SphinxQL Query Builder

Release 1.0.0

June 17, 2016

Contents

Introduction

1.1 Compatiblity o e e e e e e e e e e e e e e 1
CHANGELOG 3
2.1 What'sNewin 1.0.0 0 o e 3
Configuration 5
3.1 Obtaining a Connection ottt e e e e e e e e e e 5
3.2 Connection Parameters e e 5
SphinxQL Query Builder 7
4.1 Creating a Query Builder Instance L e 7
42 Buildinga Queryo e e e e e e 7
43 COMPILE e e e 10
44 EXECUTE e e e 10
Multi-Query Builder 11
Facets 13
Contribute 15
7.1 PullRequests e 15
7.2 Coding Style e 15
T3 TeStNG . o v o o e e e e e e e e e e e 15
T4 IssueTracker o o o e e e 15

CHAPTER 1

Introduction

The SphinxQL Query Builder provides a simple abstraction and access layer which allows developers to generate
SphinxQL statements which can be used to query an instance of the Sphinx search engine for results.

1.1 Compatiblity

SphinxQL Query Builder is tested against the following environments:
* HHVM or PHP 5.3 and later
* Sphinx (Stable)

* Sphinx (Development)

Note: It is recommended that you always use the latest stable version of Sphinx with the query builder.

SphinxQL Query Builder, Release 1.0.0

2 Chapter 1. Introduction

CHAPTER 2

CHANGELOG

2.1 What’s New in 1.0.0

SphinxQL Query Builder, Release 1.0.0

4 Chapter 2. CHANGELOG

CHAPTER 3

Configuration

3.1 Obtaining a Connection

You can obtain a SphinxQL Connection with the Fool\SphinxQI\Drivers\Mysqli\Connection class.

<?php
use Foolz\SphinxQL\Drivers\Mysqgli\Connection;

Sconn = new Connection();
Sconn->setparams (array ('host' => '127.0.0.1', 'port' => 9306));

Warning: The existing PDO driver written is considered experimental as the behaviour changes between certain
PHP releases.

3.2 Connection Parameters

The connection parameters provide information about the instance you wish to establish a connection with. The
parameters required is set with the setParams($array) or setParam($key, $value) methods.

host
Type string
Default 127.0.0.1
port
Type int
Default 9306
socket
Type string
Default null
options

Type array
Default null

SphinxQL Query Builder, Release 1.0.0

6 Chapter 3. Configuration

CHAPTER 4

SphinxQL Query Builder

4.1 Creating a Query Builder Instance

You can create an instance by using the following code and passing a configured Connection class.

<?php

use Foolz\SphinxQL\Drivers\Mysqgli\Connection;
use Foolz\SphinxQL\SphinxQL;

Sconn = new Connection();
SqueryBuilder = SphinxQL::create($conn);

4.2 Building a Query

The Fool\SphinxQI\SphinxQL class supports building the following queries: SELECT, INSERT, UPDATE, and
DELETE. Which sort of query being generated depends on the methods called.

For SELECT queries, you would start by invoking the select() method:

SqueryBuilder
->select ('id', 'name')
—>from('index"');

For INSERT, REPLACE, UPDATE and DELETE queries, you can pass the index as a parameter into the following
methods:

SqueryBuilder
->insert ('index"');

S$queryBuilder
—->replace('index"');

$queryBuilder
—>update ('index"');

$queryBuilder
->delete('index"');

SphinxQL Query Builder, Release 1.0.0

Note: You can convert the query builder into its compiled SphinxQL dialect string representation by calling
SqueryBuilder->compile()->getCompiled().

4.2.1 Security: Bypass Query Escaping

‘SphinxQL::expr($strinq)

4.2.2 Security: Query Escaping

SqueryBuilder
->escape ($value);

SqueryBuilder
->quoteldentifier ($value);

SqueryBuilder
->quote ($value);

SqueryBuilder
->escapeMatch (Svalue) ;

SqueryBuilder
->halfEscapeMatch (Svalue) ;

4.2.3 WHERE Clause

The SELECT, UPDATE and DELETE statements supports the WHERE clause with the following API methods:

// WHERE ‘Scolumn’® = 'Svalue'
SqueryBuilder
—->where (Scolumn, S$value);

// WHERE ‘Scolumn’ = 'Svalue'
SqueryBuilder
—->where (Scolumn, '=', S$value);

// WHERE ‘Scolumn’® >= 'Svalue'
SqueryBuilder
->where (Scolumn, '>=', S$value)

// WHERE "Scolumn’ IN ('Svaluel', 'Svalue2', 'Svalue3')
SqueryBuilder
->where (Scolumn, 'IN', array($valuel, S$value2, S$value3));

// WHERE “Scolumn’' NOT IN ('Svaluel', 'Svaluel2', 'Svalue3')
SqueryBuilder
->where ($Scolumn, 'NOT IN', array(Svaluel, S$value2, S$value3));

// WHERE ‘Scolumn' BETWEEN 'Svaluel' AND 'Svaluel'
SqueryBuilder
->where ($Scolumn, 'BETWEEN', array(Svaluel, S$value2))

8 Chapter 4. SphinxQL Query Builder

SphinxQL Query Builder, Release 1.0.0

Warning: Currently, the SphinxQL dialect does not support the OR operator and grouping with parenthesis.

4.2.4 MATCH Clause

MATCH extends the WHERE clause and allows for full-text search capabilities.

SqueryBuilder
->match ($column, $value, ShalfEscape = false);

By default, all inputs are automatically escaped by the query builder. The usage of SphinxQL.::expr($value) can be
used to bypass the default query escaping and quoting functions in place during query compilation. The $column
argument accepts a string or an array. The $halfEscape argument, if set to zrue, will not escape and allow the usage of
the following special characters: -, |, and “.

4.2.5 SET Clause

SqueryBuilder
->set (Sas

bciativeArray);

SqueryBuilder

->value (Scolumnl, S$valuel)

->value (Scolume2, S$value?);

$queryBuilder

->columns ($Scolt
->values (
—->values (S$Svaluel_2, Svalue2_2,

4.2.6 GROUP BY Clause

The GROUP BY supports grouping by multiple columns or computed expressions.

// GROUP BY Scolumn

SqueryBuilder

—>groupBy ($column) ;

4.2.7 WITHIN GROUP ORDER BY

The WITHIN GROUP ORDER BY clause allows you to control how the best row within a group will be selected.

// WITHIN GROUP ORDER BY Scolumn [Sdirection]
SqueryBuilder
->withinGroupOrderBy ($column, S$direction = null);

4.2.8 ORDER BY Clause

Unlike in regular SQL, only column names (not expressions) are allowed.

4.2. Building a Query 9

SphinxQL Query Builder, Release 1.0.0

// ORDER BY Scolumn [S$Sdirection]
SqueryBuilder
->orderBy ($column, $direction = null);

4.2.9 OFFSET and LIMIT Clause

// LIMIT Soffset, Slimit
$queryBuilder

->1limit (Soffset, $limit);

// LIMIT $limit
SqueryBuilder
—>limit ($S1limit);

4.2.10 OPTION Clause

The OPTION clause allows you to control a number of per-query options.

// OPTION $name = Svalue
$queryBuilder

->option (S$Sname, Svalue);

4.3 COMPILE

You can have the query builder compile the generated query for debugging with the following method:

SqueryBuilder

—>compile();

This can be used for debugging purposes and obtaining the resulting query generated.

4.4 EXECUTE

In order to run the query, you must invoke the execute() method so that the query builder can compile the query for

execution and then return the results of the query.

SqueryBuilder
—->execute();

10

Chapter 4. SphinxQL Query Builder

CHAPTER 5

Multi-Query Builder

SqueryBuilder
—->enqueue (SphinxQL Snext = null);

$queryBuilder

—->executeBatch () ;

11

SphinxQL Query Builder, Release 1.0.0

12 Chapter 5. Multi-Query Builder

CHAPTER 6

Facets

13

SphinxQL Query Builder, Release 1.0.0

14 Chapter 6. Facets

CHAPTER 7

Contribute

7.1 Pull Requests

1. Fork SphinxQL Query Builder
2. Create a new branch for each feature or improvement
3. Submit a pull request with your branch against the master branch

It is very important that you create a new branch for each feature, improvement, or fix so that may review the changes
and merge the pull requests in a timely manner.

7.2 Coding Style

All pull requests must adhere to the PSR-2 standard.

7.3 Testing

All pull requests must be accompanied with passing tests and code coverage. The SphinxQL Query Builder uses
PHPUnit for testing.

7.4 Issue Tracker

You can find our issue tracker at our SphinxQL Query Builder repository.

15

https://github.com/FoolCode/SphinxQL-Query-Builder
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md
https://github.com/sebastianbergmann/phpunit/
https://github.com/FoolCode/SphinxQL-Query-Builder

	Introduction
	Compatiblity

	CHANGELOG
	What's New in 1.0.0

	Configuration
	Obtaining a Connection
	Connection Parameters

	SphinxQL Query Builder
	Creating a Query Builder Instance
	Building a Query
	COMPILE
	EXECUTE

	Multi-Query Builder
	Facets
	Contribute
	Pull Requests
	Coding Style
	Testing
	Issue Tracker

