
Sputnik Documentation
Release 0.0.0

Kevin Fung

January 15, 2017

Contents

1 Summary 1

2 Getting Started 3

3 Documentation 5

4 License 7

5 Modules 9
5.1 bouncer module . 9
5.2 client module . 9
5.3 connection module . 10
5.4 datastore module . 11
5.5 handlers module . 11
5.6 network module . 13
5.7 server module . 14

6 Indices and Tables 15

Python Module Index 17

i

ii

CHAPTER 1

Summary

Sputnik is a Python IRC bouncer written using asyncio and backed by Redis. It is intended as a lightweight, zero-
configuration bouncer capable of deployment on cloud providers such as Heroku. Sputnik is written in pure Python,
so adding custom functionality is relatively straightforward.

Features

• Automatic Network Reconnection

• Channel Saver

• Buffered Message History

• Multi-Client Connections

1

https://docs.python.org/3/library/asyncio.html
https://github.com/antirez/redis
http://heroku.com

Sputnik Documentation, Release 0.0.0

2 Chapter 1. Summary

CHAPTER 2

Getting Started

You can easily deploy a Sputnik instance on Heroku using the button below.

Alternately, you can manually create and deploy your own Heroku app, or run Sputnik on your own computer or
server. To do so requires a Python 3.4 interpreter and Redis (optional), if you want persistence between restarts or
crashes.

3

Sputnik Documentation, Release 0.0.0

4 Chapter 2. Getting Started

CHAPTER 3

Documentation

Sputnik documentation is built using Sphinx and publicly hosted at http://sputnik.readthedocs.org/. You can also build
and serve the documentation locally.

git submodule update --init --recursive
cd docs && make dirhtml && cd _build/dirhtml
python -m SimpleHTTPServer

Then visit http://localhost:8000 in a browser.

5

http://sphinx-doc.org/faq.html
http://sputnik.readthedocs.org/
http://localhost:8000

Sputnik Documentation, Release 0.0.0

6 Chapter 3. Documentation

CHAPTER 4

License

The MIT License (MIT)

Copyright (c) 2014 Kevin Fung et al.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associ-
ated documentation files (the “Software”), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

7

Sputnik Documentation, Release 0.0.0

8 Chapter 4. License

CHAPTER 5

Modules

5.1 bouncer module

5.2 client module

Sputnik Client Implementation

This module provides the Sputnik Client implementation. This is a subclass of a Connection, and defines an interface
to IRC client applications implementing _RFC 2812: https://tools.ietf.org/html/rfc2812 .

class client.Client(bouncer)
Bases: connection.Connection

An instance of a connection from an IRC client.

A Client is the product of an asyncio protocol factory, and represents an instance of a connection from
an IRC client to the listen server. It does not implement an actual IRC client, as defined in _RFC 2812:
https://tools.ietf.org/html/rfc2812 .

bouncer
sputnik.Bouncer

A reference to the Bouncer singleton.

broker
sputnik.Network

The connected Network instance.

network
str

The name of the IRC network to connect to.

ready
bool

Indicates if the Client has connected to a Network.

connection_lost(exc)
Unregister the connected Client from the Bouncer.

Removes the Client from the set of connected Clients in the Bouncer before the connection is terminated.
After this point, there should be no remaining references to this instance of the Client.

9

https://tools.ietf.org/html/rfc2812
https://tools.ietf.org/html/rfc2812

Sputnik Documentation, Release 0.0.0

connection_made(transport)
Registers the connected Client with the Bouncer.

Adds the Client to the set of connected Clients in the Bouncer and saves the transport for later use.

data_received(data)
Handles incoming messages from connected IRC clients.

Messages coming from IRC clients are potentially batched, and need to be parsed into individual lines
before any other operation may occur. Afterwards, we split lines according to the IRC message format and
then perform actions as appropriate.

forward(*args)
Writes a message to the Network.

Because the Client represents an instance of a connection from an IRC client, we instead need to write to
the transport associated with the connected network.

Parameters args (list of str) – A list of strings to concatenate.

5.3 connection module

Sputnik Connection Implementation

This module provides the Sputnik Connection implementation. This is a base class that defines several helper functions
for common tasks related to transport-level interactions, such as message encoding and message passing.

class connection.Connection
Bases: asyncio.protocols.Protocol

A generic instance of a network connection.

A Connection is a base class that represents an instance of a network connection. The Connection implements
commonly used actions that may be performed on messages.

decode(line)
Attempts to decode a line as UTF-8, with fallback to Latin-1.

We try to maintain a full-Unicode presence where possible. However, not all IRC servers are encoding
using UTF-8, so we shadow str.decode() and provide a fallback to Latin-1 when needed.

Parameters line (str) – A byte-string message to decode.

Returns A decoded message.

Return type str

normalize(line, ending=’\r\n’)
Ensures that a line is terminated with the correct line endings.

The IRC protocol specifies that line endings should use CRLF line endings. This ensures that
lines conform to this standard. In the event of a server that does not conform to the specification,
we preserve the ability to provide an alternative line ending character sequence.

Args: line (str): A message to be sent to the IRC network. ending (str, optional): The line
ending. Defaults to ‘‘“

“‘‘.

send(*args)
Writes a message to the connected interface.

10 Chapter 5. Modules

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str

Sputnik Documentation, Release 0.0.0

Messages are typically of the form <command> <message>. This encapsulates the IRC messaging
protocol by concatenating messages and checking their line endings before encoding the message into raw
bytes, as part of the asyncio transport mechanism.

Parameters args (list of str) – A list of strings to concatenate.

5.4 datastore module

5.5 handlers module

Sputnik Request Handlers

This module provides Tornado Request Handlers for the Sputnik Web Interface.

class handlers.AddHandler(application, request, **kwargs)
Bases: handlers.BaseHandler

The RequestHandler that serves the add network page.

The add network page uses a form to receive new network settings. If a network already exists using the provided
name, the network is not added.

get()
Renders the add network page.

The add network page provides a form for adding a new network, complete with placeholder settings.

post()
Handles add network requests.

If a network already exists using the provided name, the network is not added.

class handlers.BaseHandler(application, request, **kwargs)
Bases: tornado.web.RequestHandler

A base handler that stores the Bouncer singleton.

get_current_user()

initialize(bouncer)
Initializes the RequestHandler and stores the Bouncer.

Parameters bouncer (sputnik.Bouncer) – The singleton Bouncer instance.

class handlers.DeleteHandler(application, request, **kwargs)
Bases: handlers.BaseHandler

The RequestHandler that handles delete network requests.

get(network_name)
Handles delete network requests.

Parameters network_name (str) – Network name of the network to delete.

class handlers.EditHandler(application, request, **kwargs)
Bases: handlers.BaseHandler

The RequestHandler that serves the edit network page.

The edit network page uses a form to receive updated settings from users. When a network is editted, it is
disconnected and then recreated using the new settings.

5.4. datastore module 11

http://docs.python.org/library/functions.html#str

Sputnik Documentation, Release 0.0.0

get(network_name)
Renders the edit network page.

The edit network page shows current settings for a network and provides a form for submitting changes to
that network.

Parameters network_name (str) – Network name of the network to edit.

post(network_name)
Handles edit network requests.

The existing network is disconnected and a new connection is started using the new settings.

Parameters network_name (str) – Network name of the network to edit.

class handlers.LoginHandler(application, request, **kwargs)
Bases: handlers.BaseHandler

The RequestHandler that serves the login page.

The login page prompts the user for their password and authenticates them when the password matches the one
stored by the bouncer in its database.

get()
Renders the login page.

The login page uses a form to ask the user for their password.

post()
Handles login requests.

Checks the password against the stored password and authenticates.

class handlers.LogoutHandler(application, request, **kwargs)
Bases: handlers.BaseHandler

The RequestHandler that handles log out requests.

Redirects to the homepage after clearing authentication.

get()
Handles log out requests.

Redirects to the homepage after clearing authentication.

class handlers.MainHandler(application, request, **kwargs)
Bases: handlers.BaseHandler

The main RequestHandler that serves the home page.

The home page displays the current list of networks.

get()
Renders the home page.

The home page displays the current list of networks.

class handlers.SettingsHandler(application, request, **kwargs)
Bases: handlers.BaseHandler

The RequestHandler that serves the settings page.

Allows users to change their password.

get()
Renders the settings page.

12 Chapter 5. Modules

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str

Sputnik Documentation, Release 0.0.0

The settings page uses a form to allow users to change their password.

post()
Handles settings requests.

Change password requests require the current password to match and two entries of the new password to
match.

5.6 network module

Sputnik Network Implementation

This module provides the Sputnik Network implementation. This is a subclass of a Connection, and defines an interface
to IRC server networks implementing _RFC 2813: https://tools.ietf.org/html/rfc2813 .

class network.Network(bouncer, network, hostname, port, nickname, username, realname, pass-
word=None, usermode=0)

Bases: connection.Connection

An instance of a connection to an IRC network.

A Network is the product of an asyncio protocol factory, and represents an instance of a connection from an IRC
client to an IRC server. This could be either a single IRC server, or more likely, a network of servers behind a
load balancer. It does not implement an actual IRC server, as defined in

??? (revisit this later)

attempt_reconnect(attempt=0, retries=5)
Attempts to reconnect to a network that unexpectedly disconnected.

This is only called if we drop the connection to a network and the connected flag is set, to distinguish from
intentional disconnects.

Parameters

• attempt (int) – The current attempt count.

• retries (int) – The number of times to attempt to reconnect.

connection_lost(exc)
Unregisters the connected Network from the Bouncer.

Removes the Network from the dictionary of connected Clients in the Bouncer before the connection is
terminated. After this point, there should be no remaining references to this instance of the Network.

connection_made(transport)
Registers the connected Network with the Bouncer.

Adds the Network to the set of connected Networks in the Bouncer and saves the transport for later use.
This also creates a collection of buffers and logging facilities, and initiates the authentication handshake,
if applicable.

data_received(data)
Handles incoming messages from connected IRC networks.

Messages coming from IRC networks are potentially batched and need to be parsed into individual lines
before any other operation may occur. On certain occasions, incoming data may overflow the transport
buffer, requiring additional logic to reconstitute the messages into a single stream. Afterwards, we split
lines according to the IRC message format and perform actions as appropriate.

5.6. network module 13

https://tools.ietf.org/html/rfc2813
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int

Sputnik Documentation, Release 0.0.0

forward(*args)
Writes a message to all connected CLients.

Because the Network represents an instance of a connection to an IRC network, we instead need to write
to the transports of all clients.

Parameters args (list of str) – A list of strings to concatenate.

5.7 server module

Sputnik HTTPServer Implementation

This module provides the Sputnik HTTPServer implementation. It is responsible for serving the web interface, and
interfaces with the Bouncer singleton to connect to and disconnect from networks.

class server.HTTPServer(bouncer)
Bases: tornado.web.Application

An Asynchronous HTTP Server that diplays the frontend.

The HTTPServer renders the frontend and accepts commands used to control the Bouncer singleton. For de-
velopment purposes, it may be helpful to set the DEBUG environment variable. e.g. export DEBUG=True

start(port=8080)
Starts the HTTP listen server.

This loads the Tornado HTTPServer on the specified port.

Parameters port (int, optional) – The port to listen on. Defaults to 8080

14 Chapter 5. Modules

CHAPTER 6

Indices and Tables

• genindex

• modindex

15

Sputnik Documentation, Release 0.0.0

16 Chapter 6. Indices and Tables

Python Module Index

c
client, 9
connection, 10

h
handlers, 11

n
network, 13

s
server, 14

17

Sputnik Documentation, Release 0.0.0

18 Python Module Index

Index

A
AddHandler (class in handlers), 11
attempt_reconnect() (network.Network method), 13

B
BaseHandler (class in handlers), 11
bouncer (client.Client attribute), 9
broker (client.Client attribute), 9

C
Client (class in client), 9
client (module), 9
Connection (class in connection), 10
connection (module), 10
connection_lost() (client.Client method), 9
connection_lost() (network.Network method), 13
connection_made() (client.Client method), 9
connection_made() (network.Network method), 13

D
data_received() (client.Client method), 10
data_received() (network.Network method), 13
decode() (connection.Connection method), 10
DeleteHandler (class in handlers), 11

E
EditHandler (class in handlers), 11

F
forward() (client.Client method), 10
forward() (network.Network method), 13

G
get() (handlers.AddHandler method), 11
get() (handlers.DeleteHandler method), 11
get() (handlers.EditHandler method), 11
get() (handlers.LoginHandler method), 12
get() (handlers.LogoutHandler method), 12
get() (handlers.MainHandler method), 12
get() (handlers.SettingsHandler method), 12

get_current_user() (handlers.BaseHandler method), 11

H
handlers (module), 11
HTTPServer (class in server), 14

I
initialize() (handlers.BaseHandler method), 11

L
LoginHandler (class in handlers), 12
LogoutHandler (class in handlers), 12

M
MainHandler (class in handlers), 12

N
Network (class in network), 13
network (client.Client attribute), 9
network (module), 13
normalize() (connection.Connection method), 10

P
post() (handlers.AddHandler method), 11
post() (handlers.EditHandler method), 12
post() (handlers.LoginHandler method), 12
post() (handlers.SettingsHandler method), 13

R
ready (client.Client attribute), 9

S
send() (connection.Connection method), 10
server (module), 14
SettingsHandler (class in handlers), 12
start() (server.HTTPServer method), 14

19

	Summary
	Getting Started
	Documentation
	License
	Modules
	bouncer module
	client module
	connection module
	datastore module
	handlers module
	network module
	server module

	Indices and Tables
	Python Module Index

