apps (squidex.apps) he will not see them in the apps overview in the administration UI. A squidex can have have thousands of apps (like our cloud) and the user interface is not designed for that. Either assign him an explicit to an app, like squidex.apps.{app} or enter the url manually.










          

      

      

    

  

    
      
          
            
  
Rules

A rule is a system to react to events.


Concept

Whenevery you make a change in Squidex, such as creating content or updating settings, an event is created. An event describes what happened in the past and has a unique name, for example ContentChanged. You can react to events by defining rules.

A rule has two parts:


	A trigger defines when to execute the rule.


	An action defines what to do.




For example

[image: ../_images/rule.png]A rule that creates a twitter update when content has changed




Workflow

To execute a rule the following steps are excuted:


	Enrichment: The event is enriched with additional information.


	Matching: The matching rules are determined by comparing the rule triggers with the enriched event.


	Formatting: An rule job is created and stored. It contains all information to execute the rule for the current event.


	Execution: The rule job is queried from the store and executed. If not succeeded it will be marked for a retry at a later point of time.





1. Enrichment

Events contain only the bare minimum of information. For the ContentPublished event we only need the if of the content that has been published. All other information can be derived. In addition to that we also store metadata, such as the timestamp and the id of the user who created the content. This is common for all events. But for the next steps we need additional information. Therefore we retrieve them from the system and create enriched events.

The enriched events have the following structure:


Content Events

{
    "id": "123...", // Id of the content.
    "actor": { "type": "subject", "id": "123..." }, // Id of the user
    "appId": { "name": "my-app", "id": "123..." }, // App name and id
    "created": "2018-01-01T12:00:00Z",
    "createdBy":  { "type": "subject", "id": "123..." },
    "data": { // Content data
        "city": {
            "en": "Munich",
            "de": "München"
        },
        "population": {
            "iv": 123000
        }
    },
    "lastModified": "2018-01-01T12:00:00Z",
    "lastModifiedBy": { "type": "subject", "id": "123..." },
    "schemaId": { "name": "my-schema", "id": "123..." }, // Schema id
    "status": "Draft", // Status of the content: Draft, Archived, Published
    "timestamp": "2018-01-01T12:00:00Z",
    "type": "Created", // The type of the event.
    "user": { // The user information.
        "id": "123...",
        "name": "John Doe",
        "email": "john@email.com"
    },
    "version": 1 // Version of the content, increased with any operation
}








Asset Events

{
    "id": "123...", // Id of the asset
    "actor": { "type": "subject", "id": "123..." }, // Id of the user
    "appId": { "name": "my-app", "id": "123..." }, // App name and id
    "created": "2018-01-01T12:00:00Z",
    "createdBy": "subject:123",
    "fileName": "Avatar.png",
    "fileSize:": 512000,
    "fileVersion": 1,
    "isImage": true,
    "lastModified": "2018-01-01T12:00:00Z",
    "lastModifiedBy": { "type": "subject", "id": "123..." },
    "mimeType": "image/png",
    "pixelHeight": 600,
    "pixelWidth": 800,
    "timestamp": "2018-01-01T12:00:00Z",
    "type": "Created", // The type of the event.
    "user": { // User information
        "id": "123...",
        "name": "John Doe",
        "email": "john@email.com"
    },
    "version": 1 // Version of the asset, increased with any operation
}





It is important to understand the structure because we use it in the matching step. Furthermore some actions just pass over the enriched events to other systems: For example, the webhook action adds the event to the request body in (almost) the same format.






2. Matching

Lets just have a look to a trigger definition first:

[image: ../_images/content-trigger.png]Triggers when a blog post is published or restored

In the matching process we check whether the action should be executed. There are several conditions:


	The event type must be correct:


	A rule with a AssetChanged trigger can only handle asset events.


	A rule with a ContentChanged trigger can only handle content events.






	If a condition is defined it must evaluate to true.




A condition is a javascript expression that must return true to execute the rule.

Here are some examples to demonstrate it:

Specific asset events:

event.type == 'Created' || event.type == 'Updated'





Large assets only:

event.fileSize > 100000000





Images only:

event.isImage





Of course it can be more complex if necessary.




3. Formatting

When you configure an action you have to define several settings. In our example above we create a twitter update and have to define the text we want to publish.

Almost all text settings for actions support placeholders that allow you to integrate information from the enriched event.


	$APP_ID: The id of your app (guid).


	$APP_NAME: The name of your app.


	$USER_ID: The id of the user (or client).


	$USER_NAME: The display name of the user (or client name).


	$USER_EMAIL: The email address of the user (or client name).


	$TIMESTAMP_DATE: The date when the event has happened (usually different from the time when the rule is executed) in the following format: yyyy-MM-dd.


	$TIMESTAMP_DATETIME; The date when the event has happened (usually different from the time when the rule is executed) in the following format: yyyy-MM-dd-hh-mm-ss.




For content events you can also use:


	$SCHEMA_ID: The id of the schema.


	$SCHEMA_NAME: The name of the schema.


	$CONTENT_URL: The url to the content in the administration tool.


	$CONTENT_ACTION: The content action, e.g. CityContentCreated.


	$CONTENT_DATA.city.de: Reference a data field.




Furthermore you can also use javascript expressions with the following syntax:

Script(<YOUR_SCRIPT>)





Javascript template string [https://developer.mozilla.org/de/docs/Web/JavaScript/Reference/template_strings] are very useful here. The placeholders above can be translated to the following expressions:

Script(`${event.appId.id}`)
Script(`${event.appId.Name}`)
Script(`${event.user.id}`)
Script(`${event.user.email}`)
Script(`${formatDate(event.user.timestamp, 'yyyy-MM-dd')}`)
Script(`${formatDate(event.user.timestamp, 'yyyy-MM-dd-hh-mm-ss')}`)

// For content events
Script(`${event.schemaId.id}`)
Script(`${event.schemaId.Name}`)
Script(`${contentUrl()}`)
Script(`${contentAction()}`)
Script(`${event.data.city.de}`)





You can also reference any other field from the event and you can use if-statements and other javascript language features.

if (event.fileSize > 100000) {
    return `I just uploaded a large image ${event.fileName}`;
} else {
    return `I just uploaded a small image ${event.fileName}`;
}








4. Execution

Squidex will make several attempts to execute an job:


	First attempt, a few seconds after the event has happened.


	After 5 minutes


	After 1 hour.


	After 6 hours.


	After 12 hours.




Jobs expire after 2 days and will be deleted automatically.









          

      

      

    

  

    
      
          
            
  
Schemas

Schemas define the structure of your content.

You have to publish your schema before you can create content.


Field States

Each field has multiple states:


	Locked: The field cannot be updated or deleted.


	Hidden: The field will not be returned by the api and only visible in the Management UI.


	Disabled: The field cannot be manipulated in the Management UI. Do not use it together with the required operator, because you will not be able to create or update content items anymore.







Field Types

Field types define how a field is structured in the API and in the processing pipeline. You can define the editor for each field, so a string field can either be a html text, markdown or a list of allowed values with a dropdown editor. We use a product catalog as an example to describe the different field types.

If a field is not required it can also be null or omitted.


String

[image: ../_images/string.png]String

A string is the most used field type and can be used for any kind of texts, like product names, descriptions and additional information. It is also the most flexible field and the usage depends very much on the editor you are using:


	HTML: With a wysiwyg editor.


	Markdown: With a markdown editor.


	Singleline text: With an input control.


	Multiline text: With a textarea control.


	Selection of predefined values: With a dropdown control or radio boxes.





API representation

{
    "name": "Squidex T-Shirt",
    "description": "For our fans. <p>Available in <strong>multiple colors ..."
}










Number

[image: ../_images/number.png]Number

A number can either be a point number or integer. Typical examples when to use numbers are quantities, IDs and prices.


API representation

{
    "quantity": 100,
    "price": 9.99
}










Boolean

[image: https://github.com/Squidex/squidex-docs/tree/26ae7794e696b9b087e545b2d7cdb8998e673f51/images/fields/boolean]Boolean

Booleans have only 2 states: True or false, yes or no, 1 or 0.


API representation

{
    "isSoldOut": true,
    "isOffer": null
}










DateTime

[image: ../_images/datetime.png]DateTime

Date and time in the ISO8601 standard. The format is: YYYY-MM-DDTHH:mm:ss.sssZ.


API representation

{
    "sellUntil": "2020-02-02T12:00:00Z"
}










Assets

[image: ../_images/assets.png]Assets

Asset fields are used to maintain a list of assset IDs. You can also restrict the number of assets with a minimum and maximum limit, for example when you want to have a single avatar or preview image for a content. You can use the IDs load the asset. Read more about here. When you delete an asset a cleanup process will remove the asset id from your contents. This process is executed in the background to improve the performance and it can take several minutes to complete. Therefore it is highly recommended to handle cases where an content has an id to an deleted asset.


API representation

{
    "images": [
        "7722daf6-1ba7-4b2a-a5bb-fc57e22f5645",
        "b666b172-9918-4764-ac26-300ba4857d5f"
    ]
}










References & Array

[image: ../_images/references.png]References

References fields are used to model relationship to other content items. For example you could have a schema for products and a schema for product categories. A product has a field with references to the categories it belongs to. Both, products and categories can be created, updated and managed independently. Please think about the direction of the reference very carefully. For example a typical product is only in very few categories, but a product category could have thousand of products. Therefore it is not recommended to reference the products from the categories. When you delete an content a cleanup process will remove the referenced id from all contents. This process is executed in the background to improve the performance and it can take several minutes to complete. Therefore it is highly recommended to handle cases where an content has an reference to an deleted content.


API representation

{
    "categories": [
        "7722daf6-1ba7-4b2a-a5bb-fc57e22f5645",
        "b666b172-9918-4764-ac26-300ba4857d5f"
    ]
}










Array

[image: ../_images/array.png]Arrays

Some content items only exist as child content for another content item. For example a product could have variations like different sizes and prices. These content items can be represented with array fields, where each item in the field has a specified structured, that is called nested schema.


API representation

{
    "sizes": [{
        "size": "XL",
        "quantity": 100,
        "price": 30
    }, {
        "size": "L",
        "quantity": 100,
        "price": 28.5
    }]
}










Geolocation

[image: ../_images/geolocation.png]Geolocation

The geolocation field represents a tuple of latitude and longitude and is designed to be used in combination with maps. It does not store additional data about the location, such as names, addresses or other information. You have to add additional fields for this purpose.

{
    "location": {
        "latitude": 14.9212444,
        "longitude": 57.2121432
    }
}








Tags

[image: ../_images/tags.png]Tags

Tags are list of strings that are use in the combination tag editor in the Management UI. It is especially useful if you enrich your content with external systems. At the moment the tag editor does not support advanced tag management, such as global lists of tags, renaming and merging of tags.


API representation

{
    "tags": [
        "t-shirts",
        "fan-products"
    ]
}










Json

[image: ../_images/json.png]Json

A json field is for developers. Whenever you have some structured or unstructured content, that you cannot cover with the built in field types or editors you should the json field. You should either write a custom editor when the content editors can edit the field or disable the field when the content for this field comes from an external source. Editing the json manually is fragile and can easily break your processes.


API representation

{
    "sold": {
        "Europe": {
            "Germany": {
                "quantity": 100,
                "averagePrice": 15.44
            }
        }
    }
}















          

      

      

    

  

    
      
          
            
  
Developing

You can find the source code on github: https://github.com/squidex/squidex


Tools

To work with the source code you need the following tools:


	Visual Studio Code [https://code.visualstudio.com/] or Visual Studio 2017 [https://www.visualstudio.com/vs/visual-studio-2017-rc/]


	Node.js [https://nodejs.org/en/]


	.NET Core SDK [https://www.microsoft.com/net/download/core#/current] (Already part of Visual Studio 2017)


	MongoDB [https://www.mongodb.com/]


	Optionally: Redis [https://redis.io/download]


	Optionally: RabbitMQ [https://www.rabbitmq.com/download.html]




We also provide ready to use docker configurations: https://github.com/squidex/squidex-docker. Just execute the following commands to get a mongodb and redis installation for development:


	git clone https://github.com/squidex/squidex-docker


	cd squidex-docker/dependencies


	docker-compose up -d





Please Note: MongoDB and Redis are not password protected. Do not expose it to the internet.







How to run the Squidex

The Management UI is written with Angular [https://angular.io] and Webpack2 [https://webpack.js.org/]. Therefore you have to run the webpack web dev server which automatically detects changes and builds the application, whenever a file is changed. The typescript code and sass files will be compiled.

The website itself is written in ASP.NET Core [https://docs.microsoft.com/en-us/aspnet/core/]. For the Management UI it just provides a single html file which links to the files from the webpack dev server.


How to run the Webpack Dev Server?


	cd src/Squidex (Go to the web application project)


	npm i (Install all dependencies for the Management UI)


	npm start (Runs the webpack vdev server)




Optionally:


	npm rebuild node-sass --force (Only if you have issues with node-sass)


	npm test (Runs the unit tests and listens for changes)


	npm run test:coverage (Runs the unit tests and calculates the test coverage).







How to run the Website?


	cd src/Squidex (Go to the web application project)


	dotnet restore (Install all dependencies)


	dotnet run (Run the API)





Open http://localhost:5000 to run Squidex.




You have to run both indendently. The first time it feels redundant and annoying and we also had some code to run the webpack dev server automatically when the application is started. But you will recognize that it takes a minute for the webpack dev server to start. Therefore we decoupled the commands, so that you can keep the webpack dev server running, even when you have to restart the dotnet application.

As the name ‘webpack dev server’ indicates, it is only used for development. For production we bundle all typescript files, html and sass and add the bundle to the deployment package.




Troubleshooting

Here are some tipps when you get build or runtime errors.


	Check the logs.


	Ensure that ASPNETCORE_ENVIRONMENT is set to Development: https://andrewlock.net/how-to-set-the-hosting-environment-in-asp-net-core/


	Ensure that .NET SDK Version 2.1.401 is installed.












          

      

      

    

  

    
      
          
            
  
Building


1. Build for docker

We provide docker images on docker hub: https://hub.docker.com/r/squidex/squidex/


	squidex/squidex:latest is the latest stable version.


	squidex/squidex:vX.XX is a specific stable version.


	squidex/squidex:dev is the latest dev version (master branch).


	squidex/squidex:dex-XXXX is a specific dev version (master branch).




To build a custom image use our multistage dockerfile. Just run:

docker build . -t my/squidex








2. Build for manual deployment

When you want to deploy to IIS or Nginx you have to build manually. You can then find the files under $SQUIDEX/publish.


2.1. Build with docker

Run the following commands in Powershell or bash to build Squidex with docker:

# Build the image
docker build . -t squidex-build-image -f dockerfile.build

# Open the image
docker create --name squidex-build-container squidex-build-image

#Copy the output to the host file system
docker cp squidex-build-container:/out ./publish

# Cleanup
docker rm squidex-build-container





Under windows just use the build.ps script.




2.2. Build without docker

If you don’t want to use docker, you can also build it manually. You have to execute the following commands:

cd $SQUIDEX$/src/Squidex

npm i
npm run build

dotnet restore
dotnet publish --configuration Release --output "../../publish"





Please note that on windows to install all required build tools for node-sass you have to run

npm install --global --production windows-build-tools





from an elevated PowerShell or CMD.exe (run as Administrator).

We recommend to build Squidex with docker, because it ensures that you have a clean environment. Because of the docker layers [http://bitjudo.com/blog/2014/03/13/building-efficient-dockerfiles-node-dot-js/] the build is not much slower and can be even faster in some situations.









          

      

      

    

  

    
      
          
            
  
Installation


Choose your target platform


	Install under Windows with IIS


	Install with Docker (Linux, OS X, Windows)







Choose your cloud provider


	Install on Azure App Service [https://github.com/Squidex/squidex-docs/tree/395267605004d823a18c1c792505b4f727d0cf6d/01-getting-started/Installation/install-azure]







How to configure Squidex


	Configuration Options







Optional: configure Squidex.Identity


	How to use Squidex Identity










          

      

      

    

  

    
      
          
            
  
Configuration


Configuration model

We use the ASP.NET Core Configuration [https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration] model for all settings.

You can configure Squidex using the following ways:


	The appsettings.json file.


	The appsettings.Production.json file.


	Environment variables.


	Command line arguments.




The ordering is important. Command line arguments override other settings, enironment variables override the json files and so on. Using a combination of all these options can be very helpful.

Read the comments of the appsettings.json file to understand all configuration settings.

In this example we want to override the following setting from the configuration file:

{
  "assetStore": {
    "folder": {
      "path": "Assets"
    }
  }
}





If you combine all keys from the json root to the setting you get the full key of this setting.

Aggregate the keys by two underscores to get the name of the environment variable:

ASSETSTORE__FOLDER__PATH="MyAssets"





Aggregate the keys by colon and you get the name of the command line argument

assetstore:folder:path="AssetStore"





Casing does not matter.




Important settings

These are the most important settings:

| Setting | Description |
| :— | :— |
| urls:baseUrl | The base url under which Squidex is running. It is used to generate hyperlinks and to make redirects with the correct host name. In some environments, squidex is running behind several proxies, e.g. cloudflare, google load balancer and so on. In these cases the original host name might get lost. Therefore we introduced this configuration value. |
| identity:adminEmail | The email address of the admin user. |
| identity:adminPassword | The password of the admin user (Must contain lowercase, uppercase letter, number and special character.) |

Set


	identity:googleClient


	identity:githubClient


	identity:microsoftClient




to empty to disable authentication with third party providers.




Troubleshooting

Please check the logs to see detailed error messages.


Login screen shows ‘Operation failed’ message.

Typically the login fails, because the urls:baseUrl setting has an invalid value. Ensure that the domain that is used by your users is configured here. Squidex mght run behind several other servers like Cloudflare, load balancers and reverse proxies and does not know the original domain. Therefore we must configure the URL.




I see the login screen but I cannot login.

Ensure that you have configured a strong password if you use identity:adminPassword.

You will see the following entry in your logs:

{
  "logLevel": "Error",
  "action": "createAdmin",
  "status": "failed",
  "exception": {
    ...
    "message": "Cannot create user:...",
    ...
  }
}`





The password requirements are:


	Passwords must be at least 6 characters.


	Passwords must have at least one non alphanumeric character.


	Passwords must have at least one digit (‘0’-‘9’).


	Passwords must have at least one lowercase (‘a’-‘z’).


	Passwords must not have been appeared in a data breach before: https://haveibeenpwned.com/












          

      

      

    

  

    
      
          
            
  
Install on Azure

Please note that azure also supports Docker compose files so you can also follow the Docker tutorial, especially if it is important for you to be independent from your cloud provider.

In this tutorial I will also not teach you the basics of Azure. it is a very complicated product with thousands of features and you should be familiar with the basics before you follow this tutorial or just learn it on the fly.


Requirements

Before you start you have to setup a few things first:


	A resource group for all your squidex resources.


	A service plan to host squidex (Linux).


	A storage account for your assets and mongo db (general purpose v1 or v2).


	Azure-CLI [https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest] installed.







1. Create the web app

Create a new web app with the following Basics:

[image: ../_images/create-app-service-basics.png]Create App Service Basics

Configure the Docker tab like this:

[image: ../_images/create-app-service-docker.png]Create App Service Docker




2. Enable logging

In the next step we enable logging. This makes diagnostics easier.

Go to your app service and scroll down to menu item App Service logs and turn on file logging. You can then use the Log stream to view all log entries.

[image: ../_images/logging.png]Enable logging




3. Configure your storage account

Go to your storage account instance, choose Files and create a file share named ‘etc-squidex-mongodb’.

Choose Blobs and create a container named ‘etc-squidex-assets’.

Choose Access Keys and copy one of the keys for the setup of the MongoDB and one Connection String for the setup of the squidex asset store.




4. Create the container instance

The following setup of the container instance can only be done using the azure-cli at the moment. Open a terminal, login to azure using az login and run the following command.

  az container create --resource-group [YOUR VALUE HERE] --name mongodb --image mongo --azure-file-volume-account-name [YOUR VALUE HERE] --azure-file-volume-account-key "[YOUR VALUE HERE]" --azure-file-volume-share-name etc-squidex-mongodb --azure-file-volume-mount-path "/data/mongoaz" --ports 27017 --cpu 2 --ip-address public --memory 2 --os-type Linux --protocol TCP --command-line "mongod --dbpath=/data/mongoaz --bind_ip_all"





This will create a container Instance with a single container running mongo db.


IMPORTANT: At this point your MongoDB will run without authentication. Connect to it with a Tool of your choice like Robo 3T [https://robomongo.org/] and create an admin user. After that run the above command again, but change the –command-line argument to

"mongod --dbpath=/data/mongoaz --bind_ip_all --auth"











5. Configure your application

Go to the Configuration section and choose Application settings to configure squidex.


IMPORANT: After you change your configuration values you have to restart your container. In our case the only option was to stop the app service and then start it again. The restart button did not work. Please write a comment if you know a better solution.




[image: ../_images/configuration.png]All configuration values

Configuration values for external authentication providers are empty to turn them off.




6. All settings

All basic settings:

[
  {
    "name": "ASSETSTORE__AZUREBLOB__CONNECTIONSTRING",
    "value": "[YOUR VALUE HERE]",
    "slotSetting": false
  },
  {
    "name": "ASSETSTORE__AZUREBLOB__CONTAINERNAME",
    "value": "etc-squidex-assets",
    "slotSetting": false
  },
  {
    "name": "ASSETSTORE__TYPE",
    "value": "AzureBlob",
    "slotSetting": false
  },
  {
    "name": "DOCKER_REGISTRY_SERVER_PASSWORD",
    "value": "",
    "slotSetting": false
  },
  {
    "name": "DOCKER_REGISTRY_SERVER_URL",
    "value": "https://index.docker.io",
    "slotSetting": false
  },
  {
    "name": "DOCKER_REGISTRY_SERVER_USERNAME",
    "value": "",
    "slotSetting": false
  },
  {
    "name": "EVENTSTORE__MONGODB__CONFIGURATION",
    "value": "mongodb://[YOUR ADMIN]:[YOUR PASSWORD]@[YOUR IP]:27017",
    "slotSetting": false
  },
  {
    "name": "IDENTITY__ADMINEMAIL",
    "value": "hello@squidex.io",
    "slotSetting": false
  },
  {
    "name": "IDENTITY__ADMINPASSWORD",
    "value": "[YOUR VALUE HERE]",
    "slotSetting": false
  },
  {
    "name": "IDENTITY__GITHUBCLIENT",
    "value": "",
    "slotSetting": false
  },
  {
    "name": "IDENTITY__GITHUBSECRET",
    "value": "",
    "slotSetting": false
  },
  {
    "name": "IDENTITY__GOOGLECLIENT",
    "value": "",
    "slotSetting": false
  },
  {
    "name": "IDENTITY__GOOGLESECRET",
    "value": "",
    "slotSetting": false
  },
  {
    "name": "IDENTITY__MICROSOFTCLIENT",
    "value": "",
    "slotSetting": false
  },
  {
    "name": "IDENTITY__MICROSOFTSECRET",
    "value": "",
    "slotSetting": false
  },
  {
    "name": "STORE__MONGODB__CONFIGURATION",
    "value": "mongodb://[YOUR ADMIN]:[YOUR PASSWORD]@[YOUR IP]:27017",
    "slotSetting": false
  },
  {
    "name": "URLS__BASEURL",
    "value": "https://squidex-test.azurewebsites.net/",
    "slotSetting": false
  },
  {
    "name": "VIRTUAL_HOST",
    "value": "squidex-test.azurewebsites.net",
    "slotSetting": false
  },
  {
    "name": "WEBSITE_HTTPLOGGING_RETENTION_DAYS",
    "value": "10",
    "slotSetting": false
  }
]






More issues?

It is very likely a configuration problem and not related to hosting under azure. Go to the Configuration page.









          

      

      

    

  

    
      
          
            
  
Install with Docker


Supported platforms


	Linux with Docker CE [https://docs.docker.com/install/linux/docker-ce/centos/]


	Windows 10 Pro, Enterprise or Education with Docker for Windows [https://docs.docker.com/docker-for-windows/install/]


	Windows with Docker Toolbox [https://docs.docker.com/toolbox/toolbox_install_windows/]


	Mac with Docker for Mac [https://docs.docker.com/docker-for-mac/]







Use the docker-compose setup

We provide a docker-compose configuration:


https://github.com/Squidex/squidex-docker/blob/master/standalone




It will run 4 containers:


	Squidex


	Nginx as Reverse Proxy to support HTTPS


	Nginx Sidecar to provision certificates with LetsEncrypt.


	MongoDB





1. Download the files

Download the following files to your server:


	docker-compose.yml


	.env







2. Configure Squidex

Open the .env file and set all variables:


	SQUIDEX_PROTOCOL: Keep it unchanged. You can set it to http to disable secure connections.


	SQUIDEX_FORCE_HTTPS: Keep it unchanged. You can set it to false to disable permanent redirects from http to https.


	SQUIDEX_DOMAIN: Your domain name, e.g. we use cloud.squidex.io


	SQUIDEX_ADMINEMAIL: The email address of the admin user.


	SQUIDEX_ADMINPASSWORD: The password of the admin user (Must contain a lowercase and uppercase letter, a number and a special character).




You can keep the other settings empty for now.




3. Create the MongoDB database folder

The data will be stored outside of the docker container to simplify the backups. Create the folder with

sudo mkdir /var/mongo/db








4. Run the docker-compose file

docker-compose up -d








More issues?

It is very likely a configuration problem and not related to hosting under Docker. Go to the Configuration page.









          

      

      

    

  

    
      
          
            
  
Install with IIS

You can also read the guide from Microsoft, how to Host ASP.NET Core on Windows with IIS [https://docs.microsoft.com/en-US/aspnet/core/host-and-deploy/iis/?view=aspnetcore-2.2#install-the-net-core-hosting-bundle]


Supported operating systems

The following operating systems are supported:


	Windows 7 or later


	Windows Server 2008 R2 or later







1. Install all requirements


1.1. Install IIS

If you read this page you are probably familiar with IIS and have already installed it, if not you can read the docs:


IIS configuration (Microsoft) [https://docs.microsoft.com/en-US/aspnet/core/host-and-deploy/iis/?view=aspnetcore-2.2#iis-configuration]







1.2. Download and install .NET Core hosting bundle:

Download the installer using the following link:


Current .NET Core Hosting Bundle installer (direct download) [https://dotnet.microsoft.com/download/thank-you/dotnet-runtime-2.2.0-windows-hosting-bundle-installer]




Ensure that the ASPNETCORE_ENVIRONMENT environment variable is set to Production




1.3. Download and install MongoDB

Following the official setup instructions:


Install MongoDB Community Edition on Windows [https://docs.mongodb.com/manual/tutorial/install-mongodb-on-windows/]









2. Install Squidex


2.1. Download the binaries

Go to the release page and download the binaries.zip file from the latest release:


Squidex Releases [https://github.com/Squidex/squidex/releases]




Create a folder for your squidex installation and extract the archive to this folder.




2.2. Create the IIS site


	In IIS Manager open the server’s node in the Connections panel. Right-click the Sites folder. Select Add Website from the contextual menu.


	Provide a SiteName and set the Physical path to the squidex folder. In this case we host Squidex at http://localhost:80




[image: ../_images/site.png]IIS Site configuration


	Under the server’s node, select Application Pools.


	Right-click the site’s app pool and select Basic Settings from the contextual menu.


	In the Edit Application Pool window, set the .NET CLR version to No Managed Code:




[image: ../_images/pool.png]IIS Application pool




2.3. Configure Squidex


	Go to your Squidex installation.


	Create a file called appsettings.Production.json where we override the default settings. When you make an upload and download a newer release your customized settings will not be overriden.


	Enter the following content and choose a custom username and password and the path to your assets.




{
  "urls": {
    /*
     * The url where your squidex installation is available at.
     */
    "baseUrl": "http://localhost"
  },
  "identity": {
    /*
     * Disable authentication with google, github and microsoft login.
     */
    "googleClient": "",
    "googleSecret": "",
    "githubClient": "",
    "githubSecret": "",
    "microsoftClient": "",
    "microsoftSecret": "",
    /*
     * Initial username and password.
     */
    "adminEmail": "admin@squidex.io",
    "adminPassword": "save1q2w3e$R"
  },
  "assetStore": {
    "folder": {
      /*
       * Define where to store the assets.
       */
      "path": "E:\\Sites\\squidex\\assets"
    }
  },
  "orleans": {
    /*
     * Disable clustering!
     */
    "clustering": "Development"
  },
}






PLEASE NOTE: The password must contain a lowercase and uppercase letter, a number and a special character.





	Start the IIS site and go to http://localhost. Login and start editing.









Troubleshooting


Where can I see the logs?

Squidex logs to stdout. To forward the logs to a file, open web.config and set stdoutLogEnabled="true".




I get a HTTP Error 404.0 - Not Found

Ensure that the Physical path of your site points to the correct location.




I get a HTTP Error 502.5 - Process Failure

It is very important that you restart IIS after you have installed .NET Core Windows Server Hosting. Restart the server or execute net stop was /y followed by net start w3svc from a command prompt with elevated permissions to pick up a change to the system PATH.




I get a HTTP Error 504 - Method not allowed

This can happen when you try to make an API call with the PUT or DELETE Verb. For example when you use the Management UI. The reason is that WebDAV might be installed on your server and it blocks these verbs. You have to add the following lines to the Web.config file.

<system.webServer>
    <modules runAllManagedModulesForAllRequests="false">
        <remove name="WebDAVModule" />
    </modules>
</system.webServer>








I only see a spinner on a white background

Ensure that the ASPNETCORE_ENVIRONMENT environment variable is set to Production.

Squidex logs all environment variables on the first start. Search for the following output in the logs:

{
  "logLevel": "Information",
  "message": "Application started",
  "environment": {
    ...
    "aspnetcoreEnvironment": "Production",
  }
}








More issues?

It is very likely a configuration problem and not related to hosting under IIS. Go to the Configuration page.









          

      

      

    

  

    
      
          
            
  
Install Identity


About Squidex Identity

Squidex Identity server based on Squidex Headless CMS. It implements the OpenId Connect and OAuth 2.0 protocols to act as a central single sign on server.


https://github.com/Squidex/squidex-identity







1. Setup of Squidex identity


1.1. Clone Squidex.Identity

Clone the Squidex identity repository with the following command:

git clone https://github.com/Squidex/squidex-identity.git








1.2. Create an identity app

You can create the app with predefined schemas either in the cloud or in your custom installation:

[image: getting-started/../.gitbook/assets/new-identity-app%20%281%29.png]Create Identity App




1.3. Update the identity configuration

Update the configureation with the url to your squidex instance and the client id and secret of the default client.

[image: ../_images/default-client.png]Copy Default Client

Update the configuration file at: Squidex.Identity/appsettings.json

"app": {
    // ...
    "url": "https://cloud.squidex.io",
    "clientId": "identity:default",
    "clientSecret": "xxx",
    // ...
}





Of course you can also use environment variables, e.g.


	APP__URL=https://cloud.squidex.io


	APP__CLIENTID=identity:default


	APP__CLIENTSECRET=xxx









2. General application settings:

If you create a identity app in Squidex you will see a schema with the settings, where you can upload a logo, footer text, privacy settings and so on.

Most settings are optional but you must setup credentials to an smpt server.

[image: getting-started/../.gitbook/assets/content-setting%20%281%29.png]Site Setting

Email Delivery Service:


	https://www.mailjet.com/


	https://www.sendgrid.com/







3. External authentication providers

If you want to use external authentication providers you can setup them in the authentication schemes section, here is an example for Google.

You have to create an OAuth 2.0-Client-IDs in the google developer console. You have to define the redirect_uri in this process and you must use http://localhost:3500/signin-google

the redirect urls for other authentication providers are:


	http://localhost:3500/signin-twitter


	http://localhost:3500/signin-facebook


	http://localhost:3500/signin-github




[image: getting-started/../.gitbook/assets/authentication-schemes%20%281%29.png]Authentication Schemes




4. External clients

When you want to connect an external application to Squidex identity you have to configure a client. This is a little bit complicated, but you can find all settings here: http://docs.identityserver.io/en/latest/reference/client.html


Squidex as an external client

You can also setup Squidex as an external client, so that the same users can also login to manage content.

In the first step you have to create a new client:

[image: ../_images/self-hosted-1.png]Self-Hosted

[image: ../_images/self-hosted-2.png]Self-Hosted

In the second step you have to update the Squidex configuration at Squidex/appsettings.json

"identity": {
    ...
    "oidcName": "selfHostedName",
    "oidcAuthority": "http://localhost:3500/",
    "oidcClient": "client:selfHosted",
    "oidcSecret": "xxx",
    ...
}





Then you can register at Squidex identity.

[image: getting-started/../.gitbook/assets/self-hosted-register%20%281%29.png]Self-Hosted









          

      

      

    

  

    
      
          
            
  
CLI

The CLI (command line interface) is terminal application for Windows, Linux and OS X.

You can download the CLI at Github: https://github.com/Squidex/squidex-samples/releases

The CLI has two main advantages:


	It is easy to automate things in your build and release processes, for example you can trigger nightly updates, schema migrations from one app to another or export content.


	It is easier to integrate complex features, such as export to CSV, because it takes more time to write a good user interface than the export routine itself.





How to use the CLI?

Hopefully the CLI itself is good enough so that you can use the integrated help to navigate through all the features.

The general structure of each command is

.\sq.exe [FEATURE] [COMMAND] [ARGS] [OPTIONAL_PARAMETERS]
`





Depending on your use cases you need a client in the Developer or even Owner role.




How to manage configurations

The CLI can manage multiple configurations, so that you do not have to define the app, client and secret for each command.


	Add a configuration




.\sq.exe config add [APP_NAME] [CLIENT_ID] [CLIENT_SECRET]






	Show all configurations




.\sq.exe config list





or as table

.\sq.exe config list -t
.\sq.exe config list --table






	Switch to another config




.\sq.exe config use [CONFIG_NAME]








Use Case: How to sync schemas


You need Developer role for this use case.





	Go to first app and save the schema to a file




.\sq.exe config use app1
.\sq.exe config schemas get schema1 > schema.json






	Go to second app and sync the schema from the saved file




.\sq.exe config use app2
.\sq.exe config schemas sync schema.json






	OR: Sync it to another schema name




.\sq.exe config schemas sync schema.json --name other-schema








Use Case: How to start a backup


You need Owner role for this use case.




.\sq.exe backup create backup.zip








Use Case: Export content to CSV

.\sq.exe content export features --fields=id,version





You have to define the fields you want to export. The general syntax is:

(<CSV_COLUMN>=)?<JSON_PATH>





The csv column is optional and can be skipped. If no column name is specified the path string will be used.

To get a good understanding of the paths, it is helpful to have a look to the API documentation of your schemas, e.g.

https://cloud.squidex.io/api/content/squidex-website/docs#operation/GetTestimonialsContent

Some sample paths


	id


	version


	data.personName.iv


	data.personName (iv is added by default for non-localized fields)


	personName=data.personName (Column name for non-localized field).




More exeamples (not from the example operation above):


	data.text.en (Localized field)


	data.hobbies.iv.0.name(For array of objects)


	data.hobbies.iv(To serialize the whole array to a string)


	data.json.iv.property (For a nested object)


	data.json.iv (To serialize the whole object to a string)




If the extract value is a json array of object it will be serialized to a string.




Use Case: Export content to JSON

.\sq.exe content export features --format=JSON








Use Case: Import content from CSV

.\sq.exe content import features File.csv --fields=text





You have to define the fields you want to import. The general syntax is:

<JSON_PATH>(=<CSV_COLUM>)?





The csv column is optional and can be skipped. If no column name is specified the path string will be used.

To get a good understanding of the paths, it is helpful to have a look to the API documentation of your schemas, e.g.

https://cloud.squidex.io/api/content/squidex-website/docs#operation/GetTestimonialsContent

Some sample paths


	personName.iv=personName


	personName (iv is added by default for non-localized fields)




More exeamples (not from the example operation above):


	text.en=text (Localized field)


	hobbies.iv.0.name=firstHobby(For array of objects)


	hobbies.iv=hobbies(To serialize the whole array to a string)


	json.iv.property=jsonProperty (For a nested object)


	json.iv=json (To serialize the whole object to a string)




If the extract value is a json array of object it will be serialized to a string.







          

      

      

    

  

    
      
          
            
  
API

We demonstrate the API concepts based on the following example:


Example

Lets assume you have an app geodata with two languages (en, de) and a schema cities with two fields:


	name: String (localizable)


	population: Number (not localizable)




Then your content has the following structure in the API:

{
    "id": "01",
    "created": "2017-02-25T19:56:35Z",
    "createdBy": "...",
    "lastModified": "2017-02-25T19:56:35Z",
    "lastModifiedBy": "...",
    "data": {
        "name": {
            "de": "München",
            "en": "Munich"
        },
        "population": {
            "iv": 1400000
        }
    }
}








General structure

Please note that each field has an partitioning defined. It says how each field is structured. The most simple partitioning is the invariant partitition, which only allows a single key iv. If the field is localizable we use the iso codes from the languages that you defined in your app settings as keys.

Read more about it at here [https://github.com/Squidex/squidex-docs/tree/2f36cf1bf7b39ceb7742b7df2685bb4274019f7a/04-concepts/01-localization].




OData Conventions

The Squidex API supports the OData url convention to query data.

We support the following query options.


$top

The $top query option requests the number of items in the queried collection to be included in the result. The default value is 20 and the maximum allowed value is 200.

https://cloud.squidex.io/api/content/geodata/cities?$top=30








$skip

The $skip query option requests the number of items in the queried collection that are to be skipped and not included in the result. Use it together with $top to read the all your data page by page.

https://cloud.squidex.io/api/content/geodata/cities?$skip=20





or combined with top

https://cloud.squidex.io/api/content/geodata/cities?$skip=20&$top=30








$search

The $search query option allows clients to request entities matching a free-text search expression. We add the data of all fields for all keys to a single field in the database and use this combined field to implement the full text search.

https://cloud.squidex.io/api/content/geodata/cities?$search=Munich






Note: You can either use $search or $filter but not both.







$filter

The $filter system query option allows clients to filter a collection of resources that are addressed by a request URL.

Find the city with the english name Munich

https://cloud.squidex.io/api/content/geodata/cities?$filter=data/name/de eq Munich





Find all cities with a population or more than 100000 people

https://cloud.squidex.io/api/content/geodata/cities?$filter=data/population/iv gt 100000





Find all the term items which belong to a certain vocabulary item: let’s say you’d like to tag your articles and you’d like to categorize these tags. In this case you would have a term schema and a vocabulary schema. Each term would have a reference field to vocabulary with the validation set to only allow a single element. To find only those term items which belong to vocabulary with id e46aca5e-5067-408f-b90f-ea441314385a you would do the following request:

https://cloud.squidex.io/api/content/testapp/term?$filter=data/vocabulary/iv eq 'e46aca5e-5067-408f-b90f-ea441314385a'






Note: You can either use $search or $filter but not both.





More examples

Date must match value:

$filter=created eq 1988-01-19T12:00:00Z





Date must match one of many values:

$filter=created in ('1988-01-19T12:00:00Z', '2011-01-22T08:00:00Z')





Id must match value:

$filter=id eq B5FE25E3-B262-4B17-91EF-B3772A6B62BB
$filter=id in (B5FE25E3-B262-4B17-91EF-B3772A6B62BB, 311DD333-B262-4B17-91EF-B3772A6B62BB)





Name must match string value:

$filter=firstName eq 'Dagobert'





Boolean must match value:

$filter=isComicFigure eq true





Age must must be equal to number:

$filter=age eq 60





String property should start with, ends with or contain a string:

$filter=startswith(lastName, 'Duck')
$filter=endswith(lastName, 'Duck')
$filter=contains(lastName, 'Duck')





Different conditions

$filter=age ne 1 // Not equals
$filter=age eq 1 // Equals
$filter=age lt 1 // Less than
$filter=age le 1 // Less or equals than
$filter=age gt 1 // Greater than
$filter=age ge 1 // Greater or equals than





Combine different conditions:

$filter=contains(lastName, 'Duck') eq false and isComicFigure eq true // AND: Both condition must be true
$filter=contains(lastName, 'Duck') eq false or  isComicFigure eq true // OR: One condition must be true








Encoding

Single quotes (') in text values must be replaced with double single quotes ('').






$orderby

The $orderby system query option allows clients to request resources in a particular order.

e.g. find the top 20 biggest cities by population:

https://cloud.squidex.io/api/content/geodata/cities?$orderby=data/population/iv desc$top=20





Read more about OData at: http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part2-url-conventions.html






Published

By default the content api returns published content only. You can use the X-Unpublished header to also return draft content.




Consistency

The API uses the eventual consistency. Events are handled in the background as described under architecture. This means that it can take to up a second until the data is available to the query side. Under very high load it can even take more time. If you receive a success status code when you create or update an content you have the guarantee, that it has been written to the database successfully. You can also make another write operation directly, e.g. to publish the content.

There are some tricks to deal with it in the UI: http://danielwhittaker.me/2014/10/27/4-ways-handle-eventual-consistency-ui/. In our opinion this leads to a more stable and faster UI and server and it is worth it.


Versioning

The API tracks the version of each content element and provides this information in the ETag content header if you make an update (POST, PUT, PATCH) or if you request a single resource. If you request multiple resources, the version is provided as a field to each entry.

You can use this header for two use cases:


	When you make an update you get the new version. This information can be used to find out if your change has already been written to the read store when you receive the same resource after your update.


	When you make an update you can use the If-Match header to pass the expected version to the API. If the version does not match to the version in the database another user or client has changed the same resource. Then the 412 (Precondition Failed) status code is returned. You should provide this information to the user and ask if the user wants to reload the data or if the resource should be overwritten (just do not use the If-Match header for the second request).




Read more about the If-Match header at: https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/If-Match


NOTE: Property names with dashes are not supported in OData. Use underscore instead.












          

      

      

    

  

    
      
          
            
  
Troubleshooting


Authentication errors


Authentication failed, but no error on server

Please check the clock on your server. The openid client that is used for the Management UI checks the time when the access token has been issued and does not allow you to login if the time is in the future. You can see an error in the browser console.









          

      

      

    

  

    
      
          
            
  
Postman

This is a short tutorial how to make the first requests with postman.


1. Create an App

The first step is to create an application. Choose a name of your choice.

[image: ../_images/create-app.png]Create App




2. Create a Schema

Next create a schema. In this example we added a single field.

[image: ../_images/create-schema.png]Create Schema

Ensure that the schema is published. Otherwise you cannot create content for the schema.

[image: ../_images/create-fields.png]Create Fields




3. Add Content

Add some content to your schema.

[image: ../_images/create-content.png]Create Contents




4. Create a Client

Create a client for each application. Choose a name.

[image: ../_images/create-client.png]Create Client

We have implemented the OpenID client credentials flow: https://docs.axway.com/u/documentation/api_gateway/7.5.3/webhelp_portal_oauth/Content/OAuthGuideTopics/oauth_flows_client_credentials.htm to make requests.

You have to make a request to get an authentication token. This token is valid for 30 days:

$ curl
    -X POST 'http://localhost:5000/identity-server/connect/token/' 
    -H 'Content-Type: application/x-www-form-urlencoded' 
    -d 'grant_type=client_credentials&
        client_id=[APP_NAME]:[CLIENT_ID]&
        client_secret=[CLIENT_SECRET]&
        scope=squidex-api'





For now we just use the ‘Create Token’ button to get the access token.

[image: ../_images/get-token.png]Get Token




5. Download Swagger Specification

Open the API documentation under API\Swagger and download the swagger specification:

[image: ../_images/download-swagger.png]Download Swagger




6. Make the request with Postman


	Open Postman


	Import the Swagger specification (just ignore the errors).


	Open the collection for your app and use the Query-request.


	Just delete the query strings for now.


	Add an authorization header and copy the access token from Step4.




[image: ../_images/make-request.png]Make Request







          

      

      

    

  

    
      
          
            
  
Assets


How to retrieve content?

You can retrieve the content of an asset using the id from the following url:

http://<YOUR-DOMAIN>/api/assets/{id}





Read the API reference: https://cloud.squidex.io/api/docs#operation/AssetContent_GetAssetContent


NOTE: If you install Squidex by your own you can the API reference from https://MY-DOMAIN/api/doc. This does not include your the documentation for your app content, that can be retrieved from https://MY-DOMAIN/api/content/MY-APP/docs







How to resize an image?

You can resize an image using the endpoint described above using the following parameters:


	width (number): The target width of the asset, if it is an image.


	height (number): The target height of the asset, if it is an image.


	mode (string): The resize mode when the width and height is defined. Default: Max




You have to pass in either the width or height parameter. if the asset is not an image these parameters have no effect.

Squidex supports the following resize modes:


	Crop: Crops the resized image to fit the bounds of its container. If the desired width and height is greater than the image dimensions it behaves like BoxPad.


	CropUpsize: Crops the resized image to fit the bounds of its container, also desired width and height is greater than the image dimensions.


	Pad: Pads the resized image to fit the bounds of its container. If only one dimension is passed, will maintain the original aspect ratio.


	BoxPad: Pads the image to fit the bound of the container without resizing the original source. When downscaling, performs the same functionality as Pad.


	Max: Constrains the resized image to fit the bounds of its container maintaining the original aspect ratio.


	Min: Resizes the image until the shortest side reaches the set given dimension. Upscaling is disabled in this mode and the original image will be returned if attempted.







How to change the image quality?

You can also add the quality parameter to the asset url to define the quality from 0 (lowest) to 100 (best). If you define the quality the image will always be returned as jpeg format and you might loose transparency information.







          

      

      

    

  

    
      
          
            
  
Scripting

Security and validation are difficult to solve, because there are a lot of different use cases. Scripting can be used to handle gaps in the Squidex feature set. You can create scripts that run whenever a content is created, updated, deleted, queried or when the status changes (e.g. from Draft to Published).

Scripts can be defined in the schema editor. The link can be found in the extended menu:

[image: ../_images/dialog-to.png]Path to Editor

In the editor you can define all scripts

[image: ../_images/dialog.png]Editor

Lets have a look to some use cases:


NOTE: Query scripts are not executed when your query content in the Management UI.





Use Cases


Use Case #1: Don’t return sensitive information when queried by client.

if (ctx.isClient) { // ctx Variable contains all Context information
    ctx.data.password.iv = '********';
    // Tell Squidex that the content should be replaced.
    replace(); 
}








Use Case #2: Ensure that two fields are the same when content created.

var data = ctx.data;
if (data.password.iv !== data.passwordConfirm.iv) {
    // Tell Squidex to return a 400 (Bad Request)
    reject('Passwords must be the same');
}








Use Case #3: Do not allow the client to set fields.

if (ctx.isClient && ctx.data.password.iv) {
    // Tell Squidex to return a 403 (Forbidden)
    disallow();
}






Please Note: The Management UI logs you out, when you retrieve a 403. Use reject() only and disallow() for clients.







Use Case #4: Compute field from other values.

ctx.data.hasPassword = { iv: !!ctx.data.password.iv };
// Tell Squidex that the content should be replaced.
replace();








Use Case #5: Only a specific user can publish content.

if (ctx.operation === 'Published' && ctx.user.email !== 'content@master.com') {
    // Reject the call if the publisher has another email address.
    reject('You are not allowed to publish the content');
}










Restrictions

There exists some restrictions:


	You cannot include external libraries.


	You cannot make calls to external services.


	Scripts will timeout after 200ms.










          

      

      

    

  

    
      
          
            
  
Custom Editors


How to write your own editor

Custom editors are enabling developers to replace the default editors with HTML5 applications so the editing experience of the Squidex Web App can be customized.

Technically speaking a UI editor lives in a sandboxed iframe,which interacts with the web application through a small SDK using messaging. This SDK is a proxy of the Angular ControlValueAccessor [https://angular.io/api/forms/ControlValueAccessor], without having the dependencies to Angular itself.

[image: guides/../.gitbook/assets/custom-editors%20%281%29.png]Define Editor URL

Lets see how the code looks like:

<!DOCTYPE html>
<html>

<head>
    <meta charset="utf-8">

    <!-- Load the editor sdk from the local folder or https://cloud.squidex.io/scripts/editor-sdk.js -->
    <script src="editor-sdk.js"></script>
    <script src="https://cdn.ckeditor.com/ckeditor5/10.0.0/classic/ckeditor.js"></script>

    <style>
        .ck-editor__editable {
            min-height: 250px;
        }
    </style>
</head>

<body>
    <textarea name="content" id="editor"></textarea>

    <script>
        var element = document.getElementById('editor');
        ClassicEditor
            .create(element)
            .catch(error => {
                console.error(error);
            })
            .then(editor => {
                // When the field is instantiated it notified the UI that it has been loaded.
                var field = new SquidexFormField();
                // Handle the value change event and set the text to the editor.
                field.onValueChanged(function (value) {
                    if (value) {
                        editor.setData(value);
                    }
                });
                // Disable the editor when it should be disabled.
                field.onDisabled(function (disabled) {
                    editor.set('isReadOnly', disabled);
                });
                editor.model.document.on('change', function () {
                    var data = editor.getData();
                    // Notify the UI that the value has been changed. Will be used to trigger validation.
                    field.valueChanged(data);
                });
                editor.ui.focusTracker.on('change:isFocused', function (event, name, isFocused) {
                    if (!isFocused) {
                        // Notify the UI that the value has been touched.
                        field.touched();
                    }
                });
            });
    </script>
</body>

</html>





You just have to reference the editor SDK and handle the events. You also have to push the current value to the web application whenever it changes. Validation will happen automatically then.




All Examples

Also, we have more example you can use them on your apps.


1. Simple CKE Editor

Reference: https://squidex.github.io/squidex-samples/editors/cke-simple.html

[image: ../_images/cke.png]CKE Editor

Clone the sample and configure the CKE editor as you need it.




2. Country selector

Reference: https://squidex.github.io/squidex-samples/editors/country-selector.html

[image: guides/../.gitbook/assets/country-selector%20%281%29.gif]Country Selector




3. Product taxonomy

Reference: https://squidex.github.io/squidex-samples/editors/tags-category.html

The data format is a list of url like paths for each product category that will be converted to a tree strucuture.

[
  "/laptops-and-netbooks/thinkpad-x-series-chromebook-laptops/",
  "/laptops-and-netbooks/thinkpad-edge-laptops/thinkpad-edge-e330/",
  "/laptops-and-netbooks/ideapad-s-series-netbooks/ideapad-s210-notebook/",
  "/tablets/a-series/a2109-tablet/",
  "/servers/thinkserver/rs110/6438/",
  "/desktops-and-all-in-ones/thinkcentre-m-series-desktops/m715q/10m2/",
  "/phones/a-series/a328-smartphone/"
]





[image: ../_images/product-taxonomy.gif]Product taxonomy




4. JSON Tree

Reference: https://squidex.github.io/squidex-samples/editors/jstree-editor.html

Create a visual tree for a JSON object.

[image: guides/../.gitbook/assets/jstree-editor%20%281%29.png]JSON Tree









          

      

      

    

  

    
      
          
            
  
Preview Content

By default, Squidex will only deliver content that has been published. But it can be very useful to review content in your production environment before you actually publish it. This guide shows you how to do it.


Step 1: Query unpublished content in your application

To retrieve unpublished content you can add the X-Unpublished header to all your Http Requests to the Squidex API. For the website I have added a top secret query parameter to the blog page. When this query parameter is set to true, it will create add this header to the requests.

The following example shows how you can do it with the C# client library:

public BlogPost Post { get; set; }

public async Task<IActionResult> OnGet(string slug, bool secretQueryParameter = false)
{
    var postsClient = clientManager.GetClient<BlogPost, BlogPostData>("blog");

    var context = QueryContext.Default.Unpublished(secretQueryParameter);

    var posts = await postsClient.GetAsync(filter: $"data/slug/iv eq '{slug}'", context);
    var post = pages.Items.FirstOrDefault();

    if (post == null)
    {
        return NotFound();
    }

    Post = post;

    return Page();
}








Step2: Manage preview urls

You can define preview urls per schema in the following menu item:

[image: ../_images/menu.png]Menu Item

In the dialog you can define as preview urls as you want. The following example shows 2 preview urls:


	The url to the normal website.


	The url to an dedicated mobile website (just as an example).




As you can see, you can use a placeholder with the javascript interpolation syntax, e.g.


	${id} of the content.


	${data.slug}: Slug field (if not localized).


	${data.slug.iv}: Slug field, alternative syntax.


	${data.title.en}: Title in English


	${data.title.en-US}: Title in American English


	${version}: Version of the content item.




[image: guides/../.gitbook/assets/dialog%20%281%29.png]Preview Urls




Step 3: Use the preview button to go the corresponding URL:

If you open a saved content item, you will see the buttons with the preview urls:

[image: ../_images/button.png]Preview Buttons







          

      

      

    

  

    
      
          
            
  
Custom Workflows

Custom workflows have been already requested several times and we will work on it in 2019, but until then this guide will teach you how to implement custom workflows. It will provide a setup that can be much more flexbible than what we are planing.


Our requirements

In our scenario we manage articles and have three roles:


	Creators: Writes articles and when they are done they mark an article as Ready.


	Reviewers: Reviews articles and either mark an article as Approved or Rejected.


	Publisher: Decides when to publish an article and should only publish approved articles.




Therefore we have 3 states for content:


	Draft


	Ready


	Approved


	Rejected


	Published




The following diagram vizualizes our workflow.

[image: ../_images/workflow.png]Workflow




Step 1: Create the schema

In the first step we create a schema. We keep it simple and define 3 fields:


	Title: The title of the article.


	Status: The status of the article as string field with a dropdown editor.


	Text: The text as markdown.




We will make set the first two fields as list fields, which means we will see them in our content lists.

The schema in the UI:

![schema](../images/articles/workflow/schema.png

In the content list the schema will look like this:

[image: ../_images/content-list.png]Articles

Now we can very easily see all articles and their status. But as a reviewer I am probably only interested in the articles that is ready to be reviewed.

We can search for these articles with the following query: $filter=data/status/iv eq 'Ready'

It looks a little bit like technical stuff and our reviewers should not care about this. But we can save the query and give it a friendly name so it can be reused.

[image: ../_images/save-query.png]Save Query

The basic setup is already done and it might work well enough in a small team. It requires a little bit of discipline and corporation of all team members. But if we have critical content like product texts or a big team where we don’t want to rely that everybody has a good day we need some rules to enforce that our workflow is used correctly.

You can also use the new comments feature to share information between reviewer and writer:

[image: ../_images/comments.png]Comments




Step 2: Enforce the workflow

We start by creating our Roles in Squidex:

[image: ../_images/roles.png]Roles

As you can see in the screenshot above, the Creator can only create and update content, but not publish it and the Reviewer can only update content. we use the default role Editor for the Publisher.

So we solved the problem that only the Publisher should be able to publish, unpublish content, but there is still something left to do.

We have to ensure that:


	The Creator must set the initial status to Draft.


	The Creator can only change the status to Ready.


	The Creator can only update an article when the status is Draft or Rejected.


	The Reviewer can only change the status to Approved or Rejected.


	The Publisher can only set the status to Published.


	The Publisher can only publish the content when it the status is Published (to be consistent).




I will not show everything in this tutorial, it is just too much and the solution is the same for all roles, but we will show you how we implemented it for the Creator:

The solution is scripting. If you click the three dots in the schema editor a menu will pop up with a menu item to the scripting editor. Here you can define scripts that are invoked when a content item is queried, created, updated, deleted or when the status is changed.

[image: ../_images/scripting.png]Scripting


The create script:

The script for creating content is very simple:

// Check the status field is set to draft.
if (ctx.data.status.iv !== 'Draft') {
    // If not reject this operation with a custom validation message.
    reject('The status of a new article must be set to Draft');
}





Thats it, we do not have to do more, because the permission system already enforces that only Creators can create content.

The UI will show the error message from the script:

[image: ../_images/error.png]Error Message




The update script:

Lets have a look to the update script:

// Our code for the Creator
if (ctx.user.claims.role.indexOf('Creator')) {
    // Check the old status of our content.
    if (ctx.oldData.status.iv !== 'Draft' && ctx.oldData.status.iv !== 'Rejected') {
        disallow('You are not allowed to edit content that has been published already.');
    }

    if (ctx.data.status.iv !== 'Draft' && ctx.data.status.iv !== 'Ready') {
        reject('You only set the status to Draft or Ready');
    }
}





What we do:


	We check if the current user is a Creator.


	If the content has the wrong status we cancel the process with the disallow function. Then the API responds with a HTTP 403: Forbidden and the UI will show an error message.


	if the content is changed to an invalid status we cancel the update with the ‘reject’ function. Then the API respons with a HTTP 400: Bad Request and the UI will show the error message.




The rest of the requirements can be implemented with a some more if-statements.






Summary

You can already implement custom workflow with Squidex, but this solutions has several small issues:


	You have a second field for the status of the addition.


	The user experience could be better.


	You have to define, write and define the scripts.




But on the other side there are also some points on the PRO side:


	You can implement very fine grained workflows and you are not restricted by a built-in solution.


	You can even make the Status field localizable and ensure that all texts are reviewed from different person before you publish a content.










          

      

      

    

  

    
      
          
            
  
What is Squidex?

[image: ../_images/logo-wide1.png]Squidex Logo


What is Squidex??


A content management hub for all your data.




Squidex is a content management hub to manage all your content, for example:


	Dynamic elements for your mobile apps.


	Blog posts and articles for your website.


	Configuration data for your backend.


	Rich and structured data for your application.




{% page-ref page=”readme.md” %}


How does it work?

The core of Squidex is a web service. It provides APIs to manage the structure of your content, languages, settings and of course the content itself. You can consume the content from your backend, mobile apps, website and other other client applications. Of course we also provide a rich user interface for end users (Management UI).




Event Sourcing

We use event sourcing to store all information. Instead of just holding the actual state we generate events, whenever you make a change. For example when you update a content we create a ContentUpdatedEvent that holds the changed data. We never delete any data. When you delete a content element we just create a ContentDeletedEvent. This means you cannot lose any data and we have the full history of all changes. These events are also handled by event consumers which are responsible to create an optimized representation of your content which can be queried through the API.




Custom content representation

We think it is impossible to develop a system that is able to handle every kind of queries in a fast and efficient way. You know best what technology you need for your business case. Think about sql database servers. You need to configure indices by yourself, because creating them automatically is a very hard problem. If you need your content in another representation or in another storage you can subscribe to the content events and push your content to another database, whenever it has changed. For example: If you build a travel portal you can manage your hotels in Squidex. To allow your users to search for hotels you can push the data to elastic search to make use of the full text search capabilities.




Contact Us

You have the following options to contact us:


	Join our support forum: https://support.squidex.io












          

      

      

    

  

    
      
          
            
  
Roadmap

Moved to https://trello.com/b/KakM4F3S/squidex-roadmap





          

      

      

    

  

    
      
          
            
  
API Compatibility

The API for Squidex 3.0 contains a lot of changes to 2.0. This document describes the main differences.

The good first: There is no change in the endpoints to retrieve contents or assets, including the GraphQL endpoint.


Motivation

These changes are driven by two requirements:


	POST and PUT enpoints must return the full entity (e.g. schema object) so that the UI does not have to reason about how the entity will be structured after an updated.


	Implement HATEOAS (Hypermedia As The Engine Of Application State) to tell the client which operations are possible for a given entity and how to invoke them.




Given the list of apps as an example, our JSON response has the following format now:

{
   "items": [{
       "id": 1,
       "name": "my-app",
       "_links": {
          "delete": { "method": "DELETE", "href": "/api/apps/1" }
       }
    }],
    "_links": {
        "create": { "method": "POST", "href": "/api/apps" }
     }
}





This format will be called Items-Object from now.

A single app in 3.0 has the following format:

{
    "id": 1,
    "name": "my-app",
    "_links": {
        "delete": { "method": "DELETE", "href": "/api/apps/1" }
    }
}





If Squidex 2.0 and lower the list of apps was returned as a JSON array, therefore it was not be possible to add the links to the create endpoint.

[{
    "id": 1,
    "name": "my-app",
    "_links": {
        "delete": { "method": "DELETE", "href": "/api/apps/1" }
    }
}]








General changes


1. HATEOAS

As described above each entity or list of entities will contain a _links object now, with all possible operations. If the operation is not possible or the current user does not have the permission the link will not be present.


RISK to break something: LOW







2. Metadata

Data that is not part of the entity, but must be returned as a result of the operation is added to a _meta object.

Example: When you upload an asset, the API checks if the same asset has already been uploaded. If this is the case the response will contain the uploaded asset with an additional information if this asset was already part of the app:

{
    "id": 1,
    "fileName": "Logo.jpeg",
    "fileSize": 1024,
    "_links": {
        "delete": { "method": "DELETE", "href": "/api/assets/1" }
    },
    "_meta": {
        "isDuplicate": "1"
    }
}






RISK to break something: LOW







3. Full response objects

All POST and PUT enpoints return the full entity (e.g. schema object) now. This is not a breaking change for you if your client has the following behavior:


	The client does not break when the JSON response contains additional properties.


	The client does not break when an enpoint that has returned a 204 No Content status code before, returns 200 OK now (usally the case).


	The client does not break when an endpoint tht has not returned a JSON response before, returns a response now.





RISK to break something: MEDIUM









Specific changes


Contents

The following endpoints have been removed to be prepared for the coming workflow system:


	PUT /api/content/{app}/{name}/{id}/archive/


	PUT /api/content/{app}/{name}/{id}/publish/


	PUT /api/content/{app}/{name}/{id}/restore/


	PUT /api/content/{app}/{name}/{id}/unpublish/




The replacement is a generalized status endpoint

PUT /api/content/{app}/{name}/{id}/status/

{
    "status": "Published"
}






RISK to break something: HIGH







Assets


	POST /api/apps/{app}/assets/ does not return the isDuplicate JSON property anymore, which has been replaced with metadata (see example above).





RISK to break something: LOW







Rules


	GET /api/apps/{app}/rules/ endpoint returns Items-Object instead of JSON array.





RISK to break something: LOW







Apps


	GET /api/apps/ endpoint returns Items-Object instead of JSON array.


	GET /api/apps/{app}/clients/ endpoint returns Items-Object instead of JSON array.


	GET /api/apps/{app}/languages/ endpoint returns Items-Object instead of JSON array.


	GET /api/apps/{app}/contributors/ endpoint returns Items-Object instead of custom JSON object.


	GET /api/apps/{app}/patterns/ endpoint returns Items-Object instead of JSON array.


	GET /api/apps/{app}/roles/ endpoint returns Items-Object instead of custom JSON object.





RISK to break something: LOW












          

      

      

    

  _images/administration.png
€5 C 0 Okane — u u ~¢ @O Bo e o8 ©

Users » Edit User B

email

sebastian@squidexio

Display Name

bastian Stehie

permissions

12012






_images/array.png





_images/cke.png
Custom

Pasgraph v | B T @ o o

Test






_images/comments.png
<

Edit Content L LU save R Comments

SebastianStehle
I think the title should be longer

title * for 0
. . a few seconds ago
Finished Article

status *

Ready v
text *

B I H & Y@ ®X D @

Text

Create a comment





_images/assets.png





_images/button.png
< Edit Content Preview: [ Web @ Published  Save as Draft

Mobile

slug ~

Content

a-blog-with-squidex

Title *

Blog Series: Building a website with a headless CMS, Part 3: Build the blog and integrate medium

Text *

B I H «

P
[

XD e

So far the Squidex blog is hosted on medium and it is a nice platform to attract users and to get readers, but the big downside is, that we
also want to have the content directly on our site to improve the SEO ranking. In this blog post we tell you how we have done it

Or: How to build the Squidex website with Squidex CMS.
This is post 3 in my new series about the headless journey:

* [Part 0: Introdu

* **Part 3: Build the blog**

The first step was to create the schema with Squidex and we also create the pages to show the blog posts. If you are used to Squidex and
frontend development it is very straight forward so | don't want to cover it in this blog post

.





_images/configuration.png
App Service

! squidex-test - Configuration

«
O Search (Ctrl+/)

(& overview

H Activity log

Access control (IAM)
@ Tags
X Diagnose and solve problems

O Ssecurity

Deployment

4 Quickstart

Deployment credentials
Jii, Deployment slots

% Deployment Center
Settings

!I! configuration

Container settings

Authentication / Authorization ...

Application Insights

L
A4
4
% Identity
& Backups
Em Custom domains
O TLS/SSL settings

> Networking

Scale up (App Service plan)

Scale out (App Service plan)
% WebJobs
B pysh

B arcrt T A

save X Discard

Name

ASSETSTORE_AZUREBLOB_CONNECTIONSTRING
ASSETSTORE_AZUREBLOB_CONTAINERNAME
ASSETSTORE_TYPE
DOCKER_REGISTRY_SERVER_PASSWORD
DOCKER_REGISTRY_SERVER_URL
DOCKER_REGISTRY_SERVER_USERNAME
EVENTSTORE_MONGODB_CONFIGURATION
IDENTITY_ADMINEMAIL
IDENTITY_ADMINPASSWORD
IDENTITY_GITHUBCLIENT
IDENTITY_GITHUBSECRET
IDENTITY_GOOGLECLIENT
IDENTITY_GOOGLESECRET
IDENTITY_MICROSOFTCLIENT
IDENTITY_MICROSOFTSECRET
STORE_MONGODB_CONFIGURATION
URLS_BASEURL

VIRTUAL_HOST

WEBSITE_HTTPLOGGING_RETENTION_DAYS

Value

€ [YOUR VALUE HERE]

@ ete-squidex-assets

< AzureBlob

|

G hitps://index.docker.io

|

<3 mongodb://[YOUR ADMINL[YOUR PASSWORDI@[YOUR IP]:27017

@ hello@squidexio

€ [YOUR VALUE HERE]

|

&

&

&

&

<3 mongodb://[YOUR ADMINL[YOUR PASSWORDI@[YOUR IP]:27017

@ https://squidex-testazurewebsites.net/

@ squidex-testazurewebsites.net

10





_images/content-list.png
Contents Sfilter=data/status/iv eq ‘Ready’ X

Al (newest first)

All (oldest first)
O Finished Article Ready afew seconds ago e

Saved queries

To be reviewed





_images/content-trigger.png
Content changed

Schema Condition
blog event.type == *Published" || event.type == ‘Restored"
[N Add Schema

Conditions

Conditions are javascript expressions that define when to trigger, for example:

« Specific events:

event.type == ‘Created’ || event.type == 'Published

« Content has value:

smportant

« Updated by user.

user.emsil

usergsquidex.io

Trigger on all content events

Cancel Save





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

_images/create-app.png
Name

hello-squidex

The app name becomes part of the api url
/content/hello-squidex/
ers (a-2), numbers and dashes only, and cannot be
longer than 40 characters. The name cannot be changed later.

Cancel






_images/create-client.png
Clients

=]]

my-client Create Token

Access tokens expire after 30 days
Client Id: hello-squidex my-client

Client Secret: XWA4fXVuxnCujBxGce9iRoVJEZkpRIK6PCa






_images/create-app-service-basics.png
Home > New > Web App

Web App

Create

@ Looking for the classic Web App create experience? =

*Basics Docker Monitoring Tags  Review and create

App Service Web Apps lets you quickly build, deploy, and scale enterprise-grade web, mobile, and APl apps running on
any platform. Meet rigorous performance, scalability, security and compliance requirements while using a fully managed
platform to perform infrastructure maintenance. Learn more 2

PROJECT DETAILS

Select a subscription to manage deployed resources and costs. Use resource groups like folders to organize and manage
all your resources.

* Subscription @ Visual Studio Enterprise - MPN v
* Resource Group @ squidex-test v
Create new

INSTANCE DETAILS

* Name squidex-test v

azurewebsites.net

* Operating System L9 Windows

* Location West Europe v

APP SERVICE PLAN

App Service plan pricing tier determines the location, features, cost and compute resources associated with your app.
Learn more 2

* Plan squidex-test (F1) v
Create new
* Sku and size Free F1
1 GB memory






_images/create-app-service-docker.png
Web App

Create

*Basics *Docker  Tags

Review and create

Pull container images from Azure Container Registry, Docker Hub or a private Docker repository. App Service will deploy

the containerized app with your preferred dependencies to production in seconds.

Options

Image Source
Docker hub options
* Access Type

* Image and tag

Startup Command @

[ single Container

v

|
[ Docker Hub V]
[ Public v

‘ squidex/squidexclatest

Review and create

Previous

Next: Tags >






_images/create-schema.png
Schemas

Cancel






_images/datetime.png





_images/create-content.png
hello-squidex ~

Contents

Content
Squidex is awesome ® afew seconds ago

1-10f1






_images/create-fields.png
messages Unpublished

Schemas

(e}

message Enabled
Localizable

You can the field






_images/default-client.png
&

Settings

Clients

default

Clients

Client Id
Client Secret

Role

identity:default

Editor

=13

Add Client Je=LEE]





_images/dialog-to.png
Schemas

settings

2 month ago

settings

legal

privacy

JSON Preview

Published

Enabled

Enabled

Unpublished

Scripts

Clone






_images/dialog.png
o5 (et

Cancel

Updite  Delete  Change

cltent) { // cox Vartable contatns sl
TN Sauicex chat e

nt should be repla

-

a





_images/geolocation.png





_images/get-token.png
XRSL
WR1bnRpdHk

tcavydmvyL:

mh1bGxvLXNs

hs

Kq7Vuim_CZ1-
UG 2h6nSHLYESS23bh
-1i705HLja0QDKARSUSXVXL t2H1F 7979 1HpNKP3 LbcuPRbvok






_images/download-swagger.png
# squidex

Suidex API for hello-squidex App (v1.0.0)

Q Search Download OpenAPI specification: | | Download
AUTHENTICATION
MEssaces

Authentication

OAuth2

Squidex uses oauth2 client authentication. Read more about
hitps://tools.etf.org/htmi/rfc6750.

at: https://oauth net/2/ and

Toretrieve 10 the token url. For

the client id must make a reque

mple

BOST "http://localhost:5000/identity-server/connect/token/ "
*Content-Type: application/x-wmw-form-urlencoded
lient_credential
[CLIENT_ID]&

e e trken





_images/error.png
S  SebastianStehle
< New Content Save as Draft x

title *

New Article

status *

Approved v

text *

B I H &%

Test

fines: 1 words: 1 04

Script rejected the operation: The status of a new a

t be set to Draft.






_images/logo-wide.png
squidex





_images/logo-wide1.png
squidex





_images/json.png
{i}





_images/logging.png
Home > squidex-test - App Service logs

squidex-test - App Service logs

App Service

O Search (Ctri+/)

& Locks

Export template

App Service plan

Bs App Service plan

Quotas

P Change App Service plan

Development Tools

@ performance test

) Resource explorer

APl
& CORs

Monitoring

B Alerts

Metrics

App Service logs

B Log stream

«

Hsae X piscard

( of CEED

* Quota (MB) @
35

* Retention Period (Days|

Download logs

/deployment username

No FTP/deployment user set
FTP

ftpy//waws-prod-am2-143.ftp.azurewebsites windows.net
FTPS

ftps://waws-prod-am2-143.ftp.azurewebsites.windows.net





_images/menu.png
Schemas

blog

features

page

settings

testimonials

2 month ago

blog

slug

Title

Text

Description

Enabled

Enabled

Enabled

Enabled

Unpublished | =

Ediit Scripts

Edit Preview Urls
Clone

Delete

+

Add Field





_images/number.png
123





_images/make-request.png
e = sebaston-. B & @

o . Development
ueries messages cor

Collections
» Queries messages contents. Examples 0)
Al
Suidex AP for hello-squidex App
8 requests Headers (3) oo
content ey Value Descrption BulkEdit  Presets v
G Queries messages contents. Accept spplicstionjson
P07 Create a messages cor ContentType spplicstionjzon
G Getamessages content. Authorizstion Bearer
y)hbGei0iSUz1INilsImepZCIB jloRkRENEVCRDYwN]MxN

PUT - Update a messages conten. URFREI4MENEMDK=MERFRIZEMFEREE2NKILCI0RXAIOY

KV1QILCIANXQIOUZINVN;ZROTWM3R1QXpRa3czdipSG
RWBXMifQ.eyJuYmYiOjEMDAMEY<MTUSImVACCIMTU
PUT  Publish a messages content, wWMjcyODEXNSwiaXNzljoiaHROcDovL2xvY 2FsaGOzdDo’
MDAWL2IKZWS0aXRSLXNIcnZIcilsimF1 ZCI6WyjodHRwOI
ges conten. 816G9]YWxobINOOJUWMDAVEWRIbRpGHKt2VydmVyL
31291 cmilcylsinNxcWIkKZXgeYXBplOslmNsaWudF9pZ
Cl6ImhlbGxyLXNxdWIKZXgBbXkeY 2xpZWSOliwic2NvcGU
Olsic3F1aWRIeCThcGkiXX0xRIeU3zHVGS1yROFB2ZE1 Orp
Pelq9Uded|UC TplDm_002EQeSMuBUQRNMWAGdiHD
1vQn2XGIbWIUXREENSt6ZTWEDHgBLK0SGQeAEGYggzs
bbNSsiz3KDaEjWmS JoO_VLbNT=XgSajkkP_DSLGUO_8
AVrekAYCENIBNGF70Dg.Lihu3w7VWoZCwQpbSK-
ZiFy7yGSpOLpQAOgvdst10YnHTFU_ONbd1 nrilonOHU
DAXEZ-IpglyXjKd2wNiI5Q0_P-uCs-

LFOTPE xhmatlX NemTiX4Yd2flal sUWPESZ]

PATCH Patchs a messages content,

PUT Unpublish a mess:

DL Del






_images/references.png





_images/roles.png
Creator Clients: 0 Users: 0

Cancel ave
assets [
common [
contents.*.create [
contents.".update [

Reviewer Clients: 0 Users: 0
conee!
common @
assets @
common @
contents.*.update @





_images/pool.png
Edit Application Pool

NET CLR version:

No Managed Code.

Managed pipeline mode:

Integrated

Start application pool immediately

oK

Cancel






_images/product-taxonomy.gif
Edit Content

CountrySelector *

Content

B - United States

ProductTaxonomy

4 [ i laptops-and-netbooks

U] thinkpad-x-series-chromebook-laptops
> [k thinkpad-edge-laptops
> 7 ideapad-s-series-netbooks

> O 0 tablets

> O 0 servers

> O desktops-and-all-in-ones.

> O & phones






_images/scripting.png
Query Create  Update  Delete  Change






_images/rule.png
then

a8





_images/save-query.png





_images/settings.png
en English
fi Finnish
Fallback  gyedish o
English v
O Is Master
Master language is the last allback language, when no value for a content and a
language i available.
Is Optional
Values for optional languages must not be specified, even if the field is set to
required.
sv Swedish & @

Abkhazian






_images/site.png
Add Website

Site name:

squdes ] it

Content Directory
Physica path:

E:\Sites\squidex

Pass-through authentication

Connectas... | | Test Settings...

Binding
Type: P address:

Host name:

locathost

Example: www.contoso.com or marketing.contoso.com

oK

Cancel






_images/self-hosted-1.png
< Edit Content ®Published  Save as Draft

Client Id *

Content

client:selfHosted

Unique id of the client

Client Name

SelfHosted

Client display name (used for logging and consent screen).

Client Uri

http://localhost:3500

URI to further information about client (used on consent screen).

Logo






_images/self-hosted-2.png
< Edit Content ®Published  Save as Draft

Client Secrets

Content

Client secrets - only relevant for flows that require a secret.

Allowed Scopes

Specifies the api scopes that the client is allowed to request.

Allowed Grant Types

Specifies the allowed grant types (legal combinations of AuthorizationCode, Implicit, Hybrid, ResourceOwner, ClientCredentials)

Redirect Uris

Specifies allowed URIs to return tokens or authorization codes to

Post Logout Redirect Uris

Specifies allowed URIs to redirect to after logout.

Allowed Cors Origins






_images/workflow.png
Creator marks as ready

Reviewer declines \
Approved
Reviewer approve

Publisher publishes

\\ Published






_static/ajax-loader.gif





_images/string.png





_images/tags.png





_static/comment-bright.png





_static/down.png





_static/comment.png





_static/down-pressed.png





_static/plus.png





_static/file.png





_static/minus.png





_static/up-pressed.png





_static/comment-close.png





_static/up.png





