
springboot-javafx-support
Documentation

Release stable

Mar 12, 2018

Contents

1 0. Prerequisites 3

2 1. Generate your GUI with FXML using SceneBuilder 5

3 2. Create your view classes 7

4 3. Create a Controller, Presenter 9

5 4. Create a Starter class 11

6 5. Style your views 13

7 6. Adding resource bundles to the view 15

8 Clone and improve me! 17

i

ii

springboot-javafx-support Documentation, Release stable

In an ideal world, a UX designer creates nice and cool scenes and elements spiced with CSS, while the developer
writes the logic for the application.

This small library links Spring Boot with JavaFx 8. Let all your view and controller classes be Spring Beans and make
use of all features in the Spring Universe.

You’ll find a set of example applications at github and check my homepage. In the example I use concrete classes
everywhere. In a real world application you can (and should) of course use interfaces for views and controllers and let
Spring do the magic to instantiate the right bean.

Contents 1

https://github.com/roskenet/spring-javafx-examples
https://www.felixroske.de/page/programmierung/index.html

springboot-javafx-support Documentation, Release stable

2 Contents

CHAPTER 1

0. Prerequisites

You will at least need JDK1.8 patch level 40.

You find the latest springboot-javafx-support library at maven-central.

3

http://search.maven.org/#artifactdetails\T1\textbar {}de.roskenet\T1\textbar {}springboot-javafx-support\T1\textbar {}1.3.15\T1\textbar {}jar

springboot-javafx-support Documentation, Release stable

4 Chapter 1. 0. Prerequisites

CHAPTER 2

1. Generate your GUI with FXML using SceneBuilder

You find SceneBuilder here: http://gluonhq.com/open-source/scene-builder/ Put the files in a folder called fxml in
your classpath, so that Spring’s resource loader can find them. Hint: Create a dedicated jar with all FXML, css and
resource files and add it as a dependency using your preferred tooling (Maven, Gradle. . .).

5

http://gluonhq.com/open-source/scene-builder/

springboot-javafx-support Documentation, Release stable

6 Chapter 2. 1. Generate your GUI with FXML using SceneBuilder

CHAPTER 3

2. Create your view classes

Extend your view class from AbstractFxmlView and annotate it with @FXMLView. Name your class <FXML-
File>View. E.g. given your FXML-file is named somelist.fxml the corresponding view class is SomeListView. When
you want to name your class different, you need to add the fxml file name as value to your @FXMLView annotation:
@FXMLView(“/fxml/myviewfile.fxml”)

7

springboot-javafx-support Documentation, Release stable

8 Chapter 3. 2. Create your view classes

CHAPTER 4

3. Create a Controller, Presenter

Create your controller class for your view as you defined it in the fxml file:
fx:controller=”de.example.MyCoolPresenter” and annotate MyCoolPresenter with @FXMLController.

9

springboot-javafx-support Documentation, Release stable

10 Chapter 4. 3. Create a Controller, Presenter

CHAPTER 5

4. Create a Starter class

Create a starter class extending AbstractJavaFxApplicationSupport. Annotate this one with @SpringBootApplication
and call launchApp() from the main method.

11

springboot-javafx-support Documentation, Release stable

12 Chapter 5. 4. Create a Starter class

CHAPTER 6

5. Style your views

You have multiple ways to style your view: First on is adding your JavaFX-css with SceneBuilder (the
common JavaFX-way). Second is to add one or more css-files to the @FXMLView annotation: @FXM-
LView(css={“/css/company.css”, “/css/project.css”}). Or third possibility: Add a property javafx.css=/global.css to
your application.properties (or application.yaml).

13

springboot-javafx-support Documentation, Release stable

14 Chapter 6. 5. Style your views

CHAPTER 7

6. Adding resource bundles to the view

To i18n your application you can either add your properties files inside the package of your view class or add a bundle
parameter to the @FXMLView annotation. Example: Your View is named foo.myapp.main.CoolView.class then your
properties should be in the package foo.myapp.main as: cool.properties (default and fallback) and cool_de.properties
(german), cool_fr.properties (french) etc. Or if you want to have your files reside in a different location (e.g.
/i18n/messages_*.properties) then add your bundle by adding @FXMLView(bundle = “i18n.messages”) Be aware
of the dot because the FXMLLoader assumes that this is a classpath.

15

springboot-javafx-support Documentation, Release stable

16 Chapter 7. 6. Adding resource bundles to the view

CHAPTER 8

Clone and improve me!

Please clone the sources from https://github.com/roskenet/springboot-javafx-support.git Pull requests welcome!

Felix Roske <felix.roske@zalando.de>

17

https://github.com/roskenet/springboot-javafx-support.git
mailto:felix.roske@zalando.de

	0. Prerequisites
	1. Generate your GUI with FXML using SceneBuilder
	2. Create your view classes
	3. Create a Controller, Presenter
	4. Create a Starter class
	5. Style your views
	6. Adding resource bundles to the view
	Clone and improve me!

