sphinx Documentation
Release

openthings

Nov 20, 2017

Contents

FERE 1
pyell] 3
51F 5
3.0 ARESCRERGEHVERLL . . 5
32 HEEHMARGHGMER . 5
3.3 BT 6
34 FIE 6
Sphinx#] 2 7
4.1 FEEEITREUR ., 7
42 TEMIUREGERT . 7
A3 INININZE 8
44 BITOIEETE . 8
45 STREIEZE 9
4.6 FEREDE . . 10
47 BB 10
48 EAMMVER . . 10
Y4 A sphinx-build 11
5.1 Makefile BIT 12
Y8 F sphinx-apidoc 15
reStructuredText T4 7 17
T BTE 17
7.2 NEERRID © o e 17
73 FIRGBIH 18
T4 TRRED 19
A T~ - 19
7.6 HBEEEE 20
TT BT 20
7.8 EEBRID © 21
7.9 B 21
700 B 22
TAL BIE o 23

10

11

12

13

14

15

T2 B

TA3 B
T4 T
A5 URGREE e
706 CEULIRIRE . ..
Sphinx R iC A2 AL

8.1 BRI .
8.2 BIEFIRINFID . . o o
83 HEFIEIFID . . . o
8.4 RIE e
8.5 MEIETEEIEIR . .
8.6 EARARBIMED . . o
8.7 NERFTRID o
8.8 RAEBIRIL . . .
Sphinx Domains

9.1 WhatisaDomain? e
9.2 BasicMarkup. e e e e e e e
9.3 ThePython Domain e e e e e e e
9.4 TheCDomain i i i e e e e e e
95 TheCH+Domain o e e e e e e e e e e
9.6 The Standard Domain e e e e e e e e
9.7 ThelJavaScript Domain. e e e
9.8 ThereStructuredText domain e e e e e
9.9 Moredomains e e e e e e e e e e e e e
Available builders

10.1 Serialization builder details

The build configuration file

11.1 General configuration 0 i i e e e e e e e e e e e e e e
11.2 Projectinformation o e e e e e e e e e e e e
11.3 Options for internationalization L e
11.4 Options for HTML output ettt
11.5 Options forepub output o L e e
11.6 Options for LaTeX output o oo e e e e e
11.7 Options for teXt OULPUL o v o o e
11.8 Options for manual page output L e e e e e e e e
11.9 Options for Texinfooutput
11.10 Options for the linkcheck builder

Internationalization

HTML theming support

13.1 Usingatheme i e e e e e e e e e
13.2 Builtinthemes e e e e e e e e e
13.3 Creating themes e e e e e e e e e

Templating

14.2 Jinja/Sphinx Templating Primer o
14.3 Working with the builtin templates

Sphinx Extensions

25
25
27
29
29
29
30
32
36

41
41
41
43
47
48
49
50
51
52

53
56

59
60
60
60
60
60
60
60
60
60
60

61

63
63
65
68

71
71
71
72

77

15.1 Tutorial: Writing a simple eXtension v v v v vt i e e e e e e e e e e e e 77

15.2 Extension APL e e 82
15.3 Writingnew builders e e 87
15.4 Builtin Sphinx extensions e e e 87
15.5 Third-party eXtensions v v v vt i e e e e e e e e e e e e e e 101
16 Sphinx Web Support 103
16.1 Web Support Quick Start 103
16.2 The WebSupport Class o o e e e e 107
16.3 Search Adapters o o e e e e e e e e e e 108
16.4 Storage Backends e e e e 108
17 Sphinx FAQ 109
17.1 HowdoL.. . . . o 109
17.2 Using Sphinx With... L e e e e e e e e e e 109
173 Epubinfo o e e e e 110
17.4 Texinfoinfo o L e e e e e e 111
18 Glossary 113
19 RI| XFEH 115
Python Module Index 117

CHAPTER 1

BEHEAE

sphinxfi# F T JE S0k b4k Sphinx .
B P EEWFREF TR, B L2 5 O pIEF A

http://sphinx.pocoo.org/

sphinx Documentation, Release

2 Chapter 1. FHHI 5

CHAPTER 2

=

Sphinx f& —FH TE, B4 NEREES HIEM B I3 830k, B Georg Brandl 7/EBSD
VFRE N & HThR T Python SCRY & HISphinx AL, 3 BB © A A PythonIil B & % A 3RS T
H R EX C/C++ T H W E R AR T RN HE T 18 S IR IR SCRr. A vk S Skt 2
FH Sphinx A iH, B % HreStructuredText! Sphinxif AE4KSET 4. TS H T H B4 Xtk
PEFEPython B 77 SCRS 4575 4R 21

o FE B R 3G HTML (23 Windows # B SCRY), LaTeX (AT LITENPDFAR), manual
pages (man 3(HY) | 4E30AR

o SERBIENFIH.: B SALRIPRE, H 7T LA B sh U HER: s 2R, 51 S0 ARTE SAR LI A BB R
o BHRAY > R GEH T LABRAA Y RE SOCHIIR, I B sh L BERE R 9 AL R N R CE

« B EENRG: 7T B ERSEMAEERRS]

o FEFRRIBIEE 7 FET Pygments HENAE B EE =

o YT R IR B shilist, 7F 62 & Python R /) H A SUR(API docs) 55

Sphinx f#H reStructuredText YENARICIE S, Al LLZH Docutils HreStructuredTexti& (L5347, %
HEZ R T H.

http://docs.python.org/
http://pygments.org/
http://docutils.sf.net/rst.html
http://docutils.sf.net/

sphinx Documentation, Release

4 Chapter 2. X3

CHAPTER 3

el

1% RS 72 Sphinx 8 37 342 % . Sphinx Kf reStructuredText JF AN F & i HAg =, FHENTE
ZEZVE BRI AEZ, WRRE - TESreSTHRANHME R (B8 XHIAEXHEFEE)
Sphinx &4 HAGEPHTMLIE (EH—PEXE) |, 5N S HThaert HIEHE 7 (8. mH—hIE
IO, ARETLAAE BLaTeX S0, SRS 4WiE A PDF MUAR RSO, AT LE (A rst2pdf 42 A PDF 3L,

HANIRHGE T F OEM AR B o A RAPICE. EZBATN T RME SR RRE, B2 AR
B IO, BANRFE 24 APLICRS, B Epydoc, B R LURAT reST.

3.1 ANEIEHARGH

X—THEE T —EERHNETR, BEERATAEAMR U R Y0TH 2reStructured Text/Sphinx.
s Gerard Flanagan (A%) 5 T —MHIAIELEFTHTMLER N reSTIUA; /R 7] LAZ! Python 25| 11 &HE.

o JFR FIPython SRS #5 #2 28 Sphinx, XA FEE 7E the Python SVN repository. ‘B fl & ¥fPython-doc-style
LaTeX FRiC#53: Sphinx reST HI4E HiACHY.

+ Marcin Wojdyr 5 | —PHIZ, *Bf Docbook #4544 reST ; F] & F Google Code.
* Christophe de Vienne 5 | —“1>F Open/LibreOffice 3 R4 #: 4 Sphinx) T &: odt2sphinx.
o BHRRIRIFRICIE S, Pandoc L2 — N EHE A TE.

3.2 fEHAB ARG EH

B2 % pertinent section in the FAQ list.

http://docutils.sf.net/rst.html
http://rst2pdf.googlecode.com
http://epydoc.sf.net/
http://pypi.python.org/pypi/html2rest
http://svn.python.org/projects/doctools/converter
http://code.google.com/p/db2rst/
http://pypi.python.org/pypi/odt2sphinx/
http://johnmacfarlane.net/pandoc/

sphinx Documentation, Release

3.3 HifE
Sphinx 217 Hil 75 22 % 4% Python 2.4 53 Python 3.1, LLJZ docutils Fl Jinja2 J&. Sphinx 241 TAETZE 0.7 A K

—LE SVN REECRBERIIR). ISR 7R ZRIE R R iR, %3 Pygments JE.
WFAFEF Python 2.4 , IAFHE uuid.

3.4 it

HIRABNER ESH Sphinxt)]) % .

6 Chapter 3. 5%

http://docutils.sf.net/
http://jinja.pocoo.org/
http://pygments.org/
http://pypi.python.org/pypi/uuid/

CHAPTER 4

Sphinx#] %

SRS 2 Sphinx {3 FH FUZR W 2RE . /B & Sphinx 7 F AL S5 Ab 3.
SR ESK R TSR ERFEAE R

4.1 Wt E SRR

TR EMIMR B K WY source directory. % BRME S T Sphinx KL E X conf.py, 7EiX B AR AT LIED
B Sphinx &1~ J T8, i Sphinx3% FR R A2 KBRS A8 S0k,

Sphinx "I sphinx-quickstart ' A] DAFFRELIE H & KEOAELE X conf.py . Bl L
A THT B R R R B — S F AV BC B (E. IR INFHFEESIT

$ sphinx—-quickstart

INJE E1 X L r] . (HoHautodoc” ¥ BRI IE)
B4 HENITE “API 3RS ZE A28 sphinx—apidoc; FEAE E1ES % i sphinx-apidoc.

4.2 & X HELH

BENREAEIETT T sphinx—quickstart . EOE TIEER, 8% conf.py X—MmEXH index.rst
(URAREESZ T BRINIEIN). = 30K master document WIFEZINRERW B BAGIT], EEE— 1 HFRE (“table
of contents tree” B toctree). Sphinx EZINRER M H reStructuredText, {17 2 SUHFLHA B — 1 G548 & 38 A ST
.

VX HR—MAED. cont.py AL EBIEM ER, 5% configuration directory 3 A sphinx-build .

sphinx Documentation, Release

reStructured Text 515

toctree J& reStructuredTextf directive (§%) , —FHIE T4 IZHIRFRIC. & LT S48 %51 B 3&.
Arguments BXETENE 5 R H % BT AT, B ELEAE A E NS

Options TEZ U L FEBIR BITE A H. W maxdepth & toctree FRAHIETIZ —.

Content BN MR SEBEEH, FBF—1217. 8101545 mHERE N RERPINE.
LENAE 2 NS 0T — A AH [F B 485

toctree FE WA NZ, WIF:

. toctree::
:maxdepth: 2

YRATLLEE content BYREE NN SIS 3£

. toctree::
:maxdepth: 2

intro
tutorial

LA K5 T 7R toctree 5 SURARIERHE. BT WUSURE LLISUHE 2 document namestITE 25 H, ANT UG 5144 1
RN BRI FRAT.

1 SR
: l-\:'} B EEIEBER the toctree directive.

TAE T LB toctreeTE & G HOSCE X B R T, EATHIZE T Iral# ik A Eltoctreet8 2 I E (5 “maxdepth” [F]
—YE5) . fﬂ?_{Sphinx ELENTE SRS R 43 2 2518 (toctree?lﬁ/ﬁ\}a FIC WA LR toctree 188, &EMEELZE
IREETE).)

4.3 IHIMAZ
7ESphinxJE3CHEE, AT LU HreStructured Text iR 2 F . 1 LLRFIE RGN ESphinx 1. F140, 7] LAG|H 2%

W IrEEE ETERIHRTIIER) . B rer M.
30, PISTHTMLARA B A8 2L A SO RGIR SO, AR A dn B2 BRI .

i PN
r- l:’} reStructuredText {57\ VEA N8 T reStructuredText Sphinxiiic IZE AL 51 H T Sphinx S I 2 FFARIC.

4.4 =iTRIETE

WAECLERIN T —2 30,] LSO 7. Al T B sphinx-build, {#H 77

’$ sphinx-build -b html sourcedir builddir

sourcedir 3£ i H 3K source directory , builddir W& KUE A B SCRI IR H 3R, —o J& 8 TEB g9t i:X o1 7
BIEHTML 4.

8 Chapter 4. Sphinx#]%

sphinx Documentation, Release

1 . .
Fs]> VA sphinx-build 5 T B sphinx-build ZRFHIFTE LD

M H, sphinx-quickstart A B K Makefile Fl make.bat FEIEHERE S, NFiaiT

$ make html

O HTML 7538 E #FH B 5% B HUT make RAFEAEMSEL

TEFEF=HPDF CRY?
make latexpdf BT LaTex builder &.it Al LIRERpdfTeX T EL5E.

4.5 SRR

SphinxHI%F 8 objects (— e L) TEAEMT domain (1) B RFEREBARSCRY, — D EHASETE RN SRA,
SERE A AL B S | AT R AR, E@ﬁiiﬁ%l’ython Eod Pythonj[ﬁ@ﬁ@ﬁ enumerate () , 7EJR
At BN n:

. py:function:: enumerate (sequence[, start=0])

IRME—NERES, Wi EEZRG| M +sequence xBTS ERIITTH.

R EFE AT

enumerate (sequence[, start:O])

RE—MERES, S RG] Krsequence® B TH %% H LA
B2 BIZECR N R HIAIIR signature , WZSEX BRIV F—17 7] LIS 21540
Python 3808 H 2 BRIAM, I TR ZRE A0 H E a0 4

. function:: enumerate (sequencel[, start=0])

PAEAEBONESECE N RCRE SR .

XfANE] fPython X S ANFIRIFE L, W py:class B3 py:method . ANERIX REEAF RG] H A G
role . X NFRC RO EHE R U A enumerate ()

XA ipy:func: enumerate HREAT ...

J\XI%—/I\;W'J Eﬁﬁ@ enumerate () .

FIFEQIRERIN DY Python M py : ATLIEWE. (EIXAEE, Sphinxz HEI A E enumerate () KIS
HBERE.

AREEX T ARRERFENAE, UEHEHHEESRN, EC/CH EMERIN T RITERANA
.

Ia':i> Sphinx Domains 3|t EW N HIE /A E.

4.5. JTRNT& 9

sphinx Documentation, Release

4.6 EAEE

B PR 2N AU conf.py . 213 Sphinx EFFAE BUCH. X3 DUPython Y HFE AT R AVEC BAS
B = PR F 3 TUDE S Sphinx {3 HARAT, AT DABC & © SRIAF FLAESS, BIIn4kK sys . path BiE A
BRI SO AR

(U FEEB cont.py AT ABUEBIAE, IR — LR S IEBONBIR(E. GBI FRER Python SR IERE: 4
HEREAT). B 5 B sphinx—quickstart e —SE. BE XHIREE — A2 H sphinx—quickstart
BB A, F 8 B IR IFRC. iSO FPython FURVERF FAF R 805 FIRSF XD UFEINRFF
NUTE-84aH5, BT Z s ingmis = i, 7 AJEASCIFAF, T2 FiPython Unicode T4 & (Ul project =
u'Exposé').

i)
.-:]> VENEEF The build configuration file .

4.7 HEITH

Python i 19 B SRS 7 B —fBCE T W £ Ui BAM5 B Sphinx 3CHf A 8 B BGX LUl B(E B, A
“autodoc” {13 J& extension (FRERTPython B3R &, 8 Sphinx$& (L AR I ThRE).

i Fautodoc, T 7E AL B B I#IE, 7 conf.py MAFFFH 'sphinx.ext.autodoc' fii B 7 :conf-
val:‘extensions‘ L B(ES%. MECKE T —LEMins4.

1, SRR 10 . open () IEEURAGAIPIR OO 777 8 I3 5

. autofunction:: io.open

AT DL SR BRI, 5 A I

. automodule:: io
:members:

autodoc 75 E T ARWREEIR UERBOUR AT 8. FIL7E conf.py T8N sys.path INIIATERIBEZ.

1 NV
:]> HEIES % sphinx.ext.autodoc.
L

4.8 FAth ik

o HAY fE (math, intersphinx, viewcode, doctest)
o« BESIUH

o LR

o R

« (R

- 5Tk

10 Chapter 4. Sphinx¥]Z

CHAPTER B

i sphinx-build

7R sphinx-build F3K % 7. Sphinx CRYEE. Vi 7=

$ sphinx-build [options] sourcedir builddir [filenames]

sourcedir &R A B 3K source directory , builddir & F U B K. —MATEES filenames .
JI7 sphinx-build £
-b LA T

—a

FERES IR T A RCTRS 2R B R B B AT B A RS
html “EARCHTML IR, BRARTA i8S,

dirhtml ERHTMLICHE, (E28 4O EE B —r Bk, EH MRS Ui N H ES M URLs (X H 5
Z% .html).

singlehtml JiT75 A4 A B — () HTML .

htmlhelp, qthelp, devhelp, epub = ATHTMLICEY, F37 SCRENA 25X LR 7 —HEIME 5.
latex “EA{ LaTeX Y, A/ pdflatex K H 4w PDF 3RS,

man FAUNIX R 58 Hgroffis = Ffift.

texinfo AY Texinfo 3L/, 7] LAf#FH makeinfo /“AInfo S,

text A AL AT

gettext A2AL gettext-style 53K E B (.pot IUH).

doctest T XRYENIEMNRL, W doctest ¥ REATA.

linkcheck &% fTH 7MEREERE A (5 .

B Available builders , 3|1 T Sphinx I E £ Alies k. HAIRINET .

26 AT EE E 2 FR 0, BRI E B AR AR B B PR ST BRSO BB R SO R E I TR £ s

11

sphinx Documentation, Release

-E
AERREER) environment A58, %47 T BTEIIZERE)), M2 ERE. BONCCGKHRIFENT BT #E
IS eLbl

-t tag
TSR tag. 5 only TRAMR, WER—THFES, ULEIREEFHRINE.

New in version 0.6.

-d B2
H il Sphinx 4 A fiy H Fi 2 SEBURI AT B8 BOTR SO, ﬁ#ﬂl‘ﬁ T BRSO R A7 R “doctree pickles”. JH ¥
X R R B KA . doctrees I X AET AT LLIEFEANFE AR TE B 3% (doctrees 7] LA
WITE A Fa I =),

-c Bz
AERE % N conf . py T HHTEE MECE SO, FERTEBCE U 38 M BB 2 A2 0 B S
FBTE H SR 8RR B AL, R e B A A — 2R

New in version 0.3.

ANEHECE S, UEHED -p FIECE.
New in version 0.5.

-D setting=value
= conf.py HWEEE value 22 — T FHFHEBLFHM FlU: -D latex_elements.
docclass=scrartcl. fi/REMH o 58 1 8.

Changed in version 0.6: B 7] LAA— 57,

—-A name=value

TR B) name 22 & F value [EALER.
New in version 0.5.

-n

M nit-picky Bz A TR EESER.

AL, (FF Windows, B Ak H—E A HAY)

ANFEAERRERI U R bR S fa H B S IR B R
-0

ANFEFMERIH, A EEEER, UEHAPREE S B H R E R
-w file

Promfessirin ioh, FEE (BHR) Rl EEE .

-W
FEEINER LR - E S E LRSS, sphinx-build 7RI 1B H.

-P

K ARG E K7 H 21T Python VHIHES pdb.(EIRE {#H.)
JREF S BPrEEE, ATRZE H—PEIZ 304, Sphinx & Zs (A AUX EESTHF (R ELARAUCI).

5.1 Makefile 2T

WA Makefile X make.bat H sphinx—quickstart f##, A sphinx-build (XFHIET b F1 —a

12 Chapter 5. i sphinx-build

sphinx Documentation, Release

JEMTSCRR LU B2 AT AR &
PAPER
:confval:‘latex_paper_size‘ FI/{H.
SPHINXBUILD
14 sphinx-build BUH.
BUILDDIR
21T sphinx—-quickstart M HiRHXE.

SPHINXOPTS
sphinx-build fIRIYMETIL.

5.1. Makefile £ 13

sphinx Documentation, Release

14 Chapter 5. ¥ sphinx-build

CHAPTER O

YA sphinx-apidoc

T2/¥ sphinx-apidoc fPythonT1 [l H 514 ALAPIICR. 8 FH 77 =X

$ sphinx-apidoc [options] -o outputdir packagedir [pathnames]

XH packagedir S ERCCR TTE PR B3, outputdir W) 7242 IR ST B H H 3K, pathnames %5 H 15
T A RIS AN 1 2B,

M sphinx-apidoc tHH —LL %L

-0 outputdir

28 SO TR H 5%

-£f, ——force

18 % sphinx-apidoc /2 B GRS, fEAZIERHIE S BrE SO

-n, —--dry-run

RAZIEI, RS AR

-s suffix

AERSUHFRIESR%, BRIAA rst.

—-d maxdepth
H SRR AZIX.
-T, —--no-toc
B AU modules. rst. HHEREI ——rull BIASEIER.
-F, —-full
B Sphinx Wi H, 5 sphinx-quickstart #H—HRIVLH. REHECEE X E NBOA, THE
N EET R AEE.
-H project
WEBIIH% (BE :confval:‘project®).
—-A author

WEIEE % (BF :confval:‘copyright®).

15

sphinx Documentation, Release

-V version

BB SRR (2% :confval:‘version®).

-R release

WE R AR (B :confval:‘release*).

16

Chapter 6. i sphinx-apidoc

CHAPTER /

reStructuredText &/

RETINE reStructuredText (reST) FMEEFITETE, AXCAEE R EWHIEE. reST #IA N EHH, LA
FIFRCIES, F2ES EASTERZR .

See also:

1Y) reStructuredText User Documentation. AN “ref” BEHEEFE M reSTHI /255 2% k.

7.1 B%

Bt¥% (:duref:‘ref <paragraphs>‘) EreST S HUFEAEIR, Bk & 1T 90 BR i — B U, FlPython—1¥, % 5%
B reSTAIRAERF, Rl IL [F]— BT ik rOAT 80 & 2257 57 1.

7.2 NERFRIC

B A)reST PECHRICAH 24 & B
o 25 xtextx A (FHE),
o WEF: vxtext-+ HAMRH (I,
o K515 text REFRER.
B5 MG SERTESSNERVMOT 518G, AT RRHLA 5 5 L.
PRC TR R B — PR
o NREMHEIRE,
o NEFIENREHZ H: XS < textr* EHEIRH,
o MRNEFERIRFAF IR, FHRBHLEE L, W thisis\ *onex\ word.

17

http://docutils.sourceforge.net/rst.html

sphinx Documentation, Release

X LR A AEARRRR AT HE G

reST AR VF B RE X SURMRREAT 87, SXEIRE AT LLLURF R 17 2CARE SO, Sphinx DA 5 SR B SUPRE K

% RG], #BIEffN :rolename: content .
PritEreST $RHE LN AL

« :durole:‘emphasis‘ — 5 i, xemphasisx*

e :durole:‘strong‘ — 5l » st rongs*

e :durole:‘literal‘ - 5/ " *literal"®

* :durole:‘subscript — THR

* :durole:‘superscript‘ — 1R

o :durole:‘title-reference‘ — 5 « HAF|ERFRIAIFRE

FHEIFEE NERC .

7.3 FE 55| H

FIZHRIC (:duref:‘ref <bullet-lists>) HI{EH B QUEBE T KIE— 25— 148t i 5 15150

AL AT U EF S # BEIIITS

« XE-DIEFSIIE.
« 'EHWI,
BT

1. XRTMEFYIE.
2. HEMWII.

#. RITEFIIE.
#. WHEMI.

FIRFLRE, ERFRINRER =T

* IXRE

« =PI

« MBI
« T

« SBNFRARER

EXFF (:duref:‘ref <definition-lists>¢)

ARiE (term CARFELAT)
TESRIE, Wt

CIPREE22 2104

T—AKiE (term)
iR .

— RS — R

5| FBt¥% (:duref:‘ref <block-quotes>*) [} fFAZEH (FAXT TR BEE%E) QI

18

Chapter 7. reStructuredText &/

sphinx Documentation, Release

71 (:duref:‘ref <line-blocks>¢) 7] LLiXHES FE

| XLEfT
| TETRSCHE
| BRI R

W HAA FH R
o FEFIFE (:duref:‘ref <field-lists>)
o JET)51 3% (:duref:‘ref <option-lists>*)
o FHF|FEER (:duref:‘ref <quoted-literal-blocks>¢)
o SCREMAARER (:duref:‘ref <doctest-blocks>*)

7.4 PRACHS

FHAIGE (:duref:‘ref <literal-blocks>¢) ZEE IS HGHEAMRIC : : 51 H. BT T(FERE, FES
JE R SR LAZS 4T 53 B):

XRE—BIEWE IR, T—B2MRiT: :

EANTERRILHE, (G
YEVERLATLAT .

ERTEZAT.

FRIER SUAE .

XA = FRICARIAE:
o QUERAER AL BV A7 70 B B AN & Y BIAE SO
o WRATEEZH, MFMCHZER.
o WRATEZEZH, WhRc—" 8 5 EHR.

It TR 7 58— BT R 2 0 N — B R S

7.5 X

TR R RS, — R SRS (:duref:‘ref <grid-tables>*), 7] LA B & L FEEHHAME. 40F:

o o o o +
| Header row, column 1 | Header 2 | Header 3 | Header 4 |
| (header rows optional) | | | |
+ + + + +
| body row 1, column 1 | column 2 | column 3 | column 4 |
- - - - +
| body row 2 | | | |
o o o o +

fA] BLZRA% (:duref:‘ref <simple-tables>*) T 5 & 8, (HF —XLR#: FEH LT, BE—JITEIREMTER,
o

7.4. JRRHS 19

sphinx Documentation, Release

A B A and B

False False False
True False False
False True False
True True True

7.6 BEERE:

7.6.1 SNEREERE

R BEESUAR <http://example.com/>" _ AT LASRA M TUHES:. BERSUAGRMNE, MIATEERFAIPRL,
T EE S B AISOR B B EAR i .

] LR EE R AIAR S 42 (:duref:‘ref <hyperlink-targets>¢), {0 :

BEBRAE 2 link _.

. _a link: http://example.com/

7.6.2 NEREER:
TR S5 32 72 Sphinx B € ireSTHA (8, BEET 0 LE5| 1AL E.
7.7 =77

E ISR (:duref:‘ref <sections>*) X LRI 5 2] (8009 TRIZ) |, F HAFSBREANGENT UK
KE:

This is a heading

BHEBR R RIS FORPRER SN, (H2X T Python 3CH, AT LLUXFFIAT:
o ¢ M ERIGRIRE

o o R RIBEREY
. = NET

. - FEY

. N FETHTFET
. B

LRI LIPRIE (B reST 30, E XETHRIR, ([ERFZEEEH HAHTML, LaTeX) BT 3CHFHZIRIE
JZ .

20 Chapter 7. reStructuredText &/

sphinx Documentation, Release

7.8 R i

LEWT\IE”EXphcu markup” (:duref:‘ref <explicit-markup-blocks>¢) F 7E Al Lo T2 M e ik A0 B e STES #4 H, W
BiE, RHETE, e, @HES.

EFAREM .. TR, FRIRZEAM, 5 TEBIENGLE . (EERRES ERNBRRFEZEST, XUk
RELER, HEFGERZEFEN)

7.9 54

84 (:duref:‘ref <directives>¢) +& T FUPRICHCH B IR, HiEreST AT EHIN, 7E Sphinx 2% # A%,
TR TEIELI TS

o« & & :dudir:‘attention’, :dudir:‘caution‘, :dudir:‘danger‘, :dudir:‘error‘, :dudir:‘hint‘,
:dudir:‘important‘, :dudir:‘note‘, :dudir:‘tip, :dudir:‘warning‘ X & F #5iC :dudir:‘admonition‘.

(RZHUHEA AR “note” I “warning”)

- B
- :dudir:‘image‘ (FfEPE TEH)
— :dudir:‘figure* (B raL K AT 5 UL EA A BN

s B ERITTER:
— :dudir:‘contents <table-of-contents>¢ (Z#l, {2 2 B A FIN B FHL)
— :dudir:‘container* (B & L%, FMRAEMHTMLE] <div>)
— :dudir:‘rubrict (FISCRSETT T K BIFRET)
— :dudir:‘topic‘, :dudir:‘sidebar* (EEERHFEEITTER)
- :dudir:‘parsed-literal* GCFFNEXFRC A RHAREIEL)
— :dudir:‘epigraph (A] 1% &8 AT AR ZEL)
- :dudir:‘highlights‘, :dudir:‘pull-quote* (5 B C.HIE B A0 E AR
- :dudir:‘compound‘ (£ & EB7%)

o THERR:
— :dudir:‘table‘ (BT HIF)
— :dudir:‘csv-table‘ (CSV B A AL FHE)
— :dudir:‘list-table¢ (31| 742 B A7 4%)

. THTES
- :dudir:‘raw’ (B3 JRIARE X AIHRID)

— :dudir:‘include (1 & reStructuredTextFric H 3L 4F) — ZESphinx W SR 61 & 480 SCHF R 1R, 842
LR B ekl 2 08

— :dudir:‘class* CRFEBHIRIRA T — 1L E)
« HTML F#14:
— :dudir:‘meta‘ (EfXHTML <meta> Hr%5)
P SENFHEAETES class , XM RWIER F UL, Sphinxf#/ rst-class.

7.8. Exkrid 21

sphinx Documentation, Release

- :dudir:‘title (7 7= RS R)
o FMABRIC:
— :dudir:‘default-role‘ (X EHHIELIAF 5)
— :dudir:‘role‘ (BIEEFTHIMA)
WRNE—N 30, &FFH :confval:‘default_role*.
WEANMEATES :dudir:‘sectnum’, :dudir:‘header* }? :dudir:‘footer*.
Sphinx T84 AT Sphinxiic fZH AL
EYHAT, 2, WWARAEER. GREXE, ETE— T EE I8 BT RE— 16T

. function:: foo (x)
foo(y, z)
:module: some.module.name

3% [E] P A B — AT SO

function ZIHL AT EH—ITME ZITHE THASEL X— %W module FNRETIL, HEIASEUR
B, HE S5 EILA S TESE —HRgEE.

ELHINBERIT— 1 21T0E, 5RSE ML

7.10 B

reST X FF 1584 (:dudir:‘ref <image>*), W1 N:

. image:: gnu.png
(2ET)

X B LG U2 (gnu . png) D ARIFSCHFAEX SR, anS22axs Bg a2 LR H Soh i H 3. a0, 7E3C
4 sketch/spam.rst 5% images/spam.png , MHEH ../images/spam.png B#& /images/
spam.png.

Sphinx 2 BRI GCHFE T2 Er i HSRAT B3 E, (FHHHTML B30 _static)

BRI R/ INETR (width X height) : QSRR BAIBEA B R, 4 %€ K ROTE B IR R H1HEE SRR ER
INAE R (i LaTeX). HoAl B 7R H (40 pt)HTML ~ LaTeX B #).

Sphinx ¥EH T FRMERISURLIT N, AEAEEHMNES:

. image:: gnu.=x*

LFTHLXHEE , Sphink £ RME A FILEEE, MAERIGRE. B Elll&EFER e EmERIE. —
W, FEEXHEEFE XS gnu.« S EEMW X gnu.pdf Ml gnu.png , LaTeX 4 Algs &5 R &
TIHTML ~E 23 DCHD 5 25 .

Changed in version 0.4: 73 II%S S5 DUE 5 45 B E SRR
Changed in version 0.6: 1§ E§12 AT LIELEXT B 1E.

22 Chapter 7. reStructuredText &/

sphinx Documentation, Release

711 B

B {E (:duref:‘ref <footnotes>*), ff H [#name]_ FRiC BIFE B &, B BN 2 N FE U K &R 4L & R
#i”Footnotes” FI/G T , WK :

Lorem ipsum [#fl]_ dolor sit amet ... [#f2]_

. rubric:: Footnotes

. [#£1] B-FKREMSUR.
. [#£2] BIFKREMSUR.

PRE AT AE T RBIE (111) BUER BIHEF R 41).

7.12 5| H

THFRVMERIeST 5| F (:duref:‘ref <citations>*) , ELH1HE T global” 1%, FTH 7% U A BT 4E SCAF I BR .
an:

Lorem ipsum [Ref]_ dolor sit amet.

. [Ref] ZEHK, H,UurL %.

SRR BERML, HEETNERFIRESLL # 7116

7.13 E#

reST LFFEH “substitutions” (:duref:‘ref <substitution-definitions>¢), H —/NE ARSI FRICH 7B E] | name | .
NS BE—HEFRERmEAMCE, W

’.. |name| replace:: replacement *textx

A

. |caution| image:: warning.png
ralt: Warning!

HIEEE :duref:‘reST reference for substitutions <substitution-definitions>* .

W SR AR PR SURS 8 X S e, TR B TATE :confval:‘rst_prolog® 2 — MM R, REEMAE
TSR SO AL & AN S0, B8 84 include . (BAHEEUHNT BL, CXBITHEMFECHE,
3 G SphinxcFf HAE RS HISTRE)

Sphinx & ST —EEEOAREHE, IEEE Hi

7.14 iR

HHHETRMCRE AR MBS AMERIAME G EHPRE) #E AR («duref:‘ref <comments>*). 5
an:

711. BiF 23

sphinx Documentation, Release

L XEE.

[R>S i bukd i st 2 pusn ion

=8 N e Sl
— k.

JiR— L.

7.15 JR9mH5

TEreSTf# F Unicode 7 7] LA 7y HI B & SR F AR AN 5, ARANKR . Sphinx BRIAYR U FHUTF-8 4wfid;
YRA] LAE TS :confval:‘source_encoding® FIBC B E A JRiD.

7.16 ‘& I [a] 8

B A AT RE 2B 2 — 22]

o WERAMCRIZE W BT, NEXPRCTE 5 R B RSO H 2548 50 B8, PNERARIC RIS F b i
N . BEHIFIE: the reference .

o NERFRMDABEIRE (31X «see :func: foo' x A,

24 Chapter 7. reStructuredText &/

http://docutils.sf.net/docs/ref/rst/restructuredtext.html#inline-markup

CHAPTER 8

Sphinxtric K4 AL

Sphinx f£ standard reST markup FAl FFE TR 2R SRR RS A . AR T X LR M 157 R

8.1 HE#

FHI reST 8% A & [THIEER R SO BOAE B SRER BB RER — 0y SURR 70 Al i H SO, Sphinx 8 B %€
SCHITELAEMAL S BN INIX A REL H SRA. F84 toctree REMOILEA.

Note: W HAIE—"1 RS A — U] ISR &84 :dudir:‘include’ .

. toctree::
AR A TE S RO B A — 1 HFH “TOC tree” 75 SCRSH 8 FA A 37 /1) TOCs (F345 “sub-TOC trees”)%A t
BRI AR, MXT S (NS S F2k) BI8S T ERI U IR B2, 43 SO 4 N DATR B & iR
H 3. #E maxdepth I E BRMZEIR, BIASEERZIR.!

NHEE— M (UUPython U FENE N 2 7%):

. toctree::
:maxdepth: 2

intro
strings
datatypes
numeric

EELope=tiriayiip

ESEEL T RAIIRE:
. TE;}E%E?%IHE‘J FSRAE, REN2FR SO AR — MRl X LA TR toctree S
&GN

V3% maxdepth ANEH T LaTeX , AR FF AT 2t & HELEL & B U B SRR, EMIREH tocdepth THELER#EH], ATLA
f#] :confval:‘latex_preamble* EHELE, BIU1 \setcounter{tocdepth}{2}.

25

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html

sphinx Documentation, Release

* Sphinx #i%€ T intro, strings XJLNFAF BT F MEXIT, HARE TR AT 7 1T
T, SESCEERRG] ARSI G B AT A4 <N — DM, « E— D B AT REER.

#H

B & BEAREEH toct ree 184 BENF I H A& IUHAINE. RN EIE, 7 LAMEH SreSTH#RHEHE
IR ZERF 5 HE L —ral, (8% H Sphinx Y cross-referencing syntax). WI'F:

. toctree::

intro
All about strings <strings>
datatypes

FHBIEZATH strings &%, (HAE7E H R B2 H “All about strings” 1E AR
AT LA AN R, R FHHTTP URL (ORI &Rt T LA T .

BETHS

WMRFHEAEATMLAET RS, (U4 LD numbered . FI0:

. toctree::
:numbered:

foo
bar

a5 LIFRE foo FFIR.F HEMES B S (FEEL H numbered 1ET0).

AT UE a5 B, T 7E numbered 548 IR E FISEL.

HoAth 156151

AR A B R B IO AR, AN LSO EAt R S R AR RRAT (R —48agk) |, AT DU A3

titlesonly

. toctree::
:titlesonly:

foo
bar

i FHICACTE < “globbing” , AFF4E H glob Wl] ISR RAPTE & HE 2 WL, H H#ERT
BRI . 1 40:

. toctree::
:glob:

introx
recipe/*
*

DLEREEHTA intro JFKHISU X recipe BT HIFTE UM F =T IRECHTH R R AU (B T
5% H SRR 4 B30 B = 3 SCHE.)?

BRA S self ATLLMUERY BISCHE, SXAEM B RRE R S (“sitemap”) Ik 3.
SEAT AL H “hidden” HET, 47

2 prE A AR A IEECAT S FRUE shell FOAFUEN «, 2, (... Jo (1.], (HEANERBAL FRXES «« AT LALEAE RS BT
7T B

26 Chapter 8. Sphinxtrit FIZHAL

sphinx Documentation, Release

. toctree::
:hidden:

doc_1
doc_2

AEA & AFAET Sphinx FISCHEEEEH , ERASHES TR ERA H 5 - HJF A DUHE R E R 7 5
WAZICIFEOBERE, HIAEHTMLIAAER: B

w5, 7& source directory (815 F B) BIFTHE T HIIERE D toctree 84 B HNISphinx %>
i &S, % SCHERE B RS AT, BT LA A :confval:‘unused_docs® HEBRFE LS04, A
:confval:‘exclude_trees* FEFREEAN H 3.

FEHY (“master document”) (F :confval:‘master_doct 8§ 5E) £ H KRG AR, AT LIER TR
FETUHE, WRAE H maxdepth 1950, ME& Hl H RN FER.

Changed in version 0.3: ¥/l “globbing” 1.

Changed in version 0.6: #4 /Il “numbered” }% “hidden” %63, MAMEREERE, SCFf self” KT
Changed in version 1.0: 3/l “titlesonly” .

Changed in version 1.1: 341" numbered 7T AIEUE 5L .

8.1.1 & T

Sphinx H LE0R B B30 47 ; B QX 24 7 1SR 2 7 AR B
IXEERFIR I SO 4 (CERUED T A :
* genindex, modindex, search
SRR RGEFZ S|, PythontE R R 5|, JAHR T .
SERRSIEZETHEEB, YA object descriptions "ERAIERE|, & index ¥84HEMAIEG].
Pythonﬁﬁ%%l@ﬁﬁ¢ py:module WRAERRZES.

R 6 5 R B HISONIR R R RS, X5 TavaScriptiR I 5 A KR, 2 RN
15 b, R 2 A EAE SCRPEL T avaScript I T 2 .

- BFLL_FF%

RUE UR DETIE (SO 2R W, (B R AN B IS R] 42 SO e SO B Hh) & X 24 . (i
_ TR S BRAZ R M T i)

8.2 BuEk 4l HIbRL

XAMRL AT LLOER B BIE , AT LU SOAR— R0 F PR S A AL

. note::
ST P P B PR APIIN OV BT 36 4P 28 BT B PR SE B 4 BT A 5
Biltn:
. note::

INREANIE T AR B FARLE

8.2. BEZIHIbRIC 27

sphinx Documentation, Release

. warning::
B P HERAPIN EEETL 5408 FRBNATHIREMS. NET note , E—MRERKER
BZ T HFEE ST

. versionadded:: version

FRR MR AR B CIE S FIAPL B AOReME:. N AR B, SCEAEE T NA R EITE.
F—NSEBEEHIRAS , 7T LINING — S8 A — 1181 B B Ui BA.
Fian:

. versionadded:: 2.5
The xspamx* parameter.

FERAETE S LA B A R RRER 2217 IX R 2 EPRETE T VX MESR A S,
. versionchanged:: version

5 versionadded P, {BEIRHZ LI REAERRA A I EL GBI S BB R U 55).

. deprecated:: version

5 versionchanged ML, R RLETRERIBUH. MERETIRAT LI H, HanThae AT 2.

. deprecated:: 3.1
Use :func: spam instead.

. seealso::

W2 BT SEISOE AT BRI S E K55 R XS R EFES seealso Ol
8% seealso BHEMAENE FETRIEIE. X THITMLYE, 755 F 30K 9.
84 seealso N FEreSTHIRE X . 40

. seealso::

Module :py:mod: zipfile"

FRUERR B :py:mod: zipfile® BISCRY .

"GNU tar manual, Basic Tar Format

VARSI SO, B GNU tar §URE.

— A B

. seealso:: modules :py:mod: zipfile , :py:mod: tarfile’

New in version 0.5: f& BT

. rubric:: title

%82 RO SO RS (B Z VRS AR OIS H) B SREE T .

Note: UIRPREHE Footnotes R Hi (BB ARIE %), X MREFELaTeX 2 9 20, i€ E 6 &
FETERE S B — DS b

. centered::

%IE 4 QI E AP SCARAT. 40

. centered:: LICENSE AGREEMENT

Deprecated since version 1.1: IR XFEIFMUARE BB T. (8 rst-class IR INIE L pREEC

28 Chapter 8. Sphinxtrit FIZHAL

sphinx Documentation, Release

. hlist::
IR LRI, ©RF R] TR D0 B R [A] B AR R .

AR ER R SRR A, JX LAY columns HENE LEIRAIFIEL, ERIA 2. 140

. hlist::
:columns: 3

BAIE
K
Wi
7K
He)

P

New in version 0.6.

8.3 HxREMIFL

{82 toctree, STETIEMBRER, R H W,
A H H R FE, MFE PR reST :dudir: ‘contents directive <table-of-contents>¢.

8.4 Ki&

. glossary::

AR WIREL S — PreSTERIE I EIRE, HATERE M. X g L HFAT# term 5IH. F40:

. glossary::

environment
—ANEN, BEEREITE S UEIIRERE, NS .
TERBATOM B, RS SHE T TR AT BT B s B e () SRy .

source directory

WEsTE, B THR, 88— sphinx LREEAIPTETRICH:.

SPRERTE IR, SR 2 ARE BXEARTERT LUE NECPRIC. 7T LABERRTE ATE. F10:

. glossary::

term 1
term 2

TSR .

RIBHEFPRS, @S —DAREREINT.)
New in version 0.6: 25 HHARIEFES R s sorted: &, MAREMRSERT S G ohHEF.
Changed in version 1.1: FFUG3CH7 2 AEFATEHI A ERFRIC.

8.5 1BIL” M B

FRRPMCIE A T — BRI RoR ™ . X EARC R 8, A2l B R BNFR & A7 (R HIRETE), (B2

8.3. HXEMIRL 29

sphinx Documentation, Release

AT BB ESR ETHIEERER, X SR UBEETEAER B4 :

. productionlist:: [name]
AR ER A M BT, BATHR, 5REENESGELE 506
HITLLE S57Hs, BB 5 EEXST.

productionlist WSEHRX S ARIEE MEFIE.
ff productionlist FELSEAIN IFH =17

XA UAEERZ, LB RGN sum ;1= “integer® "+" “integer’)— XA i
AMARIZEE. BT R0FE, En] LUER & VA token.

CER™ SN ERACR SEBE Are STARRESS, L NRERERBER « B | F47F.
"N &Python 2% F i 19451 7

|
)
&
a3
><,
af
R
q
ol

. productionlist::

try_stmt: tryl_stmt | try2_stmt

tryl_stmt: "try" ":" "suite’
("except" [expression ["," “target]] ":" ‘suite)+
["else" ":" "suite]
["finally" ":" "suite]

try2_stmt: "try" ":" ‘suite’

: "finally" ":" " suite’

8.6 JERRBIHS

B Python{f A Bl 2 78 B 5T #6 R] LU A AR fre STROER SUHLAE IE W BOK R HIBRE -« JFIG, A b
Ygit.

A2 B S B S R oR M Python fURS IR . 20 B A ISR AR BOPRE. e — TSR 25, AR I
SRR, X — M 2 EAMBHE 7

>>> 1 + 1
2
>>>

TR 7 B~ Pygments (WERZEE) R BoR:

o BYESCHERE B 5218 S highlighting language”. BRIAE 'python' | ZECUHSE R E R Python £
5 E%, 7T LLZE :confval:‘highlight_language® FiL & .

* 5 T Python &5 - R, 22 B 2 B aiR A H il 258 Zor. —BPython FUHE OUAE FT AR AT A &5 5
BoR (fEFHERARIPython, {E 2 FHLHIISBL L tshell i < S5 U HRG A 2 B Python—FF R 5 7).

s FRERESHA LUBEITTES highlight B840 F:

. highlight:: c

CHEEH AWM T— highlight 184,
o MR TRAANFES F B, B code-block B4 AR RIES:

. code-block:: ruby

Some Ruby code.

8L A A HATHT sourcecode.

30 Chapter 8. Sphinx#7ic FIZHAL

http://pygments.org

sphinx Documentation, Release

s BRIES:

none (% B = ER)

python (BtIA, :confval:‘highlight_language* /%8 % &)

- guess (il Pygments IRIBNE ERE, EHFF—LERHRRIFIES)

- rest

-c
— ... HfbPygments S FFHIES 4.
- MREEE SRR ERAM, WA LI R B R,

8.6.1 75

R ZELT, Pygments 7] LU ISR 41T 5 BB &R B RS (DL« 2 FFIR), 175 M4 highlight A%
Wi linenothreshold & ¥:

. highlight:: python
:linenothreshold: 5

MR L TSR AT 5.
T code-block tEH, Tl 1inenos 44 HNIA LR A BUAT 5

. code-block:: ruby
:linenos:

Some more Ruby code.

FEN, 15T emphasize-1ines A] AAERAFHIGRE AT

. code-block:: python
:emphasize-lines: 3,5

def some_function() :
interesting = False
print 'This line is highlighted.'
print 'This one is not...'
print '...but this one is.'

Changed in version 1.1: Il T *‘emphasize-lines‘ .

8.6.2 1%

. literalinclude:: filename
B & BN B R FSCHE T BERE — D AMNEREE SUAR ST ERAF R 57308, SCHEEFHE4 1iteralinclude B
&1 FIUnEL & Pythoni XX {4 example . py, fHH:

. literalinclude:: example.py

STAE 48 2 S i SCEF AR B A2, SRR BT B (DA / T UR), MR H SRR B 2.
WA LAY R, A tab-width PR EME B,
RERSTES .. include , WIRSHREESHM T, X — MRS 4 .

8.6. EaRBIRE 31

sphinx Documentation, Release

e AW 1inenos EH=4 75, emphasize—-lines Ve FCRURATT, DL language TR
BT LRI S AV S RE S . Bl

. literalinclude:: example.rb
:language: ruby
:emphasize-lines: 12,15-18
:linenos:

R & X 9R B8 2 B IA € N iconfval:‘source_encodingt. 1R HH AFE I 4, A LLEH

encoding E:

. literalinclude:: example.py
:encoding: latin-1

FEL SRR AL U —HR 2> 140 PythonBRBR, AT LRSS, sREET %, M pyobject HI:

. literalinclude:: example.py
:pyobject: Timer.start

XEEEF Timer KA start () FIEEEAIETT.
M 1ines JEITURERA A HI BT &L & HOAT:

. literalinclude:: example.py
:lines: 1,3,5-10,20-

B81,3,5 % 10 K 20 Z G RRRE1T.

%’~$¢¥Iﬂd@§§d¢ %%%ﬁﬁ%ﬁﬁ%ﬁ)ﬂ start-after end—b\efore ﬁ@j (Wﬁi)ﬂ*ﬁp). jiIDj
start-after é/a\u'l’_;*/l\%zﬁ“$, %*ﬁ@@@?:—ﬁﬁ%EEE/‘]@Tﬁﬁﬁjﬁ@@. 1% end-before HE
HH—FRE, B8 ZFERARNE TR HE S,

A LFEE SRR E RBIRINHTT, A prepend X append 1EW. XIREH, HUITE &= B /~AJPHP
R EREER S <?php/?> TR%.

New in version 0.4.3: 15 encoding .
New in version 0.6: 1% pyobiject, lines, start-after M end-before , F T FERHFT A 4.

New in version 1.0: 1% prepend ~ append X tab-width.

8.7 NEFRIC

Sphinx {5 F SCA RS A AR SO Rl A UBREE. iIXFEE :rolename: content .

Note: EXIAFAE (content) FAFER. AT AR HADE RA 4 R,] :confval:‘default_role 1%
=

H =R INAIA E 5% Sphink Domains .

8.7.1 XX K5I

gﬂiﬁ@ﬁﬁﬁ@%ﬁ%ﬁﬁiiﬂ%@[ﬁﬁ%%f’ﬁ'*/[\ :role: target’, @'J@:ij target E/‘J%ﬁﬁ%, %’éiﬂﬁﬂ role
FERE. %ﬁ%){ﬁ'ﬁ target “T—eﬁ

32 Chapter 8. Sphinxtrit FIZHAL

sphinx Documentation, Release

EEHARRITIRE, XGRS RG] HE

o TEBATHPIPRE N RGIIRE, BreST #MHEHE: :role: title <target>' , SHEHL targer P15, (HEE
B U title.

o DTSR 1, W XRGIMBHEE A SO,

o iR ~, BE AR ERIRIG LS. B, :py imeth: ~Queue.Queue.get’ &V ZF| Queue.
Queue.get E/‘]%ﬁ?, @I%%T%YK&E/% get .

HTML 30, $E3EH) title B (BB IRHIool-tip) — B SEREATIRZES .

R XRGIHI% 5
XA AR I8 A

* Python

e C

e C++

* JavaScript

e ReST

X RGN E

:ref:
SRR RN B AR AT LUE A AE X RG], 5 FREreST bR —HEEH. W F30RY & H X SEFRZE 47 0701 2 M
— B MR AT DLBE R B X L A

s MEEBNESETVEETE, AT LUEN :ref: label-name™ 5| F.6I40:

. _my-reference-label:

Section to cross-reference

BETNE.

aﬁ%%‘lﬂ%g%, EE :ref: my-reference-label .

A cref: STEXNETRIEERE, BERITELE “Section to cross-reference”. & 17 5 & 5| A 7E N [F]
HIVR S

B R el LU figures: given

. _my-figure:

. figure:: whatever

Figure caption

%% :ref: my-figure' REEIFIEMmAGIHRSG], BEREURZ “Figure caption”.
KB LA, EREIE EEHTES :dudir:‘table’ .
MEAMAEET L, FTEAHHPWHMOMERE, £HEE ref: Link title

<label-name>".

8.7. WEKPRIC 33

sphinx Documentation, Release

WEFHAG rer MAZPRERreStructuredText 178878 (FLU0 " Section title), B HNEHRLL
AR EAEA, H BRMERETTVREZE, g B SR R 5]

2%

New in version 0.6.
A DIE SRR DR 4.

:doc:
HERZ B8 SO, OB 4] LR XS B XS B, FlUN, 2% :doc: parrot” HIIFEIHY sketches/
index ", BESEEEFITR > sketches/parrot. MRS E :doc: /people” E :doc: .
./people’, KRR H people.

MREE R HERIRE(ER: :doc: Monty Python members </people>"), BEREPRAILHLE Y
HIPRAL.

TS E

New in version 0.6.

:download:

A AT DLBERRYR F S B AT AT - (B AR reSTAS FUASORS, IXEESTHRRE1 R 2.

WAREAZAE, WSBNE2 86 &2 T ECRCCEHTMLE). 7T R8O BORE R 3
FHFH3 _downloads B;3UH&HEH.

iR

BE :download: this example script <../example.py>' .

S4BT R AR AR B AR, 2B BRI B LIJR H SR B AR B2
W example . py BB HIEHH H 5%, FHAMBER.

HAH @B X RG]
PUN e SRR S|, (B RS 4

.envvar:

IR 24EMERT]. hEERFES envvar FIEEE:, WRISSHE.

:token:

WES T (R AEEIFES productionlist FIHERR).

:keyword:

Pythonf) K HE T, 2 B IX EL 5 HE 7 HOBERE.

:option:
PITREFRIM TS TEREETEFIFL. FAEEHES option HIBERE.

N = ERERRS]:

:term:
ARIBRG|. REHIES glossary O, BE&—FIARERE L. 7EF— X4 EARREMFH term FRIL,
Python SUHHE — 12 RFIARE X glossary . rst.

IR RIAEANEARTE R E, o EES.

34 Chapter 8. Sphinx#7ic FIZHAL

sphinx Documentation, Release

8.7.2 HAhiE X brid

N BRI e A 8 LSRR RS UL ST

:abbr:
WENH. MR ACEE N ES AT, EHTMLE 2 BoRAL tool-tip ,{FELaTeX A 4.

;s abbr: LIFO (last—-in, first-out) .
New in version 0.6.

:command:

AEEHEa4A, H0 rm.
:dfn:

TESCRFFRICATEE L. (AFFEERGIZE)
:file:

e E R4, ATLUERTERS SRR 255, filhn:

. 1s installed in :file: /usr/lib/python2.{x}/site-packages’

TEAE BSURART, x % Python FIRERRUA S Bk .

:guilabel:
FoH A ERZANRERHEH quilabel fhic. BEETICRKEDW M curses QIER) L
THMICRERARE. #ORELAEHZAGEIRE, %, @OmE, g, K8, KRk
i, EEGEESR ERE.

Changed in version 1.0: GUI F3%% AT LA &R~ TR EETT 20 iy th i & A2 BoR, T2 3O T i~
2% (F40: :guilabel: &Cancel’). BAEHH EAE&, Wﬁﬁﬁﬁ/\&&

:kbd:
FRICSEME T, BE P2 — AR TP & BURE & N AR 7 FIAE. ISR A RN E, BB 24
ROZ AT DMERL, A HT F P B3R 218 R R & 1RSS40, — 1 xemacs SEFHARCH 1kbd: " C-x
-, MREERENABRTFEFE RS % NIFEE R8T R IZERIC A kbd:* Control-x

Control—-f".

:mailheader:
RFC 822-#£ FHP A3k 1 4 . % FRIC H AN 3R BB Sk 72 M0 4415 5. L 56 3, 1772 ik FH R S5 B 5 A [R]
FCATHR ARk, 8 FH R & R IR AL FIMIMEZR &Y, 78 5K B Hr iR A 2k 42 58 B LA [R] A 77 =B N, sBL7E
camel-casing £J5E, B ZFuEHHEN B ERA. #40: :mailheader: Content-Type".

:makevar
i 7 make P E 4.

:manpage:
27 Unix M1, BEEFET FIU :manpage: " 1s(1) .
:menuselection:

SREEITH M £ menuselection FRC. FRICSTEEERISRBLEIFS, A& 73 ANEREFFFERIE,
AR FT R 5 P50, ALETI4 7 A -—> 6.

40, FRICIEDT “Start > Programs™:

:menuselection: Start —-—-> Programs’

IR & — IR, PIINFELERERT S EH — SRS R < 23T — DEE, X &R EE
FEEITA 2 3 .

menuselection &, 5 guilabel —HEAHHA.

8.7. WEKPRIC 35

sphinx Documentation, Release

:mimetype:

MIME £#!, 8t EMIME RAPTTE (FEZIRETR 5 7] L FF).

:newsgroup:
Usenet 7 /E2H.

:program:

PUTREFIIAR. 5L 5 BT SCH 2 AR, HinWindows FEFPEY . exe (EiHAD) IR A2 2020

:regexp:
IEMERR, AEFETIH.
: samp

*ﬁﬁiﬁiizﬁ, WA, XARNTILUERIES TR, WA file —H. FlW, 7 :samp: print

1+{variable} ,variable HIE 5 SR
MATEZETR S, (EAVRERSRIA].

e index & HERTIKH.

NEB A BT RSN

:pep:

%TJ'Python Enhancement Proposal F12:%. 274 1& 4 KR 51 5% H MUK “PEP number” ; FEHTML 304, 1%
AR FR IR FEAPEP SRS AORB B . 7T LIBEHREIFF € E T :pep: number#anchor'.

:rfc:
Internet Request for CommentsH15%. a7 4R 5|5 B LUK “RFC number” ; fEHTMLICE B /& —1>
R, FEEREET crfce: number#anchor’.

WRBERENAEREDESTHROBEEE, MM EeST Fric.

8.7.3 B
SORY RGBS BRI E WS, AR E S AT,

| release|

B E SURY B A& A AR A e, X AR AR F AT 8 LS SEEE RS alpha/beta/release U0 2. 5. 203, H

:confval:‘release‘ 1% &.

| version|
WO B SO AR A e, RO AT R EEAIREWN TR H A, BlaRA25.18 KRN 2.5. H

:confval:‘version‘ X &.

|today|
BHLA R H I GOS0 B), BCE e E U B R B . BOAR =N april 14, 2007. AT
& :confval:‘today_fmt* }7 :confval:‘today* .

8.8 K4rFKkric

8.8.1 UL HIICEE

reST H FEH £ field lists” BIHES; FEFHAT:

’:fieldname: Field content

36 Chapter 8. Sphinx#7ic FIZHAL

sphinx Documentation, Release

SCPETT 31) 7 BUA 38 2 U T B R SURIRME BB H LS T 1EE, MR B 155 e8UkE. #ESphinx ¥, £&
B bRC I T) 5B 2 R R SO T AR e Sphinx ERE A AN SRR 7R fi H SCRS A 7SO 1B g
FATHIRRE SORYR (5 B A — 3B 0 B R e i HH SOk A

BEAS, 3X LT T B A R
tocdepth M E SRR IR,
New in version 0.4.
nocomments WHREE T, M IS BoRIE A RATIES.
orphan HISRIRE, AL H A5 ST = AL A o 2 LS.

New in version 1.0.

8.8.2 g Etnil

. sectionauthor:: name <email>

L ETEENR. ZEUR1EE 4 7 0T DU R EORCAERR A o bt P ik A a2 @ W 2 N5 flan:

’.. sectionauthor:: Guido van Rossum <guido@python.org>

B EEFRIE A 2 HELEE f SO B IR TTREE 5 B, I DL E iconfval:‘show_authors® H{H
B, FHEPE—BHH.

. codeauthor:: name <email>
Y84 codeauthor , EI%‘/K%)”L, LRI PIEE, iR sectionauthor bR X IEETHIEE —
FE. 1F :confval:‘show_authors® B A F =7 H .

8.8.3 RI|EMtric

Sphinx HEIMITG(REL ~ KB E KR T 45 B 7E Sphinx Domains HWE V.
PO HRPE, SRR RE I E 2, R FERSESEERRTHRERGR, MES5%.

. index:: <entries>

ERBEE—HIZRXREIZE. B8R ERREMEAN, LIESOE.

fian:
. index::
single: execution; context
module: _ main_

module: sys
triple: module; search; path

The execution context

XMELEES N E, P ERRG R EERE T i) A AL B (B LR A R A DTG,
REFEL SHEIRMERASEBIRE, H S TN LRI N A RIETE, b 5] A 55 PR &

SN,
& HRA:

single 8 8 —R5|5 H. ATLUEM D5 08T 4 HOZATF 5 AREA Q& 7L H).

8.8. R7rFKIric 37

sphinx Documentation, Release

pair pair: loop; statement BIEW TMRIIFHMEE, W&/ N loop; statement I
statement; loop.

e .

triple fl41 triple: module; search; path QI =% HIEE, Bf1& module; search
path, search; path, module&path; module search.

see see: entry; other QIR DU a3 HA S B &5
seealso Ul see, HETHA “see also” U “see”.
Bk, BT, BIERF, R, 7E, 5, NERELSHYSAIB@M 1N R5I%H. i, module:

hashlib "2 fll## % H ~"module; hashlib # hashlib; module. (X &Pythonf¥f &

Y, PRI AN ()
A LANHT SRS FoR BRI 5 H. ERRSISPERFA LR, flan, B XHEEE

’.. index:: Python

— PR

’.. index:: ! Python

e R BER PR AR R 5 2 58 .
RETESNEER—FKE, XA ENHE:

’.. index:: BNF, grammar, syntax, notation

Bl T4M%&HE.
Changed in version 1.1: /X1 T see and seealso KA, KFFZHIRL.

:index:
I8 4 index TEBIRAIFEHEEET — B rOFk, M RH A B R R 5 & B BRI
ABERNAER L — MRS REBAEART HERNRSIFEEH. LRSS REIFENAE, &
RS AR IS5 S, XA, FRic ¥ ande 445 B iR —=. Flan:

—ME) resT :index: paragraph’ A8 L5
:index: index entries <pair: index; entry>'.

New in version 1.1.

8.8.4 AEHTMHENANE

. only:: <expression>

3 expression NENEETELHINE. RN HEITEHR, ITF:

’.. only:: html and draft

FREMHIFRE R, € LHNE (FH -t R 1TSEEE X cont.py HEN) . /RFIE, AIfH
H#ES (0 html and (latex or draft)).

HAIEREAE(htnl, latex or text) R ENIRZE.

New in version 0.6.

38 Chapter 8. Sphinx#7ic FIZHAL

sphinx Documentation, Release

8.8.5 Tables

fEH standard reStructuredText tables. FEHTMLA TAE R 1T, {H 25 H LaTeX SCRS 485 278 W] @i 51 /) 58
ZE AR O EM o, Bk, HILW N84

. tabularcolumns column spec
?AEHTTEBUﬁFﬁPi%*%E’W A, XA RS ELaTeX B tabulary I EEIREHE NS5
tabulary FREIERK. WIF

[11111]

XRRLEWE, TATRIF. WRIE S KRR & 3 eh BT, AR ERE p(width) , BiH
tabulary H B 7E 3:

L | EHE, BIRE
R | AAE, BIIRE
c| B¥F, BEIRE
J | BE HEORE
RIEFAE BN BT R, MEMEN TN IEE .
XA, Sphinx fFHMFIAFE L.

New in version 0.3.

Warning: FRE IR L TR LN SRR BRE|HE, XEF|FRARE tabulary PUMEE. EiL
FELEPRME LaTeX tabular A58, siE&AH tabularcolumns 184, 9RJG tabulary WEEH, H
PAER p{width} MEE S XEITERS.

FHERAGEMNH tabulary , A1 FHEGHRIIRBFEH tabular. HIRTF HBER I HFAREMEL
SCFF p{width} F1, XM REEIARITE, Sphinx & A X EERAG TR, (6] tabularcolumns 84
DUBE A P A

HEZMLES % Sphinx Domains.

8.8. RorE¥rid 39

sphinx Documentation, Release

40 Chapter 8. Sphinx#7ic FIZHAL

CHAPTER 9

Sphinx Domains

New in version 1.0.

9.1 What is a Domain?

Originally, Sphinx was conceived for a single project, the documentation of the Python language. Shortly afterwards, it
was made available for everyone as a documentation tool, but the documentation of Python modules remained deeply
built in — the most fundamental directives, like function, were designed for Python objects. Since Sphinx has
become somewhat popular, interest developed in using it for many different purposes: C/C++ projects, JavaScript, or
even reStructuredText markup (like in this documentation).

While this was always possible, it is now much easier to easily support documentation of projects using different
programming languages or even ones not supported by the main Sphinx distribution, by providing a domain for every
such purpose.

A domain is a collection of markup (reStructuredText directives and roles) to describe and link to objects belong-
ing together, e.g. elements of a programming language. Directive and role names in a domain have names like
domain:name,e.g. py: function. Domains can also provide custom indices (like the Python Module Index).

Having domains means that there are no naming problems when one set of documentation wants to refer to e.g. C++
and Python classes. It also means that extensions that support the documentation of whole new languages are much
easier to write.

This section describes what the domains that come with Sphinx provide. The domain API is documented as well, in
the section Domain API.

9.2 Basic Markup

Most domains provide a number of object description directives, used to describe specific objects provided by modules.
Each directive requires one or more signatures to provide basic information about what is being described, and the
content should be the description. The basic version makes entries in the general index; if no index entry is desired,
you can give the directive option flag : noindex:. An example using a Python domain directive:

41

sphinx Documentation, Release

. py:function:: spam(eggs)
ham (eggs)

Spam or ham the foo.

This describes the two Python functions spam and ham. (Note that when signatures become too long, you can break
them if you add a backslash to lines that are continued in the next line. Example:

. py:function:: filterwarnings (action, message='"', category=Warning, \
module="'", lineno=0, append=False)
:noindex:

(This example also shows how to use the :noindex: flag.)

The domains also provide roles that link back to these object descriptions. For example, to link to one of the functions
described in the example above, you could say

The function :py:func: spam does a similar thing.

As you can see, both directive and role names contain the domain name and the directive name.

Default Domain

To avoid having to writing the domain name all the time when you e.g. only describe Python objects, a default domain
can be selected with either the config value :confval:‘primary_domain‘ or this directive:

default-domain:: name
Select a new default domain. While the :confval:‘primary_domain‘ selects a global default, this only has an
effect within the same file.

If no other default is selected, the Python domain (named py) is the default one, mostly for compatibility with docu-
mentation written for older versions of Sphinx.

Directives and roles that belong to the default domain can be mentioned without giving the domain name, i.e.

function:: pyfunc()
Describes a Python function.

Reference to :func: pyfunc .

9.2.1 Cross-referencing syntax

For cross-reference roles provided by domains, the same facilities exist as for general cross-references. See 2 Y75/
HITETE.
In short:

* You may supply an explicit title and reference target: :role: title <target>" will refer to target, but
the link text will be title.

* If you prefix the content with !, no reference/hyperlink will be created.

 If you prefix the content with ~, the link text will only be the last component of the target. For example,
:py:meth: ~Queue.Queue.get will refer to Queue.Queue.get but only display get as the link
text.

42 Chapter 9. Sphinx Domains

sphinx Documentation, Release

9.3 The Python Domain

The Python domain (name py) provides the following directives for module declarations:

py:module:: name
This directive marks the beginning of the description of a module (or package submodule, in which case the
name should be fully qualified, including the package name). It does not create content (like e.g. py:class
does).

This directive will also cause an entry in the global module index.

The plat form option, if present, is a comma-separated list of the platforms on which the module is available
(if it is available on all platforms, the option should be omitted). The keys are short identifiers; examples that
are in use include “IRIX”, “Mac”, “Windows”, and “Unix”. It is important to use a key which has already been
used when applicable.

The synopsis option should consist of one sentence describing the module’s purpose — it is currently only
used in the Global Module Index.

The deprecated option can be given (with no value) to mark a module as deprecated; it will be designated
as such in various locations then.

py:currentmodule:: name
This directive tells Sphinx that the classes, functions etc. documented from here are in the given module (like
py:module), but it will not create index entries, an entry in the Global Module Index, or a link target for
py :mod. This is helpful in situations where documentation for things in a module is spread over multiple files
or sections — one location has the py : moduIe directive, the others only py : currentmodule.

The following directives are provided for module and class contents:

py:data:: name
Describes global data in a module, including both variables and values used as “defined constants.” Class and
object attributes are not documented using this environment.

py:exception:: name
Describes an exception class. The signature can, but need not include parentheses with constructor arguments.

py:function:: name (signature)
Describes a module-level function. The signature should include the parameters, enclosing optional parameters
in brackets. Default values can be given if it enhances clarity; see Python Signatures. For example:

. py:function:: Timer.repeat ([repeat=3[, number=1000000]11)

Object methods are not documented using this directive. Bound object methods placed in the module namespace
as part of the public interface of the module are documented using this, as they are equivalent to normal functions
for most purposes.

The description should include information about the parameters required and how they are used (especially
whether mutable objects passed as parameters are modified), side effects, and possible exceptions. A small
example may be provided.

py:class:: name((signature)]
Describes a class. The signature can include parentheses with parameters which will be shown as the constructor
arguments. See also Python Signatures.

Methods and attributes belonging to the class should be placed in this directive’s body. If they are placed outside,
the supplied name should contain the class name so that cross-references still work. Example:

. py:class:: Foo
. py:method:: quux()

9.3. The Python Domain 43

sphinx Documentation, Release

- or —-
. py:class:: Bar

. py:method:: Bar.quux()

The first way is the preferred one.

py:attribute:: name
Describes an object data attribute. The description should include information about the type of the data to be
expected and whether it may be changed directly.

py:method:: name (signature)
Describes an object method. The parameters should not include the self parameter. The description should
include similar information to that described for function. See also Python Signatures.

py:staticmethod:: name (signature)
Like py : method, but indicates that the method is a static method.

New in version 0.4.

py:classmethod:: name (signature)
Like py : met hod, but indicates that the method is a class method.

New in version 0.6.

py:decorator:: name

py:decorator:: name (signature)
Describes a decorator function. The signature should not represent the signature of the actual function, but the
usage as a decorator. For example, given the functions

def removename (func) :
LI}

func._ name =
return func

def setnewname (name) :
def decorator (func) :
func. name = name
return func
return decorator

the descriptions should look like this:

. py:decorator:: removename
Remove name of the decorated function.
. py:decorator:: setnewname (name)

Set name of the decorated function to #namex*.

There is no py : deco role to link to a decorator that is marked up with this directive; rather, use the py : func
role.

py:decoratormethod:: name
py:decoratormethod:: name (signature)
Same as py : decorator, but for decorators that are methods.

Refer to a decorator method using the py : meth role.

44

Chapter 9. Sphinx Domains

sphinx Documentation, Release

9.3.1 Python Signatures

Signatures of functions, methods and class constructors can be given like they would be written in Python, with the
exception that optional parameters can be indicated by brackets:

’.. py:function:: compile (source[, filename[, symbol]])

It is customary to put the opening bracket before the comma. In addition to this “nested” bracket style, a “flat” style
can also be used, due to the fact that most optional parameters can be given independently:

’.. py:function:: compile (source[, filename, symbol])

Default values for optional arguments can be given (but if they contain commas, they will confuse the signature parser).
Python 3-style argument annotations can also be given as well as return type annotations:

’.. py:function:: compile (source : string[, filename, symbol]) -> ast object

9.3.2 Info field lists

New in version 0.4.
Inside Python object description directives, reST field lists with these fields are recognized and formatted nicely:
* param, parameter, arg, argument, key, keyword: Description of a parameter.
* type: Type of a parameter.
* raises, raise, except, exception: That (and when) a specific exception is raised.
* var, ivar, cvar: Description of a variable.
* returns, return: Description of the return value.
* rtype: Return type.

The field names must consist of one of these keywords and an argument (except for returns and rtype, which do
not need an argument). This is best explained by an example:

. py:function:: format_exception(etype, value, tb[, limit=None])
Format the exception with a traceback.

:param etype: exception type

:param value: exception value

:param tb: traceback object

:param limit: maximum number of stack frames to show
:type limit: integer or None

:rtype: list of strings

This will render like this:

format_exception (etype, value, tb[, limit:None])
Format the exception with a traceback.

Parameters
* etype — exception type
* value - exception value

* tb - traceback object

9.3. The Python Domain 45

sphinx Documentation, Release

e limit (integer or None)- maximum number of stack frames to show
Return type list of strings

It is also possible to combine parameter type and description, if the type is a single word, like this:

:param integer limit: maximum number of stack frames to show

9.3.3 Cross-referencing Python objects

The following roles refer to objects in modules and are possibly hyperlinked if a matching identifier is found:

:py:mod:
Reference a module; a dotted name may be used. This should also be used for package names.

:py: func:
Reference a Python function; dotted names may be used. The role text needs not include trailing parentheses to
enhance readability; they will be added automatically by Sphinx if the :confval:‘add_function_parentheses*
config value is true (the default).

:py:data:
Reference a module-level variable.

:py:const:
Reference a “defined” constant. This may be a C-language #define or a Python variable that is not intended
to be changed.

:py:class:
Reference a class; a dotted name may be used.

:py:meth:
Reference a method of an object. The role text can include the type name and the method name; if it occurs
within the description of a type, the type name can be omitted. A dotted name may be used.

:py:attr:
Reference a data attribute of an object.

:py:exc:
Reference an exception. A dotted name may be used.

:py:obj:
Reference an object of unspecified type. Useful e.g. as the :confval:‘default_role‘.

New in version 0.4.

The name enclosed in this markup can include a module name and/or a class name. For example,
:py:func: filter’ could refer to a function named filter in the current module, or the built-in function
of that name. In contrast, : py: func: foo.filter" clearly refers to the £ilter function in the foo module.

Normally, names in these roles are searched first without any further qualification, then with the current module name
prepended, then with the current module and class name (if any) prepended. If you prefix the name with a dot, this
order is reversed. For example, in the documentation of Python’s codecs module, :py: func: open” always
refers to the built-in function, while : py: func: " .open" refers to codecs.open ().

A similar heuristic is used to determine whether the name is an attribute of the currently documented class.

Also, if the name is prefixed with a dot, and no exact match is found, the target is taken as a suffix and all object
names with that suffix are searched. For example, :py:meth: .TarFile.close" references the tarfile.
TarFile.close () function, even if the current module is not tarfile. Since this can get ambiguous, if there is
more than one possible match, you will get a warning from Sphinx.

46 Chapter 9. Sphinx Domains

sphinx Documentation, Release

Note that you can combine the ~ and . prefixes: :py:meth: ~.TarFile.close" willreferencethe tarfile.
TarFile.close () method, but the visible link caption will only be close ().

9.4 The C Domain

The C domain (name c) is suited for documentation of C API.

c:function:: type name (signature)
Describes a C function. The signature should be given as in C, e.g.:

c:function:: PyObject+ PyType GenericAlloc (PyTypeObject #+type, Py_ssize_t
—nitems)

This is also used to describe function-like preprocessor macros. The names of the arguments should be given so
they may be used in the description.

Note that you don’t have to backslash-escape asterisks in the signature, as it is not parsed by the reST inliner.

c:member:: type name
Describes a C struct member. Example signature:

c:member:: PyObjectx PyTypeObject.tp_bases

The text of the description should include the range of values allowed, how the value should be interpreted, and
whether the value can be changed. References to structure members in text should use the member role.

c:macro:: name
Describes a “simple” C macro. Simple macros are macros which are used for code expansion, but which do not
take arguments so cannot be described as functions. This is not to be used for simple constant definitions. Exam-
ples of its use in the Python documentation include PyOb ject_HEAD and Py_BEGIN_ALLOW_THREADS.

c:type:: name
Describes a C type (whether defined by a typedef or struct). The signature should just be the type name.

c:var:: type name
Describes a global C variable. The signature should include the type, such as:

c:var:: PyObjectx PyClass_Type

9.4.1 Cross-referencing C constructs

The following roles create cross-references to C-language constructs if they are defined in the documentation:

:c:data:
Reference a C-language variable.

:c: func:
Reference a C-language function. Should include trailing parentheses.

:c:macro:
Reference a “simple” C macro, as defined above.
:c:type:
Reference a C-language type.

9.4. The C Domain 47

sphinx Documentation, Release

9.5 The C++ Domain

The C++ domain (name cpp) supports documenting C++ projects.

The following directives are available:

cpp:class:: signatures
cpp: function:: signatures
cpp:member:: signatures
cpp:type:: signatures
Describe a C++ object. Full signature specification is supported — give the signature as you would in the
declaration. Here some examples:

cpp:function:: bool namespaced::theclass::method(int argl, std:
Describes a method with parameters and types.

cpp: function:: bool namespaced::theclass::method(argl, arg2)
Describes a method without types.

cpp: function:: const T &array<T>::operator([] () const

Describes the constant indexing operator of a templated array.
cpp:function:: operator bool () const

Describe a casting operator here.

cpp: function:: constexpr void foo(std::string &bar[2]) noexcept
Describe a constexpr function here.

cpp:member:: std::string theclass::name

cpp:member:: std::string theclass::name[N] [M]

cpp:type:: theclass::const_iterator

:string arg2)

Will be rendered like this:

bool namespaced: :theclass: :method (int argl, std::string arg2)
Describes a method with parameters and types.

bool namespaced: :theclass: :method (argl, arg2)
Describes a method without types.

template<>
const T &array<T>: :operator[] () const
Describes the constant indexing operator of a templated array.

operator bool () const
Describe a casting operator here.

constexpr void foo (std::string &bar[2]) noexcept
Describe a constexpr function here.

std::string theclass: :name

std::string theclass: :name[N][M]

48

Chapter 9

. Sphinx Domains

sphinx Documentation, Release

type theclass: :const_iterator

cpp:namespace:: namespace
Select the current C++ namespace for the following objects.

These roles link to the given object types:

:cpp:class:
:cpp: func:
: cpp :member:
:cpp:type:
Reference a C++ object. You can give the full signature (and need to, for overloaded functions.)

Note: Sphinx’ syntax to give references a custom title can interfere with linking to template classes, if nothing
follows the closing angle bracket, i.e. if the link looks like this: :cpp:class: MyClass<T>". This is
interpreted as a link to T with a title of MyClass. In this case, please escape the opening angle bracket with a
backslash, like this: : cpp:class: MyClass\<T>".

Note on References

It is currently impossible to link to a specific version of an overloaded method. Currently the C++ domain is the first
domain that has basic support for overloaded methods and until there is more data for comparison we don’t want to
select a bad syntax to reference a specific overload. Currently Sphinx will link to the first overloaded version of the
method / function.

9.6 The Standard Domain

The so-called “standard” domain collects all markup that doesn’t warrant a domain of its own. Its directives and roles
are not prefixed with a domain name.

The standard domain is also where custom object descriptions, added using the add_object_type () AP are
placed.

There is a set of directives allowing documenting command-line programs:

option:: name args, nhame args,
Describes a command line option or switch. Option argument names should be enclosed in angle brackets.
Example:
option:: —-m <module>, —--module <module>

Run a module as a script.

The directive will create a cross-reference target named after the first option, referencable by option (in the
example case, you’d use something like : option: -m").

envvar:: name
Describes an environment variable that the documented code or program uses or defines. Referencable by
envvar.

program:: name
Like py:currentmodule, this directive produces no output. Instead, it serves to notify Sphinx that all
following opt i on directives document options for the program called name.

9.6. The Standard Domain 49

sphinx Documentation, Release

If you use program, you have to qualify the references in your opt ion roles by the program name, so if you
have the following situation

program:: rm
option:: -r

Work recursively.
program:: svn

option:: -r revision

Specify the revision to work upon.

then :option: rm —r" would refer to the first option, while :option: svn -r° would refer to the
second one.

The program name may contain spaces (in case you want to document subcommands like svn add and svn
commit separately).

New in version 0.5.
There is also a very generic object description directive, which is not tied to any domain:

describe:: text

object:: text
This directive produces the same formatting as the specific ones provided by domains, but does not create index
entries or cross-referencing targets. Example:

describe:: PAPER

You can set this variable to select a paper size.

9.7 The JavaScript Domain

The JavaScript domain (name js) provides the following directives:

js:function:: name (signature)
Describes a JavaScript function or method. If you want to describe arguments as optional use square brackets
as documented for Python signatures.

You can use fields to give more details about arguments and their expected types, errors which may be thrown
by the function, and the value being returned:

js:function:: $.getJSON (href, callback[, errback])

:param string href: An URI to the location of the resource.
:param callback: Get's called with the object.
:param errback:
Get's called in case the request fails. And a lot of other
text so we need multiple lines
:throws SomeError: For whatever reason in that case.
:returns: Something

This is rendered as:

$.get JSON (href, callback[, errback])

50 Chapter 9. Sphinx Domains

sphinx Documentation, Release

Arguments
* href (string)- An URI to the location of the resource.
* callback — Get’s called with the object.
* errback — Get’s called in case the request fails. And a lot of other text so we
need multiple lines.
Throws SomeError — For whatever reason in that case.
Returns Something

js:class:: name
Describes a constructor that creates an object. This is basically like a function but will show up with a class
prefix:

js:class:: MyAnimal (name[, age])

:param string name: The name of the animal
:param number age: an optional age for the animal

This is rendered as:

class MyAnimal (name[, age])
Arguments
* name (string) - The name of the animal
* age (number) — an optional age for the animal

js:data:: name
Describes a global variable or constant.

js:attribute:: object.name
Describes the attribute name of object.

These roles are provided to refer to the described objects:

:js: func:
:js:class:
:js:data:
:js:attr:

9.8 The reStructuredText domain

The reStructuredText domain (name rst) provides the following directives:

rst:directive:: name
Describes a reST directive. The name can be a single directive name or actual directive syntax (.. prefix and ::
suffix) with arguments that will be rendered differently. For example:

rst:directive:: foo
Foo description.
rst:directive:: .. bar:: baz

Bar description.

will be rendered as:

foo::
Foo description.

9.8. The reStructuredText domain 51

sphinx Documentation, Release

. bar:: baz
Bar description.

rst:role:: name
Describes a reST role. For example:

. rst:role:: foo

Foo description.

will be rendered as:

:foo:
Foo description.

These roles are provided to refer to the described objects:

:rst:dir:
:rst:role:

9.9 More domains

The sphinx-contrib repository contains more domains available as extensions; currently a Ruby and an Erlang domain.

52

Chapter 9. Sphinx Domains

https://bitbucket.org/birkenfeld/sphinx-contrib/

cHAaPTER 10

Available builders

These are the built-in Sphinx builders. More builders can be added by extensions.
The builder’s “name” must be given to the -b command-line option of sphinx-build to select a builder.

class sphinx.builders.html.StandaloneHTMLBuilder
This is the standard HTML builder. Its output is a directory with HTML files, complete with style sheets and
optionally the reST sources. There are quite a few configuration values that customize the output of this builder,
see the chapter Options for HTML output for details.

Its name is html.

class sphinx.builders.html.DirectoryHTMLBuilder
This is a subclass of the standard HTML builder. Its output is a directory with HTML files, where each file
is called index.html and placed in a subdirectory named like its page name. For example, the document
markup/rest.rst will not result in an output file markup/rest .html, but markup/rest/index.
html. When generating links between pages, the index.html is omitted, so that the URL would look like
markup/rest/.

Its name is dirhtml.
New in version 0.6.

class sphinx.builders.html.SingleFileHTMLBuilder
This is an HTML builder that combines the whole project in one output file. (Obviously this only works with
smaller projects.) The file is named like the master document. No indices will be generated.

Its name is singlehtml.
New in version 1.0.

class sphinx.builders.htmlhelp.HTMLHelpBuilder
This builder produces the same output as the standalone HTML builder, but also generates HTML Help support
files that allow the Microsoft HTML Help Workshop to compile them into a CHM file.

Its name is htmlhelp.

53

sphinx Documentation, Release

class sphinx.builders.gthelp.QtHelpBuilder
This builder produces the same output as the standalone HTML builder, but also generates Qt help collection
support files that allow the Qt collection generator to compile them.

Its name is gthelp.

class sphinx.builders.devhelp.DevhelpBuilder
This builder produces the same output as the standalone HTML builder, but also generates GNOME Devhelp
support file that allows the GNOME Devhelp reader to view them.

Its name is devhelp.

class sphinx.builders.epub.EpubBuilder
This builder produces the same output as the standalone HTML builder, but also generates an epub file for
ebook readers. See Epub info for details about it. For definition of the epub format, have a look at http:
/Iwww.idpf.org/specs.htm or http://en.wikipedia.org/wiki/EPUB.

Some ebook readers do not show the link targets of references. Therefore this builder adds the targets af-
ter the link when necessary. The display of the URLSs can be customized by adding CSS rules for the class
link-target.

Its name is epub.

class sphinx.builders.latex.LaTeXBuilder
This builder produces a bunch of LaTeX files in the output directory. You have to specify which documents
are to be included in which LaTeX files via the :confval:‘latex_documents‘ configuration value. There are a
few configuration values that customize the output of this builder, see the chapter Options for LaTeX output for
details.

Note: The produced LaTeX file uses several LaTeX packages that may not be present in a “minimal” TeX
distribution installation. For TeXLive, the following packages need to be installed:

¢ latex-recommended
¢ Jatex-extra

¢ fonts-recommended

Its name is latex.

Note that a direct PDF builder using ReportLab is available in rst2pdf version 0.12 or greater. You need to add
'rst2pdf.pdfbuilder’ to your :confval:‘extensions® to enable it, its name is pdf. Refer to the rst2pdf manual
for details.

class sphinx.builders.text.TextBuilder
This builder produces a text file for each reST file — this is almost the same as the reST source, but with much
of the markup stripped for better readability.

Its name is text.
New in version 0.4.

class sphinx.builders.manpage .ManualPageBuilder
This builder produces manual pages in the groff format. You have to specify which documents are to be included
in which manual pages via the :confval:‘man_pages‘ configuration value.

Its name is man.

Note: This builder requires the docutils manual page writer, which is only available as of docutils 0.6.

54 Chapter 10. Available builders

http://doc.trolltech.com/4.6/qthelp-framework.html
http://live.gnome.org/devhelp
http://www.idpf.org/specs.htm
http://www.idpf.org/specs.htm
http://en.wikipedia.org/wiki/EPUB
http://rst2pdf.googlecode.com
http://lateral.netmanagers.com.ar/static/manual.pdf

sphinx Documentation, Release

New in version 1.0.

class sphinx.builders.texinfo.TexinfoBuilder
This builder produces Texinfo files that can be processed into Info files by the makeinfo program. You have
to specify which documents are to be included in which Texinfo files via the :confval:‘texinfo_documents*
configuration value.

The Info format is the basis of the on-line help system used by GNU Emacs and the terminal-based program
info. See Texinfo info for more details. The Texinfo format is the official documentation system used by the
GNU project. More information on Texinfo can be found at http://www.gnu.org/software/texinfo/.

Its name is texinfo.
New in version 1.1.

class sphinx.builders.html.SerializingHTMLBuilder
This builder uses a module that implements the Python serialization API (pickle, simplejson, phpserialize, and
others) to dump the generated HTML documentation. The pickle builder is a subclass of it.

A concrete subclass of this builder serializing to the PHP serialization format could look like this:

import phpserialize

class PHPSerializedBuilder (SerializingHTMLBuilder) :

name = 'phpserialized'

implementation = phpserialize

out_suffix = '.file.phpdump'

globalcontext_filename = 'globalcontext.phpdump'

searchindex_filename = 'searchindex.phpdump'
implementation

A module that implements dump(), load(), dumps() and loads() functions that conform to the functions
with the same names from the pickle module. Known modules implementing this interface are simplejson
(or json in Python 2.6), phpserialize, plistlib, and others.

out_suffix
The suffix for all regular files.

globalcontext_filename
The filename for the file that contains the “global context”. This is a dict with some general configuration
values such as the name of the project.

searchindex_ filename
The filename for the search index Sphinx generates.

See Serialization builder details for details about the output format.
New in version 0.5.

class sphinx.builders.html.PickleHTMLBuilder
This builder produces a directory with pickle files containing mostly HTML fragments and TOC information,
for use of a web application (or custom postprocessing tool) that doesn’t use the standard HTML templates.

See Serialization builder details for details about the output format.
Its name is pickle. (The old name web still works as well.)

The file suffix is . fpickle. The global context is called globalcontext .pickle, the search index
searchindex.pickle.

class sphinx.builders.html.JSONHTMLBuilder
This builder produces a directory with JSON files containing mostly HTML fragments and TOC information,
for use of a web application (or custom postprocessing tool) that doesn’t use the standard HTML templates.

55

http://www.gnu.org/software/texinfo/
http://pypi.python.org/pypi/phpserialize

sphinx Documentation, Release

See Serialization builder details for details about the output format.
Its name is json.

The file suffix is .fjson. The global context is called globalcontext. json, the search index
searchindex. json.

New in version 0.5.

class sphinx.builders.gettext .MessageCatalogBuilder
This builder produces gettext-style message catalogs. Each top-level file or subdirectory grows a single . pot
catalog template.

See the documentation on Internationalization for further reference.
Its name is gettext.
New in version 1.1.

class sphinx.builders.changes.ChangesBuilder
This builder produces an HTML overview of all versionadded, versionchanged and deprecated
directives for the current :confval:‘version‘. This is useful to generate a ChangeLog file, for example.

Its name is changes.

class sphinx.builders.linkcheck.CheckExternalLinksBuilder
This builder scans all documents for external links, tries to open them with ur11ib2, and writes an overview
which ones are broken and redirected to standard output and to output . txt in the output directory.

Its name is 1inkcheck.
Built-in Sphinx extensions that offer more builders are:
e doctest

® coverage

10.1 Serialization builder details

All serialization builders outputs one file per source file and a few special files. They also copy the reST source files
in the directory _sources under the output directory.

The PickleHTMLBuilder is a builtin subclass that implements the pickle serialization interface.

The files per source file have the extensions of out_ suffix, and are arranged in directories just as the source files
are. They unserialize to a dictionary (or dictionary like structure) with these keys:

body The HTML “body” (that is, the HTML rendering of the source file), as rendered by the HTML translator.
title The title of the document, as HTML (may contain markup).

toc The table of contents for the file, rendered as an HTML .

display_toc A boolean thatis True if the toc contains more than one entry.

current_page_name The document name of the current file.

parents, prev and next Information about related chapters in the TOC tree. Each relation is a dictionary with
the keys 1ink (HREF for the relation) and title (title of the related document, as HTML). parents is a
list of relations, while prev and next are a single relation.

sourcename The name of the source file under _sources.

The special files are located in the root output directory. They are:

56 Chapter 10. Available builders

sphinx Documentation, Release

SerializingHTMLBuilder.globalcontext filename A pickled dict with these keys:
project, copyright, release, version The same values as given in the configuration file.
style :confval:‘html_style‘.
last_updated Date of last build.
builder Name of the used builder, in the case of pickles this is always 'pickle’.
titles A dictionary of all documents’ titles, as HTML strings.

SerializingHTMLBuilder.searchindex filename An index that can be used for searching the docu-
mentation. It is a pickled list with these entries:

¢ A list of indexed docnames.
* A list of document titles, as HTML strings, in the same order as the first list.

* A dict mapping word roots (processed by an English-language stemmer) to a list of integers, which are
indices into the first list.

environment .pickle The build environment. This is always a pickle file, independent of the builder and a copy
of the environment that was used when the builder was started.

Unlike the other pickle files this pickle file requires that the sphinx package is available on unpickling.

10.1. Serialization builder details 57

sphinx Documentation, Release

58 Chapter 10. Available builders

cHAPTER 11

The build configuration file

The configuration directory must contain a file named conf.py. This file (containing Python code) is called the
“build configuration file” and contains all configuration needed to customize Sphinx input and output behavior.

The configuration file is executed as Python code at build time (using execfile (), and with the current directory
set to its containing directory), and therefore can execute arbitrarily complex code. Sphinx then reads simple names
from the file’s namespace as its configuration.

Important points to note:

If not otherwise documented, values must be strings, and their default is the empty string.

The term “fully-qualified name” refers to a string that names an importable Python object inside a mod-
ule; for example, the FQN "sphinx.builders.Builder" means the Builder class in the sphinx.
builders module.

Remember that document names use / as the path separator and don’t contain the file name extension.

Since conf.py is read as a Python file, the usual rules apply for encodings and Unicode support: declare
the encoding using an encoding cookie (a comment like # —-x- coding: utf-8 -x-)and use Unicode
string literals when you include non-ASCII characters in configuration values.

The contents of the config namespace are pickled (so that Sphinx can find out when configuration changes), so
it may not contain unpickleable values — delete them from the namespace with del if appropriate. Modules are
removed automatically, so you don’t need to de 1 your imports after use.

There is a special object named tags available in the config file. It can be used to query and change the
tags (see T %5 & TR N %Y). Use tags.has ('tag') to query, tags.add('tag') and tags.
remove ('tag') to change.

59

sphinx Documentation, Release

11.1 General configuration
11.2 Project information

11.3 Options for internationalization

These options influence Sphinx’ Native Language Support. See the documentation on Internationalization for details.

11.4 Options for HTML output

These options influence HTML as well as HTML Help output, and other builders that use Sphinx” HTMLWriter class.

11.5 Options for epub output

These options influence the epub output. As this builder derives from the HTML builder, the HTML options also apply
where appropriate. The actual values for some of the options is not really important, they just have to be entered into

the Dublin Core metadata.

11.6 Options for LaTeX output

These options influence LaTeX output.

11.7 Options for text output

These options influence text output.

11.8 Options for manual page output

These options influence manual page output.

11.9 Options for Texinfo output

These options influence Texinfo output.

11.10 Options for the linkcheck builder

60

Chapter 11. The build configuration file

http://dublincore.org/

cHAPTER 12

Internationalization

New in version 1.1.

Complementary to translations provided for Sphinx-generated messages such as navigation bars, Sphinx provides
mechanisms facilitating document translations in itself. See the Options for internationalization for details on config-
uration.

Pootle

sphinx-build
gettext

translator

t
sphinx-build msgfm

-Dlanguage=

translated
build

Fig. 12.1: Workflow visualization of translations in Sphinx. (The stick-figure is taken from an XKCD comic.)

61

http://xkcd.com/779/

sphinx Documentation, Release

gettext' is an established standard for internationalization and localization. It naively maps messages in a program to
a translated string. Sphinx uses these facilities to translate whole documents.

Initially project maintainers have to collect all translatable strings (also referred to as messages) to make them known
to translators. Sphinx extracts these through invocation of sphinx-build -b gettext.

Every single element in the doctree will end up in a single message which results in lists being equally split into
different chunks while large paragraphs will remain as coarsely-grained as they were in the original document. This
grants seamless document updates while still providing a little bit of context for translators in free-text passages. It is
the maintainer’s task to split up paragraphs which are too large as there is no sane automated way to do that.

After Sphinx successfully ran the MessageCatalogBuilder you will find a collection of .pot files in your
output directory. These are catalog templates and contain messages in your original language only.

They can be delivered to translators which will transform them to . po files — so called message catalogs — contain-
ing a mapping from the original messages to foreign-language strings.

Gettext compiles them into a binary format known as binary catalogs through msgfmt for efficiency reasons. If
you make these files discoverable with :confval:‘locale_dirs¢ for your :confval:‘language‘, Sphinx will pick them
up automatically.

An example: you have a document usage . rst in your Sphinx project. The gettext builder will put its messages into
. . . o) . .

usage.pot. Imagine you have Spanish translations~ on your hands in usage . po — for your builds to be translated

you need to follow these instructions:

» Compile your message catalog to a locale directory, say translated,soitendsupin ./translated/es/
LC_MESSAGES/usage .mo in your source directory (where es is the language code for Spanish.)

msgfmt "usage.po" -o "translated/es/LC_MESSAGES/usage.mo"

* Set :confval:‘locale_dirs‘ to ["translated/"].
¢ Set :confval:‘language‘ to es (also possible via —D).

* Run your desired build.

I See the GNU gettext utilites for details on that software suite.
2 Because nobody expects the Spanish Inquisition!

62 Chapter 12. Internationalization

http://www.gnu.org/software/gettext/manual/gettext.html#Introduction

cHAPTER 13

HTML theming support

New in version 0.6.

Sphinx supports changing the appearance of its HTML output via themes. A theme is a collection of HTML templates,
stylesheet(s) and other static files. Additionally, it has a configuration file which specifies from which theme to inherit,
which highlighting style to use, and what options exist for customizing the theme’s look and feel.

Themes are meant to be project-unaware, so they can be used for different projects without change.

13.1 Using a theme

Using an existing theme is easy. If the theme is builtin to Sphinx, you only need to set the :confval:*html_theme*
config value. With the :confval:*html_theme_options‘ config value you can set theme-specific options that change
the look and feel. For example, you could have the following in your conf . py:

html_theme = "default"

html_theme_options = {
"rightsidebar": "true",
"relbarbgcolor": "black"

}

That would give you the default theme, but with a sidebar on the right side and a black background for the relation bar
(the bar with the navigation links at the page’s top and bottom).

If the theme does not come with Sphinx, it can be in two forms: either a directory (containing theme.conf and
other needed files), or a zip file with the same contents. Either of them must be put where Sphinx can find it; for this
there is the config value :confval:‘html_theme_path*. It gives a list of directories, relative to the directory containing
conf . py, that can contain theme directories or zip files. For example, if you have a theme in the file blue.zip,
you can put it right in the directory containing conf . py and use this configuration:

html_theme = "blue"
html_theme_path = ["."]

63

sphinx Documentation, Release

64 Chapter 13. HTML theming support

sphinx Documentation, Release

13.2 Builtin themes

Theme overview

%.8. sched — Event scheduler
Tha syl mosily dofray ¢ clins steh ety § gererd [ToH e ped e

chany vk e B P e, ey)
T stesbabes GHA SHNSA § geranc MENEKE O ITeLinG SRL 0T Nésd 13 Lrano 13
Iy S48 W T mm' Deralne Whoukd D4 CEDN STTOUL RUTNCL, B TeT
p :

el ’
e #10 be CHE ST ETURERE B B BEC VNS AL MR T B08 ST SV B
P

Dramper

[
B e RCMHLRIMRIA | LI 1, L L
el primt_tim B paiAL K

I mumetvraded ameronmanti, e sekedelar Sen e mvistors e snoes to Svred-asietr,
ety do raart B rw b Balory B ore urrendy pereling 4 renneg ot and haideg e e
T TTHED U TE T DA W RN PABEL T GRRTH EROHED B I W TS
Srmsaing i (LS Al

default

okl e (msbemiy

it phikal et ikl
e e e]
mrrmrel pirseal

ey
g W e

Ths e 4 1 1 00 P WL T ST b B A 0 A e b

Avem jlujia bapart Drepepmmemy, dach sgm amier
[y LA | M T T

Theit will T o bavgets Steaarny il ol dHmll el el Tt it B g
mammgfanat iy b g e b e e ot 11 1 oy, pachage, Dbanans Tasdery s
e gl pons v i v v s s i o mamg s e 4. i sy

S s St b, e e s et v b0 vl i e Vet m] | bl bk
b e s s bl Ty aine

scrolls

SPHINX

FATHON FOCUMINTATION GINIEATOR
I . [I [

HTML iheming suppord Tishis O 0 1

Y [rrepe——

Epbirs seqperny Rangeng v sy
F P, g i, m e

Fhsd iy Sat |
e

4 P b, b

Wung a tharres
Uieng a2 4 anng Fetny

Frm g e ey ok g
Falibyay o pow ged gy

documentalion

Analyziog the Famed Statement

Whan 4 101 rator m ied o e T w0 -ah roandsn of e
FapE IoremerTy Tre (VT GG £ 4 LAed By BORCITONE BI IVTHe Rrmee
niranon ot T LI AL

SRR < P L ey
B e |

Base Clanea Gy
- (R —
e e

e mybarradl oty e ko Fare b dassre. T Do den oerseny o sncke fodan
wd [W —

g o mhere. Ta bne provde Pehed fr recenng o ohid

s e, v} THARLH
g for o o b T P -
FECHRTTN B BNGH IR B P T PR TR BELA A T e i of ey —rr S
6 20k Wl TP T T o D Bk Sl R
Natiesd
[
v qreni]
[T Pnpea T —
-

T
wet b vre. sehry. rrges <]
haeh . W S o ks by £ e o

agogo

SPHINX

PYTHOM DOCLIMENTATION GEMERATOR
Tt ogm | Doy o
HTHML theming support

Hev by v 00
St ety ey Be sy of e WL el o femn A e
it 1 el i i B g Be i

begdging e by e el wion e e | -_hl—-l_ﬂﬂ
Thewmes s e

u KOL gl
i L e by v vl

s, o0 ey v b s B e s e gy

[T —

Uslng & thema [P
g ot sy o s i . b, v ey e 1 e) Ll cmdp s e | Lo
Ihl.'ﬂur-\.lm-:llh-h'm ol ppet e changy 0 oot e T oo TR oRl | T
e
= B S
Ak s

-
P

]
—

[

1 gl B il ey

g s 4 T argan e

Bl 8T ESCRr SR LA - Ltk 18 SORST (ST ODra LA

Pt Bt Bt .5 A Bt it B 1B o s i o P st e pnaety

Stm e e e S RN, L

e o g e g e Ay 1 L e

vy ks b1

LEtar il s g

e g L

e L oy

s =FTE s, T s ke haey i vy bl 1 b el shay e

=TT

e e b B o P el e g gy e e g o v

e = s W o

e — ——— rerd el i i

et okl e T el o, Bl e e T el 4 N g il i T e e [T ST

R i D T | el

A i i i s S, 1 i P i S ey |] TS B e et

Bl i B B e e 58 s i 14 il et S G S, 1 i it oy ke I .
traditional nature

Sphinx v1.0 (hgh desumentaticn
- b 1eh o Tt pret tmias -

“ Ty] e v T
onunc=tiony, howevey, s £ riood 124 kep b
b Ao s s o e

o T e o e T

L

13.2. Builtinrthemes

1wl o] T
St romrracy @ caa

haiku

L 1]

i i

e D e L. T

65

sphinx Documentation, Release

Sphinx comes with a selection of themes to choose from.

These themes are:

* basic — This is a basically unstyled layout used as the base for the other themes, and usable as the base for
custom themes as well. The HTML contains all important elements like sidebar and relation bar. There are
these options (which are inherited by the other themes):

nosidebar (true or false): Don’t include the sidebar. Defaults to false.

sidebarwidth (an integer): Width of the sidebar in pixels. (Do not include px in the value.) Defaults to
230 pixels.

* default — This is the default theme, which looks like the Python documentation. It can be customized via these
options:

rightsidebar (true or false): Put the sidebar on the right side. Defaults to false.

stickysidebar (true or false): Make the sidebar “fixed” so that it doesn’t scroll out of view for long body
content. This may not work well with all browsers. Defaults to false.

collapsiblesidebar (true or false): Add an experimental JavaScript snippet that makes the sidebar collapsi-
ble via a button on its side. Doesn’t work together with “rightsidebar” or “stickysidebar”. Defaults to
false.

externalrefs (true or false): Display external links differently from internal links. Defaults to false.

There are also various color and font options that can change the color scheme without having to write a custom
stylesheet:

footerbgcolor (CSS color): Background color for the footer line.
footertextcolor (CSS color): Text color for the footer line.
sidebarbgcolor (CSS color): Background color for the sidebar.

sidebarbtncolor (CSS color): Background color for the sidebar collapse button (used when collapsi-
blesidebar is true).

sidebartextcolor (CSS color): Text color for the sidebar.
sidebarlinkcolor (CSS color): Link color for the sidebar.
relbarbgcolor (CSS color): Background color for the relation bar.
relbartextcolor (CSS color): Text color for the relation bar.
relbarlinkcolor (CSS color): Link color for the relation bar.
bgcolor (CSS color): Body background color.

textcolor (CSS color): Body text color.

linkcolor (CSS color): Body link color.

visitedlinkcolor (CSS color): Body color for visited links.
headbgcolor (CSS color): Background color for headings.
headtextcolor (CSS color): Text color for headings.
headlinkcolor (CSS color): Link color for headings.
codebgcolor (CSS color): Background color for code blocks.

codetextcolor (CSS color): Default text color for code blocks, if not set differently by the highlighting
style.

66

Chapter 13. HTML theming support

http://docs.python.org/

sphinx Documentation, Release

— bodyfont (CSS font-family): Font for normal text.
— headfont (CSS font-family): Font for headings.

* sphinxdoc — The theme used for this documentation. It features a sidebar on the right side. There are currently
no options beyond nosidebar and sidebarwidth.

* scrolls — A more lightweight theme, based on the Jinja documentation. The following color options are available:

headerbordercolor

subheadlinecolor

linkcolor

visitedlinkcolor

— admonitioncolor
e agogo — A theme created by Andi Albrecht. The following options are supported:
— bodyfont (CSS font family): Font for normal text.
— headerfont (CSS font family): Font for headings.
— pagewidth (CSS length): Width of the page content, default 70em.
— documentwidth (CSS length): Width of the document (without sidebar), default 50em.
— sidebarwidth (CSS length): Width of the sidebar, default 20em.
— bgcolor (CSS color): Background color.
— headerbg (CSS value for “background”): background for the header area, default a grayish gradient.
— footerbg (CSS value for “background”): background for the footer area, default a light gray gradient.
— linkcolor (CSS color): Body link color.
— headercolorl, headercolor2 (CSS color): colors for <h1> and <h2> headings.
— headerlinkcolor (CSS color): Color for the backreference link in headings.
— textalign (CSS fext-align value): Text alignment for the body, default is justify.
* nature — A greenish theme. There are currently no options beyond nosidebar and sidebarwidth.

e pyramid — A theme from the Pyramid web framework project, designed by Blaise Laflamme. There are cur-
rently no options beyond nosidebar and sidebarwidth.

¢ haiku — A theme without sidebar inspired by the Haiku OS user guide. The following options are supported:

— full_logo (true or false, default false): If this is true, the header will only show the :confval:‘html_logo°.
Use this for large logos. If this is false, the logo (if present) will be shown floating right, and the documen-
tation title will be put in the header.

— textcolor, headingcolor, linkcolor, visitedlinkcolor, hoverlinkcolor (CSS colors): Colors for various
body elements.

* traditional — A theme resembling the old Python documentation. There are currently no options beyond noside-
bar and sidebarwidth.

 epub — A theme for the epub builder. There are currently no options. This theme tries to save visual space which
is a sparse resource on ebook readers.

13.2. Builtin themes 67

http://jinja.pocoo.org/
http://www.haiku-os.org/docs/userguide/en/contents.html

sphinx Documentation, Release

13.3 Creating themes

As said, themes are either a directory or a zipfile (whose name is the theme name), containing the following:
e A theme.conf file, see below.
* HTML templates, if needed.

* A static/ directory containing any static files that will be copied to the output static directory on build. These
can be images, styles, script files.

The theme. conf file is in INI format' (readable by the standard Python ConfigParser module) and has the
following structure:

[theme]
inherit = base theme
stylesheet = main CSS name

pygments_style = stylename

[options]
variable = default value

* The inherit setting gives the name of a “base theme”, or none. The base theme will be used to locate missing
templates (most themes will not have to supply most templates if they use basic as the base theme), its options
will be inherited, and all of its static files will be used as well.

* The stylesheet setting gives the name of a CSS file which will be referenced in the HTML header. If you need
more than one CSS file, either include one from the other via CSS’ @import, or use a custom HTML template
that adds <link rel="stylesheet"> tags as necessary. Setting the :confval:‘html_style‘ config value
will override this setting.

* The pygments_style setting gives the name of a Pygments style to use for highlighting. This can be overridden
by the user in the :confval:‘pygments_style config value.

* The options section contains pairs of variable names and default values. These options can be overridden by the
user in :confval:‘html_theme_options‘ and are accessible from all templates as theme_ <name>.

13.3.1 Templating
The guide to templating is helpful if you want to write your own templates. What is important to keep in mind is the
order in which Sphinx searches for templates:

« First, in the user’s templates_path directories.

¢ Then, in the selected theme.

¢ Then, in its base theme, its base’s base theme, etc.

When extending a template in the base theme with the same name, use the theme name as an explicit directory:
{% extends "basic/layout.html" %}. From a user templates_path template, you can still use the
“exclamation mark” syntax as described in the templating document.

13.3.2 Static templates

Since theme options are meant for the user to configure a theme more easily, without having to write a custom
stylesheet, it is necessary to be able to template static files as well as HTML files. Therefore, Sphinx supports so-
called “static templates”, like this:

! Tt is not an executable Python file, as opposed to conf . py, because that would pose an unnecessary security risk if themes are shared.

68 Chapter 13. HTML theming support

sphinx Documentation, Release

If the name of a file in the static/ directory of a theme (or in the user’s static path, for that matter) ends with _t,
it will be processed by the template engine. The _t will be left from the final file name. For example, the default
theme has afile static/default.css_t which uses templating to put the color options into the stylesheet. When
a documentation is built with the default theme, the output directory will contain a _static/default.css file
where all template tags have been processed.

13.3. Creating themes 69

sphinx Documentation, Release

70 Chapter 13. HTML theming support

cHAPTER 14

Templating

Sphinx uses the Jinja templating engine for its HTML templates. Jinja is a text-based engine, and inspired by Django
templates, so anyone having used Django will already be familiar with it. It also has excellent documentation for those
who need to make themselves familiar with it.

14.1 Do | need to use Sphinx’ templates to produce HTML?

No. You have several other options:

* You can write a TemplateBridge subclass that calls your template engine of choice, and set the :conf-
val:‘template_bridge‘ configuration value accordingly.

* You can write a custom builder that derives from StandaloneHTMLBuilder and calls your template engine
of choice.

* You can use the PickleHTMLBuilder that produces pickle files with the page contents, and postprocess
them using a custom tool, or use them in your Web application.

14.2 Jinja/Sphinx Templating Primer

The default templating language in Sphinx is Jinja. It’s Django/Smarty inspired and easy to understand. The most
important concept in Jinja is template inheritance, which means that you can overwrite only specific blocks within a
template, customizing it while also keeping the changes at a minimum.

To customize the output of your documentation you can override all the templates (both the layout templates and the
child templates) by adding files with the same name as the original filename into the template directory of the structure
the Sphinx quickstart generated for you.

Sphinx will look for templates in the folders of :confval:‘templates_path* first, and if it can’t find the template it’s
looking for there, it falls back to the selected theme’s templates.

A template contains variables, which are replaced with values when the template is evaluated, tags, which control the
logic of the template and blocks which are used for template inheritance.

71

http://jinja.pocoo.org

sphinx Documentation, Release

Sphinx’ basic theme provides base templates with a couple of blocks it will fill with data. These are located in the
themes/basic subdirectory of the Sphinx installation directory, and used by all builtin Sphinx themes. Templates
with the same name in the :confval:‘templates_path* override templates supplied by the selected theme.

For example, to add a new link to the template area containing related links all you have to do is to add a new template
called layout .html with the following contents:

{% extends "!layout.html" $%}

{% block rootrellink %}
Project Homepage »</1li>
{{ super() }}

% endblock %}

By prefixing the name of the overridden template with an exclamation mark, Sphinx will load the layout template from
the underlying HTML theme.

Important: If you override a block, call { { super () }} somewhere to render the block’s content in the extended
template — unless you don’t want that content to show up.

14.3 Working with the builtin templates

The builtin basic theme supplies the templates that all builtin Sphinx themes are based on. It has the following elements
you can override or use:

14.3.1 Blocks

The following blocks exist in the layout . html template:

doctype The doctype of the output format. By default this is XHTML 1.0 Transitional as this is the closest to what
Sphinx and Docutils generate and it’s a good idea not to change it unless you want to switch to HTML 5 or a
different but compatible XHTML doctype.

linktags This block adds a couple of <1ink> tags to the head section of the template.

extrahead This block is empty by default and can be used to add extra contents into the <head> tag of the generated
HTML file. This is the right place to add references to JavaScript or extra CSS files.

relbarl / relbar2 This block contains the relation bar, the list of related links (the parent documents on the left, and
the links to index, modules etc. on the right). relbarl appears before the document, relbar2 after the document.
By default, both blocks are filled; to show the relbar only before the document, you would override relbar2 like
this:

{% block relbar?2 %}{% endblock %}

rootrellink / relbaritems Inside the relbar there are three sections: The rootrellink, the links from the documentation
and the custom relbaritems. The rootrellink is a block that by default contains a list item pointing to the master
document by default, the relbaritems is an empty block. If you override them to add extra links into the bar
make sure that they are list items and end with the reldelimi.

document The contents of the document itself. It contains the block “body” where the individual content is put by
subtemplates like page . html.

sidebarl / sidebar2 A possible location for a sidebar. sidebarl appears before the document and is empty by default,
sidebar? after the document and contains the default sidebar. If you want to swap the sidebar location override
this and call the sidebar helper:

72 Chapter 14. Templating

sphinx Documentation, Release

{% block si
{% block si

arl %}{{ sidebar() }}{% endblock %}
cbar?2 %}{% endblock %}

(The sidebar2 location for the sidebar is needed by the sphinxdoc. css stylesheet, for example.)

sidebarlogo The logo location within the sidebar. Override this if you want to place some content at the top of the
sidebar.

Jooter The block for the footer div. If you want a custom footer or markup before or after it, override this one.

The following four blocks are only used for pages that do not have assigned a list of custom sidebars in the :con-
fval:*html_sidebars‘ config value. Their use is deprecated in favor of separate sidebar templates, which can be
included via :confval:*html_sidebars®.

sidebartoc The table of contents within the sidebar.
Deprecated since version 1.0.

sidebarrel The relation links (previous, next document) within the sidebar.
Deprecated since version 1.0.

sidebarsourcelink The “Show source” link within the sidebar (normally only shown if this is enabled by :conf-
val:*html_show_sourcelink®).

Deprecated since version 1.0.

sidebarsearch The search box within the sidebar. Override this if you want to place some content at the bottom of the
sidebar.

Deprecated since version 1.0.

14.3.2 Configuration Variables

Inside templates you can set a couple of variables used by the layout template using the {$ set %} tag:

reldeliml
The delimiter for the items on the left side of the related bar. This defaults to ' » ' Each item in the
related bar ends with the value of this variable.

reldelim2
The delimiter for the items on the right side of the related bar. This defaults to ' | '. Each item except of the
last one in the related bar ends with the value of this variable.

Overriding works like this:

o3

% extends "!layout.html" %}
{% set reldeliml = ' >' %}

script_files
Add additional script files here, like this:

)

% set script iles = script_files + ["_static/myscript.js"] %}

css_files
Similar to script_ files, for CSS files.

14.3. Working with the builtin templates 73

sphinx Documentation, Release

14.3.3 Helper Functions

Sphinx provides various Jinja functions as helpers in the template. You can use them to generate links or output
multiply used elements.

pathto (document)
Return the path to a Sphinx document as a URL. Use this to refer to built documents.

pathto (file, 1)
Return the path to a file which is a filename relative to the root of the generated output. Use this to refer to static
files.

hasdoc (document)
Check if a document with the name document exists.

sidebar ()
Return the rendered sidebar.

relbar ()
Return the rendered relation bar.

14.3.4 Global Variables

These global variables are available in every template and are safe to use. There are more, but most of them are an
implementation detail and might change in the future.

builder
The name of the builder (e.g. html or htmlhelp).

copyright
The value of :confval:‘copyright®.

docstitle
The title of the documentation (the value of :confval:‘html_title¢).

embedded
True if the built HTML is meant to be embedded in some viewing application that handles navigation, not the
web browser, such as for HTML help or Qt help formats. In this case, the sidebar is not included.

favicon
The path to the HTML favicon in the static path, or ' '.

file suffix
The value of the builder’s out_ suffix attribute, i.e. the file name extension that the output files will get. For
a standard HTML builder, this is usually . html.

has_source
True if the reST document sources are copied (if :confval:‘html_copy_source* is true).

last_updated
The build date.

logo
The path to the HTML logo image in the static path, or ' '.

master_doc
The value of :confval:‘master_doc‘, for usage with pathto ().

next
The next document for the navigation. This variable is either false or has two attributes link and title. The title
contains HTML markup. For example, to generate a link to the next page, you can use this snippet:

74 Chapter 14. Templating

sphinx Documentation, Release

% if next %}
{{ next.title }}
% endif %)

pagename
The “page name” of the current file, i.e. either the document name if the file is generated from
a reST source, or the equivalent hierarchical name relative to the output directory ([directory/
]filename_without_extension).

parents
A list of parent documents for navigation, structured like the next item.

prev
Like next, but for the previous page.

project
The value of :confval:‘project®.

release
The value of :confval:‘release‘.

rellinks
A list of links to put at the left side of the relbar, next to “next” and “prev”. This usually contains links to the
general index and other indices, such as the Python module index. If you add something yourself, it must be a
tuple (pagename, link title, accesskey, link text).

shorttitle
The value of :confval:‘html_short_title¢.

show_source
True if :confval:‘html_show_sourcelink® is true.

sphinx_version
The version of Sphinx used to build.

style
The name of the main stylesheet, as given by the theme or :confval:‘html_style‘.

title
The title of the current document, as used in the <title> tag.

use_opensearch
The value of :confval:‘html_use_opensearch®.

version
The value of :confval:‘version‘.

In addition to these values, there are also all theme options available (prefixed by theme_), as well as the values
given by the user in :confval:‘html_context*.

In documents that are created from source files (as opposed to automatically-generated files like the module index, or
documents that already are in HTML form), these variables are also available:

meta
Document metadata (a dictionary), see {712 Fl Y TC AU 3.

sourcename
The name of the copied source file for the current document. This is only nonempty if the :conf-
val:*html_copy_source‘ value is true.

toc
The local table of contents for the current page, rendered as HTML bullet lists.

14.3. Working with the builtin templates 75

sphinx Documentation, Release

toctree
A callable yielding the global TOC tree containing the current page, rendered as HTML bullet lists. Optional
keyword arguments:

* collapse (true by default): if true, all TOC entries that are not ancestors of the current page are collapsed

* maxdepth (defaults to the max depth selected in the toctree directive): the maximum depth of the tree;
set it to —1 to allow unlimited depth

e titles_only (false by default): if true, put only toplevel document titles in the tree

76 Chapter 14. Templating

cHAPTER 15

Sphinx Extensions

Since many projects will need special features in their documentation, Sphinx is designed to be extensible on several
levels.

This is what you can do in an extension: First, you can add new builders to support new output formats or actions
on the parsed documents. Then, it is possible to register custom reStructuredText roles and directives, extending the
markup. And finally, there are so-called “hook points” at strategic places throughout the build process, where an
extension can register a hook and run specialized code.

An extension is simply a Python module. When an extension is loaded, Sphinx imports this module and executes its
setup () function, which in turn notifies Sphinx of everything the extension offers — see the extension tutorial for
examples.

The configuration file itself can be treated as an extension if it contains a setup () function. All other extensions to
load must be listed in the :confval:‘extensions configuration value.

15.1 Tutorial: Writing a simple extension

This section is intended as a walkthrough for the creation of custom extensions. It covers the basics of writing and
activating an extensions, as well as commonly used features of extensions.

As an example, we will cover a “todo” extension that adds capabilities to include todo entries in the documentation,
and collecting these in a central place. (A similar “todo” extension is distributed with Sphinx.)

15.1.1 Build Phases

One thing that is vital in order to understand extension mechanisms is the way in which a Sphinx project is built: this
works in several phases.

Phase 0: Initialization

In this phase, almost nothing interesting for us happens. The source directory is searched for source files,
and extensions are initialized. Should a stored build environment exist, it is loaded, otherwise a new one
is created.

77

sphinx Documentation, Release

Phase 1: Reading

In Phase 1, all source files (and on subsequent builds, those that are new or changed) are read and parsed.
This is the phase where directives and roles are encountered by the docutils, and the corresponding func-
tions are called. The output of this phase is a doctree for each source files, that is a tree of docutils
nodes. For document elements that aren’t fully known until all existing files are read, temporary nodes
are created.

During reading, the build environment is updated with all meta- and cross reference data of the read
documents, such as labels, the names of headings, described Python objects and index entries. This will
later be used to replace the temporary nodes.

The parsed doctrees are stored on the disk, because it is not possible to hold all of them in memory.
Phase 2: Consistency checks

Some checking is done to ensure no surprises in the built documents.
Phase 3: Resolving

Now that the metadata and cross-reference data of all existing documents is known, all temporary nodes
are replaced by nodes that can be converted into output. For example, links are created for object refer-
ences that exist, and simple literal nodes are created for those that don’t.

Phase 4: Writing

This phase converts the resolved doctrees to the desired output format, such as HTML or LaTeX. This
happens via a so-called docutils writer that visits the individual nodes of each doctree and produces some
output in the process.

Note: Some builders deviate from this general build plan, for example, the builder that checks external links does not
need anything more than the parsed doctrees and therefore does not have phases 2—4.

15.1.2 Extension Design

We want the extension to add the following to Sphinx:

* A “todo” directive, containing some content that is marked with “TODQ”, and only shown in the output if a new
config value is set. (Todo entries should not be in the output by default.)

* A “todolist” directive that creates a list of all todo entries throughout the documentation.
For that, we will need to add the following elements to Sphinx:
¢ New directives, called todo and todolist.

* New document tree nodes to represent these directives, conventionally also called todo and todolist. We
wouldn’t need new nodes if the new directives only produced some content representable by existing nodes.

* A new config value todo_include_todos (config value names should start with the extension name, in
order to stay unique) that controls whether todo entries make it into the output.

* New event handlers: one for the :event:‘doctree-resolved® event, to replace the todo and todolist nodes, and
one for :event:‘env-purge-doc® (the reason for that will be covered later).

15.1.3 The Setup Function

The new elements are added in the extension’s setup function. Let us create a new Python module called todo . py
and add the setup function:

78 Chapter 15. Sphinx Extensions

sphinx Documentation, Release

def setup (app) :
app.add_config_value ('todo_include_todos', False, False)

app.add_node (todolist)

app.add_node (todo,
html=(visit_todo_node, depart_todo_node),
latex=(visit_todo_node, depart_todo_node),
text=(visit_todo_node, depart_todo_node))

app.add_directive ('todo', TodoDirective)
app.add_directive ('todolist', TodolistDirective)
app.connect ('doctree-resolved', process_todo_nodes)
app.connect ('env-purge—-doc', purge_todos)

The calls in this function refer to classes and functions not yet written. What the individual calls do is the following:

e add _config value () lets Sphinx know that it should recognize the new config value
todo_include_todos, whose default value should be False (this also tells Sphinx that it is a
boolean value).

If the third argument was True, all documents would be re-read if the config value changed its value. This is
needed for config values that influence reading (build phase 1).

* add_node () adds a new node class to the build system. It also can specify visitor functions for each supported
output format. These visitor functions are needed when the new nodes stay until phase 4 — since the todolist
node is always replaced in phase 3, it doesn’t need any.

We need to create the two node classes t odo and todolist later.
e add_directive () adds a new directive, given by name and class.
The handler functions are created later.

* Finally, connect () adds an event handler to the event whose name is given by the first argument. The event
handler function is called with several arguments which are documented with the event.

15.1.4 The Node Classes

Let’s start with the node classes:

from docutils import nodes

class todo (nodes.Admonition, nodes.Element) :
pass

class todolist (nodes.General, nodes.Element) :
pass

def visit_todo_node(self, node):
self.visit_admonition (node)

def depart_todo_node(self, node):
self.depart_admonition (node)

Node classes usually don’t have to do anything except inherit from the standard docutils classes defined in
docutils.nodes. todo inherits from Admonition because it should be handled like a note or warning,
todolist isjusta “general” node.

15.1. Tutorial: Writing a simple extension 79

sphinx Documentation, Release

15.1.5 The Directive Classes

A directive class is a class deriving usually from docutils.parsers.rst.Directive. Since the class-based
directive interface doesn’t exist yet in Docutils 0.4, Sphinx has another base class called sphinx.util.compat.
Directive that you can derive your directive from, and it will work with both Docutils 0.4 and 0.5 upwards. The
directive interface is covered in detail in the docutils documentation; the important thing is that the class has a method
run that returns a list of nodes.

The todolist directive is quite simple:

from sphinx.util.compat import Directive
class TodolistDirective (Directive) :

def run(self):
return [todolist(''")]

An instance of our todolist node class is created and returned. The todolist directive has neither content nor
arguments that need to be handled.

The t odo directive function looks like this:

from sphinx.util.compat import make_admonition
class TodoDirective (Directive) :

this enables content in the directive
has_content = True

def run(self):

env = self.state.document.settings.env

targetid = "todo-%d" % env.new_serialno('todo')

targetnode = nodes.target('', '', ids=[targetid])

ad = make_admonition(todo, self.name, [_('Todo')], self.options,

self.content, self.lineno, self.content_offset,
self.block_text, self.state, self.state_machine)

if not hasattr(env, 'todo_all_todos'):
env.todo_all_todos = []
env.todo_all_todos.append({
'docname’': env.docname,
'lineno': self.lineno,
'todo': ad[0] .deepcopy (),
'target': targetnode,
})

return [targetnode] + ad

Several important things are covered here. First, as you can see, you can refer to the build environment instance using
self.state.document.settings.env.

Then, to act as a link target (from the todolist), the todo directive needs to return a target node in addition to the todo
node. The target ID (in HTML, this will be the anchor name) is generated by using env.new_serialno which is
returns a new integer directive on each call and therefore leads to unique target names. The target node is instantiated
without any text (the first two arguments).

An admonition is created using a standard docutils function (wrapped in Sphinx for docutils cross-version compati-

80 Chapter 15. Sphinx Extensions

sphinx Documentation, Release

bility). The first argument gives the node class, in our case todo. The third argument gives the admonition title (use
arguments here to let the user specify the title). A list of nodes is returned from make_admonition.

Then, the todo node is added to the environment. This is needed to be able to create a list of all todo entries throughout
the documentation, in the place where the author puts a todolist directive. For this case, the environment attribute
todo_all_todos is used (again, the name should be unique, so it is prefixed by the extension name). It does not
exist when a new environment is created, so the directive must check and create it if necessary. Various information
about the todo entry’s location are stored along with a copy of the node.

In the last line, the nodes that should be put into the doctree are returned: the target node and the admonition node.

The node structure that the directive returns looks like this:

e +
| target node |
o +
e +
| todo node |
o +

N i +

| admonition title |

o +

| paragraph |

R +

\ |

e +

15.1.6 The Event Handlers

Finally, let’s look at the event handlers. First, the one for the :event:‘env-purge-doc‘ event:

def purge_todos (app, env, docname) :
if not hasattr(env, 'todo_all_todos'):
return
env.todo_all_todos = [todo for todo in env.todo_all_todos
if todo['docname'] != docname]

Since we store information from source files in the environment, which is persistent, it may become out of date when
the source file changes. Therefore, before each source file is read, the environment’s records of it are cleared, and the
:event:‘env-purge-doc‘ event gives extensions a chance to do the same. Here we clear out all todos whose docname
matches the given one from the todo_all_todos list. If there are todos left in the document, they will be added
again during parsing.

The other handler belongs to the :event:‘doctree-resolved‘ event. This event is emitted at the end of phase 3 and
allows custom resolving to be done:

def process_todo_nodes (app, doctree, fromdocname) :
if not app.config.todo_include_todos:
for node in doctree.traverse (todo) :
node.parent.remove (node)

Replace all todolist nodes with a list of the collected todos.
Augment each todo with a backlink to the original location.
env = app.builder.env

for node in doctree.traverse (todolist):
if not app.config.todo_include_todos:

15.1. Tutorial: Writing a simple extension 81

sphinx Documentation, Release

node.replace_self ([])
continue

content = []

for todo_info in env.todo_all_todos:

para = nodes.paragraph ()
filename = env.doc2path(todo_info['docname'], base=None)
description = (
_("(The original entry is located in , line and can be found ') %

(filename, todo_info['lineno']))
para += nodes.Text (description, description)

Create a reference

newnode = nodes.reference('', '"'")

innernode = nodes.emphasis(_('here'), _('here'))

newnode ['refdocname'] = todo_info['docname']

newnode['refuri'] = app.builder.get_relative_uri (
fromdocname, todo_info['docname'])

newnode ['refuri'] += '#' + todo_info['target']['refid']

newnode . append (innernode)

para += newnode

para += nodes.Text ('.)', ".)")

Insert into the todolist
content .append (todo_info['todo'])

content .append (para)

node.replace_self (content)

It is a bit more involved. If our new “todo_include_todos” config value is false, all todo and todolist nodes are removed
from the documents.

If not, todo nodes just stay where and how they are. Todolist nodes are replaced by a list of todo entries, complete
with backlinks to the location where they come from. The list items are composed of the nodes from the todo entry
and docutils nodes created on the fly: a paragraph for each entry, containing text that gives the location, and a link
(reference node containing an italic node) with the backreference. The reference URI is built by app.builder.
get_relative_uri which creates a suitable URI depending on the used builder, and appending the todo node’s
(the target’s) ID as the anchor name.

15.2 Extension API

Each Sphinx extension is a Python module with at least a setup () function. This function is called at initialization
time with one argument, the application object representing the Sphinx process. This application object has the
following public API:

Sphinx.setup_extension (name)
Load the extension given by the module name. Use this if your extension needs the features provided by another
extension.

Sphinx.add_builder (builder)
Register a new builder. builder must be a class that inherits from Builder.

Sphinx.add_config_value (name, default, rebuild)
Register a configuration value. This is necessary for Sphinx to recognize new values and set default values

82 Chapter 15. Sphinx Extensions

sphinx Documentation, Release

accordingly. The name should be prefixed with the extension name, to avoid clashes. The default value can be
any Python object. The string value rebuild must be one of those values:

* 'env' if a change in the setting only takes effect when a document is parsed — this means that the whole
environment must be rebuilt.

e 'html" if a change in the setting needs a full rebuild of HTML documents.
e ' if a change in the setting will not need any special rebuild.

Changed in version 0.4: If the default value is a callable, it will be called with the config object as its argument
in order to get the default value. This can be used to implement config values whose default depends on other
values.

Changed in version 0.6: Changed rebuild from a simple boolean (equivalent to '' or 'env') to a string.
However, booleans are still accepted and converted internally.

Sphinx.add_domain (domain)
Make the given domain (which must be a class; more precisely, a subclass of Domain) known to Sphinx.

New in version 1.0.

Sphinx.override_domain (domain)
Make the given domain class known to Sphinx, assuming that there is already a domain with its . name. The
new domain must be a subclass of the existing one.

New in version 1.0.

Sphinx.add_index_to_domain (domain, index)
Add a custom index class to the domain named domain. index must be a subclass of Index.

New in version 1.0.

Sphinx.add_event (name)
Register an event called name. This is needed to be able to emit it.

Sphinx.add_node (node, **kwds)
Register a Docutils node class. This is necessary for Docutils internals. It may also be used in the future to
validate nodes in the parsed documents.

Node visitor functions for the Sphinx HTML, LaTeX, text and manpage writers can be given as keyword argu-
ments: the keyword must be one or more of 'html"', 'latex', '"text', 'man’', 'texinfo"', the value a
2-tuple of (visit, depart) methods. depart can be None if the visit function raises docutils.
nodes . SkipNode. Example:

class math (docutils.nodes.Element) : pass

def visit_math_html (self, node):
self.body.append(self.starttag(node, 'math'))

def depart_math_html (self, node):
self.body.append('</math>")

app.add_node (math, html=(visit_math_html, depart_math_html))

Obviously, translators for which you don’t specify visitor methods will choke on the node when encountered in
a document to translate.

Changed in version 0.5: Added the support for keyword arguments giving visit functions.

Sphinx.add_directive (name, func, content, arguments, **options)

Sphinx.add_directive (name, directiveclass)
Register a Docutils directive. name must be the prospective directive name. There are two possible ways to
write a directive:

15.2. Extension API 83

sphinx Documentation, Release

* In the docutils 0.4 style, obj is the directive function. content, arguments and options are set as attributes
on the function and determine whether the directive has content, arguments and options, respectively. This
style is deprecated.

e In the docutils 0.5 style, directiveclass is the directive class. It must already have attributes named
has_content, required_arguments, optional_arguments, final_argument_whitespace and option_spec that
correspond to the options for the function way. See the Docutils docs for details.

The directive class must inherit from the class docutils.parsers.rst.Directive.

For example, the (already existing) 1iteralinclude directive would be added like this:

from docutils.parsers.rst import directives
add_directive('literalinclude', literalinclude_directive,

content = 0, arguments = (1, 0, 0),
linenos = directives.flag,

language = direcitves.unchanged,
encoding = directives.encoding)

Changed in version 0.6: Docutils 0.5-style directive classes are now supported.

Sphinx.add_directive_to_domain (domain, name, func, content, arguments, **options)
Sphinx.add_directive_to_domain (domain, name, directiveclass)
Like add_directive (), but the directive is added to the domain named domain.

New in version 1.0.

Sphinx.add_role (name, role)
Register a Docutils role. name must be the role name that occurs in the source, role the role function (see the
Docutils documentation on details).

Sphinx.add_role_to_domain (domain, name, role)
Like add_role (), but the role is added to the domain named domain.

New in version 1.0.

Sphinx.add_generic_role (name, nodeclass)
Register a Docutils role that does nothing but wrap its contents in the node given by nodeclass.

New in version 0.6.

Sphinx.add_object_type (directivename, rolename, indextemplate="", parse_node=None,

ref_nodeclass=None, objname="", doc_field_types=[])
This method is a very convenient way to add a new object type that can be cross-referenced. It will do this:

* Create a new directive (called directivename) for documenting an object. It will automatically add index
entries if indextemplate is nonempty; if given, it must contain exactly one instance of %s. See the example
below for how the template will be interpreted.

* Create a new role (called rolename) to cross-reference to these object descriptions.

* If you provide parse_node, it must be a function that takes a string and a docutils node, and it must
populate the node with children parsed from the string. It must then return the name of the item to be used
in cross-referencing and index entries. See the conf . py file in the source for this documentation for an
example.

e The objname (if not given, will default to directivename) names the type of object. It is used when listing
objects, e.g. in search results.

For example, if you have this call in a custom Sphinx extension:

app.add_object_type('directive', 'dir', 'pair: %s; directive')

84 Chapter 15. Sphinx Extensions

http://docutils.sourceforge.net/docs/howto/rst-directives.html
http://docutils.sourceforge.net/docs/howto/rst-roles.html

sphinx Documentation, Release

you can use this markup in your documents:

rst:directive:: function

Document a function.

See also the :rst:dir: function directive.

For the directive, an index entry will be generated as if you had prepended

index:: pair: function; directive

The reference node will be of class 1iteral (so it will be rendered in a proportional font, as appropriate
for code) unless you give the ref_nodeclass argument, which must be a docutils node class (most useful are
docutils.nodes.emphasisordocutils.nodes.strong—youcanalsouse docutils.nodes.
generated if you want no further text decoration).

For the role content, you have the same syntactical possibilities as for standard Sphinx roles (see %2 Y. 5| 1]
).
This method is also available under the deprecated alias add_description_unit.

¢

Sphinx.add_crossref_type (directivename, rolename, indextemplate="", ref_nodeclass=None, obj-

name="")
This method is very similar to add_object_type () except that the directive it generates must be empty,

and will produce no output.

That means that you can add semantic targets to your sources, and refer to them using custom roles instead of
generic ones (like ref). Example call:

app.add_crossref_type('topic', 'topic', 'single: %s', docutils.nodes.emphasis)

Example usage:

topic:: application API

The application API

See also :topic: this section <application API>"

(Of course, the element following the t opic directive needn’t be a section.)

Sphinx.add_transform (transform)
Add the standard docutils Trans form subclass transform to the list of transforms that are applied after Sphinx
parses a reST document.

Sphinx.add_javascript (filename)
Add filename to the list of JavaScript files that the default HTML template will include. The filename must be
relative to the HTML static path, see :confval:‘the docs for the config value <html_static_path>¢. A full URI
with scheme, like http://example.org/foo. Js, is also supported.

New in version 0.5.

Sphinx.add_stylesheet (filename)
Add filename to the list of CSS files that the default HTML template will include. Like for
add_javascript (), the filename must be relative to the HTML static path, or a full URI with scheme.

15.2. Extension API 85

sphinx Documentation, Release

New in version 1.0.

Sphinx.add_lexer (alias, lexer)
Use lexer, which must be an instance of a Pygments lexer class, to highlight code blocks with the given language
alias.

New in version 0.6.

Sphinx.add_autodocumenter (cls)
Add cls as a new documenter class for the sphinx.ext.autodoc extension. It must be a subclass of
sphinx.ext.autodoc.Documenter. This allows to auto-document new types of objects. See the source
of the autodoc module for examples on how to subclass Documenter.

New in version 0.6.

Sphinx.add_autodoc_attrgetter (fype, getter)
Add getter, which must be a function with an interface compatible to the getattr () builtin, as the autodoc
attribute getter for objects that are instances of type. All cases where autodoc needs to get an attribute of a type
are then handled by this function instead of getattr ().

New in version 0.6.

Sphinx.add_search_language (cls)
Add cls, which must be a subclass of sphinx.search.SearchLanguage, as a support language for build-
ing the HTML full-text search index. The class must have a lang attribute that indicates the language it should
be used for. See :confval:‘html_search_language®.

New in version 1.1.

Sphinx.connect (event, callback)
Register callback to be called when event is emitted. For details on available core events and the arguments of
callback functions, please see Sphinx core events.

The method returns a “listener ID” that can be used as an argument to disconnect ().

Sphinx.disconnect (listener_id)
Unregister callback listener_id.

Sphinx.emit (event, *arguments)
Emit event and pass arguments to the callback functions. Return the return values of all callbacks as a list. Do
not emit core Sphinx events in extensions!

Sphinx.emit_firstresult (event, *arguments)
Emit event and pass arguments to the callback functions. Return the result of the first callback that doesn’t
return None.

New in version 0.5.

Sphinx.require_sphinx (version)
Compare version (which must be ama jor .minor version string, e.g. '1.1") with the version of the running
Sphinx, and abort the build when it is too old.

New in version 1.0.

exception sphinx.application.ExtensionError
All these functions raise this exception if something went wrong with the extension API.

Examples of using the Sphinx extension API can be seen in the sphinx.ext package.

15.2.1 Sphinx core events

These events are known to the core. The arguments shown are given to the registered event handlers.

86 Chapter 15. Sphinx Extensions

sphinx Documentation, Release

15.2.2 The template bridge

15.2.3 Domain API
15.3 Writing new builders

class sphinx.builders.Builder
This is the base class for all builders.

These methods are predefined and will be called from the application:

These methods can be overridden in concrete builder classes:

15.4 Builtin Sphinx extensions

These extensions are built in and can be activated by respective entries in the :confval:‘extensions‘ configuration
value:

15.4.1 sphinx.ext.autodoc — Include documentation from docstrings

This extension can import the modules you are documenting, and pull in documentation from docstrings in a semi-
automatic way.

Note: For Sphinx (actually, the Python interpreter that executes Sphinx) to find your module, it must be importable.
That means that the module or the package must be in one of the directories on sys.path — adapt your sys.path
in the configuration file accordingly.

For this to work, the docstrings must of course be written in correct reStructuredText. You can then use all of the
usual Sphinx markup in the docstrings, and it will end up correctly in the documentation. Together with hand-written
documentation, this technique eases the pain of having to maintain two locations for documentation, while at the same
time avoiding auto-generated-looking pure API documentation.

autodoc provides several directives that are versions of the usual py : module, py: class and so forth. On parsing
time, they import the corresponding module and extract the docstring of the given objects, inserting them into the page
source under a suitable py : module, py:class etc. directive.

Note: Justas py:class respects the current py :module, autoclass will also do so. Likewise, aut omet hod
will respect the current py : class.

automodule::

autoclass::

autoexception: :
Document a module, class or exception. All three directives will by default only insert the docstring of the
object itself:

. autoclass:: Noodle

will produce source like this:

15.3. Writing new builders 87

sphinx Documentation, Release

class:: Noodle

Noodle's docstring.

The “auto” directives can also contain content of their own, it will be inserted into the resulting non-auto directive
source after the docstring (but before any automatic member documentation).

Therefore, you can also mix automatic and non-automatic member documentation, like so:

autoclass:: Noodle
:members: eat, slurp

method:: boil (time=10)

Boil the noodle *timex minutes.

Options and advanced usage

* If you want to automatically document members, there’s a members option:

automodule:: noodle
:members:

will document all module members (recursively), and

autoclass:: Noodle
:members:

will document all non-private member functions and properties (that is, those whose name doesn’t start
with _).

For modules, __all___ will be respected when looking for members; the order of the members will also
be the orderin ___all_ .

You can also give an explicit list of members; only these will then be documented:

autoclass:: Noodle
:members: eat, slurp

 If you want to make the members option (or other flag options described below) the default, see :conf-
val:‘autodoc_default_flags.

* Members without docstrings will be left out, unless you give the undoc-members flag option:

automodule:: noodle
:members:
:undoc—-members:

e “Private” members (that is, those named like _private or __ private) will be included if the
private-members flag option is given.

New in version 1.1.

e Python “special” members (that is, those named like __ special__) will be included if the
special-members flag option is given:

autoclass:: my.Class
:members:
:private—-members:
:special-members:

88 Chapter 15. Sphinx Extensions

sphinx Documentation, Release

would document both “private” and “special” members of the class.
New in version 1.1.

* For classes and exceptions, members inherited from base classes will be left out when documenting all
members, unless you give the inherited-members flag option, in addition to members:

autoclass:: Noodle
:members:
:inherited-members:

This can be combined with undoc—members to document all available members of the class or module.

Note: this will lead to markup errors if the inherited members come from a module whose docstrings are
not reST formatted.

New in version 0.3.

* It’s possible to override the signature for explicitly documented callable objects (functions, methods,
classes) with the regular syntax that will override the signature gained from introspection:

autoclass:: Noodle (type)

automethod:: eat (persona)

This is useful if the signature from the method is hidden by a decorator.
New in version 0.4.

e The automodule, autoclass and autoexception directives also support a flag option called
show—inheritance. When given, a list of base classes will be inserted just below the class signature
(when used with automodule, this will be inserted for every class that is documented in the module).

New in version 0.4.

e All autodoc directives support the noindex flag option that has the same effect as for standard
py: function etc. directives: no index entries are generated for the documented object (and all autodoc-
umented members).

New in version 0.4.

* automodule also recognizes the synopsis, platformand deprecated options that the standard
py :module directive supports.

New in version 0.5.

* automodule and autoclass also has an member-order option that can be used to override the
global value of :confval:‘autodoc_member_order* for one directive.

New in version 0.6.

» The directives supporting member documentation also have a exclude-members option that can be
used to exclude single member names from documentation, if all members are to be documented.

New in version 0.6.

Note: In an automodule directive with the members option set, only module members whose
__module___ attribute is equal to the module name as given to automodule will be documented. This
is to prevent documentation of imported classes or functions.

autofunction::
autodata::

15.4. Builtin Sphinx extensions 89

sphinx Documentation, Release

automethod: :

autoattribute::
These work exactly like autoclass etc., but do not offer the options used for automatic member documenta-
tion.

For module data members and class attributes, documentation can either be put into a special-formatted com-
ment, or in a docstring after the definition. Comments need to be either on a line of their own before the
definition, or immediately after the assignment on the same line. The latter form is restricted to one line only.

This means that in the following class definition, all attributes can be autodocumented:

class Foo:
"""Docstring for class Foo."""

#: Doc comment for class attribute Foo.bar.
#: It can have multiple lines.

bar =1
flox = 1.5 #: Doc comment for Foo.flox. One line only.
baz = 2

"""Docstring for class attribute Foo.baz."""

def _ init__ (self):
#: Doc comment for instance attribute qux.
self.qux = 3

self.spam = 4
"""Docstring for instance attribute spam."""

Changed in version 0.6: autodata and autoattribute can now extract docstrings.

Changed in version 1.1: Comment docs are now allowed on the same line after an assignment.

Note: If you document decorated functions or methods, keep in mind that autodoc retrieves its docstrings
by importing the module and inspecting the ___doc___ attribute of the given function or method. That means
that if a decorator replaces the decorated function with another, it must copy the original __doc___ to the new
function.

From Python 2.5, functools.wraps () can be used to create well-behaved decorating functions.

There are also new config values that you can set:

Docstring preprocessing

autodoc provides the following additional events:

The sphinx.ext.autodoc module provides factory functions for commonly needed docstring processing in event
:event:‘autodoc-process-docstring‘:

Skipping members

autodoc allows the user to define a custom method for determining whether a member should be included in the
documentation by using the following event:

90 Chapter 15. Sphinx Extensions

sphinx Documentation, Release

15.4.2 sphinx.ext.autosummary — Generate autodoc summaries

New in version 0.6.

This extension generates function/method/attribute summary lists, similar to those output e.g. by Epydoc and other
API doc generation tools. This is especially useful when your docstrings are long and detailed, and putting each one
of them on a separate page makes them easier to read.

The sphinx.ext.autosummary extension does this in two parts:

1. There is an autosummary directive for generating summary listings that contain links to the documented
items, and short summary blurbs extracted from their docstrings.

2. Optionally, the convenience script sphinx—autogen or the new :confval:‘autosummary_generate‘ config
value can be used to generate short “stub” files for the entries listed in the aut osummary directives. These
files by default contain only the corresponding sphinx.ext.autodoc directive, but can be customized with
templates.

autosummary: :
Insert a table that contains links to documented items, and a short summary blurb (the first sentence of the
docstring) for each of them.

The aut osummary directive can also optionally serve as a t oct ree entry for the included items. Optionally,
stub . rst files for these items can also be automatically generated.

For example,

currentmodule:: sphinx
autosummary: :

environment.BuildEnvironment
util.relative_uri

produces a table like this:

Autosummary preprocesses the docstrings and signatures with the same :event:‘autodoc-process-docstring*
and :event:‘autodoc-process-signature‘ hooks as autodoc.

Options

e If you want the autosummary table to also serve as a toctree entry, use the toctree option, for
example:

autosummary: :
:toctree: DIRNAME

sphinx.environment.BuildEnvironment
sphinx.util.relative_uri

The toctree option also signals to the sphinx—autogen script that stub pages should be gen-
erated for the entries listed in this directive. The option accepts a directory name as an argument;
sphinx—autogen will by default place its output in this directory. If no argument is given, output
is placed in the same directory as the file that contains the directive.

e If you don’t want the autosummary to show function signatures in the listing, include the
nosignatures option:

15.4. Builtin Sphinx extensions 91

sphinx Documentation, Release

autosummary: :
:nosignatures:

sphinx.environment.BuildEnvironment
sphinx.util.relative_uri

L]

You can specify a custom template with the template option. For example,

autosummary: :
:template: mytemplate.rst

sphinx.environment.BuildEnvironment

would use the template mytemplate. rst in your :confval:‘templates_path*‘ to generate the pages for
all entries listed. See Customizing templates below.

New in version 1.0.

sphinx-autogen — generate autodoc stub pages

The sphinx—autogen script can be used to conveniently generate stub documentation pages for items included in
autosummary listings.

For example, the command

$ sphinx—-autogen -o generated x.rst

will read all aut osummary tables in the = . rst files that have the : toctree: option set, and output corresponding
stub pages in directory generated for all documented items. The generated pages by default contain text of the form:

sphinx.util.relative_uri

autofunction:: sphinx.util.relative_uri

If the —o option is not given, the script will place the output files in the directories specified in the :toctree:
options.

Generating stub pages automatically

If you do not want to create stub pages with sphinx—autogen, you can also use this new config value:

Customizing templates

New in version 1.0.

You can customize the stub page templates, in a similar way as the HTML Jinja templates, see Templating.
(TemplateBridge is not supported.)

Note: If you find yourself spending much time tailoring the stub templates, this may indicate that it’s a better idea to
write custom narrative documentation instead.

Autosummary uses the following template files:

92 Chapter 15. Sphinx Extensions

sphinx Documentation, Release

* autosummary/base.rst — fallback template
* autosummary/module. rst — template for modules
* autosummary/class.rst — template for classes
* autosummary/function.rst —template for functions
* autosummary/attribute. rst —template for class attributes
* autosummary/method. rst — template for class methods
The following variables available in the templates:

name
Name of the documented object, excluding the module and class parts.

objname
Name of the documented object, excluding the module parts.

fullname
Full name of the documented object, including module and class parts.

module
Name of the module the documented object belongs to.

class
Name of the class the documented object belongs to. Only available for methods and attributes.

underline
A string containing len (full_name) x '=".

members
List containing names of all members of the module or class. Only available for modules and classes.

functions
List containing names of “public” functions in the module. Here, “public” here means that the name does not
start with an underscore. Only available for modules.

classes
List containing names of “public” classes in the module. Only available for modules.

exceptions
List containing names of “public” exceptions in the module. Only available for modules.

methods
List containing names of “public” methods in the class. Only available for classes.

attributes
List containing names of “public” attributes in the class. Only available for classes.

Note: You can use the autosummary directive in the stub pages. Stub pages are generated also based on these
directives.

15.4.3 sphinx.ext.doctest — Test snhippets in the documentation

This extension allows you to test snippets in the documentation in a natural way. It works by collecting specially-
marked up code blocks and running them as doctest tests.

Within one document, test code is partitioned in groups, where each group consists of:

* zero or more setup code blocks (e.g. importing the module to test)

15.4. Builtin Sphinx extensions 93

sphinx Documentation, Release

e one or more fest blocks

When building the docs with the doctest builder, groups are collected for each document and run one after the
other, first executing setup code blocks, then the test blocks in the order they appear in the file.

There are two kinds of test blocks:

* doctest-style blocks mimic interactive sessions by interleaving Python code (including the interpreter prompt)

and output.

* code-output-style blocks consist of an ordinary piece of Python code, and optionally, a piece of output for that

code.

The doctest extension provides four directives. The group argument is interpreted as follows: if it is empty, the block
is assigned to the group named default. If it is *, the block is assigned to all groups (including the default
group). Otherwise, it must be a comma-separated list of group names.

testsetup:: [group]
A setup code block. This code is not shown in the output for other builders, but executed before the doctests of
the group(s) it belongs to.

testcleanup:: [group]
A cleanup code block. This code is not shown in the output for other builders, but executed after the doctests of
the group(s) it belongs to.

New in version 1.1.

doctest:: [group]
A doctest-style code block. You can use standard doctest flags for controlling how actual output is compared
with what you give as output. By default, these options are enabled: ELLIPSIS (allowing you to put ellipses in
the expected output that match anything in the actual output), IGNORE_EXCEPTION_DETAIL (not comparing
tracebacks), DONT_ACCEPT_TRUE_FOR_1 (by default, doctest accepts “True” in the output where “1” is
given — this is a relic of pre-Python 2.2 times).

This directive supports two options:

* hide, a flag option, hides the doctest block in other builders. By default it is shown as a highlighted
doctest block.

e options, a string option, can be used to give a comma-separated list of doctest flags that apply to each
example in the tests. (You still can give explicit flags per example, with doctest comments, but they will
show up in other builders too.)

Note that like with standard doctests, you have to use <BLANKLINE> to signal a blank line in the expected
output. The <BLANKLINE> is removed when building presentation output (HTML, LaTeX etc.).

Also, you can give inline doctest options, like in doctest:

>>> datetime.date.now() # doctest: +SKIP
datetime.date (2008, 1, 1)

They will be respected when the test is run, but stripped from presentation output.

testcode:: [group]
A code block for a code-output-style test.

This directive supports one option:

* hide, a flag option, hides the code block in other builders. By default it is shown as a highlighted code
block.

94

Chapter 15. Sphinx Extensions

sphinx Documentation, Release

Note: Code in a testcode block is always executed all at once, no matter how many statements it contains.
Therefore, output will not be generated for bare expressions — use print. Example:

testcode::

1+1 # this will give no output!
print 242 # this will give output

testoutput::

Also, please be aware that since the doctest module does not support mixing regular output and an exception
message in the same snippet, this applies to testcode/testoutput as well.

testoutput:: [group]
The corresponding output, or the exception message, for the last test code block.

This directive supports two options:

* hide, a flag option, hides the output block in other builders. By default it is shown as a literal block
without highlighting.

* options, a string option, can be used to give doctest flags (comma-separated) just like in normal doctest
blocks.

Example:

testcode::
print 'Output text.'
testoutput::

:hide:
:options: -ELLIPSIS, +NORMALIZE_WHITESPACE

Output text.

The following is an example for the usage of the directives. The test via doctest and the test via testcode and
testoutput are equivalent.

The parrot module

testsetup:: =

import parrot

The parrot module is a module about parrots.

Doctest example:

doctest::

>>> parrot.voom(3000)
This parrot wouldn't voom if you put 3000 volts through it!

Test-Output example:

15.4. Builtin Sphinx extensions 95

sphinx Documentation, Release

testcode::

parrot.voom(3000)
This would output:

testoutput::

This parrot wouldn't voom if you put 3000 volts through it!

There are also these config values for customizing the doctest extension:

15.4.4 sphinx.ext.intersphinx — Link to other projects’ documentation

New in version 0.5.
This extension can generate automatic links to the documentation of objects in other projects.

Usage is simple: whenever Sphinx encounters a cross-reference that has no matching target in the current documen-
tation set, it looks for targets in the documentation sets configured in :confval:‘intersphinx_mapping‘. A reference
like :py:class: zipfile.ZipFile can then link to the Python documentation for the ZipFile class, without
you having to specify where it is located exactly.

When using the “new” format (see below), you can even force lookup in a foreign set by prefixing the link target
appropriately. A link like : ref: comparison manual <python:comparisons>" will then link to the
label “comparisons” in the doc set “python”, if it exists.

Behind the scenes, this works as follows:

* Each Sphinx HTML build creates a file named objects. inv that contains a mapping from object names to
URIs relative to the HTML set’s root.

¢ Projects using the Intersphinx extension can specify the location of such mapping files in the :conf-
val:‘intersphinx_mapping‘ config value. The mapping will then be used to resolve otherwise missing ref-
erences to objects into links to the other documentation.

* By default, the mapping file is assumed to be at the same location as the rest of the documentation; however,
the location of the mapping file can also be specified individually, e.g. if the docs should be buildable without
Internet access.

To use intersphinx linking, add 'sphinx.ext.intersphinx' to your :confval:‘extensions‘ config value, and
use these new config values to activate linking:

15.4.5 Math support in Sphinx

New in version 0.5.

Since mathematical notation isn’t natively supported by HTML in any way, Sphinx supports math in documentation
with several extensions.

The basic math support is contained in sphinx.ext .mathbase. Other math support extensions should, if possible,
reuse that support too.

Note: mathbase is not meant to be added to the :confval:‘extensions‘ config value, instead, use either sphinx.
ext.pngmathor sphinx.ext.math jax as described below.

96 Chapter 15. Sphinx Extensions

sphinx Documentation, Release

The input language for mathematics is LaTeX markup. This is the de-facto standard for plain-text math notation and
has the added advantage that no further translation is necessary when building LaTeX output.

mathbase defines these new markup elements:

:math:
Role for inline math. Use like this:

Since Pythagoras, we know that :math: a”2 + b"2 = c"2°

math::
Directive for displayed math (math that takes the whole line for itself).

The directive supports multiple equations, which should be separated by a blank line:

. math::

(a + b)"2 = a”2 + 2ab + b"2

(a — b)"2 = a”2 - 2ab + b"2

In addition, each single equation is set within a split environment, which means that you can have multiple
aligned lines in an equation, aligned at & and separated by \\:

. math::

(a + b)"2 &= (a + b)(a + b) \\
&= a2 + 2ab + b"2

For more details, look into the documentation of the AmSMath LaTeX package.

When the math is only one line of text, it can also be given as a directive argument:

. math:: (a + b)"2 = a*2 + 2ab + b"2

Normally, equations are not numbered. If you want your equation to get a number, use the 1abel option. When
given, it selects an internal label for the equation, by which it can be cross-referenced, and causes an equation
number to be issued. See eqref for an example. The numbering style depends on the output format.

There is also an option nowrap that prevents any wrapping of the given math in a math environment. When
you give this option, you must make sure yourself that the math is properly set up. For example:

. math::
:nowrap:
\begin{egnarray}
vy & = & ax”™2 + bx + c \\
f(x) & = & x"2 + 2xy + y"2
\end{eqgnarray}

req:
Role for cross-referencing equations via their label. This currently works only within the same document.
Example:

. math:: e*{i\pi} + 1 =0
:label: euler

Euler's identity, equation :eq: eculer , was elected one of the most
beautiful mathematical formulas.

15.4. Builtin Sphinx extensions 97

http://www.ams.org/publications/authors/tex/amslatex

sphinx Documentation, Release

sphinx.ext .pngmath — Render math as PNG images
This extension renders math via LaTeX and dvipng into PNG images. This of course means that the computer where
the docs are built must have both programs available.

There are various config values you can set to influence how the images are built:

sphinx.ext .mathjax — Render math via JavaScript

New in version 1.1.

This extension puts math as-is into the HTML files. The JavaScript package MathJax is then loaded and transforms
the LaTeX markup to readable math live in the browser.

Because MathJax (and the necessary fonts) is very large, it is not included in Sphinx.

sphinx.ext . jsmath — Render math via JavaScript

This extension works just as the MathJax extension does, but uses the older package jsMath. It provides this config
value:

15.4.6 sphinx.ext.graphviz — Add Graphviz graphs

New in version 0.6.
This extension allows you to embed Graphviz graphs in your documents.
It adds these directives:

graphviz::
Directive to embed graphviz code. The input code for dot is given as the content. For example:

. graphviz::

digraph foo {
l'bar" _> "baZ";

}

In HTML output, the code will be rendered to a PNG or SVG image (see :confval:‘graphviz_output_format®).
In LaTeX output, the code will be rendered to an embeddable PDF file.

You can also embed external dot files, by giving the file name as an argument to graphviz and no additional
content:

. graphviz:: external.dot

As for all file references in Sphinx, if the filename is absolute, it is taken as relative to the source directory.
Changed in version 1.1: Added support for external files.

graph::
Directive for embedding a single undirected graph. The name is given as a directive argument, the contents of the
graph are the directive content. This is a convenience directive to generate graph <name> { <content>

}.

For example:

98 Chapter 15. Sphinx Extensions

http://savannah.nongnu.org/projects/dvipng/
http://www.mathjax.org/
http://www.math.union.edu/~dpvc/jsmath/
http://graphviz.org/

sphinx Documentation, Release

. graph:: foo

"bar" —— "baZ",'

digraph::
Directive for embedding a single directed graph. The name is given as a directive argument, the contents
of the graph are the directive content. This is a convenience directive to generate digraph <name> {
<content> }.

For example:

. digraph:: foo

"bar" -> "baz" -> "unX";

New in version 1.0: All three directives support an alt option that determines the image’s alternate text for HTML
output. If not given, the alternate text defaults to the graphviz code.

New in version 1.1: All three directives support an inline flag that controls paragraph breaks in the output. When
set, the graph is inserted into the current paragraph. If the flag is not given, paragraph breaks are introduced before
and after the image (the default).

New in version 1.1: All three directives support a capt ion option that can be used to give a caption to the diagram.
Naturally, diagrams marked as “inline”” cannot have a caption.

There are also these new config values:

15.4.7 sphinx.ext.inheritance_diagram — Include inheritance diagrams

New in version 0.6.
This extension allows you to include inheritance diagrams, rendered via the Graphviz extension.
It adds this directive:

inheritance-diagram: :
This directive has one or more arguments, each giving a module or class name. Class names can be unqualified;
in that case they are taken to exist in the currently described module (see py : module).

For each given class, and each class in each given module, the base classes are determined. Then, from all classes
and their base classes, a graph is generated which is then rendered via the graphviz extension to a directed graph.

This directive supports an option called parts that, if given, must be an integer, advising the directive to
remove that many parts of module names from the displayed names. (For example, if all your class names start
with 1ib., you can give :parts: 1 toremove that prefix from the displayed node names.)

It also supports a private—-bases flag option; if given, private base classes (those whose name starts with _)
will be included.

Changed in version 1.1: Added private-bases option; previously, all bases were always included.

New config values are:

15.4.8 sphinx.ext.refcounting — Keep track of reference counting behavior

15.4.9 sphinx.ext.ifconfig — Include content based on configuration

This extension is quite simple, and features only one directive:

15.4. Builtin Sphinx extensions 99

sphinx Documentation, Release

ifconfig::
Include content of the directive only if the Python expression given as an argument is True, evaluated in the
namespace of the project’s configuration (that is, all registered variables from conf . py are available).

For example, one could write

. ifconfig:: releaselevel in ('alpha', 'beta', 'rc')

This stuff is only included in the built docs for unstable versions.

To make a custom config value known to Sphinx, use add_config_value () inthe setup functionin conf .
Py, e.g.:

def setup (app) :
app.add_config_value('releaselevel', '', True)

The second argument is the default value, the third should always be True for such values (it selects if Sphinx
re-reads the documents if the value changes).

15.4.10 sphinx.ext.coverage — Collect doc coverage stats

This extension features one additional builder, the CoverageBuilder.

class sphinx.ext.coverage.CoverageBuilder
To use this builder, activate the coverage extension in your configuration file and give -b coverage on the
command line.

Several new configuration values can be used to specify what the builder should check:

15.4.11 sphinx.ext.todo — Support for todo items

New in version 0.5.
There are two additional directives when using this extension:

todo::
Use this directive like, for example, note.

It will only show up in the output if :confval:‘todo_include_todos is true.

todolist::
This directive is replaced by a list of all todo directives in the whole documentation, if :conf-
val:‘todo_include_todos* is true.

There is also an additional config value:

15.4.12 sphinx.ext .extlinks — Markup to shorten external links

New in version 1.0.

This extension is meant to help with the common pattern of having many external links that point to URLSs on one and
the same site, e.g. links to bug trackers, version control web interfaces, or simply subpages in other websites. It does
so by providing aliases to base URLs, so that you only need to give the subpage name when creating a link.

Let’s assume that you want to include many links to issues at the Sphinx tracker, at http://bitbucket.org/
birkenfeld/sphinx/issue/num. Typing this URL again and again is tedious, so you can use ext Iinks to
avoid repeating yourself.

100 Chapter 15. Sphinx Extensions

sphinx Documentation, Release

The extension adds one new config value:

Note: Since links are generated from the role in the reading stage, they appear as ordinary links to e.g. the
linkcheck builder.

15.4.13 sphinx.ext.viewcode — Add links to highlighted source code

New in version 1.0.

This extension looks at your Python object descriptions (.. class::, .. function:: etc.) and tries to find the
source files where the objects are contained. When found, a separate HTML page will be output for each module with
a highlighted version of the source code, and a link will be added to all object descriptions that leads to the source
code of the described object. A link back from the source to the description will also be inserted.

There are currently no configuration values for this extension; you just need to add ' sphinx.ext.viewcode' to
your :confval:‘extensions‘ value for it to work.

15.4.14 sphinx.ext.oldcmarkup — Compatibility extension for old C markup

New in version 1.0.

This extension is a transition helper for projects that used the old (pre-domain) C markup, i.e. the directives like
cfunction and roles like cfunc. Since the introduction of domains, they must be called by their fully-qualified
name (c: function and c: func, respectively) or, with the default domain set to c, by their new name (function
and func). (See The C Domain for the details.)

If you activate this extension, it will register the old names, and you can use them like before Sphinx 1.0. The directives
are:

e cfunction
* cmember
® cmacro
* ctype
* cvar
The roles are:
* cdata
* cfunc
* cmacro
* ctype

However, it is advised to migrate to the new markup — this extension is a compatibility convenience and will disappear
in a future version of Sphinx.

15.5 Third-party extensions

You can find several extensions contributed by users in the Sphinx Contrib repository. It is open for anyone who wants
to maintain an extension publicly; just send a short message asking for write permissions.

15.5. Third-party extensions 101

https://www.bitbucket.org/birkenfeld/sphinx-contrib

sphinx Documentation, Release

There are also several extensions hosted elsewhere. The Wiki at BitBucket maintains a list of those.

If you write an extension that you think others will find useful or you think should be included as a part of Sphinx,
please write to the project mailing list (join here).

15.5.1 Where to put your own extensions?

Extensions local to a project should be put within the project’s directory structure. Set Python’s module search path,
sys.path, accordingly so that Sphinx can find them. E.g., if your extension foo . py lies in the ext s subdirectory
of the project root, put into conf . py:

import sys, os

sys.path.append(os.path.abspath('exts"))

extensions = ['foo']

You can also install extensions anywhere else on sys.path, e.g. in the site-packages directory.

102 Chapter 15. Sphinx Extensions

https://www.bitbucket.org/birkenfeld/sphinx/wiki/Home
http://groups.google.com/group/sphinx-dev

cHAPTER 16

Sphinx Web Support

New in version 1.1.

Sphinx provides a Python API to easily integrate Sphinx documentation into your web application. To learn more read
the Web Support Quick Start.

16.1 Web Support Quick Start

16.1.1 Building Documentation Data

To make use of the web support package in your application you’ll need to build the data it uses. This data includes
pickle files representing documents, search indices, and node data that is used to track where comments and other
things are in a document. To do this you will need to create an instance of the WebSupport class and call its
build () method:

from sphinx.websupport import WebSupport
support = WebSupport (srcdir='/path/to/rst/sources/",
builddir="'/path/to/build/outdir"',

search="xapian'")

support.build()

This will read reStructuredText sources from srcdir and place the necessary data in builddir. The builddir will contain
two sub-directories: one named “data” that contains all the data needed to display documents, search through docu-
ments, and add comments to documents. The other directory will be called “static”” and contains static files that should
be served from “/static”.

Note: If you wish to serve static files from a path other than “/static”, you can do so by providing the staticdir
keyword argument when creating the WwebSupport object.

103

sphinx Documentation, Release

16.1.2 Integrating Sphinx Documents Into Your Webapp

Now that the data is built, it’s time to do something useful with it. Start off by creating a WebSupport object for
your application:

from sphinx.websupport import WebSupport

support = WebSupport (datadir='/path/to/the/data’,
search="'xapian')

You’ll only need one of these for each set of documentation you will be working with. You can then call it’s
get_document () method to access individual documents:

contents = support.get_document ('contents')

This will return a dictionary containing the following items:
* body: The main body of the document as HTML
« sidebar: The sidebar of the document as HTML
¢ relbar: A div containing links to related documents
* title: The title of the document
* css: Links to css files used by Sphinx
* js: Javascript containing comment options

This dict can then be used as context for templates. The goal is to be easy to integrate with your existing templating
system. An example using Jinja2 is:

{%— extends "layout.html" %}

{%— block title %}
{{ document.title }}
{%— endblock %}

{% block css %}

{{ super() }}

{{ document.css|safe }}

<link rel="stylesheet" href="/static/websupport-custom.css" type="text/css">
% endblock %}

{%- block js %}

{{ super() }}

{{ document.js|safe }}
{%- endblock %}

{%— block relbar %}
{{ document.relbar|safe }}
{%- endblock %}

{%— block body 3}
{{ document.body|safe }}
{%- endblock %}

{%- block
{{ document.sidebar|safe }}
{%- endblock %}

idebar %}

104 Chapter 16. Sphinx Web Support

http://jinja.pocoo.org/

sphinx Documentation, Release

Authentication

To use certain features such as voting, it must be possible to authenticate users. The details of the authentication are
left to your application. Once a user has been authenticated you can pass the user’s details to certain WebSupport
methods using the username and moderator keyword arguments. The web support package will store the username
with comments and votes. The only caveat is that if you allow users to change their username you must update the
websupport package’s data:

support.update_username (old_username, new_username)

username should be a unique string which identifies a user, and moderator should be a boolean representing whether
the user has moderation privilieges. The default value for moderator is False.

An example Flask function that checks whether a user is logged in and then retrieves a document is:

from sphinx.websupport.errors import =«

Qapp.route ('/<path:docname>")
def doc (docname) :

username = g.user.name if g.user else ''
moderator = g.user.moderator if g.user else False
try:
document = support.get_document (docname, username, moderator)
except DocumentNotFoundError:
abort (404)

return render_template('doc.html', document=document)

The first thing to notice is that the docname is just the request path. This makes accessing the correct document easy
from a single view. If the user is authenticated, then the username and moderation status are passed along with the
docname to get_document (). The web support package will then add this data to the COMMENT_OPTIONS that
are used in the template.

Note: This only works works if your documentation is served from your document root. If it is served from another
directory, you will need to prefix the url route with that directory, and give the docroot keyword argument when
creating the web support object:

support = WebSupport (..., docroot='docs")

Qapp.route ('/docs/<path:docname>")

16.1.3 Performing Searches

To use the search form built-in to the Sphinx sidebar, create a function to handle requests to the url ‘search’ relative
to the documentation root. The user’s search query will be in the GET parameters, with the key g. Then use the
get_search_results () method to retrieve search results. In Flask that would be like this:

@app.route('/search')
def search () :
q = request.args.get ('qg'")
document = support.get_search_results(q)
return render_template('doc.html', document=document)

Note that we used the same template to render our search results as we did to render our documents. That’s because
get_search_results () returns a context dict in the same format that get_document () does.

16.1. Web Support Quick Start 105

http://flask.pocoo.org/
http://flask.pocoo.org/

sphinx Documentation, Release

16.1.4 Comments & Proposals

Now that this is done it’s time to define the functions that handle the AJAX calls from the script. You will need three
functions. The first function is used to add a new comment, and will call the web support method add_comment () :

Qapp.route ('/docs/add_comment', methods=['POST'])
def add_comment () :
parent_id = request.form.get ('parent', ')
node_id = request.form.get ('node', '")

text = request.form.get ('text', '")

proposal = request.form.get ('proposal', '")

username = g.user.name if g.user is not None else 'Anonymous'
comment = support.add_comment (text, node_id='node_id"',

parent_id='parent_id"',
username=username, proposal=proposal)
return jsonify(comment=comment)

You’ll notice that both a parent_id and node_id are sent with the request. If the comment is being attached directly
to a node, parent_id will be empty. If the comment is a child of another comment, then node_id will be empty. Then
next function handles the retrieval of comments for a specific node, and is aptly named get_data () :

Qapp.route ('/docs/get_comments')

def get_comments () :
username = g.user.name if g.user else None
moderator = g.user.moderator if g.user else False
node_id = request.args.get('node', '")
data = support.get_data (node_id, username, moderator)
return jsonify (xxdata)

The final function that is needed will call process_vote (), and will handle user votes on comments:

Qapp.route ('/docs/process_vote', methods=['POST'])
def process_vote():
if g.user is None:
abort (401)
comment_id = request.form.get ('comment_id")
value = request.form.get ('value')
if value is None or comment_id is None:
abort (400)
support.process_vote (comment_id, g.user.id, value)
return "success"

16.1.5 Comment Moderation

By default, all comments added through add_comment () are automatically displayed. If you wish to have some
form of moderation, you can pass the displayed keyword argument:

comment = support.add_comment (text, node_id="'node_id"',
parent_id='parent_id',
username=username, proposal=proposal,
displayed=False)

You can then create a new view to handle the moderation of comments. It will be called when a moderator decides a
comment should be accepted and displayed:

106 Chapter 16. Sphinx Web Support

sphinx Documentation, Release

Qapp.route ('/docs/accept_comment', methods=['POST'])

def accept_comment () :
moderator = g.user.moderator if g.user else False
comment_id = request.form.get ('id")
support.accept_comment (comment_id, moderator=moderator)
return 'OK'

Rejecting comments happens via comment deletion.

To perform a custom action (such as emailing a moderator) when a new comment is added but not displayed, you can
pass callable to the WebSupport class when instantiating your support object:

def moderation_callback (comment) :
"""Do something..."""

support WebSupport (..., moderation_callback=moderation_callback)

The moderation callback must take one argument, which will be the same comment dict that is returned by
add_comment ().

16.2 The WebSupport Class

class sphinx.websupport . WebSupport
The main API class for the web support package. All interactions with the web support package should occur
through this class.

The class takes the following keyword arguments:
sredir The directory containing reStructuredText source files.

builddir The directory that build data and static files should be placed in. This should be used when creating a
WebSupport object that will be used to build data.

datadir The directory that the web support data is in. This should be used when creating a WebSupport
object that will be used to retrieve data.

search This may contain either a string (e.g. ‘xapian’) referencing a built-in search adapter to use, or an instance
of a subclass of BaseSearch.

storage This may contain either a string representing a database uri, or an instance of a subclass of
StorageBackend. If this is not provided, a new sqlite database will be created.

moderation_callback A callable to be called when a new comment is added that is not displayed. It must
accept one argument: a dictionary representing the comment that was added.

staticdir If static files are served from a location besides ' /static', this should be a string with the name of
that location (e.g. ' /static_files").

docroot If the documentation is not served from the base path of a URL, this should be a string specifying that
path (e.g. 'docs').

16.2. The WebSupport Class 107

sphinx Documentation, Release

16.2.1 Methods

16.3 Search Adapters

To create a custom search adapter you will need to subclass the BaseSearch class. Then create an instance of the
new class and pass that as the search keyword argument when you create the WebSupport object:

support = WebSupport (srcdir=srcdir,
builddir=builddir,
search=MySearch())

For more information about creating a custom search adapter, please see the documentation of the BaseSearch class
below.

class sphinx.websupport.search.BaseSearch
Defines an interface for search adapters.

16.3.1 BaseSearch Methods

The following methods are defined in the BaseSearch class. Some methods do not need to be overridden,
but some (add_document () and handle_query ()) must be overridden in your subclass. For a
working example, look at the built-in adapter for whoosh.

16.4 Storage Backends

To create a custom storage backend you will need to subclass the St orageBackend class. Then create an instance
of the new class and pass that as the storage keyword argument when you create the WebSupport object:

support = WebSupport (srcdir=srcdir,
builddir=builddir,
storage=MyStorage ())

For more information about creating a custom storage backend, please see the documentation of the
StorageBackend class below.

class sphinx.websupport.storage.StorageBackend
Defines an interface for storage backends.

16.4.1 StorageBackend Methods

108 Chapter 16. Sphinx Web Support

cHAPTER 17

Sphinx FAQ

This is a list of Frequently Asked Questions about Sphinx. Feel free to suggest new entries!

17.1 How do I...

.. create PDF files without LaTeX? You can use rst2pdf version 0.12 or greater which comes with built-in Sphinx
integration. See the Available builders section for details.

.. get section numbers? They are automatic in LaTeX output; for HTML, give a :numbered: option to the
toctree directive where you want to start numbering.

.. customize the look of the built HTML files? Use themes, see HTML theming support.
.. add global substitutions or includes? Add them in the :confval:‘rst_epilog® config value.

.. display the whole TOC tree in the sidebar? Use the t oct ree callable in a custom layout template, probably in
the sidebartoc block.

.. write my own extension? See the extension tutorial.

.. convert from my existing docs using MoinMoin markup? The easiest way is to convert to xhtml, then convert
xhtml to reST. You’ll still need to mark up classes and such, but the headings and code examples come through
cleanly.

17.2 Using Sphinx with...

Read the Docs http://readthedocs.org is a documentation hosting service based around Sphinx. They will host sphinx
documentation, along with supporting a number of other features including version support, PDF generation,
and more. The Getting Started guide is a good place to start.

Epydoc There’s a third-party extension providing an api role which refers to Epydoc’s API docs for a given identifier.

Doxygen Michael Jones is developing a reST/Sphinx bridge to doxygen called breathe.

109

http://rst2pdf.googlecode.com
http://docutils.sourceforge.net/sandbox/xhtml2rest/xhtml2rest.py
http://readthedocs.org
http://read-the-docs.readthedocs.org/en/latest/getting_started.html
http://git.savannah.gnu.org/cgit/kenozooid.git/tree/doc/extapi.py
http://github.com/michaeljones/breathe/tree/master

sphinx Documentation, Release

SCons Glenn Hutchings has written a SCons build script to build Sphinx documentation; it is hosted here: https:

//bitbucket.org/zondo/sphinx-scons

PyPI Jannis Leidel wrote a setuptools command that automatically uploads Sphinx documentation to the PyPI pack-

age documentation area at http://packages.python.org/.

GitHub Pages Directories starting with underscores are ignored by default which breaks static files in Sphinx.

GitHub’s preprocessor can be disabled to support Sphinx HTML output properly.

MediaWiki See https://bitbucket.org/kevindunn/sphinx-wiki, a project by Kevin Dunn.

Google Analytics You can use a custom layout .html template, like this:

17

The

% extends "!layout.html" %}
{%— block extrahead %}

{{ super() }}
<script type="text/Jjavascript">

var _gaq = _gaq || [];
_gaqg.push(['_setAccount', 'XXX account number XXX']);
_gaqg.push(['_trackPageview']);

</script>

% endblock %}

{% block footer %}

{{ super() }}

<div class="footer">This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google—-analytics.com.

<script type="text/Jjavascript">

(function () {
var ga = document.createElement ('script');
ga.src = ('https:' == document.location.protocol ?
'https://ssl' : 'http://www') + '.google-analytics.com/ga.js';

ga.setAttribute ('async', 'true');
document .documentElement . firstChild.appendChild(ga) ;
1) O
</script>
</div>
% endblock %}

.3 Epub info

epub builder is currently in an experimental stage. It has only been tested with the Sphinx documentation itself.

If you want to create epubs, here are some notes:

 Split the text into several files. The longer the individual HTML files are, the longer it takes the ebook reader to
render them. In extreme cases, the rendering can take up to one minute.

e Try to minimize the markup. This also pays in rendering time.

* For some readers you can use embedded or external fonts using the CSS @font-face directive. This is
extremely useful for code listings which are often cut at the right margin. The default Courier font (or variant)
is quite wide and you can only display up to 60 characters on a line. If you replace it with a narrower font, you
can get more characters on a line. You may even use FontForge and create narrow variants of some free font. In
my case I get up to 70 characters on a line.

You may have to experiment a little until you get reasonable results.

110

Chapter 17. Sphinx FAQ

https://bitbucket.org/zondo/sphinx-scons
https://bitbucket.org/zondo/sphinx-scons
http://pypi.python.org/pypi/Sphinx-PyPI-upload
http://packages.python.org/
https://github.com/blog/572-bypassing-jekyll-on-github-pages
https://bitbucket.org/kevindunn/sphinx-wiki
http://fontforge.sourceforge.net/

sphinx Documentation, Release

* Test the created epubs. You can use several alternatives. The ones I am aware of are Epubcheck, Calibre,
FBreader (although it does not render the CSS), and Bookworm. For bookworm you can download the source
from http://code.google.com/p/threepress/ and run your own local server.

¢ Large floating divs are not displayed properly. If they cover more than one page, the div is only shown on the
first page. In that case you can copy the epub. css from the sphinx/themes/epub/static/ directory
to your local _static/ directory and remove the float settings.

* Files that are inserted outside of the t oct ree directive must be manually included. This sometimes applies to
appendixes, e.g. the glossary or the indices. You can add them with the :confval:‘epub_post_files‘ option.

17.4 Texinfo info

The Texinfo builder is currently in an experimental stage but has successfully been used to build the documentation
for both Sphinx and Python. The intended use of this builder is to generate Texinfo that is then processed into Info
files.

There are two main programs for reading Info files, info and GNU Emacs. The info program has less features but
is available in most Unix environments and can be quickly accessed from the terminal. Emacs provides better font and
color display and supports extensive customization (of course).

17.4.1 Displaying Links

One noticeable problem you may encounter with the generated Info files is how references are displayed. If you read
the source of an Info file, a reference to this section would look like:

* note Displaying Links: target-id

In the stand-alone reader, info, references are displayed just as they appear in the source. Emacs, on the other-hand,
will by default replace \ xnote: with see and hide the target-id. For example:

Displaying Links

The exact behavior of how Emacs displays references is dependent on the variable
Info-hide-note-references. If set to the value of hide, Emacs will hide both the \«note: part
and the target—-id. This is generally the best way to view Sphinx-based documents since they often make frequent
use of links and do not take this limitation into account. However, changing this variable affects how all Info
documents are displayed and most due take this behavior into account.

If you want Emacs to display Info files produced by Sphinx wusing the value hide for
Info-hide-note-references and the default value for all other Info files, try adding the following
Emacs Lisp code to your start-up file, ~/ .emacs.d/init.el.

(defadvice info-insert-file-contents (after
sphinx—-info-insert-file—contents
activate)

"Hack to make "Info-hide-note-references' buffer-local and
automatically set to “hide' iff it can be determined that this file
was created from a Texinfo file generated by Docutils or Sphinx."

(set (make—-local-variable 'Info-hide—-note-references)

(default-value 'Info-hide-note-references))

(save—excursion

(save-restriction
(widen) (goto-char (point-min))
(when (re-search-forward
"~“Generated by \\ (Sphinx\\|Docutils\\)"

17.4. Texinfo info 111

http://code.google.com/p/epubcheck/
http://calibre-ebook.com/
http://www.fbreader.org/
http://bookworm.oreilly.com/
http://code.google.com/p/threepress/

sphinx Documentation, Release

(save—excursion (search-forward "\x1f" nil t)) t)
(set (make—-local-variable 'Info-hide—-note-references)
'hide)))))

17.4.2 Notes

The following notes may be helpful if you want to create Texinfo files:
» Each section corresponds to a different node in the Info file.
* Colons (:) cannot be properly escaped in menu entries and xrefs. They will be replaced with semicolons (;).
* In the HTML and Tex output, the word see is automatically inserted before all xrefs.

 Links to external Info files can be created using the somewhat official URI scheme info. For example:

info:Texinfo#makeinfo _options

which produces:
info: Texinfo#makeinfo_options
¢ Inline markup appears as follows in Info:
— strong — *strong*
— emphasis — _emphasis_
— literal — ‘literal’

It is possible to change this behavior using the Texinfo command @definfoenclose. For example, to make
inline markup more closely resemble reST, add the following to your conf . py:

texinfo_elements = {'preamble': """\
@definfoenclose strong, x*, xx*
@definfoenclose emph, %, %
@definfoenclose code, @w{} , Qw

nn n}

112 Chapter 17. Sphinx FAQ

info:Texinfo#makeinfo_options

cHAPTER 18

Glossary

builder A class (inheriting from Bui Ider) that takes parsed documents and performs an action on them. Normally,
builders translate the documents to an output format, but it is also possible to use the builder builders that e.g.
check for broken links in the documentation, or build coverage information.

See Available builders for an overview over Sphinx’ built-in builders.

configuration directory The directory containing conf .py. By default, this is the same as the source directory,
but can be set differently with the -¢ command-line option.

directive A reStructuredText markup element that allows marking a block of content with special meaning. Directives
are supplied not only by docutils, but Sphinx and custom extensions can add their own. The basic directive
syntax looks like this:

directivename:: argument
:option: value

Content of the directive.

See 5% for more information.

document name Since reST source files can have different extensions (some people like . t xt, some like . rst —the
extension can be configured with :confval:‘source_suffix‘) and different OSes have different path separators,
Sphinx abstracts them: document names are always relative to the source directory, the extension is stripped,
and path separators are converted to slashes. All values, parameters and such referring to “documents” expect
such document names.

Examples for document names are index, library/zipfile, or reference/datamodel/types.
Note that there is no leading or trailing slash.

domain A domain is a collection of markup (reStructuredText directives and roles) to describe and link to objects
belonging together, e.g. elements of a programming language. Directive and role names in a domain have names
like domain:name,e.g. py:function.

Having domains means that there are no naming problems when one set of documentation wants to refer to e.g.
C++ and Python classes. It also means that extensions that support the documentation of whole new languages
are much easier to write. For more information about domains, see the chapter Sphinx Domains.

113

sphinx Documentation, Release

environment A structure where information about all documents under the root is saved, and used for cross-
referencing. The environment is pickled after the parsing stage, so that successive runs only need to read and
parse new and changed documents.

master document The document that contains the root t oct ree directive.

object The basic building block of Sphinx documentation. Every “object directive” (e.g. function or object)
creates such a block; and most objects can be cross-referenced to.

role A reStructuredText markup element that allows marking a piece of text. Like directives, roles are extensible.
The basic syntax looks like this: : rolename: " content . See NHXFRIL for details.

source directory The directory which, including its subdirectories, contains all source files for one Sphinx project.

114 Chapter 18. Glossary

cHAPTER 19

EGIPNE i

* genindex

¢ modindex

e search

* Glossary

115

sphinx Documentation, Release

116 Chapter 19. &5| k£

Python Module Index

conf, 59

sphinx.application, 77
sphinx.builders, 53
sphinx.builders.changes, 56
sphinx.builders.devhelp, 54
sphinx.builders.epub, 54
sphinx.builders.gettext, 56
sphinx.builders.html, 53
sphinx.builders.htmlhelp, 53
sphinx.builders.latex, 54
sphinx.builders.linkcheck, 56
sphinx.builders.manpage, 54
sphinx.builders.qgthelp, 53
sphinx.builders.texinfo, 55
sphinx.builders.text, 54
sphinx.domains, 87
sphinx.ext.autodoc, 87
sphinx.ext.autosummary, 91
sphinx.ext.coverage, 100
sphinx.ext.doctest, 93
sphinx.ext.extlinks, 100
sphinx.ext.graphviz, 98
sphinx.ext.ifconfig, 99
sphinx.ext.inheritance_diagram, 99
sphinx.ext.intersphinx, 96
sphinx.ext. jsmath, 98
sphinx.ext .mathbase, 96
sphinx.ext.mathjax, 98
sphinx.ext.oldcmarkup, 101
sphinx.ext.pngmath, 98
sphinx.ext.refcounting, 99
sphinx.ext.todo, 100
sphinx.ext.viewcode, 101

117

sphinx Documentation, Release

118 Python Module Index

Index

Symbols

-A author

sphinx-apidoc command line option, 15
-A name=value

sphinx-build command line option, 12
-C

sphinx-build command line option, 12
-D setting=value

sphinx-build command line option, 12
-E

sphinx-build command line option, 11
-F, —full

sphinx-apidoc command line option, 15
-H project

sphinx-apidoc command line option, 15
-N

sphinx-build command line option, 12
-P

sphinx-build command line option, 12
Q

sphinx-build command line option, 12
-R release

sphinx-apidoc command line option, 16
-T, —no-toc

sphinx-apidoc command line option, 15
-V version

sphinx-apidoc command line option, 15
-W

sphinx-build command line option, 12
-a

sphinx-build command line option, 11
-b AERAR 4T

sphinx-build command line option, 11
-c B2

sphinx-build command line option, 12
-d maxdepth

sphinx-apidoc command line option, 15
-d B2

sphinx-build command line option, 12

-f, —force

sphinx-apidoc command line option, 15
-n

sphinx-build command line option, 12
-n, —dry-run

sphinx-apidoc command line option, 15
-o outputdir

sphinx-apidoc command line option, 15
-q

sphinx-build command line option, 12
-s suffix

sphinx-apidoc command line option, 15
-t tag

sphinx-build command line option, 12
-w file

sphinx-build command line option, 12
$.2etJISON() ($ method), 50

A

abbr (role), 35

add_autodoc_attrgetter() (sphinx.application.Sphinx
method), 86
add_autodocumenter() (sphinx.application.Sphinx

method), 86

add_builder() (sphinx.application.Sphinx method), 82

add_config_value() (sphinx.application.Sphinx method),
82

add_crossref_type() (sphinx.application.Sphinx method),
85

add_directive() (sphinx.application.Sphinx method), 83

add_directive_to_domain() (sphinx.application.Sphinx
method), 84

add_domain() (sphinx.application.Sphinx method), 83

add_event() (sphinx.application.Sphinx method), 83

add_generic_role() (sphinx.application.Sphinx method),
84

add_index_to_domain() (sphinx.application.Sphinx
method), 83

add_javascript() (sphinx.application.Sphinx method), 85

add_lexer() (sphinx.application.Sphinx method), 86

119

sphinx Documentation, Release

add_node() (sphinx.application.Sphinx method), 83
add_object_type() (sphinx.application.Sphinx method),
84
add_role() (sphinx.application.Sphinx method), 84
add_role_to_domain() (sphinx.application.Sphinx
method), 84
add_search_language()
method), 86
add_stylesheet() (sphinx.application.Sphinx method), 85
add_transform() (sphinx.application.Sphinx method), 85
array<T>::operator[] (C++ function), 48
attributes (built-in variable), 93
autoattribute (directive), 89
autoclass (directive), 87
autodata (directive), 89
autoexception (directive), 87
autofunction (directive), 89
automatic
documentation, 87
linking, 96
testing, 93
automethod (directive), 89
automodule (directive), 87
autosummary (directive), 91

B

bar (directive), 51

BaseSearch (class in sphinx.websupport.search), 108
builder, 113

builder (built-in variable), 74

Builder (class in sphinx.builders), 87

C

c:data (role), 47
c:func (role), 47
c:function (directive), 47
c:macro (directive), 47
c:macro (role), 47
c:member (directive), 47
c:type (directive), 47
c:type (role), 47
c:var (directive), 47
centered (directive), 28
changes
in version, 27
ChangesBuilder (class in sphinx.builders.changes), 56
CheckExternalLinksBuilder (class in
sphinx.builders.linkcheck), 56
class (built-in variable), 93
classes (built-in variable), 93
code
examples, 30
codeauthor (directive), 37
command (role), 35

(sphinx.application.Sphinx

conf (module), 59
configuration directory, 113
connect() (sphinx.application.Sphinx method), 86
contents
table of, 25
copyright (built-in variable), 74
CoverageBuilder (class in sphinx.ext.coverage), 100
cpp:class (directive), 48
cpp:class (role), 49
cpp:func (role), 49
cpp:function (directive), 48
cpp:member (directive), 48
cpp:member (role), 49
cpp:namespace (directive), 49
cpp:type (directive), 48
cpp:type (role), 49
css_files (built-in variable), 73

D

default-domain (directive), 42
deprecated (directive), 28
describe (directive), 50
DevhelpBuilder (class in sphinx.builders.devhelp), 54
dfn (role), 35
digraph (directive), 99
directive, 113
DirectoryHTMLBuilder (class in sphinx.builders.html),
53
disconnect() (sphinx.application.Sphinx method), 86
doc (role), 34
docstitle (built-in variable), 74
docstring, 87
doctest, 93
doctest (directive), 94
document name, 113
documentation
automatic, 87
domain, 113
download (role), 34

E

embedded (built-in variable), 74
emit() (sphinx.application.Sphinx method), 86
emit_firstresult() (sphinx.application.Sphinx method), 86
enumerate() (built-in function), 9
environment, 114
envvar (directive), 49
envvar (role), 34
EpubBuilder (class in sphinx.builders.epub), 54
eq (role), 97
examples

code, 30
exceptions (built-in variable), 93
ExtensionError, 86

120

Index

sphinx Documentation, Release

F

favicon (built-in variable), 74
file (role), 35

file_suffix (built-in variable), 74
foo (C++ function), 48

foo (directive), 51

foo (role), 52

fullname (built-in variable), 93
functions (built-in variable), 93

G

linking

automatic, 96
literalinclude (directive), 31
logo (built-in variable), 74

M

mailheader (role), 35

makevar (role), 35

manpage (role), 35

ManualPageBuilder (class in sphinx.builders.manpage),
54

globalcontext_filename (sphinx.builders.html.Serializing H TR@SSgifiggument, 114

attribute), 55
glossary (directive), 29
graph (directive), 98
graphviz (directive), 98
guilabel (role), 35

H

has_source (built-in variable), 74

hasdoc() (built-in function), 74

hlist (directive), 29

HTMLHelpBuilder (class in sphinx.builders.htmlhelp),
53

ifconfig (directive), 99

implementation (sphinx.builders.html.SerializingHTMLBui

attribute), 55
in version
changes, 27
index (directive), 37
index (role), 38
inheritance-diagram (directive), 99

J

js:attr (role), 51

js:attribute (directive), 51

js:class (directive), 51

js:class (role), 51

js:data (directive), 51

js:data (role), 51

js:func (role), 51

js:function (directive), 50

JSONHTMLBuilder (class in sphinx.builders.html), 55

K

kbd (role), 35
keyword (role), 34

L

last_updated (built-in variable), 74
LaTeXBuilder (class in sphinx.builders.latex), 54

master_doc (built-in variable), 74

math (directive), 97

math (role), 97

members (built-in variable), 93

menuselection (role), 35

MessageCatalogBuilder (class in sphinx.builders.gettext),
56

meta (built-in variable), 75

methods (built-in variable), 93

mimetype (role), 35

module (built-in variable), 93

MyAnimal() (class), 51

N

name (built-in variable), 93
II(]férrnespaced::the(:lass::method (C++ function), 48
newsgroup (role), 36

next (built-in variable), 74

note, 27

note (directive), 27

O

object, 114

object (directive), 50

objname (built-in variable), 93

only (directive), 38

operator bool (C++ function), 48

option (directive), 49

option (role), 34

out_suffix (sphinx.builders.html.SerializingHTMLBuilder
attribute), 55

override_domain() (sphinx.application.Sphinx method),
83

P

pagename (built-in variable), 75

parents (built-in variable), 75

pathto() (built-in function), 74

pep (role), 36

PickleHTMLBUuilder (class in sphinx.builders.html), 55
prev (built-in variable), 75

productionlist (directive), 30

Index

121

sphinx Documentation, Release

program (directive), 49
program (role), 36

project (built-in variable), 75
py:attr (role), 46

py:attribute (directive), 44
py:class (directive), 43
py:class (role), 46
py:classmethod (directive), 44
py:const (role), 46
py:currentmodule (directive), 43
py:data (directive), 43

py:data (role), 46
py:decorator (directive), 44
py:decoratormethod (directive), 44
py:exc (role), 46

py:exception (directive), 43
py:func (role), 46

py:function (directive), 43
py:meth (role), 46

py:method (directive), 44
py:mod (role), 46

py:module (directive), 43
py:obj (role), 46
py:staticmethod (directive), 44

Q

QtHelpBuilder (class in sphinx.builders.qthelp), 53

R

ref (role), 33

regexp (role), 36

relbar() (built-in function), 74
reldelim1 (built-in variable), 73
reldelim?2 (built-in variable), 73
release (built-in variable), 75
rellinks (built-in variable), 75
require_sphinx() (sphinx.application.Sphinx method), 86
rfc (role), 36

role, 114

rst:dir (role), 52

rst:directive (directive), 51
rst:role (directive), 52

rst:role (role), 52

rubric (directive), 28

S

samp (role), 36
script_files (built-in variable), 73

searchindex_filename (sphinx.builders.html.SerializingHTl\/ﬁB%iﬁ’i’f

attribute), 55

sectionauthor (directive), 37

seealso (directive), 28

SerializingHTMLBuilder (class in sphinx.builders.html),
55

setup_extension() (sphinx.application.Sphinx method),
82
shorttitle (built-in variable), 75
show_source (built-in variable), 75
sidebar() (built-in function), 74
SingleFileHTMLBuilder (class in sphinx.builders.html),
53
snippets
testing, 93
source directory, 114
sourcecode, 30
sourcename (built-in variable), 75
sphinx-apidoc command line option
-A author, 15
-F, —full, 15
-H project, 15
-R release, 16
-T, —no-toc, 15
-V version, 15
-d maxdepth, 15

-f, —force, 15
-n, —dry-run, 15
-o outputdir, 15
-s suffix, 15

sphinx-build command line option

-A name=value, 12

-C, 12

-D setting=value, 12

-E, 11

-N, 12

-P, 12

-Q, 12

-W, 12

-a, 11

-b FEER AT 11

-c BT, 12

-d B#1E, 12

-n, 12

-q, 12

-ttag, 12

-w file, 12
sphinx.application (module), 77
sphinx.builders (module), 53
sphinx.builders.changes (module), 56
sphinx.builders.devhelp (module), 54
sphinx.builders.epub (module), 54
sphinx.builders.gettext (module), 56
sphinx.builders.html (module), 53
&é?ilders.htmlhelp (module), 53
sphinx.builders.latex (module), 54
sphinx.builders.linkcheck (module), 56
sphinx.builders.manpage (module), 54
sphinx.builders.qthelp (module), 53
sphinx.builders.texinfo (module), 55

122

Index

sphinx Documentation, Release

sphinx.builders.text (module), 54
sphinx.domains (module), 87
sphinx.ext.autodoc (module), 87
sphinx.ext.autosummary (module), 91
sphinx.ext.coverage (module), 100
sphinx.ext.doctest (module), 93
sphinx.ext.extlinks (module), 100
sphinx.ext.graphviz (module), 98
sphinx.ext.ifconfig (module), 99
sphinx.ext.inheritance_diagram (module), 99
sphinx.ext.intersphinx (module), 96
sphinx.ext.jsmath (module), 98
sphinx.ext.mathbase (module), 96
sphinx.ext.mathjax (module), 98
sphinx.ext.oldcmarkup (module), 101
sphinx.ext.pngmath (module), 98
sphinx.ext.refcounting (module), 99
sphinx.ext.todo (module), 100
sphinx.ext.viewcode (module), 101
sphinx_version (built-in variable), 75

StandaloneHTMLBuilder (class in sphinx.builders.html),

53

StorageBackend (class in sphinx.websupport.storage),

108
style (built-in variable), 75

T

table of
contents, 25
tabularcolumns (directive), 39
term (role), 34
testcleanup (directive), 94
testcode (directive), 94
testing
automatic, 93
snippets, 93
testoutput (directive), 95
testsetup (directive), 94
TexinfoBuilder (class in sphinx.builders.texinfo), 55
TextBuilder (class in sphinx.builders.text), 54
theclass::const_iterator (C++ type), 48
theclass::name (C++ member), 48
title (built-in variable), 75
toc (built-in variable), 75
toctree (built-in variable), 75
toctree (directive), 25
todo (directive), 100
todolist (directive), 100
token (role), 34

U

underline (built-in variable), 93
use_opensearch (built-in variable), 75

\Y

version (built-in variable), 75
versionadded (directive), 28
versionchanged (directive), 28

W

warning, 27
warning (directive), 27
WebSupport (class in sphinx.websupport), 107

Index

123

	译者前言
	欢迎
	引言
	不同文档系统的转换
	在其他系统中使用
	前提
	用法

	Sphinx初尝
	配置文档源
	定义文档结构
	添加内容
	运行创建工具
	文档对象
	基本配置
	自动文档
	其他话题

	调用 sphinx-build
	Makefile 选项

	调用 sphinx-apidoc
	reStructuredText 简介
	段落
	内联标记
	列表与引用
	源代码
	表格
	超链接
	章节
	显式标记
	指令
	图像
	尾注
	引用
	替换
	评论
	源编码
	常见问题

	Sphinx标记的组成
	目录树
	段落级别的标记
	目录表格标记
	术语
	语法产品的显示
	展示示例代码
	内联标记
	未分类标记

	Sphinx Domains
	What is a Domain?
	Basic Markup
	The Python Domain
	The C Domain
	The C++ Domain
	The Standard Domain
	The JavaScript Domain
	The reStructuredText domain
	More domains

	Available builders
	Serialization builder details

	The build configuration file
	General configuration
	Project information
	Options for internationalization
	Options for HTML output
	Options for epub output
	Options for LaTeX output
	Options for text output
	Options for manual page output
	Options for Texinfo output
	Options for the linkcheck builder

	Internationalization
	HTML theming support
	Using a theme
	Builtin themes
	Creating themes

	Templating
	Do I need to use Sphinx' templates to produce HTML?
	Jinja/Sphinx Templating Primer
	Working with the builtin templates

	Sphinx Extensions
	Tutorial: Writing a simple extension
	Extension API
	Writing new builders
	Builtin Sphinx extensions
	Third-party extensions

	Sphinx Web Support
	Web Support Quick Start
	The WebSupport Class
	Search Adapters
	Storage Backends

	Sphinx FAQ
	How do I...
	Using Sphinx with...
	Epub info
	Texinfo info

	Glossary
	索引及表格
	Python Module Index

