

 Navigation

 	
 index

 	
 next |

 	Splash 1.7 documentation

Splash - A javascript rendering service

Splash is a javascript rendering service. It’s a lightweight web browser
with an HTTP API, implemented in Python using Twisted and QT. The (twisted)
QT reactor is used to make the sever fully asynchronous allowing
to take advantage of webkit concurrency via QT main loop. Some of Splash
features:

	process multiple webpages in parallel;

	get HTML results and/or take screenshots;

	turn OFF images or use Adblock Plus rules to make rendering faster;

	execute custom JavaScript in page context;

	transparently plug into existing software using Proxy interface;

	get detailed rendering info in HAR format.

Documentation

	Installation
	Linux + Docker

	OS X + Docker

	Ubuntu 12.04 (manual way)

	Splash Versions

	Customizing Dockerized Splash

	Splash HTTP API
	render.html

	render.png

	render.jpeg

	render.har

	render.json

	execute

	Executing custom Javascript code within page context

	Request Filters

	Proxy Profiles

	Splash as a Proxy

	Other Endpoints

	Splash Scripts Tutorial
	Intro

	Entry Point: the “main” Function

	Where Are My Callbacks?

	Living Without Callbacks

	Calling Splash Methods

	Error Handling

	Sandbox

	Custom Lua Modules

	Timeouts

	Splash Scripts Reference
	splash:go

	splash:wait

	splash:jsfunc

	splash:evaljs

	splash.js_enabled

	splash:runjs

	splash:wait_for_resume

	splash:autoload

	splash:http_get

	splash:set_content

	splash:html

	splash:png

	splash:jpeg

	splash:har

	splash:history

	splash:url

	splash:get_cookies

	splash:add_cookie

	splash:init_cookies

	splash:clear_cookies

	splash:delete_cookies

	splash:lock_navigation

	splash:unlock_navigation

	splash:set_result_content_type

	splash:set_result_header

	splash.images_enabled

	splash:get_viewport_size

	splash:set_viewport_size

	splash:set_viewport_full

	splash:set_user_agent

	splash:set_custom_headers

	splash:get_perf_stats

	splash:on_request

	splash:on_response_headers

	splash.args

	Splash and IPython (Jupyter)
	Installation

	From Notebook to HTTP API

	Splash Development
	Contributing

	Functional Tests

	Stress tests

	Changes
	1.7 (2015-08-06)

	1.6 (2015-05-15)

	1.5 (2015-03-03)

	1.4 (2015-02-10)

	1.3.1 (2014-12-13)

	1.3 (2014-12-04)

	1.2.1 (2014-10-16)

	1.2 (2014-10-14)

	1.1 (2014-10-10)

	1.0 (2014-07-28)

 Copyright 2015, Scrapinghub.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Splash 1.7 documentation

Installation

Linux + Docker

	Install Docker [http://docker.io].

	Pull the image:

$ sudo docker pull scrapinghub/splash

	Start the container:

$ sudo docker run -p 5023:5023 -p 8050:8050 -p 8051:8051 scrapinghub/splash

	Splash is now available at 0.0.0.0 at ports
8050 (http), 8051 (https) and 5023 (telnet).

OS X + Docker

	Install Docker [http://docker.io] (via Boot2Docker [http://boot2docker.io/]).

	Pull the image:

$ docker pull scrapinghub/splash

	Start the container:

$ docker run -p 5023:5023 -p 8050:8050 -p 8051:8051 scrapinghub/splash

	Figure out the ip address of boot2docker:

$ boot2docker ip

The VM's Host only interface IP address is: 192.168.59.103

	Splash is available at the returned IP address at ports
8050 (http), 8051 (https) and 5023 (telnet).

Ubuntu 12.04 (manual way)

	Install system dependencies:

$ sudo add-apt-repository -y ppa:pi-rho/security
$ sudo apt-get update
$ sudo apt-get install libre2-dev
$ sudo apt-get install netbase ca-certificates liblua5.2-dev \
 python python-dev build-essential libicu48 \
 xvfb libqt4-webkit python-twisted python-qt4

	TODO: install Python dependencies using pip, clone repo, chdir to it,
start splash.

To run the server execute the following command:

python -m splash.server

Run python -m splash.server --help to see options available.

By default, Splash API endpoints listen to port 8050 on all available
IPv4 addresses. To change the port use --port option:

python -m splash.server --port=5000

Requirements

install PyQt4 (Splash is tested on PyQT 4.9.x and PyQT 4.11.x)
and the following packages:
twisted
qt4reactor
psutil
adblockparser >= 0.4
re2 >= 0.2.21
xvfbwrapper
Pillow

for scripting support
lupa >= 1.1
funcparserlib >= 0.3.6

the following libraries are only required by tests
pytest
pyOpenSSL
requests >= 1.0
jsonschema >= 2.0
strict-rfc3339

Splash Versions

docker pull scrapinghub/splash will give you the latest stable Splash
release. To obtain the latest development version use
docker pull scrapinghub/splash:master. Specific Splash versions
are also available, e.g. docker pull scrapinghub/splash:1.5.

Customizing Dockerized Splash

Passing Custom Options

To run Splash with custom options pass them to docker run.
For example, let’s increase log verbosity:

$ docker run -p 8050:8050 scrapinghub/splash -v3

To see all possible options pass --help. Not all options will work the
same inside Docker: changing ports doesn’t make sense (use docker run options
instead), and paths are paths in the container.

Folders Sharing

To set custom Request Filters use -v Docker option. First, create
a folder with request filters on your local filesystem, then make it available
to the container:

$ docker run -p 8050:8050 -v <my-filters-dir>:/etc/splash/filters scrapinghub/splash

Replace <my-filters-dir> with a path of your local folder with request
filters.

Docker Data Volume Containers can also be used. Check
https://docs.docker.com/userguide/dockervolumes/ for more info.

Proxy Profiles and Javascript Profiles can be added
in a similar way:

$ docker run -p 8050:8050 \
 -v <my-proxy-profiles-dir>:/etc/splash/proxy-profiles \
 -v <my-js-profiles-dir>:/etc/splash/js-profiles \
 scrapinghub/splash

To setup Custom Lua Modules mount a folder to
/etc/splash/lua_modules. If you use a Lua sandbox
(default) don’t forget to list safe modules using
--lua-sandbox-allowed-modules option:

$ docker run -p 8050:8050 \
 -v <my-lua-modules-dir>:/etc/splash/lua_modules \
 --lua-sandbox-allowed-modules 'module1;module2' \
 scrapinghub/splash

Warning

Folder sharing (-v option) doesn’t work on OS X and Windows
(see https://github.com/docker/docker/issues/4023).
It should be fixed in future Docker & Boot2Docker releases.
For now use one of the workarounds mentioned in issue comments
or clone Splash repo and customize its Dockerfile.

Splash in Production

In production you may want to daemonize Splash, start it on boot and restart
on failures. Since Docker 1.2 an easy way to do this is to use --restart
and -d options together; another way to do that is to use standard tools
like upstart, systemd or supervisor.

Note

--restart option won’t work without -d.

Please also take into account the memory usage: Splash uses an unbound
in-memory cache and so it will eventually consume all RAM. A workaround is
to restart the process when it uses too much memory; there is Splash
--maxrss option for that. You can also add Docker --memory option
to the mix.

In production it is a good idea to pin Splash version - instead of
scrapinghub/splash it is usually better to use something like
scrapinghub/splash:1.6.

The final command for starting a long-running Splash server which uses
up to 4GB RAM and daemonizes & restarts itself could look like this:

$ docker run -d -p 8050:8050 --memory=4.5G --restart=always scrapinghub/splash:1.6 --maxrss 4000

Building Local Docker Images

To build your own Docker image, checkout Splash source code [https://github.com/scrapinghub/splash] using git,
then execute the following command from Splash source root:

$ docker build -t my-local-splash .

To build Splash-Jupyter Docker image use this command:

$ docker build -t my-local-splash-jupyter -f dockerfiles/splash-jupyter/Dockerfile .

You may have to change FROM line in dockerfiles/splash-jupyter/Dockerfile
if you want it to be based on your local Splash Docker container.

 Copyright 2015, Scrapinghub.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Splash 1.7 documentation

Splash HTTP API

Consult with Installation to get Splash up and running.

Splash is controlled via HTTP API. For all endpoints below parameters
may be sent either as GET arguments or encoded to JSON and
POSTed with Content-Type: application/json header.

The most versatile endpoint that provides all Splash features
is execute (WARNING: it is still experimental).
Other endpoints may be easier to use in specific
cases - for example, render.png returns a screenshot in PNG format
that can be used as img src without any further processing, and
render.json is convenient if you don’t need to interact with a page.

The following endpoints are supported:

render.html

Return the HTML of the javascript-rendered page.

Arguments:

	url : string : required

	The url to render (required)

	baseurl : string : optional

	The base url to render the page with.

If given, base HTML content will be feched from the URL given in the url
argument, and render using this as the base url.

	timeout : float : optional

	A timeout (in seconds) for the render (defaults to 30).

By default, maximum allowed value for the timeout is 60 seconds.
To override it start Splash with --max-timeout command line option.
For example, here Splash is configured to allow timeouts up to 2 minutes:

$ python -m splash.server --max-timeout 120

	resource_timeout : float : optional

	A timeout (in seconds) for individual network requests.

See also: splash:on_request and its
request:set_timeout(timeout) method.

	wait : float : optional

	Time (in seconds) to wait for updates after page is loaded
(defaults to 0). Increase this value if you expect pages to contain
setInterval/setTimeout javascript calls, because with wait=0
callbacks of setInterval/setTimeout won’t be executed. Non-zero
wait is also required for PNG and JPEG rendering when doing
full-page rendering (see render_all). Maximum
allowed value for wait is 10 seconds.

	proxy : string : optional

	Proxy profile name. See Proxy Profiles.

	js : string : optional

	Javascript profile name. See Javascript Profiles.

	js_source : string : optional

	JavaScript code to be executed in page context.
See Executing custom Javascript code within page context.

	filters : string : optional

	Comma-separated list of request filter names. See Request Filters

	allowed_domains : string : optional

	Comma-separated list of allowed domain names.
If present, Splash won’t load anything neither from domains
not in this list nor from subdomains of domains not in this list.

	allowed_content_types : string : optional

	Comma-separated list of allowed content types.
If present, Splash will abort any request if the response’s content type
doesn’t match any of the content types in this list.
Wildcards are supported using the fnmatch [https://docs.python.org/2/library/fnmatch.html]
syntax.

	forbidden_content_types : string : optional

	Comma-separated list of forbidden content types.
If present, Splash will abort any request if the response’s content type
matches any of the content types in this list.
Wildcards are supported using the fnmatch [https://docs.python.org/2/library/fnmatch.html]
syntax.

	viewport : string : optional

	View width and height (in pixels) of the browser viewport to render the web
page. Format is “<width>x<height>”, e.g. 800x600. Default value is 1024x768.

‘viewport’ parameter is more important for PNG and JPEG rendering; it is supported for
all rendering endpoints because javascript code execution can depend on
viewport size.

For backward compatibility reasons, it also accepts ‘full’ as value;
viewport=full is semantically equivalent to render_all=1 (see
render_all).

	images : integer : optional

	Whether to download images. Possible values are
1 (download images) and 0 (don’t download images). Default is 1.

Note that cached images may be displayed even if this parameter is 0.
You can also use Request Filters to strip unwanted contents based on URL.

	headers : JSON array or object : optional

	HTTP headers to set for the first outgoing request.

This option is only supported for application/json POST requests.
Value could be either a JSON array with (header_name, header_value)
pairs or a JSON object with header names as keys and header values
as values.

“User-Agent” header is special: is is used for all outgoing requests,
unlike other headers.

Examples

Curl example:

curl 'http://localhost:8050/render.html?url=http://domain.com/page-with-javascript.html&timeout=10&wait=0.5'

The result is always encoded to utf-8. Always decode HTML data returned
by render.html endpoint from utf-8 even if there are tags like

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

in the result.

render.png

Return a image (in PNG format) of the javascript-rendered page.

Arguments:

Same as render.html plus the following ones:

	width : integer : optional

	Resize the rendered image to the given width (in pixels) keeping the aspect
ratio.

	height : integer : optional

	Crop the renderd image to the given height (in pixels). Often used in
conjunction with the width argument to generate fixed-size thumbnails.

	render_all : int : optional

	Possible values are 1 and 0. When render_all=1, extend the
viewport to include the whole webpage (possibly very tall) before rendering.
Default is render_all=0.

Note

render_all=1 requires non-zero wait parameter. This is an
unfortunate restriction, but it seems that this is the only way to make
rendering work reliably with render_all=1.

	scale_method : string : optional

	Possible values are raster (default) and vector. If
scale_method=raster, rescaling operation performed via width parameter is pixel-wise. If scale_method=vector, rescaling
is done element-wise during rendering.

Note

Vector-based rescaling is more performant and results in crisper fonts and
sharper element boundaries, however there may be rendering issues, so use
it with caution.

Examples

Curl examples:

render with timeout
curl 'http://localhost:8050/render.png?url=http://domain.com/page-with-javascript.html&timeout=10'

320x240 thumbnail
curl 'http://localhost:8050/render.png?url=http://domain.com/page-with-javascript.html&width=320&height=240'

render.jpeg

Return a image (in JPEG format) of the javascript-rendered page.

Arguments:

Same as render.png plus the following ones:

	quality : integer : optional

	JPEG quality parameter in range from 0 to 100.
Default is quality=75.

Note

quality values above 95 should be avoided;
quality=100 disables portions of the JPEG compression algorithm,
and results in large files with hardly any gain in image quality.

Examples

Curl examples:

render with default quality
curl 'http://localhost:8050/render.jpeg?url=http://domain.com/'

render with low quality
curl 'http://localhost:8050/render.jpeg?url=http://domain.com/&quality=30'

render.har

Return information about Splash interaction with a website in HAR [http://www.softwareishard.com/blog/har-12-spec/] format.
It includes information about requests made, responses received, timings,
headers, etc.

You can use online HAR viewer [http://www.softwareishard.com/har/viewer/] to visualize information returned from
this endpoint; it will be very similar to “Network” tabs in Firefox and Chrome
developer tools.

Currently this endpoint doesn’t expose raw request and response contents;
only meta-information like headers and timings is available.

Arguments for this endpoint are the same as for render.html.

render.json

Return a json-encoded dictionary with information about javascript-rendered
webpage. It can include HTML, PNG and other information, based on
arguments passed.

Arguments:

Same as render.jpeg plus the following ones:

	html : integer : optional

	Whether to include HTML in output. Possible values are
1 (include) and 0 (exclude). Default is 0.

	png : integer : optional

	Whether to include PNG in output. Possible values are
1 (include) and 0 (exclude). Default is 0.

	jpeg : integer : optional

	Whether to include JPEG in output. Possible values are
1 (include) and 0 (exclude). Default is 0.

	iframes : integer : optional

	Whether to include information about child frames in output.
Possible values are 1 (include) and 0 (exclude).
Default is 0.

	script : integer : optional

	Whether to include the result of the executed javascript final
statement in output (see Executing custom Javascript code within page context).
Possible values are 1 (include) and 0 (exclude). Default is 0.

	console : integer : optional

	Whether to include the executed javascript console messages in output.
Possible values are 1 (include) and 0 (exclude). Default is 0.

	history : integer : optional

	Whether to include the history of requests/responses for webpage main
frame. Possible values are 1 (include) and 0 (exclude).
Default is 0.

Use it to get HTTP status codes and headers.
Only information about “main” requests/responses is returned
(i.e. information about related resources like images and AJAX queries
is not returned). To get information about all requests and responses
use ‘har’ argument.

	har : integer : optional

	Whether to include HAR [http://www.softwareishard.com/blog/har-12-spec/] in output. Possible values are
1 (include) and 0 (exclude). Default is 0.
If this option is ON the result will contain the same data
as render.har provides under ‘har’ key.

Examples

By default, URL, requested URL, page title and frame geometry is returned:

{
 "url": "http://crawlera.com/",
 "geometry": [0, 0, 640, 480],
 "requestedUrl": "http://crawlera.com/",
 "title": "Crawlera"
}

Add ‘html=1’ to request to add HTML to the result:

{
 "url": "http://crawlera.com/",
 "geometry": [0, 0, 640, 480],
 "requestedUrl": "http://crawlera.com/",
 "html": "<!DOCTYPE html><!--[if IE 8]>....",
 "title": "Crawlera"
}

Add ‘png=1’ to request to add base64-encoded PNG screenshot to the result:

{
 "url": "http://crawlera.com/",
 "geometry": [0, 0, 640, 480],
 "requestedUrl": "http://crawlera.com/",
 "png": "iVBORw0KGgoAAAAN...",
 "title": "Crawlera"
}

Setting both ‘html=1’ and ‘png=1’ allows to get HTML and a screenshot
at the same time - this guarantees that the screenshot matches the HTML.

By adding “iframes=1” information about iframes could be obtained:

{
 "geometry": [0, 0, 640, 480],
 "frameName": "",
 "title": "Scrapinghub | Autoscraping",
 "url": "http://scrapinghub.com/autoscraping.html",
 "childFrames": [
 {
 "title": "Tutorial: Scrapinghub's autoscraping tool - YouTube",
 "url": "",
 "geometry": [235, 502, 497, 310],
 "frameName": "<!--framePath //<!--frame0-->-->",
 "requestedUrl": "http://www.youtube.com/embed/lSJvVqDLOOs?version=3&rel=1&fs=1&showsearch=0&showinfo=1&iv_load_policy=1&wmode=transparent",
 "childFrames": []
 }
],
 "requestedUrl": "http://scrapinghub.com/autoscraping.html"
}

Note that iframes can be nested.

Pass both ‘html=1’ and ‘iframes=1’ to get HTML for all iframes
as well as for the main page:

 {
 "geometry": [0, 0, 640, 480],
 "frameName": "",
 "html": "<!DOCTYPE html...",
 "title": "Scrapinghub | Autoscraping",
 "url": "http://scrapinghub.com/autoscraping.html",
 "childFrames": [
 {
 "title": "Tutorial: Scrapinghub's autoscraping tool - YouTube",
 "url": "",
 "html": "<!DOCTYPE html>...",
 "geometry": [235, 502, 497, 310],
 "frameName": "<!--framePath //<!--frame0-->-->",
 "requestedUrl": "http://www.youtube.com/embed/lSJvVqDLOOs?version=3&rel=1&fs=1&showsearch=0&showinfo=1&iv_load_policy=1&wmode=transparent",
 "childFrames": []
 }
],
 "requestedUrl": "http://scrapinghub.com/autoscraping.html"
}

Unlike ‘html=1’, ‘png=1’ does not affect data in childFrames.

When executing JavaScript code (see Executing custom Javascript code within page context) add the
parameter ‘script=1’ to the request to include the code output in the result:

{
 "url": "http://crawlera.com/",
 "geometry": [0, 0, 640, 480],
 "requestedUrl": "http://crawlera.com/",
 "title": "Crawlera",
 "script": "result of script..."
}

The JavaScript code supports the console.log() function to log messages.
Add ‘console=1’ to the request to include the console output in the result:

{
 "url": "http://crawlera.com/",
 "geometry": [0, 0, 640, 480],
 "requestedUrl": "http://crawlera.com/",
 "title": "Crawlera",
 "script": "result of script...",
 "console": ["first log message", "second log message", ...]
}

Curl examples:

full information
curl 'http://localhost:8050/render.json?url=http://domain.com/page-with-iframes.html&png=1&html=1&iframes=1'

HTML and meta information of page itself and all its iframes
curl 'http://localhost:8050/render.json?url=http://domain.com/page-with-iframes.html&html=1&iframes=1'

only meta information (like page/iframes titles and urls)
curl 'http://localhost:8050/render.json?url=http://domain.com/page-with-iframes.html&iframes=1'

render html and 320x240 thumbnail at once; do not return info about iframes
curl 'http://localhost:8050/render.json?url=http://domain.com/page-with-iframes.html&html=1&png=1&width=320&height=240'

Render page and execute simple Javascript function, display the js output
curl -X POST -H 'content-type: application/javascript' \
 -d 'function getAd(x){ return x; } getAd("abc");' \
 'http://localhost:8050/render.json?url=http://domain.com&script=1'

Render page and execute simple Javascript function, display the js output and the console output
curl -X POST -H 'content-type: application/javascript' \
 -d 'function getAd(x){ return x; }; console.log("some log"); console.log("another log"); getAd("abc");' \
 'http://localhost:8050/render.json?url=http://domain.com&script=1&console=1'

execute

Warning

This endpoint is experimental. API could change in future releases.

Execute a custom rendering script and return a result.

render.html, render.png, render.jpeg, render.har and render.json
endpoints cover many common use cases, but sometimes they are not enough.
This endpoint allows to write custom Splash Scripts.

Arguments:

	lua_source : string : required

	Browser automation script. See Splash Scripts Tutorial for more info.

	timeout : float : optional

	Same as ‘timeout’ argument for render.html.

	allowed_domains : string : optional

	Same as ‘allowed_domains’ argument for render.html.

	proxy : string : optional

	Same as ‘proxy’ argument for render.html.

	filters : string : optional

	Same as ‘filters’ argument for render.html.

Executing custom Javascript code within page context

Note

See also: executing JavaScript in Splash scripts

Splash supports executing JavaScript code within the context of the page.
The JavaScript code is executed after the page finished loading (including
any delay defined by ‘wait’) but before the page is rendered. This allow to
use the javascript code to modify the page being rendered.

To execute JavaScript code use js_source parameter.
It should contain JavaScript code to be executed.

Note that browsers and proxies limit the amount of data can be sent using GET,
so it is a good idea to use content-type: application/json POST request.

Curl example:

Render page and modify its title dynamically
curl -X POST -H 'content-type: application/json' \
 -d '{"js_source": "document.title=\"My Title\";", "url": "http://example.com"}' \
 'http://localhost:8050/render.html'

Another way to do it is to use a POST request with the content-type set to
‘application/javascript’. The body of the request should contain the code to
be executed.

Curl example:

Render page and modify its title dynamically
curl -X POST -H 'content-type: application/javascript' \
 -d 'document.title="My Title";' \
 'http://localhost:8050/render.html?url=http://domain.com'

To get the result of a javascript function executed within page
context use render.json endpoint with script = 1 parameter.

In Splash-as-a-proxy mode use X-Splash-js-source
header instead of a POST request.

Javascript Profiles

Splash supports “javascript profiles” that allows to preload javascript files.
Javascript files defined in a profile are executed after the page is loaded
and before any javascript code defined in the request.

The preloaded files can be used in the user’s POST’ed code.

To enable javascript profiles support, run splash server with the
--js-profiles-path=<path to a folder with js profiles> option:

python -m splash.server --js-profiles-path=/etc/splash/js-profiles

Note

See also: Splash Versions.

Then create a directory with the name of the profile and place inside it the
javascript files to load (note they must be utf-8 encoded).
The files are loaded in the order they appear in the filesystem.
Directory example:

/etc/splash/js-profiles/
 mywebsite/
 lib1.js

To apply this javascript profile add the parameter
js=mywebsite to the request:

curl -X POST -H 'content-type: application/javascript' \
 -d 'myfunc("Hello");' \
 'http://localhost:8050/render.html?js=mywebsite&url=http://domain.com'

Note that this example assumes that myfunc is a javascript function
defined in lib1.js.

Javascript Security

If Splash is started with --js-cross-domain-access option

python -m splash.server --js-cross-domain-access

then javascript code is allowed to access the content of iframes
loaded from a security origin diferent to the original page (browsers usually
disallow that). This feature is useful for scraping, e.g. to extract the
html of a iframe page. An example of its usage:

curl -X POST -H 'content-type: application/javascript' \
 -d 'function getContents(){ var f = document.getElementById("external"); return f.contentDocument.getElementsByTagName("body")[0].innerHTML; }; getContents();' \
 'http://localhost:8050/render.html?url=http://domain.com'

The javascript function ‘getContents’ will look for a iframe with
the id ‘external’ and extract its html contents.

Note that allowing cross origin javascript calls is a potential
security issue, since it is possible that secret information (i.e cookies)
is exposed when this support is enabled; also, some websites don’t load
when cross-domain security is disabled, so this feature is OFF by default.

Request Filters

Splash supports filtering requests based on
Adblock Plus [https://adblockplus.org/] rules. You can use
filters from EasyList [https://easylist.adblockplus.org/en/] to remove ads and tracking codes
(and thus speedup page loading), and/or write filters manually to block
some of the requests (e.g. to prevent rendering of images, mp3 files,
custom fonts, etc.)

To activate request filtering support start splash with --filters-path
option:

python -m splash.server --filters-path=/etc/splash/filters

Note

See also: Splash Versions.

The folder --filters-path points to should contain .txt files with
filter rules in Adblock Plus format. You may download easylist.txt
from EasyList [https://easylist.adblockplus.org/en/] and put it there, or create .txt files with your own rules.

For example, let’s create a filter that will prevent custom fonts
in ttf and woff formats from loading (due to qt bugs they may cause
splash to segfault on Mac OS X):

! put this to a /etc/splash/filters/nofonts.txt file
! comments start with an exclamation mark

.ttf|
.woff|

To use this filter in a request add filters=nofonts parameter
to the query:

curl 'http://localhost:8050/render.png?url=http://domain.com/page-with-fonts.html&filters=nofonts'

You can apply several filters; separate them by comma:

curl 'http://localhost:8050/render.png?url=http://domain.com/page-with-fonts.html&filters=nofonts,easylist'

If default.txt file is present in --filters-path folder it is
used by default when filters argument is not specified. Pass
filters=none if you don’t want default filters to be applied.

To learn about Adblock Plus filter syntax check these links:

	https://adblockplus.org/en/filter-cheatsheet

	https://adblockplus.org/en/filters

Splash doesn’t support full Adblock Plus filters syntax, there are some
limitations:

	element hiding rules are not supported; filters can prevent network
request from happening, but they can’t hide parts of an already loaded page;

	only domain option is supported.

Unsupported rules are silently discarded.

Note

If you want to stop downloading images check ‘images’
parameter. It doesn’t require URL-based filters to work, and it can
filter images that are hard to detect using URL-based patterns.

Warning

It is very important to have pyre2 [https://github.com/axiak/pyre2]
library installed if you are going to use filters with a large number
of rules (this is the case for files downloaded from EasyList [https://easylist.adblockplus.org/en/]).

Without pyre2 library splash (via adblockparser [https://github.com/scrapinghub/adblockparser]) relies on re module
from stdlib, and it can be 1000x+ times slower than re2 - it may be
faster to download files than to discard them if you have a large number
of rules and don’t use re2. With re2 matching becomes very fast.

Make sure you are not using re2==0.2.20 installed from PyPI (it is broken);
use the latest version.

Proxy Profiles

Splash supports “proxy profiles” that allows to set proxy handling rules
per-request using proxy parameter.

To enable proxy profiles support, run splash server with
--proxy-profiles-path=<path to a folder with proxy profiles> option:

python -m splash.server --proxy-profiles-path=/etc/splash/proxy-profiles

Note

If you run Splash using Docker, check Folders Sharing.

Then create an INI file with “proxy profile” config inside the
specified folder, e.g. /etc/splash/proxy-profiles/mywebsite.ini.
Example contents of this file:

[proxy]

; required
host=proxy.crawlera.com
port=8010

; optional, default is no auth
username=username
password=password

; optional, default is HTTP. Allowed values are HTTP and SOCKS5
type=HTTP

[rules]
; optional, default ".*"
whitelist=
 .*mywebsite\.com.*

; optional, default is no blacklist
blacklist=
 .*\.js.*
 .*\.css.*
 .*\.png

whitelist and blacklist are newline-separated lists of regexes.
If URL matches one of whitelist patterns and matches none of blacklist
patterns, proxy specified in [proxy] section is used;
no proxy is used otherwise.

Then, to apply proxy rules according to this profile,
add proxy=mywebsite parameter to request:

curl 'http://localhost:8050/render.html?url=http://mywebsite.com/page-with-javascript.html&proxy=mywebsite'

If default.ini profile is present, it will be used when proxy
argument is not specified. If you have default.ini profile
but don’t want to apply it pass none as proxy value.

Splash as a Proxy

Splash supports working as HTTP proxy. In this mode all the HTTP requests
received will be proxied and the response will be rendered based in the
following HTTP headers:

	X-Splash-render : string : required

	The render mode to use, valid modes are: html, png, jpeg and json. These modes have
the same behavior as the endpoints: render.html, render.png, render.jpeg
and render.json respectively.

	X-Splash-js-source : string

	Allow to execute custom javascript code in page context.
See Executing custom Javascript code within page context.

	X-Splash-js : string

	Same as ‘js’ argument for render.html.
See Javascript Profiles.

	X-Splash-timeout : string

	Same as ‘timeout’ argument for render.html.

	X-Splash-resource-timeout : string

	Same as ‘wait’ argument for render.html.

	X-Splash-wait : string

	Same as ‘wait’ argument for render.html.

	X-Splash-proxy : string

	Same as ‘proxy’ argument for render.html.

	X-Splash-filters : string

	Same as ‘filters’ argument for render.html.

	X-Splash-allowed-domains : string

	Same as ‘allowed_domains’ argument for render.html.

	X-Splash-viewport : string

	Same as ‘viewport’ argument for render.html.

	X-Splash-images : string

	Same as ‘images’ argument for render.html.

	X-Splash-width : string

	Same as ‘width’ argument for render.png and render.jpeg.

	X-Splash-height : string

	Same as ‘height’ argument for render.png and render.jpeg.

	X-Splash-render-all : string

	Same as ‘render_all’ argument for render.png and render.jpeg.

	X-Splash-scale-method : string

	Same as ‘scale_method’ argument for render.png and render.jpeg.

	X-Splash-quality : string

	Same as ‘quality’ argument for render.jpeg.

	X-Splash-html : string

	Same as ‘html’ argument for render.json.

	X-Splash-png : string

	Same as ‘png’ argument for render.json.

	X-Splash-jpeg : string

	Same as ‘jpeg’ argument for render.json.

	X-Splash-iframes : string

	Same as ‘iframes’ argument for render.json.

	X-Splash-script : string

	Same as ‘script’ argument for render.json.

	X-Splash-console : string

	Same as ‘console’ argument for render.json.

	X-Splash-history : string

	Same as ‘history’ argument for render.json.

	X-Splash-har : string

	Same as ‘har’ argument for render.json.

Note

Proxying of HTTPS requests is not supported.

Curl examples:

Display json stats
curl -x localhost:8051 -H 'X-Splash-render: json' \
 http://www.domain.com

Get the html page and screenshot
curl -x localhost:8051 \
 -H "X-Splash-render: json" \
 -H "X-Splash-html: 1" \
 -H "X-Splash-png: 1" \
 http://www.mywebsite.com

Execute JS and return output
curl -x localhost:8051 \
 -H 'X-Splash-render: json' \
 -H 'X-Splash-script: 1' \
 -H 'X-Splash-js-source: function test(x){ return x; } test("abc");' \
 http://www.domain.com

Send POST request to site and save screenshot of results
curl -X POST -d '{"key":"val"}' -x localhost:8051 -o screenshot.png \
 -H 'X-Splash-render: png' \
 http://www.domain.com

Splash proxy mode is enabled by default; it uses port 8051. To change the port
use --proxy-portnum option:

python -m splash.server --proxy-portnum=8888

To disable Splash proxy mode run splash server with --disable-proxy option:

python -m splash.server --disable-proxy

Other Endpoints

_gc

To reclaim some RAM send a POST request to the /_gc endpoint:

curl -X POST http://localhost:8050/_gc

It runs the Python garbage collector and clears internal WebKit caches.

_debug

To get debug information about Splash instance (max RSS used, number of used
file descriptors, active requests, request queue length, counts of alive
objects) send a GET request to the /_debug endpoint:

curl http://localhost:8050/_debug

 Copyright 2015, Scrapinghub.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Splash 1.7 documentation

Splash Scripts Tutorial

Warning

Scripting support is an experimental feature for early adopters;
API could change in future releases.

Intro

Splash can execute custom rendering scripts written in the Lua [http://www.lua.org/]
programming language. This allows us to use Splash as a browser automation
tool similar to PhantomJS [http://phantomjs.org/].

To execute a script and get the result back send it to the execute
endpoint in a lua_source argument.

Note

Most likely you’ll be able to follow Splash scripting examples even
without knowing Lua; nevertheless, the language is worth learning.
With Lua you can, for example, write Redis [http://redis.io/commands/EVAL], Nginx [http://wiki.nginx.org/HttpLuaModule], Apache [http://httpd.apache.org/docs/trunk/mod/mod_lua.html],
World of Warcraft [http://www.wowwiki.com/Lua] scripts, create mobile apps using
Moai [http://getmoai.com/] or Corona SDK [http://coronalabs.com/products/corona-sdk/] or use the state of the art Deep Learning
framework Torch7 [http://torch.ch/]. It is easy to get started and there are good online
resources available like the tutorial Learn Lua in 15 minutes [http://tylerneylon.com/a/learn-lua/] and the
book Programming in Lua [http://www.lua.org/pil/contents.html].

Let’s start with a basic example:

function main(splash)
 splash:go("http://example.com")
 splash:wait(0.5)
 local title = splash:evaljs("document.title")
 return {title=title}
end

If we submit this script to the execute endpoint in a lua_source
argument, Splash will go to the example.com website, wait until it loads,
wait aother half-second, then get the page title (by evaluating a JavaScript
snippet in page context), and then return the result as a JSON encoded object.

Note

Splash UI provides an easy way to try scripts: there is a code editor
for Lua and a button to submit a script to execute. Visit
http://127.0.0.1:8050/ (or whatever host/port Splash is listening to).

Entry Point: the “main” Function

The script must provide a “main” function which is called by Splash. The
result is returned as an HTTP response. The script could contain other
helper functions and statements, but ‘main’ is required.

In the first example ‘main’ function returned a Lua table (an associative array
similar to JavaScript Object or Python dict). Such results are returned as
JSON.

The following will return the string {"hello":"world!"} as an HTTP response:

function main(splash)
 return {hello="world!"}
end

The script can also return a string:

function main(splash)
 return 'hello'
end

Strings are returned as-is (unlike tables they are not encoded to JSON).
Let’s check it with curl:

$ curl 'http://127.0.0.1:8050/execute?lua_source=function+main%28splash%29%0D%0A++return+%27hello%27%0D%0Aend'
hello

The “main” function receives an object that allows us to control the “browser
tab”. All Splash features are exposed using this object. By convention, this
argument is called “splash”, but you are not required to follow this convention:

function main(please)
 please:go("http://example.com")
 please:wait(0.5)
 return "ok"
end

Where Are My Callbacks?

Here is a snippet from our first example:

splash:go("http://example.com")
splash:wait(0.5)
local title = splash:evaljs("document.title")

The code looks like standard procedural code; there are no callbacks or fancy
control-flow structures. It doesn’t mean Splash works in a synchronous
way; under the hood it is still async. When you call splash.wait(0.5),
Splash switches from the script to other tasks, and comes back after 0.5s.

It is possible to use loops, conditional statements, functions as usual
in Splash scripts which enables more straightforward coding.

Let’s check an example [https://github.com/ariya/phantomjs/blob/master/examples/follow.js]
PhantomJS script:

var users = ["PhantomJS", "ariyahidayat", /*...*/];

function followers(user, callback) {
 var page = require('webpage').create();
 page.open('http://mobile.twitter.com/' + user, function (status) {
 if (status === 'fail') {
 console.log(user + ': ?');
 } else {
 var data = page.evaluate(function () {
 return document.querySelector('div.profile td.stat.stat-last div.statnum').innerText;
 });
 console.log(user + ': ' + data);
 }
 page.close();
 callback.apply();
 });
}
function process() {
 if (users.length > 0) {
 var user = users[0];
 users.splice(0, 1);
 followers(user, process);
 } else {
 phantom.exit();
 }
}
process();

The code is (arguably) tricky: process function implements a loop
by creating a chain of callbacks; followers function doesn’t return a value
(it would be more complex to implement) - the result is logged to the console
instead.

A similar Splash script:

users = {'PhantomJS', 'ariyahidayat'}

function followers(splash, user)
 local ok, msg = splash:go('http://mobile.twitter.com/' .. user)
 if not ok then
 return "?"
 end
 return splash:evaljs([[
 document.querySelector('div.profile td.stat.stat-last div.statnum').innerText;
]]);
end

function process(splash, users)
 local result = {}
 for idx, user in ipairs(users) do
 result[user] = followers(splash, user)
 end
 return result
end

function main(splash)
 local users = process(splash, users)
 return {users=users}
end

Observations:

	some Lua knowledge is helpful to be productive in Splash Scripts:
ipairs, [[multi-line strings]] or string concatenation via
.. could be unfamiliar;

	in Splash variant followers function can return a result
(a number of twitter followers); also, it doesn’t need a “callback” argument;

	instead of a page.open callback which receives “status” argument
there is a “blocking” splash:go call which returns “ok” flag;

	error handling is different: in case of an HTTP 4xx or 5xx error
PhantomJS doesn’t return an error code to page.open callback - example
script will try to get the followers nevertheless because “status” won’t
be “fail”; in Splash this error will be detected and ”?” will be returned;

	process function can use a standard Lua for loop without
a need to create a recursive callback chain;

	instead of console messages we’ve got a JSON HTTP API;

	apparently, PhantomJS allows to create multiple page objects and
run several page.open requests in parallel (?); Splash only provides
a single “browser tab” to a script via its splash parameter of main
function (but you’re free to send multiple concurrent requests with
Lua scripts to Splash).

There are great PhantomJS wrappers like CasperJS [http://casperjs.org/] and NightmareJS [http://www.nightmarejs.org/] which
(among other things) bring a sync-looking syntax to PhantomJS scripts by
providing custom control flow mini-languages. However, they all have their
own gotchas and edge cases (loops? moving code to helper functions? error
handling?). Splash scripts are standard Lua code.

Note

PhantomJS itself and its wrappers are great, they deserve lots of
respect; please don’t take this writeup as an attack on them.
These tools are much more mature and feature complete than Splash.
Splash tries to look at the problem from a different angle, but
for each unique Splash feature there are ten unique PhantomJS features.

Living Without Callbacks

Note

For the curious, Splash uses Lua coroutines under the hood.

Internally, “main” function is executed as a coroutine by Splash,
and some of the splash:foo() methods use coroutine.yield.
See http://www.lua.org/pil/9.html for Lua coroutines tutorial.

In Splash scripts it is not explicit which calls are async and which calls
are blocking; this is a common criticism of coroutines/greenlets. Check
this [https://glyph.twistedmatrix.com/2014/02/unyielding.html] article
for a good description of the problem.

However, these negatives have no real impact in Splash scripts which: are
meant to be small, where shared state is minimized, and the API is designed to
execute a single command at a time, so in most cases the control flow is linear.

If you want to be safe then think of all splash methods as async;
consider that after you call splash:foo() a webpage being
rendered can change. Often that’s the point of calling a method,
e.g. splash:wait(time) or splash:go(url) only make sense because
webpage changes after calling them, but still - keep it in mind.

There are async methods like splash:go, splash:wait,
splash:wait_for_resume, etc.; most splash methods are currently
not async, but thinking of them as of async will allow your scripts
to work if we ever change that.

Calling Splash Methods

Unlike in many languages, methods in Lua are usually separated from an object
using a colon :; to call “foo” method of “splash” object use
splash:foo() syntax. See http://www.lua.org/pil/16.html for more details.

There are two main ways to call Lua methods in Splash scripts:
using positional and named arguments. To call a method using positional
arguments use parentheses splash:foo(val1, val2), to call it with
named arguments use curly braces: splash:foo{name1=val1, name2=val2}:

-- Examples of positional arguments:
splash:go("http://example.com")
splash:wait(0.5, false)
local title = splash:evaljs("document.title")

-- The same using keyword arguments:
splash:go{url="http://example.com"}
splash:wait{time=0.5, cancel_on_redirect=false}
local title = splash:evaljs{source="document.title"}

-- Mixed arguments example:
splash:wait{0.5, cancel_on_redirect=false}

For convenience all splash methods are designed to support both styles
of calling: positional and named. But since there are no “real” named
arguments in Lua [http://www.lua.org/pil/5.3.html] most Lua functions (including the ones from the
standard library) choose to support just positional arguments.

Error Handling

There are two ways to report errors in Lua: raise an exception and return
an error flag. See http://www.lua.org/pil/8.3.html.

Splash uses the following convention:

	for developer errors (e.g. incorrect function arguments) exception is raised;

	for errors outside developer control (e.g. a non-responding remote website)
status flag is returned: functions that can fail return ok, reason
pairs which developer can either handle or ignore.

If main results in an unhandled exception then Splash returns HTTP 400
response with an error message.

It is possible to raise an exception manually using Lua error function:

error("A message to be returned in a HTTP 400 response")

To handle Lua exceptions (and prevent Splash from returning HTTP 400 response)
use Lua pcall; see http://www.lua.org/pil/8.4.html.

To convert “status flag” errors to exceptions Lua assert function can be used.
For example, if you expect a website to work and don’t want to handle errors
manually, then assert allows to stop processing and return HTTP 400
if the assumption is wrong:

local ok, msg = splash:go("http://example.com")
if not ok then
 -- handle error somehow, e.g.
 error(msg)
end

-- a shortcut for the code above: use assert
assert(splash:go("http://example.com"))

Sandbox

By default Splash scripts are executed in a restricted environment:
not all standard Lua modules and functions are available, Lua require
is restricted, and there are resource limits (quite loose though).

To disable the sandbox start Splash with --disable-lua-sandbox option:

$ python -m splash.server --disable-lua-sandbox

Custom Lua Modules

Splash provides a way to use custom Lua modules (stored on server)
from scripts passed via HTTP API. This allows to

	reuse code without sending it over network again and again;

	use third-party Lua modules;

	implement features which need unsafe code and expose them safely
in a sandbox.

Note

To learn about Lua modules check e.g. http://lua-users.org/wiki/ModulesTutorial.
Please prefer “the new way” of writing modules because it plays better
with a sandbox. A good Lua modules style guide can be found here:
http://hisham.hm/2014/01/02/how-to-write-lua-modules-in-a-post-module-world/

Setting Up

To use custom Lua modules, do the following steps:

	setup the path for Lua modules and add your modules there;

	tell Splash which modules are enabled in a sandbox;

	use Lua require function from a script to load a module.

To setup the path for Lua modules start Splash with --lua-package-path
option. --lua-package-path value should be a semicolon-separated list
of places where Lua looks for modules. Each entry should have a ? in it
that’s replaced with the module name.

Example:

$ python -m splash.server --lua-package-path "/etc/splash/lua_modules/?.lua;/home/myuser/splash-modules/?.lua"

Note

If you use Splash installed using Docker see
Folders Sharing for more info on how to setup
paths.

Note

For the curious: --lua-package-path value is added to Lua
package.path.

When you use a Lua sandbox (default) Lua require
function is restricted when used in scripts: it only allows to load
modules from a whitelist. This whitelist is empty by default, i.e. by default
you can require nothing. To make your modules available for scripts start
Splash with --lua-sandbox-allowed-modules option. It should contain a
semicolon-separated list of Lua module names allowed in a sandbox:

$ python -m splash.server --lua-sandbox-allowed-modules "foo;bar" --lua-package-path "/etc/splash/lua_modules/?.lua"

After that it becomes possible to load these modules from Lua scripts using
require:

local foo = require("foo")
function main(splash)
 return {result=foo.myfunc()}
end

Writing Modules

A basic module could look like the following:

-- mymodule.lua
local mymodule = {}

function mymodule.hello(name)
 return "Hello, " .. name
end

return mymodule

Usage in a script:

local mymodule = require("mymodule")

function main(splash)
 return mymodule.hello("world!")
end

Many real-world modules will likely want to use splash object.
There are several ways to write such modules. The simplest way is to use
functions that accept splash as an argument:

-- utils.lua
local utils = {}

-- wait until `condition` function returns true
function utils.wait_for(splash, condition)
 while not condition() do
 splash:wait(0.05)
 end
end

return utils

Usage:

local utils = require("utils")

function main(splash)
 splash:go(splash.args.url)

 -- wait until <h1> element is loaded
 utils.wait_for(splash, function()
 return splash:evaljs("document.querySelector('h1') != null")
 end)

 return splash:html()
end

Another way to write such module is to add a method to splash
object. This can be done by adding a method to its Splash
class - the approach is called “open classes” in Ruby or “monkey-patching”
in Python.

-- wait_for.lua

-- Sandbox is not enforced in custom modules, so we can import
-- internal Splash class and change it - add a method.
local Splash = require("splash")

function Splash:wait_for(condition)
 while not condition() do
 self:wait(0.05)
 end
end

-- no need to return anything

Usage:

require("wait_for")

function main(splash)
 splash:go(splash.args.url)

 -- wait until <h1> element is loaded
 splash:wait_for(function()
 return splash:evaljs("document.querySelector('h1') != null")
 end)

 return splash:html()
end

Which style to prefer is up to the developer. Functions are more explicit
and composable, monkey patching enables a more compact code. Either way,
require is explicit.

As seen in a previous example, sandbox restrictions for standard Lua modules
and functions are not applied in custom Lua modules, i.e. you can use
all the Lua powers. This makes it possible to import third-party Lua modules
and implement advanced features, but requires developer to be careful.
For example, let’s use os [http://www.lua.org/manual/5.2/manual.html#6.9]
module:

-- evil.lua
local os = require("os")
local evil = {}

function evil.sleep()
 -- Don't do this! It blocks the event loop and has a startup cost.
 -- splash:wait is there for a reason.
 os.execute("sleep 2")
end

function evil.touch(filename)
 -- another bad idea
 os.execute("touch " .. filename)
end

-- todo: rm -rf /

return evil

Timeouts

By default Splash aborts script execution after the timeout
(30s by default). To override the timeout value use
‘timeout’ argument of the /execute endpoint.

Note that the maximum allowed timeout value is limited by the maximum
timeout setting, which is by default 60 seconds. In other words,
by default you can’t pass ?timeout=300 to run a long script - an
error will be returned. It is quite typical for scripts to work longer
than 60s, so if you use Splash scripts it is recommended to explicitly
set the maximum possible timeout by starting Splash with
--max-timeout command line option:

$ python -m splash.server --max-timeout 3600

Note

See Passing Custom Options if you use Docker to run Splash.

 Copyright 2015, Scrapinghub.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Splash 1.7 documentation

Splash Scripts Reference

Warning

Scripting support is an experimental feature for early adopters;
API could change in future releases.

splash object is passed to main function; via this object
a script can control the browser. Think of it as of an API to
a single browser tab.

splash:go

Go to an URL. This is similar to entering an URL in a browser
address bar, pressing Enter and waiting until page loads.

Signature: ok, reason = splash:go{url, baseurl=nil, headers=nil}

Parameters:

	url - URL to load;

	baseurl - base URL to use, optional. When baseurl argument is passed
the page is still loaded from url, but it is rendered as if it was
loaded from baseurl: relative resource paths will be relative
to baseurl, and the browser will think baseurl is in address bar;

	headers - a Lua table with HTTP headers to add/replace in the initial request.

Returns: ok, reason pair. If ok is nil then error happened during
page load; reason provides an information about error type.

Async: yes, unless the navigation is locked.

Four types of errors are reported (ok can be nil in 4 cases):

	There is a network error: a host doesn’t exist, server dropped connection,
etc. In this case reason is "network<code>". A list of possible
error codes can be found in Qt docs [http://doc.qt.io/qt-5/qnetworkreply.html#NetworkError-enum]. For example, "network3" means
a DNS error (invalid hostname).

	Server returned a response with 4xx or 5xx HTTP status code.
reason is "http<code>" in this case, i.e. for
HTTP 404 Not Found reason is "http404".

	Navigation is locked (see splash:lock_navigation); reason
is "navigation_locked".

	If Splash can’t decide what caused the error, just "error" is returned.

Error handling example:

local ok, reason = splash:go("http://example.com")
if not ok then
 if reason:sub(0,4) == 'http' then
 -- handle HTTP errors
 else
 -- handle other errors
 end
end
-- process the page

-- assert can be used as a shortcut for error handling
assert(splash:go("http://example.com"))

Errors (ok==nil) are only reported when “main” webpage request failed.
If a request to a related resource failed then no error is reported by
splash:go. To detect and handle such errors (e.g. broken image/js/css
links, ajax requests failed to load) use splash:har.

splash:go follows all HTTP redirects before returning the result,
but it doesn’t follow HTML <meta http-equiv="refresh" ...> redirects or
redirects initiated by JavaScript code. To give the webpage time to follow
those redirects use splash:wait.

headers argument allows to add or replace default HTTP headers for the
initial request. To set custom headers for all further requests
(including requests to related resources) use
splash:set_custom_headers or splash:on_request.

Custom headers example:

local ok, reason = splash:go{"http://example.com", headers={
 ["Custom-Header"] = "Header Value",
}})

User-Agent header is special: once used, it is kept for further requests.
This is an implementation detail and it could change in future releases;
to set User-Agent header it is recommended to use
splash:set_user_agent method.

splash:wait

Wait for time seconds. When script is waiting WebKit continues
processing the webpage.

Signature: ok, reason = splash:wait{time, cancel_on_redirect=false, cancel_on_error=true}

Parameters:

	time - time to wait, in seconds;

	cancel_on_redirect - if true (not a default) and a redirect
happened while waiting, then splash:wait stops earlier and returns
nil, "redirect". Redirect could be initiated by
<meta http-equiv="refresh" ...> HTML tags or by JavaScript code.

	cancel_on_error - if true (default) and an error which prevents page
from being rendered happened while waiting (e.g. an internal WebKit error
or a network error like a redirect to a non-resolvable host)
then splash:wait stops earlier and returns nil, "<error string>".

Returns: ok, reason pair. If ok is nil then the timer was
stopped prematurely, and reason contains a string with a reason.

Async: yes.

Usage example:

-- go to example.com, wait 0.5s, return rendered html, ignore all errors.
function main(splash)
 splash:go("http://example.com")
 splash:wait(0.5)
 return {html=splash:html()}
end

By default wait timer continues to tick when redirect happens.
cancel_on_redirect option can be used to restart the timer after
each redirect. For example, here is a function that waits for a given
time after each page load in case of redirects:

function wait_restarting_on_redirects(splash, time, max_redirects)
 local redirects_remaining = max_redirects
 while redirects_remaining do
 local ok, reason = self:wait{time=time, cancel_on_redirect=true}
 if reason ~= 'redirect' then
 return ok, reason
 end
 redirects_remaining = redirects_remaining - 1
 end
 return nil, "too_many_redirects"
end

splash:jsfunc

Convert JavaScript function to a Lua callable.

Signature: lua_func = splash:jsfunc(func)

Parameters:

	func - a string which defines a JavaScript function.

Returns: a function that can be called from Lua to execute JavaScript
code in page context.

Async: no.

Example:

function main(splash)
 local get_div_count = splash:jsfunc([[
 function (){
 var body = document.body;
 var divs = body.getElementsByTagName('div');
 return divs.length;
 }
]])

 splash:go(splash.args.url)
 return get_div_count()
end

Note how Lua [[]] string syntax is helpful here.

JavaScript functions may accept arguments:

local vec_len = splash:jsfunc([[
 function(x, y) {
 return Math.sqrt(x*x + y*y)
 }
]])
return {res=vec_len(5, 4)}

Global JavaScript functions can be wrapped directly:

local pow = splash:jsfunc("Math.pow")
local twenty_five = pow(5, 2) -- 5^2 is 25
local thousand = pow(10, 3) -- 10^3 is 1000

Lua strings, numbers, booleans and tables can be passed as arguments;
they are converted to JS strings/numbers/booleans/objects.
Currently it is not possible to pass other Lua objects. For example, it
is not possible to pass a wrapped JavaScript function or a regular Lua function
as an argument to another wrapped JavaScript function.

Lua → JavaScript conversion rules:

	Lua
	JavaScript

	string
	string

	number
	number

	boolean
	boolean

	table
	Object

	nil
	undefined

Function result is converted from JavaScript to Lua data type. Only simple
JS objects are supported. For example, returning a function or a
JQuery selector from a wrapped function won’t work.

JavaScript → Lua conversion rules:

	JavaScript
	Lua

	string
	string

	number
	number

	boolean
	boolean

	Object
	table

	Array
	table

	undefined
	nil

	null
	"" (an empty string)

	Date
	string: date’s ISO8601 representation, e.g. 1958-05-21T10:12:00Z

	RegExp
	table {_jstype='RegExp', caseSensitive=true/false, pattern='my-regexp'}

	function
	an empty table {} (don’t rely on it)

Function arguments and return values are passed by value. For example,
if you modify an argument from inside a JavaScript function then the caller
Lua code won’t see the changes, and if you return a global JS object and modify
it in Lua then object won’t be changed in webpage context.

Note

The rule of thumb: if an argument or a return value can be serialized
via JSON, then it is fine.

If a JavaScript function throws an error, it is re-throwed as a Lua error.
To handle errors it is better to use JavaScript try/catch because some of the
information about the error can be lost in JavaScript → Lua conversion.

See also: splash:runjs, splash:evaljs, splash:wait_for_resume,
splash:autoload.

splash:evaljs

Execute a JavaScript snippet in page context and return the result of the
last statement.

Signature: result = splash:evaljs(snippet)

Parameters:

	snippet - a string with JavaScript source code to execute.

Returns: the result of the last statement in snippet,
converted from JavaScript to Lua data types. In case of syntax errors or
JavaScript exceptions an error is raised.

Async: no.

JavaScript → Lua conversion rules are the same as for
splash:jsfunc.

splash:evaljs is useful for evaluation of short JavaScript snippets
without defining a wrapper function. Example:

local title = splash:evaljs("document.title")

Don’t use splash:evaljs when the result is not needed - it is
inefficient and could lead to problems; use splash:runjs instead.
For example, the following innocent-looking code (using jQuery) may fail:

splash:evaljs("$(console.log('foo'));")

A gotcha is that to allow chaining jQuery $ function returns a huge object,
splash:evaljs tries to serialize it and convert to Lua. It is a waste
of resources, and it could trigger internal protection measures;
splash:runjs doesn’t have this problem.

If the code you’re evaluating needs arguments it is better to use
splash:jsfunc instead of splash:evaljs and string formatting.
Compare:

function main(splash)

 local font_size = splash:jsfunc([[
 function(sel) {
 var el = document.querySelector(sel);
 return getComputedStyle(el)["font-size"];
 }
]])

 local font_size2 = function(sel)
 -- FIXME: escaping of `sel` parameter!
 local js = string.format([[
 var el = document.querySelector("%s");
 getComputedStyle(el)["font-size"]
]], sel)
 return splash:evaljs(js)
 end

 -- ...
end

See also: splash:runjs, splash:jsfunc,
splash:wait_for_resume, splash:autoload.

splash.js_enabled

Enable or disable execution of JavaSript code embedded in the page.

Signature: splash.js_enabled = true/false

JavaScript execution is enabled by default.

splash:runjs

Run JavaScript code in page context.

Signature: ok, error = splash:runjs(snippet)

Parameters:

	snippet - a string with JavaScript source code to execute.

Returns: ok, error pair. When the execution is successful
ok is True. In case of JavaScript errors ok is nil,
and error contains the error string.

Async: no.

Example:

assert(splash:runjs("document.title = 'hello';"))

Note that JavaScript functions defined using function foo(){} syntax
won’t be added to the global scope:

assert(splash:runjs("function foo(){return 'bar'}"))
local res = splash:evaljs("foo()") -- this raises an error

It is an implementation detail: the code passed to splash:runjs
is executed in a closure. To define functions use global variables, e.g.:

assert(splash:runjs("foo = function (){return 'bar'}"))
local res = splash:evaljs("foo()") -- this returns 'bar'

If the code needs arguments it is better to use splash:jsfunc.
Compare:

function main(splash)

 -- Lua function to scroll window to (x, y) position.
 function scroll_to(x, y)
 local js = string.format(
 "window.scrollTo(%s, %s);",
 tonumber(x),
 tonumber(y)
)
 assert(splash:runjs(js))
 end

 -- a simpler version using splash:jsfunc
 local scroll_to2 = splash:jsfunc("window.scrollTo")

 -- ...
end

See also: splash:runjs, splash:jsfunc, splash:autoload,
splash:wait_for_resume.

splash:wait_for_resume

Run asynchronous JavaScript code in page context. The Lua script will
yield until the JavaScript code tells it to resume.

Signature: result, error = splash:wait_for_resume(snippet, timeout)

Parameters:

	snippet - a string with a JavaScript source code to execute. This code
must include a function called main. The first argument to main
is an object that has the properties resume and error. resume
is a function which can be used to resume Lua execution. It takes an optional
argument which will be returned to Lua in the result.value return value.
error is a function which can be called with a required string value
that is returned in the error return value.

	timeout - a number which determines (in seconds) how long to allow JavaScript
to execute before forceably returning control to Lua. Defaults to
zero, which disables the timeout.

Returns: result, error pair. When the execution is successful
result is a table. If the value returned by JavaScript is not
undefined, then the result table will contain a key value
that has the value passed to splash.resume(…). The result table also
contains any additional key/value pairs set by splash.set(…). In case of
timeout or JavaScript errors result is nil and error contains an
error message string.

Async: yes.

Examples:

The first, trivial example shows how to transfer control of execution from Lua
to JavaScript and then back to Lua. This command will tell JavaScript to
sleep for 3 seconds and then return to Lua. Note that this is an async
operation: the Lua event loop and the JavaScript event loop continue to run
during this 3 second pause, but Lua will not continue executing the current
function until JavaScript calls splash.resume().

function main(splash)

 local result, error = splash:wait_for_resume([[
 function main(splash) {
 setTimeout(function () {
 splash.resume();
 }, 3000);
 }
]])

 -- result is {}
 -- error is nil

end

result is set to an empty table to indicate that nothing was returned
from splash.resume. You can use assert(splash:wait_for_resume(…))
even when JavaScript does not return a value because the empty table signifies
success to assert().

Note

Your JavaScript code must contain a main() function. You will get an
error if you do not include it. The first argument to this function can
have any name you choose, of course. We will call it splash by
convention in this documentation.

The next example shows how to return a value from JavaScript to Lua.
You can return booleans, numbers, strings, arrays, or objects.

function main(splash)

 local result, error = splash:wait_for_resume([[
 function main(splash) {
 setTimeout(function () {
 splash.resume([1, 2, 'red', 'blue']);
 }, 3000);
 }
]])

 -- result is {value={1, 2, 'red', 'blue'}}
 -- error is nil

end

Note

As with splash:evaljs, be wary of returning objects that are
too large, such as the $ object in jQuery, which will consume a lot
of time and memory to convert to a Lua result.

You can also set additional key/value pairs in JavaScript with the
splash.set(key, value) function. Key/value pairs will be included
in the result table returned to Lua. The following example demonstrates
this.

function main(splash)

 local result, error = splash:wait_for_resume([[
 function main(splash) {
 setTimeout(function () {
 splash.set("foo", "bar");
 splash.resume("ok");
 }, 3000);
 }
]])

 -- result is {foo="bar", value="ok"}
 -- error is nil

end

The next example shows an incorrect usage of splash:wait_for_resume():
the JavaScript code does not contain a main() function. result is
nil because splash.resume() is never called, and error contains
an error message explaining the mistake.

function main(splash)

 local result, error = splash:wait_for_resume([[
 console.log('hello!');
]])

 -- result is nil
 -- error is "error: wait_for_resume(): no main() function defined"

end

The next example shows error handling. If splash.error(…) is
called instead of splash.resume(), then result will be nil
and error will contain the string passed to splash.error(…).

function main(splash)

 local result, error = splash:wait_for_resume([[
 function main(splash) {
 setTimeout(function () {
 splash.error("Goodbye, cruel world!");
 }, 3000);
 }
]])

 -- result is nil
 -- error is "error: Goodbye, cruel world!"

end

Your JavaScript code must either call splash.resume() or
splash.error() exactly one time. Subsequent calls to either function
have no effect, as shown in the next example.

function main(splash)

 local result, error = splash:wait_for_resume([[
 function main(splash) {
 setTimeout(function () {
 splash.resume("ok");
 splash.resume("still ok");
 splash.error("not ok");
 }, 3000);
 }
]])

 -- result is {value="ok"}
 -- error is nil

end

The next example shows the effect of the timeout argument. We have set
the timeout argument to 1 second, but our JavaScript code will not call
splash.resume() for 3 seconds, which guarantees that
splash:wait_for_resume() will time out.

When it times out, result will be nil, error will contain a string
explaining the timeout, and Lua will continue executing. Calling
splash.resume() or splash.error() after a timeout has no effect.

function main(splash)

 local result, error = splash:wait_for_resume([[
 function main(splash) {
 setTimeout(function () {
 splash.resume("Hello, world!");
 }, 3000);
 }
]], 1)

 -- result is nil
 -- error is "error: One shot callback timed out while waiting for resume() or error()."

end

Note

The timeout must be >= 0. If the timeout is 0, then
splash:wait_for_resume() will never timeout (although Splash’s
HTTP timeout still applies).

Note that your JavaScript code is not forceably canceled by a timeout: it may
continue to run until Splash shuts down the entire browser context.

See also: splash:runjs, splash:jsfunc, splash:evaljs.

splash:autoload

Set JavaScript to load automatically on each page load.

Signature: ok, reason = splash:autoload{source_or_url, source=nil, url=nil}

Parameters:

	source_or_url - either a string with JavaScript source code or an URL
to load the JavaScript code from;

	source - a string with JavaScript source code;

	url - an URL to load JavaScript source code from.

Returns: ok, reason pair. If ok is nil, error happened and
reason contains an error description.

Async: yes, but only when an URL of a remote resource is passed.

splash:autoload allows to execute JavaScript code at each page load.
splash:autoload doesn’t doesn’t execute the passed
JavaScript code itself. To execute some code once, after page is loaded
use splash:runjs or splash:jsfunc.

splash:autoload can be used to preload utility JavaScript libraries
or replace JavaScript objects before a webpage has a chance to do it.

Example:

function main(splash)
 splash:autoload([[
 function get_document_title(){
 return document.title;
 }
]])
 assert(splash:go(splash.args.url))
 return splash:evaljs("get_document_title()")
end

For the convenience, when a first splash:autoload argument starts
with “http://” or “https://” a script from the passed URL is loaded.
Example 2 - make sure a remote library is available:

function main(splash)
 assert(splash:autoload("https://code.jquery.com/jquery-2.1.3.min.js"))
 assert(splash:go(splash.args.url))
 return splash:evaljs("$.fn.jquery") -- return jQuery version
end

To disable URL auto-detection use ‘source’ and ‘url’ arguments:

splash:autoload{url="https://code.jquery.com/jquery-2.1.3.min.js"}
splash:autoload{source="window.foo = 'bar';"}

It is a good practice not to rely on auto-detection when the argument
is not a constant.

If splash:autoload is called multiple times then all its scripts
are executed on page load, in order they were added.

See also: splash:evaljs, splash:runjs, splash:jsfunc,
splash:wait_for_resume.

splash:http_get

Send an HTTP request and return a response without loading
the result to the browser window.

Signature: response = splash:http_get{url, headers=nil, follow_redirects=true}

Parameters:

	url - URL to load;

	headers - a Lua table with HTTP headers to add/replace in the initial request;

	follow_redirects - whether to follow HTTP redirects.

Returns: a Lua table with the response in HAR response [http://www.softwareishard.com/blog/har-12-spec/#response] format.

Async: yes.

Example:

local reply = splash:http_get("http://example.com")
-- reply.content.text contains raw HTML data
-- reply.status contains HTTP status code, as a number
-- see HAR docs for more info

In addition to all HAR fields the response contains “ok” flag which is true
for successful responses and false when error happened:

local reply = splash:http_get("some-bad-url")
-- reply.ok == false

This method doesn’t change the current page contents and URL.
To load a webpage to the browser use splash:go.

splash:set_content

Set the content of the current page and wait until the page loads.

Signature: ok, reason = splash:set_content{data, mime_type="text/html; charset=utf-8", baseurl=""}

Parameters:

	data - new page content;

	mime_type - MIME type of the content;

	baseurl - external objects referenced in the content are located
relative to baseurl.

Returns: ok, reason pair. If ok is nil then error happened during
page load; reason provides an information about error type.

Async: yes.

Example:

function main(splash)
 assert(splash:set_content("<html><body><h1>hello</h1></body></html>"))
 return splash:png()
end

splash:html

Return a HTML snapshot of a current page (as a string).

Signature: html = splash:html()

Returns: contents of a current page (as a string).

Async: no.

Example:

-- A simplistic implementation of render.html endpoint
function main(splash)
 splash:set_result_content_type("text/html; charset=utf-8")
 assert(splash:go(splash.args.url))
 return splash:html()
end

Nothing prevents us from taking multiple HTML snapshots. For example, let’s
visit first 10 pages on a website, and for each page store
initial HTML snapshot and an HTML snapshot after waiting 0.5s:

-- Given an url, this function returns a table with
-- two HTML snapshots: HTML right after page is loaded,
-- and HTML after waiting 0.5s.
function page_info(splash, url)
 local ok, msg = splash:go(url)
 if not ok then
 return {ok=false, reason=msg}
 end
 local res = {before=splash:html()}
 assert(splash:wait(0.5)) -- this shouldn't fail, so we wrap it in assert
 res.after = splash:html() -- the same as res["after"] = splash:html()
 res.ok = true
 return res
end

-- visit first 10 http://example.com/pages/<num> pages,
-- return their html snapshots
function main(splash)
 local result = {}
 for i=1,10 do
 local url = "http://example.com/pages/" .. page_num
 result[i] = page_info(splash, url)
 end
 return result
end

splash:png

Return a width x height screenshot of a current page in PNG format.

Signature: png = splash:png{width=nil, height=nil, render_all=false, scale_method='raster'}

Parameters:

	width - optional, width of a screenshot in pixels;

	height - optional, height of a screenshot in pixels;

	render_all - optional, if true render the whole webpage;

	scale_method - optional, method to use when resizing the image, 'raster'
or 'vector'

Returns: PNG screenshot data.

Async: no.

Without arguments splash:png() will take a snapshot of the current viewport.

width parameter sets the width of the resulting image. If the viewport has a
different width, the image is scaled up or down to match the specified one.
For example, if the viewport is 1024px wide then splash:png{width=100} will
return a screenshot of the whole viewport, but the image will be downscaled to
100px width.

height parameter sets the height of the resulting image. If the viewport has
a different height, the image is trimmed or extended vertically to match the
specified one without resizing the content. The region created by such
extension is transparent.

To set the viewport size use splash:set_viewport_size,
splash:set_viewport_full or render_all argument. render_all=true
is equivalent to running splash:set_viewport_full() just before the
rendering and restoring the viewport size afterwards.

scale_method parameter must be either 'raster' or 'vector'. When
scale_method='raster', the image is resized per-pixel. When
scale_method='vector', the image is resized per-element during rendering.
Vector scaling is more performant and produces sharper images, however it may
cause rendering artifacts, so use it with caution.

If the result of splash:png() is returned directly as a result of
“main” function, the screenshot is returned as binary data:

-- A simplistic implementation of render.png endpoint
function main(splash)
 splash:set_result_content_type("image/png")
 assert(splash:go(splash.args.url))
 return splash:png{
 width=splash.args.width,
 height=splash.args.height
 }
end

If the result of splash:png() is returned as a table value, it is encoded
to base64 to make it possible to embed in JSON and build a data:uri
on a client (magic!):

function main(splash)
 assert(splash:go(splash.args.url))
 return {png=splash:png()}
end

If your script returns the result of splash:png() in a top-level
"png" key (as we’ve done in a previous example) then Splash UI
will display it as an image.

See also: splash:jpeg.

splash:jpeg

Return a width x height screenshot of a current page in JPEG format.

Signature: jpeg = splash:jpeg{width=nil, height=nil, render_all=false, scale_method='raster', quality=75}

Parameters:

	width - optional, width of a screenshot in pixels;

	height - optional, height of a screenshot in pixels;

	render_all - optional, if true render the whole webpage;

	scale_method - optional, method to use when resizing the image, 'raster'
or 'vector'

	quality - optional, quality of JPEG image, integer in range from 0 to 100

Returns: JPEG screenshot data.

Async: no.

Without arguments splash:jpeg() will take a snapshot of the current viewport.

width parameter sets the width of the resulting image. If the viewport has a
different width, the image is scaled up or down to match the specified one.
For example, if the viewport is 1024px wide then splash:jpeg{width=100} will
return a screenshot of the whole viewport, but the image will be downscaled to
100px width.

height parameter sets the height of the resulting image. If the viewport has
a different height, the image is trimmed or extended vertically to match the
specified one without resizing the content. The region created by such
extension is white.

To set the viewport size use splash:set_viewport_size,
splash:set_viewport_full or render_all argument. render_all=true
is equivalent to running splash:set_viewport_full() just before the
rendering and restoring the viewport size afterwards.

scale_method parameter must be either 'raster' or 'vector'. When
scale_method='raster', the image is resized per-pixel. When
scale_method='vector', the image is resized per-element during rendering.
Vector scaling is more performant and produces sharper images, however it may
cause rendering artifacts, so use it with caution.

quality parameter must be an integer in range from 0 to 100.
Values above 95 should be avoided; quality=100 disables portions of
the JPEG compression algorithm, and results in large files with hardly any
gain in image quality.

If the result of splash:jpeg() is returned directly as a result of
“main” function, the screenshot is returned as binary data:

-- A simplistic implementation of render.jpeg endpoint
function main(splash)
 splash:set_result_content_type("image/jpeg")
 assert(splash:go(splash.args.url))
 return splash:jpeg{
 width=splash.args.width,
 height=splash.args.height
 }
end

If the result of splash:jpeg() is returned as a table value, it is encoded
to base64 to make it possible to embed in JSON and build a data:uri
on a client (magic!):

function main(splash)
 assert(splash:go(splash.args.url))
 return {jpeg=splash:jpeg()}
end

See also: splash:png. Note that splash:jpeg() is often
1.5..2x faster than splash:png().

splash:har

Signature: har = splash:har()

Returns: information about pages loaded, events happened,
network requests sent and responses received in HAR [http://www.softwareishard.com/blog/har-12-spec/] format.

Async: no.

If your script returns the result of splash:har() in a top-level
"har" key then Splash UI will give you a nice diagram with network
information (similar to “Network” tabs in Firefox or Chrome developer tools):

function main(splash)
 assert(splash:go(splash.args.url))
 return {har=splash:har()}
end

splash:history

Signature: entries = splash:history()

Returns: information about requests/responses for the pages loaded, in
HAR entries [http://www.softwareishard.com/blog/har-12-spec/#entries] format.

Async: no.

splash:history doesn’t return information about related resources
like images, scripts, stylesheets or AJAX requests. If you need this
information use splash:har.

Let’s get a JSON array with HTTP headers of the response we’re displaying:

function main(splash)
 assert(splash:go(splash.args.url))
 local entries = splash:history()
 -- #entries means "entries length"; arrays in Lua start from 1
 local last_entry = entries[#entries]
 return {
 headers = last_entry.response.headers
 }
end

splash:url

Signature: url = splash:url()

Returns: the current URL.

Async: no.

splash:get_cookies

Signature: cookies = splash:get_cookies()

Returns: CookieJar contents - an array with all cookies available
for the script. The result is returned in HAR cookies [http://www.softwareishard.com/blog/har-12-spec/#cookies] format.

Async: no.

Example result:

[
 {
 "name": "TestCookie",
 "value": "Cookie Value",
 "path": "/",
 "domain": "www.example.com",
 "expires": "2016-07-24T19:20:30+02:00",
 "httpOnly": false,
 "secure": false,
 }
]

splash:add_cookie

Add a cookie.

Signature: cookies = splash:add_cookie{name, value, path=nil, domain=nil, expires=nil, httpOnly=nil, secure=nil}

Async: no.

Example:

function main(splash)
 splash:add_cookie{"sessionid", "237465ghgfsd", "/", domain="http://example.com"}
 splash:go("http://example.com/")
 return splash:html()
end

splash:init_cookies

Replace all current cookies with the passed cookies.

Signature: splash:init_cookies(cookies)

Parameters:

	cookies - a Lua table with all cookies to set, in the same format as
splash:get_cookies returns.

Returns: nil.

Async: no.

Example 1 - save and restore cookies:

local cookies = splash:get_cookies()
-- ... do something ...
splash:init_cookies(cookies) -- restore cookies

Example 2 - initialize cookies manually:

splash:init_cookies({
 {name="baz", value="egg"},
 {name="spam", value="egg", domain="example.com"},
 {
 name="foo",
 value="bar",
 path="/",
 domain="localhost",
 expires="2016-07-24T19:20:30+02:00",
 secure=true,
 httpOnly=true,
 }
})

-- do something
assert(splash:go("http://example.com"))

splash:clear_cookies

Clear all cookies.

Signature: n_removed = splash:clear_cookies()

Returns: a number of cookies deleted.

Async: no.

To delete only specific cookies
use splash:delete_cookies.

splash:delete_cookies

Delete matching cookies.

Signature: n_removed = splash:delete_cookies{name=nil, url=nil}

Parameters:

	name - a string, optional. All cookies with this name will be deleted.

	url - a string, optional. Only cookies that should be sent to this url
will be deleted.

Returns: a number of cookies deleted.

Async: no.

This function does nothing when both name and url are nil.
To remove all cookies use splash:clear_cookies method.

splash:lock_navigation

Lock navigation.

Signature: splash:lock_navigation()

Async: no.

After calling this method the navigation away from the current page is no
longer permitted - the page is locked to the current URL.

splash:unlock_navigation

Unlock navigation.

Signature: splash:unlock_navigation()

Async: no.

After calling this method the navigation away from the page becomes
permitted. Note that the pending navigation requests suppressed
by splash:lock_navigation won’t be reissued.

splash:set_result_content_type

Set Content-Type of a result returned to a client.

Signature: splash:set_result_content_type(content_type)

Parameters:

	content_type - a string with Content-Type header value.

Returns: nil.

Async: no.

If a table is returned by “main” function then
splash:set_result_content_type has no effect: Content-Type of the result
is set to application/json.

This function does not set Content-Type header for requests
initiated by splash:go; this function is for setting Content-Type
header of a result.

Example:

function main(splash)
 splash:set_result_content_type("text/xml")
 return [[
 <?xml version="1.0" encoding="UTF-8"?>
 <note>
 <to>Tove</to>
 <from>Jani</from>
 <heading>Reminder</heading>
 <body>Don't forget me this weekend!</body>
 </note>
]]
end

See also: splash:set_result_header which allows to set any custom
response header, not only Content-Type.

splash:set_result_header

Set header of result response returned to splash client.

Signature: splash:set_result_header(name, value)

Parameters:

	name of response header

	value of response header

Returns: nil.

Async: no.

This function does not set HTTP headers for responses
returned by splash:go or requests initiated by splash:go;
this function is for setting headers of splash response sent to client.

Example 1, set ‘foo=bar’ header:

function main(splash)
 splash:set_result_header("foo", "bar")
 return "hello"
end

Example 2, measure the time needed to build PNG screenshot and return it
result in an HTTP header:

function main(splash)

 -- this function measures the time code takes to execute and returns
 -- it in an HTTP header
 function timeit(header_name, func)
 local start_time = splash:get_perf_stats().walltime
 local result = func() -- it won't work for multiple returned values!
 local end_time = splash:get_perf_stats().walltime
 splash:set_result_header(header_name, tostring(end_time - start_time))
 return result
 end

 -- rendering script
 assert(splash:go(splash.args.url))
 local screenshot = timeit("X-Render-Time", function()
 return splash:png()
 end)
 splash:set_result_content_type("image/png")
 return screenshot
end

splash.images_enabled

Enable/disable images.

Signature: splash.images_enabled = true/false

By default, images are enabled. Disabling of the images can save a lot
of network traffic (usually around ~50%) and make rendering faster.
Note that this option can affect the JavaScript code inside page:
disabling of the images may change sizes and positions of DOM elements,
and scripts may read and use them.

Splash uses in-memory cache; cached images will be displayed
even when images are disabled. So if you load a page, then disable images,
then load a new page, then likely first page will display all images
and second page will display some images (the ones common with the first page).
Splash cache is shared between scripts executed in the same process, so you
can see some images even if they are disabled at the beginning of the script.

Example:

function main(splash)
 splash.images_enabled = false
 assert(splash:go("http://example.com"))
 return {png=splash:png()}
end

splash:get_viewport_size

Get the browser viewport size.

Signature: width, height = splash:get_viewport_size()

Returns: two numbers: width and height of the viewport in pixels.

Async: no.

splash:set_viewport_size

Set the browser viewport size.

Signature: splash:set_viewport_size(width, height)

Parameters:

	width - integer, requested viewport width in pixels;

	height - integer, requested viewport height in pixels.

Returns: nil.

Async: no.

This will change the size of the visible area and subsequent rendering
commands, e.g., splash:png, will produce an image with the specified
size.

splash:png uses the viewport size.

Example:

function main(splash)
 splash:set_viewport_size(1980, 1020)
 assert(splash:go("http://example.com"))
 return {png=splash:png()}
end

Note

This will relayout all document elements and affect geometry variables, such
as window.innerWidth and window.innerHeight. However
window.onresize event callback will only be invoked during the next
asynchronous operation and splash:png is notably synchronous, so if
you have resized a page and want it to react accordingly before taking the
screenshot, use splash:wait.

splash:set_viewport_full

Resize browser viewport to fit the whole page.

Signature: width, height = splash:set_viewport_full()

Returns: two numbers: width and height the viewport is set to, in pixels.

Async: no.

splash:set_viewport_full should be called only after page is loaded, and
some time passed after that (use splash:wait). This is an unfortunate
restriction, but it seems that this is the only way to make automatic resizing
work reliably.

See splash:set_viewport_size for a note about interaction with JS.

splash:png uses the viewport size.

Example:

function main(splash)
 assert(splash:go("http://example.com"))
 assert(splash:wait(0.5))
 splash:set_viewport_full()
 return {png=splash:png()}
end

splash:set_user_agent

Overwrite the User-Agent header for all further requests.

Signature: splash:set_user_agent(value)

Parameters:

	value - string, a value of User-Agent HTTP header.

Returns: nil.

Async: no.

splash:set_custom_headers

Set custom HTTP headers to send with each request.

Signature: splash:set_custom_headers(headers)

Parameters:

	headers - a Lua table with HTTP headers.

Returns: nil.

Async: no.

Headers are merged with WebKit default headers, overwriting WebKit values
in case of conflicts.

When headers argument of splash:go is used headers set with
splash:set_custom_headers are not applied to the initial request:
values are not merged, headers argument of splash:go has
higher priority.

Example:

splash:set_custom_headers({
 ["Header-1"] = "Value 1",
 ["Header-2"] = "Value 2",
})

Note

Named arguments are not supported for this function.

See also: splash:on_request.

splash:get_perf_stats

Return performance-related statistics.

Signature: stats = splash:get_perf_stats()

Returns: a table that can be useful for performance analysis.

Async: no.

As of now, this table contains:

	walltime - (float) number of seconds since epoch, analog of os.clock

	cputime - (float) number of cpu seconds consumed by splash process

	maxrss - (int) high water mark number of bytes of RAM consumed by splash
process

splash:on_request

Register a function to be called before each HTTP request.

Signature: splash:on_request(callback)

Returns: nil.

Async: no.

splash:on_request callback receives a single request argument.
request contains the following fields:

	url - requested URL;

	method - HTTP method name in upper case, e.g. “GET”;

	info - a table with request data in HAR request [http://www.softwareishard.com/blog/har-12-spec/#request] format
(url and method values are duplicated here).

These fields are for information only; changing them doesn’t change
the request to be sent. To change or drop the request before sending use
one of the request methods:

	request:abort() - drop the request;

	request:set_url(url) - change request URL to a specified value;

	request:set_proxy{host, port, username=nil, password=nil, type='HTTP'} -
set a proxy server to use for this request. Allowed proxy types are
‘HTTP’ and ‘SOCKS5’. Omit username and password arguments if a proxy
doesn’t need auth. When type is set to ‘HTTP’ HTTPS proxying should
also work; it is implemented using CONNECT command.

	request:set_header(name, value) - set an HTTP header for this request.
See also: splash:set_custom_headers.

	request:set_timeout(timeout) - set a timeout for this request,
in seconds. If response is not fully received after the timeout,
request is aborted.

A callback passed to splash:on_request can’t call Splash
async methods like splash:wait or splash:go.

Example 1 - log all URLs requested:

function main(splash)
 local urls = {}
 splash:on_request(function(request)
 urls[#urls+1] = request.url
 end)
 assert(splash:go(splash.args.url))
 return urls
end

Example 2 - to log full request data use request.info attribute;
don’t store request objects directly:

function main(splash)
 local entries = {}
 splash:on_request(function(request)
 entries[#entries+1] = request.info
 end)
 assert(splash:go(splash.args.url))
 return entries
end

Example 3 - drop all requests to resources containing ”.css” in their URLs:

splash:on_request(function(request)
 if string.find(request.url, ".css") ~= nil then
 request.abort()
 end
end)

Example 4 - replace a resource:

splash:on_request(function(request)
 if request.url == 'http://example.com/script.js' then
 request:set_url('http://mydomain.com/myscript.js')
 end
end)

Example 5 - set a custom proxy server, with credentials passed in an HTTP
request to Splash:

splash:on_request(function(request)
 request:set_proxy{
 host = "0.0.0.0",
 port = 8990,
 username = splash.args.username,
 password = splash.args.password,
 }
end)

Example 6 - discard requests which take longer than 5 seconds to complete:

splash:on_request(function(request)
 request:set_timeout(5.0)
end)

Note

splash:on_request method doesn’t support named arguments.

splash:on_response_headers

Register a function to be called after response headers are received, before
response body is read.

Signature: splash:on_response_headers(callback)

Returns: nil.

Async: no.

splash:on_response_headers callback receives a single response argument.
response contains following fields:

	url - requested URL;

	headers - HTTP headers of response

	info - a table with response data in HAR response [http://www.softwareishard.com/blog/har-12-spec/#response] format

	request - a table with request information

These fields are for information only; changing them doesn’t change
response received by splash. response has following methods:

	response:abort() - aborts reading of response body

A callback passed to splash:on_response_headers can’t call Splash
async methods like splash:wait or splash:go. response object
is deleted after exiting from callback, so you cannot use it outside callback.

response.request available in callback contains following attributes:

	url - requested URL - can be different from response URL in case there is
redirect

	headers - HTTP headers of request

	method HTTP method of request

	cookies - cookies in .har format

Example 1 - log content-type headers of all responses received while rendering

function main(splash)
 local all_headers = {}
 splash:on_response_headers(function(response)
 local content_type = response.headers["Content-Type"]
 all_headers[response.url] = content_type
 end)
 assert(splash:go(splash.args.url))
 return all_headers
end

Example 2 - abort reading body of all responses with content type text/css

function main(splash)
 splash:on_response_headers(function(response)
 local content_type = response.headers["Content-Type"]
 if content_type == "text/css" then
 response.abort()
 end
 end)
 assert(splash:go(splash.args.url))
 return splash:png()
end

Example 3 - extract all cookies set by website without reading response body

function main(splash)
 local cookies = ""
 splash:on_response_headers(function(response)
 local response_cookies = response.headers["Set-cookie"]
 cookies = cookies .. ";" .. response_cookies
 response.abort()
 end)
 assert(splash:go(splash.args.url))
 return cookies
end

splash.args

splash.args is a table with incoming parameters. It contains
merged values from the orignal URL string (GET arguments) and
values sent using application/json POST request.

 Copyright 2015, Scrapinghub.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Splash 1.7 documentation

Splash and IPython (Jupyter)

Splash provides a custom IPython [http://ipython.org/] (Jupyter [http://jupyter.org/]) kernel for Lua. Together
with IPython (Jupyter) notebook [http://ipython.org/notebook.html] frontend it forms an interactive
web-based development environment for Splash Scripts with syntax highlighting,
smart code completion, context-aware help, inline images support and a real
live WebKit browser window with Web Inspector enabled, controllable from
a notebook.

Installation

To install Splash-Jupyter using Docker, run:

$ docker pull scrapinghub/splash-jupyter

Then start the container:

$ docker run -p 8888:8888 -it scrapinghub/splash-jupyter

Note

Without -it flags you won’t be able to stop the container using Ctrl-C.

If you’re on Linux, Jupyter server with Splash kernel enabled
will be available at http://0.0.0.0:8888.

If you use boot2docker [http://boot2docker.io/], run $ boot2docker ip to get the ip address,
the visit http://<ip-returned-by-boot2docker>:8888.

By default, notebooks are stored in a Docker container; they are destroyed
when you restart an image. To persist notebooks you can mount a local folder
to /notebooks. For example, let’s use current folder to store the
notebooks:

$ docker run -v `/bin/pwd`/notebooks:/notebooks -p 8888:8888 -it splash-jupyter

Live Webkit window with web inspector is not available when Splash-Jupyter
is executed from Docker. You can still use e.g. splash:png command
to inspect what’s going on.

Currently to enable live Webkit window you must install Splash
in a “manual way” - see Ubuntu 12.04 (manual way).

	Install IPython/Jupyter with notebook feature. Splash kernel requires
IPython 3.x:

$ pip install 'ipython[notebook] >= 3.0.0, < 4.0'

	Let IPython know about Splash kernel by running the following command:

$ python -m splash.kernel install

To run IPython with Splash notebook, first start IPython notebook and then
create a new Splash notebook using “New” button.

From Notebook to HTTP API

After you finished developing the script using an IPython Notebook,
you may want to convert it to a form suitable for submitting
to Splash HTTP API (see execute).

To do that, copy-paste (or download using “File -> Download as -> .lua”)
all relevant code, then put it inside function main(splash):

function main(splash)
 -- Script code goes here,
 -- including all helper functions.
 return {...} -- return the result
end

To make the script more generic you can use splash.args instead of
hardcoded constants (e.g. for page urls). Also, consider submitting several
requests with different arguments instead of running a loop in a script
if you need to visit and process several pages - it is an easy way
to parallelize the work.

There are some gotchas:

	When you run an IPython cell and then run another IPython cell there
is a delay between runs; the effect is similar to inserting
splash:wait calls at the beginning of each cell.

	Regardless of sandbox settings, scripts in IPython
notebook are not sandboxed. Usually it is not a problem,
but some functions may be unavailable in HTTP API if sandbox is enabled.

 Copyright 2015, Scrapinghub.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Splash 1.7 documentation

Splash Development

Contributing

Splash is free & open source.
Development happens at github: https://github.com/scrapinghub/splash

Functional Tests

[image: https://secure.travis-ci.org/scrapinghub/splash.png?branch=master]
 [http://travis-ci.org/scrapinghub/splash]Run with:

py.test --doctest-modules splash

To speedup test running install pytest-xdist Python package and run
Splash tests in parallel:

py.test --doctest-modules -n4 splash

Stress tests

There are some stress tests that spawn its own splash server and a mock server
to run tests against.

To run the stress tests:

python -m splash.tests.stress

Typical output:

$ python -m splash.tests.stress
Total requests: 1000
Concurrency : 50
Log file : /tmp/splash-stress-48H91h.log
..
Received/Expected (per status code or error):
 200: 500/500
 504: 200/200
 502: 300/300

 Copyright 2015, Scrapinghub.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Splash 1.7 documentation

Changes

1.7 (2015-08-06)

New features:

	render.jpeg endpoint and splash:jpeg function allow to take
screenshots in JPEG format;

	splash:on_response_headers Lua function and
allowed_content_types /
forbidden_content_types HTTP arguments
allow to discard responses earlier based on their headers;

	splash.images_enabled attribute to enable/disable images from
Lua scripts;

	splash.js_enabled attribute to enable/disable JS processing from
Lua scripts;

	splash:set_result_header method for setting custom HTTP headers
returned to Splash clients;

	resource_timeout argument for setting network
request timeouts in render endpoints;

	request:set_timeout(timeout) method (ses splash:on_request)
for setting request timeouts from Lua scripts;

	SOCKS5 proxy support: new ‘type’ argument
in proxy profile config files
and request:set_proxy method (ses splash:on_request)

	enabled HTTPS proxying;

Other changes:

	HTTP error detection is improved;

	MS fonts are added to the Docker image for better rendering quality;

	Chinese fonts are added to the Docker image to enable rendering of Chinese
websites;

	validation of timeout and wait arguments is improved;

	documentation: grammar is fixed in the tutorial;

	assorted documentation improvements and code cleanups;

	splash:set_images_enabled method is deprecated.

1.6 (2015-05-15)

The main new feature in Splash 1.6 is splash:on_request function
which allows to process individual outgoing requests: log, abort,
change them.

Other improvements:

	a new _gc endpoint which allows to clear QWebKit caches;

	Docker images are updated with more recent package versions;

	HTTP arguments validation is improved;

	serving Splash UI under HTTPS is fixed.

	documentation improvements and typo fixes.

1.5 (2015-03-03)

In this release we introduce Splash-Jupyter - a
web-based IDE for Splash Lua scripts with syntax highlighting, autocompletion
and a connected live browser window. It is implemented as a kernel for
Jupyter (IPython).

Docker images for Splash 1.5 are optimized - download size is much smaller
than in previous releases.

Other changes:

	splash:go() returned incorrect result after an
unsuccessful splash:go() call - this is fixed;

	Lua main function can now return multiple results;

	there are testing improvements and internal cleanups.

1.4 (2015-02-10)

This release provides faster and more robust screenshot rendering,
many improvements in Splash scripting engine and other improvements
like better cookie handling.

From version 1.4 Splash requires Pillow (built with PNG support) to work.

There are backwards-incompatible changes in Splash scripts:

	splash:set_viewport() is split into
splash:set_viewport_size()
and splash:set_viewport_full();

	old splash:runjs() method is renamed to splash:evaljs();

	new splash:runjs method just runs JavaScript code
without returning the result of the last JS statement.

To upgrade check all splash:runjs() usages: if the returned result is used
then replace splash:runjs() with splash:evaljs().

viewport=full argument is deprecated; use render_all=1.

New scripting features:

	it is now possible to write custom Lua plugins stored server-side;

	a restricted version of Lua require is enabled in sandbox;

	splash:autoload() method for setting JS to load
on each request;

	splash:wait_for_resume() method for
interacting with async JS code;

	splash:lock_navigation() and
splash:unlock_navigation() methods;

	splash:set_viewport() is split into
splash:set_viewport_size()
and splash:set_viewport_full();

	splash:get_viewport_size() method;

	splash:http_get() method for sending HTTP GET
requests without loading result to the browser;

	splash:set_content() method for setting
page content from a string;

	splash:get_cookies(),
splash:add_cookie(),
splash:clear_cookies(),
splash:delete_cookies() and
splash:init_cookies() methods for working
with cookies;

	splash:set_user_agent() method for
setting User-Agent header;

	splash:set_custom_headers() method for
setting other HTTP headers;

	splash:url() method for getting current URL;

	splash:go() now accepts headers argument;

	splash:evaljs() method, which is a
splash:runjs() from Splash v1.3.1 with improved error handling
(it raises an error in case of JavaScript exceptions);

	splash:runjs() method no longer returns the result
of last computation;

	splash:runjs() method handles JavaScript errors
by returning ok, error pair;

	splash:get_perf_stats() method for
getting Splash resource usage.

Other improvements:

	–max-timeout option can be passed to Splash at startup to increase or
decrease maximum allowed timeout value;

	cookies are no longer shared between requests;

	PNG rendering becomes more efficient: less CPU is spent on compression.
The downside is that the returned PNG images become 10-15% larger;

	there is an option (scale_method=vector) to resize images
while painting to avoid pixel-based resize step - it can make taking
a screenshot much faster on image-light webpages (up to several times faster);

	when ‘height’ is set and image is downscaled the rendering is more efficient
because Splash now avoids rendering unnecessary parts;

	/debug endpoint tracks more objects;

	testing setup improvements;

	application/json POST requests handle invalid JSON better;

	undocumented splash:go_and_wait() and splash:_wait_restart_on_redirects()
methods are removed (they are moved to tests);

	Lua sandbox is cleaned up;

	long log messages from Lua are truncated in logs;

	more detailed error info is logged;

	example script in Splash UI is simplified;

	stress tests now include PNG rendering benchmark.

Bug fixes:

	default viewport size and window geometry are now set to 1024x768;
this fixes PNG screenshots with viewport=full;

	PNG rendering is fixed for huge viewports;

	splash:go() argument validation is improved;

	timer is properly deleted when an exception is raised in an errback;

	redirects handling for baseurl requests is fixed;

	reply is deleted only once when baseurl is used.

1.3.1 (2014-12-13)

This release fixes packaging issues with Splash 1.3.

1.3 (2014-12-04)

This release introduces an experimental
scripting support.

Other changes:

	manhole is disabled by default in Debian package;

	more objects are tracked in /debug endpoint;

	“history” in render.json now includes “queryString” keys; it makes the
output compatible with HAR entry format;

	logging improvements;

	improved timer cancellation.

1.2.1 (2014-10-16)

	Dockerfile base image is downgraded to Ubuntu 12.04 to fix random crashes;

	Debian/buildbot config is fixed to make Splash UI available when deployed
from deb;

	Qt / PyQt / sip / WebKit / Twisted version numbers are logged at startup.

1.2 (2014-10-14)

	All Splash rendering endpoints now accept Content-Type: application/json
POST requests with JSON-encoded rendering options as an alternative to using
GET parameters;

	headers parameter allows to set HTTP headers (including user-agent)
for all endpoints - previously it was possible only in proxy mode;

	js_source parameter allows to execute JS in page context without
application/javascript POST requests;

	testing suite is switched to pytest, test running can now be parallelized;

	viewport size changes are logged;

	/debug endpoint provides leak info for more classes;

	Content-Type header parsing is less strict;

	documentation improvements;

	various internal code cleanups.

1.1 (2014-10-10)

	An UI is added - it allows to quickly check Splash features.

	Splash can now return requests/responses information in HAR [http://www.softwareishard.com/blog/har-12-spec/] format. See
render.har endpoint and har argument of render.json
endpoint. A simpler history argument is also available.
With HAR support it is possible to get timings for various events,
HTTP status code of the responses, HTTP headers, redirect chains, etc.

	Processing of related resources is stopped earlier and more robustly
in case of timeouts.

	wait parameter changed its meaning: waiting now restarts
after each redirect.

	Dockerfile is improved: image is updated to Ubuntu 14.04;
logs are shown immediately; it becomes possible to pass additional
options to Splash and customize proxy/js/filter profiles; adblock filters
are supported in Docker; versions of Python dependencies are pinned;
Splash is started directly (without supervisord).

	Splash now tries to start Xvfb automatically - no need for xvfb-run.
This feature requires xvfbwrapper Python package to be installed.

	Debian package improvements: Xvfb viewport matches default Splash viewport,
it is possible to change Splash option using SPLASH_OPTS environment variable.

	Documentation is improved: finally, there are some install instructions.

	Logging: verbosity level of several logging events are changed;
data-uris are truncated in logs.

	Various cleanups and testing improvements.

1.0 (2014-07-28)

Initial release.

 Copyright 2015, Scrapinghub.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Splash 1.7 documentation

Index

 Copyright 2015, Scrapinghub.
 Created using Sphinx 1.3.1.

 _static/plus.png

_static/comment.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		Splash 1.7 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Scrapinghub.
 Created using Sphinx 1.3.1.

_static/minus.png

_static/down.png

_static/file.png

