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ABSTRACT Audio–visual recognition (AVR) has been considered as a solution for speech recognition tasks
when the audio is corrupted, as well as a visual recognition method used for speaker verification in multi-
speaker scenarios. The approach of AVR systems is to leverage the extracted information from one modality
to improve the recognition ability of the other modality by complementing the missing information. The
essential problem is to find the correspondence between the audio and visual streams, which is the goal of
this paper. We propose the use of a coupled 3D convolutional neural network (3D CNN) architecture that
can map both modalities into a representation space to evaluate the correspondence of audio–visual streams
using the learned multimodal features. The proposed architecture will incorporate both spatial and temporal
information jointly to effectively find the correlation between temporal information for different modalities.
By using a relatively small network architecture and much smaller data set for training, our proposed method
surpasses the performance of the existing similar methods for audio–visual matching, which use 3D CNNs
for feature representation. We also demonstrate that an effective pair selection method can significantly
increase the performance. The proposed method achieves relative improvements over 20% on the equal
error rate and over 7% on the average precision in comparison to the state-of-the-art method.

INDEX TERMS Convolutional networks, 3D architecture, deep learning, audio-visual recognition.

I. INTRODUCTION
The crucial part of an AVR algorithm is the feature selection
for both audio and visual modalities, which has a direct
impact on the performance of the audio-visual recognition
task. Regarding the speech modality, most speech recogni-
tion systems employ Hidden Markov Models (HMMs) to
extract the temporal information of speech and Gaussian
Mixture Models (GMMs) to discriminate between different
HMMs states for acoustic input representation. However deep
learning has recently been employed as a mechanism for
unsupervised speech feature extraction [1]. Beyond speaker
and speech recognition, deep learning has also been used
for feature extraction of unlabeled facial images [2]. Similar
approaches have been employed in the analysis of multi-
modal voice and face data, which resulted in an improvement
of speech recognition performance [3].

The inference based on common sense is that the lip
motions and the heard voice which is represented by speech
features are highly correlated as a human is usually able to

match the heard sound to a given set of lip motion. However,
the visual lip motions and their corresponding audio stream
still can have non-negligible uncorrelated information. Deci-
sion fusion has been shown to be effective in which the
final decision is made by fusing the statistically independent
decisions from different modalities with the emphasize on
uncorrelated characteristics between different modalities [4].
However, data fusion in early stages, demonstrated more
promising results as it creates a joint representation
between two modalities based on the cross-modality correla-
tions [5], [6]. As the corresponding audio-visual streams
have correlated and uncorrelated information, we propose an
architecture based on Deep Neural Networks (DNNs) as a
discriminative model between the two modalities in order to
simultaneously distinguish between the correlated and uncor-
related components.

Alongside with the audio stream, lip motions can also
contain speaker-related information. Some research efforts
applied both modalities for Speaker Identification (SI)
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and Speaker Verification (SV) mainly based on decision
fusion and MFCC features [7], [8]. The speaker depen-
dent systems are generally aimed to recognize the speech
or speaker identity based on speaker-dependent charac-
teristics. However, speaker-independent systems must be
able to recognize the part of speech regardless of who
is speaking. The SV has two general categories of text-
dependent and text-independent types. In text-dependent
setup, a fixed text is used for all experiments. On the
other hand, in text-independent SV, no prior information or
restrictions are considered for the utterances. It makes the
text-independent to be more challenging that text-dependent
scenario. Most of the previous research efforts for audio-
visual for the aforementioned problems have been conducted
in the text-dependent scenario. In contrast, we conduct our
experiments in speaker-independent and text-independent
mode to deliberately investigate the most challenging
scenario.

There is a significant amount of literature describing
audio-visual recognition in a variety of applications, includ-
ing speech recognition in noisy environments using lip
motions as auxiliary features [9], [10], as well as the con-
verse where speech data is leveraged for the purpose of lip
reading [11], [12]. However, there is a lack of research on
concurrently incorporating the spatial and temporal audio-
visual information to address the root problem of whether
or not the audio stream and the visual stream match. As an
example, in a multi-speaker scenario, if the features connect-
ing audio and video can be found, the speakers’ lip motions
could be determined by the audio stream and vice versa.
In this paper, we investigate the main problem of audio-visual
matching. In another word, the main problem is to recognize
whether the visual lip motions of a speaker corresponds to
the accompanying speech signal. The aforementioned root
problem is the precedent to audio-visual synchrony verifica-
tion, as recognizing the consistency between the audio-visual
streams is desired. The problem of audio-visual synchrony
recognition has been addressed in different research efforts
such as [13] for identity verification, and liveness recognition
of the audio-visual streams [14], [15].

To address the problem, we propose to use the
3DConvolutional Neural Networksmodels that have recently
been employed for action recognition, scene understand-
ing, and speaker verification and demonstrated promising
results [16]–[18]. 3D CNNs concurrently extract features
from both spatial and temporal dimensions, so the motion
information is captured and concatenated in adjacent frames.
We use 3D CNNs to generate separate channels of infor-
mation from the input frames. The combination of all
channels of correlated information creates the final feature
representation.

The focus of the research effort described in this paper
is to implement two non-identical 3D CNNs for audio-
visual matching (Section V). The goal is to design nonlinear
mappings that learn a non-linear embedding space between
the corresponding audio-video streams using a simple

distance metric. This architecture can be learned by
evaluating pairs of audio-video data and later used for
distinguishing between pairs of matched and non-matched
audio-visual streams. One of the main advantages of our
audio-visual model is the noise-robust audio features, which
are extracted from speech features with a locality characteris-
tic (Section IV), and the visual features, which are extracted
from spatial and temporal information of lip motions. Both
audio-visual features are extracted using 3D CNNs, allowing
the temporal information to be treated separately for better
decision making.

The contributions of this paper are as follows:
• A novel coupled 3D CNN architecture, which simul-
taneously extracts spatial and temporal information, is
designed with a significant reduction in dimension com-
pared to the input space and is optimized for distinguish-
ing between match and non-match audio-visual streams.

• The network is relatively small, which has the advantage
of allowing it to be easily trainable and fast to test.

• Compared to traditional MFCCs, a different type of
speech feature has been used for representing the audio
stream, which provides more promising results.

• An adaptive online pair selection method with the output
feature space distance as a criterion has been proposed
for selecting the main contributing pairs for accelerating
the convergence speed and preventing over-fitting.

To the best of our knowledge, this is the first attempt to use
3D convolutional neural networks for audio-visual matching
in which a bridge between spatiotemporal features has been
established to build a common feature space between audio-
visual modalities. The source code1 of this paper has been
released online as an open source project [19].

II. RELATED WORKS
Lip reading and audio-visual speech recognition (AVSR) are
highly correlated such that the relevant information of one
modality can improve the recognition of the other modality in
any of the two aforementioned applications. DNNs have been
employed for fusing speech and visual modalities for audio-
visual automatic speech recognition (AV-ASR) [20]. More-
over, in [21], a connectionist HMM system is introduced for
AVSR and a pre-trained CNN is used to classify phonemes.

Some researchers have used CNNs to predict and generate
phonemes [22] or visemes [23] without considering the word-
level prediction. Phonemes are the smallest distinguishable
unit of an audio streamwhich are combined to create a spoken
word, and a viseme is its corresponding visual equivalent. For
recognizing full words, a Long Short-TermMemory (LSTM)
classifier with Discrete Cosine Transform (DCT) and Deep
Bottleneck Features (DBF) is trained [24]. Similarly, LSTM
with Histogram of Oriented Gradients (HOG) features are
used also for phrase recognition [25].

One of the most challenging applications of audio-visual
recognition is the audio-video synchronization for which

1https://github.com/astorfi/lip-reading-deeplearning
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the audio-visual matching ability is required. The research
efforts related to this paper consist of different audio-visual
recognition tasks which try to find the correspondence
between the two modalities. Different approaches have
been employed for tackling the audio-visual matching
problem. Some are based on data-driven approaches,
such as using DNN classifiers to determine the off-sync
time [26], [27] and some are based on Canonical Correlation
Analysis (CCA) [28] and Co-Inertia Analysis (CoIA).

The most relevant work to ours is the work of
Chung and Zisserman [26] which is aimed at determin-
ing the audio-video synchronization between lip motions
and an audio stream in a video. They use traditional Mel-
frequency cepstral coefficients (MFCCs) to present speech
features. In [26], CNNs have been applied for feature con-
struction with the motion information as the input depth,
which does not effectively reflect the correlation and distinc-
tion between spatial and temporal information. Instead, we
propose to apply 3D convolutional layers to simultaneously
capture the spatial and temporal discriminative features inde-
pendently. Moreover, we designed an adaptive pair selection
method for improving the accuracy and accelerating the
training convergence, as opposed to using the whole training
data which has been used in [26].

III. DATASET
The datasets that have been used for our experiments are
the Lip Reading in the Wild (LRW) [29] and the WVU
Audio-Visual Dataset dataset (AVD) [30]. The LRW dataset
consists of up to 1000 utterances of 500 different words,
spoken by different speakers. All videos are 1.16 seconds in
length, and the word occurs in the middle of the video. The
AVD dataset consists of audio and video data collected over a
period spanning 2014 through 2015. The video and audio data
consists of both scripted and unscripted voice samples. For
the scripted samples, the participant read a sample of text. For
the unscripted samples, the participant answered interview
questions that prompted conversational responses rather than
simple ‘yes’ or ‘no’ answers.

A. PROCESSING
The processing pipeline of both datasets is shown in Fig. 1.
The pipeline is subdivided into two visual and audio sec-
tions. In the visual section, the videos are post-processed
to have equal frame rate of 30 f/s. Then, face tracking and
mouth area extraction is performed on the videos using the
dlib library [31]. Finally, all mouth areas are resized to have
the same size, and concatenated to form the input feature
cube. The dataset does not contain any audio files. In the
audio section, the audio files are extracted from videos using
the FFmpeg framework [32]. Then the speech features will be
extracted from audio files. The library that has been used for
speech feature extraction task is SpeechPy [33].

IV. DATA REPRESENTATION
The proposed architecture utilizes two non-identical Con-
vNets which uses a pair of speech and video streams.

FIGURE 1. The processing pipeline of the datasets.

The network input is a pair of features that represent lip
movement and speech features extracted from 0.3-second of
a video clip. Themain task is to determine if a stream of audio
corresponds with a lip motion clip within the desired stream
duration.

The difficulty of this task is the short time interval of
the video clip (0.3-0.5 second) considered to evaluate the
method. This setting is close to real-world scenarios because,
in some biometrics or forensics applications, only a short
amount of captured video or audio might be available to
distinguish between different modalities. Temporal video and
audio features must correspond over the time interval they
cover. This correspondence is discussed in the next two
sections.

A. SPEECH
The main characteristic of CNNs is their locality, i.e., the
convolution operation is applied to specific local regions in
an image. As a visual inference of this locality property, the
neighbor features should be correlated in some sense. Since
the input speech feature maps are treated as images when
a CNN architecture is used, the features must be locally
correlated in the sense of time and frequency on both axes
respectively.

The MFCCs, which are derived from the cepstral repre-
sentation of the audio stream, can be used as the speech fea-
ture representation. However, the drawback is that they have
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non-local characteristics. The reason for this is that during the
last operation (DCT)2 for generatingMFCCs, which is aimed
at eliminating the correlations between energy coefficients,
the order of the filter-bank energies is changed, which leads
to disturbing the locality property. The approach employed in
this paper is to use the log-energies derived directly from the
filter-banks energies which we call MFECs.3 The extraction
of MFECs is similar to MFCCs, but with no DCT operation.

On the time axis, the temporal features are non-overlapping
20ms windows which are used for the generation of spectrum
features that possess a local characteristic. The input speech
feature map, which is represented as an image cube, corre-
sponds to the spectrogram, as well as the first and second
order derivatives of the MFEC features. These three channels
correspond to the image depth. This representation is depicted
in Fig. 2. Collectively, from a 0.3-second clip, 15 temporal
feature sets (each forms a 40 MFEC features) can be derived
which form a speech feature cube. Each input feature map for
a single audio stream has a dimensionality of 15× 40× 3.

FIGURE 2. Speech feature generation using stacked frames created from
the input signal samples.

Similar approaches are used in [34] for automatic speech
recognition (ASR), where local filtering layers are employed
to extract and represent the spatial speaker-independent fea-
tures. Similar input features are employed in [26]. However,
these efforts used MFCC features as the speech feature rep-
resentations without the use of the temporal derivatives.

B. VIDEO
The frame rate of each video clip used in this effort is 30 f/s.
Consequently, 9 successive image frames form the
0.3-second visual stream. The input of the visual stream of the
network is a cube of size 9× 60× 100, where 9 is the number

2Discrete Cosine Transform
3Mel-frequency energy coefficients

of frames that represent the temporal information. Each
channel is a 60×100 gray-scale image of mouth region. An
example of mouth area representation is provided in Fig. 3.

FIGURE 3. The sequence of mouth areas in a 0.3-second video stream.

A relatively small mouth crop region is intentionally
chosen due to practical consideration because, in real-world
scenarios, it is not very likely to have access to high-
resolution images. Moreover, unlike the usual experimental
setups for CNNs, we did not restrict our experiments to input
images with uniformly square aspect ratios.

C. PREPROCESSING
Neither mean-feature-normalization4 nor Min-Max scaling5

demonstrated promising results in the testing phase for our
experiments. However, both improved the training optimiza-
tion. We found the data standardization (X−X̄

σ
) to be effective

as a preprocessing operation.

V. ARCHITECTURE
The architecture is a coupled 3D convolutional neural net-
work in which two different networks with different sets
of weights must be trained. For the visual network, the lip
motions’ spatial and temporal information are incorporated
jointly and will be fused for exploiting the temporal cor-
relation. For the audio network, the extracted energy fea-
tures are considered as a spatial dimension, and the stacked
audio frames create the temporal dimension. In our proposed
3D CNN architecture, the convolutional operations are per-
formed on successive temporal frames for both audio-visual
streams. Dropout(ρ) has been used for all fully-connected
layers prior to the last layer. Except for the last layer, all layers
are followed by PReLU activation, as proposed in [35] which
is a generalization to ReLU. Compared to ReLU activation,
PReLU employment demonstrated better performance in our
experiments in which the parameters for rectifiers are learned
adaptively. The architecture is depicted in Fig. 4.

4 X−X̄
Xmax−Xmin

5 X−Xmin
Xmax−Xmin
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FIGURE 4. Outline of the architecture. Two non-identical 3D CNNs with
audio and visual streams as inputs are coupled together in the last
fully-connected layer by contrastive cost criterion.

TABLE 1. The architecture for video stream.

A. VISUAL NETWORK
The network architecture used for training on video streams
is described in Table 1. In Table 1, the spatial size of the
3D kernels is reported as T × H ×W where T is the kernel
size in temporal dimension, andH andW are the kernel sizes
in height and width dimensions, respectively. As with usual
CNN architectures, the kernel depth is equal to the input-
channel size, which is the number of the feature maps of
the previous layer. For kernel spatial size representation, the
kernel depth sizes are discarded for simplicity.

An important characteristic of the visual network is its
pooling method. Since we are using 3D convolutional lay-
ers, 3D pooling layers are also utilized. Although 1x3x3
kernels are applied for spatial feature pooling, in order to
increase robustness to the moving lip effect,6 the pooling
stride is set to two7 in order to maintain lip movement
features8 in the neighborhood of the pooling kernel. The
3D convolutional operations are performed to find the

6The lip place in the video clip is not necessarily fixed
7It means a kind of overlap because the pooling kernel is 1x3x3
8More importantly high-level features

correlation between high-level temporal and spatial informa-
tion by fusion among them. No zero-padding is used in the
visual architecture.

B. AUDIO NETWORK
The network architecture used for training on audio streams
is described in Table 2. In our architecture, pooling operations
are only applied in the frequency axis (domain) to maintain
the temporal information within the time frames. Addition-
ally, our proposed architecture has a high level of compres-
sion in which only 64 output units are used.

TABLE 2. The architecture for audio stream.

As with Table 1, in Table 2, the spatial size of the
3D kernels is reported as T × H ×W , and the kernel depth
sizes are discarded for simplicity as well. A 3D kernel is
used in the first layer for spatiotemporal feature extraction
using a 3D convolutional operation. Except for the first layer,
since the spatial dimension for the audio feature maps are
M ×N × 1 in higher-level layers, we are, in essence, dealing
with 2D dimensionality. Because of this, we have regular
2D convolutional operations for the audio network which
simultaneously capture the temporal and spatial information
using their 2D kernels. The kernel spatial dimensions are
deliberately demonstrated as T × H × 1 to emphasize the
connection between the 3D and 2D convolutional operations.

In the audio architecture, zero-padding is not used because
zero-padding adds extra virtual zero-energy coefficients
which are meaningless in the sense of local feature extrac-
tion. Another important characteristic is the use of non-
square kernels. As we go from low-level features (lower
level convolutional layers) to high-level features (higher level
convolutional layers), the kernel widths follow a decreasing
order. This setup results in extraction and processing of more
temporal features in the lower level that are related to speech
features, as well as and correlated features in the high-level
features that are the features extracted from the CNN.

C. COUPLING
Both audio-visual networks are coupled at their highest level,
which is the last fully-connected layer with a cardinality
of ζ . The ζ parameter represents the cardinality of the output
embedding. The default value for ζ is 64, which forms our
base experiments. Since the network is trained in verification
mode, in order to match the audio and visual representation
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of the spoken parts of speech, a contrastive loss is used as
a discriminative distance metric to optimize the coupling
process, which has been proposed in [36]. The contrastive
loss function LW (Y ,X ) is as follows:

LW (Y ,X ) =
1
N

N∑
i=1

LW (Yi, (Xp1 ,Xp2 )i), (1)

where N is the number of training samples, (Xp1 ,Xp2 )i
is the i-th input pair, Yi is the corresponding label and
LW (Yi, (Xp1 ,Xp2 )i) is defined as follows:

LW (Yi, (Xp1 ,Xp2 )i)

= Y × Lgen(DW (Xp1 ,Xp2 )i)

+ (1− Y )× Limp(DW (Xp1 ,Xp2 )i)+ λ||W ||2, (2)

in which DW (Xp1 ,Xp2 ) is the Euclidean distance between
the outputs of the network with (Xp1 ,Xp2 ) as the input. The
last term is for regularization, and λ is the regularization
parameter. Finally, Lgen and Limp are defined as the functions
of DW (Xp1 ,Xp2 ) by the following equations:
Lgen(DW (Xp1 ,Xp2 )) =

1
2
DW (Xp1 ,Xp2 )

2

Limp(DW (Xp1 ,Xp2 )) =
1
2
max{0, (µ−DW (Xp1 ,Xp2 ))}

2,

(3)

where µ is the predefined margin. Contrastive loss is
employed as a mapping criteria, which will ideally place
genuine pairs9 to nearby and impostor pairs10 to distant man-
ifolds in the output space.

VI. EVALUATION AND VERIFICATION METRIC
In this paper, we evaluate experimental results using the
Receiver Operating Characteristic (ROC) and Precision-
Recall (PR) curves characteristics. The ROC curve con-
sists of the Validation Rate (VR) and False Acceptance
Rate (FAR). All pairs (XP1 ,XP2 ) of the same identity are
denoted with Pgen whereas all pairs belonging to different
identities are denoted asPimp. IfDW is the Euclidean distance
between the outputs of the network with (XP1 ,XP2 ) as the
input, we define true positive and false acceptance as below:

TP(τ ) =
{
(XP1 ,XP2 ) ∈ Pgen,DW ≤ τ

}
. (4)

FA(τ ) =
{
(XP1 ,XP2 ) ∈ Pimp,DW ≤ τ

}
. (5)

Here, TP(τ ) is the test samples which are classified as
match pairs, whereas FA(τ ) are non-match pairs which are
incorrectly classified as match pairs. Both calculations are
done using a single pre-defined threshold which the output
distance will be compared with it as a metric for prediction.

9Also called as match pair in which both samples in a pair belong to the
same identity

10Also called as non-match pair in which samples in a pair belong to the
different identity

True Positive Rate (TPR) and the False acceptance
rate (FAR) are calculated as below:

TPR(τ ) =
TP(τ )
Pgen

, FAR(τ ) =
FA(τ )
Pimp

. (6)

The TPR is the percentage of genuine pairs that are
correctly classified as match pairs and it is called Recall.
On the other hand, the FAR is the percentage of non-match
pairs (impostor pairs) that are incorrectly classified as match
pairs. According to the definitions, FAR and TPR can be com-
puted with regard to impostor and genuine pairs, respectively.

Another metric which is called Precision, is widely used
for accuracy evaluation. It is defined as below:

Precision(τ ) =
TP(τ )

FA(τ )+ TP(τ )
. (7)

In comparison to Recall, Precision is the portion of
retrieved positive-classified samples that are correctly clas-
sified, while recall is the portion of positive samples that
are retrieved as positive. Basically, Precision and Recall
are inversely correlated. The precision-recall (PR) curve
demonstrates the balance between two aforementioned
metrics.

Precision-Recall (PR) curves are often used in Information
Retrieval and considered as an alternative to ROC curves
for classification tasks with a large difference in the class
distribution [37].

The main metric that has been used for performance eval-
uation is the Equal Error Rate (EER) which is the point
when FAR and FRR are equal. Moreover, Area Under the
Curve (AUC) is evaluated as the accuracy, which is the area
under the ROC curve. Average-Precision (AP) is another
employed metric which corresponds to the area under the
Precision-Recall (PR) curve. Since we do not restrict our
experiments to have the same or even close portion of gen-
uine and impostor pairs, the AP metric can be more reliable
as a representative of the accuracy which belongs to the
PR curve.

For verification, the metric is simply a `2 − norm calcula-
tion between the outputs of the two fully connected layers
from the two parallel CNNs, and a final comparison with
a given threshold. To provide a better statistical demonstra-
tion of the performance, the test samples were split into
5 disjoint parts, and the averaged performance is reported
across the five splits. In essence, 5-fold validation has been
employed for evaluation. All performance evaluations are
reported based on the statistics of the result as µ ± σ using
the 5-fold validation.

VII. TRAINING
In this section, the method and manner of training will be
described. A variance scaling initializer that has been recently
developed for network weight initialization [35] is used for
our experiments. Batch normalization [38] has been used for
improving the training convergence. The batch size is 32 for
all of the experiments.
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A. ONLINE PAIR SELECTION
The pair selection in our experiments is similar to the one
used in [39], in the sense of choosing challenging pairs. How-
ever, there are differences. First, and most importantly, unlike
the face verification, in our experiments (AV matching),
anchors cannot be defined directly as the representatives of
the classes. The reason is that the pairs are defined as a one-
vs-one in an audio-visual stream, and cannot be defined as a
global class as can be done in image verification application.
Second, since there is no anchor, the triplet loss cannot be
defined as the one in [39], so we propose a method for
adaptive-thresholding which will be described later in this
section.

All genuine pairs are selected, and the pair selection pro-
cess is restricted to only choosing main contributing impostor
pairs. The criterion for choosing pairs is the distance between
them in the output embedding feature space. Assume the
embedding feature space is represented by f (x) ∈ RD. If the
input vector is x, the output is f (x) with dimensionality of D.
The no-pair-selection case is when all the impostor pairs
(X impp ) lead to larger output distances than all the genuine
pairs (Xgenp ). This leads to:∥∥∥X imppi − X

gen
pj

∥∥∥ > η, ∀(X imppi ,X
gen
pj ) ∈ Mini− batch, (8)

in which η is an adaptive threshold which set a margin
between impostor and genuine pairs. Algorithm 1 demon-
strates the procedure.

Algorithm 1 The Adaptive Online Pair Selection
Algorithm for Selecting the Main Contributing Impostor
Pairs in Each Mini-Batch
Data: extract mini-batch;
Update: Do not run optimizer (no weight update)
initialization;
Evaluation: Feed pairs and generate output distance
vector;
Find: Find the maximum and minimum distances
belonging to genuine pairs : max_gen & min_gen;

Adaptive Threshold: Calculate η = η0 ×
∣∣∣max_genmin_gen

∣∣∣;
while checking impostor pairs do

evaluate the current impostor pair output distance:
imp_dis;
if imp_dis > max_gen+ η then

discard current impostor pair;
else

select current impostor pair and return its index;

As it can be observed from Algorithm 1, each mini-
batch has its own threshold which will adaptively follow a
descending order as the genuine pairs become closer on the
output manifold space. Empirically we found this method to
accelerate the convergence speed and moreover improved the
accuracy.

B. HYPERPARAMETER OPTIMIZATION
The hyperparameters in our experiments are:µ the margin for
the contrastive loss, λ the regularization parameter, dropout
parameter (ρ) and the η0 as the initial margin between impos-
tor and genuine pairs in the pair selection phase. The k-fold
cross-validation method is used to estimate the hyperparam-
eters in which we set k = 5.
In k-fold cross-validation, the original training data is ran-

domly divided into k equal parts. Of the k-parts, one of them
is fixed as the validation data for testing the model, and the
other k−1 parts are used as training data. The cross-validation
process is then repeated 5 times and the average error is used
to determine the best parameter.

The online pair selection is not used in the cross-validation
phase. It is worth noting that the data splitting is done per
subject and not just the randomly selected data. Essentially,
the data is split into k = 5 equal parts such that none of
the subjects present in one part are available in any other
part. This has the practical advantage of preventing subject-
specific characteristics from affecting the accuracy on the test
split.

VIII. EXPERIMENTS AND RESULTS
The experiments of this section have been conducted on the
audio-visual matching task to evaluate the effectiveness of the
employed architecture. In evaluation of the experiments, we
use the setup described in Section VII.

A. EVALUATION ON LRW DATASET
For audio-visual matching using the Lip Reading in the Wild
dataset, 500 words (subjects) are available. To make the train
and test sets mutually exclusive, the first 400 words are used
for creating the training set and the remaining 100 words
are used for test set generation. For each of the train/test
sets, only 50 utterances of each word are chosen for data gen-
eration. The compiled initial training data contains generated
genuine and impostor pairs. The reason this is described as
initial training data is that not all the generated data is used
for training. The method of selecting pairs was described in
Section VII-A. The train/test characteristics are summarized
in Table 3.

TABLE 3. The train/test data summary for Lip Reading in the Wild dataset.

Genuine pairs (audio/video) are created by matching the
9-channel visual feature cube with the corresponding audio
feature cube as we discussed earlier in Section IV. For
impostor pair generation, the audio feature map for a video
is shifted alongside its time axis. The shifting is random,
and could be up to 0.5-second at maximum. This shifting
method allows the network to learn the matching between
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audio-video streams. The pair generation method is depicted
in Fig. 5.

FIGURE 5. Audio and video feature maps for pair generation. The shifted
part is shown by the blue rectangular as an example.

Different experiments have been conducted to investigate
the effects of the architecture, feature selection, and pair
selection method. In all experiments performed to gener-
ate test data, unless otherwise stated, we used a 0.5-second
shift for generating impostor pairs, experiments were per-
formed usingMFEC features (by using first and second order
derivatives as well), and the output embedded feature space
dimensionality was chosen to be 64. The training stops after
15 epochs of training data, or if the test accuracy shows
descending behavior, whichever occurs first.

To demonstrate the performance of our experimental
results, we report here, in tabular form, the EER and AUC
values extracted from ROC curves and the AP value extracted
from Precision-Recall curves.

1) EFFECT OF THE PROPOSED ARCHITECTURE AND
DATA REPRESENTATION
In this section, the effect of choosing different data represen-
tation (MFCC/MFEC features & using temporal derivatives)
on the performance results is investigated. We compare our
method with the state-of-the-art in [26] in which regular
CNN architecture with MFCCs for speech feature represen-
tation is used. In [26] only one channel MFCC has been
used. We modify the structure represented in [26] to accept
3-channels input speech features as we use MFCC alongside
with its first and second order derivatives.

For having a more comprehensive comparison, we com-
pare our method with two common audio-visual synchrony
approaches, based on CCA [28] and CoIA [40]. Prior to
CCA/CoIA transformation, since the audio features are
extracted at a faster rate, we interpolated the visual lip
motions to have the same frame rate as audio features. Empir-
ical evidence showed that not all the canonical correlations
carry useful information. Considering the aforementioned
evidence, only 20 dimensions of the correlation feature vector
extracted from CCA or CoIA operations on audio-visual
features are chosen which are corresponding to the higher
correlation coefficients. For speech feature representation,
in addition to static MFCC features, first and second order
derivatives have been used as well.

The results are summarized in Table 4. The depth is the
number of input channels, which is three if the first and
second feature derivatives of MFEC/MFCC are used along-
side the main features.

TABLE 4. Comparison of different methods on LRW dataset.

In the case of using MFCC features, using first- and
second-order derivatives did not improve the performance,
and additionally, using a 3-channel input increased the vari-
ance of the performance. This means that the stability of the
results decreased. As can be observed in Table 4, using the
MFEC feature alongside the temporal derivatives achieves
the best result. We utilized our proposed 3D-CNN architec-
ture with different feature representations for having a better
comparison solely between MFCCs and MFECs. The results
demonstrated in Table 4 empirically proves the effectiveness
of implementing 3D architectures regardless of the feature
representation since our proposed method outperforms other
methods for any type of utilized features.

2) EFFECT OF EMBEDDING LAYER
As mentioned earlier, the default cardinality (ζ ) for the
embedding layer is 64. In this section, we change the dimen-
sionality of the embedding layer in order to evaluate its effect
on performance, specifically, to observe the effect of feature
compression. The results are shown in Table 5.

TABLE 5. The effect of embedding layer on performance.

The results summarized in Table 5 indicate that the perfor-
mance changes due to variation in embedding dimensionality
are not significant. However, at the highest dimensionality,
a decrease can be seen. This is due to overfitting caused by
using too many representative features.

3) EFFECT OF ONLINE PAIR SELECTION
The method for generating pairs has been described in
Section VII-A. Here, we demonstrate the results with and
without online pair selection. The setup is the default
described earlier, which is using 3-channels MFEC features
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with the embedding dimensionality of 64. In addition to
increasing the accuracy, the online pair selection resulted
in a faster convergence in the training loss. Moreover, it
was also faster in achieving the highest test accuracy. The
EER is reported for different epochs of training for both
setups. The averaged results for 5-runs of training are shown
in Fig. 6, concurrently illustrating the improvement in perfor-
mance and speed of convergence in which the EER belongs
to evaluation on test data per number of training epochs. The
effect of online pair selection on the accuracy, is illustrated in
Fig. 7 for the default setup.

FIGURE 6. The effect of the proposed adaptive online pair selection
method on the speed of convergence and matching ability.

FIGURE 7. The comparison of proposed adaptive online pair selection
method and choosing whole training data for different architectures.

4) THE EFFECT OF TIME SHIFT
In this section, the effect of time shift on the performance will
be investigated. However, here we do not make any changes
in the training set. In this setup, we choose different shifts
for generating impostor pairs solely in the test set in order to
demonstrate the difficulty of the task. The results are shown
in Table 6.

As it can be seen, the most challenging experimental con-
dition is the one which has the minimum time shift. This

TABLE 6. The effect of shift for generating impostor pairs in the test set.

FIGURE 8. The ROC curve representation for fine-tuning on AVD dataset.

is expected because it has increased the similarity between
the genuine and impostor pairs, which has the inverse rela-
tion with the time-shifted values used for impostor pair
generation.

B. EVALUATION ON THE AVD DATASET
The proposed method was also evaluated on the AVD
dataset. In all experiments, the training setup is the same
as described in previous experiments. For evaluation, a
0.5-second time shift is used for generating the impostor
pairs. The years of 2014-2015 of the dataset are chosen for the
experiments of this section. In total 495 subjects are available
in years of 2014-2015. Among them, 201 subjects that are
solely present in 2015 chosen to be as test subjects. The rest
of the subjects are used for creating the training data.

The setup for creating pairs is within-clip data genera-
tion, e.g., the genuine and impostor pairs are built upon
separated clips. Each video clip and its corresponding audio
only belong to one individual. We deliberately regulate this
setup for speaker-independent evaluation of audio-visual
recognition.

Since the videos in the AVD dataset are not scripted, fur-
ther data preprocessing is needed. The data preprocessing
includes Voice Activity Detection (VAD) and elimination of
the void sections of the visual stream in which no mouth area
has been detected. The two aforementioned preprocessing
operations have been performed successively, i.e., the data
have been refined in two different phases. The challenge was
to maintain the corresponding audio-visual streams such that
they have common timing characteristics.

1) TRAIN AND FINE-TUNE ON AVD DATASET
In this section, we first evaluate our model on the AVD
dataset using the standard protocol of Restricted, No Outside
Data [41]. This evaluation protocol is harsh since it assumes
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FIGURE 9. The ROC curve representation for training solely on AVD
dataset.

TABLE 7. Comparison of different methods on AVD dataset. We utilized
our proposed architecture with different feature representations.

that no data from outside of the AVD dataset will be used, and
the use of feature extractors that have been trained on outside
data is not allowed. The results are demonstrated in Fig. 9.

After experimenting using Restricted, No Outside Data
setup, the training is done by fine-tuning the weights of the
pre-trained network (Section VIII-A) by continuing the train-
ing on the AVD dataset. The results are depicted in Fig. 8. For
the fine-tuning, the learning rate has been set to 10−6 with no
decay, and the training has been performed for 15 epochs of
training data. It is worth noting that using temporal derivatives
forMFCC features downgraded the performance, as observed
in Fig. 8. This can be related to local calculation of derivatives
feature upon the non-local MFCC features. The results with
comparison to other methods are summarized in Table 7.

As can be observed in Table 7, for the experiments on AVD
dataset, the proposed method achieves relative improvements
over 29% on the Equal Error Rate (EER) in comparison to the
state-of-the-art method.

IX. CONCLUSION
We have presented a novel coupled 3D convolutional archi-
tecture for audio-visual stream networks with convolutional
fusion in temporal dimension (by utilizing 3D convolu-
tional and pooling operations) and coupling between the
networks. Experimental results on different data sets ver-
ified that the proposed architecture outperforms the other
existing methods for audio-visual matching, and moreover
decreases the number of parameters significantly compared
to the previously proposed methods. Our performance results
demonstrate the effectiveness of the joint learning of spatial

and temporal information using 3D convolutions rather than
naively combining them within the network. The utilized
local speech representative features are shown to be more
promising for audio-visual recognition using convolutional
neural networks.
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