

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	sphinx.rfc2119 0.1 documentation

Welcome to sphinx.rfc2119’s documentation!

Contents:

	Introduction

	Requirement Directives
	Mandatory Requirements

	Recommendations

	Options

	Requirement List Directives
	Example Mandatory List

	Example Recommended List

	Example Optional List

	Code

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Chris Gough.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	sphinx.rfc2119 0.1 documentation

Introduction

The purpose of this sphinx extension is enable markup of requirements per the definitions in RFC 2119.

	http://sphinx-doc.org

	https://www.ietf.org/rfc/rfc2119.txt

This is supported by a suite of requirement directives that correspond to the RFC 2119 keywords. There are also a suite of requirement list directives that support documenting reqiurements (that have been defined with the rfc2119 directives).

This module is in ALPHA status. Feedback / pull requests very welcome. Development occurs on GitHub:

	https://github.com/monkeypants/sphinx.rfc2119/

Documentation is a bit strange - I used the directives to document what it is supposed to do. Which was handy as I made it, but probably not very readable.

Basically, add the module to your the conf.py of your repo then use the directives. They have lower case names.

The motivtion for this module is in response to this ticket:

	https://github.com/AusDTO/apiguide/issues/11

Must

As per RFC 2119, users of this module should include a block of
boilerplate near the beginning of their sphinx document.
A rfc2119interpretation directive is required for this purpose.

RFC 2119 keywords

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC 2119.

May

Optionally, this module should support governance parameters for
documenting requirement status, valid from date, review date, etc.

None of these features are implemented yet, sorry. If there’s
something you actually need, please raise a ticket on GitHub.

 Copyright 2015, Chris Gough.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	sphinx.rfc2119 0.1 documentation

Requirement Directives

	RFC 2119 defines:

	
	5 mandatory requirement labels

	5 recommendation labels

	2 optional labels

This sphinx extension includes 12 coresponding “requirements directives”.
They have lowercase names (with words separated by underscores for two word
phrases.

Mandatory Requirements

Must

A must directive is required, with semantic equivalence to the
MUST keyword in RFC 2119.

Must Not

The absence of a must_not directive is forbidden.
This directive has semantic equivalence to the
MUST NOT keyword in RFC 2119

Shall

A shall directive is required.
It is an alias for the must directive.

Shall Not

The absence of a shall_not directive is forbidden.
It is a necessary alias for the must_not directive.

Required

A required directive is something we need.
It is an alias for the must directive.

Recommendations

Should

A should directive is important.
It has semantic equivalence to the SHOULD keyword in RFC 2119.

Recommended

A recommended directive is very useful.
It is an alias for the should directive.

Should Not

The absence of a should_not directive is not something we want.
It is equivalent to the SHOULD NOT key word in RFC 2119.

Not Recommended

Because the not_recommended is an alias for should_not directive,
it’s absence should be avoided.

Options

Optional

It might be nice to have an optional directive,
which would be equivalent of OPTIONAL keyword in RFC 2119.

May

As an alias for the optional directive,
a may directive might also be good to have.

 Copyright 2015, Chris Gough.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	sphinx.rfc2119 0.1 documentation

Requirement List Directives

Must

A mandatorylist directive is required.
It should produce a list of all MUST and MUST NOT directives
(and their aliases).

Must

A recommendedlist directive is required.
It should produce a list of all SHOULD and SHOULD NOT directives
(and their aliases).

Must

A optionallist directive is required.
It should produce a list of all OPTIONAL and MAY directives.

Example Mandatory List

The following list of mandatory reqirements includes every MUST, MUST NOT, SHALL, SHALL NOT and REQUIRED semantic in this suite of documentation, because they are makted up with the appropriate directives.

Must

As per RFC 2119, users of this module should include a block of
boilerplate near the beginning of their sphinx document.
A rfc2119interpretation directive is required for this purpose.

(The original entry is located in introduction.rst, line 24 and can be found here.)

Must

A must directive is required, with semantic equivalence to the
MUST keyword in RFC 2119.

(The original entry is located in requirement_directives.rst, line 17 and can be found here.)

Must Not

The absence of a must_not directive is forbidden.
This directive has semantic equivalence to the
MUST NOT keyword in RFC 2119

(The original entry is located in requirement_directives.rst, line 23 and can be found here.)

Shall

A shall directive is required.
It is an alias for the must directive.

(The original entry is located in requirement_directives.rst, line 30 and can be found here.)

Shall Not

The absence of a shall_not directive is forbidden.
It is a necessary alias for the must_not directive.

(The original entry is located in requirement_directives.rst, line 36 and can be found here.)

Required

A required directive is something we need.
It is an alias for the must directive.

(The original entry is located in requirement_directives.rst, line 42 and can be found here.)

Must

A mandatorylist directive is required.
It should produce a list of all MUST and MUST NOT directives
(and their aliases).

(The original entry is located in requirement_list_directives.rst, line 4 and can be found here.)

Must

A recommendedlist directive is required.
It should produce a list of all SHOULD and SHOULD NOT directives
(and their aliases).

(The original entry is located in requirement_list_directives.rst, line 10 and can be found here.)

Must

A optionallist directive is required.
It should produce a list of all OPTIONAL and MAY directives.

(The original entry is located in requirement_list_directives.rst, line 17 and can be found here.)

Must

As per RFC 2119, users of this module should include a block of
boilerplate near the beginning of their sphinx document.
A rfc2119interpretation directive is required for this purpose.

(The original entry is located in introduction.rst, line 24 and can be found here.)

Example Recommended List

The following list of recommendations includes every SHOULD, SHOULD NOT, RECOMMENDED etc.

Should

A should directive is important.
It has semantic equivalence to the SHOULD keyword in RFC 2119.

(The original entry is located in requirement_directives.rst, line 51 and can be found here.)

Recommended

A recommended directive is very useful.
It is an alias for the should directive.

(The original entry is located in requirement_directives.rst, line 57 and can be found here.)

Should Not

The absence of a should_not directive is not something we want.
It is equivalent to the SHOULD NOT key word in RFC 2119.

(The original entry is located in requirement_directives.rst, line 63 and can be found here.)

Not Recommended

Because the not_recommended is an alias for should_not directive,
it’s absence should be avoided.

(The original entry is located in requirement_directives.rst, line 69 and can be found here.)

Example Optional List

Optional

It might be nice to have an optional directive,
which would be equivalent of OPTIONAL keyword in RFC 2119.

(The original entry is located in requirement_directives.rst, line 78 and can be found here.)

May

As an alias for the optional directive,
a may directive might also be good to have.

(The original entry is located in requirement_directives.rst, line 84 and can be found here.)

May

Optionally, this module should support governance parameters for
documenting requirement status, valid from date, review date, etc.

None of these features are implemented yet, sorry. If there’s
something you actually need, please raise a ticket on GitHub.

(The original entry is located in introduction.rst, line 35 and can be found here.)

 Copyright 2015, Chris Gough.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	sphinx.rfc2119 0.1 documentation

Code

	
class sphinx_rfc2119.MandatoryListDirective(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine)[source]

	
	
has_content = True

	

	
run()[source]

	

	
class sphinx_rfc2119.MayDirective(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine)[source]

	
	
label = 'May'

	

	
requirement_class = 'optional'

	

	
class sphinx_rfc2119.MustDirective(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine)[source]

	
	
label = 'Must'

	

	
requirement_class = 'mandatory'

	

	
class sphinx_rfc2119.MustNotDirective(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine)[source]

	
	
label = 'Must Not'

	

	
requirement_class = 'mandatory'

	

	
class sphinx_rfc2119.NotRecommendedDirective(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine)[source]

	
	
label = 'Not Recommended'

	

	
requirement_class = 'recommendation'

	

	
class sphinx_rfc2119.OptionalDirective(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine)[source]

	
	
label = 'Optional'

	

	
requirement_class = 'optional'

	

	
class sphinx_rfc2119.OptionalListDirective(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine)[source]

	
	
has_content = True

	

	
run()[source]

	

	
class sphinx_rfc2119.RecommendationListDirective(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine)[source]

	
	
has_content = True

	

	
run()[source]

	

	
class sphinx_rfc2119.RecommendedDirective(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine)[source]

	
	
label = 'Recommended'

	

	
requirement_class = 'recommendation'

	

	
class sphinx_rfc2119.RequiredDirective(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine)[source]

	
	
label = 'Required'

	

	
requirement_class = 'mandatory'

	

	
class sphinx_rfc2119.ShallDirective(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine)[source]

	
	
label = 'Shall'

	

	
requirement_class = 'mandatory'

	

	
class sphinx_rfc2119.ShallNotDirective(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine)[source]

	
	
label = 'Shall Not'

	

	
requirement_class = 'mandatory'

	

	
class sphinx_rfc2119.ShouldDirective(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine)[source]

	
	
label = 'Should'

	

	
requirement_class = 'recommendation'

	

	
class sphinx_rfc2119.ShouldNotDirective(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine)[source]

	
	
label = 'Should Not'

	

	
requirement_class = 'recommendation'

	

	
sphinx_rfc2119.depart_rfc2119_node(self, node)[source]

	

	
class sphinx_rfc2119.mandatory(rawsource='', *children, **attributes)[source]

	

	
class sphinx_rfc2119.mandatorylist(rawsource='', *children, **attributes)[source]

	

	
class sphinx_rfc2119.optional(rawsource='', *children, **attributes)[source]

	

	
class sphinx_rfc2119.optionallist(rawsource='', *children, **attributes)[source]

	

	
sphinx_rfc2119.process_rfc2119_nodes(app, doctree, fromdocname)[source]

	

	
sphinx_rfc2119.purge_rfc2119_mandatory(app, env, docname)[source]

	

	
sphinx_rfc2119.purge_rfc2119_optional(app, env, docname)[source]

	

	
sphinx_rfc2119.purge_rfc2119_recommendation(app, env, docname)[source]

	

	
class sphinx_rfc2119.recommendationlist(rawsource='', *children, **attributes)[source]

	

	
class sphinx_rfc2119.recommended(rawsource='', *children, **attributes)[source]

	

	
class sphinx_rfc2119.rfc2119Directive(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine)[source]

	An abstract base for rfc2199 requirements.

	
has_content = True

	

	
label = 'rfc2119'

	

	
requirement_class = 'rfc2119'

	

	
run()[source]

	

	
class sphinx_rfc2119.rfc2119InterpretationDirective(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine)[source]

	
	
has_content = False

	

	
run()[source]

	

	
class sphinx_rfc2119.rfc2119interpretation(rawsource='', *children, **attributes)[source]

	

	
sphinx_rfc2119.setup(app)[source]

	

	
sphinx_rfc2119.visit_rfc2119_node(self, node)[source]

	

 Copyright 2015, Chris Gough.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	sphinx.rfc2119 0.1 documentation

 Python Module Index

 s

 			

 		
 s	

 	
 	
 sphinx_rfc2119	

 Copyright 2015, Chris Gough.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	sphinx.rfc2119 0.1 documentation

Index

 D
 | H
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | V

D

 	

 	depart_rfc2119_node() (in module sphinx_rfc2119)

H

 	

 	has_content (sphinx_rfc2119.MandatoryListDirective attribute)

 	

 	(sphinx_rfc2119.OptionalListDirective attribute)

 	(sphinx_rfc2119.RecommendationListDirective attribute)

 	(sphinx_rfc2119.rfc2119Directive attribute)

 	(sphinx_rfc2119.rfc2119InterpretationDirective attribute)

L

 	

 	label (sphinx_rfc2119.MayDirective attribute)

 	

 	(sphinx_rfc2119.MustDirective attribute)

 	(sphinx_rfc2119.MustNotDirective attribute)

 	(sphinx_rfc2119.NotRecommendedDirective attribute)

 	(sphinx_rfc2119.OptionalDirective attribute)

 	(sphinx_rfc2119.RecommendedDirective attribute)

 	(sphinx_rfc2119.RequiredDirective attribute)

 	(sphinx_rfc2119.ShallDirective attribute)

 	(sphinx_rfc2119.ShallNotDirective attribute)

 	(sphinx_rfc2119.ShouldDirective attribute)

 	(sphinx_rfc2119.ShouldNotDirective attribute)

 	(sphinx_rfc2119.rfc2119Directive attribute)

M

 	

 	mandatory (class in sphinx_rfc2119)

 	mandatorylist (class in sphinx_rfc2119)

 	MandatoryListDirective (class in sphinx_rfc2119)

 	

 	MayDirective (class in sphinx_rfc2119)

 	MustDirective (class in sphinx_rfc2119)

 	MustNotDirective (class in sphinx_rfc2119)

N

 	

 	NotRecommendedDirective (class in sphinx_rfc2119)

O

 	

 	optional (class in sphinx_rfc2119)

 	OptionalDirective (class in sphinx_rfc2119)

 	

 	optionallist (class in sphinx_rfc2119)

 	OptionalListDirective (class in sphinx_rfc2119)

P

 	

 	process_rfc2119_nodes() (in module sphinx_rfc2119)

 	purge_rfc2119_mandatory() (in module sphinx_rfc2119)

 	

 	purge_rfc2119_optional() (in module sphinx_rfc2119)

 	purge_rfc2119_recommendation() (in module sphinx_rfc2119)

R

 	

 	recommendationlist (class in sphinx_rfc2119)

 	RecommendationListDirective (class in sphinx_rfc2119)

 	recommended (class in sphinx_rfc2119)

 	RecommendedDirective (class in sphinx_rfc2119)

 	RequiredDirective (class in sphinx_rfc2119)

 	

 	requirement_class (sphinx_rfc2119.MayDirective attribute)

 	

 	(sphinx_rfc2119.MustDirective attribute)

 	(sphinx_rfc2119.MustNotDirective attribute)

 	(sphinx_rfc2119.NotRecommendedDirective attribute)

 	(sphinx_rfc2119.OptionalDirective attribute)

 	(sphinx_rfc2119.RecommendedDirective attribute)

 	(sphinx_rfc2119.RequiredDirective attribute)

 	(sphinx_rfc2119.ShallDirective attribute)

 	(sphinx_rfc2119.ShallNotDirective attribute)

 	(sphinx_rfc2119.ShouldDirective attribute)

 	(sphinx_rfc2119.ShouldNotDirective attribute)

 	(sphinx_rfc2119.rfc2119Directive attribute)

 	rfc2119Directive (class in sphinx_rfc2119)

 	rfc2119interpretation (class in sphinx_rfc2119)

 	rfc2119InterpretationDirective (class in sphinx_rfc2119)

 	run() (sphinx_rfc2119.MandatoryListDirective method)

 	

 	(sphinx_rfc2119.OptionalListDirective method)

 	(sphinx_rfc2119.RecommendationListDirective method)

 	(sphinx_rfc2119.rfc2119Directive method)

 	(sphinx_rfc2119.rfc2119InterpretationDirective method)

S

 	

 	setup() (in module sphinx_rfc2119)

 	ShallDirective (class in sphinx_rfc2119)

 	ShallNotDirective (class in sphinx_rfc2119)

 	

 	ShouldDirective (class in sphinx_rfc2119)

 	ShouldNotDirective (class in sphinx_rfc2119)

 	sphinx_rfc2119 (module)

V

 	

 	visit_rfc2119_node() (in module sphinx_rfc2119)

 Copyright 2015, Chris Gough.
 Created using Sphinx 1.3.1.

 _modules/index.html

 Navigation

 		
 index

 		
 modules |

 		sphinx.rfc2119 0.1 documentation »

 All modules for which code is available

		sphinx_rfc2119

 © Copyright 2015, Chris Gough.
 Created using Sphinx 1.3.1.

_static/comment-close.png

_static/minus.png

_static/comment.png

_static/up.png

_static/plus.png

_modules/sphinx_rfc2119.html

 Navigation

 		
 index

 		
 modules |

 		sphinx.rfc2119 0.1 documentation »

 		Module code »

 Source code for sphinx_rfc2119

from docutils import nodes, statemachine
from docutils.parsers.rst import Directive
from sphinx.util.compat import make_admonition
from sphinx.locale import _

[docs]def setup(app):
 global BASE_TYPES
 global LIST_TYPES

 app.add_config_value('rfc2119_include', True, True)

 for t in LIST_TYPES:
 app.add_node(t)
 for node_type in BASE_TYPES + (rfc2119interpretation,):
 app.add_node(
 node_type,
 html=(visit_rfc2119_node, depart_rfc2119_node),
 latex=(visit_rfc2119_node, depart_rfc2119_node),
 text=(visit_rfc2119_node, depart_rfc2119_node))

 app.add_directive('must', MustDirective)
 app.add_directive('must_not', MustNotDirective)
 app.add_directive('shall', ShallDirective)
 app.add_directive('shall_not', ShallNotDirective)
 app.add_directive('required', RequiredDirective)
 app.add_directive('should', ShouldDirective)
 app.add_directive('should_not', ShouldNotDirective)
 app.add_directive('recommended', RecommendedDirective)
 app.add_directive('not_recommended', NotRecommendedDirective)
 app.add_directive('optional', OptionalDirective)
 app.add_directive('may', MayDirective)

 app.add_directive('mandatorylist', MandatoryListDirective)
 app.add_directive('recommendationlist', RecommendationListDirective)
 app.add_directive('optionallist', OptionalListDirective)

 app.add_directive('rfc2119interpretation', rfc2119InterpretationDirective)

 app.connect('doctree-resolved', process_rfc2119_nodes)
 app.connect('env-purge-doc', purge_rfc2119_mandatory)
 app.connect('env-purge-doc', purge_rfc2119_recommendation)
 app.connect('env-purge-doc', purge_rfc2119_optional)

 return {"version": "0.2"}

[docs]class rfc2119interpretation(nodes.Admonition, nodes.Element): pass

[docs]class mandatory(nodes.Admonition, nodes.Element): pass

[docs]class recommended(nodes.Admonition, nodes.Element): pass

[docs]class optional(nodes.Admonition, nodes.Element): pass

[docs]class mandatorylist(nodes.General, nodes.Element): pass

[docs]class recommendationlist(nodes.General, nodes.Element): pass

[docs]class optionallist(nodes.General, nodes.Element): pass

BASE_TYPES = (mandatory, recommended, optional)
LIST_TYPES = (mandatorylist, recommendationlist, optionallist)

[docs]def visit_rfc2119_node(self, node):
 self.visit_admonition(node)

[docs]def depart_rfc2119_node(self, node):
 self.depart_admonition(node)

[docs]class rfc2119InterpretationDirective(Directive):
 has_content = False # True
[docs] def run(self):
 lines = ("""The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119.""",)
 boilerplate = statemachine.ViewList(initlist=lines)
 self.content.append(boilerplate)

 return make_admonition(
 rfc2119interpretation, self.name, [_('RFC 2119 keywords')],
 self.options, self.content,
 self.lineno, self.content_offset,
 self.block_text, self.state, self.state_machine)

[docs]class MandatoryListDirective(Directive):
 has_content = True
[docs] def run(self):
 return [mandatorylist('')]

[docs]class RecommendationListDirective(Directive):
 has_content = True
[docs] def run(self):
 return [recommendationlist('')]

[docs]class OptionalListDirective(Directive):
 has_content = True
[docs] def run(self):
 return [optionallist('')]

[docs]class rfc2119Directive(Directive):
 """ An abstract base for rfc2199 requirements."""
 # this label not used because this class is treated as abstract
 # we expcet subclasses to overwrite them
 label = "rfc2119"
 requirement_class = "rfc2119"
 has_content = True
[docs] def run(self):
 env = self.state.document.settings.env
 targetid = "%s-%d" % (
 self.requirement_class,
 env.new_serialno(self.requirement_class))
 targetnode = nodes.target('', '', ids=[targetid])

 # BUG? why is it always mandatory?
 # maybe select node type per self.requirement_class
 ad = make_admonition(
 mandatory, self.name, [_(self.label)], self.options,
 self.content, self.lineno, self.content_offset,
 self.block_text, self.state, self.state_machine)

 env_data_name = "rfc2119_all_%s" % self.requirement_class
 if not hasattr(env, env_data_name):
 exec("env.%s = []" % env_data_name)

 env_data = eval("env.%s" % env_data_name)
 env_data.append({
 'docname': env.docname,
 'lineno': self.lineno,
 'rfc2119': ad[0].deepcopy(),
 'target': targetnode})

 return [targetnode] + ad

[docs]class OptionalDirective(rfc2119Directive):
 label = "Optional"
 requirement_class = "optional"

[docs]class MayDirective(rfc2119Directive):
 label = "May"
 requirement_class = "optional"

[docs]class ShouldDirective(rfc2119Directive):
 label = "Should"
 requirement_class = "recommendation"

[docs]class ShouldNotDirective(rfc2119Directive):
 label = "Should Not"
 requirement_class = "recommendation"

[docs]class RecommendedDirective(rfc2119Directive):
 label = "Recommended"
 requirement_class = "recommendation"

[docs]class NotRecommendedDirective(rfc2119Directive):
 label = "Not Recommended"
 requirement_class = "recommendation"

[docs]class MustDirective(rfc2119Directive):
 label = "Must"
 requirement_class = "mandatory"

[docs]class MustNotDirective(rfc2119Directive):
 label = "Must Not"
 requirement_class = "mandatory"

[docs]class ShallDirective(rfc2119Directive):
 label = "Shall"
 requirement_class = "mandatory"

[docs]class ShallNotDirective(rfc2119Directive):
 label = "Shall Not"
 requirement_class = "mandatory"

[docs]class RequiredDirective(rfc2119Directive):
 label = "Required"
 requirement_class = "mandatory"

[docs]def purge_rfc2119_mandatory(app, env, docname):
 if not hasattr(env, 'rfc2119_all_mandatorys'):
 return
 env.rfc2119_all_mandatory = [mandatory for mandatory in env.rfc2119_all_mandatory if mandatory['docname'] != docname]

[docs]def purge_rfc2119_recommendation(app, env, docname):
 if not hasattr(env, 'rfc2119_all_recommendation'):
 return
 env.rfc2119_all_recommendation = [rec for rec in env.rfc2119_all_recommendation if rec['docname'] != docname]

[docs]def purge_rfc2119_optional(app, env, docname):
 if not hasattr(env, 'rfc2119_all_optional'):
 return
 env.rfc2119_all_optional = [rec for rec in env.rfc2119_all_optional if rec['docname'] != docname]

TODO - for the other node types, not just mandatory

[docs]def process_rfc2119_nodes(app, doctree, fromdocname):
 global BASE_TYPES
 global LIST_TYPES

 if not app.config.rfc2119_include:
 for node_type in BASE_TYPES:
 for node in doctree.traverse(node_type):
 node.parent.remove(node)

 # replace list_type nodes with an actual list
 # of the nodes they list
 env = app.builder.env

 for node_type in LIST_TYPES:
 for node in doctree.traverse(node_type):
 if not app.config.rfc2119_include:
 node.replace_self([])
 continue

 content = []

 if node_type == mandatorylist:
 env_data = env.rfc2119_all_mandatory
 elif node_type == recommendationlist:
 env_data = env.rfc2119_all_recommendation
 elif node_type == optionallist:
 env_data = env.rfc2119_all_optional
 else:
 raise Exception('invalid node_type: %s' % node_type)

 for info in env_data:
 para = nodes.paragraph()
 filename = env.doc2path(info['docname'], base=None)
 description = (
 _('(The original entry is located in %s, line %d and can be found ') %
 (filename, info['lineno']))
 para += nodes.Text(description, description)

 newnode = nodes.reference('', '')
 innernode = nodes.emphasis(_('here'), _('here'))
 newnode['refdocname'] = info['docname']
 newnode['refuri'] = app.builder.get_relative_uri(
 fromdocname, info['docname'])
 newnode['refuri'] += '#' + info['target']['refid']
 newnode.append(innernode)
 para += newnode
 para+= nodes.Text('.)', '.)')

 content.append(info['rfc2119'])
 content.append(para)

 node.replace_self(content)

 © Copyright 2015, Chris Gough.
 Created using Sphinx 1.3.1.

_static/comment-bright.png

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		sphinx.rfc2119 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Chris Gough.
 Created using Sphinx 1.3.1.

_static/down.png

_static/file.png

README.html

 Navigation

 		
 index

 		
 modules |

 		sphinx.rfc2119 0.1 documentation »

sphinx.rfc2119

The purpose of this sphinx extension is enable markup of requirements per the definitions in RFC 2119.

http://sphinx-doc.org

https://www.ietf.org/rfc/rfc2119.txt

The documentation is published here:

http://sphinxrfc2119.readthedocs.org

 © Copyright 2015, Chris Gough.
 Created using Sphinx 1.3.1.

_static/up-pressed.png

_static/ajax-loader.gif

