

Welcome to SpeechPy’s documentation!

Preface

	Introduction
	Foreword

	Motivation

	How to Install?

	Citation

Package Reference

	Preprocessing
	Pre-emphasis

	Stacking

	FFT Spectrum

	Power Spectrum

	Power Spectrum Log

	Derivative Extraction

	Features
	MFCC

	Mel Frequency Energy

	Log Mel Frequency Energy

	Extract Derivative Features

	postprocessing
	Global Cepstral Mean and Variance Normalization

	Local Cepstral Mean and Variance Normalization over Sliding Window

Epilogue

	test
	Test Package

	Test Local

	Dependencies

	Contributing
	Pull Request Process

	Final Note

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Foreword

The purpose of this project is to provide a package for speech processing and
feature extraction. This library provides most frequent used speech features including MFCCs and filterbank energies alongside with the log-energy of filterbanks.

[image: alternate text]

Motivation

There are different motivations for this open source project.

Deep Learning application

One of the main reasons for creating this package was to provide necessary features for deep learning applications such as ASR(Automatic Speech Recognition) or SR(Speaker Recognition).
As a results, most of the features that are necessary are provided hear.

Pythonic Packaging

Another reason for creating this package was to have a Pythonic environment for
speech recognition and feature extraction due to the fact that the Python language
is becoming ubiquotous!

How to Install?

[image: alternate text]
There are two possible ways for installation of this package: local installation and PyPi.

Local Installation

For local installation at first the repository must be cloned:

git clone https://github.com/astorfi/speech_feature_extraction.git

After cloning the reposity, root to the repository directory then execute:

python setup.py develop

Pypi

The package is available on PyPi. For direct installation simply execute the following:

pip install speechpy

Citation

If you used this package, please cite it as follows:

@misc{amirsina_torfi_2017_840395,
 author = {Amirsina Torfi},
 title = {{SpeechPy: Speech recognition and feature extraction}},
 month = aug,
 year = 2017,
 doi = {10.5281/zenodo.840395},
 url = {https://doi.org/10.5281/zenodo.840395}
}

Preprocessing

Processing module for signal processing operations.

This module demonstrates documentation for the signal processing
function which are required as internal computations in the package.

	ivar preemphasis

	Preemphasising on the signal. This is a preprocessing step.

	ivar stack_frames

	Create stacking frames from the raw signal.

	ivar fft_spectrum

	Calculation of the Fast Fourier Transform.

	ivar power_spectrum

	Power Spectrum calculation.

	ivar log_power_spectrum

	Log Power Spectrum calculation.

	ivar derivative_extraction

	Calculation of the derivative of the extracted featurs.

	ivar cmvn

	Cepstral mean variance normalization. This is a post processing operation.

	ivar cmvnw

	Cepstral mean variance normalization over the sliding window. This is a post processing operation.

Pre-emphasis

	
speechpy.processing.preemphasis(signal, shift=1, cof=0.98)

	preemphasising on the signal.

	Parameters

	
	signal (array) – The input signal.

	shift (int [https://docs.python.org/3/library/functions.html#int]) – The shift step.

	cof (float [https://docs.python.org/3/library/functions.html#float]) – The preemphasising coefficient. 0 equals to no filtering.

	Returns

	The pre-emphasized signal.

	Return type

	array

Stacking

	
speechpy.processing.stack_frames(sig, sampling_frequency, frame_length=0.02, frame_stride=0.02, filter=<function <lambda>>, zero_padding=True)

	Frame a signal into overlapping frames.

	Parameters

	
	sig (array) – The audio signal to frame of size (N,).

	sampling_frequency (int [https://docs.python.org/3/library/functions.html#int]) – The sampling frequency of the signal.

	frame_length (float [https://docs.python.org/3/library/functions.html#float]) – The length of the frame in second.

	frame_stride (float [https://docs.python.org/3/library/functions.html#float]) – The stride between frames.

	filter (array) – The time-domain filter for applying to each frame.
By default it is one so nothing will be changed.

	zero_padding (bool [https://docs.python.org/3/library/functions.html#bool]) – If the samples is not a multiple of
frame_length(number of frames sample), zero padding will
be done for generating last frame.

	Returns

	Stacked_frames-Array of frames of size (number_of_frames x frame_len).

	Return type

	array

FFT Spectrum

	
speechpy.processing.fft_spectrum(frames, fft_points=512)

	This function computes the one-dimensional n-point discrete Fourier
Transform (DFT) of a real-valued array by means of an efficient algorithm
called the Fast Fourier Transform (FFT). Please refer to
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.rfft.html
for further details.

	Parameters

	
	frames (array) – The frame array in which each row is a frame.

	fft_points (int [https://docs.python.org/3/library/functions.html#int]) – The length of FFT. If fft_length is greater than frame_len, the frames will be zero-padded.

	Returns

	The fft spectrum.
If frames is an num_frames x sample_per_frame matrix, output
will be num_frames x FFT_LENGTH.

	Return type

	array

Power Spectrum

	
speechpy.processing.power_spectrum(frames, fft_points=512)

	Power spectrum of each frame.

	Parameters

	
	frames (array) – The frame array in which each row is a frame.

	fft_points (int [https://docs.python.org/3/library/functions.html#int]) – The length of FFT. If fft_length is greater than frame_len, the frames will be zero-padded.

	Returns

	The power spectrum.
If frames is an num_frames x sample_per_frame matrix, output
will be num_frames x fft_length.

	Return type

	array

Power Spectrum Log

	
speechpy.processing.log_power_spectrum(frames, fft_points=512, normalize=True)

	Log power spectrum of each frame in frames.

	Parameters

	
	frames (array) – The frame array in which each row is a frame.

	fft_points (int [https://docs.python.org/3/library/functions.html#int]) – The length of FFT. If fft_length is greater than
frame_len, the frames will be zero-padded.

	normalize (bool [https://docs.python.org/3/library/functions.html#bool]) – If normalize=True, the log power spectrum
will be normalized.

	Returns

	The power spectrum - If frames is an
num_frames x sample_per_frame matrix, output will be
num_frames x fft_length.

	Return type

	array

Derivative Extraction

	
speechpy.processing.derivative_extraction(feat, DeltaWindows)

	This function the derivative features.

	Parameters

	
	feat (array) – The main feature vector(For returning the second
order derivative it can be first-order derivative).

	DeltaWindows (int [https://docs.python.org/3/library/functions.html#int]) – The value of DeltaWindows is set using
the configuration parameter DELTAWINDOW.

	Returns

	Derivative feature vector - A NUMFRAMESxNUMFEATURES numpy
array which is the derivative features along the features.

	Return type

	array

Features

feature module.

This module provides functions for calculating the main speech
features that the package is aimed to extract as well as the required
elements.

Functions:

	filterbanks: Compute the Mel-filterbanks

	The filterbanks must be created for extracting
speech features such as MFCC.

mfcc: Extracting Mel Frequency Cepstral Coefficient feature.

mfe: Extracting Mel Energy feature.

lmfe: Extracting Log Mel Energy feature.

	extract_derivative_feature: Extract the first and second derivative

	features. This finction, directly use the derivative_extraction
function in the processing module.

MFCC

	
speechpy.feature.mfcc(signal, sampling_frequency, frame_length=0.02, frame_stride=0.01, num_cepstral=13, num_filters=40, fft_length=512, low_frequency=0, high_frequency=None, dc_elimination=True)

	Compute MFCC features from an audio signal.

	Parameters

	
	signal (array) – the audio signal from which to compute features.
Should be an N x 1 array

	sampling_frequency (int [https://docs.python.org/3/library/functions.html#int]) – the sampling frequency of the signal
we are working with.

	frame_length (float [https://docs.python.org/3/library/functions.html#float]) – the length of each frame in seconds.
Default is 0.020s

	frame_stride (float [https://docs.python.org/3/library/functions.html#float]) – the step between successive frames in seconds.
Default is 0.02s (means no overlap)

	num_filters (int [https://docs.python.org/3/library/functions.html#int]) – the number of filters in the filterbank,
default 40.

	fft_length (int [https://docs.python.org/3/library/functions.html#int]) – number of FFT points. Default is 512.

	low_frequency (float [https://docs.python.org/3/library/functions.html#float]) – lowest band edge of mel filters.
In Hz, default is 0.

	high_frequency (float [https://docs.python.org/3/library/functions.html#float]) – highest band edge of mel filters.
In Hz, default is samplerate/2

	num_cepstral (int [https://docs.python.org/3/library/functions.html#int]) – Number of cepstral coefficients.

	dc_elimination (bool [https://docs.python.org/3/library/functions.html#bool]) – hIf the first dc component should
be eliminated or not.

	Returns

	A numpy array of size (num_frames x num_cepstral) containing mfcc features.

	Return type

	array

Mel Frequency Energy

	
speechpy.feature.mfe(signal, sampling_frequency, frame_length=0.02, frame_stride=0.01, num_filters=40, fft_length=512, low_frequency=0, high_frequency=None)

	Compute Mel-filterbank energy features from an audio signal.

	Parameters

	
	signal (array) – the audio signal from which to compute features.
Should be an N x 1 array

	sampling_frequency (int [https://docs.python.org/3/library/functions.html#int]) – the sampling frequency of the signal
we are working with.

	frame_length (float [https://docs.python.org/3/library/functions.html#float]) – the length of each frame in seconds.
Default is 0.020s

	frame_stride (float [https://docs.python.org/3/library/functions.html#float]) – the step between successive frames in seconds.
Default is 0.02s (means no overlap)

	num_filters (int [https://docs.python.org/3/library/functions.html#int]) – the number of filters in the filterbank,
default 40.

	fft_length (int [https://docs.python.org/3/library/functions.html#int]) – number of FFT points. Default is 512.

	low_frequency (float [https://docs.python.org/3/library/functions.html#float]) – lowest band edge of mel filters.
In Hz, default is 0.

	high_frequency (float [https://docs.python.org/3/library/functions.html#float]) – highest band edge of mel filters.
In Hz, default is samplerate/2

	Returns

	features - the energy of fiterbank of size num_frames x num_filters. The energy of each frame: num_frames x 1

	Return type

	array

Log Mel Frequency Energy

	
speechpy.feature.lmfe(signal, sampling_frequency, frame_length=0.02, frame_stride=0.01, num_filters=40, fft_length=512, low_frequency=0, high_frequency=None)

	Compute log Mel-filterbank energy features from an audio signal.

	Parameters

	
	signal (array) – the audio signal from which to compute features.
Should be an N x 1 array

	sampling_frequency (int [https://docs.python.org/3/library/functions.html#int]) – the sampling frequency of the signal
we are working with.

	frame_length (float [https://docs.python.org/3/library/functions.html#float]) – the length of each frame in seconds.
Default is 0.020s

	frame_stride (float [https://docs.python.org/3/library/functions.html#float]) – the step between successive frames in seconds.
Default is 0.02s (means no overlap)

	num_filters (int [https://docs.python.org/3/library/functions.html#int]) – the number of filters in the filterbank,
default 40.

	fft_length (int [https://docs.python.org/3/library/functions.html#int]) – number of FFT points. Default is 512.

	low_frequency (float [https://docs.python.org/3/library/functions.html#float]) – lowest band edge of mel filters.
In Hz, default is 0.

	high_frequency (float [https://docs.python.org/3/library/functions.html#float]) – highest band edge of mel filters.
In Hz, default is samplerate/2

	Returns

	Features - The log energy of fiterbank of size num_frames x num_filters frame_log_energies. The log energy of each frame num_frames x 1

	Return type

	array

Extract Derivative Features

	
speechpy.feature.extract_derivative_feature(feature)

	
	This function extracts temporal derivative features which are

	first and second derivatives.

	Parameters

	feature (array) – The feature vector which its size is: N x M

	Returns

	The feature cube vector which contains the static, first and second derivative features of size: N x M x 3

	Return type

	array

postprocessing

Processing module for signal processing operations.

This module demonstrates documentation for the signal processing
function which are required as internal computations in the package.

	ivar preemphasis

	Preemphasising on the signal. This is a preprocessing step.

	ivar stack_frames

	Create stacking frames from the raw signal.

	ivar fft_spectrum

	Calculation of the Fast Fourier Transform.

	ivar power_spectrum

	Power Spectrum calculation.

	ivar log_power_spectrum

	Log Power Spectrum calculation.

	ivar derivative_extraction

	Calculation of the derivative of the extracted featurs.

	ivar cmvn

	Cepstral mean variance normalization. This is a post processing operation.

	ivar cmvnw

	Cepstral mean variance normalization over the sliding window. This is a post processing operation.

Global Cepstral Mean and Variance Normalization

	
speechpy.processing.cmvn(vec, variance_normalization=False)

	
	This function is aimed to perform global cepstral mean and

	variance normalization (CMVN) on input feature vector “vec”.
The code assumes that there is one observation per row.

	Parameters

	
	vec (array) – input feature matrix
(size:(num_observation,num_features))

	variance_normalization (bool [https://docs.python.org/3/library/functions.html#bool]) – If the variance
normilization should be performed or not.

	Returns

	The mean(or mean+variance) normalized feature vector.

	Return type

	array

Local Cepstral Mean and Variance Normalization over Sliding Window

	
speechpy.processing.cmvnw(vec, win_size=301, variance_normalization=False)

	This function is aimed to perform local cepstral mean and
variance normalization on a sliding window. The code assumes that
there is one observation per row.

	Parameters

	
	vec (array) – input feature matrix
(size:(num_observation,num_features))

	win_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of sliding window for local normalization.
Default=301 which is around 3s if 100 Hz rate is
considered(== 10ms frame stide)

	variance_normalization (bool [https://docs.python.org/3/library/functions.html#bool]) – If the variance normilization should
be performed or not.

	Returns

	The mean(or mean+variance) normalized feature vector.

	Return type

	array

test

Test Package

Once the package has been installed, a test file can be directly run to show the results.
The test example can be seen in test/test_package.py as below:

import scipy.io.wavfile as wav
import numpy as np
import speechpy
import os

file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Alesis-Sanctuary-QCard-AcoustcBas-C2.wav')
fs, signal = wav.read(file_name)
signal = signal[:,0]

Example of pre-emphasizing.
signal_preemphasized = speechpy.processing.preemphasis(signal, cof=0.98)

Example of staching frames
frames = speechpy.processing.stack_frames(signal, sampling_frequency=fs, frame_length=0.020, frame_stride=0.01, filter=lambda x: np.ones((x,)),
 zero_padding=True)

Example of extracting power spectrum
power_spectrum = speechpy.processing.power_spectrum(frames, fft_points=512)
print('power spectrum shape=', power_spectrum.shape)

############# Extract MFCC features #############
mfcc = speechpy.feature.mfcc(signal, sampling_frequency=fs, frame_length=0.020, frame_stride=0.01,
 num_filters=40, fft_length=512, low_frequency=0, high_frequency=None)
mfcc_cmvn = speechpy.processing.cmvnw(mfcc,win_size=301,variance_normalization=True)
print('mfcc(mean + variance normalized) feature shape=', mfcc_cmvn.shape)

mfcc_feature_cube = speechpy.feature.extract_derivative_feature(mfcc)
print('mfcc feature cube shape=', mfcc_feature_cube.shape)

############# Extract logenergy features #############
logenergy = speechpy.feature.lmfe(signal, sampling_frequency=fs, frame_length=0.020, frame_stride=0.01,
 num_filters=40, fft_length=512, low_frequency=0, high_frequency=None)
logenergy_feature_cube = speechpy.feature.extract_derivative_feature(logenergy)
print('logenergy features=', logenergy.shape)

Test Local

There is an alternative local way of testing without the necessity to package installation.
The local test example can be found in test/test_package.py as follows:

import scipy.io.wavfile as wav
import numpy as np
import os
import sys
lib_path = os.path.abspath(os.path.join('..'))
print(lib_path)
sys.path.append(lib_path)
import speechpy
import os

file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Alesis-Sanctuary-QCard-AcoustcBas-C2.wav')
fs, signal = wav.read(file_name)
signal = signal[:,0]

Example of pre-emphasizing.
signal_preemphasized = speechpy.processing.preemphasis(signal, cof=0.98)

Example of staching frames
frames = speechpy.processing.stack_frames(signal, sampling_frequency=fs, frame_length=0.020, frame_stride=0.01, filter=lambda x: np.ones((x,)),
 zero_padding=True)

Example of extracting power spectrum
power_spectrum = speechpy.processing.power_spectrum(frames, fft_points=512)
print('power spectrum shape=', power_spectrum.shape)

############# Extract MFCC features #############
mfcc = speechpy.feature.mfcc(signal, sampling_frequency=fs, frame_length=0.020, frame_stride=0.01,
 num_filters=40, fft_length=512, low_frequency=0, high_frequency=None)
mfcc_cmvn = speechpy.processing.cmvnw(mfcc,win_size=301,variance_normalization=True)
print('mfcc(mean + variance normalized) feature shape=', mfcc_cmvn.shape)

mfcc_feature_cube = speechpy.feature.extract_derivative_feature(mfcc)
print('mfcc feature cube shape=', mfcc_feature_cube.shape)

############# Extract logenergy features #############
logenergy = speechpy.feature.lmfe(signal, sampling_frequency=fs, frame_length=0.020, frame_stride=0.01,
 num_filters=40, fft_length=512, low_frequency=0, high_frequency=None)
logenergy_feature_cube = speechpy.feature.extract_derivative_feature(logenergy)
print('logenergy features=', logenergy.shape)

For ectracting the feature at first, the signal samples will be stacked into frames. The features are computed for each frame in the stacked frames collection.

Dependencies

Two packages of Scipy and NumPy are the required dependencies which will be installed automatically by running the setup.py file.

Contributing

When contributing to this repository, you are more than welcome to discuss your feedback with any of the owners of this repository. For typos, please do not create a pull request. Instead, declare them in issues or email the repository owner. For technical and conceptual questions please feel free to directly contact the repository owner. Before asking general questions related to the concepts and techniques provided in this project, please make sure to read and understand its associated paper.

Please note we have a code of conduct, please follow it in all your interactions with the project.

Pull Request Process

Please consider the following criterions in order to help us in a better way:

	The pull request is mainly expected to be a code script suggestion or improvement.

	A pull request related to non-code-script sections is expected to make a significant difference in the documentation. Otherwise, it is expected to be announced in the issues section.

	Ensure any install or build dependencies are removed before the end of the layer when doing a
build and creating a pull request.

	Add comments with details of changes to the interface, this includes new environment
variables, exposed ports, useful file locations and container parameters.

	You may merge the Pull Request in once you have the sign-off of at least one other developer, or if you
do not have permission to do that, you may request the owner to merge it for you if you believe all checks are passed.

Final Note

We are looking forward to your kind feedback. Please help us to improve this open source project and make our work better.
For contribution, please create a pull request and we will investigate it promptly. Once again, we appreciate
your kind feedback and elaborate code inspections.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 speechpy	

 	
 	
 speechpy.feature	

 	
 	
 speechpy.processing	

Index

 C
 | D
 | E
 | F
 | L
 | M
 | P
 | S

C

 	
 	cmvn() (in module speechpy.processing)

 	
 	cmvnw() (in module speechpy.processing)

D

 	
 	derivative_extraction() (in module speechpy.processing)

E

 	
 	extract_derivative_feature() (in module speechpy.feature)

F

 	
 	fft_spectrum() (in module speechpy.processing)

L

 	
 	lmfe() (in module speechpy.feature)

 	
 	log_power_spectrum() (in module speechpy.processing)

M

 	
 	mfcc() (in module speechpy.feature)

 	
 	mfe() (in module speechpy.feature)

P

 	
 	power_spectrum() (in module speechpy.processing)

 	
 	preemphasis() (in module speechpy.processing)

S

 	
 	speechpy.feature (module)

 	
 	speechpy.processing (module), [1]

 	stack_frames() (in module speechpy.processing)

Epilogue

Disclaimer

Although by dramatic chages, some portion of this library is inspired by the python speech features [https://github.com/jameslyons/python_speech_features] library.

We clain the following advantages for our library:

	More accurate operations have been performed for the mel-frequency calculations.

	The package supports different Python versions.

	The feature are generated in a more organized way as cubic features.

	The package is well-tested and integrated.

	The package is up-to-date and actively developing.

	The package has been used for research purposes.

	Exceptions and extreme cases are handled in this library.

Contributing

When contributing to this repository, please first discuss the change you wish to make via issue,
email, or any other method with the owners of this repository before making a change. For typos, please
do not create a pull request. Instead, declare them in issues or email the repository owner.

Please note we have a code of conduct, please follow it in all your interactions with the project.

Pull Request Process

Please consider the following criterions in order to help us in a better way:

	The pull request is mainly expected to be a code script suggestion or improvement.

	A pull request related to non-code-script sections is expected to make a significant difference in the documentation. Otherwise, it is expected to be announced in the issues section.

	Ensure any install or build dependencies are removed before the end of the layer when doing a
build and creating a pull request.

	Add comments with details of changes to the interface, this includes new environment
variables, exposed ports, useful file locations and container parameters.

	You may merge the Pull Request in once you have the sign-off of at least one other developer, or if you
do not have permission to do that, you may request the owner to merge it for you if you believe all checks are passed.

Final Note

We are looking forward to your kind feedback. Please help us to improve this open source project and make our work better.
For contribution, please create a pull request and we will investigate it promptly. Once again, we appreciate
your kind feedback and elaborate code inspections.

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/speechpy_logo.gif
92

FEATURE EXTRACTION
PACKAGE

¢

_static/minus.png

_static/plus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/img/Speech_GIF.gif

nav.xhtml

 Table of Contents

 		
 Welcome to SpeechPy’s documentation!

 		
 Introduction

 		
 Foreword

 		
 Motivation

 		
 Deep Learning application

 		
 Pythonic Packaging

 		
 How to Install?

 		
 Local Installation

 		
 Pypi

 		
 Citation

 		
 Preprocessing

 		
 Pre-emphasis

 		
 Stacking

 		
 FFT Spectrum

 		
 Power Spectrum

 		
 Power Spectrum Log

 		
 Derivative Extraction

 		
 Features

 		
 MFCC

 		
 Mel Frequency Energy

 		
 Log Mel Frequency Energy

 		
 Extract Derivative Features

 		
 postprocessing

 		
 Global Cepstral Mean and Variance Normalization

 		
 Local Cepstral Mean and Variance Normalization over Sliding Window

 		
 test

 		
 Test Package

 		
 Test Local

 		
 Dependencies

 		
 Contributing

 		
 Pull Request Process

 		
 Final Note

_images/installation_logo.jpg

_static/img/speech.gif

_images/speech.jpg

_static/img/speech.jpg

_static/img/installation_logo.gif

_static/img/installation_logo.jpg

_static/img/stackframes.png
Frame Lengti-r

_static/img/speechpy_logo.gif
92

FEATURE EXTRACTION
PACKAGE

¢

_static/img/speechpy_logo.jpg
P

FEATURE EXTRACTION
PACKAGE

{

