

 Navigation

 	
 index

 	
 next |

 	Spyke Viewer 0.4.2 documentation

Welcome to the Spyke Viewer documentation!

Spyke Viewer is a multi-platform GUI application for navigating, analyzing and
visualizing electrophysiological datasets. It is based on the
Neo [http://neo.readthedocs.org] library, which enables it to load a wide
variety of data formats used in electrophysiology. At its core, Spyke Viewer
includes functionality for navigating Neo object hierarchies and performing
operations on them.

A central design goal of Spyke Viewer is flexibility. For this purpose, it
includes an embedded Python console and a plugin system. It comes with a
variety of plugins implementing common neuroscientific analyses and plots
(e.g. rasterplot, peristimulus time histogram, correlogram and signal plot).
Plugins can be easily created and modified using the integrated Python editor
or external editors.

A mailinglist for discussion and support is available at
https://groups.google.com/d/forum/spyke-viewer

Users can download and share plugins and other extensions at
http://spyke-viewer.g-node.org

If you use Spyke Viewer in work that leads to a scientific publication,
please cite:

Pröpper, R. and Obermayer, K. (2013). Spyke Viewer: a flexible and extensible
platform for electrophysiological data analysis.
Front. Neuroinform. 7:26. doi: 10.3389/fninf.2013.00026

The following screenshots illustrate the functionality of the program:

[image: _images/screenshot1.png]
[image: _images/screenshot2.png]
Contents:

	Installation
	Binary

	Source

	Usage
	Loading Data

	Selections

	Exporting Data

	Filters

	Using Plugins

	Using the Console

	Settings

	Plugins
	Signal Plot

	Spectrogram

	Spike Waveform Plot

	Correlogram

	Interspike Interval Histogram

	Peristimulus Time Histogram

	Raster Plot

	Spike Density Estimation

	Extending Spyke Viewer
	Analysis plugins

	IO plugins

	Startup script

	Footnotes

	API

	Lazy Features
	Lazy Loading

	Lazy Cascading

	Changelog
	Version 0.4.2

	Version 0.4.1

	Version 0.4.0

	Version 0.3.0

	Version 0.2.1

	Version 0.2.0

	Acknowledgements

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Robert Pröpper.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Spyke Viewer 0.4.2 documentation

Installation

There are two ways to install Spyke Viewer on your system. The preferred way
is to install the spykeviewer package in your Python environment. Depending on
what already exists on your system, this might require installing Python
itself and a few additional packages for scientific data processing,
management and visualization.

On the other hand, there are also binary packages available for Windows and
OS X. These packages do not have any additional requirements and can be
started immediately (from an app in OS X or an executable file in Windows,
please use the source installation for Linux).
However, as they are independent of an existing Python installation, you will
not be able to use installed additional packages from your Python environment
by default (this can be remedied by using the Startup script).
The binary packages are especially useful if you do not normally use Python
or just want to try Spyke Viewer quickly. You can switch to the source
installation at any time.

Binary

If you want to install the binary version, go to the
homepage [http://www.ni.tu-berlin.de/software/spykeviewer]
and select the most recent version for your operating system. The downloaded
file contains an installer (for OS X) or executable
(Spyke Viewer\spykeviewer.exe for Windows). Note that some features of Spyke
Viewer are not available in the binary version: If you want an IPython console
or advanced plugin editing features such as autocompletion, you need the
source version. The rest of this page deals with source installation, when
using the binary version, you can go to Usage to learn how to use
Spyke Viewer.

Source

If you use the NeuroDebian [http://neuro.debian.net] repositories and a recent version of Debian
(>= Wheezy or Sid) or Ubuntu (>= 12.04), you can install the source version
of Spyke Viewer using your package manager:

$ sudo apt-get install spykeviewer

After you install the spykeviewer package, you can start Spyke Viewer from
your menu (it should appear in the “Science” or “Education” category) or
using:

$ spykeviewer

The next sections describe how to install Spyke Viewer if you do not have
access to the NeuroDebian [http://neuro.debian.net] repositories (e.g. on Windows or OS X), want
to install using the Python packaging system or use the most recent
development version from GitHub.

Dependencies

First you need Python 2.7. In addition, the following packages and
their respective dependencies need to be installed:

	spykeutils [http://spykeutils.readthedocs.org/]

	scipy [http://scipy.org/]

	guiqwt [http://packages.python.org/guiqwt/] (>= 2.1.4)

	matplotlib [http://matplotlib.org/]

	tables [http://www.pytables.org/]

	spyder [http://packages.python.org/spyder/] >= 2.1.0

	neo [http://neo.readthedocs.org/] >= 0.2.1

Please see the respective websites for instructions on how to install them if
they are not present on your computer. On a recent version of Debian/Ubuntu
(e.g. Ubuntu 12.04 or newer), you can install all dependencies that are not
automatically installed by pip or easy_install with:

$ sudo apt-get install python-guiqwt python-tables python-matplotlib

On Windows, you can use Python(x,y) [http://www.pythonxy.com/] if you do yet not have a Python
distribution installed. It includes the same dependencies.

spykeviewer

Once the requirements are fulfilled, you need to install the package
spykeviewer. If you use Linux, you might not
have access rights to your Python package installation directory, depending
on your configuration. In this case, you will have to execute all shell
commands in this section with administrator privileges, e.g. by using
sudo. The easiest way to get it is from the Python Package
Index. If you have pip [http://pypi.python.org/pypi/pip] installed:

$ pip install spykeviewer

Alternatively, if you have setuptools [http://pypi.python.org/pypi/setuptools]:

$ easy_install spykeviewer

Alternatively, you can get the latest version directly from GitHub at
https://github.com/rproepp/spykeviewer.

The master branch always contains the current stable version. If you want the
latest development version, use the develop branch (selected by default).
You can download the repository from the GitHub page
or clone it using git and then install from the resulting folder:

$ python setup.py install

Once the package is installed, you can start Spyke Viewer using:

$ spykeviewer

Note

You can also start the program without installing it: Simply execute
the script bin/spykeviewer in your Spyke Viewer folder using Python.

On Windows, you might have to start spykeviewer.exe in the
Scripts folder in your Python directroy (e.g. C:\Python27\Scripts)
because most Python versions do not add this folder to the PATH environment
variable.

 Copyright 2012, Robert Pröpper.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Spyke Viewer 0.4.2 documentation

Usage

This section gives a tutorial of the main functionality of Spyke Viewer. To
follow the examples, you need to download and unpack the sample data file [http://www.ni.tu-berlin.de/fileadmin/fg215/software/SPYKE/sampledata.zip].
It contains simulated data for two tetrodes over 4 trials. For each tetrode,
there are 5 simulated neurons with corresponding spike trains and prototypical
template waveforms included.

When you start Spyke Viewer for the first time, you will see the following
layout:

[image: _images/initial-layout.png]
All elements of the user interface are contained in docks and can be
rearranged to suit your needs. Their layout is saved when you close Spyke
Viewer. The “View” menu shows all available docks and panels, you can also
hide and show them from this menu.

Loading Data

The first thing you want to do when using Spyke Viewer is to load your data.
The Files dock contains a view of all the files on your system. You can
use it to select one or more files, then click on the “Load” button below to
load the selected files into Spyke Viewer. Single files can also be loaded
with a double click (this does not work for directories, they will just be
expanded. If you want to load a directory, you need to use the “Load” button).
Alternatively, you can use the “Load Data...” option in the “File” menu to
open a dialog that allows you to select files to load. Now find and select
the file “sample.h5” that you just unpacked (an HDF5 File) and load it.

The data file input/output is based on neo [http://neo.readthedocs.org/en/latest/index.html#module-neo] and supports formats that
have a
Neo IO class [http://neo.readthedocs.org/en/latest/io.html]. For each
selected file, the filetype and corresponding IO class is selected
automatically from the file extension. If you want to specify which IO class
to use, you can do so in the “Format” list in the Files dock. When you
select a format with read or write parameters, you can click “Configure
selected IO” to change the parameters. The IO and parameters you choose in
the Files dock are also used when loading files using the “File” menu. If
you want to use a file format that is not supported by Neo, you can write a
plugin: IO plugins.

Spyke Viewer and Neo include some features to handle very large data sources
that are larger than the main memory or take very long to load. If you want
to learn about these features, go to Lazy Features.

Selections

Now that a file was loaded, some entries have appeared in the Navigation
dock. To understand how to navigate data with Spyke Viewer, you need to know
the Neo object model. The following picture is a complete representation:

[image: _images/neo.png]
The rectangular objects are containers, rounded corners indicate a data
object. The arrows represent a “contains zero or more” relationship. Note that
all data objects belong to a segment and some also belong to other objects.
For example, a SpikeTrain is referenced by both Segment and Unit. A unit often
represents a single neuron (it is named unit because putative neurons from
spike sorting are called units), but it could also represent the results of
a spike detection algorithm and therefore include multiple neurons. Each
SpikeTrain is specific to one Segment and one Unit, and each Segment or Unit
could contain many SpikeTrains. For more detailed information on the Neo
object model, see the
Neo documentation [http://neo.readthedocs.org/en/latest/core.html].

In Spyke Viewer, you use the Navigation dock to select container objects.
There is a list for each type of container where you can select an arbitrary
set of entries. You can select multiple entries by clicking and dragging or
using the control key when clicking. Each list will only show those
objects of the respective type that are contained in selected objects further
up in the hierarchy. For example, try selecting a different recording channel
group and observe how the channels and units list change. To help you
navigate, all objects in the Navigation dock are automatically assigned a
unique identifier which includes the identifier of containing objects. The
identifiers are shown in parentheses after the objects name (if an object has
no name, only the identifier is shown). Blocks use capital letters; recording
channel groups use small letters; recording channels, units and segments use
numbers. For example, a unit might have an identifier “A-b-2”: This denotes
unit number 2 of recording channel group “b” of block “A”. The identifiers are
recreated whenever the structure of the loaded data changes - they are just
a visual aid to help with navigation and ensure that unnamed objects have
a reasonable label.

Each list in the Navigation dock has a context menu accessed by
right-clicking or control-clicking on OS X. You can use it to remove the
selected objects (they will only be removed from Spyke Viewer, not from the
loaded files) or open an annotation editor for the current object. The
annotation editor can also be opened by double-clicking a list entry.

The sets of selected objects from all container types is called a selection.
The selected items you see in the Navigation dock are called the current
selection. Selections determine which data will be analyzed by plugins (see
Plugins) and can be accessed by the internal console (see
Using the Console). You can save a selection using the
“Selections” menu: Click on the menu and then on “New”. An additional entry in
the “Selections” menu called “Selection 1” will appear. Each selection entry
has a submenu where you can load, save, rename or delete the selection. Try
selecting something else in the Navigation dock and creating a new
selection again. Now try to load your first selection and observe how the
Navigation dock changes to reflect what you have loaded. If you use the
entry “Save” from a selection, it will be overwritten with the current
selection. You can also change the order of the saved selections by dragging
the entries in the “Selections” menu:

[image: _images/selections-menu.png]
All saved selections together with the current selection are called a
selection set. You can save your current selection set as a file (in
JSON [http://www.json.org] format, so it can easily be read and edited
by humans or other software) using “Save Selection Set...” in the “File” menu.
When you load a selection set, your current selection is replaced by the
current selection from the file. The other selections in the file are added
to your current saved selections. If a selection set includes files that are
not currently loaded, they are opened automatically. When you exit Spyke
Viewer, your current selection set is saved and will be restored on your
next start.

Exporting Data

If you want to export your data, Spyke Viewer offers two entries in the “File”
menu: “Save selected data...” exports all data in your current selection.
“Save all data...” exports all loaded data. When you click on one of
the items, a dialog will open asking you where you want to save the data and
in which format. HDF5 and Matlab are available. It is strongly recommended to
save your data in HDF5, since the Neo IO for Matlab currently does not support
the whole object model – RecordingChannelGroups, RecordingChannels and Units
are not saved.

Matlab has an interface for loading HDF5 files as well, so if you want
to load your data in Matlab without losing some of the structure, you can use
HDF5. On the other hand, if you want to get your data into Matlab quickly or
it is structured with segments only, the Matlab export could be the right
choice.

Filters

[image: _images/filterdock.png]
When dealing with large datasets, it can be inconvenient to create a selection
from the full lists of containers. The filter system provides a solution to
this problem. By creating filters, you can determine what objects are
shown in the Navigation dock. For example, you might want to temporarily
exclude RecordingChannelGroups that have no attached units or only display
Segments with a certain stimulus. Creating filters requires basic knowledge
of Python and the Neo object model.

You can manage your filters with the Filter dock and toolbar (which is
positioned on the upper left in the initial layout). When you start Spyke
Viewer for the first time, the Filter dock will be empty. You can create
a new filter by clicking on “New Filter” in the toolbar (right-clicking the
Filter dock also brings up a menu with available actions). You can choose
what kind of container objects the filter applies to, the name of the filter
and its content: a simple Python function.

There are two kinds of filters: single or combined. Single filters (created
when the “Combined” checkbox is unchecked) get a single Neo object and return
True if the object should be displayed and False if not. Combined
filters get a list of Neo objects and return a list containing only objects
that should displayed. The order of the returned list is used for subsequent
filters and displaying, so combined filters can also be used to sort the
object lists.

For both kinds of filters, the signature of the function is fixed and
shown at the top of the window, so you only have to write the function body.
The “True on exception” checkbox determines what happens when the filter
function raises an exception: If it is checked, an exception will not cause
an element to be filtered out, otherwise it will. The following picture shows
how you would create a filter that hides all units that do not have at least
two SpikeTrains attached:

[image: _images/newfilter.png]
As another example, to reverse the order of Segments, you could create
combined Segment filter with the following line:

return segments[::-1]

You can also create filter groups. They can be used to organize your filters,
but also have an important second function: You can define groups in which
only one filter can be active. If another filter in the group is activated,
the previously active filter will be deactivated. You can choose which filters
are active in the Filter dock. The Navigation dock will be updated
each time the set of active filters changes. You can also drag and drop
filters inside the Filter dock. Their order in the Filter dock determines
the order in which they are applied. All filters and their activation
state are saved when you exit Spyke Viewer.

Using Plugins

Once you have selected data, it is time to analyze it. Spyke Viewer includes
a number of plugins that enable you to create various plots from your data.
Select the Plugins dock (located next to the Filter dock in the
initial layout) to see the list of available plugins. To start a plugin,
simply double-click it or select it and then click on “Run Plugin” in the
plugin toolbar or menu (there is also a context menu available when you
right-click a plugin). You can also start a plugin in a different process
(so that you can continue using Spyke Viewer while the plugin is busy) by
selecting “Start with Remote Script” in the “Plugins” menu.

For example, if you start the “Signal Plot” plugin, it will create a plot of
selected analog signals. Try selecting Segment 3, Tetrode 2 and Channels 3
and 4. When you now start the plugin, you will see the signals of the selected
channels in Segment 3. Now select some units and then open the plugin
configuration by clicking on “Configure Plugin” on the plugin toolbar or
menu. Select “Show Spikes” and set “Display” to “Lines”. When you now start
the plugin, you will see the analog signals and the spike times of your
selected units. Go to the configuration again, set “Display” to “Waveforms”
and check “Use first spike as template”. After another run of the plugin,
you will see the template spike waveforms overlaid on the analog signals. The
configuration of all plugins is saved when you close Spyke Viewer and will
be restored on the next start. To set the configurations of all plugins back
to their default values, use “Restore Plugin configurations” from the
“Plugins” menu.

To learn more about the included plugins and how to use them, go to
Plugins. When you want to create your own plugins, go to
Analysis plugins.

Using the Console

With the integrated console, you can use the full power of Python in Spyke
Viewer, with access to your selected data. Open the Console dock by
clicking on the “View” menu and selecting “Console”. You can explore your
workspace using the Variable Explorer dock and view your previous
commands with the Command History dock. Some packages like scipy [http://scipy.org/] and
neo [http://neo.readthedocs.org/en/latest/index.html#module-neo] are imported on startup, the message in the console shows which.
The console features autocompletion (press the Tab key to complete with the
selected entry) and docstring popups.

The most important objects in the console environment are current and
selections. current gives you access to your currently selected data,
selections contains all stored selections (which you can manage using
the “Selections” menu, see selections). For example,

>>> current.spike_trains()

gives a list of your currently selected spike trains. Both current and
the entries of selections are
spykeutils.plugin.data_provider.DataProvider [http://spykeutils.readthedocs.org/en/latest/apidoc/spykeutils.plugin.html#spykeutils.plugin.data_provider.DataProvider] objects, refer to the
documentation for details of the methods provided by this class.

As an example, to view the total amount of spikes in your selected spike
trains for each segment, enter the following lines:

>>> trains = current.spike_trains_by_segment()
>>> for s, st in trains.iteritems():
... print s.name, '-', sum((len(train) for train in st)), 'spikes'

Note that the variables used in these lines have now appeared in the
Variable Explorer dock.

Note

If you have at least IPython 0.12 and the corresponding Qt console
installed, Spyke Viewer will include an IPython dock (accessible under
the “View” menu). It can be used as an alternative to the integrated
console if you prefer IPython. The current and selections objects
are defined as in the integrated console, but no imports are predefined.
You can enter the “magic command”:

%pylab

to use the PyLab environment (you can safely ignore the warning message
about matplotlib backends). Note that the Variable Explorer and
Command History docks, as well as exceptions from plugins, are only
available on the internal console.

Settings

The Spyke Viewer settings can be accessed by opening the “File” menu and
selecting “Settings” (on OS X, open the “Spyke Viewer” menu and select
“Preferences”). You can adjust various paths in the settings:

	Selection path

	The path where your selections are stored when you exit Spyke Viewer. This
is also the default directory when using “Save Selection Set...” or
“Load Selection Set...” in the “File” menu.

	Filter path

	The directory where your filter hierarchy and activation states are stored
when you exit Spyke Viewer. Your filters are stored as regular Python
files with some special annotation comments, so you can edit them in your
favourite editor or share them with other users of Spyke Viewer.

	Data path

	This directory is important when you are using the data storage features
of spykeutils.plugin.analysis_plugin.AnalysisPlugin [http://spykeutils.readthedocs.org/en/latest/apidoc/spykeutils.plugin.html#spykeutils.plugin.analysis_plugin.AnalysisPlugin].

	Remote script

	A script file that is executed when you use “Start with remote script”
action for a plugin. The default script simply starts the plugin locally,
but you can write a different script for other purposes, e.g. starting it
on a server.

	Plugin paths

	These are the search paths for plugins. They will be recursively searched
for Python files containing AnalysisPlugin classes. Subdirectories will be
displayed as nodes in the Plugins dock.

In addition, your IO plugins also have to stored be in one of the plugin
paths. The search for IO plugins is not recursive, so you have to put
them directly into one of the paths in this list.

More configuration options can be set using the API, for example in the
Startup script.

 Copyright 2012, Robert Pröpper.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Spyke Viewer 0.4.2 documentation

Plugins

This section describes the configuration options of the plugins that are
included with Spyke Viewer. All included plugins create plots. For
information on how to create your own plugins, see Analysis plugins.
You can find additional plugins at the
Spyke Repository [http://spyke-viewer.g-node.org/].

Signal Plot

Shows the selected analog signals. A number of options enable to include
additional information in the plot.

[image: _images/plugin-signals.png]

	Use Subplots

	Determines whether multiple subplots are used or all signals are shown in
one large plot.

	Show subplot names

	Only valid when subplots are used. Determines if each subplot has a title
with the signal name (if available) or the recording channel name.

	Included signals

	This option can be used to tune which type of signals are shown:
AnalogSignal objects, AnalogSignalArray objects or both. In most cases, a
file will only include one of the signal types, so the default option of
including both will work well (you probably never need to change it if you
do not know the difference between the signal objects).

	Show events

	When this is checked, events in the selected trial will be shown in the
plot.

	Show epochs

	When this is checked, periods in the selected trial will be shown in the
plot.

	One plot per segment

	When this is not checked, only one plot with signals from the first
selected segment is created. Otherwise, one plot for each selected
segment is created.

	Show spikes

	Determines whether spikes are included in the plot. The following options
are used to select from what data how the spikes are displayed:

	Display as

	Spikes can be shown as their waveform overlaid on the analog signal or a
vertical line marking their occurrence.

	Included data

	Determines whether to include spikes from SpikeTrain objects, Spike
objects, or both.

	Use first spike as template

	This option can be used for a special case: All spikes in the SpikeTrain
objects have the same waveform (e.g. because they use the same template
from spike sorting). If this option is checked, the plugin assumes that
each unit has a SpikeTrain and a single Spike. The waveform from the
Spike object is used for every spike in the SpikeTrain. The data in the
example file is structured in this way.

Spectrogram

Shows spectrograms of the selected analog signals.

[image: _images/plugin-spectrogram.png]

	Interpolate

	Determines whether the dipslayed spectrogram is interpolated.

	Show color bar

	If this is checked, a colorbar will be shown with each plot, illustrating
the logarithmic power represented by the colors.

	FFT samples

	The number of signal samples used in each FFT window.

	Included signals

	This option can be used to tune which type of signals are shown:
AnalogSignal objects, AnalogSignalArray objects or both. In most cases, a
file will only include one of the signal types, so the default option of
including both will work well (you probably never need to change it if you
do not know the difference between the signal objects).

Spike Waveform Plot

Shows waveforms of selected spikes.

[image: _images/plugin-waveforms.png]

	Antialiased lines

	Determines if antialiasing (smoothing) is used for the plot. If you want to
display thousands of spikes or more, unchecking this option will improve the
plotting performance considerably.

	Include spikes from

	Determines which data sources are used for the displayed spike waveforms.

	Spikes

	Waveforms from Spike objects can be ignored (Do not include), used as
other spike data sources are (Regular) or drawn thicker on top of other
spikes (Emphasized). The last option is useful if spike objects contain
templates from spike sorting which you want to compare to corresponding
spikes from the data.

	Spike Trains

	Spike waveforms embedded in SpikeTrain objects.

	Extracted from signal

	Spike waveforms can be automatically extracted from corresponding signals
using spike times in SpikeTrain objects. In this case you have to choose
the spike length and the alignment offset (the length of the signal to
extract before each spike event).

	Plot type

	Three different plot types can be selected: “One plot per channel” creates a
subplot for each channel, “One plot per unit” creates a subplot for each
unit and “Single plot” creates one plot containing all channels and units.

	Split channels

	Multichannel waveforms can be split either horizontally or vertically.

	Subplot layout

	You can choose one of two ways to arrange the resulting subplot: “Linear”
will arrange the plots as one row or one column, depending on the other
options. “Square” uses an equal number of row and columns.

	Fade earlier spikes

	If this is enabled, earlier selected spikes for each unit are drawn more
transparent than later spikes. This can be useful if you want to compare
changes in a unit’s waveform over time (i.e. multiple segments).

Correlogram

Creates auto- and crosscorrelograms for selected spike trains.

[image: _images/plugin-correlogram.png]

	Bin size (ms)

	The bin size used in the calculation of the correlograms.

	Cut off (ms)

	The maximum time lag for which the correlogram will be calculated and
displayed.

	Data source

	The plugin supports two ways of organizing the data from which the
correlograms are created: If “Units” is selected, the spike trains for each
currently selected unit are treated as a dataset. For example, if two units
are selected, the plugin creates three subplots: one autocorrelogram for
each unit and a cross-correlogram between them.

If “Selections” is chosen, spike trains from each saved selection are
treated as a dataset. Note that the plot can only be created if all
selections contain the same number of spike trains.

	Counts per

	Determines if the counts are displayed per second or per segment.

	Border correction

	Determines if an automatic correction for less data at higher timelags is
applied.

	Include mirrored plots

	Determines if all cross-correlograms are included, even if they are just
mirrored versions of each other. The autocorrelograms are then displayed
as the diagonal of a square plot matrix. Otherwise, mirrored
cross-correlograms are omitted.

Interspike Interval Histogram

Creates an interspike interval histogram for one or more units.

[image: _images/plugin-isi.png]

	Bin size (ms)

	The bin size used in the calculation of the histogram.

	Cut off (ms)

	The maximum interspike interval that is displayed.

	Type

	Determines the type of histogram. If “Bar” is selected, only the histogram
for the first selected unit is displayed. If “Line” is selected, all
selected units are included in the plot.

	Data source

	The plugin supports two ways of organizing the data from which the
histograms are created: If “Units” is selected, the spike trains for each
currently selected unit are treated as a dataset. If “Selections” is chosen,
spike trains from each saved selection are treated as a dataset.

Peristimulus Time Histogram

Creates a peristimulus time histogram (PSTH) for one or multiple units.

[image: _images/plugin-psth.png]

	Bin size (ms)

	The bin size used in the calculation of the histogram.

	Start time (ms)

	An offset from the alignment event or start of the spike train. Calculation
of the PSTH begins at this offset. Negative values are allowed (this can be
useful when using an alignment event).

	Stop time

	A fixed stop time for calculation of the PSTH. If this is not activated,
the smallest stop time of all included spike trains is used. If the smallest
stop time is smaller than the value entered here, it will be used instead.

	Alignment event

	An event (identified by label) on which all spike trains are aligned before
the PSTH is calculated. After alignment, the event is a time 0 in the plot.
The event has to be present in all selected segments that include spike
trains for the PSTH.

	Type

	Determines the type of histogram. If “Bar” is selected, only the histogram
for the first selected unit is displayed. If “Line” is selected, all
selected units are included in the plot.

	Data source

	The plugin supports two ways of organizing the data from which the
histograms are created: If “Units” is selected, the spike trains for each
currently selected unit are treated as a dataset. If “Selections” is chosen,
spike trains from each saved selection are treated as a dataset.

Raster Plot

Creates a raster plot from multiple spiketrains.

[image: _images/plugin-rasterplot.png]

	Domain

	The raster plot can either be created from multiple units and one segment
(“Units”) or one unit over multiple segments (“Segments”).

	Show lines

	Determines if a small horizontal black line is displayed for each spike
train.

	Show events

	When this is checked, events in the selected trial will be shown in the
plot. If the selected domain is “Segments”, events from all selected
segments are included.

	Show epochs

	When this is checked, periods in the selected trial will be shown in the
plot. If the selected domain is “Segments”, epochs from all selected
segments are included.

Spike Density Estimation

Creates a spike density estimation (SDE) for one or multiple units. Optionally
computes the best kernel width for each unit.

[image: _images/plugin-sde.png]

	Kernel size (ms)

	The width of the kernel used for the plot. If kernel width optimization is
enabled, this parameter is not used.

	Start time (ms)

	An offset from the alignment event or start of the spike train. Calculation
of the SDE begins at this offset. Negative values are allowed (this can be
useful when using an alignment event).

	Stop time

	A fixed stop time for calculation of the SDE. If this is not activated,
the smallest stop time of all included spike trains is used. If the smallest
stop time is smaller than the value entered here, it will be used instead.

	Alignment event

	An event (identified by label) on which all spike trains are aligned before
the SDE is calculated. After alignment, the event is a time 0 in the plot.
The event has to be present in all selected segments that include spike
trains for the SDE.

	Data source

	The plugin supports two ways of organizing the data from which the
density estimations are created: If “Units” is selected, the spike trains
for each currently selected unit are treated as a dataset. If “Selections”
is chosen, spike trains from each saved selection are treated as a dataset.

	Kernel width optimization

	When this option is enabled, the best kernel width for each unit is
determined using the algorithm from [1].

	Minimum kernel size (ms)

	The minimum kernel width that the algorithm should try.

	Maximum kernel size (ms)

	The maximum kernel width that the algorithm should try.

	Kernel size steps

	The number of steps from minimum to maximum kernel size that the algorithm
should try. The steps are distributed equidistant on a logarithmic scale.

	[1]	Shimazaki, Shinomoto. (2010). Kernel bandwidth optimization in spike
rate estimation. Journal of Computational Neuroscience, 29, 171-182.

 Copyright 2012, Robert Pröpper.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Spyke Viewer 0.4.2 documentation

Extending Spyke Viewer

There are two ways of extending Spyke Viewer: Analysis plugins and IO plugins.
Both are created by placing a Python file with an appropriate class into one
of the plugin directories defined in the Settings. In addition, Spyke
Viewer include a customizable script that is run each time the program is
started. Startup script describes possible applications and how to edit this
script. This section describes how to create plugins and how to use the
startup script. If you create a useful extension, please share it at the
Spyke Repository [http://spyke-viewer.g-node.org/]!

Analysis plugins

The easiest way to create a new analysis plugin is directly from the GUI.
Alternatively, you can use your favourite Python editor to create and edit
plugin files. This section describes the creation of an example plugin.

From console to plugin

In many cases, you will want to turn code that you have written in the console
into a plugin for easy usage and sharing. See Using the Console for an
introduction to the integrated console. Here, a similar example will be
expanded into a plugin. Load the example data file (see Usage), select
all segments and units and enter the following code in the console:

>>> trains = current.spike_trains_by_unit()
>>> for u, st in trains.iteritems():
... print u.name, '-', sum((len(train) for train in st)), 'spikes'

This will print the total number of spikes for each selected unit in all
selected trials. Note that these lines have now appeared in the
Command History dock. Now select “New plugin” from the “Plugins” menu or
toolbar. The Plugin Editor dock will appear with a tab named “New Plugin”
containing a code template. The template is already a working plugin, although
without any functionality. It contains a class (which subclasses
spykeutils.plugin.analysis_plugin.AnalysisPlugin [http://spykeutils.readthedocs.org/en/latest/apidoc/spykeutils.plugin.html#spykeutils.plugin.analysis_plugin.AnalysisPlugin]) with two methods:
get_name() and start(current, selections). get_name() is very
simple - it just returns a string to identify the plugin in the Plugins
dock. Replace the string “New Plugin” by a name for your plugin, for example
“Spike Counts”.

The start method gets called whenever you start a plugin. The two
parameters are the same objects as the identically named objects that can be
used in the console (see Using the Console): current gives access to the
currently selected data, selections is a list containing the stored
selections. Both current and the entries of selections are
spykeutils.plugin.data_provider.DataProvider [http://spykeutils.readthedocs.org/en/latest/apidoc/spykeutils.plugin.html#spykeutils.plugin.data_provider.DataProvider] objects, refer to the
documentation for details of the methods provided by this class.

Replace the contents of the start method by the code you entered into the
console (you can copy and paste the code from the Command History dock).
Now click on “Save plugin” in the “Plugins” menu or toolbar. A Save dialog
will appear. Select one of the plugin paths (or a subfolder) that you have
configured in the Settings and choose a name (e.g. “spikecount.py”).
When you save the plugin, it will appear in the Plugins dock. You can now
use it just like the included plugins. Try selecting different subsets of
segments and units and observe how the output of the plugin (on the console)
always reflects the current selection.

Plugin configuration

This section shows how to make your plugin configurable and use matplotlib to
create a plot. Your newly created plugin currently only prints to the console.
In order to create a configuration option, add the following line above the
get_name method:

output_type = gui_data.ChoiceItem('Output type', ('Total count', 'Count plot'))

Now, when you select your plugin and click on “Configure plugin”, a window
with a configuration option (a choice between “Total count” and “Count plot”
will appear. The gui_data module encapsulates guidata [http://packages.python.org/guidata/index.html#module-guidata]. You can
look at the documentation or the code of existing plugins for its more
information.

Next, you will modify the start method so it uses the configuration option
and creates a plot if it is configured for “Count plot”. Since you will be
using matplotlib for the plot, you first have to import it by adding:

import matplotlib.pyplot as plt

at the top of the plugin file. Note that matplotlib is already imported
in the console, but you have to explicitly import everything you need in
plugins.

Next, replace the code in the start method by:

trains = current.spike_trains_by_unit()
for u, st in trains.iteritems():
 if self.output_type == 0: # Total count
 print u.name, '-', sum((len(train) for train in st)), 'spikes'
 else: # Count plot
 plt.plot([len(train) for train in st])

If you now set the configuration of the plugin to “Count plot”, you will see
a plot with the spike count for each unit in all trials.

IO plugins

If you have data in a format that is not supported by Neo, you can still load
it with Spyke Viewer by creating an IO plugin. This is identical to writing
a regular Neo IO class [1] (see
http://neo.readthedocs.org/en/latest/io_developers_guide.html to learn how
to do it) and placing the Python file with the class in a plugin directory
(the search for IO plugins is not recursive, so you have to place the file
directly in one of the directories that you defined in the Settings).
The filename has to end with “IO.py” or “io.py” (e.g. “MyFileIO.py”) to
signal that it contains an io plugin.
If you create an IO class for a file format that is also used outside of your
lab, please consider sharing it with the Neo community.

Startup script

The startup script is run whenever Spyke Viewer is started, after the GUI is
setup and before plugins are loaded. To edit the startup script, select the
“Edit startup script” item in the “File” menu.

One important use case for this file is manipulating your Python path. For
example, you may have a Python file or package that you want to use in your
plugins. If it is not on your Python path (for example because it cannot be
installed or you are using a binary version of Spyke Viewer, where Python
packages installed on the system are not accessible by default), you can
modify sys.path to include the path to your files:

import sys
sys.path.insert(0, '/path/to/my/files')

You can also use the startup script to configure anything that is accessible
by Python code. In particular, you can use the Spyke Viewer API to
access configuration options and the main window itself. For example, if you
want the Enter key to always finish a line in the console and only
use the Tab key for autocompletion:

spyke.config['codecomplete_console_enter'] = False

To change the font size of the Python console (effective for new input) and
title of the window:

import spykeviewer.api as spyke # This line is included in the default startup script
f = spyke.window.console.font()
f.setPointSize(18) # Gigantic!
spyke.window.console.set_pythonshell_font(f)
spyke.window.setWindowTitle('Big is beatiful')

As a final example, you can customize the colors that are used
in spykeutils plots (for colored items like spikes in a rasterplot):

Let's make everything pink!
from spykeutils.plot import helper
helper.set_color_scheme(['#F52887', '#C12267'])

Footnotes

	[1]	There is one small difference between regular Neo IO classes
and IO plugins: In plugins, you cannot use relative imports.
For example, instead of:

from .tools import create_many_to_one_relationship

as in the Neo example IO, you would write:

from neo.io.tools import create_many_to_one_relationship

 Copyright 2012, Robert Pröpper.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Spyke Viewer 0.4.2 documentation

API

The Spyke Viewer API. It includes the global application configuration,
objects to access the main window and application and convenience functions.

	
spykeviewer.api.config

	Global configuration options for Spyke Viewer. Single options can be set
by string like a dictionary (e.g.
spykeviewer.api.config['ask_plugin_path'] = False) or directly (e.g.
spykeviewer.api.config.ask_plugin_path = False).
They can be set in the Startup script, from the
console or even in plugins. However, some configuration options are only
effective when changed from the startup script.
The configurations options are:

	ask_plugin_path (bool [http://docs.python.org/library/functions.html#bool])

	Ask about plugin paths if saving a file outside of the plugin paths.
Default: True

	save_plugin_before_starting (bool [http://docs.python.org/library/functions.html#bool])

	Automatically save and reload a modified plugin before starting.
Default: True

	load_selection_on_start (bool [http://docs.python.org/library/functions.html#bool])

	Load the selection that was automatically saved when shutting down
Spyke Viewer automatically on startup. This parameter is
only effective when set in the startup script. Default: True

	load_mode (int [http://docs.python.org/library/functions.html#int])

	The initially selected loading mode. Possible values:

	0

	Regular: Load all file contents on initial load.

	1

	Lazy: Only load file structure. Data objects are loaded
automatically when requested and then discarded.

	2

	Cached lazy: Only load file structure. Data objects are
loaded automatically when requested and then kept in
the object hierarchy so they only need to be loaded once.

This parameter is only effective when set in the startup script.
Default: 0

	autoselect_segments (bool [http://docs.python.org/library/functions.html#bool])

	Select all visible segments by default. Default: False

	autoselect_channel_groups (bool [http://docs.python.org/library/functions.html#bool])

	Select all visible channel groups by default. Default: False

	autoselect_channels (bool [http://docs.python.org/library/functions.html#bool])

	Select all visible channels by default. Default: True

	autoselect_units (bool [http://docs.python.org/library/functions.html#bool])

	Select all visible units by default. Default: False

	duplicate_channels (bool [http://docs.python.org/library/functions.html#bool])

	Treat neo.core.RecordingChannel [http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.RecordingChannel] objects that are
referenced in multiple neo.core.RecordingChannelGroup [http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.RecordingChannelGroup]
objects as separate objects for each reference. If False,
each channel will only be displayed (and returned by
spykeutils.plugin.data_provider.DataProvider [http://spykeutils.readthedocs.org/en/latest/apidoc/spykeutils.plugin.html#spykeutils.plugin.data_provider.DataProvider]) once,
for the first reference encountered. Default: False

	codecomplete_console_enter (bool [http://docs.python.org/library/functions.html#bool])

	Use Enter key for code completion in console. This parameter is
only effective when set in the startup script. Default: True

	codecomplete_editor_enter (bool [http://docs.python.org/library/functions.html#bool])

	Use Enter key for code completion in editor. This parameter is
only effective when set in the startup script. Default: True

	remote_script_parameters (list [http://docs.python.org/library/functions.html#list])

	Additional parameters for remote script. Use this if you have a custom
remote script that needs nonstandard parameters. The format is the same
as for subprocess.Popen [http://docs.python.org/library/subprocess.html#subprocess.Popen], e.g.
['--param1', 'first value', '-p2', '2']. Default: []

	remote_path_transform (function)

	When the remote script is used to start plugins on a different
computer, the paths of data files can change. This function can be
used to change the path of all data files sent to a remote script.
For example, if the data files are in the same directory where the
plugin is started on the remote computer, you can strip the path and
just keep the filename:
spykeviewer.api.config.remote_path_transform = lambda x: os.path.split(x)[1]
Default: The identity, paths are not changed.

	
spykeviewer.api.window

	The main window of Spyke Viewer.

	
spykeviewer.api.app

	The PyQt application object.

	
spykeviewer.api.start_plugin(name, current=None, selections=None)

	Start first plugin with given name and return result of start()
method. Raises a SpykeException if not exactly one plugins with
this name exist.

	Parameters:	
	name (str [http://docs.python.org/library/functions.html#str]) – The name of the plugin. Should not include the
directory.

	current – A DataProvider to use as current selection. If
None, the regular current selection from the GUI is used.

	selections (list [http://docs.python.org/library/functions.html#list]) – A list of DataProvider objects to use as
selections. If None, the regular selections from the GUI
are used.

	
spykeviewer.api.get_plugin(name)

	Get plugin with the given name. Raises a SpykeException if
multiple plugins with this name exist. Returns None if no such
plugin exists.

	Parameters:	name (str [http://docs.python.org/library/functions.html#str]) – The name of the plugin. Should not include the
directory.

 Copyright 2012, Robert Pröpper.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Spyke Viewer 0.4.2 documentation

Lazy Features

Spyke Viewer offers two ways to deal with very large files.

Lazy Loading

With lazy loading, only the structure of a file is loaded when you first
open it, while big data chunks (e.g. signals, spike trains) are not.
This can result in faster loading times and much reduced memory usage and
enables you to use data files that are larger than your main memory. Spyke
Viewer will load the required data automatically once it is needed. This
means that while initial loading is faster, data access will be slower.
You can switch between regular and lazy loading from the “File” menu under
“Read Mode”. The read mode affects newly loaded files and you can have
both regularly and lazily loaded files opened at the same time. Most
Neo IOs do not support this feature (currently, only the IO for HDF5
files does) - when using lazy mode with an unsopported IO, the file is loaded
as in regular mode.

There are two options for lazy loading in the menu: “Lazy Load” and
“Cached Lazy Load”. In “Lazy Load”, data objects are loaded on request
and discarded afterwards, so the memory usage stays low. In “Cached Lazy
Load”, data objects are inserted into the object hierarchy when they are
requested, so they only have to be loaded once, but memory usage will grow
when more data objects are used while the file is open.

Note

If you create your own plugins or use the integrated console with lazy
loading, you need to be aware that the data objects are only loaded
when accessed through a
DataProvider object (explained below). For example,
current.spike_trains() would return correctly loaded objects.
But current.segments()[0].spiketrains can contain lazy objects.
To be safe, always use the DataProvider to access the data objects
you are interested in.

Lazy Cascading

Lazy cascading goes one step further than lazy loading: Not even the complete
structure of a file is loaded initially. When lazy cascading is active, each
object is automatically loaded when first accessed. For example, if you load
a file with multiple Blocks, the Segments of each Block are only loaded when
you select the Block in Spyke Viewer and the Segments need to be displayed.
Similarly, the spike trains of a segment are only loaded once they are
accessed. In contrast to lazy loading, with lazy cascading objects are loaded
automatically even if they are not accessed through a DataProvider. Once an
object has been accessed using lazy cascading, it stays in memory, making
future access faster but potentially filling up main memory. You can use lazy
cascading and lazy loading without caching at the same time to mitigate this.
You switch between regular and lazy cascading using “Cascade Mode” in the
“File” menu. Like lazy loading, lazy cascading depends on support of the
IO class and currently only works with the HDF5 IO. You can implement both
in your own IO plugins, the
Neo documentation [http://neo.readthedocs.org/en/latest/io_developers_guide.html]
describes what is needed.

 Copyright 2012, Robert Pröpper.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Spyke Viewer 0.4.2 documentation

Changelog

Also see the spykeutils changelog at
https://spykeutils.readthedocs.org/en/latest/changelog.html

Version 0.4.2

	Data file path transform for starting plugins remotely.

	Various bugfixes and compatibility with Spyder 2.3.0

Version 0.4.1

	IPython 1.0 supported

	IPython now supported as dock instead of external console

	More explicit error messages on file loading failures.

	Added “Start plugin remotely” to toolbar.

Version 0.4.0

	Optional transparent lazy loading and lazy cascading for supported IOs.

	Splash screen while loading the application.

	Open files dialog as an alternative to the “Files” dock.

	Remotely started plugins can have a graphical progress bar.

	Remotely started plugins now show text output and errors on internal
console.

	Filters are automatically deactivated on loading a selection if they
prevent parts of it to be shown.

	A modified plugin is automatically saved before it is sent to a remote
script.

	New features for many plugins: correlogram, interspike interval histogram,
peri stimulus time histogram, and spike density estimation support
selections in addition to units for plot elements. Spike waveform plot can
plot single spikes extracted from analog signals using spike trains,
optionally together with Spike object waveforms.

	Python files can be dragged onto the editor to open them.

	Annotation editor accessible through API.

	Files can be loaded through API.

	The Spyke Repository is available and linked in the documentation and
the help menu.

Version 0.3.0

	Added search and replace functionality to plugin editor (access with
Ctrl + F and Ctrl + H).

	Added startup script. Can be modified using File->Edit startup script.

	Spyke Viewer now has an API for configuration options and access to plugins
and the main window. It can be used from the console, plugins or the startup
script.

	Added context menu for navigation. Includes entries for removing objects
and an annotation editor.

	New files are selected in the file view are now loaded in addition to
already loaded files. To unload all data, use File->Clear Data.

	Plugin configurations are now restored when saving or refreshing plugins
and when restarting the program. All plugin configurations can be reset
to their defaults using Plugins->Restore Plugin configurations.

	A modified plugin is automatically saved before it is run.

	Plugin folders return to their previous state (expanded or minimized)
when restarting the program.

	Plugin editor tabs can be reordered by dragging.

	Code completion in console can be selected using Enter (in addition to
Tab as before).

	Plugins can import modules from the same directory, even if it is not
explicitly on the Python path.

Version 0.2.1

	New features for plugin editor: Calltips, autocompletion and “jump to”
(definitions in code or errors displayed in integrated console).

	Experimental support for IPython console (File->New IPython console). Needs
IPython >= 0.12

	New spectrogram plugin

	Combined filters for filtering (or sorting) a whole list of objects

	“Save all data...” menu option

	Plugins are sorted alphabetically

	New option in plugin menu: Open containing folder

	“Delete” key deletes filters

	Renamed start script from “spyke-viewer” to “spykeviewer”

Version 0.2.0

Initial documented public release.

 Copyright 2012, Robert Pröpper.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Spyke Viewer 0.4.2 documentation

Acknowledgements

Spyke Viewer was created by Robert Pröpper [1], supported by the Research
Training Group GRK 1589/1. The inspiration for the GUI came from an earlier
program developed by Felix Franke [2]. The simulated data used in the
examples was created by Philipp Meier [1].

	[1]	(1, 2) Neural Information Processing Group, TU Berlin

	[2]	ETH Zurich, D-BSSE, Bio Engineering Laboratory (BEL)

 Copyright 2012, Robert Pröpper.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Spyke Viewer 0.4.2 documentation

Index

 G
 | S

G

 	

 	get_plugin() (in module spykeviewer.api)

S

 	

 	spykeviewer.api.app (built-in variable)

 	spykeviewer.api.config (built-in variable)

 	

 	spykeviewer.api.window (built-in variable)

 	start_plugin() (in module spykeviewer.api)

 Copyright 2012, Robert Pröpper.
 Created using Sphinx 1.3.1.

 _static/down.png

_static/comment-bright.png

_images/newfilter.png
Edit filter

def filter(unit):
return len(unit.spiketrains) > 1

(] True on exception
(] Combined filter

Type: | Unit &

o

Name: [1zs oy spke s]
canca

_static/up.png

_images/selections-menu.png

_static/file.png

_images/plugin-waveforms.png
Spike Waveform Plot

Antialiased lines (slow for large amounts of spikes)
Include spikes from
Spikes Regular D
() spike Trains
() Extracted from signal
spike length (ms) (1.5

Alignment offset (ms) 0.75

Plot type One plot per channel 4
split channels. Vertically D
Subplot layout Linear

() Fade earlier spikes

_images/neo.png
Block

Segment —-(EventAray |
v

RecordingChannelGroup

EpochArray

2

RecordingChannel Unit

SpikeTrain
AnalogSignal AnalogSignalArray

_static/down-pressed.png

_images/screenshot2.png
Spyke Viewer Correlogram
File Selections Fiter Plugins View Help
T AR AN He s slgle B oL B e e
ST Ty e &0
= 12
Navigation ® Plugins ® console s8¢ W ouneann 1 m unit2n
5 08
<neo.core.segment Segment object at Oxdccfid0>: | % 95 08 m unit212
== Szl =l Raw Data 0x4cf0C10>, <neo.core.event.Event object at 0xad(B 44 Wyt 04 y .
L011 (A) Tial 1 (A-0) Spike Waveform Amplitude Drift object at 0x4d02fa0>, <neo.core.event.Event objec| 35 3 02 fry
Spike Waveform Plot <neo.core.segment. Segment object at Ox4cf0ed0>] ~ 8 ° - - - -
signal Plot 0x4cf0910>, <neo.core.event.Event object at 0x4d s N B £ 5
=) Spike Trains object at 0x4d06290>, <neo.core.event.Event objed s N o R
e Correlogram >>> len(current.spike_trains()) -
O Interspike Interval Histogram 2 S518 m ueon | 98 w o
Tial 7 (A5) e >>> len(current.spike_trains_by_unit()) IS 06
8 2808 W unit213 B
Spike Density Estimation >>> rates = [len(s) / (s.t_stop - s.t_start) for sin cur £208 v ey o v V V
Peristimulus Time Histogram >>> plt plot(rates) 8302 id - 02
Rate ANOVA| [<matplotlib.lines.Line2D object at 0x29fadag0>] o0 R ————1 © s o i
>>> 4 20 o 0 40 a0 20 o 20 0
Time (ms) Time (ms)
Plugin Editor 06 @5
Channel Groups: 52o0s W unit212 | o4 W unit213
250
Tetrode 1 (A0) | correlogram.py % | interspike_intervalspy % || 5803 m 21z 02 V 'U
Tetrode 2 (A1) i Ml
Ttrode 11 (+2) Lisport quantities a5 pq HA TUIEAY o
Tetrode 12 (A3) B ©eoutile ol + amal . LA R L RSN N B B
Tetrode 13 (A-4) N S B -0 20 0 20 a0 -0 20 0 20 a0
Tetrade 14 (A5) Kernel Density Estimation T T
Tetrode 15 (A-6) dnre Synchronize X Axes. () synchronize Y Axes
Tetrode 16 (A-7) Unit 204 (A-1-0) I B |t E) L]
Tetrode 3 (48) || |unit 205 (A11)
Totrode 4 (A.9) Unit 214 (A1.2) Analog Signals | Recording Channel Group: Tetrode 2 | Segment: Trial 1 — +
Tetrode 5 (A-10) Unit 215 (A1-3)
Tetrode 6 (A11) |,
)
) 1 nit 208
)
Channel 8 (A-1.3) it
Unit 213 (A1-11) ¥ unit 213
 Unit 210
1 Unit 209
1 nit 206
Files | Navigation H unit211
[Unit 207
H unit 212

o 1000 2000 3000 4.000 5000 6000 7.000 25 26 27 28 29 3
Time (ms) Time (s)

() show legend Synchronize X Axes () synchronize Y Axes Show Legend Sidebar

_images/plugin-psth.png
Peristimulus Time Histogram

Bin size (ms) [500.0
start time (ms) (0.0
() stop time enabled

Time (ms) 10001.0

() Alignment event enabled

Event label

Tpe Bar

_static/plus.png

_images/screenshot1.png
- Spyke Viewer -+ x
Flle Selections Fiter Plugins View Help
1 7 71 0
LU 2T L)
Navigation ® console L)
. ment: 0x4d02a10>, <neo.core.event.Event object at 0x4d06150>, <neo.core.event.Event |4 |
¢ ST =) Raw Data)) object at 0x9562350>, <neo.core.event.Event object at 0x954b590>1,
loniw |weliao | Waveform Amplitude Drift Zneo.core.segment.Segment object at Ox4ccfd0>: [<neo.core.event.Event object at
Tial 2 (A1) @ Waveform Plot 0x4cf0c10>, <neo.core.event.Event object at 0x4d02fd0>, <neo.core.event.Event
Signal Plot object at 0x4d02fa0>, <neo.core.event.Event object at 0x4cf0d90>].
il 4 (A3) =) Spike Trains <neo.core.segment.Segment object at 0x4cf0ed0>: [<neo.core.event.Event object at
Lk 0x4cf0910>, <neo.core.event.Event object at 0x4d06390>, <neo.core.event.Event
L. LA4] . object at 0x4d06290>, <neo.core.event.Event object at 0x4cf0850>1}
Trial 7 (A5) Interspike Interval Histogram >>> len(current.spike_trains())
Raster ot 29
Trial 9 (A7) Density Estimation >>> len(current.spike_trains_by_unit())
Tial 10 (4-8) Peristimulus Time Histogram 8
Rate ANOVA >>> rates = [len(s) / (5.t_stop - s:t_start) for s in current.spike_trains()]
>>> pit.plot]
cumentation
Plugin Editor
Erziiz B and/or markers to the R ”
Tetrode 1 (A-0) correlograr S s T 58 1
1import
Tetrode 12 (A-3) E
Tetrode 13 (A-4) 3 from b
Tetrode 14 (A5) E - e
Tetrode 15 (A6) it H
Tetrode 16 (A7) Unit 204 (A1-0) 7 class R
Tetrode 3 (A-8) Unit 205 (A1-1) 8 dom
Tetrode 4 (A-9) Unit 214 (A1-2) 9 sho
Tetrode 5 (A-10) Unit 215 (A-1-3) 10 sho
Tetrode 6 (A11) |, | |Unit 206 (A-14) 1 sh
Unit 207 (A15)
Channels: . 13 def
Unit 208 (A-1-6) 1 SUper (RasterPlotPlugin, self)._imit_()
15 self.unit = pa.ns
16
Unit 211 17 def get_name(self):
Unit 212 (A1-10) 18 retim “Raster Plot’
i 19
Unit 213 (A1-11
nit 213 (A111) 20 def start(self, current, selections):
21 if self.donain # Units
2 il
3 else: # 5
2 [l
L o
save |
| Files | Navigation | Fiter || Plugins | Plugin Editor | Command History |

_static/comment.png

_images/initial-layout.png
Block
Recording Channel
Recording Channel Group
Segment

unit

_images/filterdock.png
Filter

=) Block
Not empty
) Recording Channel
=) Recording Channel Group
= Number of Channels
O1
O 2
O s
Os
=) Segment
(] stimulus ‘Jennifer Aniston’
Stimulus ‘Grandmother’
Unit
Has spike trains

_static/up-pressed.png

_images/plugin-signals.png
signal Plot x

‘Show subplot names
Included signals | Both D

Show events
Show epochs
(7] One plot per segment

Spikes
Show spikes.
Display as Lines
Included data | Both D

Use first spike as template.

cancel oK

_static/minus.png

_images/plugin-isi.png
~ Interspike Interval Histogram

Bin size (ms) 1.0
Cut off (ms)

Type

search.html

 Navigation

 		
 index

 		Spyke Viewer 0.4.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Robert Pröpper.
 Created using Sphinx 1.3.1.

_images/plugin-rasterplot.png
Raster Plot

Domain Units
‘Show lines.

Show events

Show epochs

cancel

_images/plugin-spectrogram.png
Spectrogram

Interpolate
(7] show color bar

_images/plugin-sde.png
Spike Density Estimation

Kernel size (ms) [500.0
start time (ms) (0.0
() stop time enabled
Time (ms) 10001.0
() Alignment event enabled
Event label
Kernel width optimization
() Enabled
Minimum kerel size (ms) [10.0
Maximum kernel size (ms) [500.0

Kerel size steps 20

e

_static/ajax-loader.gif

_static/comment-close.png

_images/plugin-correlogram.png
Correlogram

size(ms) [10 |
cut off (ms) [50.0

Data source | Units .
Counts per | Second .

() Border correction

() Include mirrored plots

_static/logo.png
Spyke
Viewer

