

Sphinx Code Fence Extension

This is a single-module sphinx extension that monkey-patches docutils adding
the ability to parse code fences. For example, the following code block was
generated with a codefence (check the “page source”):

def hello_codefence():
 print("I am in a codefence!")

Why?

It can be cumbersome when copy-pasting many chunks of code into and out of
reStructuredText documents due to the syntactic indentation required for
literal text or code directives. Code fences allow you to copy-paste snippets
into and out of your doc pages without having to fixup the indentation.

Contents:

	Installation
	Local Install

	PyPi

	Examples

Installation

Local Install

The extension is a single file (sphinx_codefence.py) so the easiest thing to
do is grab it and put it somewhere that sphinx can find it. For example, we
can follow the recommendations of the sphinx documentation hello world [https://www.sphinx-doc.org/en/master/development/tutorials/helloworld.html]
extension. If your sphinx document tree looks like this:

├── build
├── Makefile
└── source
 ├── conf.py
 ├── index.rst
 ├── _static
 └── _templates

Then add a directory _ext to source/ and put sphinx_codefence.py in
it:

├── build
├── Makefile
└── source
 ├── conf.py
 ├── _ext
 │ └── sphinx_codefence.py
 ├── index.rst
 ├── _static
 └── _templates

Now update your conf.py with:

import os
import sys

Add the local extension directory to the python path
sys.path.insert(0, os.path.abspath('./_ext'))

include the condefence parser monkeypatch
extensions = [
 "sphinx_codefence"
]

PyPi

The extension is available via PYPI [https://pypi.org/project/sphinx-codefence]. You can install it using pip:

pip install sphinx-extension

And then update your conf.py adding “sphinx_codefence” to your list of
extensions, such as:

extensions = [
 "sphinx_codefence"
]

Examples

The content of a codefence is parsed the same
as the content of a .. code:: directive.

For example, the following:

```
Hello world!
```


Is rendered as:

Hello world!

Code fences support languages. The language keyword is passed as the optional
argument to the .. code:: directive. For example:

```cpp
int main(int argc, char** argv){
  exit(0);
}
```


Is rendered as:

int main(int argc, char** argv){
 exit(0);
}

Code fences can also be nested within indented structures, such as:

.. tip::

 This code-fence is nested within an admonition.

   ```py
   def hello_world():
     print("hello world")
   ```


which is rendered as:

Tip

This code-fence is nested within an admonition.

def hello_world():
 print("hello world")

However the whole point of using a code-fence is to avoid the indentation
so I’m not sure why you’d want to do that.

There are two styles of codefence. You can either use triple-tick or
triple-tilde. The examples thus-far have been triple-tick. Triple-tilda
looks like this:

~~~py
def hello_codefence():
  print("I am in a codefence!")
~~~


Which renders as:

def hello_codefence():
 print("I am in a codefence!")

Index

 nav.xhtml

 Table of Contents

 		
 Sphinx Code Fence Extension

 		
 Installation

 		
 Local Install

 		
 PyPi

 		
 Examples

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

