

 Navigation

 	
 next

 	SQLAHelper 1.0 documentation

SQLAHelper

	Version:	1.0, released 2011-12-25

	PyPI:	http://pypi.python.org/pypi/SQLAHelper

	Docs:	http://sluggo.scrapping.cc/python/SQLAHelper/

	Source:	http://bitbucket.org/sluggo/sqlahelper (Mercurial)

SQLAHeler is a small library for SQLAlchemy [http://sqlalchemy.org/] web applications. It acts as a
container for the application’s contextual session, engines, and declarative
base. This avoids circular dependencies between the application’s model
modules, and allows cooperating third-party libraries to use the application’s
session, base, and transaction. SQLAHelper does not try to hide or disguise the
underlying SQLAlchemy objects; it merely provides a way to organize them.

The contextual session is initialized with the popular
ZopeTransactionExtension, which allows it to work with transaction managers
like pyramid_tm [http://pypi.python.org/pypi/pyramid_tm] and repoze.tm2 [http://docs.repoze.org/tm2/]. A transaction manager provides automatic
commit at the end of request processing, or rollback if an exception is raised
or HTTP error status occurs. Some transaction managers can commit both SQL and
non-SQL actions in one step. SQLAHelper does not include a transaction manager,
but it works with the most common ones.

It’s currently tested on Python 2.7/Linux but should work on other
platforms. A set of unit tests is included. Python 3 compatibility is unknown
but will be addressed soon.

Documentation

	Usage and API

	Full Changelog

 Copyright 2010-2011, Mike Orr.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	SQLAHelper 1.0 documentation

Usage and API

Installation

Install SQLAHelper like any Python package, using either “pip install
SQLAHelper” or “easy_install SQLAHelper”. To check out the development
repository: “hg clone http://bitbucket.org/sluggo/sqlahelper SQLAHelper”.

SQLAlchemy vocabulary

These are a few SQLAlchemy terms which are critical for understanding
SQLAHelper.

An engine is a SQLAlchemy object that knows how to connect to a certain
database. All SQLAlchemy applications have at least one engine.

A session is a SQLAlchemy object that does housekeeping for the
object-relational mapper (ORM). These sessions have nothing to do
with HTTP sessions despite the identical name. A session is required when using
the ORM, but is not needed for lower-level SQL access.

A contextual session (often called a Session with a capital S, or a
DBSession) is a threadlocal session proxy. It acts like a session and has
the same API, but internally it maintains a separate session for each thread.
This allows it to be a golabl variable in multithreaded web applications.
(SQLAlchemy manual: contextual session [http://www.sqlalchemy.org/docs/orm/session.html#contextual-thread-local-sessions].)

A declarative base (often called a Base) is a common superclass for all
your ORM classes. An ORM class represents one database table, and is associated
with a separate table object. An instance of the class represents one record in
the table.

Most SQLAlchemy applications nowadays use all of these.

Usage

	When your application starts up, call add_engine once for each database
engine you will use. You will first have to create the engine using
sqlalchemy.create_engine() or sqlalchemy.engine_from_config().
See Engine Configuration [http://www.sqlalchemy.org/docs/core/engines.html] in the SQLAlchemy manual.

	In models or views or wherever you need them, access the contextual session,
engines, and declarative base this way:

import sqlahelper

Session = sqlahelper.get_session()
engine = sqlahelper.get_dbengine()
Base = sqlahelper.get_base()

It gets slightly more complex with multiple engines as you’ll see below.

API

	
sqlahelper.add_engine(engine, name='default')

	Add a SQLAlchemy engine to the engine repository.

The engine will be stored in the repository under the specified name, and
can be retrieved later by calling get_engine(name).

If the name is “default” or omitted, this will be the application’s default
engine. The contextual session will be bound to it, the declarative base’s
metadata will be bound to it, and calling get_engine() without an
argument will return it.

	
sqlahelper.get_session()

	Return the central SQLAlchemy contextual session.

To customize the kinds of sessions this contextual session creates, call
its configure method:

sqlahelper.get_session().configure(...)

But if you do this, be careful about the ‘ext’ arg. If you pass it, the
ZopeTransactionExtension will be disabled and you won’t be able to use this
contextual session with transaction managers. To keep the extension active
you’ll have to re-add it as an argument. The extension is accessible under
the semi-private variable _zte. Here’s an example of adding your own
extensions without disabling the ZTE:

sqlahelper.get_session().configure(ext=[sqlahelper._zte, ...])

	
sqlahelper.get_engine(name='default')

	Look up an engine by name in the engine repository and return it.

If no argument, look for an engine named “default”.

Raise RuntimeError if no engine under that name has been configured.

	
sqlahelper.get_base()

	Return the central SQLAlchemy declarative base.

	
sqlahelper.set_base(base)

	Set the central SQLAlchemy declarative base.

Subsequent calls to get_base() will return this base instead of the
default one. This is useful if you need to override the default base, for
instance to make it inherit from your own superclass.

You’ll have to make sure that no part of your application’s code or any
third-party library calls get_base() before you call set_base(),
otherwise they’ll get the old base. You can ensure this by calling
set_base() early in the application’s execution, before importing the
third-party libraries.

	
sqlahelper.reset()

	Delete all engines and restore the initial module state.

This function is mainly for unit tests and debugging. It undoes all
customizations and reverts to the initial module state.

Examples

This application connects to one database. There’s only one engine so we make
it the default engine.

import sqlalchemy as sa
import sqlahelper

engine = sa.create_engine("sqlite:///db.sqlite")
sqlahelper.add_engine(engine)

This second application is a typical Pyramid/Pylons/TurboGears application. Its
engine args are embedded in a general settings dict, which was parsed from an
application-wide INI file. All the values are strings because the INI parser is
unaware of the appropriate type for each value.

import sqlalchemy as sa
import sqlahelper

settings = {
 "debug_notfound": "false",
 "mako.directories": "myapp:templates",
 "sqlalchemy.url": "sqlite:////home/me/applications/myapp/db.sqlite",
 "sqlalchemy.logging_name": "main",
 "sqlalchemy.pool_size": "10",
 }
engine = sa.engine_from_config(settings, prefix="sqlalchemy.")
sqlahelper.add_engine(engine)

The engine_from_config method finds the keys with the matching prefix,
strips the prefix, converts the values to their proper type, and calls
add_engine with the extracted arguments. It ignores keys that don’t have
the prefix. The only required key is the database URL (“sqlalchemy.url” in this
case). (Note: type conversion covers only a few most common arguments.)

If engine_from_config raises “KeyError: ‘pop(): dictionary is empty’”, make
sure the prefix is correct. In this case it includes a trailing dot.

Multiple databases are covered in the next section.

Multiple databases

A default engine plus other engines

In this scenario, the default engine is used for most operations, but two other
engines are also used occasionally:

import sqlalchemy as sa
import sqlahelper

Initialize the default engine.
default = sa.engine_from_config(settings, prefix="sqlalchemy.")
sqlahelper.add_engine(default)

Initialize the other engines.
engine1 = sa.engine_from_config(settings, prefix="engine1.")
engine2 = sa.engine_from_config(settings, prefix="engine2.")
sqlahelper.add_engine(engine1, "engine1")
sqlahelper.add_engine(engine2, "engine2")

Queries will use the default engine by default. To use a different engine
you have to use the bind= argument on the method that executes the query;
or execute low-level SQL directly on the engine (engine.execute(sql)).

Two engines, but no default engine

In this scenario, two engines are equally important, and neither is predominent
enough to deserve being the default engine. This is useful in applications
whose main job is to copy data from one database to another.

sqlahelper.add_engine(settings, name="engine1", prefix="engine1.")
sqlahelper.add_engine(settings, name="engine2", prefix="engine2.")

Because there is no default engine, queries will fail unless you specify an
engine every time using the bind= argument or engine.execute(sql).

Different tables bound to different engines

It’s possible to bind different ORM classes to different engines in the same
database session. Configure your application with no default engine, and then
call the Session’s .configure method with the binds= argument to
specify which classes go to which engines. For instance:

import myapp.models as models

sqlahelper.add_engine(engine1, "engine1")
sqlahelper.add_engine(engine2, "engine2")
Session = sqlahelper.get_session()
binds = {models.Person: engine1, models.Score: engine2}
Session.configure(binds=binds)

The keys in the binds dict can be SQLAlchemy ORM classes, table objects, or
mapper objects.

 Copyright 2010-2011, Mike Orr.
 Created using Sphinx 1.3.1.

 Navigation

 	
 previous

 	SQLAHelper 1.0 documentation

Full Changelog

dev (unreleased)

1.0 (2011-12-25)

	Add set_base() function and unit test.

	Change all remaining references to pyramid_sqla to sqlahelper.

	Delete demo application, which was for an old version of Pyramid.

1.0b1 (2011-03-11)

	Remove engine-creation features from add_engine(). It was getting too
complex to document all the permutations. You’ll have to create the engine
yourself and pass it to add_engine.

Repository SQLAHelper created

	Clone repository ‘SQLAHelper’ from ‘pyramid_sqla’.

	Delete all non-SQLAlchemy code and docs; they’ve moved to the Akhet package.

	Rename pyramid_sqla to sqlahelper and change it from a package to a
module.

	Move pyramid_sqla/tests/test.py to tests.py.

pylons_sqla-1.0rc2 (2010-02-20, never released)

	add_static_route is now a Pyramid config method if you call the new
includeme function. This is used in the application template.

	Add pyramid_sqla as a dependency in the application template.

	Delete websetup.py. Console scripts are more flexible than “paster
setup-app”.

	Fix but that may have prevented create_db.py from finding the INI stanza.

	100% test coverage contributed by Chris McDonough.

	Delete unneeded development code in static.py.

	Set Mako’s ‘strict_undefined’ option in the application template.

pyramid_sqla-1.0rc1 (2010-01-26)

	‘pyramid_sqla’ application template supports commit veto feature in
repoze.tm2 1.0b1.

	Add production.ini to application template.

	Delete stray files in application template that were accidentally included.

pyramid_sqla-0.2 (2011-01-19)

	Pyramid 1.0a10 spins off view handler support to ‘pyramid_handlers’ package.

	‘pyramid_sqla’ application template depends on Pyramid>=1.0a10.

pyramid_sqla-0.1 (2011-01-12)

	Initial release.

	Warning: a change in Pyramid 1.0a10 broke applications created using the
this version’s application template. To run existing applications under Pyramid
1.0a10 and later, add a ‘pyramid_handlers’ dependency to the requires
list in setup.py and reinstall the application.

 Copyright 2010-2011, Mike Orr.
 Created using Sphinx 1.3.1.

 _static/plus.png

_static/comment.png

_static/comment-bright.png

search.html

 Navigation

 		SQLAHelper 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010-2011, Mike Orr.
 Created using Sphinx 1.3.1.

_static/down.png

_static/file.png

_static/minus.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/up.png

