
Apache Sqoop
Release

October 31, 2016

Contents

1 Admin Guide 3
1.1 Installation . 3

1.1.1 Server installation . 3
1.1.2 Client installation . 6

1.2 Tools . 6
1.2.1 Verify tool . 7
1.2.2 Upgrade tool . 7
1.2.3 RepositoryDump . 7
1.2.4 RepositoryLoad . 8
1.2.5 RepositoryEncryption . 8

1.3 Upgrade . 10
1.3.1 Upgrading Server . 10
1.3.2 Upgrading Client . 11

2 User Guide 13
2.1 Command Line Shell . 13

2.1.1 Resource file . 14
2.1.2 Commands . 15

2.2 Connectors . 21
2.2.1 FTP Connector . 21
2.2.2 Generic JDBC Connector . 22
2.2.3 HDFS Connector . 26
2.2.4 Kafka Connector . 28
2.2.5 Kite Connector . 29
2.2.6 SFTP Connector . 31

2.3 Examples . 32
2.3.1 S3 Import to HDFS . 32

2.4 Sqoop 5 Minutes Demo . 33
2.4.1 Starting Client . 33
2.4.2 Creating Link Object . 34
2.4.3 Creating Job Object . 35
2.4.4 Start Job (a.k.a Data transfer) . 36

3 Developer Guide 39
3.1 Building Sqoop2 from source code . 39

3.1.1 Downloading source code . 39
3.1.2 Building project . 39
3.1.3 Running tests . 39

i

3.2 Sqoop Java Client API Guide . 40
3.2.1 Workflow . 40
3.2.2 Project Dependencies . 40
3.2.3 Initialization . 40
3.2.4 Link . 41
3.2.5 Job . 41
3.2.6 Job Start . 43
3.2.7 Display Config and Input Names For Connector . 44

3.3 Sqoop 2 Connector Development . 45
3.3.1 What is a Sqoop Connector? . 45
3.3.2 Connector Implementation . 46
3.3.3 Configurables . 51
3.3.4 Loading External Connectors . 54
3.3.5 Sqoop 2 MapReduce Job Execution Lifecycle with Connector API 55

3.4 Sqoop 2 Development Environment Setup . 56
3.4.1 System Requirement . 56
3.4.2 Eclipse Setup . 56

3.5 Sqoop REST API Guide . 57
3.5.1 Initialization . 59
3.5.2 Understand Connector, Driver, Link and Job . 59
3.5.3 Objects . 59
3.5.4 Header Parameters . 62
3.5.5 REST APIs . 62

3.6 Repository . 84
3.6.1 Sqoop Schema . 84

4 Security Guide 89
4.1 API TLS/SSL . 89

4.1.1 Keystore Generation . 89
4.1.2 Server Configuration . 89
4.1.3 Client/Shell Configuration . 90

4.2 Authentication and Authorization . 90
4.2.1 Simple Authentication . 90
4.2.2 Kerberos Authentication . 91
4.2.3 Customized Authentication . 92
4.2.4 Authorization . 93

4.3 Repository Encryption . 94
4.3.1 Server Configuration . 94

5 Administrator Guide 97

6 User Guide 99

7 Developer Guide 101

8 Security: 103

9 License 105

ii

Apache Sqoop, Release

Apache Sqoop is a tool designed for efficiently transferring data betweeen structured, semi-structured and unstructured
data sources. Relational databases are examples of structured data sources with well defined schema for the data they
store. Cassandra, Hbase are examples of semi-structured data sources and HDFS is an example of unstructured data
source that Sqoop can support.

Contents 1

Apache Sqoop, Release

2 Contents

CHAPTER 1

Admin Guide

1.1 Installation

Sqoop ships as one binary package that incorporates two separate parts - client and server.

• Server You need to install server on single node in your cluster. This node will then serve as an entry point for
all Sqoop clients.

• Client Clients can be installed on any number of machines.

1.1.1 Server installation

Copy the Sqoop artifact to the machine where you want to run Sqoop server. The Sqoop server acts as a Hadoop
client, therefore Hadoop libraries (Yarn, Mapreduce, and HDFS jar files) and configuration files (core-site.xml,
mapreduce-site.xml, ...) must be available on this node. You do not need to run any Hadoop related services -
running the server on a “gateway” node is perfectly fine.

You should be able to list a HDFS for example:

hadoop dfs -ls

Sqoop currently supports Hadoop version 2.6.0 or later. To install the Sqoop server, decompress the tarball (in a
location of your choosing) and set the newly created forder as your working directory.

Decompress Sqoop distribution tarball
tar -xvf sqoop-<version>-bin-hadoop<hadoop-version>.tar.gz

Move decompressed content to any location
mv sqoop-<version>-bin-hadoop<hadoop version>.tar.gz /usr/lib/sqoop

Change working directory
cd /usr/lib/sqoop

Hadoop dependencies

Sqoop server needs following environmental variables pointing at Hadoop libraries - $HADOOP_COMMON_HOME,
$HADOOP_HDFS_HOME, $HADOOP_MAPRED_HOME and $HADOOP_YARN_HOME. You have to make sure that
those variables are defined and pointing to a valid Hadoop installation. Sqoop server will not start if Hadoop libraries
can’t be found.

3

Apache Sqoop, Release

The Sqoop server uses environment variables to find Hadoop libraries. If the environment variable $HADOOP_HOME
is set, Sqoop will look for jars in the following locations: $HADOOP_HOME/share/hadoop/common,
$HADOOP_HOME/share/hadoop/hdfs, $HADOOP_HOME/share/hadoop/mapreduce and
$HADOOP_HOME/share/hadoop/yarn. You can specify where the Sqoop server should look for the
common, hdfs, mapreduce, and yarn jars indepently with the $HADOOP_COMMON_HOME, $HADOOP_HDFS_HOME,
$HADOOP_MAPRED_HOME and $HADOOP_YARN_HOME environment variables.

Export HADOOP_HOME variable
export HADOOP_HOME=/...

Or alternatively HADOOP_*_HOME variables
export HADOOP_COMMON_HOME=/...
export HADOOP_HDFS_HOME=/...
export HADOOP_MAPRED_HOME=/...
export HADOOP_YARN_HOME=/...

Note: If the environment $HADOOP_HOME is set, Sqoop will usee the following loca-
tions: $HADOOP_HOME/share/hadoop/common, $HADOOP_HOME/share/hadoop/hdfs,
$HADOOP_HOME/share/hadoop/mapreduce and $HADOOP_HOME/share/hadoop/yarn.

Hadoop configuration

Sqoop server will need to impersonate users to access HDFS and other resources in or outside of the cluster as the
user who started given job rather then user who is running the server. You need to configure Hadoop to explicitly
allow this impersonation via so called proxyuser system. You need to create two properties in core-site.xml
file - hadoop.proxyuser.$SERVER_USER.hosts and hadoop.proxyuser.$SERVER_USER.groups
where $SERVER_USER is the user who will be running Sqoop 2 server. In most scenarios configuring * is sufficient.
Please refer to Hadoop documentation for details how to use those properties.

Example fragment that needs to be present in core-site.xml file for case when server is running under sqoop2
user:

<property>
<name>hadoop.proxyuser.sqoop2.hosts</name>
<value>*</value>

</property>
<property>

<name>hadoop.proxyuser.sqoop2.groups</name>
<value>*</value>

</property>

If you’re running Sqoop 2 server under a so called system user (user with ID less then min.user.id - 1000 by de-
fault), then YARN will by default refuse to run Sqoop 2 jobs. You will need to add the user name who is running Sqoop
2 server (most likely user sqoop2) to a allowed.system.users property of container-executor.cfg.
Please refer to YARN documentation for further details.

Example fragment that needs to be present in container-executor.cfg file for case when server is running
under sqoop2 user:

allowed.system.users=sqoop2

4 Chapter 1. Admin Guide

Apache Sqoop, Release

Third party jars

To propagate any third party jars to Sqoop server classpath, create a directory anywhere on the file system and export
it’s location in SQOOP_SERVER_EXTRA_LIB variable.

Create directory for extra jars
mkdir -p /var/lib/sqoop2/

Copy all your JDBC drivers to this directory
cp mysql-jdbc*.jar /var/lib/sqoop2/
cp postgresql-jdbc*.jar /var/lib/sqoop2/

And finally export this directory to SQOOP_SERVER_EXTRA_LIB
export SQOOP_SERVER_EXTRA_LIB=/var/lib/sqoop2/

Note: Sqoop doesn’t ship with any JDBC drivers due to incompatible licenses. You will need to use this mechanism
to install all JDBC drivers that are needed.

Configuring PATH

All user and administrator facing shell commands are stored in bin/ directory. It’s recommended to add this directory
to your $PATH for easier execution, for example:

PATH=$PATH:`pwd`/bin/

The remainder of the Sqoop 2 documentation assumes that the shell commands are in your $PATH.

Configuring Server

Server configuration files are stored in conf directory. File sqoop_bootstrap.properties specifies
which configuration provider should be used for loading configuration for rest of Sqoop server. Default value
PropertiesConfigurationProvider should be sufficient.

Second configuration file called sqoop.properties contains remaining configuration properties that can affect
Sqoop server. The configuration file is very well documented, so check if all configuration properties fits your envi-
ronment. Default or very little tweaking should be sufficient in most common cases.

Repository Initialization

The metadata repository needs to be initialized before starting Sqoop 2 server for the first time. Use Upgrade tool to
initialize the repository:

sqoop2-tool upgrade

You can verify if everything have been configured correctly using Verify tool:

sqoop2-tool verify
...
Verification was successful.
Tool class org.apache.sqoop.tools.tool.VerifyTool has finished correctly

1.1. Installation 5

Apache Sqoop, Release

Server Life Cycle

After installation and configuration you can start Sqoop server with following command:

sqoop2-server start

You can stop the server using the following command:

sqoop2-server stop

By default Sqoop server daemon use port 12000. You can set org.apache.sqoop.jetty.port in configura-
tion file conf/sqoop.properties to use different port.

1.1.2 Client installation

Just copy Sqoop distribution artifact on target machine and unzip it in desired location. You can start client with
following command:

sqoop2-shell

You can find more documentation for Sqoop shell in Command Line Shell.

Note: Client is not acting as a Hadoop client and thus you do not need to be installed on node with Hadoop libraries
and configuration files.

1.2 Tools

Tools are server commands that administrators can execute on the Sqoop server machine in order to perform various
maintenance tasks. The tool execution will always perform a given task and finish. There are no long running services
implemented as tools.

In order to perform the maintenance task each tool is suppose to do, they need to be executed in exactly the same
environment as the main Sqoop server. The tool binary will take care of setting up the CLASSPATH and other
environmental variables that might be required. However it’s up to the administrator himself to run the tool under
the same user as is used for the server. This is usually configured automatically for various Hadoop distributions (such
as Apache Bigtop).

Note: Running tools while the Sqoop Server is also running is not recommended as it might lead to a data corruption
and service disruption.

List of available tools:

• verify

• upgrade

To run the desired tool, execute binary sqoop2-tool with desired tool name. For example to run verify tool:

sqoop2-tool verify

Note: Stop the Sqoop Server before running Sqoop tools. Running tools while Sqoop Server is running can lead to a
data corruption and service disruption.

6 Chapter 1. Admin Guide

Apache Sqoop, Release

1.2.1 Verify tool

The verify tool will verify Sqoop server configuration by starting all subsystems with the exception of servlets and
tearing them down.

To run the verify tool:

sqoop2-tool verify

If the verification process succeeds, you should see messages like:

Verification was successful.
Tool class org.apache.sqoop.tools.tool.VerifyTool has finished correctly

If the verification process will find any inconsistencies, it will print out the following message instead:

Verification has failed, please check Server logs for further details.
Tool class org.apache.sqoop.tools.tool.VerifyTool has failed.

Further details why the verification has failed will be available in the Sqoop server log - same file as the Sqoop Server
logs into.

1.2.2 Upgrade tool

Upgrades all versionable components inside Sqoop2. This includes structural changes inside the repository and stored
metadata. Running this tool on Sqoop deployment that was already upgraded will have no effect.

To run the upgrade tool:

sqoop2-tool upgrade

Upon successful upgrade you should see following message:

Tool class org.apache.sqoop.tools.tool.UpgradeTool has finished correctly.

Execution failure will show the following message instead:

Tool class org.apache.sqoop.tools.tool.UpgradeTool has failed.

Further details why the upgrade process has failed will be available in the Sqoop server log - same file as the Sqoop
Server logs into.

1.2.3 RepositoryDump

Writes the user-created contents of the Sqoop repository to a file in JSON format. This includes connections, jobs and
submissions.

To run the repositorydump tool:

sqoop2-tool repositorydump -o repository.json

As an option, the administrator can choose to include sensitive information such as database connection passwords in
the file:

sqoop2-tool repositorydump -o repository.json --include-sensitive

Upon successful execution, you should see the following message:

1.2. Tools 7

Apache Sqoop, Release

Tool class org.apache.sqoop.tools.tool.RepositoryDumpTool has finished correctly.

If repository dump has failed, you will see the following message instead:

Tool class org.apache.sqoop.tools.tool.RepositoryDumpTool has failed.

Further details why the upgrade process has failed will be available in the Sqoop server log - same file as the Sqoop
Server logs into.

1.2.4 RepositoryLoad

Reads a json formatted file created by RepositoryDump and loads to current Sqoop repository.

To run the repositoryLoad tool:

sqoop2-tool repositoryload -i repository.json

Upon successful execution, you should see the following message:

Tool class org.apache.sqoop.tools.tool.RepositoryLoadTool has finished correctly.

If repository load failed you will see the following message instead:

Tool class org.apache.sqoop.tools.tool.RepositoryLoadTool has failed.

Or an exception. Further details why the upgrade process has failed will be available in the Sqoop server log - same
file as the Sqoop Server logs into.

Note: If the repository dump was created without passwords (default), the connections will not contain a password
and the jobs will fail to execute. In that case you’ll need to manually update the connections and set the password.

Note: RepositoryLoad tool will always generate new connections, jobs and submissions from the file. Even when an
identical objects already exists in repository.

1.2.5 RepositoryEncryption

Please see Repository Encryption for more details on repository encryption.

Sometimes we may want to change the password that is used to encrypt our data, generate a new key for our existing
password, encrypt an existing unencrypted repository, or decrypt an existing encrypting repository. Sqoop 2 provides
the Repository Encryption Tool to allow us to do this.

Before using the tool it is important to shut down the Sqoop 2 server.

All changes that the tool makes occur in a single transaction with the repository, which will prevent leaving the
repository in a bad state.

The Repository Encryption Tool is very simple, it uses the exact same configuration specified above (with the exception
of useConf). Configuration prefixed with a “-F” represents the existing repository state, configuration prefixed with
a “-T” represents the desired repository state. If one of these configuration sets is left out that means unencrypted.

8 Chapter 1. Admin Guide

Apache Sqoop, Release

Changing the Password

In order to change the password, we need to specify the current configuration with the existing password and the
desired configuration with the new password. It looks like this:

sqoop.sh tool repositoryencryption \
-Forg.apache.sqoop.security.repo_encryption.password=old_password \
-Forg.apache.sqoop.security.repo_encryption.hmac_algorithm=HmacSHA256 \
-Forg.apache.sqoop.security.repo_encryption.cipher_algorithm=AES \
-Forg.apache.sqoop.security.repo_encryption.cipher_key_size=16 \
-Forg.apache.sqoop.security.repo_encryption.cipher_spec=AES/CBC/PKCS5Padding \
-Forg.apache.sqoop.security.repo_encryption.initialization_vector_size=16 \
-Forg.apache.sqoop.security.repo_encryption.pbkdf2_algorithm=PBKDF2WithHmacSHA1 \
-Forg.apache.sqoop.security.repo_encryption.pbkdf2_rounds=4000 \
-Torg.apache.sqoop.security.repo_encryption.password=new_password \
-Torg.apache.sqoop.security.repo_encryption.hmac_algorithm=HmacSHA256 \
-Torg.apache.sqoop.security.repo_encryption.cipher_algorithm=AES \
-Torg.apache.sqoop.security.repo_encryption.cipher_key_size=16 \
-Torg.apache.sqoop.security.repo_encryption.cipher_spec=AES/CBC/PKCS5Padding \
-Torg.apache.sqoop.security.repo_encryption.initialization_vector_size=16 \
-Torg.apache.sqoop.security.repo_encryption.pbkdf2_algorithm=PBKDF2WithHmacSHA1 \
-Torg.apache.sqoop.security.repo_encryption.pbkdf2_rounds=4000

Generate a New Key for the Existing Password

Just like with the previous scenario you could copy the same configuration twice like this:

sqoop.sh tool repositoryencryption \
-Forg.apache.sqoop.security.repo_encryption.password=password \
-Forg.apache.sqoop.security.repo_encryption.hmac_algorithm=HmacSHA256 \
-Forg.apache.sqoop.security.repo_encryption.cipher_algorithm=AES \
-Forg.apache.sqoop.security.repo_encryption.cipher_key_size=16 \
-Forg.apache.sqoop.security.repo_encryption.cipher_spec=AES/CBC/PKCS5Padding \
-Forg.apache.sqoop.security.repo_encryption.initialization_vector_size=16 \
-Forg.apache.sqoop.security.repo_encryption.pbkdf2_algorithm=PBKDF2WithHmacSHA1 \
-Forg.apache.sqoop.security.repo_encryption.pbkdf2_rounds=4000 \
-Torg.apache.sqoop.security.repo_encryption.password=password \
-Torg.apache.sqoop.security.repo_encryption.hmac_algorithm=HmacSHA256 \
-Torg.apache.sqoop.security.repo_encryption.cipher_algorithm=AES \
-Torg.apache.sqoop.security.repo_encryption.cipher_key_size=16 \
-Torg.apache.sqoop.security.repo_encryption.cipher_spec=AES/CBC/PKCS5Padding \
-Torg.apache.sqoop.security.repo_encryption.initialization_vector_size=16 \
-Torg.apache.sqoop.security.repo_encryption.pbkdf2_algorithm=PBKDF2WithHmacSHA1 \
-Torg.apache.sqoop.security.repo_encryption.pbkdf2_rounds=4000

But we do have a shortcut to make this easier:

sqoop.sh tool repositoryencryption -FuseConf -TuseConf

The useConf option will read whatever configuration is already in the configured sqoop properties file and apply it
for the specified direction.

Encrypting an Existing Unencrypted Repository

sqoop.sh tool repositoryencryption \
-Torg.apache.sqoop.security.repo_encryption.password=password \

1.2. Tools 9

Apache Sqoop, Release

-Torg.apache.sqoop.security.repo_encryption.hmac_algorithm=HmacSHA256 \
-Torg.apache.sqoop.security.repo_encryption.cipher_algorithm=AES \
-Torg.apache.sqoop.security.repo_encryption.cipher_key_size=16 \
-Torg.apache.sqoop.security.repo_encryption.cipher_spec=AES/CBC/PKCS5Padding \
-Torg.apache.sqoop.security.repo_encryption.initialization_vector_size=16 \
-Torg.apache.sqoop.security.repo_encryption.pbkdf2_algorithm=PBKDF2WithHmacSHA1 \
-Torg.apache.sqoop.security.repo_encryption.pbkdf2_rounds=4000

If the configuration for the encrypted repository has already been written to the sqoop properties file, one can simply
execute:

sqoop.sh tool repositoryencryption -TuseConf

Decrypting an Existing Encrypted Repository

sqoop.sh tool repositoryencryption \
-Forg.apache.sqoop.security.repo_encryption.password=password \
-Forg.apache.sqoop.security.repo_encryption.hmac_algorithm=HmacSHA256 \
-Forg.apache.sqoop.security.repo_encryption.cipher_algorithm=AES \
-Forg.apache.sqoop.security.repo_encryption.cipher_key_size=16 \
-Forg.apache.sqoop.security.repo_encryption.cipher_spec=AES/CBC/PKCS5Padding \
-Forg.apache.sqoop.security.repo_encryption.initialization_vector_size=16 \
-Forg.apache.sqoop.security.repo_encryption.pbkdf2_algorithm=PBKDF2WithHmacSHA1 \
-Forg.apache.sqoop.security.repo_encryption.pbkdf2_rounds=4000

If the configuration for the encrypted repository has not yet been removed from the sqoop properties file, one can
simply execute:

sqoop.sh tool repositoryencryption -FuseConf

1.3 Upgrade

This page describes procedure that you need to take in order to upgrade Sqoop from one release to a higher release.
Upgrading both client and server component will be discussed separately.

Note: Only updates from one Sqoop 2 release to another are covered, starting with upgrades from version 1.99.2.
This guide do not contain general information how to upgrade from Sqoop 1 to Sqoop 2.

1.3.1 Upgrading Server

As Sqoop server is using a database repository for persisting sqoop entities such as the connector, driver, links and
jobs the repository schema might need to be updated as part of the server upgrade. In addition the configs and inputs
described by the various connectors and the driver may also change with a new server version and might need a data
upgrade.

There are two ways how to upgrade Sqoop entities in the repository, you can either execute upgrade tool or configure
the sqoop server to perform all necessary upgrades on start up.

It’s strongly advised to back up the repository before moving on to next steps. Backup instructions will vary depending
on the repository implementation. For example, using MySQL as a repository will require a different back procedure
than Apache Derby. Please follow the repositories’ backup procedure.

10 Chapter 1. Admin Guide

Apache Sqoop, Release

Upgrading Server using upgrade tool

Preferred upgrade path is to explicitly run the Upgrade tool. First step is to however shutdown the server as having
both the server and upgrade utility accessing the same repository might corrupt it:

sqoop2-server stop

When the server has been successfully stopped, you can update the server bits and simply run the upgrade tool:

sqoop2-tool upgrade

You should see that the upgrade process has been successful:

Tool class org.apache.sqoop.tools.tool.UpgradeTool has finished correctly.

In case of any failure, please take a look into Upgrade tool documentation page.

Upgrading Server on start-up

The capability of performing the upgrade has been built-in to the server, however is disabled by default to avoid any
unintentional changes to the repository. You can start the repository schema upgrade procedure by stopping the server:

sqoop2-server stop

Before starting the server again you will need to enable the auto-upgrade feature that will perform all necessary
changes during Sqoop Server start up.

You need to set the following property in configuration file sqoop.properties for the repository schema upgrade.

org.apache.sqoop.repository.schema.immutable=false

You need to set the following property in configuration file sqoop.properties for the connector config data
upgrade.

org.apache.sqoop.connector.autoupgrade=true

You need to set the following property in configuration file sqoop.properties for the driver config data upgrade.

org.apache.sqoop.driver.autoupgrade=true

When all properties are set, start the sqoop server using the following command:

sqoop2-server start

All required actions will be performed automatically during the server bootstrap. It’s strongly advised to set all three
properties to their original values once the server has been successfully started and the upgrade has completed

1.3.2 Upgrading Client

Client do not require any manual steps during upgrade. Replacing the binaries with updated version is sufficient.

1.3. Upgrade 11

Apache Sqoop, Release

12 Chapter 1. Admin Guide

CHAPTER 2

User Guide

2.1 Command Line Shell

Sqoop 2 provides command line shell that is capable of communicating with Sqoop 2 server using REST interface.
Client is able to run in two modes - interactive and batch mode. Commands create, update and clone are not
currently supported in batch mode. Interactive mode supports all available commands.

You can start Sqoop 2 client in interactive mode using command sqoop2-shell:

sqoop2-shell

Batch mode can be started by adding additional argument representing path to your Sqoop client script:

sqoop2-shell /path/to/your/script.sqoop

Sqoop client script is expected to contain valid Sqoop client commands, empty lines and lines starting with # that are
denoting comment lines. Comments and empty lines are ignored, all other lines are interpreted. Example script:

Specify company server
set server --host sqoop2.company.net

Executing given job
start job --name 1

13

Apache Sqoop, Release

Table of Contents

• Command Line Shell
– Resource file
– Commands

* Auxiliary Commands
* Set Command

· Set Server Function
· Set Option Function

* Show Command
· Show Server Function
· Show Option Function
· Show Version Function
· Show Connector Function
· Show Driver Function
· Show Link Function
· Show Job Function
· Show Submission Function

* Create Command
· Create Link Function
· Create Job Function

* Update Command
· Update Link Function
· Update Job Function

* Delete Command
· Delete Link Function
· Delete Job Function

* Clone Command
· Clone Link Function
· Clone Job Function

* Start Command
· Start Job Function

* Stop Command
· Stop Job Function

* Status Command
· Status Job Function

2.1.1 Resource file

Sqoop 2 client have ability to load resource files similarly as other command line tools. At the beginning of execution
Sqoop client will check existence of file .sqoop2rc in home directory of currently logged user. If such file exists, it
will be interpreted before any additional actions. This file is loaded in both interactive and batch mode. It can be used
to execute any batch compatible commands.

Example resource file:

Configure our Sqoop 2 server automatically
set server --host sqoop2.company.net

Run in verbose mode by default
set option --name verbose --value true

14 Chapter 2. User Guide

Apache Sqoop, Release

2.1.2 Commands

Sqoop 2 contains several commands that will be documented in this section. Each command have one more functions
that are accepting various arguments. Not all commands are supported in both interactive and batch mode.

Auxiliary Commands

Auxiliary commands are commands that are improving user experience and are running purely on client side. Thus
they do not need working connection to the server.

• exit Exit client immediately. This command can be also executed by sending EOT (end of transmission)
character. It’s CTRL+D on most common Linux shells like Bash or Zsh.

• history Print out command history. Please note that Sqoop client is saving history from previous executions
and thus you might see commands that you’ve executed in previous runs.

• help Show all available commands with short in-shell documentation.

sqoop:000> help
For information about Sqoop, visit: http://sqoop.apache.org/

Available commands:
exit (\x) Exit the shell
history (\H) Display, manage and recall edit-line history
help (\h) Display this help message
set (\st) Configure various client options and settings
show (\sh) Display various objects and configuration options
create (\cr) Create new object in Sqoop repository
delete (\d) Delete existing object in Sqoop repository
update (\up) Update objects in Sqoop repository
clone (\cl) Create new object based on existing one
start (\sta) Start job
stop (\stp) Stop job
status (\stu) Display status of a job
enable (\en) Enable object in Sqoop repository
disable (\di) Disable object in Sqoop repository

Set Command

Set command allows to set various properties of the client. Similarly as auxiliary commands, set do not require
connection to Sqoop server. Set commands is not used to reconfigure Sqoop server.

Available functions:

Function Description
server Set connection configuration for server
option Set various client side options

Set Server Function

Configure connection to Sqoop server - host port and web application name. Available arguments:

2.1. Command Line Shell 15

Apache Sqoop, Release

Argument Default value Description
-h, --host localhost Server name (FQDN) where Sqoop server is running
-p, --port 12000 TCP Port
-w, --webapp sqoop Jetty’s web application name
-u, --url Sqoop Server in url format

Example:

set server --host sqoop2.company.net --port 80 --webapp sqoop

or

set server --url http://sqoop2.company.net:80/sqoop

Note: When --url option is given, --host, --port or --webapp option will be ignored.

Set Option Function

Configure Sqoop client related options. This function have two required arguments name and value. Name repre-
sents internal property name and value holds new value that should be set. List of available option names follows:

Option name Default value Description
verbose false Client will print additional information if verbose mode is enabled
poll-timeout 10000 Server poll timeout in milliseconds

Example:

set option --name verbose --value true
set option --name poll-timeout --value 20000

Show Command

Show commands displays various information as described below.

Available functions:

Function Description
server Display connection information to the sqoop server (host, port, webapp)
option Display various client side options
version Show client build version, with an option -all it shows server build version and supported api

versions
connector Show connector configurable and its related configs
driver Show driver configurable and its related configs
link Show links in sqoop
job Show jobs in sqoop

Show Server Function

Show details about connection to Sqoop server.

Argument Description
-a, --all Show all connection related information (host, port, webapp)
-h, --host Show host
-p, --port Show port
-w, --webapp Show web application name

16 Chapter 2. User Guide

Apache Sqoop, Release

Example:

show server --all

Show Option Function

Show values of various client side options. This function will show all client options when called without arguments.

Argument Description
-n, --name Show client option value with given name

Please check table in Set Option Function section to get a list of all supported option names.

Example:

show option --name verbose

Show Version Function

Show build versions of both client and server as well as the supported rest api versions.

Argument Description
-a, --all Show all versions (server, client, api)
-c, --client Show client build version
-s, --server Show server build version
-p, --api Show supported api versions

Example:

show version --all

Show Connector Function

Show persisted connector configurable and its related configs used in creating associated link and job objects

Argument Description
-a, --all Show information for all connectors
-c, --cid <x> Show information for connector with id <x>

Example:

show connector --all or show connector

Show Driver Function

Show persisted driver configurable and its related configs used in creating job objects

This function do not have any extra arguments. There is only one registered driver in sqoop

Example:

show driver

2.1. Command Line Shell 17

Apache Sqoop, Release

Show Link Function

Show persisted link objects.

Argument Description
-a, --all Show all available links
-n, --name <x> Show link with name <x>

Example:

show link --all or show link --name linkName

Show Job Function

Show persisted job objects.

Argument Description
-a, --all Show all available jobs
-n, --name <x> Show job with name <x>

Example:

show job --all or show job --name jobName

Show Submission Function

Show persisted job submission objects.

Argument Description
-j, --job <x> Show available submissions for given job name
-d, --detail Show job submissions in full details

Example:

show submission
show submission --j jobName
show submission --job jobName --detail

Create Command

Creates new link and job objects. This command is supported only in interactive mode. It will ask user to enter the
link config and job configs for from /to and driver when creating link and job objects respectively.

Available functions:

Function Description
link Create new link object
job Create new job object

Create Link Function

Create new link object.

Argument Description
-c, --connector <x> Create new link object for connector with name <x>

18 Chapter 2. User Guide

Apache Sqoop, Release

Example:

create link --connector connectorName or create link -c connectorName

Create Job Function

Create new job object.

Argument Description
-f, --from <x> Create new job object with a FROM link with name <x>
-t, --to <t> Create new job object with a TO link with name <x>

Example:

create job --from fromLinkName --to toLinkName or create job --f fromLinkName --t toLinkName

Update Command

Update commands allows you to edit link and job objects. This command is supported only in interactive mode.

Update Link Function

Update existing link object.

Argument Description
-n, --name <x> Update existing link with name <x>

Example:

update link --name linkName

Update Job Function

Update existing job object.

Argument Description
-n, --name <x> Update existing job object with name <x>

Example:

update job --name jobName

Delete Command

Deletes link and job objects from Sqoop server.

Delete Link Function

Delete existing link object.

Argument Description
-n, --name <x> Delete link object with name <x>

2.1. Command Line Shell 19

Apache Sqoop, Release

Example:

delete link --name linkName

Delete Job Function

Delete existing job object.

Argument Description
-n, --name <x> Delete job object with name <x>

Example:

delete job --name jobName

Clone Command

Clone command will load existing link or job object from Sqoop server and allow user in place updates that will result
in creation of new link or job object. This command is not supported in batch mode.

Clone Link Function

Clone existing link object.

Argument Description
-n, --name <x> Clone link object with name <x>

Example:

clone link --name linkName

Clone Job Function

Clone existing job object.

Argument Description
-n, --name <x> Clone job object with name <x>

Example:

clone job --name jobName

Start Command

Start command will begin execution of an existing Sqoop job.

Start Job Function

Start job (submit new submission). Starting already running job is considered as invalid operation.

Argument Description
-n, --name <x> Start job with name <x>
-s, --synchronous Synchoronous job execution

20 Chapter 2. User Guide

Apache Sqoop, Release

Example:

start job --name jobName
start job --name jobName --synchronous

Stop Command

Stop command will interrupt an job execution.

Stop Job Function

Interrupt running job.

Argument Description
-n, --name <x> Interrupt running job with name <x>

Example:

stop job --name jobName

Status Command

Status command will retrieve the last status of a job.

Status Job Function

Retrieve last status for given job.

Argument Description
-n, --name <x> Retrieve status for job with name <x>

Example:

status job --name jobName

2.2 Connectors

2.2.1 FTP Connector

The FTP connector supports moving data between an FTP server and other supported Sqoop2 connectors.

Currently only the TO direction is supported to write records to an FTP server. A FROM connector is pending
(SQOOP-2127).

Contents

• FTP Connector
– Usage

* Link Configuration
* TO Job Configuration

– Loader

2.2. Connectors 21

Apache Sqoop, Release

Usage

To use the FTP Connector, create a link for the connector and a job that uses the link.

Link Configuration

Inputs associated with the link configuration include:

Input Type Description Example
FTP server
hostname

String Hostname for the FTP server. Required. ftp.example.com

FTP server port Inte-
ger

Port number for the FTP server. Defaults to 21. Optional. 2100

Username String The username to provide when connecting to the FTP server.
Required.

sqoop

Password String The password to provide when connecting to the FTP server.
Required

sqoop

Notes

1. The FTP connector will attempt to connect to the FTP server as part of the link validation process. If for some
reason a connection can not be established, you’ll see a corresponding warning message.

TO Job Configuration

Inputs associated with the Job configuration for the TO direction include:

Input Type Description Exam-
ple

Output
directory

String The location on the FTP server that the connector will write files to.
Required

uploads

Notes

1. The output directory value needs to be an existing directory on the FTP server.

Loader

During the loading phase, the connector will create uniquely named files in the output directory for each partition of
data received from the FROM connector.

2.2.2 Generic JDBC Connector

The Generic JDBC Connector can connect to any data source that adheres to the JDBC 4 specification.

22 Chapter 2. User Guide

Apache Sqoop, Release

Contents

• Generic JDBC Connector
– Usage

* Link Configuration
* FROM Job Configuration
* TO Job Configuration

– Partitioner
– Extractor
– Loader
– Destroyers

Usage

To use the Generic JDBC Connector, create a link for the connector and a job that uses the link.

Link Configuration

Inputs associated with the link configuration include:

Input Type Description Example
JDBC Driver
Class

StringThe full class name of the JDBC driver. Required and
accessible by the Sqoop server.

com.mysql.jdbc.Driver

JDBC
Connection
String

StringThe JDBC connection string to use when connecting to the
data source. Required. Connectivity upon creation is optional.

jdbc:mysql://localhost/test

Username StringThe username to provide when connecting to the data source.
Optional. Connectivity upon creation is optional.

sqoop

Password StringThe password to provide when connecting to the data source.
Optional. Connectivity upon creation is optional.

sqoop

JDBC
Connection
Properties

Map A map of JDBC connection properties to pass to the JDBC
driver Optional.

profi-
leSQL=true&useFastDateParsing=false

FROM Job Configuration

Inputs associated with the Job configuration for the FROM direction include:

2.2. Connectors 23

Apache Sqoop, Release

Input Type Description Example
Schema name String The schema name the table is part of. Optional sqoop
Table name String The table name to import data from. Optional. See

note below.
test

Table SQL
statement

String The SQL statement used to perform a free form
query. Optional. See notes below.

SELECT COUNT(*)
FROM test
${CONDITIONS}

Table column
names

String Columns to extract from the JDBC data source.
Optional Comma separated list of columns.

col1,col2

Partition column
name

Map The column name used to partition the data transfer
process. Optional. Defaults to table’s first column of
primary key.

col1

Null value allowed
for the partition
column

BooleanTrue or false depending on whether NULL values are
allowed in data of the Partition column. Optional.

true

Boundary query String The query used to define an upper and lower
boundary when partitioning. Optional.

Notes

1. Table name and Table SQL statement are mutually exclusive. If Table name is provided, the Table SQL statement
should not be provided. If Table SQL statement is provided then Table name should not be provided.

2. Table column names should be provided only if Table name is provided.

3. If there are columns with similar names, column aliases are required. For example: SELECT table1.id
as "i", table2.id as "j" FROM table1 INNER JOIN table2 ON table1.id =
table2.id.

TO Job Configuration

Inputs associated with the Job configuration for the TO direction include:

Input Type Description Example
Schema
name

String The schema name the table is part of. Optional sqoop

Table name String The table name to import data from. Optional. See note
below.

test

Table SQL
statement

String The SQL statement used to perform a free form query.
Optional. See note below.

INSERT INTO test
(col1, col2) VALUES
(?, ?)

Table
column
names

String Columns to insert into the JDBC data source. Optional
Comma separated list of columns.

col1,col2

Stage table
name

String The name of the table used as a staging table. Optional. staging

Should
clear stage
table

BooleanTrue or false depending on whether the staging table
should be cleared after the data transfer has finished.
Optional.

true

Notes

1. Table name and Table SQL statement are mutually exclusive. If Table name is provided, the Table SQL statement
should not be provided. If Table SQL statement is provided then Table name should not be provided.

24 Chapter 2. User Guide

Apache Sqoop, Release

2. Table column names should be provided only if Table name is provided.

Partitioner

The Generic JDBC Connector partitioner generates conditions to be used by the extractor. It varies in how it partitions
data transfer based on the partition column data type. Though, each strategy roughly takes on the following form:

(upper boundary - lower boundary) / (max partitions)

By default, the primary key will be used to partition the data unless otherwise specified.

The following data types are currently supported:

1. TINYINT

2. SMALLINT

3. INTEGER

4. BIGINT

5. REAL

6. FLOAT

7. DOUBLE

8. NUMERIC

9. DECIMAL

10. BIT

11. BOOLEAN

12. DATE

13. TIME

14. TIMESTAMP

15. CHAR

16. VARCHAR

17. LONGVARCHAR

Extractor

During the extraction phase, the JDBC data source is queried using SQL. This SQL will vary based on your configu-
ration.

• If Table name is provided, then the SQL statement generated will take on the form SELECT * FROM <table
name>.

• If Table name and Columns are provided, then the SQL statement generated will take on the form SELECT
<columns> FROM <table name>.

• If Table SQL statement is provided, then the provided SQL statement will be used.

The conditions generated by the partitioner are appended to the end of the SQL query to query a section of data.

The Generic JDBC connector extracts CSV data usable by the CSV Intermediate Data Format.

2.2. Connectors 25

Apache Sqoop, Release

Loader

During the loading phase, the JDBC data source is queried using SQL. This SQL will vary based on your configuration.

• If Table name is provided, then the SQL statement generated will take on the form INSERT INTO <table
name> (col1, col2, ...) VALUES (?,?,..).

• If Table name and Columns are provided, then the SQL statement generated will take on the form INSERT
INTO <table name> (<columns>) VALUES (?,?,..).

• If Table SQL statement is provided, then the provided SQL statement will be used.

This connector expects to receive CSV data consumable by the CSV Intermediate Data Format.

Destroyers

The Generic JDBC Connector performs two operations in the destroyer in the TO direction:

1. Copy the contents of the staging table to the desired table.

2. Clear the staging table.

No operations are performed in the FROM direction.

2.2.3 HDFS Connector

Contents

• HDFS Connector
– Usage

* Link Configuration
* FROM Job Configuration
* TO Job Configuration

– Partitioner
– Extractor
– Loader
– Destroyers

Usage

To use the HDFS Connector, create a link for the connector and a job that uses the link.

Link Configuration

Inputs associated with the link configuration include:

Input Type Description Example
URI String The URI of the HDFS File System. Optional. See note

below.
hdfs://example.com:8020/

Configuration
directory

String Path to the clusters configuration directory. Optional. /etc/conf/hadoop

26 Chapter 2. User Guide

Apache Sqoop, Release

Notes

1. The specified URI will override the declared URI in your configuration.

FROM Job Configuration

Inputs associated with the Job configuration for the FROM direction include:

Input Type Description Example
Input directory String The location in HDFS that the connector should look for files in.

Required. See note below.
/tmp/sqoop2/hdfs

Null value String The value of NULL in the contents of each file extracted. Optional.
See note below.

N

Override null
value

Boolean Tells the connector to replace the specified NULL value. Optional.
See note below.

true

Notes

1. All files in Input directory will be extracted.

2. Null value and override null value should be used in conjunction. If override null value is not set to true, then
null value will not be used when extracting data.

TO Job Configuration

Inputs associated with the Job configuration for the TO direction include:

Input Type Description Example
Output
directory

String The location in HDFS that the connector will load files to.
Optional

/tmp/sqoop2/hdfs

Output format Enum The format to output data to. Optional. See note below. CSV
Compression Enum Compression class. Optional. See note below. GZIP
Custom
compression

String Custom compression class. Optional Comma separated
list of columns.

org.apache.sqoop.SqoopCompression

Null value String The value of NULL in the contents of each file loaded.
Optional. See note below.

N

Override null
value

Boolean Tells the connector to replace the specified NULL value.
Optional. See note below.

true

Append mode Boolean Append to an existing output directory. Optional. true

Notes

1. Output format only supports CSV at the moment.

2. Compression supports all Hadoop compression classes.

3. Null value and override null value should be used in conjunction. If override null value is not set to true, then
null value will not be used when loading data.

Partitioner

The HDFS Connector partitioner partitions based on total blocks in all files in the specified input directory. Blocks
will try to be placed in splits based on the node and rack they reside in.

2.2. Connectors 27

Apache Sqoop, Release

Extractor

During the extraction phase, the FileSystem API is used to query files from HDFS. The HDFS cluster used is the one
defined by:

1. The HDFS URI in the link configuration

2. The Hadoop configuration in the link configuration

3. The Hadoop configuration used by the execution framework

The format of the data must be CSV. The NULL value in the CSV can be chosen via null value. For example:

1,\N
2,null
3,NULL

In the above example, if null value is set to N, then only the first row’s NULL value will be inferred.

Loader

During the loading phase, HDFS is written to via the FileSystem API. The number of files created is equal to the
number of loads that run. The format of the data currently can only be CSV. The NULL value in the CSV can be
chosen via null value. For example:

Id Value
1 NULL
2 value

If null value is set to N, then here’s how the data will look like in HDFS:

1,\N
2,value

Destroyers

The HDFS TO destroyer moves all created files to the proper output directory.

2.2.4 Kafka Connector

Currently, only the TO direction is supported.

Contents

• Kafka Connector
– Usage

* Link Configuration
* TO Job Configuration

– Loader

Usage

To use the Kafka Connector, create a link for the connector and a job that uses the link.

28 Chapter 2. User Guide

Apache Sqoop, Release

Link Configuration

Inputs associated with the link configuration include:

Input Type Description Example
Broker list String Comma separated list of kafka brokers. Required. exam-

ple.com:10000,example.com:11000
Zookeeper
connection

String Comma separated list of zookeeper servers in your
quorum. Required.

/etc/conf/hadoop

TO Job Configuration

Inputs associated with the Job configuration for the FROM direction include:

Input Type Description Example
topic String The Kafka topic to transfer to. Required. my topic

Loader

During the loading phase, Kafka is written to directly from each loader. The order in which data is loaded into Kafka
is not guaranteed.

2.2.5 Kite Connector

Contents

• Kite Connector
– Usage

* Link Configuration
* FROM Job Configuration
* TO Job Configuration

– Partitioner
– Extractor
– Loader
– Destroyers

Usage

To use the Kite Connector, create a link for the connector and a job that uses the link. For more information on Kite,
checkout the kite documentation: http://kitesdk.org/docs/1.0.0/Kite-SDK-Guide.html.

Link Configuration

Inputs associated with the link configuration include:

Input Type Description Example
authority String The authority of the kite dataset. Optional. See note below. hdfs://example.com:8020/

2.2. Connectors 29

http://kitesdk.org/docs/1.0.0/Kite-SDK-Guide.html

Apache Sqoop, Release

Notes

1. The authority is useful for specifying Hive metastore or HDFS URI.

FROM Job Configuration

Inputs associated with the Job configuration for the FROM direction include:

Input Type Description Example
URI String The Kite dataset URI to use. Required. See notes below. dataset:hdfs:/tmp/ns/ds

Notes

1. The URI and the authority from the link configuration will be merged to create a complete dataset URI internally.
If the given dataset URI contains authority, the authority from the link configuration will be ignored.

2. Only hdfs and hive are supported currently.

TO Job Configuration

Inputs associated with the Job configuration for the TO direction include:

Input Type Description Example
URI String The Kite dataset URI to use. Required. See note below. dataset:hdfs:/tmp/ns/ds
File
format

Enum The format of the data the kite dataset should write out. Optional. See
note below.

PARQUET

Notes

1. The URI and the authority from the link configuration will be merged to create a complete dataset URI internally.
If the given dataset URI contains authority, the authority from the link configuration will be ignored.

2. Only hdfs and hive are supported currently.

Partitioner

The kite connector only creates one partition currently.

Extractor

During the extraction phase, Kite is used to query a dataset. Since there is only one dataset to query, only a single
reader is created to read the dataset.

NOTE: The avro schema kite generates will be slightly different than the original schema. This is because avro
identifiers have strict naming requirements.

Loader

During the loading phase, Kite is used to write several temporary datasets. The number of temporary datasets is
equivalent to the number of loaders that are being used.

30 Chapter 2. User Guide

Apache Sqoop, Release

Destroyers

The Kite connector TO destroyer merges all the temporary datasets into a single dataset.

2.2.6 SFTP Connector

The SFTP connector supports moving data between a Secure File Transfer Protocol (SFTP) server and other supported
Sqoop2 connectors.

Currently only the TO direction is supported to write records to an SFTP server. A FROM connector is pending
(SQOOP-2218).

Contents

• SFTP Connector
– Usage

* Link Configuration
* TO Job Configuration

– Loader

Usage

Before executing a Sqoop2 job with the SFTP connector, set mapreduce.task.classpath.user.precedence to true in
the Hadoop cluster config, for example:

<property>
<name>mapreduce.task.classpath.user.precedence</name>
<value>true</value>

</property>

This is required since the SFTP connector uses the JSch library (http://www.jcraft.com/jsch/) to provide SFTP func-
tionality. Unfortunately Hadoop currently ships with an earlier version of this library which causes an issue with some
SFTP servers. Setting this property ensures that the current version of the library packaged with this connector will
appear first in the classpath.

To use the SFTP Connector, create a link for the connector and a job that uses the link.

Link Configuration

Inputs associated with the link configuration include:

Input Type Description Example
SFTP server
hostname

String Hostname for the SFTP server. Required. sftp.example.com

SFTP server port Inte-
ger

Port number for the SFTP server. Defaults to 22. Optional. 2220

Username String The username to provide when connecting to the SFTP server.
Required.

sqoop

Password String The password to provide when connecting to the SFTP server.
Required

sqoop

2.2. Connectors 31

http://www.jcraft.com/jsch/

Apache Sqoop, Release

Notes

1. The SFTP connector will attempt to connect to the SFTP server as part of the link validation process. If for
some reason a connection can not be established, you’ll see a corresponding error message.

2. Note that during connection, the SFTP connector explictly disables StrictHostKeyChecking to avoid “Unknown-
HostKey” errors.

TO Job Configuration

Inputs associated with the Job configuration for the TO direction include:

Input Type Description Exam-
ple

Output
directory

String The location on the SFTP server that the connector will write files to.
Required

uploads

Notes

1. The output directory value needs to be an existing directory on the SFTP server.

Loader

During the loading phase, the connector will create uniquely named files in the output directory for each partition of
data received from the FROM connector.

2.3 Examples

This section contains various examples how Sqoop can be configured for various use cases.

2.3.1 S3 Import to HDFS

Contents

• S3 Import to HDFS
– Use case
– Configuration

This section contains detailed description for example use case of transferring data from S3 to HDFS.

Use case

You have directory on S3 where some external process is creating new text files. New files are added to this directory,
but existing files are never altered. They can only be removed after some period of time. Data from all new files needs
to be transferred to a single HDFS directory. Preserving file names is not required and multiple source files can be
merged to single file on HDFS.

32 Chapter 2. User Guide

Apache Sqoop, Release

Configuration

We will use HDFS connector for both From and To sides of the data transfer. In order to create link for S3 you need
to have S3 bucket name and S3 access and secret keys. Please follow S3 documentation to retrieve S3 credentials if
you don’t have them already.

sqoop:000> create link -c hdfs-connector

• Our example uses s3link for the link name

• Specify HDFS URI in form of s3a://$BUCKET_NAME where $BUCKET_NAME is name of the S3 bucket

• Use Override configuration option and specify fs.s3a.access.key and fs.s3a.secret.key with
your S3 access and secret key respectively.

Next step is to create link for HDFS

sqoop:000> create link -c hdfs-connector

Our example uses hdfslink for the link name If your Sqoop server is running on node that has HDFS and mapreduce
client configuration deployed, you can safely keep all options blank and use defaults for them.

With having links for both HDFS and S3, you can create job that will transfer data from S3 to HDFS:

sqoop:000> create job -f s3link -t hdfslink

• Our example uses s3import for the job name

• Input directory should point to a directory inside your S3 bucket where new files are generated

• Make sure to choose mode NEW_FILES for Incremental type

• Final destination for the imported files can be specified in Output directory

• Make sure to enable Append mode, so that Sqoop can upload newly created files to the same directory on HDFS

• Configure the remaining options as you see fit

Then finally you can start the job by issuing following command:

sqoop:000> start job -j s3import

You can run the job s3import periodically and only newly created files will be transferred.

2.4 Sqoop 5 Minutes Demo

This page will walk you through the basic usage of Sqoop. You need to have installed and configured Sqoop server
and client in order to follow this guide. Installation procedure is described in Installation. Please note that exact output
shown in this page might differ from yours as Sqoop evolves. All major information should however remain the same.

Sqoop uses unique names or persistent ids to identify connectors, links, jobs and configs. We support querying a entity
by its unique name or by its perisent database Id.

2.4.1 Starting Client

Start client in interactive mode using following command:

sqoop2-shell

Configure client to use your Sqoop server:

2.4. Sqoop 5 Minutes Demo 33

Apache Sqoop, Release

sqoop:000> set server --host your.host.com --port 12000 --webapp sqoop

Verify that connection is working by simple version checking:

sqoop:000> show version --all
client version:

Sqoop 2.0.0-SNAPSHOT source revision 418c5f637c3f09b94ea7fc3b0a4610831373a25f
Compiled by vbasavaraj on Mon Nov 3 08:18:21 PST 2014

server version:
Sqoop 2.0.0-SNAPSHOT source revision 418c5f637c3f09b94ea7fc3b0a4610831373a25f
Compiled by vbasavaraj on Mon Nov 3 08:18:21 PST 2014

API versions:
[v1]

You should received similar output as shown above describing the sqoop client build version, the server build version
and the supported versions for the rest API.

You can use the help command to check all the supported commands in the sqoop shell.

sqoop:000> help
For information about Sqoop, visit: http://sqoop.apache.org/

Available commands:
exit (\x) Exit the shell
history (\H) Display, manage and recall edit-line history
help (\h) Display this help message
set (\st) Configure various client options and settings
show (\sh) Display various objects and configuration options
create (\cr) Create new object in Sqoop repository
delete (\d) Delete existing object in Sqoop repository
update (\up) Update objects in Sqoop repository
clone (\cl) Create new object based on existing one
start (\sta) Start job
stop (\stp) Stop job
status (\stu) Display status of a job
enable (\en) Enable object in Sqoop repository
disable (\di) Disable object in Sqoop repository

2.4.2 Creating Link Object

Check for the registered connectors on your Sqoop server:

sqoop:000> show connector
+------------------------+----------------+--+----------------------+
| Name | Version | Class | Supported Directions |
+------------------------+----------------+--+----------------------+
| hdfs-connector | 2.0.0-SNAPSHOT | org.apache.sqoop.connector.hdfs.HdfsConnector | FROM/TO |
| generic-jdbc-connector | 2.0.0-SNAPSHOT | org.apache.sqoop.connector.jdbc.GenericJdbcConnector | FROM/TO |
+------------------------+----------------+--+----------------------+

Our example contains two connectors. The generic-jdbc-connector is a basic connector relying on the Java
JDBC interface for communicating with data sources. It should work with the most common databases that are
providing JDBC drivers. Please note that you must install JDBC drivers separately. They are not bundled in Sqoop
due to incompatible licenses.

Generic JDBC Connector in our example has a name generic-jdbc-connector and we will use this value to
create new link object for this connector. Note that the link name should be unique.

34 Chapter 2. User Guide

Apache Sqoop, Release

sqoop:000> create link -connector generic-jdbc-connector
Creating link for connector with name generic-jdbc-connector
Please fill following values to create new link object
Name: First Link

Link configuration
JDBC Driver Class: com.mysql.jdbc.Driver
JDBC Connection String: jdbc:mysql://mysql.server/database
Username: sqoop
Password: *****
JDBC Connection Properties:
There are currently 0 values in the map:
entry#protocol=tcp
New link was successfully created with validation status OK name First Link

Our new link object was created with assigned name First Link.

In the show connector -all we see that there is a hdfs-connector registered. Let us create another link object
but this time for the hdfs-connector instead.

sqoop:000> create link -connector hdfs-connector
Creating link for connector with name hdfs-connector
Please fill following values to create new link object
Name: Second Link

Link configuration
HDFS URI: hdfs://nameservice1:8020/
New link was successfully created with validation status OK and name Second Link

2.4.3 Creating Job Object

Connectors implement the From for reading data from and/or To for writing data to. Generic JDBC Connector sup-
ports both of them List of supported directions for each connector might be seen in the output of show connector
-all command above. In order to create a job we need to specifiy the From and To parts of the job uniquely iden-
tified by their link Ids. We already have 2 links created in the system, you can verify the same with the following
command

sqoop:000> show link --all
2 link(s) to show:
link with name First Link (Enabled: true, Created by root at 11/4/14 4:27 PM, Updated by root at 11/4/14 4:27 PM)
Using Connector with name generic-jdbc-connector

Link configuration
JDBC Driver Class: com.mysql.jdbc.Driver
JDBC Connection String: jdbc:mysql://mysql.ent.cloudera.com/sqoop
Username: sqoop
Password:
JDBC Connection Properties:

protocol = tcp
link with name Second Link (Enabled: true, Created by root at 11/4/14 4:38 PM, Updated by root at 11/4/14 4:38 PM)
Using Connector with name hdfs-connector

Link configuration
HDFS URI: hdfs://nameservice1:8020/

Next, we can use the two link names to associate the From and To for the job.

sqoop:000> create job -f "First Link" -t "Second Link"
Creating job for links with from name First Link and to name Second Link

2.4. Sqoop 5 Minutes Demo 35

Apache Sqoop, Release

Please fill following values to create new job object
Name: Sqoopy

FromJob configuration

Schema name:(Required)sqoop
Table name:(Required)sqoop
Table SQL statement:(Optional)
Table column names:(Optional)
Partition column name:(Optional) id
Null value allowed for the partition column:(Optional)
Boundary query:(Optional)

ToJob configuration

Output format:
0 : TEXT_FILE
1 : SEQUENCE_FILE
Choose: 0
Compression format:
0 : NONE
1 : DEFAULT
2 : DEFLATE
3 : GZIP
4 : BZIP2
5 : LZO
6 : LZ4
7 : SNAPPY
8 : CUSTOM
Choose: 0
Custom compression format:(Optional)
Output directory:(Required)/root/projects/sqoop

Driver Config
Extractors:(Optional) 2
Loaders:(Optional) 2
New job was successfully created with validation status OK and name jobName

Our new job object was created with assigned name Sqoopy. Note that if null value is allowed for the partition
column, at least 2 extractors are needed for Sqoop to carry out the data transfer. On specifying 1 extractor in this
scenario, Sqoop shall ignore this setting and continue with 2 extractors.

2.4.4 Start Job (a.k.a Data transfer)

You can start a sqoop job with the following command:

sqoop:000> start job -name Sqoopy
Submission details
Job Name: Sqoopy
Server URL: http://localhost:12000/sqoop/
Created by: root
Creation date: 2014-11-04 19:43:29 PST
Lastly updated by: root
External ID: job_1412137947693_0001

http://vbsqoop-1.ent.cloudera.com:8088/proxy/application_1412137947693_0001/
2014-11-04 19:43:29 PST: BOOTING - Progress is not available

36 Chapter 2. User Guide

Apache Sqoop, Release

You can iteratively check your running job status with status job command:

sqoop:000> status job -n Sqoopy
Submission details
Job Name: Sqoopy
Server URL: http://localhost:12000/sqoop/
Created by: root
Creation date: 2014-11-04 19:43:29 PST
Lastly updated by: root
External ID: job_1412137947693_0001

http://vbsqoop-1.ent.cloudera.com:8088/proxy/application_1412137947693_0001/
2014-11-04 20:09:16 PST: RUNNING - 0.00 %

Alternatively you can start a sqoop job and observe job running status with the following command:

sqoop:000> start job -n Sqoopy -s
Submission details
Job Name: Sqoopy
Server URL: http://localhost:12000/sqoop/
Created by: root
Creation date: 2014-11-04 19:43:29 PST
Lastly updated by: root
External ID: job_1412137947693_0001

http://vbsqoop-1.ent.cloudera.com:8088/proxy/application_1412137947693_0001/
2014-11-04 19:43:29 PST: BOOTING - Progress is not available
2014-11-04 19:43:39 PST: RUNNING - 0.00 %
2014-11-04 19:43:49 PST: RUNNING - 10.00 %

And finally you can stop running the job at any time using stop job command:

sqoop:000> stop job -n Sqoopy

2.4. Sqoop 5 Minutes Demo 37

Apache Sqoop, Release

38 Chapter 2. User Guide

CHAPTER 3

Developer Guide

3.1 Building Sqoop2 from source code

This guide will show you how to build Sqoop2 from source code. Sqoop is using maven as build system. You you will
need to use at least version 3.0 as older versions will not work correctly. All other dependencies will be downloaded
by maven automatically. With exception of special JDBC drivers that are needed only for advanced integration tests.

3.1.1 Downloading source code

Sqoop project is using git as a revision control system hosted at Apache Software Foundation. You can clone entire
repository using following command:

git clone https://git-wip-us.apache.org/repos/asf/sqoop.git sqoop2

Sqoop2 is currently developed in special branch sqoop2 that you need to check out after clone:

cd sqoop2
git checkout sqoop2

3.1.2 Building project

You can use usual maven targets like compile or package to build the project. Sqoop supports one major Hadoop
revision at the moment - 2.x. As compiled code for one Hadoop major version can’t be used on another, you must
compile Sqoop against appropriate Hadoop version.

mvn compile

Maven target package can be used to create Sqoop packages similar to the ones that are officially available for
download. Sqoop will build only source tarball by default. You need to specify -Pbinary to build binary distribution.

mvn package -Pbinary

3.1.3 Running tests

Sqoop supports two different sets of tests. First smaller and much faster set is called unit tests and will be executed on
maven target test. Second larger set of integration tests will be executed on maven target integration-test.
Please note that integration tests might require manual steps for installing various JDBC drivers into your local maven
cache.

39

http://maven.apache.org/

Apache Sqoop, Release

Example for running unit tests:

mvn test

Example for running integration tests:

mvn integration-test

For the unit tests, there are two helpful profiles: fast and slow. The fast unit tests do not start or use any services. The
slow unit tests, may start services or use an external service (ie. MySQL).

mvn test -Pfast,hadoop200
mvn test -Pslow,hadoop200

3.2 Sqoop Java Client API Guide

This document will explain how to use Sqoop Java Client API with external application. Client API allows you to
execute the functions of sqoop commands. It requires Sqoop Client JAR and its dependencies.

The main class that provides wrapper methods for all the supported operations is the

public class SqoopClient {
...

}

Java Client API is explained using Generic JDBC Connector example. Before executing the application using the
sqoop client API, check whether sqoop server is running.

3.2.1 Workflow

Given workflow has to be followed for executing a sqoop job in Sqoop server.

1. Create LINK object for a given connector name - Creates Link object and returns it

2. Create a JOB for a given “from” and “to” link name - Create Job object and returns it

3. Start the JOB for a given job name - Start Job on the server and creates a submission record

3.2.2 Project Dependencies

Here given maven dependency

<dependency>
<groupId>org.apache.sqoop</groupId>
<artifactId>sqoop-client</artifactId>
<version>${requestedVersion}</version>

</dependency>

3.2.3 Initialization

First initialize the SqoopClient class with server URL as argument.

String url = "http://localhost:12000/sqoop/";
SqoopClient client = new SqoopClient(url);

40 Chapter 3. Developer Guide

Apache Sqoop, Release

Server URL value can be modfied by setting value to setServerUrl(String) method

client.setServerUrl(newUrl);

3.2.4 Link

Connectors provide the facility to interact with many data sources and thus can be used as a means to transfer data
between them in Sqoop. The registered connector implementation will provide logic to read from and/or write to a data
source that it represents. A connector can have one or more links associated with it. The java client API allows you to
create, update and delete a link for any registered connector. Creating or updating a link requires you to populate the
Link Config for that particular connector. Hence the first thing to do is get the list of registered connectors and select
the connector for which you would like to create a link. Then you can get the list of all the config/inputs using Display
Config and Input Names For Connector for that connector.

Save Link

First create a new link by invoking createLink(connectorName) method with connector name and it returns
a MLink object with dummy id and the unfilled link config inputs for that connector. Then fill the config inputs with
relevant values. Invoke saveLink passing it the filled MLink object.

// create a placeholder for link
MLink link = client.createLink("connectorName");
link.setName("Vampire");
link.setCreationUser("Buffy");
MLinkConfig linkConfig = link.getConnectorLinkConfig();
// fill in the link config values
linkConfig.getStringInput("linkConfig.connectionString").setValue("jdbc:mysql://localhost/my");
linkConfig.getStringInput("linkConfig.jdbcDriver").setValue("com.mysql.jdbc.Driver");
linkConfig.getStringInput("linkConfig.username").setValue("root");
linkConfig.getStringInput("linkConfig.password").setValue("root");
// save the link object that was filled
Status status = client.saveLink(link);
if(status.canProceed()) {
System.out.println("Created Link with Link Name : " + link.getName());

} else {
System.out.println("Something went wrong creating the link");

}

status.canProceed() returns true if status is OK or a WARNING. Before sending the status, the link config
values are validated using the corresponding validator associated with th link config inputs.

On successful execution of the saveLink method, new link name is assigned to the link object else an exception is
thrown. link.getName() method returns the unique name for this object persisted in the sqoop repository.

User can retrieve a link using the following methods

Method Description
getLink(linkName) Returns a link by name
getLinks() Returns list of links in the sqoop

3.2.5 Job

A sqoop job holds the From and To parts for transferring data from the From data source to the To data source. Both
the From and the To are uniquely identified by their corresponding connector Link Ids. i.e when creating a job we

3.2. Sqoop Java Client API Guide 41

Apache Sqoop, Release

have to specifiy the FromLinkId and the ToLinkId. Thus the pre-requisite for creating a job is to first create the
links as described above.

Once the link names for the From and To are given, then the job configs for the associated connector for the link
object have to be filled. You can get the list of all the from and to job config/inputs using Display Config and Input
Names For Connector for that connector. A connector can have one or more links. We then use the links in the From
and To direction to populate the corresponding MFromConfig and MToConfig respectively.

In addition to filling the job configs for the From and the To representing the link, we also need to fill the driver
configs that control the job execution engine environment. For example, if the job execution engine happens to be the
MapReduce we will specifiy the number of mappers to be used in reading data from the From data source.

Save Job

Here is the code to create and then save a job

String url = "http://localhost:12000/sqoop/";
SqoopClient client = new SqoopClient(url);
//Creating dummy job object
MJob job = client.createJob("fromLinkName", "toLinkName");
job.setName("Vampire");
job.setCreationUser("Buffy");
// set the "FROM" link job config values
MFromConfig fromJobConfig = job.getFromJobConfig();
fromJobConfig.getStringInput("fromJobConfig.schemaName").setValue("sqoop");
fromJobConfig.getStringInput("fromJobConfig.tableName").setValue("sqoop");
fromJobConfig.getStringInput("fromJobConfig.partitionColumn").setValue("id");
// set the "TO" link job config values
MToConfig toJobConfig = job.getToJobConfig();
toJobConfig.getStringInput("toJobConfig.outputDirectory").setValue("/usr/tmp");
// set the driver config values
MDriverConfig driverConfig = job.getDriverConfig();
driverConfig.getStringInput("throttlingConfig.numExtractors").setValue("3");

Status status = client.saveJob(job);
if(status.canProceed()) {
System.out.println("Created Job with Job Name: "+ job.getName());

} else {
System.out.println("Something went wrong creating the job");

}

User can retrieve a job using the following methods

Method Description
getJob(jobName) Returns a job by name
getJobs() Returns list of jobs in the sqoop

List of status codes

Function Description
OK There are no issues, no warnings.
WARNING Validated entity is correct enough to be proceed. Not a fatal error
ERROR There are serious issues with validated entity. We can’t proceed until reported issues will be

resolved.

42 Chapter 3. Developer Guide

Apache Sqoop, Release

View Error or Warning valdiation message

In case of any WARNING AND ERROR status, user has to iterate the list of validation messages.

printMessage(link.getConnectorLinkConfig().getConfigs());

private static void printMessage(List<MConfig> configs) {
for(MConfig config : configs) {
List<MInput<?>> inputlist = config.getInputs();
if (config.getValidationMessages() != null) {
// print every validation message
for(Message message : config.getValidationMessages()) {
System.out.println("Config validation message: " + message.getMessage());

}
}
for (MInput minput : inputlist) {

if (minput.getValidationStatus() == Status.WARNING) {
for(Message message : minput.getValidationMessages()) {
System.out.println("Config Input Validation Warning: " + message.getMessage());

}
}
else if (minput.getValidationStatus() == Status.ERROR) {

for(Message message : minput.getValidationMessages()) {
System.out.println("Config Input Validation Error: " + message.getMessage());

}
}

}
}

Updating link and job

After creating link or job in the repository, you can update or delete a link or job using the following functions

Method Description
updateLink(link) Invoke update with link and check status for any errors or warnings
deleteLink(linkName) Delete link. Deletes only if specified link is not used by any job
updateJob(job) Invoke update with job and check status for any errors or warnings
deleteJob(jobName) Delete job

3.2.6 Job Start

Starting a job requires a job name. On successful start, getStatus() method returns “BOOTING” or “RUNNING”.

//Job start
MSubmission submission = client.startJob("jobName");
System.out.println("Job Submission Status : " + submission.getStatus());
if(submission.getStatus().isRunning() && submission.getProgress() != -1) {

System.out.println("Progress : " + String.format("%.2f %%", submission.getProgress() * 100));
}
System.out.println("Hadoop job id :" + submission.getExternalId());
System.out.println("Job link : " + submission.getExternalLink());
Counters counters = submission.getCounters();
if(counters != null) {

System.out.println("Counters:");
for(CounterGroup group : counters) {
System.out.print("\t");

3.2. Sqoop Java Client API Guide 43

Apache Sqoop, Release

System.out.println(group.getName());
for(Counter counter : group) {

System.out.print("\t\t");
System.out.print(counter.getName());
System.out.print(": ");
System.out.println(counter.getValue());

}
}

}
if(submission.getExceptionInfo() != null) {

System.out.println("Exception info : " +submission.getExceptionInfo());
}

//Check job status for a running job
MSubmission submission = client.getJobStatus("jobName");
if(submission.getStatus().isRunning() && submission.getProgress() != -1) {

System.out.println("Progress : " + String.format("%.2f %%", submission.getProgress() * 100));
}

//Stop a running job
submission.stopJob("jobName");

Above code block, job start is asynchronous. For synchronous job start, use startJob(jobName, callback,
pollTime) method. If you are not interested in getting the job status, then invoke the same method with “null” as
the value for the callback parameter and this returns the final job status. pollTime is the request interval for getting
the job status from sqoop server and the value should be greater than zero. We will frequently hit the sqoop server if a
low value is given for the pollTime. When a synchronous job is started with a non null callback, it first invokes the
callback’s submitted(MSubmission) method on successful start, after every poll time interval, it then invokes
the updated(MSubmission) method on the callback API and finally on finishing the job executuon it invokes the
finished(MSubmission) method on the callback API.

3.2.7 Display Config and Input Names For Connector

You can view the config/input names for the link and job config types per connector

String url = "http://localhost:12000/sqoop/";
SqoopClient client = new SqoopClient(url);
String connectorName = "connectorName";
// link config for connector
describe(client.getConnector(connectorName).getLinkConfig().getConfigs(), client.getConnectorConfigBundle(connectorName));
// from job config for connector
describe(client.getConnector(connectorName).getFromConfig().getConfigs(), client.getConnectorConfigBundle(connectorName));
// to job config for the connector
describe(client.getConnector(connectorName).getToConfig().getConfigs(), client.getConnectorConfigBundle(connectorName));

void describe(List<MConfig> configs, ResourceBundle resource) {
for (MConfig config : configs) {
System.out.println(resource.getString(config.getLabelKey())+":");
List<MInput<?>> inputs = config.getInputs();
for (MInput input : inputs) {

System.out.println(resource.getString(input.getLabelKey()) + " : " + input.getValue());
}
System.out.println();

}
}

44 Chapter 3. Developer Guide

Apache Sqoop, Release

Above Sqoop 2 Client API tutorial explained how to create a link, create job and and then start the job.

3.3 Sqoop 2 Connector Development

This document describes how to implement a connector in the Sqoop 2 using the code sample from one of the built-in
connectors (GenericJdbcConnector) as a reference. Sqoop 2 jobs support extraction from and/or loading to
different data sources. Sqoop 2 connectors encapsulate the job lifecyle operations for extracting and/or loading data
from and/or to different data sources. Each connector will primarily focus on a particular data source and its custom
implementation for optimally reading and/or writing data in a distributed environment.

Contents

• Sqoop 2 Connector Development
– What is a Sqoop Connector?

* When do we add a new connector?
– Connector Implementation

* From
· Initializer and Destroyer
· Partitioner
· Extractor

* To
· Initializer and Destroyer
· Loader

* Sqoop Connector Identifier : sqoopconnector.properties
* Sqoop Connector Build-time Dependencies
* Sqoop Connector Build

– Configurables
* Configurable registration
* Configurations
* Configs and Inputs

· Empty Configuration
* Configuration ResourceBundle
* Validations for Configs and Inputs

– Loading External Connectors
– Sqoop 2 MapReduce Job Execution Lifecycle with Connector API

3.3.1 What is a Sqoop Connector?

Connectors provide the facility to interact with many data sources and thus can be used as a means to transfer data
between them in Sqoop. The connector implementation will provide logic to read from and/or write to a data source
that it represents. For instance the (GenericJdbcConnector) encapsulates the logic to read from and/or write to
jdbc enabled relational data sources. The connector part that enables reading from a data source and transferring this
data to internal Sqoop format is called the FROM and the part that enables writng data to a data source by transferring
data from Sqoop format is called TO. In order to interact with these data sources, the connector will provide one or
many config classes and input fields within it.

Broadly we support two main config types for connectors, link type represented by the enum ConfigType.LINK
and job type represented by the enum ConfigType.JOB. Link config represents the properties to physically connect
to the data source. Job config represent the properties that are required to invoke reading from and/or writing to
particular dataset in the data source it connects to. If a connector supports both reading from and writing to, it
will provide the FromJobConfig and ToJobConfig objects. Each of these config objects are custom to each

3.3. Sqoop 2 Connector Development 45

Apache Sqoop, Release

connector and can have one or more inputs associated with each of the Link, FromJob and ToJob config types. Hence
we call the connectors as configurables i.e an entity that can provide configs for interacting with the data source it
represents. As the connectors evolve over time to support new features in their data sources, the configs and inputs
will change as well. Thus the connector API also provides methods for upgrading the config and input names and data
related to these data sources across different versions.

The connectors implement logic for various stages of the extract/load process using the connector API described
below. While extracting/reading data from the data-source the main stages are Initializer, Partitioner,
Extractor and Destroyer. While loading/writitng data to the data source the main stages currently supported
are Initializer, Loader and Destroyer. Each stage has its unique set of responsibilities that are explained
in detail below. Since connectors understand the internals of the data source they represent, they work in tandem with
the sqoop supported execution engines such as MapReduce or Spark (in future) to accomplish this process in a most
optimal way.

When do we add a new connector?

You add a new connector when you need to extract/read data from a new data source, or load/write data into a new
data source that is not supported yet in Sqoop 2. In addition to the connector API, Sqoop 2 also has an submission and
execution engine interface. At the moment the only supported engine is MapReduce, but we may support additional
engines in the future such as Spark. Since many parallel execution engines are capable of reading/writing data, there
may be a question of whether adding support for a new data source should be done through the connector or the
execution engine API.

Our guideline are as follows: Connectors should manage all data extract(reading) from and/or load(writing) into
a data source. Submission and execution engine together manage the job submission and execution life cycle to
read/write data from/to data sources in the most optimal way possible. If you need to support a new data store and
details of linking to it and don’t care how the process of reading/writing from/to happens then you are looking to add a
connector and you should continue reading the below Connector API details to contribute new connectors to Sqoop 2.

3.3.2 Connector Implementation

The SqoopConnector class defines an API for the connectors that must be implemented by the connector develop-
ers. Each Connector must extend SqoopConnector and override the methods shown below.

public abstract String getVersion();
public abstract ResourceBundle getBundle(Locale locale);
public abstract Class getLinkConfigurationClass();
public abstract Class getJobConfigurationClass(Direction direction);
public abstract From getFrom();
public abstract To getTo();
public abstract ConnectorConfigurableUpgrader getConfigurableUpgrader(String oldConnectorVersion)

Connectors can optionally override the following methods:

public List<Direction> getSupportedDirections();
public Class<? extends IntermediateDataFormat<?>> getIntermediateDataFormat()

The getVersion method returns the current version of the connector It is important to provide a unique identifier
every time a connector jar is released externally. In case of the Sqoop built-in connectors, the version refers to the
Sqoop build/release version. External connectors can also use the same or similar mechanism to set this version. The
version number is critical for the connector upgrade logic used in Sqoop

@Override
public String getVersion() {
return VersionInfo.getBuildVersion();

}

46 Chapter 3. Developer Guide

Apache Sqoop, Release

The getFrom method returns From instance which is a Transferable entity that encapsulates the operations
needed to read from the data source that the connector represents.

The getTo method returns To instance which is a Transferable entity that encapsulates the operations needed to
write to the data source that the connector represents.

Methods such as getBundle , getLinkConfigurationClass , getJobConfigurationClass are re-
lated to Configurations

Since a connector represents a data source and it can support one of the two directions, either reading FROM its data
source or writing to its data souurce or both, the getSupportedDirections method returns a list of directions
that a connector will implement. This should be a subset of the values in the Direction enum we provide:

public List<Direction> getSupportedDirections() {
return Arrays.asList(new Direction[]{

Direction.FROM,
Direction.TO

});
}

From

The getFrom method returns From instance which is a Transferable entity that encapsulates the operations
needed to read from the data source the connector represents. The built-in GenericJdbcConnector defines
From like this.

private static final From FROM = new From(
GenericJdbcFromInitializer.class,
GenericJdbcPartitioner.class,
GenericJdbcExtractor.class,
GenericJdbcFromDestroyer.class);

...

@Override
public From getFrom() {

return FROM;
}

Initializer and Destroyer

Initializer is instantiated before the submission of sqoop job to the execution engine and doing preparations such as
connecting to the data source, creating temporary tables or adding dependent jar files. Initializers are executed as the
first step in the sqoop job lifecyle. All interactions within an initializer are assumed to occur within a single thread, so
state can be maintained between method calls (such as database connections). Here is the Initializer API.

public abstract void initialize(InitializerContext context, LinkConfiguration linkConfiguration,
JobConfiguration jobConfiguration);

public List<String> getJars(InitializerContext context, LinkConfiguration linkConfiguration,
JobConfiguration jobConfiguration){
return new LinkedList<String>();

}

public abstract Schema getSchema(InitializerContext context, LinkConfiguration linkConfiguration,
JobConfiguration jobConfiguration) {

return new NullSchema();
}

3.3. Sqoop 2 Connector Development 47

Apache Sqoop, Release

In addition to the initialize() method where the job execution preparation activities occur, the Initializer can also
implement the getSchema() method for the directions FROM and TO that it supports.

The getSchema() method is used by the sqoop system to match the data extracted/read by the From instance of
connector data source with the data loaded/written to the To instance of the connector data source. In case of a
relational database or columnar database, the returned Schema object will include collection of columns with their
data types. If the data source is schema-less, such as a file, a default NullSchema will be used (i.e a Schema object
without any columns).

NOTE: Sqoop 2 currently does not support extract and load between two connectors that represent schema-less data
sources. We expect that atleast the From instance of the connector or the To instance of the connector in the sqoop
job will have a schema. If both From and To have a associated non empty schema, Sqoop 2 will load data by column
name, i.e, data in column “A” in From instance of the connector for the job will be loaded to column “A” in the To
instance of the connector for that job.

Destroyer is instantiated after the execution engine finishes its processing. It is the last step in the sqoop job
lifecyle, so pending clean up tasks such as dropping temporary tables and closing connections. The term destroyer is
a little misleading. It represents the phase where the final output commits to the data source can also happen in case
of the TO instance of the connector code.

Partitioner

The Partitioner creates Partition instances ranging from 1..N. The N is driven by a configuration as well.
The default set of partitions created is set to 10 in the sqoop code. Here is the Partitioner API

Partitioner must implement the getPartitions method in the Partitioner API.

public abstract List<Partition> getPartitions(PartitionerContext context,
LinkConfiguration linkConfiguration, FromJobConfiguration jobConfiguration);

Partition instances are passed to Extractor as the argument of extract method. Extractor determines which
portion of the data to extract by a given partition.

There is no actual convention for Partition classes other than being actually Writable and toString() -able.
Here is the Partition API

public abstract class Partition {
public abstract void readFields(DataInput in) throws IOException;
public abstract void write(DataOutput out) throws IOException;
public abstract String toString();

}

Connectors can implement custom Partition classes. GenericJdbcPartitioner is one such example. It
returns the GenericJdbcPartition objects.

Extractor

Extractor (E for ETL) extracts data from a given data source Extractor must implement the extract method in
the Extractor API.

public abstract void extract(ExtractorContext context,
LinkConfiguration linkConfiguration,
JobConfiguration jobConfiguration,
SqoopPartition partition);

The extract method extracts data from the data source using the link and job configuration properties and
writes it to the SqoopMapDataWriter (provided in the extractor context given to the extract method). The

48 Chapter 3. Developer Guide

Apache Sqoop, Release

SqoopMapDataWriter has the SqoopWritable thats holds the data read from the data source in the Inter-
mediate Data Format representation

Extractors use Writer’s provided by the ExtractorContext to send a record through the sqoop system.

context.getDataWriter().writeArrayRecord(array);

The extractor must iterate through the given partition in the extract method.

while (resultSet.next()) {
...
context.getDataWriter().writeArrayRecord(array);
...

}

To

The getTo method returns TO instance which is a Transferable entity that encapsulates the operations needed to
wtite data to the data source the connector represents. The built-in GenericJdbcConnector defines To like this.

private static final To TO = new To(
GenericJdbcToInitializer.class,
GenericJdbcLoader.class,
GenericJdbcToDestroyer.class);

...

@Override
public To getTo() {

return TO;
}

Initializer and Destroyer

Initializer and Destroyer of a To instance are used in a similar way to those of a From instance. Refer to the previous
section for more details.

Loader

A loader (L for ETL) receives data from the From instance of the sqoop connector associated with the sqoop job and
then loads it to an TO instance of the connector associated with the same sqoop job

Loader must implement load method of the Loader API

public abstract void load(LoaderContext context,
ConnectionConfiguration connectionConfiguration,
JobConfiguration jobConfiguration) throws Exception;

The load method reads data from SqoopOutputFormatDataReader (provided in the loader context of the load
methods). It reads the data in the Intermediate Data Format representation and loads it to the data source.

Loader must iterate in the load method until the data from DataReader is exhausted.

while ((array = context.getDataReader().readArrayRecord()) != null) {
...

}

3.3. Sqoop 2 Connector Development 49

https://cwiki.apache.org/confluence/display/SQOOP/Sqoop2+Intermediate+representation
https://cwiki.apache.org/confluence/display/SQOOP/Sqoop2+Intermediate+representation
https://cwiki.apache.org/confluence/display/SQOOP/Sqoop2+Intermediate+representation

Apache Sqoop, Release

NOTE: we do not yet support a stage for connector developers to control how to balance the loading/writitng of data
across the mutiple loaders. In future we may be adding this to the connector API to have custom logic to balance the
loading across multiple reducers.

Sqoop Connector Identifier : sqoopconnector.properties

Every Sqoop 2 connector needs to have a sqoopconnector.properties in the packaged jar to be identified by Sqoop. A
typical sqoopconnector.properties for a sqoop2 connector looks like below

Sqoop Foo Connector Properties
org.apache.sqoop.connector.class = org.apache.sqoop.connector.foo.FooConnector
org.apache.sqoop.connector.name = sqoop-foo-connector

If the above file does not exist, then Sqoop will not load this jar and thus cannot be registered into Sqoop repository
for creating Sqoop jobs

Sqoop Connector Build-time Dependencies

Sqoop provides the connector-sdk module identified by the package:org.apache.sqoop.connector It provides
the public facing apis for the external connectors to extend from. It also provides common utilities that the connectors
can utilize for converting data to and from the sqoop intermediate data format

The common-test module identified by the package org.apache.sqoop.common.test provides utilities used
related to the built-in connectors such as the JDBC, HDFS, and Kafka connectors that can be used by the external
connectors for creating the end-end integration test for sqoop jobs

The test module identified by the package org.apache.sqoop.test provides various minicluster utilites the integration tests can extend from to run
a sqoop job with the given sqoop connector either using it as a FROM or TO data-source

Hence the pom.xml for the sqoop kite connector built using the kite-sdk might look something like below

<dependencies>
<!-- Sqoop modules -->
<dependency>
<groupId>org.apache.sqoop</groupId>
<artifactId>connector-sdk</artifactId>

</dependency>

<!-- Testing specified modules -->
<dependency>
<groupId>org.testng</groupId>
<artifactId>testng</artifactId>
<scope>test</scope>

</dependency>
<dependency>
<groupId>org.mockito</groupId>
<artifactId>mockito-all</artifactId>
<scope>test</scope>

</dependency>
<dependency>

<groupId>org.apache.sqoop</groupId>
<artifactId>sqoop-common-test</artifactId>

</dependency>

<dependency>
<groupId>org.apache.sqoop</groupId>
<artifactId>test</artifactId>

50 Chapter 3. Developer Guide

Apache Sqoop, Release

</dependency>
<!-- Connector required modules -->
<dependency>
<groupId>org.kitesdk</groupId>
<artifactId>kite-data-core</artifactId>

</dependency>
....

</dependencies>

Sqoop Connector Build

Sqoop 2 supports connectors to package their dependencies into the lib directory inside the connector jar to provide
classpath isolation between connectors. Add the following to the pom.xml for the connector:

<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<version>${maven-assembly-plugin.version}</version>
<dependencies>

<dependency>
<groupId>org.apache.sqoop</groupId>
<artifactId>sqoop-assemblies</artifactId>
<version>${sqoop.version}</version>

</dependency>
</dependencies>
<executions>

<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>

</goals>
<configuration>
<finalName>${project.artifactId}-${project.version}</finalName>
<appendAssemblyId>false</appendAssemblyId>
<descriptorRefs>

<descriptorRef>sqoop-connector</descriptorRef>
</descriptorRefs>

</configuration>
</execution>

</executions>
</plugin>

</plugins>

3.3.3 Configurables

Configurable registration

One of the currently supported configurable in Sqoop are the connectors. Sqoop 2 registers definitions of connectors
from the file named sqoopconnector.properties which each connector implementation should provide to
become available in Sqoop.

3.3. Sqoop 2 Connector Development 51

Apache Sqoop, Release

Generic JDBC Connector Properties
org.apache.sqoop.connector.class = org.apache.sqoop.connector.jdbc.GenericJdbcConnector
org.apache.sqoop.connector.name = generic-jdbc-connector

Configurations

Implementations of SqoopConnector overrides methods such as getLinkConfigurationClass and
getJobConfigurationClass returning configuration class.

@Override
public Class getLinkConfigurationClass() {

return LinkConfiguration.class;
}

@Override
public Class getJobConfigurationClass(Direction direction) {

switch (direction) {
case FROM:

return FromJobConfiguration.class;
case TO:

return ToJobConfiguration.class;
default:

return null;
}

}

Configurations are represented by annotations defined in org.apache.sqoop.model package. Annotations such
as ConfigurationClass , ConfigClass , Config and Input are provided for defining configuration objects
for each connector.

@ConfigurationClass is a marker annotation for ConfigurationClasses that hold a group or lis of
ConfigClasses annotated with the marker @ConfigClass

@ConfigurationClass
public class LinkConfiguration {

@Config public LinkConfig linkConfig;

public LinkConfiguration() {
linkConfig = new LinkConfig();

}
}

Each ConfigClass defines the different inputs it exposes for the link and job configs. These inputs are annotated
with @Input and the user will be asked to fill in when they create a sqoop job and choose to use this instance of the
connector for either the From or To part of the job.

@ConfigClass(validators = {@Validator(LinkConfig.ConfigValidator.class)})
public class LinkConfig {

@Input(size = 128, validators = {@Validator(NotEmpty.class), @Validator(ClassAvailable.class)})
@Input(size = 128) public String jdbcDriver;
@Input(size = 128) public String connectionString;
@Input(size = 40) public String username;
@Input(size = 40, sensitive = true) public String password;
@Input public Map<String, String> jdbcProperties;

}

52 Chapter 3. Developer Guide

Apache Sqoop, Release

Each ConfigClass and the inputs within the configs annotated with Input can specifiy validators via the
@Validator annotation described below.

Configs and Inputs

As discussed above, Input provides a way to express the type of config parameter exposed. In addition it allows
connector developer to add attributes that describe how the input will be used in the sqoop job. Here are the list of the
supported attributes

Inputs associated with the link configuration include:

At-
tribute

Type Description Example

size In-
te-
ger

Describes the maximum size of the attribute value . @Input(size = 128) public
String driver

sensi-
tive

BooleanDescribes if the input value should be hidden from display @Input(sensitive = true) public
String password

sensi-
tiveKey-
Pattern

StringIf the config paramteter is a map, this java regular expression
(http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html)
will be used to decide which keys are hidden from display.

@Input(sensitiveKeyPattern =
”.*sensitive”) public
Map<String, String>
sensitiveMap

ed-
itable

EnumDescribes the roles that can edit the value of this input @Input(editable = ANY)
public String value

over-
rides

StringDescribes a list of other inputs this input can override in this
config

@Input(overrides =”value”)
public String lvalue

Editable Attribute: Possible values for the Enum InputEditable are USER_ONLY, CONNECTOR_ONLY, ANY. If
an input says editable by USER_ONLY, then the connector code during the job run or upgrade cannot update the config
input value. Similarly for a CONNECTOR_ONLY, user cannot update its value via the rest api or shell command line.

Overrides Attribute: USER_ONLY input attribute values cannot be overriden by other inputs.

Empty Configuration

If a connector does not have any configuration inputs to specify for the ConfigType.LINK or ConfigType.JOB
it is recommended to return the EmptyConfiguration class in the getLinkConfigurationClass() or
getJobConfigurationClass(..) methods.

@ConfigurationClass
public class EmptyConfiguration { }

Configuration ResourceBundle

The config and its corresponding input names, the input field description are represented in the config resource bundle
defined per connector.

jdbc driver
connection.jdbcDriver.label = JDBC Driver Class
connection.jdbcDriver.help = Enter the fully qualified class name of the JDBC \

driver that will be used for establishing this connection.

connect string
connection.connectionString.label = JDBC Connection String

3.3. Sqoop 2 Connector Development 53

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

Apache Sqoop, Release

connection.connectionString.help = Enter the value of JDBC connection string to be \
used by this connector for creating connections.

...

Those resources are loaded by getBundle method of the SqoopConnector.

@Override
public ResourceBundle getBundle(Locale locale) {

return ResourceBundle.getBundle(
GenericJdbcConnectorConstants.RESOURCE_BUNDLE_NAME, locale);

}

Validations for Configs and Inputs

Validators validate the config objects and the inputs associated with the config objects. For config objects themselves
we encourage developers to write custom valdiators for both the link and job config types.

@Input(size = 128, validators = {@Validator(value = StartsWith.class, strArg = "jdbc:")})

@Input(size = 255, validators = { @Validator(NotEmpty.class) })

Sqoop 2 provides a list of standard input validators that can be used by different connectors for the link and job type
configuration inputs.

public class NotEmpty extends AbstractValidator<String> {
@Override
public void validate(String instance) {

if (instance == null || instance.isEmpty()) {
addMessage(Status.ERROR, "Can't be null nor empty");
}

}
}

The validation logic is executed when users creating the sqoop jobs input values for the link and job configs associated
with the From and To instances of the connectors associated with the job.

3.3.4 Loading External Connectors

Loading new connector say sqoop-foo-connector to the sqoop2, here are the steps to follow

1. Create a sqoop-foo-connector.jar. Make sure the jar contains the
sqoopconnector.properties for it to be picked up by Sqoop

2. Add this jar to the org.apache.sqoop.classpath.extra property in the sqoop.properties located un-
der the conf directory.

Sqoop application classpath
":" separated list of jars to be included in sqoop.
#
org.apache.sqoop.classpath.extra=/path/to/connector.jar

3. Start the Sqoop 2 server and while initializing the server this jar should be loaded into the Sqoop 2’s class path
and registered into the Sqoop 2 repository

54 Chapter 3. Developer Guide

Apache Sqoop, Release

3.3.5 Sqoop 2 MapReduce Job Execution Lifecycle with Connector API

Sqoop 2 provides MapReduce utilities such as SqoopMapper and SqoopReducer that aid sqoop job execution.

Note: Any class prefixed with Sqoop is a internal sqoop class provided for MapReduce and is not part of the conenector
API. These internal classes work with the custom implementations of Extractor, Partitioner in the From
instance and Loader in the To instance of the connector.

When reading from a data source, the Extractor provided by the From instance of the connector extracts data from
a corresponding data source it represents and the Loader, provided by the TO instance of the connector, loads data
into the data source it represents.

The diagram below describes the initialization phase of a job. SqoopInputFormat create splits using
Partitioner.

,----------------. ,-----------.
|SqoopInputFormat| |Partitioner|
`-------+--------' `-----+-----'

getSplits | |
----------->| |

| getPartitions |
|------------------------>|
| | ,---------.
| |-------> |Partition|
| | `----+----'
|<- - - - - - - - - - - - | |
| | | ,----------.
|-->|SqoopSplit|
| | | `----+-----'

The diagram below describes the map phase of a job. SqoopMapper invokes From connector’s extractor’s extract
method.

,-----------.
|SqoopMapper|
`-----+-----'

run |
--------->| ,------------------.

|---------------------------------->|SqoopMapDataWriter|
| `------+-----------'
| ,---------. |
|--------------> |Extractor| |
| `----+----' |
extract	
-------------------->	

read from Data Source | |
<-------------------------------| write* |

| |------------------->|
| | | ,-------------.
| | |---------->|SqoopWritable|
| | | `----+--------'
| | | |
| | | | context.write(writable, ..)
| | | |---------------------------->

The diagram below decribes the reduce phase of a job. OutputFormat invokes To connector’s loader’s load
method (via SqoopOutputFormatLoadExecutor).

3.3. Sqoop 2 Connector Development 55

Apache Sqoop, Release

,------------. ,---------------------.
|SqoopReducer| |SqoopNullOutputFormat|
`---+--------' `----------+----------'

| | ,-----------------------------.
	->	SqoopOutputFormatLoadExecutor
	`--------------+--------------'	
		,-----------------. ,-------------.
		->

getRecordWriter | | `--------+--------' `---+---------'
----------------------->| getRecordWriter | | |

| |----------------->| | | ,--------------.
| | |---------------------------------->|ConsumerThread|
| | | | | `------+-------'
| |<- - - - - - - - -| | | | ,------.

<- - - - - - - - - - - -| | | | |--->|Loader|
| | | | | | `--+---'
| | | | | | |
| | | | | | load |

run | | | | | |------>|
----->| | write | | | | |

-->	setContent		read*		
			--------------->	getContent	<------
				<-----------	
					- - ->

More details can be found in Sqoop MR Execution Engine

3.4 Sqoop 2 Development Environment Setup

This document describes you how to setup development environment for Sqoop 2.

3.4.1 System Requirement

Java

Sqoop has been developped and test only with JDK from Oracle and we require at least version 7 (we’re not supporting
JDK 1.6 and older releases).

Maven

Sqoop uses Maven 3 for building the project. Download Maven and its Installation instructions given in link.

3.4.2 Eclipse Setup

Steps for downloading source code are given in Building Sqoop2 from source code.

Sqoop 2 project has multiple modules where one module is depend on another module for e.g. sqoop 2 client module
has sqoop 2 common module dependency. Follow below step for creating eclipse’s project and classpath for each
module.

56 Chapter 3. Developer Guide

https://cwiki.apache.org/confluence/display/SQOOP/Sqoop+MR+Execution+Engine
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://maven.apache.org/download.cgi
http://maven.apache.org/download.cgi#Maven_Documentation

Apache Sqoop, Release

//Install all package into local maven repository
mvn clean install -DskipTests

//Adding M2_REPO variable to eclipse workspace
mvn eclipse:configure-workspace -Declipse.workspace=<path-to-eclipse-workspace-dir-for-sqoop-2>

//Eclipse project creation with optional parameters
mvn eclipse:eclipse -DdownloadSources=true -DdownloadJavadocs=true

Alternatively, for manually adding M2_REPO classpath variable as maven repository path in eclipse-> window-
> Java ->Classpath Variables ->Click “New” ->In new dialog box, input Name as M2_REPO and Path as
$HOME/.m2/repository ->click Ok.

On successful execution of above maven commands, Then import the sqoop project modules into eclipse-> File ->
Import ->General ->Existing Projects into Workspace-> Click Next-> Browse Sqoop 2 directory ($HOME/git/sqoop2)
->Click Ok ->Import dialog shows multiple projects (sqoop-client, sqoop-common, etc.) -> Select all modules -> click
Finish.

3.5 Sqoop REST API Guide

This document will explain how you can use Sqoop REST API to build applications interacting with Sqoop server. The
REST API covers all aspects of managing Sqoop jobs and allows you to build an app in any programming language
using HTTP over JSON.

3.5. Sqoop REST API Guide 57

Apache Sqoop, Release

Table of Contents

• Sqoop REST API Guide
– Initialization
– Understand Connector, Driver, Link and Job
– Objects

* Configs and Inputs
* Exception Response
* Config and Input Validation Status Response
* Job Submission Status Response

– Header Parameters
– REST APIs

* /version - [GET] - Get Sqoop Version
* /v1/connectors - [GET] Get all Connectors
* /v1/connector/[cname] - [GET] - Get Connector
* /v1/driver - [GET]- Get Sqoop Driver
* /v1/links/ - [GET] Get all links
* /v1/links?cname=[cname] - [GET] Get all links by Connector
* /v1/link/[lname] - [GET] - Get Link
* /v1/link - [POST] - Create Link
* /v1/link/[lname] - [PUT] - Update Link
* /v1/link/[lname] - [DELETE] - Delete Link
* /v1/link/[lname]/enable - [PUT] - Enable Link
* /v1/link/[lname]/disable - [PUT] - Disable Link
* /v1/jobs/ - [GET] Get all jobs
* /v1/jobs?cname=[cname] - [GET] Get all jobs by connector
* /v1/job/[jname] - [GET] - Get Job
* /v1/job - [POST] - Create Job
* /v1/job/[jname] - [PUT] - Update Job
* /v1/job/[jname] - [DELETE] - Delete Job
* /v1/job/[jname]/enable - [PUT] - Enable Job
* /v1/job/[jname]/disable - [PUT] - Disable Job
* /v1/job/[jname]/start - [PUT]- Start Job
* /v1/job/[jname]/stop - [PUT]- Stop Job
* /v1/job/[jname]/status - [GET]- Get Job Status
* /v1/submissions? - [GET] - Get all job Submissions
* /v1/submissions?jname=[jname] - [GET] - Get Submissions by Job
* /v1/authorization/roles/create - [POST] - Create Role
* /v1/authorization/role/[role-name] - [DELETE] - Delete Role
* /v1/authorization/roles?principal_type=[principal-type]&principal_name=[principal-name] -

[GET] Get all Roles by Principal
* /v1/authorization/principals?role_name=[rname] - [GET] Get all Principals by Role
* /v1/authorization/roles/grant - [PUT] - Grant a Role to a Principal
* /v1/authorization/roles/revoke - [PUT] - Revoke a Role from a Principal
* /v1/authorization/privileges/grant - [PUT] - Grant a Privilege to a Principal
* /v1/authorization/privileges/revoke - [PUT] - Revoke a Privilege to a Principal
* /v1/authorization/privilieges?principal_type=[principal-type]&principal_name=[principal-

name]&resource_type=[resource-type]&resource_name=[resource-name] - [GET] Get all
Roles by Principal (and Resource)

58 Chapter 3. Developer Guide

Apache Sqoop, Release

3.5.1 Initialization

Before continuing further, make sure that the Sqoop server is running.

The Sqoop 2 server exposes its REST API via Jetty. By default the server is accessible over HTTP but it can be
configured to use HTTPS, please see: API TLS/SSL for more information. The endpoints are registered under the
/sqoop path and the port is configurable (the default is 12000). For example, if the host running the Sqoop 2 server
is example.com and we are using the default port, we can reach the version endpoint by sending a GET request to:

http://example.com:12000/sqoop/v1/version

Certain requests might need to contain some additional query parameters and post data. These parameters could be
given via the HTTP headers, request body or both. All the content in the HTTP body is in JSON format.

3.5.2 Understand Connector, Driver, Link and Job

To create and run a Sqoop Job, we need to provide config values for connecting to a data source and then processing
the data in that data source. Processing might be either reading from or writing to the data source. Thus we have
configurable entities such as the From and To parts of the connectors, the driver that each expose configs and one or
more inputs within them.

For instance a connector that represents a relational data source such as MySQL will expose config classes for connect-
ing to the database. Some of the relevant inputs are the connection string, driver class, the username and the password
to connect to the database. These configs remain the same to read data from any of the tables within that database.
Hence they are grouped under LinkConfiguration.

Each connector can support Reading from a data source and/or writing/to a data source it represents. Reading from
and writing to a data source are represented by From and To respectively. Specific configurations are required to
peform the job of reading from or writing to the data source. These are grouped in the FromJobConfiguration
and ToJobConfiguration objects of the connector.

For instance, a connector that represents a relational data source such as MySQL will expose the table name to read
from or the SQL query to use while reading data as a FromJobConfiguration. Similarly a connector that represents a
data source such as HDFS, will expose the output directory to write to as a ToJobConfiguration.

3.5.3 Objects

This section covers all the objects that might exist in an API request and/or API response.

Configs and Inputs

Before creating any link for a connector or a job with associated From and To links, the first thing to do is getting
familiar with all the configurations that the connector exposes.

Each config consists of the following information

Field Description
id The id of this config
inputs A array of inputs of this config
name The unique name of this config per connector
type The type of this config (LINK/ JOB)

A typical config object is showing below:

3.5. Sqoop REST API Guide 59

Apache Sqoop, Release

{
id:7,
inputs:[
{

id: 25,
name: "throttlingConfig.numExtractors",
type: "INTEGER",
sensitive: false

},
{

id: 26,
name: "throttlingConfig.numLoaders",
type: "INTEGER",
sensitive: false

}
],
name: "throttlingConfig",
type: "JOB"

}

Each input object in a config is structured below:

Field Description
id The id of this input
name The unique name of this input per config
type The data type of this input field
size The length of this input field
sensitive Whether this input contain sensitive information

To send a filled config in the request, you should always use config id and input id to map the values to their corre-
spondig names. For example, the following request contains an input value com.mysql.jdbc.Driver with input
id 7 inside a config with id 4 that belongs to a link with name linkName

link: {
id : 3,
name: "linkName",
enabled: true,
link-config-values: [{

id: 4,
inputs: [{

id: 7,
name: "linkConfig.jdbcDriver",
value: "com.mysql.jdbc.Driver",
type: "STRING",
size: 128,
sensitive: false

}, {
id: 8,
name: "linkConfig.connectionString",
value: "jdbc%3Amysql%3A%2F%2Fmysql.ent.cloudera.com%2Fsqoop",
type: "STRING",
size: 128,
sensitive: false

},
...

}
}

60 Chapter 3. Developer Guide

Apache Sqoop, Release

Exception Response

Each operation on Sqoop server might return an exception in the Http response. Remember to take this into ac-
count.The exception code and message could be found in both the header and body of the response.

Please jump to “Header Parameters” section to find how to get exception information from header.

In the body, the exception is expressed in JSON format. An example of the exception is:

{
"message":"DERBYREPO_0030:Unable to load specific job metadata from repository - Couldn't find job with id 2",
"stack-trace":[
{

"file":"DerbyRepositoryHandler.java",
"line":1111,
"class":"org.apache.sqoop.repository.derby.DerbyRepositoryHandler",
"method":"findJob"

},
{

"file":"JdbcRepository.java",
"line":451,
"class":"org.apache.sqoop.repository.JdbcRepository$16",
"method":"doIt"

},
{

"file":"JdbcRepository.java",
"line":90,
"class":"org.apache.sqoop.repository.JdbcRepository",
"method":"doWithConnection"

},
{

"file":"JdbcRepository.java",
"line":61,
"class":"org.apache.sqoop.repository.JdbcRepository",
"method":"doWithConnection"

},
{

"file":"JdbcRepository.java",
"line":448,
"class":"org.apache.sqoop.repository.JdbcRepository",
"method":"findJob"

},
{

"file":"JobRequestHandler.java",
"line":238,
"class":"org.apache.sqoop.handler.JobRequestHandler",
"method":"getJobs"

}
],
"class":"org.apache.sqoop.common.SqoopException"

}

Config and Input Validation Status Response

The config and the inputs associated with the connectors also provide custom validation rules for the values given to
these input fields. Sqoop applies these custom validators and its corresponding valdation logic when config values for
the LINK and JOB are posted.

3.5. Sqoop REST API Guide 61

Apache Sqoop, Release

An example of a OK status with the persisted ID:

{
"id": 3,
"validation-result": [

{}
]

}

An example of ERROR status:

{
"validation-result": [
{
"linkConfig": [

{
"message": "Invalid URI. URI must either be null or a valid URI. Here are a few valid example URIs: hdfs://example.com:8020/, hdfs://example.com/, file:///, file:///tmp, file://localhost/tmp",
"status": "ERROR"

}
]

}
]

}

Job Submission Status Response

After starting a job, you could look up the running status of it. There could be 7 possible status:

Status Description
BOOTING In the middle of submitting the job
FAILURE_ON_SUBMIT Unable to submit this job to remote cluster
RUNNING The job is running now
SUCCEEDED Job finished successfully
FAILED Job failed
NEVER_EXECUTED The job has never been executed since created
UNKNOWN The status is unknown

3.5.4 Header Parameters

For all the responses, the following parameters in the HTTP message header are available:

Parameter Required Description
sqoop-error-code false The error code when some error happen in the server side for this

request
sqoop-error-message false The explanation for a error code

So far, there are only these 2 parameters in the header of response message. They only exist when something bad
happen in the server. And they always come along with an exception message in the response body.

3.5.5 REST APIs

The section elaborates all the rest apis that are supported by the Sqoop server.

For all Sqoop requests, the following request parameters will be added automatically. However, this user name is only
in simple mode. In Kerberos mode, this user name will be ignored by Sqoop server and user name in UGI which is
authenticated by Kerberos server will be used instead.

62 Chapter 3. Developer Guide

Apache Sqoop, Release

Parameter Description
user.name The name of the user who makes the requests

/version - [GET] - Get Sqoop Version

Get all the version metadata of Sqoop software in the server side.

• Method: GET

• Format: JSON

• Request Content: None

• Fields of Response:

Field Description
source-revision The revision number of Sqoop source code
api-versions The version of network protocol
build-date The Sqoop release date
user The user who made the release
source-url The url of the source code trunk
build-version The version of Sqoop in the server side

• Response Example:

{
source-url: "git://vbasavaraj.local/Users/vbasavaraj/Projects/SqoopRefactoring/sqoop2/common",
source-revision: "418c5f637c3f09b94ea7fc3b0a4610831373a25f",
build-version: "2.0.0-SNAPSHOT",
api-versions: [

"v1"
],

user: "vbasavaraj",
build-date: "Mon Nov 3 08:18:21 PST 2014"

}

/v1/connectors - [GET] Get all Connectors

Get all the connectors registered in Sqoop

• Method: GET

• Format: JSON

• Request Content: None

• Response Example

{
connectors: [{

id: 1,
link-config: [],
job-config: {},
name: "hdfs-connector",
class: "org.apache.sqoop.connector.hdfs.HdfsConnector",
all-config-resources: {},
version: "2.0.0-SNAPSHOT"

}, {
id: 2,

3.5. Sqoop REST API Guide 63

Apache Sqoop, Release

link-config: [],
job-config: {},
name: "generic-jdbc-connector",
class: "org.apache.sqoop.connector.jdbc.GenericJdbcConnector",
all-config - resources: {},
version: "2.0.0-SNAPSHOT"

}]
}

/v1/connector/[cname] - [GET] - Get Connector

Provide the unique name of the connector in the url [cname] part.

• Method: GET

• Format: JSON

• Request Content: None

• Fields of Response:

Field Description
name The name for the connector (registered as a configurable)
job-config Connector job config and inputs for both FROM and TO
link-config Connector link config and inputs
all-config-resources All config inputs labels and description for the given connector
version The build version required for config and input data upgrades

• Response Example:

{
connector: {

id: 1,
name: "connectorName",
job-config: {

TO: [{
id: 3,
inputs: [{

id: 3,
values: "TEXT_FILE,SEQUENCE_FILE",
name: "toJobConfig.outputFormat",
type: "ENUM",
sensitive: false

}, {
id: 4,
values: "NONE,DEFAULT,DEFLATE,GZIP,BZIP2,LZO,LZ4,SNAPPY,CUSTOM",
name: "toJobConfig.compression",
type: "ENUM",
sensitive: false

}, {
id: 5,
name: "toJobConfig.customCompression",
type: "STRING",
size: 255,
sensitive: false

}, {
id: 6,
name: "toJobConfig.outputDirectory",
type: "STRING",

64 Chapter 3. Developer Guide

Apache Sqoop, Release

size: 255,
sensitive: false

}],
name: "toJobConfig",
type: "JOB"

}],
FROM: [{

id: 2,
inputs: [{

id: 2,
name: "fromJobConfig.inputDirectory",
type: "STRING",
size: 255,
sensitive: false

}],
name: "fromJobConfig",
type: "JOB"

}]
},
link-config: [{

id: 1,
inputs: [{

id: 1,
name: "linkConfig.uri",
type: "STRING",
size: 255,
sensitive: false

}],
name: "linkConfig",
type: "LINK"

}],
name: "hdfs-connector",
class: "org.apache.sqoop.connector.hdfs.HdfsConnector",
all-config-resources: {

fromJobConfig.label: "From Job configuration",
toJobConfig.ignored.label: "Ignored",
fromJobConfig.help: "Specifies information required to get data from Hadoop ecosystem",
toJobConfig.ignored.help: "This value is ignored",
toJobConfig.label: "ToJob configuration",
toJobConfig.storageType.label: "Storage type",
fromJobConfig.inputDirectory.label: "Input directory",
toJobConfig.outputFormat.label: "Output format",
toJobConfig.outputDirectory.label: "Output directory",
toJobConfig.outputDirectory.help: "Output directory for final data",
toJobConfig.compression.help: "Compression that should be used for the data",
toJobConfig.outputFormat.help: "Format in which data should be serialized",
toJobConfig.customCompression.label: "Custom compression format",
toJobConfig.compression.label: "Compression format",
linkConfig.label: "Link configuration",
toJobConfig.customCompression.help: "Full class name of the custom compression",
toJobConfig.storageType.help: "Target on Hadoop ecosystem where to store data",
linkConfig.help: "Here you supply information necessary to connect to HDFS",
linkConfig.uri.help: "HDFS URI used to connect to HDFS",
linkConfig.uri.label: "HDFS URI",
fromJobConfig.inputDirectory.help: "Directory that should be exported",
toJobConfig.help: "You must supply the information requested in order to get information where you want to store your data."

},
version: "2.0.0-SNAPSHOT"

3.5. Sqoop REST API Guide 65

Apache Sqoop, Release

}
}

/v1/driver - [GET]- Get Sqoop Driver

Driver exposes configurations required for the job execution.

• Method: GET

• Format: JSON

• Request Content: None

• Fields of Response:

Field Description
id The id for the driver (registered as a configurable)
job-config Driver job config and inputs
version The build version of the driver
all-config-resources Driver exposed config and input labels and description

• Response Example:

{
id: 3,
job-config: [{

id: 7,
inputs: [{

id: 25,
name: "throttlingConfig.numExtractors",
type: "INTEGER",
sensitive: false

}, {
id: 26,
name: "throttlingConfig.numLoaders",
type: "INTEGER",
sensitive: false

}],
name: "throttlingConfig",
type: "JOB"

}],
all-config-resources: {

throttlingConfig.numExtractors.label: "Extractors",
throttlingConfig.numLoaders.help: "Number of loaders that Sqoop will use",
throttlingConfig.numLoaders.label: "Loaders",
throttlingConfig.label: "Throttling resources",
throttlingConfig.numExtractors.help: "Number of extractors that Sqoop will use",
throttlingConfig.help: "Set throttling boundaries to not overload your systems"

},
version: "1"

}

/v1/links/ - [GET] Get all links

Get all the links created in Sqoop

• Method: GET

66 Chapter 3. Developer Guide

Apache Sqoop, Release

• Format: JSON

• Request Content: None

• Response Example

{
links: [
{

id: 1,
enabled: true,
update-user: "root",
link-config-values: [],
name: "First Link",
creation-date: 1415309361756,
connector-name: "connectorName1",
update-date: 1415309361756,
creation-user: "root"

},
{

id: 2,
enabled: true,
update-user: "root",
link-config-values: [],
name: "Second Link",
creation-date: 1415309390807,
connector-name: "connectorName2",
update-date: 1415309390807,
creation-user: "root"

}
]

}

/v1/links?cname=[cname] - [GET] Get all links by Connector

Get all the links for a given connector identified by [cname] part.

/v1/link/[lname] - [GET] - Get Link

Provide the unique name of the link in the url [lname] part.

Get all the details of the link including the name, type and the corresponding config input values for the link

• Method: GET

• Format: JSON

• Request Content: None

• Response Example:

{
link: {

id: 1,
enabled: true,
link-config-values: [{

id: 1,
inputs: [{

id: 1,

3.5. Sqoop REST API Guide 67

Apache Sqoop, Release

name: "linkConfig.uri",
value: "hdfs%3A%2F%2Fnamenode%3A8090",
type: "STRING",
size: 255,
sensitive: false

}],
name: "linkConfig",
type: "LINK"

}],
update-user: "root",
name: "First Link",
creation-date: 1415287846371,
connector-name: "connectorName",
update-date: 1415287846371,
creation-user: "root"

}
}

/v1/link - [POST] - Create Link

Create a new link object. Provide values to the link config inputs for the ones that are required.

• Method: POST

• Format: JSON

• Fields of Request:

Field Description
link The root of the post data in JSON
id The id of the link can be left blank in the post data
enabled Whether to enable this link (true/false)
update-date The last updated time of this link
creation-date The creation time of this link
update-user The user who updated this link
creation-user The user who created this link
name The name of this link
link-config-values Config input values for link config for the corresponding connector
connector-id The id of the connector used for this link

• Request Example:

{
link: {

id: -1,
enabled: true,
link-config-values: [{

id: 1,
inputs: [{

id: 1,
name: "linkConfig.uri",
value: "hdfs%3A%2F%2Fvbsqoop-1.ent.cloudera.com%3A8020%2Fuser%2Froot%2Fjob1",
type: "STRING",
size: 255,
sensitive: false

}],
name: "testInput",
type: "LINK"

68 Chapter 3. Developer Guide

Apache Sqoop, Release

}],
update-user: "root",
name: "testLink",
creation-date: 1415202223048,
connector-name: "connectorName",
update-date: 1415202223048,
creation-user: "root"

}
}

• Fields of Response:

Field Description
name The name assigned for this new created link
validation-result The validation status for the link config inputs given in the post data

• ERROR Response Example:

{
"validation-result": [

{
"linkConfig": [

{
"message": "Invalid URI. URI must either be null or a valid URI. Here are a few valid example URIs: hdfs://example.com:8020/, hdfs://example.com/, file:///, file:///tmp, file://localhost/tmp",
"status": "ERROR"

}
]

}
]

}

/v1/link/[lname] - [PUT] - Update Link

Update an existing link object with name [lname]. To make the procedure of filling inputs easier, the general practice
is get the link first and then change some of the values for the inputs.

• Method: PUT

• Format: JSON

• OK Response Example:

{
"validation-result": [

{}
]

}

/v1/link/[lname] - [DELETE] - Delete Link

Delete a link with name [lname]

• Method: DELETE

• Format: JSON

• Request Content: None

• Response Content: None

3.5. Sqoop REST API Guide 69

Apache Sqoop, Release

/v1/link/[lname]/enable - [PUT] - Enable Link

Enable a link with name lname

• Method: PUT

• Format: JSON

• Request Content: None

• Response Content: None

/v1/link/[lname]/disable - [PUT] - Disable Link

Disable a link with name lname

• Method: PUT

• Format: JSON

• Request Content: None

• Response Content: None

/v1/jobs/ - [GET] Get all jobs

Get all the jobs created in Sqoop

• Method: GET

• Format: JSON

• Request Content: None

• Response Example:

{
jobs: [{

driver-config-values: [],
enabled: true,
from-connector-name: "fromConnectorName",
update-user: "root",
to-config-values: [],
to-connector-name: "toConnectorName",
creation-date: 1415310157618,
update-date: 1415310157618,
creation-user: "root",
id: 1,
to-link-name: "toLinkName",
from-config-values: [],
name: "First Job",
from-link-name: "fromLinkName"

},{
driver-config-values: [],

enabled: true,
from-connector-name: "fromConnectorName",
update-user: "root",
to-config-values: [],
to-connector-name: "toConnectorName",
creation-date: 1415310650600,
update-date: 1415310650600,

70 Chapter 3. Developer Guide

Apache Sqoop, Release

creation-user: "root",
id: 2,
to-link-name: "toLinkName",
from-config-values: [],
name: "Second Job",
from-link-name: "fromLinkName"

}]
}

/v1/jobs?cname=[cname] - [GET] Get all jobs by connector

Get all the jobs for a given connector identified by [cname] part.

/v1/job/[jname] - [GET] - Get Job

Provide the name of the job in the url [jname] part.

• Method: GET

• Format: JSON

• Request Content: None

• Response Example:

{
job: {

driver-config-values: [{
id: 7,
inputs: [{

id: 25,
name: "throttlingConfig.numExtractors",
value: "3",
type: "INTEGER",
sensitive: false

}, {
id: 26,
name: "throttlingConfig.numLoaders",
value: "3",
type: "INTEGER",
sensitive: false

}],
name: "throttlingConfig",
type: "JOB"

}],
enabled: true,
from-connector-name: "fromConnectorName",
update-user: "root",
to-config-values: [{

id: 6,
inputs: [{

id: 19,
name: "toJobConfig.schemaName",
type: "STRING",
size: 50,
sensitive: false

}, {

3.5. Sqoop REST API Guide 71

Apache Sqoop, Release

id: 20,
name: "toJobConfig.tableName",
value: "text",
type: "STRING",
size: 2000,
sensitive: false

}, {
id: 21,
name: "toJobConfig.sql",
type: "STRING",
size: 50,
sensitive: false

}, {
id: 22,
name: "toJobConfig.columns",
type: "STRING",
size: 50,
sensitive: false

}, {
id: 23,
name: "toJobConfig.stageTableName",
type: "STRING",
size: 2000,
sensitive: false

}, {
id: 24,
name: "toJobConfig.shouldClearStageTable",
type: "BOOLEAN",
sensitive: false

}],
name: "toJobConfig",
type: "JOB"

}],
to-connector-name: "toConnectorName",
creation-date: 1415310157618,
update-date: 1415310157618,
creation-user: "root",
id: 1,
to-link-name: "toLinkName",
from-config-values: [{

id: 2,
inputs: [{

id: 2,
name: "fromJobConfig.inputDirectory",
value: "hdfs%3A%2F%2Fvbsqoop-1.ent.cloudera.com%3A8020%2Fuser%2Froot%2Fjob1",
type: "STRING",
size: 255,
sensitive: false

}],
name: "fromJobConfig",
type: "JOB"

}],
name: "First Job",
from-link-name: "fromLinkName"

}
}

72 Chapter 3. Developer Guide

Apache Sqoop, Release

/v1/job - [POST] - Create Job

Create a new job object with the corresponding config values.

• Method: POST

• Format: JSON

• Fields of Request:

Field Description
job The root of the post data in JSON
from-link-name The name of the from link for the job
to-link-name The name of the to link for the job
id The id of the link can be left blank in the post data
enabled Whether to enable this job (true/false)
update-date The last updated time of this job
creation-date The creation time of this job
update-user The user who updated this job
creation-user The uset who creates this job
name The name of this job
from-config-values Config input values for FROM part of the job
to-config-values Config input values for TO part of the job
driver-config-values Config input values for driver
from-connector-name The name of the from connector for the job
to-connector-name The name of the to connector for the job

• Request Example:

{
job: {
driver-config-values: [

{
id: 7,
inputs: [
{

id: 25,
name: "throttlingConfig.numExtractors",
value: "3",
type: "INTEGER",
sensitive: false

},
{

id: 26,
name: "throttlingConfig.numLoaders",
value: "3",
type: "INTEGER",
sensitive: false

}
],
name: "throttlingConfig",
type: "JOB"

}
],
enabled: true,
from-connector-name: "fromConnectorName",
update-user: "root",
to-config-values: [

{

3.5. Sqoop REST API Guide 73

Apache Sqoop, Release

id: 6,
inputs: [
{
id: 19,
name: "toJobConfig.schemaName",
type: "STRING",
size: 50,
sensitive: false

},
{

id: 20,
name: "toJobConfig.tableName",
value: "text",
type: "STRING",
size: 2000,
sensitive: false

},
{

id: 21,
name: "toJobConfig.sql",
type: "STRING",
size: 50,
sensitive: false

},
{

id: 22,
name: "toJobConfig.columns",
type: "STRING",
size: 50,
sensitive: false

},
{

id: 23,
name: "toJobConfig.stageTableName",
type: "STRING",
size: 2000,
sensitive: false

},
{

id: 24,
name: "toJobConfig.shouldClearStageTable",
type: "BOOLEAN",
sensitive: false

}
],
name: "toJobConfig",
type: "JOB"

}
],
to-connector-name: "toConnectorName",
creation-date: 1415310157618,
update-date: 1415310157618,
creation-user: "root",
id: -1,
to-link-name: "toLinkName",
from-config-values: [

{
id: 2,

74 Chapter 3. Developer Guide

Apache Sqoop, Release

inputs: [
{
id: 2,
name: "fromJobConfig.inputDirectory",
value: "hdfs%3A%2F%2Fvbsqoop-1.ent.cloudera.com%3A8020%2Fuser%2Froot%2Fjob1",
type: "STRING",
size: 255,
sensitive: false

}
],
name: "fromJobConfig",
type: "JOB"

}
],
name: "Test Job",
from-link-name: "fromLinkName"

}
}

• Fields of Response:

Field Description
name | The name assigned for this new created job
validation-result | The validation status for the job config and driver config inputs in the post data

• ERROR Response Example:

{
"validation-result": [

{
"linkConfig": [

{
"message": "Invalid URI. URI must either be null or a valid URI. Here are a few valid example URIs: hdfs://example.com:8020/, hdfs://example.com/, file:///, file:///tmp, file://localhost/tmp",
"status": "ERROR"

}
]

}
]

}

/v1/job/[jname] - [PUT] - Update Job

Update an existing job object with name [jname]. To make the procedure of filling inputs easier, the general practice
is get the existing job object first and then change some of the inputs.

• Method: PUT

• Format: JSON

The same as Create Job.

• OK Response Example:

{
"validation-result": [

{}
]

}

3.5. Sqoop REST API Guide 75

Apache Sqoop, Release

/v1/job/[jname] - [DELETE] - Delete Job

Delete a job with name jname.

• Method: DELETE

• Format: JSON

• Request Content: None

• Response Content: None

/v1/job/[jname]/enable - [PUT] - Enable Job

Enable a job with name jname.

• Method: PUT

• Format: JSON

• Request Content: None

• Response Content: None

/v1/job/[jname]/disable - [PUT] - Disable Job

Disable a job with name jname.

• Method: PUT

• Format: JSON

• Request Content: None

• Response Content: None

/v1/job/[jname]/start - [PUT]- Start Job

Start a job with name [jname] to trigger the job execution

• Method: POST

• Format: JSON

• Request Content: None

• Response Content: Submission Record

• BOOTING Response Example

{
"submission": {
"progress": -1,
"last-update-date": 1415312531188,
"external-id": "job_1412137947693_0004",
"status": "BOOTING",
"job": 2,
"job-name": "jobName",
"creation-date": 1415312531188,
"to-schema": {

"created": 1415312531426,

76 Chapter 3. Developer Guide

Apache Sqoop, Release

"name": "HDFS file",
"columns": []

},
"external-link": "http://vbsqoop-1.ent.cloudera.com:8088/proxy/application_1412137947693_0004/",
"from-schema": {

"created": 1415312531342,
"name": "text",
"columns": [

{
"name": "id",
"nullable": true,
"unsigned": null,
"type": "FIXED_POINT",
"size": null

},
{
"name": "txt",
"nullable": true,
"type": "TEXT",
"size": null

}
]

}
}

}

• SUCCEEDED Response Example

{
submission: {
progress: -1,
last-update-date: 1415312809485,
external-id: "job_1412137947693_0004",
status: "SUCCEEDED",
job: 2,
job-name: "jobName",
creation-date: 1415312531188,
external-link: "http://vbsqoop-1.ent.cloudera.com:8088/proxy/application_1412137947693_0004/",
counters: {

org.apache.hadoop.mapreduce.JobCounter: {
SLOTS_MILLIS_MAPS: 373553,
MB_MILLIS_MAPS: 382518272,
TOTAL_LAUNCHED_MAPS: 10,
MILLIS_MAPS: 373553,
VCORES_MILLIS_MAPS: 373553,
OTHER_LOCAL_MAPS: 10

},
org.apache.hadoop.mapreduce.lib.output.FileOutputFormatCounter: {

BYTES_WRITTEN: 0
},
org.apache.hadoop.mapreduce.lib.input.FileInputFormatCounter: {

BYTES_READ: 0
},
org.apache.hadoop.mapreduce.TaskCounter: {

MAP_INPUT_RECORDS: 0,
MERGED_MAP_OUTPUTS: 0,
PHYSICAL_MEMORY_BYTES: 4065599488,
SPILLED_RECORDS: 0,
COMMITTED_HEAP_BYTES: 3439853568,

3.5. Sqoop REST API Guide 77

Apache Sqoop, Release

CPU_MILLISECONDS: 236900,
FAILED_SHUFFLE: 0,
VIRTUAL_MEMORY_BYTES: 15231422464,
SPLIT_RAW_BYTES: 1187,
MAP_OUTPUT_RECORDS: 1000000,
GC_TIME_MILLIS: 7282

},
org.apache.hadoop.mapreduce.FileSystemCounter: {

FILE_WRITE_OPS: 0,
FILE_READ_OPS: 0,
FILE_LARGE_READ_OPS: 0,
FILE_BYTES_READ: 0,
HDFS_BYTES_READ: 1187,
FILE_BYTES_WRITTEN: 1191230,
HDFS_LARGE_READ_OPS: 0,
HDFS_WRITE_OPS: 10,
HDFS_READ_OPS: 10,
HDFS_BYTES_WRITTEN: 276389736

},
org.apache.sqoop.submission.counter.SqoopCounters: {

ROWS_READ: 1000000
}

}
}

}

• ERROR Response Example

{
"submission": {
"progress": -1,
"last-update-date": 1415312390570,
"status": "FAILURE_ON_SUBMIT",
"error-summary": "org.apache.sqoop.common.SqoopException: GENERIC_HDFS_CONNECTOR_0000:Error occurs during partitioner run",
"job": 1,
"job-name": "jobName",
"creation-date": 1415312390570,
"to-schema": {

"created": 1415312390797,
"name": "text",
"columns": [

{
"name": "id",
"nullable": true,
"unsigned": null,
"type": "FIXED_POINT",
"size": null

},
{
"name": "txt",
"nullable": true,
"type": "TEXT",
"size": null

}
]

},
"from-schema": {

"created": 1415312390778,
"name": "HDFS file",

78 Chapter 3. Developer Guide

Apache Sqoop, Release

"columns": [
]

},
"error-details": "org.apache.sqoop.common.SqoopException: GENERIC_HDFS_CONNECTOR_00"

}
}

/v1/job/[jname]/stop - [PUT]- Stop Job

Stop a job with name [jname] to abort the running job.

• Method: PUT

• Format: JSON

• Request Content: None

• Response Content: Submission Record

/v1/job/[jname]/status - [GET]- Get Job Status

Get status of the running job with name [jname]

• Method: GET

• Format: JSON

• Request Content: None

• Response Content: Submission Record

{
"submission": {

"progress": 0.25,
"last-update-date": 1415312603838,
"external-id": "job_1412137947693_0004",
"status": "RUNNING",
"job": 2,
"job-name": "jobName",
"creation-date": 1415312531188,
"external-link": "http://vbsqoop-1.ent.cloudera.com:8088/proxy/application_1412137947693_0004/"

}
}

/v1/submissions? - [GET] - Get all job Submissions

Get all the submissions for every job started in SQoop

/v1/submissions?jname=[jname] - [GET] - Get Submissions by Job

Retrieve all job submissions in the past for the given job. Each submission record will have details such as the status,
counters and urls for those submissions.

Provide the name of the job in the url [jname] part.

• Method: GET

3.5. Sqoop REST API Guide 79

Apache Sqoop, Release

• Format: JSON

• Request Content: None

• Fields of Response:

Field Description
progress The progress of the running Sqoop job
job The id of the Sqoop job
job-name The name of the Sqoop job
creation-date The submission timestamp
last-update-date The timestamp of the last status update
status The status of this job submission
external-id The job id of Sqoop job running on Hadoop
external-link The link to track the job status on Hadoop

• Response Example:

{
submissions: [
{

progress: -1,
last-update-date: 1415312809485,
external-id: "job_1412137947693_0004",
status: "SUCCEEDED",
job: 2,
job-name: "jobName",
creation-date: 1415312531188,
external-link: "http://vbsqoop-1.ent.cloudera.com:8088/proxy/application_1412137947693_0004/",
counters: {

org.apache.hadoop.mapreduce.JobCounter: {
SLOTS_MILLIS_MAPS: 373553,
MB_MILLIS_MAPS: 382518272,
TOTAL_LAUNCHED_MAPS: 10,
MILLIS_MAPS: 373553,
VCORES_MILLIS_MAPS: 373553,
OTHER_LOCAL_MAPS: 10

},
org.apache.hadoop.mapreduce.lib.output.FileOutputFormatCounter: {
BYTES_WRITTEN: 0

},
org.apache.hadoop.mapreduce.lib.input.FileInputFormatCounter: {
BYTES_READ: 0

},
org.apache.hadoop.mapreduce.TaskCounter: {
MAP_INPUT_RECORDS: 0,
MERGED_MAP_OUTPUTS: 0,
PHYSICAL_MEMORY_BYTES: 4065599488,
SPILLED_RECORDS: 0,
COMMITTED_HEAP_BYTES: 3439853568,
CPU_MILLISECONDS: 236900,
FAILED_SHUFFLE: 0,
VIRTUAL_MEMORY_BYTES: 15231422464,
SPLIT_RAW_BYTES: 1187,
MAP_OUTPUT_RECORDS: 1000000,
GC_TIME_MILLIS: 7282

},
org.apache.hadoop.mapreduce.FileSystemCounter: {
FILE_WRITE_OPS: 0,

80 Chapter 3. Developer Guide

Apache Sqoop, Release

FILE_READ_OPS: 0,
FILE_LARGE_READ_OPS: 0,
FILE_BYTES_READ: 0,
HDFS_BYTES_READ: 1187,
FILE_BYTES_WRITTEN: 1191230,
HDFS_LARGE_READ_OPS: 0,
HDFS_WRITE_OPS: 10,
HDFS_READ_OPS: 10,
HDFS_BYTES_WRITTEN: 276389736

},
org.apache.sqoop.submission.counter.SqoopCounters: {
ROWS_READ: 1000000

}
}

},
{

progress: -1,
last-update-date: 1415312390570,
status: "FAILURE_ON_SUBMIT",
error-summary: "org.apache.sqoop.common.SqoopException: GENERIC_HDFS_CONNECTOR_0000:Error occurs during partitioner run",
job: 1,
job-name: "jobName",
creation-date: 1415312390570,
error-details: "org.apache.sqoop.common.SqoopException: GENERIC_HDFS_CONNECTOR_0000:Error occurs during partitioner...."

}
]

}

/v1/authorization/roles/create - [POST] - Create Role

Create a new role object. Provide values to the link config inputs for the ones that are required.

• Method: POST

• Format: JSON

• Fields of Request:

Field Description
role The root of the post data in JSON
name The name of this role

• Request Example:

{
role: {

name: "testRole",
}

}

/v1/authorization/role/[role-name] - [DELETE] - Delete Role

Delete a role with name [role-name]

• Method: DELETE

• Format: JSON

• Request Content: None

3.5. Sqoop REST API Guide 81

Apache Sqoop, Release

• Response Content: None

/v1/authorization/roles?principal_type=[principal-type]&principal_name=[principal-name] - [GET]
Get all Roles by Principal

Get all the roles or for a given principal identified by [principal-type] and [principal-name] part.

/v1/authorization/principals?role_name=[rname] - [GET] Get all Principals by Role

Get all the principals for a given role identified by [rname] part.

/v1/authorization/roles/grant - [PUT] - Grant a Role to a Principal

Grant a role with [role-name] to a principal with [principal-type] and [principal-name].

• Method: PUT

• Format: JSON

• Fields of Request:

The same as Create Role and

Field Description
principals The root of the post data in JSON
name The name of this principal
type The type of this principal, (“USER”, “GROUP”, “ROLE”)

• Request Example:

{
roles: [{

name: "testRole",
}],
principals: [{

name: "testPrincipalName",
type: "USER",

}]
}

• Response Content: None

/v1/authorization/roles/revoke - [PUT] - Revoke a Role from a Principal

Revoke a role with [role-name] to a principal with [principal-type] and [principal-name].

• Method: PUT

• Format: JSON

• Fields of Request:

The same as Grant Role

• Response Content: None

82 Chapter 3. Developer Guide

Apache Sqoop, Release

/v1/authorization/privileges/grant - [PUT] - Grant a Privilege to a Principal

Grant a privilege with [resource-name], [resource-type], [action] and [with-grant-option] to
a principal with‘‘[principal-type]‘‘ and [principal-name].

• Method: PUT

• Format: JSON

• Fields of Request:

The same as Principal and

Field Description
privileges The root of the post data in JSON
resource-name The resource name of this privilege
resource-type The resource type of this privilege, (“CONNECTOR”, “LINK”, “JOB”)
action The action type of this privilege, (“READ”, “WRITE”, “ALL”)
with-grant-option The resource type of this privilege

• Request Example:

{
privileges: [{

resource-name: "testResourceName",
resource-type: "LINK",
action: "READ",
with-grant-option: false,

}]
principals: [{

name: "testPrincipalName",
type: "USER",

}]
}

• Response Content: None

/v1/authorization/privileges/revoke - [PUT] - Revoke a Privilege to a Principal

Revoke a privilege with [resource-name], [resource-type], [action] and [with-grant-option]
to a principal with‘‘[principal-type]‘‘ and [principal-name].

• Method: PUT

• Format: JSON

• Fields of Request:

The same as Grant Privilege

• Response Content: None

/v1/authorization/privilieges?principal_type=[principal-type]&principal_name=[principal-
name]&resource_type=[resource-type]&resource_name=[resource-name] - [GET] Get all Roles
by Principal (and Resource)

Get all the privileges or for a given principal identified by [principal-type] and [principal-name] (and a
given resource identified by [resource-type] and [resource-name]).

3.5. Sqoop REST API Guide 83

Apache Sqoop, Release

3.6 Repository

This repository contains additional information regarding Sqoop.

3.6.1 Sqoop Schema

The DDL queries that create the Sqoop repository schema in Derby database create the following tables:

SQ_SYSTEM

Store for various state information

SQ_SYSTEM
SQM_ID: BIGINT PK
SQM_KEY: VARCHAR(64)
SQM_VALUE: VARCHAR(64)

SQ_DIRECTION

Directions

SQ_DIRECTION
SQD_ID: BIGINT PK AUTO-GEN
SQD_NAME: VARCHAR(64) “FROM”|”TO”

SQ_CONFIGURABLE

Configurable registration

SQ_CONFIGURABLE
SQC_ID: BIGINT PK AUTO-GEN
SQC_NAME: VARCHAR(64)
SQC_CLASS: VARCHAR(255)
SQC_TYPE: VARCHAR(32) “CONNECTOR”|”DRIVER”
SQC_VERSION: VARCHAR(64)

SQ_CONNECTOR_DIRECTIONS

Connector directions

SQ_CONNECTOR_DIRECTIONS
SQCD_ID: BIGINT PK AUTO-GEN
SQCD_CONNECTOR: BIGINT FK SQCD_CONNECTOR(SQC_ID)
SQCD_DIRECTION: BIGINT FK SQCD_DIRECTION(SQD_ID)

SQ_CONFIG

Config details

84 Chapter 3. Developer Guide

Apache Sqoop, Release

SQ_CONFIG
SQ_CFG_ID: BIGINT PK AUTO-GEN
SQ_CFG_CONNECTOR: BIGINT FK SQ_CFG_CONNECTOR(SQC_ID), NULL for driver
SQ_CFG_NAME: VARCHAR(64)
SQ_CFG_TYPE: VARCHAR(32) “LINK”|”JOB”
SQ_CFG_INDEX: SMALLINT

SQ_CONFIG_DIRECTIONS

Connector directions

SQ_CONNECTOR_DIRECTIONS
SQCD_ID: BIGINT PK AUTO-GEN
SQCD_CONFIG: BIGINT FK SQCD_CONFIG(SQ_CFG_ID)
SQCD_DIRECTION: BIGINT FK SQCD_DIRECTION(SQD_ID)

SQ_INPUT

Input details

SQ_INPUT
SQI_ID: BIGINT PK AUTO-GEN
SQI_NAME: VARCHAR(64)
SQI_CONFIG: BIGINT FK SQ_CONFIG(SQ_CFG_ID)
SQI_INDEX: SMALLINT
SQI_TYPE: VARCHAR(32) “STRING”|”MAP”
SQI_STRMASK: BOOLEAN
SQI_STRLENGTH: SMALLINT
SQI_ENUMVALS: VARCHAR(100)

SQ_LINK

Stored links

SQ_LINK
SQ_LNK_ID: BIGINT PK AUTO-GEN
SQ_LNK_NAME: VARCHAR(64)
SQ_LNK_CONNECTOR: BIGINT FK SQ_CONNECTOR(SQC_ID)
SQ_LNK_CREATION_USER: VARCHAR(32)
SQ_LNK_CREATION_DATE: TIMESTAMP
SQ_LNK_UPDATE_USER: VARCHAR(32)
SQ_LNK_UPDATE_DATE: TIMESTAMP
SQ_LNK_ENABLED: BOOLEAN

SQ_JOB

Stored jobs

3.6. Repository 85

Apache Sqoop, Release

SQ_JOB
SQB_ID: BIGINT PK AUTO-GEN
SQB_NAME: VARCHAR(64)
SQB_FROM_LINK: BIGINT FK SQ_LINK(SQ_LNK_ID)
SQB_TO_LINK: BIGINT FK SQ_LINK(SQ_LNK_ID)
SQB_CREATION_USER: VARCHAR(32)
SQB_CREATION_DATE: TIMESTAMP
SQB_UPDATE_USER: VARCHAR(32)
SQB_UPDATE_DATE: TIMESTAMP
SQB_ENABLED: BOOLEAN

SQ_LINK_INPUT

N:M relationship link and input

SQ_LINK_INPUT
SQ_LNKI_LINK: BIGINT PK FK SQ_LINK(SQ_LNK_ID)
SQ_LNKI_INPUT: BIGINT PK FK SQ_INPUT(SQI_ID)
SQ_LNKI_VALUE: LONG VARCHAR

SQ_JOB_INPUT

N:M relationship job and input

SQ_JOB_INPUT
SQBI_JOB: BIGINT PK FK SQ_JOB(SQB_ID)
SQBI_INPUT: BIGINT PK FK SQ_INPUT(SQI_ID)
SQBI_VALUE: LONG VARCHAR

SQ_SUBMISSION

List of submissions

SQ_JOB_SUBMISSION
SQS_ID: BIGINT PK
SQS_JOB: BIGINT FK SQ_JOB(SQB_ID)
SQS_STATUS: VARCHAR(20)
SQS_CREATION_USER: VARCHAR(32)
SQS_CREATION_DATE: TIMESTAMP
SQS_UPDATE_USER: VARCHAR(32)
SQS_UPDATE_DATE: TIMESTAMP
SQS_EXTERNAL_ID: VARCHAR(50)
SQS_EXTERNAL_LINK: VARCHAR(150)
SQS_EXCEPTION: VARCHAR(150)
SQS_EXCEPTION_TRACE: VARCHAR(750)

SQ_COUNTER_GROUP

List of counter groups

86 Chapter 3. Developer Guide

Apache Sqoop, Release

SQ_COUNTER_GROUP
SQG_ID: BIGINT PK
SQG_NAME: VARCHAR(75)

SQ_COUNTER

List of counters

SQ_COUNTER
SQR_ID: BIGINT PK
SQR_NAME: VARCHAR(75)

SQ_COUNTER_SUBMISSION

N:M Relationship

SQ_COUNTER_SUBMISSION
SQRS_GROUP: BIGINT PK FK SQ_COUNTER_GROUP(SQR_ID)
SQRS_COUNTER: BIGINT PK FK SQ_COUNTER(SQR_ID)
SQRS_SUBMISSION: BIGINT PK FK SQ_SUBMISSION(SQS_ID)
SQRS_VALUE: BIGINT

3.6. Repository 87

Apache Sqoop, Release

88 Chapter 3. Developer Guide

CHAPTER 4

Security Guide

4.1 API TLS/SSL

Sqoop 2 offers an HTTP REST-like API as the mechanism by which clients can communicate with the Sqoop 2 server.
The Sqoop 2 server and the Sqoop 2 shell have support for TLS/SSL.

4.1.1 Keystore Generation

Sqoop 2 uses the JKS format. Details on how to create JKS files can be found here: Generating a KeyStore and
TrustStore

4.1.2 Server Configuration

All Sqoop 2 server TLS/SSL configuration occurs in the Sqoop configuration file, normally in <Sqoop
Folder>/conf/sqoop.properties.

First, TLS must be enabled:

org.apache.sqoop.security.tls.enabled=true

A protocol should be specified. Please find a list of options here: Standard Algorithm Name Documentation

org.apache.sqoop.security.tls.protocol="TLSv1.2"

Configure the path to the JKS keystore:

org.apache.sqoop.security.tls.keystore=/Users/abe/mykeystore.jks

Configure the keystore password and the key manager password:

org.apache.sqoop.security.tls.keystore_password=keystorepassword
org.apache.sqoop.security.tls.keymanager_password=keymanagerpassword

Alternatively, the password can be specified using generators.

Generators are commands that the Sqoop propess will execute, and then retrieve the password from standard out. The
generator will only be run if no standard password is configured.

org.apache.sqoop.security.tls.keystore_password_generator=echo keystorepassword
org.apache.sqoop.security.tls.keymanager_password=echo keymanagerpassword

89

https://docs.oracle.com/cd/E19509-01/820-3503/6nf1il6er/index.html
https://docs.oracle.com/cd/E19509-01/820-3503/6nf1il6er/index.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/StandardNames.html#SSLContext

Apache Sqoop, Release

4.1.3 Client/Shell Configuration

When using TLS on the Sqoop 2 server, especially with a self-signed certificate, it may be useful to specify a truststore
for the client/shell to use.

The truststore for the shell is configured via a command. In practice, it may be useful to put this command inside the
system sqoop rc file (/etc/sqoop2/conf/sqoop2rc) or the user’s rc file (~/.sqoop2rc).

sqoop:000> set truststore --truststore /Users/abefine/keystore/node2.truststore
Truststore set successfully

You may also include a password. Passwords are not required for truststores.

sqoop:000> set truststore --truststore /Users/abefine/keystore/node2.truststore --truststore-password changeme
Truststore set successfully

You may also use a password generator.

sqoop:000> set truststore --truststore /Users/abefine/keystore/node2.truststore --truststore-password-generator "echo changeme"
Truststore set successfully

4.2 Authentication and Authorization

Most Hadoop components, such as HDFS, Yarn, Hive, etc., have security frameworks, which support Simple, Ker-
beros and LDAP authentication. currently Sqoop 2 provides 2 types of authentication: simple and kerberos. The
authentication module is pluggable, so more authentication types can be added. Additionally, a new role based access
control is introduced in Sqoop 1.99.6. We recommend to use this capability in multi tenant environments, so that
malicious users can’t easily abuse your created link and job objects.

4.2.1 Simple Authentication

Configuration

Modify Sqoop configuration file, normally in <Sqoop Folder>/conf/sqoop.properties.

org.apache.sqoop.authentication.type=SIMPLE
org.apache.sqoop.authentication.handler=org.apache.sqoop.security.authentication.SimpleAuthenticationHandler
org.apache.sqoop.anonymous=true

• Simple authentication is used by default. Commenting out authentication configuration will yield the use of
simple authentication.

Run command

Start Sqoop server as usual.

<Sqoop Folder>/bin/sqoop.sh server start

Start Sqoop client as usual.

<Sqoop Folder>/bin/sqoop.sh client

90 Chapter 4. Security Guide

Apache Sqoop, Release

4.2.2 Kerberos Authentication

Kerberos is a computer network authentication protocol which works on the basis of ‘tickets’ to allow nodes com-
municating over a non-secure network to prove their identity to one another in a secure manner. Its designers aimed
it primarily at a client–server model and it provides mutual authentication—both the user and the server verify each
other’s identity. Kerberos protocol messages are protected against eavesdropping and replay attacks.

Dependency

Set up a KDC server. Skip this step if KDC server exists. It’s difficult to cover every way Kerberos can be setup (ie:
there are cross realm setups and multi-trust environments). This section will describe how to setup the sqoop principals
with a local deployment of MIT kerberos.

• All components which are Kerberos authenticated need one KDC server. If current Hadoop cluster uses Kerberos
authentication, there should be a KDC server.

• If there is no KDC server, follow http://web.mit.edu/kerberos/krb5-devel/doc/admin/install_kdc.html to set up
one.

Configure Hadoop cluster to use Kerberos authentication.

• Authentication type should be cluster level. All components must have the same authentication type: use Ker-
beros or not. In other words, Sqoop with Kerberos authentication could not communicate with other Hadoop
components, such as HDFS, Yarn, Hive, etc., without Kerberos authentication, and vice versa.

• How to set up a Hadoop cluster with Kerberos authentication is out of the scope of this document. Follow the
related links like https://hadoop.apache.org/docs/r2.5.0/hadoop-project-dist/hadoop-common/SecureMode.html

Create keytab and principal for Sqoop 2 via kadmin in command line.

addprinc -randkey HTTP/<FQDN>@<REALM>
addprinc -randkey sqoop/<FQDN>@<REALM>
xst -k /home/kerberos/sqoop.keytab HTTP/<FQDN>@<REALM>
xst -k /home/kerberos/sqoop.keytab sqoop/<FQDN>@<REALM>

• The <FQDN> should be replaced by the FQDN of the server, which could be found via “hostname -f” in
command line.

• The <REALM> should be replaced by the realm name in krb5.conf file generated when installing the KDC
server in the former step.

• The principal HTTP/<FQDN>@<REALM> is used in communication between Sqoop client and Sqoop server.
Since Sqoop server is an http server, so the HTTP principal is a must during SPNEGO process, and it is case
sensitive.

• Http request could be sent from other client like browser, wget or curl with SPNEGO support.

• The principal sqoop/<FQDN>@<REALM> is used in communication between Sqoop server and Hdfs/Yarn as
the credential of Sqoop server.

Configuration

Modify Sqoop configuration file, normally in <Sqoop Folder>/conf/sqoop.properties.

org.apache.sqoop.authentication.type=KERBEROS
org.apache.sqoop.authentication.handler=org.apache.sqoop.security.authentication.KerberosAuthenticationHandler
org.apache.sqoop.authentication.kerberos.principal=sqoop/_HOST@<REALM>
org.apache.sqoop.authentication.kerberos.keytab=/home/kerberos/sqoop.keytab
org.apache.sqoop.authentication.kerberos.http.principal=HTTP/_HOST@<REALM>

4.2. Authentication and Authorization 91

http://web.mit.edu/kerberos/krb5-devel/doc/admin/install_kdc.html
https://hadoop.apache.org/docs/r2.5.0/hadoop-project-dist/hadoop-common/SecureMode.html

Apache Sqoop, Release

org.apache.sqoop.authentication.kerberos.http.keytab=/home/kerberos/sqoop.keytab
org.apache.sqoop.authentication.kerberos.proxyuser=true

• When _HOST is used as FQDN in principal, it will be replaced by the real FQDN.
https://issues.apache.org/jira/browse/HADOOP-6632

• If parameter proxyuser is set true, Sqoop server will use proxy user mode (sqoop delegate real client user) to
run Yarn job. If false, Sqoop server will use sqoop user to run Yarn job.

Run command

Set SQOOP2_HOST to FQDN.

export SQOOP2_HOST=$(hostname -f).

• The <FQDN> should be replaced by the FQDN of the server, which could be found via “hostname -f” in
command line.

Start Sqoop server using sqoop user.

sudo -u sqoop <Sqoop Folder>/bin/sqoop.sh server start

Run kinit to generate ticket cache.

kinit HTTP/<FQDN>@<REALM> -kt /home/kerberos/sqoop.keytab

Start Sqoop client.

<Sqoop Folder>/bin/sqoop.sh client

Verify

If the Sqoop server has started successfully with Kerberos authentication, the following line will be in
<@LOGDIR>/sqoop.log:

2014-12-04 15:02:58,038 INFO security.KerberosAuthenticationHandler [org.apache.sqoop.security.authentication.KerberosAuthenticationHandler.secureLogin(KerberosAuthenticationHandler.java:84)] Using Kerberos authentication, principal [sqoop/_HOST@HADOOP.COM] keytab [/home/kerberos/sqoop.keytab]

If the Sqoop client was able to communicate with the Sqoop server, the following will be in <@LOGDIR>/sqoop.log
:

Refreshing Kerberos configuration
Acquire TGT from Cache
Principal is HTTP/<FQDN>@HADOOP.COM
null credentials from Ticket Cache
principal is HTTP/<FQDN>@HADOOP.COM
Will use keytab
Commit Succeeded

4.2.3 Customized Authentication

Users can create their own authentication modules. By performing the following steps:

• Create customized authentication handler extends abstract class AuthenticationHandler.

• Implement abstract function doInitialize and secureLogin in AuthenticationHandler.

92 Chapter 4. Security Guide

https://issues.apache.org/jira/browse/HADOOP-6632

Apache Sqoop, Release

public class MyAuthenticationHandler extends AuthenticationHandler {

private static final Logger LOG = Logger.getLogger(MyAuthenticationHandler.class);

public void doInitialize() {
securityEnabled = true;

}

public void secureLogin() {
LOG.info("Using customized authentication.");

}
}

• Modify configuration org.apache.sqoop.authentication.handler in <Sqoop Folder>/conf/sqoop.properties and set
it to the customized authentication handler class name.

• Restart the Sqoop server.

4.2.4 Authorization

Users, Groups, and Roles

At the core of Sqoop’s authorization system are users, groups, and roles. Roles allow administrators to give a name
to a set of grants which can be easily reused. A role may be assigned to users, groups, and other roles. For example,
consider a system with the following users and groups.

<User>: <Groups>
user_all: group1, group2
user1: group1
user2: group2

Sqoop roles must be created manually before being used, unlike users and groups. Users and groups are managed by
the login system (Linux, LDAP or Kerberos). When a user wants to access one resource (connector, link, connector),
the Sqoop2 server will determine the username of this user and the groups associated. That information is then used
to determine if the user should have access to this resource being requested, by comparing the required privileges of
the Sqoop operation to the user privileges using the following rules.

• User privileges (Has the privilege been granted to the user?)

• Group privileges (Does the user belong to any groups that the privilege has been granted to?)

• Role privileges (Does the user or any of the groups that the user belongs to have a role that grants the privilege?)

Administrator

There is a special user: administrator, which can’t be created, deleted by command. The only way to set administrator
is to modify the configuration file. Administrator could run management commands to create/delete roles. However,
administrator does not implicitly have all privileges. Administrator has to grant privilege to him/her if he/she needs to
request the resource.

Role management commands

CREATE ROLE -role role_name
DROP ROLE -role role_name
SHOW ROLE

4.2. Authentication and Authorization 93

Apache Sqoop, Release

• Only the administrator has privilege for this.

Principal management commands

GRANT ROLE --principal-type principal_type --principal principal_name --role role_name
REVOKE ROLE --principal-type principal_type --principal principal_name --role role_name
SHOW ROLE --principal-type principal_type --principal principal_name
SHOW PRINCIPAL --role role_name

• principal_type: USER | GROUP | ROLE

Privilege management commands

GRANT PRIVILEGE --principal-type principal_type --principal principal_name --resource-type resource_type --resource resource_name --action action_name [--with-grant]
REVOKE PRIVILEGE --principal-type principal_type --principal principal_name [--resource-type resource_type --resource resource_name --action action_name] [--with-grant]
SHOW PRIVILEGE -principal-type principal_type -principal principal_name [--resource-type resource_type --resource resource_name --action action_name]

• principal_type: USER | GROUP | ROLE

• resource_type: CONNECTOR | LINK | JOB

• action_type: ALL | READ | WRITE

• With with-grant in GRANT PRIVILEGE command, this principal could grant his/her privilege to other users.

• Without resource in REVOKE PRIVILEGE command, all privileges on this principal will be revoked.

• With with-grant in REVOKE PRIVILEGE command, only grant privilege on this principal will be removed.
This principal has the privilege to access this resource, but he/she could not grant his/her privilege to others.

• Without resource in SHOW PRIVILEGE command, all privileges on this principal will be listed.

4.3 Repository Encryption

Sqoop 2 uses a database to store metadata about the various data sources it talks to, we call this database the repository.

The repository can store passwords and other pieces of information that are security sensitive, within the context of
Sqoop 2, this information is referred to as sensitive inputs. Which inputs are considered sensitive is determined by the
connector.

We support encrypting sensitive inputs in the repository using a provided password or password generator. Sqoop 2
uses the provided password and the provided key generation algorithm (such as PBKDF2) to generate a key to encrypt
sensitive inputs and another hmac key to verify their integrity.

Only the sensitive inputs are encrypted. If an input is not defined as sensitive by the connector, it is NOT encrypted.

4.3.1 Server Configuration

Note: This configuration will allow a new Sqoop instance to encrypt information or read from an already encrypted
repository. It will not encrypt sensitive inputs in an existing repository. For instructions on how to encrypt an existing
repository, please look here: RepositoryEncryption

First, repository encryption must be enabled.

org.apache.sqoop.security.repo_encryption.enabled=true

94 Chapter 4. Security Guide

Apache Sqoop, Release

Then we configure the password:

org.apache.sqoop.security.repo_encryption.password=supersecret

Or the password generator:

org.apache.sqoop.security.repo_encryption.password_generator=echo supersecret

The plaintext password is always given preference to the password generator if both are present.

Then we can configure the HMAC algorithm. Please find the list of possibilities here: Standard Algorithm Name
Documentation - Mac We can store digests with up to 1024 bits.

org.apache.sqoop.security.repo_encryption.hmac_algorithm=HmacSHA256

Then we configure the cipher algorithm. Possibilities can be found here: Standard Algorithm Name Documentation -
Cipher

org.apache.sqoop.security.repo_encryption.cipher_algorithm=AES

Then we configure the key size for the cipher in bytes. We can store up to 1024 bit keys.

org.apache.sqoop.security.repo_encryption.cipher_key_size=16

Next we need to specify the cipher transformation. The options for this field are listed here: Cipher (Java Platform SE
7)

org.apache.sqoop.security.repo_encryption.cipher_spec=AES/CBC/PKCS5Padding

The size of the initialization vector to use in bytes. We support up to 1024 bit initialization vectors.

org.apache.sqoop.security.repo_encryption.initialization_vector_size=16

Next we need to specfy the algorithm for secret key generation. Please refer to: Standard Algorithm Name Documen-
tation - SecretKeyFactory

org.apache.sqoop.security.repo_encryption.pbkdf2_algorithm=PBKDF2WithHmacSHA1

Finally specify the number of rounds/iterations for the generation of a key from a password.

org.apache.sqoop.security.repo_encryption.pbkdf2_rounds=4000

4.3. Repository Encryption 95

http://docs.oracle.com/javase/7/docs/technotes/guides/security/StandardNames.html#Mac
http://docs.oracle.com/javase/7/docs/technotes/guides/security/StandardNames.html#Mac
http://docs.oracle.com/javase/7/docs/technotes/guides/security/StandardNames.html#Cipher
http://docs.oracle.com/javase/7/docs/technotes/guides/security/StandardNames.html#Cipher
http://docs.oracle.com/javase/7/docs/api/javax/crypto/Cipher.html
http://docs.oracle.com/javase/7/docs/api/javax/crypto/Cipher.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/StandardNames.html#SecretKeyFactory
http://docs.oracle.com/javase/7/docs/technotes/guides/security/StandardNames.html#SecretKeyFactory

Apache Sqoop, Release

96 Chapter 4. Security Guide

CHAPTER 5

Administrator Guide

If you are a admin trying to set up Sqoop, check out the links below

• Sqoop Server and Client Installation

• Sqoop Server Upgrade

• Sqoop Tools

97

Apache Sqoop, Release

98 Chapter 5. Administrator Guide

CHAPTER 6

User Guide

If you are excited to start using Sqoop you can follow the links below to get a quick overview of the system

• Sqoop 5 Minute Demo

• Command Line Shell Usage Guide

• Connectors

99

Apache Sqoop, Release

100 Chapter 6. User Guide

CHAPTER 7

Developer Guide

If you are keen on contributing to Sqoop and get your hands dirty building connectors or interesting UI/applications
for Sqoop internals check out the links below

• Building Sqoop 2

• Sqoop Development Environment Setup

• Developing a Sqoop Connector with Connector API

• Developing Sqoop application with REST API

• Developing Sqoop application using Sqoop Java Client API

• Repository

101

Apache Sqoop, Release

102 Chapter 7. Developer Guide

CHAPTER 8

Security:

• Security Guide

103

Apache Sqoop, Release

104 Chapter 8. Security:

CHAPTER 9

License

Sqoop is licensed under Apache Software License v2.

105

http://www.apache.org/licenses/LICENSE-2.0

	Admin Guide
	Installation
	Server installation
	Client installation

	Tools
	Verify tool
	Upgrade tool
	RepositoryDump
	RepositoryLoad
	RepositoryEncryption

	Upgrade
	Upgrading Server
	Upgrading Client

	User Guide
	Command Line Shell
	Resource file
	Commands

	Connectors
	FTP Connector
	Generic JDBC Connector
	HDFS Connector
	Kafka Connector
	Kite Connector
	SFTP Connector

	Examples
	S3 Import to HDFS

	Sqoop 5 Minutes Demo
	Starting Client
	Creating Link Object
	Creating Job Object
	Start Job (a.k.a Data transfer)

	Developer Guide
	Building Sqoop2 from source code
	Downloading source code
	Building project
	Running tests

	Sqoop Java Client API Guide
	Workflow
	Project Dependencies
	Initialization
	Link
	Job
	Job Start
	Display Config and Input Names For Connector

	Sqoop 2 Connector Development
	What is a Sqoop Connector?
	Connector Implementation
	Configurables
	Loading External Connectors
	Sqoop 2 MapReduce Job Execution Lifecycle with Connector API

	Sqoop 2 Development Environment Setup
	System Requirement
	Eclipse Setup

	Sqoop REST API Guide
	Initialization
	Understand Connector, Driver, Link and Job
	Objects
	Header Parameters
	REST APIs

	Repository
	Sqoop Schema

	Security Guide
	API TLS/SSL
	Keystore Generation
	Server Configuration
	Client/Shell Configuration

	Authentication and Authorization
	Simple Authentication
	Kerberos Authentication
	Customized Authentication
	Authorization

	Repository Encryption
	Server Configuration

	Administrator Guide
	User Guide
	Developer Guide
	Security:
	License

