Spectrum Wars Documentation
Release 0.0.6

Tomaz Solc

May 17, 2016

Contents

1 Introduction 3
1.1 Overviewofthe game i 3

2 Player’s Guide 5
2.1 Installing the simulator e 5
2.2 Runningplayercode e e e 5

2.3 Understanding the visualizations o o 0 vt e e e e e e e e e e 6
2.3.1 Player’s visualization e e 6

2.3.2 Game visualization oLl e e e e e e e e e e e 8

24 SCOMINZ .« v v o o it i e e e e e 8

2.5 Implementing a tranSCeiver L L e e e e e e e e e e 9
25.1 Classreference o i i i i e e e 10

2.6 Anannotatedexample L e e e e e e e 12

2.7 Testbedreference L e e e e e 15
27.1 VESNA . . e 15

2.77.2 Simulated testbed L 16

3 Developer’s Guide 17
3.1 Installation inStruCtions e e e e e e e e e e e 17

3. 1.1 Getting the SOUICE v v v v vt e e e e e e e e e e e e e e e e 17

3.1.2 Settingupthetestbed e e 17

3.1.3 Inmstalling game controller 18

3.1.4 Building HTML documentation 18

3.2 Testbed-specific installation instructions L. e 18
32,1 VESNA . . 18

3.3 Firmwareinterface L L e e e 20
3.4 Adding support foranew testbed L e 22
341 Classreference o o v i i i e e e e e e e e e e e e 22

3.5 Implementation notes e 26

4 Indices and tables 29

Spectrum Wars Documentation, Release 0.0.6

SpectrumWars is a work-in-progress programming game where players compete for bandwidth on a limited piece of
a radio spectrum.

This is part of the effort in the FP7 CREW project to make a computer controlled version of the game that was
demonstrated at various conferences (see for example FOSDEM 2014, Net Futures 2015). The aim is to replace a
joystick-wielding human with a short, fun to write Python script.

This Python implementation for VESNA sensor nodes was written by TomaZ Solc (tomaz.solc @ijs.si)

This work has been partially funded by the European Community through the 7th Framework Programme project
CREW (FP7-ICT-2009-258301).

Contents:

Contents 1

http://www.crew-project.eu/
https://www.youtube.com/watch?v=pT7sUI8I7gI
https://www.youtube.com/watch?v=m-Js5pwuVFA
mailto:tomaz.solc@ijs.si

Spectrum Wars Documentation, Release 0.0.6

2 Contents

CHAPTER 1

Introduction

SpectrumWars is a programming game where players compete for bandwidth on a limited piece of a radio spectrum.
Its aim is to show the problems in spectrum sharing in an entertaining way. It captures the competition between various
groups of users. Such competition is increasingly a factor in wireless communications as users demand more data in
an even increasing variety of situations.

SpectrumWars extends the concept developed by P. Sutton and L. Doyle in The gamification of Dynamic Spectrum
Access & cognitive radio by changing the role of the human competitors. In the initial concept, competitors are
directly controlling transceivers via joystics. In this SpectrumWars implementation, they instead develop an algorithm
that controls the transceivers in their place.

The competitive aspect of SpectrumWars was inspired in part by the DARPA Spectrum Challenge. However the
goal here is to make the game as accessible and as fun as possible. The trade-off between realism for simplicity is
heavily skewed towards the latter. For example, the interface between the player’s code and the transceiver is greatly
simplified, limiting the number of transceiver settings to just three: radio channel, bit rate and transmission power.
This kind of a simplified toy-like interface was inspired by existing programming games, like the venerable RobotWar
and its clones.

One aspect of real-life radio communications was not sacrified though: SpectrumWars games run on real hardware
and use real radiofrequency spectrum. While a simulator is available to ease the development and debugging of player
code, the SpectrumWars challenge runs on hardware provided by partners of the CREW project and takes place on
real wireless testbeds.

1.1 Overview of the game

Competitors develop their algorithms using the Python scripting language. In a single game, two or more algorithms
(players) compete with each other to transfer some useful data from a source to a destination as quickly and as reliably
as possible. A good player for example will avoid interference from other players and the environment.

Players are aided in this task with the help of a spectrum sensor. In the game, the spectrum sensor is a centralized,
simplified spectrum analyzer that is always available to the players. An algorithm can query it to get an up-to-date
picture of the occupancy of the spectrum in the form of a power spectral density function.

The nature of the data being transferred is not directly known to players - it could conceivably be a machine-to-machine
link sending sensor data, or it could be someone on a coffee break browsing their favorite social networking website.
The player code only controls the connection and in fact does not need to concern itself with the payload part of the
packets it is sending over the air.

Each player is given control of two transceivers (radio front-ends). For the purpose of the game, payload only needs
to go from one transceiver (called source) to the other one (called destination). The players make use of a simple
interface that provides basic control over the radio.

http://www.researchgate.net/profile/Paul_Sutton4/publication/261508380_The_Gamification_of_Dynamic_Spectrum_Access__Cognitive_Radio/links/00b495346b0140d996000000.pdf
http://www.researchgate.net/profile/Paul_Sutton4/publication/261508380_The_Gamification_of_Dynamic_Spectrum_Access__Cognitive_Radio/links/00b495346b0140d996000000.pdf
http://spectrum.ieee.org/telecom/wireless/radio-wrestlers-fight-it-out-at-the-darpa-spectrum-challenge
http://www.crew-project.eu/

Spectrum Wars Documentation, Release 0.0.6

The separation between the source and the destination poses another challenge the players must overcome. There is
no reliable back channel to use for synchronization between the two ends of the radio link. A rendezvous strategy is
therefore required for all but the most simple algorithms.

Players are ranked by different statistics, like average packet loss and throughput. Different challenges are possible
within the basic SpectrumWars framework. Some challenges might give more weight to the power efficiency of
the players, while others might favor resilience against interference. Some might encourage players to intentionally
interfere with competitors. Again some others might introduce an interfering spectrum user to the testbed where the
game is played, but that is external to the game itself.

4 Chapter 1. Introduction

CHAPTER 2

Player’s Guide

This part of the documentation covers topics interesting to readers wanting to implement player code. It describes the
SpectrumWars player API and how to run and debug player code using a simulated testbed that does not require any
special hardware connected to the computer.

2.1 Installing the simulator

The pip install command bellow will automatically install all missing Python packages. However, installing
some larger dependencies from scratch can be a time consuming and error-prone process. It is therefore recommended
that you install some of them using your Linux distribution package manager. Specifically:

e numpy (run sudo apt-get install python-numpy on Debian-based systems)
* matplotlib (run sudo apt—-get install python-matplotlib on Debian-based systems)

To install the game controller, run:

‘$ pip install spectrumwars —--user

To check if the installation was successful, try running the game controller:

’$ spectrumwars_runner --help

If you get command not found error, check whether the scripts installed by pip are in your PATH. They are
usually installed into SHOME/ . local/bin.

2.2 Running player code

To run a game with a single player that is specified by source code in examples/better_cognitive.py:

‘$ spectrumwars_runner -1 example.log examples/better_cognitive.py

You can add more players to the game by specifying more Python files to the command line.

Note: By default spectrumwars_runner uses a simulated testbed that does not require any special hardware. If
you have testbed-specific hardware installed, you can specify the testbed to use using the —t command line argument.
For example, to run the game using the VESNA testbed, use:

$ spectrumwars_runner -t vesna -1 example.log examples/better_cognitive.py

Spectrum Wars Documentation, Release 0.0.6

In this case, spectrumwars_runner automatically finds any USB-connected VESNA nodes and assigns them
randomly to players.

However, this is mostly intended for testbed developers. Playing SpectrumWars on a real testbed is usually done
through a web interface.

While the game is running, you will see some debugging information on the console. In the end, some game statistics
are printed out:

Results:
Player 1:
crashed : False
transmitted packets : 93
received packets : 51 (45% packet loss)

transferred payload : 12801 bytes (avg 981.4 bytes/s)

Game time: 13.0 seconds

If player code raised an unhandled exception at some point you will also see a backtrace. This should assist you in
debugging the problem.

spectrumwars_runner allows you to set the game end conditions using the command-line arguments. Run
spectrumwars_runner —-help to see a list of supported arguments with descriptions. Also note that the
capabilities of the simulation testbed can be customized to more closely resemble one of the real SpectrumWars
testbeds. See Simulated testbed.

In addition to the ASCII log that is printed on the console, the game controller also saves a binary log file to
example.log. The binary log contains useful debugging information about events that occurred during the game.
You can visualize the log by running:

$ spectrumwars_plot —-o example.out example.log

This creates a directory example.out with a few images in it. One visualization is created for each player partic-
ipating in the game. These are named player0.png, playerl.png and so on, using the same order as it was
used on the spectrumwars_runner command line. One additional visualization named game . png is created
showing the overall progress of the game.

See Understanding the visualizations on how to read the graphs produced by spectrumwars_plot.

2.3 Understanding the visualizations

2.3.1 Player’s visualization

One image per player is produced by spect rumwars_plot in the specified output directory. Images are saved to
files named player0.png, playerl.png, etc.

6 Chapter 2. Player’s Guide

Spectrum Wars Documentation, Release 0.0.6

tx send

tx config

rx recv
+—+ rx config

frequency [channel]

game time [s]

100

80

60

[%]

40

— payload
— packets recv
— packets sent

10) S . S oSt S S SO OO PO PP PPPS SO TPPPROTRROPPRPPIN

i i n
0 2 4 6 8 10 12
game time [s]

The upper graph with the black background shows the progress of the game in a time-frequency diagram. Game time
is on the horizontal axis and frequency channels are on the vertical. Key events in the game are displayed in this
diagram with the focus on the current player.

* Red color marks events related to this player’s Destination class,
* green color marks events related to this player’s Source class and
* gray color marks events related to other player’s transceivers.

Since only one player participated in this game, there are no gray color markers on the diagram shown above. The
behavior of the single player can be seen from the following markers:

* Green crosses show transmitted packets from the player’s Source class. These correspond to calls to the
send () method.

* Red circles show packets, that were successfully received by the player’s Dest ination class.

 Thick green and red vertical lines show spectral scans by the source and destination respectively. These corre-
spond to calls to the get_status () method, or when the status_update () event happens. The lines
vary slightly in color to show the result of the spectral scan - lighter color means a higher detected signal level
on the corresponding channel.

* The small crosses connected with a thin green and vertical lines show the currently tuned frequency of the
source and destination respectively. The lines shift in frequency for each call to the set_configuration ()
method.

Note: Only packet transmissions are shown for other players.

Reading the specific diagram above, you can see that the source first started transmitting near channel 10. After around
3 seconds, it performed a spectral scan and shifted the frequency to channel 20. The destination on the other hand,
attempted first to unsuccessfully receive packets around channel 60. Then it performed a spectral scan at around 2

2.3. Understanding the visualizations 7

Spectrum Wars Documentation, Release 0.0.6

second mark. After the scan it tuned to the source’s channel and started to successfully receive packets. This continued
until the source jumped to channel 20, after which the destination started changing channels again in an attempt to
restore packet reception.

The bottom graph shows progress of some performance indicators: percentage of transferred payload, transmitted and
received packets. These are relative to the total payload and packet counts in the game.

2.3.2 Game visualization

One image per game is created by spectrumwars_plot in the specified output directory. Image is saved to a file
named game . png.

frequency [channel]

) 2 4 6 8 10 12
game time [s]

Similar to the upper graph in the per-player visualization, this graph shows a time-frequency diagram. The color on
the diagram shows signal level, as reported by the actual spectrum sensor, for each channel and moment in time while
the game was running.

The color bar on the right shows the mapping between the color and the specific value that would be seen by player
code at that time and channel if it called the get_status () method.

Exact time and frequency of packet transmissions of all players in the game are shown superimposed over the diagram
using small white crosses.

2.4 Scoring

At the moment, SpectrumWars doesn’t use a single scoring function. Players may be ranked by different criteria,
depending on a specific competition. Game controller currently records the following statistics for each player in a
game:

Packet loss Packet loss is defined as:

8 Chapter 2. Player’s Guide

Spectrum Wars Documentation, Release 0.0.6

Where Ntx is the total number of packets transmitted by the player’s source during the game and Nrx is the
total number of packets received by the player’s destination during the game.

Note that packets with control data in the direction from the destination to the source do not count.

Throughput Throughput is defined as:

Where Prx is the total amount of payload data received by the player’s destination in bytes and T is the duration
of the game in seconds.

self.send("hello")

5 bytes control 247 bytes payload
len("hello") Prx
- > >
"hello"ll payload

252 bytes packet size
self.get packet size()

2.5 Implementing a transceiver

The Python source code file you provide to SpectrumWars (called a player) should define two subclasses of the base
Transceiver class: one for the source (named Source) and one for the destination (named Destination).
Game controller makes one instance of the source class and one instance of the destination class.

From the standpoint of the programming interface, the source and destination classes are identical (e.g. destination
can also send data to the source). However in the game, their role differs: payload data is only sent from the source
to the destination. This means that statistics like packet loss and throughput which are used in ranking the players are
only counted in that direction.

The Transceiver class interface has been designed to accomodate two programming styles: procedural program-
ming and event-based programming.

This is how a simple procedural destination looks like:

class Destination (Transceiver) :
def start (self):
do some setup
self.set_configuration(...)

loop until the game ends

while True:
ask for the most recent spectrum scan and game status
status = self.get_status/()

for packet in self.recv_loop():

2.5. Implementing a transceiver 9

Spectrum Wars Documentation, Release 0.0.6

do something with queued-up packet data

And this is how an identical event-based destination looks like:

class Destination (Transceiver) :
def start (self):
do some setup
self.set_configuration(...)

def recv(self, packet):

do something with received packet data

def status_update(self, status):
do something with the updated spectrum scan

Both styles are compatible and you can use a combination of both if you wish. If you are unsure which one to use, we
recommend the procedural style.

2.5.1 Class reference

class Transceiver
You should override the following methods in the Transceiver class to create your source and destination
classes. Do not override or use any members prefixed with an underscore (_). These are for internal use only.

start ()
Called by the game controller upon the start of the game. This method can perform any set-up required by
the transceiver.

Once this method returns, the game controller’s event loop will start calling recv () and
status_update () methods as corresponding events occur. You can however prevent this method
from returning and use it to implement your own loop, as in the procedural example above. Of course,
other players will not wait until your start () returns.

If left unimplemented, this method does nothing.

recv (packet)
Called by the game controller when the transceiver receives a packet (e.g. called on the receiver side when
the transmitter side issued a send() and the packet was successfully received).

Note that you do not need to override this method for the received payload to be counted towards your
score. Overriding is only useful when you want to respond to a successfull reception of a packet or you
want to do something with the data in the packet sent by the transmitter.

packet is a RadioPacket object containing the string that was passed to send () on the transmitting
side.

If left unimplemented, this method does nothing.

status_update (srarus)
Called by the game controller periodically with updates on the state of the game.

status is a GameStatus object.
If left unimplemented, this method does nothing.

From these overriden methods you can call the following methods to control your transceiver:

10 Chapter 2. Player’s Guide

Spectrum Wars Documentation, Release 0.0.6

set_configuration (frequency, bandwidth, power)
Set up the transceiver for transmission or reception of packets on the specified central frequency, power
and bandwidth.

frequency is specified as channel number from 0 to N-1, where N is the value returned by the
get_frequency_range () method. Central frequencies of channels are hardware dependent.

bandwidth is specified as an integer specifying the radio bitrate and channel bandwidth in the interval
from O to N-1, where N is the value returned by the get_bandwidth_range () method. Exact in-
terpretation of this value is hardware dependent. Higher values always mean higher bitrates and wider
channel bandwidths.

power is specified as an integer specifying the transmission power in the interval from 0 to N-1, where N is
the value returned by the get_power_range () method. Exact interpretation of this value is hardware
dependent. Higher values always mean lower power.

See Testbed reference for interpretations of these values.

Invalid values will raise a RadioError exception.

Note: While specific meanings of these settings are hardware specific, you can assume that your receiver
and transmitter will only be able to communicate successfully if both use the same frequency and
bandwidth settings. The power setting is less critical, but higher power will usually lead to more
reliable communication.

get_configuration ()
Returns a (frequency, bandwidth, power) tuple containing the current transmission or recep-
tion configuration.

send (data=None)
Send a data packet over the air. On the reception side, the recv () method will be called upon the
reception of the packet.

data is an optional parameter that allows inclusion of an arbitrary string into the packet. On the reception
side, this string is passed to the recv () method in the data field of the RadioPacket object.

Note that the length is limited by the maximum packet size supported by the radio (as returned by
get_packet_size ()). Longer strings will raise a RadioError exception.

Upon successfull reception of the packet on the receiver side, n bytes are counted towards the player’s
score, where n = packet_size - len(data).

get_status ()
Returns the current state of the game in a GameStatus object.

recv_loop (timeout=1.)
Returns an iterator over the packets in the receive queue. Packets are returned as RadioPacket objects.

timeout specifies the receive timeout. Iteration will stop if the queue is empty and no packets have been
received for the specified number of seconds (note that floating point values < 1 are supported)

The following methods can be used to query the capabilities of the testbed. You can use them if your want to
automatically adapt your algorithm to the testbed it is running on. If you are targeting just one testbed, you can
ignore this part and look at the Testbed reference.

get_frequency_range ()
Returns the number of available frequency channels.

get_bandwidth_range ()
Returns the number of available bandwidth settings.

2.5. Implementing a transceiver 11

Spectrum Wars Documentation, Release 0.0.6

get_power_range ()
Returns the number of available transmission power settings.

get_packet_size()
Returns maximum number of bytes that can be passed to send ().

class GameStatus
The GameStatus class contains the current status of the game. The following attributes are defined:

spectrum
This attribute contains the current state of the radio spectrum.

spectrum is a list of floating point values. Each value is received power in a frequency channel in
decibels, as seen at the antenna of the spectrum sensor observing the game. Frequency channels are the
same as ones used by set_configuration (). Length of the list is equal to the value returned by
get_frequency_range (). Reported power levels are relative.

For example, if spectrum[10] == -60, that means that -60 dB of power have been seen by the sensor
on the radio channel obtained by set_configuration (10, x, vy).

Note: send () radio transmissions typically occupy several radio channels around the specified cen-
tral frequency specified by set_configuration (). Number of occupied channels depends on the
specified bitrate.

class RadioPacket
A RadioPacket object is passed to the receiving transceiver for each successfully received packet. The
following attributes are defined:

data
This attribute contains the string that was passed to the send () method on the transmitting side.

2.6 An annotated example

The examples directory in the SpectrumWars source tree contains a number of player code examples (see
it on GitHub). You are encouraged to explore the example code and study how it works. To help you,
better_cognitive.py, one of the examples, is explained step-by-step in this section.

Refer to the Class reference for details on SpectrumWars-specific method calls used. The examples also use numpy to
simplify some parts of the code. See NumPy reference for details.

Import the Transceiver base class.
from spectrumwars import Transceiver

Also import NumPy to get some convenient array functions.
import numpy as np

Two modules from the Python standard library we'll use.
import random
import time

First, let's write the code that controls our source.
class Source (Transceiver) :

We use the procedural style in this example, so we only override the
start () method. This way our code gets called right at the start of
the game. Our source will not leave this method until the game

12 Chapter 2. Player’s Guide

https://github.com/avian2/spectrumwars/tree/master/examples
https://github.com/avian2/spectrumwars/tree/master/examples
https://docs.scipy.org/doc/numpy/reference/index.html

Spectrum Wars Documentation, Release 0.0.6

ends.
def start(self):

We simply make an infinite loop. We don't need to care what happens
when the game ends - game controller takes care of cleaning up

after us.

while True:

Ignore this delay for now. Real testbeds have various delays

when sending packets or when sensing the spectrum. Sometimes it
helps to artificially slow down your algorithm.

time.sleep(.2)

self.get_status () .spectrum returns a list of received signal
strength indicators (RSSI) for all channels in the testbed.
Index into this array directly translates to the radio channel
number.

S ¥ W R W W

We convert the result to a NumPy array for convenience.
spectrum = np.array(self.get_status() .spectrum)

These two lines take the RSSI 1list and select one channel at
random from 20 channels that have the lowest signal strength.
chl = np.argsort (spectrum)

ch = chl[random.randint (0, 20)]

Now we tune the radio to the selected channel. We also select
the slowest (and most reliable) bitrate setting and the

strongest transmission power.

self.set_configuration(ch, 0, 0)

Next, we transmit 20 packets on the selected channel. We don't
add any control data to the packets, so the complete packet is
filled with payload by the game controller.
for n in xrange (20) :

self.send()

We delay a little bit the transmission of packets.
time.sleep(.05)

After 20 packets have been transmitted, our loop rolls around
for another iteration. We again check the spectrum occupancy,
select one of the channels that appear to be least occupied and
transmit another 20 packets.

The spectrum sensor has some averaging. If we would loop
immediately from self.send() to self.get_status(), the spectral
scan would still contain the trace of our own packets. Hence the
200 ms delay at the start of the loop to let our packets fall
out of the averaging window and make it possible to select the
same channel again.

S W R R W W R W W R K

Now for the destination side of the code.
class Destination (Transceiver) :

Again, destination spends the duration of the game in the start () method.
def start(self):

2.6. An annotated example 13

Spectrum Wars Documentation, Release 0.0.6

Since the first thing we do in the source is a 200 ms delay,
there is no point in trying to receive anything earlier than that.
time.sleep(.2)

Another infinite loop.
while True:

Wait a bit more to be sure that the source is transmitting

at this point and that its packets have been picket up by the
spectrum sensor.

time.sleep(.1)

Use the same method as in the source to get a NumPy array
containing RSSI values for all channels.
spectrum = np.array(self.get_status() .spectrum)

This line uses a similar argsort trick as in the source.

We want an array of channel numbers, sorted with the channel with
the highest signal strength on top.

chl = np.argsort (spectrum) [::-1]

For each channel of the top five by signal strength...
for ch in chl[:5]:

tune the radio to that channel. Set bitrate to the same
one as used by the source.

We also set the transmit power to the higher setting. However
we don't transmit anything from the destination side in this

S R W R W W

example.
self.set_configuration(ch, 0, 0)

On the selected channel, wait 200 ms for a packet.
for packet in self.recv_loop (timeout=.2):

We don't do anything with the received packet - the
source did not include any control data that would be
interesting to us.

Game controller takes care of the payload data automatically.
If a packet has been received within 200 ms, the inner for

loop rolls around and waits 200 ms for another packet.
pass

HH FH W H R R W R

If a packet has not been received for 200 ms, the outer for
loop tries with the next most occupied channel.

If reception has been unsuccessful, the while loop rolls around
and performs another spectral scan, repeating the process.

At this point, you should try running this example in the simulation a few times and check the resulting time-frequency
diagrams. Try to run it in a game competing with some other example players. Find its flaws and see how it can be
improved.

14 Chapter 2. Player’s Guide

Spectrum Wars Documentation, Release 0.0.6

2.7 Testbed reference

2.7.1 VESNA

VESNA testbed uses VESNA sensor nodes with narrow-band radios as transceivers in the 2.4 GHz band. An Ettus
Research USRP N200 is used as a spectrum sensor.

Use -t vesna to with spect rumwars_runner to use this testbed.

parameter value

Maximum packet length 252 bytes

Number of frequency channels 64

Number of bandwidth settings 4 (see Interpretation of bandwidth settings)

Number of transmission power settings | 17 (see Interpretation of transmission power settings)

Central frequency of a channel can be calculated using the following formula:

[£ = 2400.0 MHz + <chan> x 0.1 MHz

Table 2.1: Interpretation of
bandwidth settings

bandwidth | bitrate
0 50 kbps
1 100 kbps
2 200 kbps
3 400 kbps
Table 2.2
Interpretation
of transmission

power settings

power | dBm
0 0

1 -2

2 -4

3 -6

4 -8

5 -10
6 -12
7 -14
8 -16
9 -18
10 -20
11 =22
12 -24
13 -26
14 -28
15 -30
16 <-55

2.7. Testbed reference 15

Spectrum Wars Documentation, Release 0.0.6

2.7.2 Simulated testbed

Simulated testbed uses a software simulation to run the game. No special hardware is required. This is useful when
developing player code.

This testbed is used by default by spect rumwars_runner, if no —t argument is specified.

Capabilities of this testbed can be customized using the following keyword arguments (use —Okeyword=value in

the spectrumwars_runner command-line to modify their values from default):

keyword meaning default | unit
packet_size Maximum packet length 1024 bytes
frequency_range | Number of frequency channels 64
bandwidth_range | Number of bandwidth settings 10

power_range Number of transmission power settings | 10

send_delay Time for sending one packet 0.100 S

Note that the simulation of the radio environment is greatly simplified:

* A packet occupies only the channel it is sent on.

» Sending of all packets takes the same amount of time (send_delay), regardless of bandwidth setting.

* Only very simple collision detection is implemented. If transmission of two packets commences within the
send_delay of each other, the first packet will be successfully delivered to its recepient, while the second
will be discarded.

» Spectrum sensing shows higher received power on channels with recent packet transmissions.

* Transmission power setting is ignored.

For the impatient, the fast track to get started is:

¢ Check An annotated example and examples on GitHub and

 experiment with the simulator as described in Installing the simulator and Running player code.

16

Chapter 2. Player’s Guide

https://github.com/avian2/spectrumwars/tree/master/examples

CHAPTER 3

Developer’s Guide

ZeroMQ sandbox

JSONRPC | :
A multi-threaded process ; :
- Game controller -t : :
—-—>|I player 2 | !
Radio Spectrum sensor
interface interface testbed
T A specific
\ Y \ Y Y

| radio 1 || radio 2 ” radio 3 ” radio 4 | | sensor |

This part of the documentation covers parts that are interesting for testbed operators wanting to add support for their
hardware to SpectrumWars, administrators wanting to deploy SpectrumWars on their testbed and SpectrumWars de-
velopers.

3.1 Installation instructions

3.1.1 Getting the source

Up-to-date development version is available on GitHub at:
https://github.com/avian2/spectrumwars

You can download the source using the following command:

$ git clone https://github.com/avian2/spectrumwars.git

If you intend to do development, it’s best if you make your own fork of the repository on GitHub.

SpectrumWars releases are also available from PyPi.

3.1.2 Setting up the testbed

If you would like to run Spectrum Wars on real hardware, you first have to setup the testbed. Follow the instructions
in the appropriate section of Testbed-specific installation instructions.

17

https://github.com/avian2/spectrumwars
https://pypi.python.org/pypi/spectrumwars

Spectrum Wars Documentation, Release 0.0.6

Skip this step if you would only like to use Spectrum Wars with a simulated testbed.

3.1.3 Installing game controller

You need the following packages installed:
e jsonrpc2-zeromq (pip install Jjsonrpc2-zeromg —-user)
* numpy (apt-get install python-numpy)
e matplotlib (apt—-get install python-matplotlib)

To install, run:

$ cd controller
$ python setup.py install --user

To run unit tests shipped with the code:

$ python setup.py test

Note that to run the testbed-specific tests, you need to have the testbed hardware connected and working at this point.

Tests that require hardware or optional external dependencies that were not found on the system are skipped (check

the console output for any lines that say skip).

Note: If you get errors like SandboxError: Can’t find ’spectrumwars_sandbox’ in PATH,
check whether the scripts installed by setup.py are in your PATH. They are usually installed into

SHOME/ .local/bin if you used the ——user flag as suggested above.

3.1.4 Building HTML documentation

You need the following software installed to build documentation:
e Sphinx (apt—-get install python-sphinx)

To rebuild documentation run:

$ cd docs
$ make html

Index page is created at _build/html/index.html.

3.2 Testbed-specific installation instructions

3.2.1 VESNA

VESNA testbed uses VESNA sensor nodes designed by the Institute Jozef Stefan.

18 Chapter 3.

Developer’s Guide

Spectrum Wars Documentation, Release 0.0.6

Required hardware
* One USRP N200 connected over a gigabit Ethernet interface to be used as a spectrum sensor. Use default
network settings (use 192.168.10.1 for the computer’s IP)
Current setup uses SBX daughterboard, a 2.4 GHz antenna.
* VESNA sensor nodes, connected through a powered USB hub. As many as you need (two nodes per player).
Nodes should consist of a SNC core board and a SNE-ISMTV-2400 radio board.

If you need to upload firmware, you will also need a SNE-PROTO board and a Olimex ARM-USB-OCD pro-
grammer. For debugging, a serial-to-USB converter connected to VESNA’s USART1 is recommended.

Note: Asof 0.0.3, spectrumwars_runner no longer uses VESNA nodes connected over serial-to-USB convert-
ers.

Firmware compilation

Firmware has to be uploaded to VESNA sensor nodes before they can be used with Spectrum Wars. Firmware source
code is stored in the firmware/ subdirectory.

You will need the ARM toolchain installed. See https://sensorlab.github.io/vesna-manual/ for instructions. These steps
assume you are using Linux and that the command line tools are properly set up.

You will also need a checkout of the vesna—-drivers repository. Current packet driver in the master branch is
very unstable and unsuitable to be used with this firmware. It is recommended that you use the spectrumwars
branch from the following repository:

https://github.com/avian2/vesna-drivers

First make sure that the VESNALIB_LOCATION in the Makefile points to the directory containing the
vesna-drivers git repository:

$ cd firmware
$ grep VESNALIB_LOCATION= Makefile

To compile the firmware run:

‘$ make

To upload the firmware, make sure you have the Olimex ARM-USB-OCD connected to the node and run:

’$ make install

To test the firmware, connect two nodes using the mini-USB connector and run:

$ cd ../controller
$ python setup.py test -s tests.test_radio

Note: In case of problems, there are some debugging options available on top of vsndriversconf.h. See also
Firmware interface.

3.2. Testbed-specific installation instructions 19

https://sensorlab.github.io/vesna-manual/
https://github.com/avian2/vesna-drivers

Spectrum Wars Documentation, Release 0.0.6

Additional dependencies for game controller
In addition to packages listed in Installation instructions, the following additional packages are required to use Spec-
trum Wars game controller with the VESNA testbed:

e GNU Radio with UHD (GNU Radio version 3.7.5.1 is known to work) - http://gnuradio.org

* gr-specest - https://github.com/avian2/gr-specest

* pyudev (apt—get install python-pyudev)

 pyserial (apt—get install python-serialorpip install pyserial --user)

Also, make sure that /dev/ttyACMxx devices are accessible to the user running the game controller. Typically, this
requires adding the user to the dialout group. For example:

‘# adduser myuser dialout

3.3 Firmware interface

In VESNA implementation of the SpectrumWars game, one or more sensor nodes are connected to the game controller
(e.g. a Linux running computer) over the USB.

USB carries a simulated serial line. Normally, the SpectrumWars firmware uses VESNA’s mini-USB interface to
expose a standard USB CDC endpoint identified by product string “VESNA SpectrumWars radio” (Linux typically
associates a device file named /dev/ttyACMx with these endpoints).

Alternatively, a setting in vsndriversconf .h allows compilation of firmware that uses RS-232 serial line instead
of USB CDC. In this case, the firmware’s interface is exposed on VESNA’s USART1 connector (115200 baud, 8 data
bits, 1 stop bit, no parity). A serial-to-USB converter can be used to connect such a node to the game controller.
Serial-to-USB converters are usually associated with /dev/ttyUSBx device files on Linux.

The testbed controller controls the sensor node using a terse, ASCII base protocol. Commands are kept short to keep
the protocol reasonably fast even when used over a relatively slow serial line. ASCII has been chosen over a binary
protocol to aid in debugging (i.e. the node can be controlled manually using a standard serial terminal for development
and debugging purposes)

Protocol consists of atomic messages: commands (sent from the controller to the node) and responses (sent from the
node to the controller). Each message starts with a unique ASCII alphabet character denoting the type of the message,
has optional space separated parameters and ends with ASCII line feed character (“\n”).

Following commands can be sent from the controller to the node:

a <address> Set the radio address. <address> is a hexadecimal integer in the range 0-255 containing the MAC
address. Node will only receive packets addressed at the configured MAC address and will silently ignore
others.

¢ <chan> <bw> <power> Set the radio channel, bandwidth and power. Parameters are hexadecimal integers with the
following meanigs:

<chan> radio frequency channel to tune to. Valid channels are from O to 255. Central frequency is calculated
using the following formula:

] f = 2400.0 MHz + <chan> x 0.1 MHz

<bw> channel bandwidth setting to use, starting with 0. This setting affects the channel filter and modem bitrate
according to the following table:

20 Chapter 3. Developer’s Guide

http://gnuradio.org
https://github.com/avian2/gr-specest

Spectrum Wars Documentation, Release 0.0.6

<bws> | bitrate [kbps] | channel filter [kHz]
0 50 100
1 100 200
2 200 400
3 400 800

<power> power amplifier setting to use, starting with 0. This setting affects the transmission power according
to the following table:

<power> | transmit power [dBm]
0 0

1 -2

2 -4

3 -6

4 -8

5 -10
6 -12
7 -14

8 -16

9 -18
10 -20
11 =22
12 -24
13 -26
14 -28
15 -30
16 <-55

Regardless of the settings, minimum-shift keying modulation is used.

t <address> <data> Transmit a packet using the previously set radio parameters.

<address> is a hexadecimal integer in the range 0-255 containing the MAC address of the recipient.

<data> is a hexadecimal string containing the data to be transmitted in the packet. Two hexadecimal digits per
byte. The length of the string can be between 1 and 252 bytes.

For example, sending packet with ASCII content “hello” to address 1:

t 01 68656c6c6f

Node can respond with the following responses:

O Last command was successfully executed.

E <message> Last command resulted in error. <message> is an ASCII string describing the error.

R <data> Node received a packet. <data> is a hexadecimal string containing the data in the packet.

Radio does CRC checking in hardware and silently drops corrupted packets. Hence it is very likely that the
<data> string is identical to the one passed to the corresponding t command.

Any messages not conforming to this response format should be ignored by the controller. In practice, nodes can emit
additional debugging information over this channel (see settings in vsndriversconf.h)

By default, the node’s radio is kept in receive mode. Receive mode is temporarily turned off during reconfiguration.
After receiving a transmit command, the node switches the radio to transmit mode, transmits the single packet and
switches back to receive mode.

3.3. Firmware interface

21

https://en.wikipedia.org/wiki/Minimum-shift_keying

Spectrum Wars Documentation, Release 0.0.6

Testbed controller node 1 node 2 Testbed controller
=%>>a 1«
>>O<<L — »a 2«'

! ""“"----..___R_»C 111« _f!---—--._______:fO«

: >>O<<t] Co»c11lle —
‘u »t 2 {]1{3203% — "‘# »Oe
)}C_)_gg__---—---"""; %ﬁ*‘"u »R 010203«
: : : T

D radio in RX mode
! radio in TX mode

3.4 Adding support for a new testbed

To add support for a new testbed, the following tasks need to be done:

Add testbed specific code blocks Add a module with the name like spect rumwars.testbed.xxx. This mod-
ule should define two classes:

e Testbed, a subclass of TestbedBase, and
¢ Radio, a subclass of RadioBase.

Add testbed specific unit tests Add tests to a Python file with the name like tests/test_xxx.py. Please
make the tests automatically skip themselves if the testbed-specific hardware is not connected (e.g. raise the
unittest.SkipTest exception)

Add testbed documentation Add testbed documentation for players to docs/reference.rst. Add any testbed-
specific installation instructions to docs/installtestbed. rst.

3.4.1 Class reference

class Testbed
Testbed objects represent a physical testbed that is used to run a game. Unless stated otherwise, subclasses
should override all of the methods and attributes described below.

22 Chapter 3. Developer’s Guide

Spectrum Wars Documentation, Release 0.0.6

The class constructor can take optional string-typed keyword arguments. These can be specified in
spectrumwars_runner using the —O arguments.

RADIO_CLASS
Should be set to the subclass of the RadioBase class that is used by the testbed (i.e. Radio in the
testbed’s module)

get_radio_pair()
Returns a rxradio, txradio tuple. rxradio and txradio should be instances of
RADIO_CLASS.

This method is called multiple times by the game controller, once for each player to obtain the interfaces
to player’s radios. It is called before the game starts, and before the call to start ().

start ()
Called once, immediately before the start of the game.

stop ()
Called after the game concluded. This method should perform any clean-up tasks required by the testbed
(e.g. stopping any threads started by start ().

get_frequency_range ()
Returns the number of frequency channels available to player’s code. The value returned should not change
during the lifetime of the object.

Corresponds to Transceiver.get_frequency_range ().

get_bandwidth_range ()
Returns the number of bandwidth settings available to player’s code. The value returned should not change
during the lifetime of the object.

Corresponds to Transceiver.get_bandwidth_range ().

get_power_range ()
Returns the number of transmission power settings available to player’s code. The value returned should
not change during the lifetime of the object.

Corresponds to Transceiver.get_power_range ().

get_spectrum/()
Returns the current state of the radio spectrum as a list of floating point values.

The value returned by this method gets assigned to GameStatus. spectrum.
See also usrp_sensing.SpectrumSensor.

time ()
Returns the current testbed time in seconds since epoch as a floating point number. Selection of an epoch
does not matter. Game controller requires only that time increases monotonically.

By default it returns t ime . t ime (), which should be sufficient for most testbeds.

class Radio
Radio objects represent a player’s interface to a single transceiver. Unless stated otherwise, subclasses should
override all of the methods described below.

PACKET_SIZE
Set to the maximum length of a string that can be passed to the send () method.

Approximately corresponds to Transceiver.get_packet_size (). Game controller adds a header
to separate control data from payload which adds an overhead of a few bytes. Because of this, the player
visible maximum packet size will be lower.

3.4. Adding support for a new testbed 23

Spectrum Wars Documentation, Release 0.0.6

set_configuration (frequency, bandwidth, power)
Set up the transceiver for transmission or reception of packets on the specified central frequency, power
and bandwidth.

frequency is specified as channel number from 0 to N-1, where N is the value returned by the
Testbed.get_frequency_range () method.

bandwidth is specified as an integer specifying the radio bitrate and channel bandwidth in the interval
from O to N-1, where N is the value returned by the Testbed. get_bandwidth range () method.
Higher values mean higher bitrates and wider channel bandwidths.

power is specified as an integer specifying the transmission power in the interval from 0 to N-1, where
N is the value returned by the Testbed. get_power._range () method. Higher values mean lower
power.

Corresponds to Transceiver.set_configuration().

binsend (bindata)
Send a data packet over the air.

bindata is a binary string with the data to be included into the packet. Length of bindata can be up
to PACKET SIZE.

Corresponds to Transceiver.send (). Note that the game controller packs the packet with payload,
so bindata will not be identical to the data string passed to Transceiver. send ().

binrecv (timeout=None)
Return a packet from the receive queue.

timeout specifies the receive timeout in seconds. If no packet is received within the timeout interval, the
method raises RadioTimeout exception.

Upon successfull reception, the method should return a binary string. The returned string should be equal
to the bindata parameter that was passed to the corresponding send () call.

Note: There is no way for the Radio class to push packets towards the game controller. Instead, the
game controller polls the radio for received packets by calling recv () method, as instructed by player’s
code. Hence it is in most cases necessary that the actual packet reception happens in another thread
(started typically from Testbed.start ()) and that the received packets are held in a queue until the
next recv () call.

Corresponds to Transceiver.recv (). Note that the game controller unpacks the payload from the
packet before passing itto Transceiver.recv().

class usrp_sensing.SpectrumSensor (base_hz, step_hz, nchannels, time_window=200e-3, gain=10)

usrp_sensing.SpectrumSensor is a simple, reusable spectrum sensor implementation using a USRP
device.

The sensing algorithm is inspired by a real-time signal analyzer. The recorded samples are converted into power
spectral density using continuous end-to-end FFTs with no blind time (and no overlap of the FFT windows).
The spectral power density is then averaged over a time window.

The algorithm is very CPU intensive. Using a 2.7 GHz CPU, it will be able to sense at most 64 channels (even
if USRP frontend bandwidth would allow for more).

Sensing in this way is necessary because the radios usually have a very low duty cycle (e.g. a “while True:
send()” has only around 10% duty cycle on the VESNA testbed). If we would only take one sample the spectrum
when players request it, it would mostly appear empty. Hence the need to take a moving average if sensing is to
be useful for detecting player transmissions.

24

Chapter 3. Developer’s Guide

Spectrum Wars Documentation, Release 0.0.6

base_hz is the lower bound of the frequency band used in the game in hertz. step_hz is the width of each channel.
nchannels is the number of channels used in the game. The values for these parameters should be chosen so that
the channel frequencies correspond to the channels used by the testbed’s Radio class:

——————————————————————————————— > frequency (Hz)

o=t +———7
[0] 1 | ... | n | (channels used in the game)
+———ft———+ +———

|————— | <— step_hz % nchannels

base_hz

time_window defines the length of the moving average filter in seconds. The value depends on how often
players can look up the current state of the spectrum. In most cases it should be longer than the period of
Transceliver.status_update () events in the event-based model.

start ()
Start the worker thread. Should be called before first call to get_ spectrum ()

stop ()
Stop the worker thread.

get_spectrum/()
Returns the current state of the radio spectrum as a list of floating point values. Length of the list is equal
to nchannels.

The value returned by this method can be directly used as the return value of
Testbed.get_spectrum().

3.4. Adding support for a new testbed 25

Spectrum Wars Documentation, Release 0.0.6

3.5 Implementation notes

testbed specific : i + sandbox

[GameController]

SpectrumSensor
+ Game

Testbed / \p Sandbox
PlayerResult

PlayerInstance

l SandboxPlayer l

SandboxInstance

GameRPCServer RPCClient -«—— Transceiver

* 64 channels is a very generous portion of the spectrum for this game. A single channel could in theory accomo-

date 10 players with very little interferrence.

Currently, spectrumwars_runner runs player’s code in a separate processes (provided by
spectrumwars_sandbox executable). The processes communicate through ZeroMQ JSON RPC. This pro-
vides some isolation between players and the game controller. It prevents simple ways of cheating that would
be possible if code would share the same Python interpreter. It also gracefully handles infinite loops and most
accidental errors.

This is not, however, robust against more sophisticated malicious code. There is currently nothing preventing
one user from accessing the RPC interface inteded for another user. There is also nothing preventing player’s
code from accessing the network, filesystem or consuming excessive amounts of memory. These limitations
must be implemented on the operating system level and current code makes no attempt to implement them.

In the future, more sophisticated sandbox methods might be implemented (e.g. running player’s code in a virtual
host). Since all communication between player’s code in Transceiver class and the game controller already
occurs over RPC, this should not require further modifications to the game controller.

Using sensor nodes connected directly over USB (instead of using serial-to-USB converters) greatly simplifies
the setup - apart from a powered USB hub, there is no need for having a converter plus a separate power supply
for each node.

However, USB CDC implementation on VESNA is still prone to occasional data loss. This is visible as errors
in communication between the game controller and the radio (e.g. RadioTimeout exceptions or truncated
packet payload). At the moment this is rare enough for direct USB connection to be considered usable in
practice.

I believe that in the final user interface for this game, it is crucial that both console log of the running game and
the visualized timeline are presented to each player. Without this kind of feedback it is very hard to develop a

26

Chapter 3. Developer’s Guide

Spectrum Wars Documentation, Release 0.0.6

working algorith.

» There is no concept of radio power usage, battery level, etc. as discussed in the original design document. I
believe these are unnecessary complications and in any case would only be simulated since radios always run
on external power. If the aim is to encourage players to conserve power, this can be achieved with appropriate
scoring function (e.g. give negative score for excessive number of transmitted packets or high transmission
power)

* There is no scoring function defined at the moment.

* There is no backchannel communication between the player’s classes implemented. I believe this is an unneces-
sary complication and current experience shows that it is quite simple to use data in the packet to communicate
between the nodes. This is also a more realistic scenario.

3.5. Implementation notes 27

Spectrum Wars Documentation, Release 0.0.6

28 Chapter 3. Developer’s Guide

CHAPTER 4

Indices and tables

¢ genindex
* modindex

e search

29

Spectrum Wars Documentation, Release 0.0.6

30 Chapter 4. Indices and tables

Index

B

binrecv() (Radio method), 24
binsend() (Radio method), 24

D

data (RadioPacket attribute), 12

G

GameStatus (built-in class), 12
get_bandwidth_range() (Testbed method), 23
get_bandwidth_range() (Transceiver method), 11
get_configuration() (Transceiver method), 11
get_frequency_range() (Testbed method), 23
get_frequency_range() (Transceiver method), 11
get_packet_size() (Transceiver method), 12
get_power_range() (Testbed method), 23
get_power_range() (Transceiver method), 11
get_radio_pair() (Testbed method), 23
get_spectrum() (Testbed method), 23

get_spectrum() (usrp_sensing.SpectrumSensor method),

25
get_status() (Transceiver method), 11

P

PACKET_SIZE (Radio attribute), 23

R

Radio (built-in class), 23
RADIO_CLASS (Testbed attribute), 23
RadioPacket (built-in class), 12

recv() (Transceiver method), 10
recv_loop() (Transceiver method), 11

S

send() (Transceiver method), 11
set_configuration() (Radio method), 23
set_configuration() (Transceiver method), 10
spectrum (GameStatus attribute), 12

start() (Testbed method), 23

start() (Transceiver method), 10

start() (usrp_sensing.SpectrumSensor method), 25
status_update() (Transceiver method), 10

stop() (Testbed method), 23

stop() (usrp_sensing.SpectrumSensor method), 25

T

Testbed (built-in class), 22
time() (Testbed method), 23
Transceiver (built-in class), 10

U

usrp_sensing.SpectrumSensor (built-in class), 24

31

	Introduction
	Overview of the game

	Player's Guide
	Installing the simulator
	Running player code
	Understanding the visualizations
	Player's visualization
	Game visualization

	Scoring
	Implementing a transceiver
	Class reference

	An annotated example
	Testbed reference
	VESNA
	Simulated testbed

	Developer's Guide
	Installation instructions
	Getting the source
	Setting up the testbed
	Installing game controller
	Building HTML documentation

	Testbed-specific installation instructions
	VESNA

	Firmware interface
	Adding support for a new testbed
	Class reference

	Implementation notes

	Indices and tables

