

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

General Functions

Peak shapes

The following functions are useful when generating peaks with various shapes. See the examples for using them during peak fitting for instance.

gaussiennes(amplitude::Array{Float64},centre::Array{Float64},hwhm::Array{Float64},x::Array{Float64};style::String = "None")
lorentziennes(amplitude::Array{Float64},centre::Array{Float64},hwhm::Array{Float64},x::Array{Float64};style::String = "None")
pearson7(a1::Array{Float64},a2::Array{Float64},a3::Array{Float64},a4::Array{Float64},x::Array{Float64};style::String = "None")
pseudovoigts(amplitude::Array{Float64},centre::Array{Float64},hwhm::Array{Float64},lorentzian_fraction::Array{Float64},x::Array{Float64};style::String = "None")
normal_dist(nd_amplitudes::Array{Float64},nd_centres::Array{Float64},nd_sigmas::Array{Float64},x::Array{Float64})

Peak measurement

peakmeas(x::Array{Float64},y::Array{Float64};smoothing = "yes", filter = :SavitzkyGolay, M=5,N=2,y_smo_out=false)

Integration

Spectra.jl provides functions that allow one to integrate the area under a region of a spectrum, or to calculate the area under Gaussian, Lorentzian or other bands.

trapz{Tx<:Number, Ty<:Number}(x::Vector{Tx}, y::Vector{Ty})
bandarea(Amplitude::Array{Float64},HWHM::Array{Float64}; peak_shape = "Gaussian", error_switch = "no", eseAmplitude::Array{Float64} = [0.0], eseHWHM::Array{Float64} = [0.0])

Polynomials

poly(p::Vector{Float64},x::Array{Float64})
polyfit(x::Array{Float64}, y::Array{Float64}, n::Int64)

Splines

Not all the splines packages provide the same performances for data smoothing and interpolation. By experience, the Dierckx spline package (“Dspline” option in the baseline() function) provides a good starting point, but is not as usefull as other spline packages.

The csaps function of Matlab uses the SMOOTH Fortran library, and provides better smoothing capabilities for noisy data. Similarly, the GCVSPL Fortran package from Woltring (1986) also provides a very robust way to smooth and interpolate noisy data.

Starting from Spectra v0.3.4, the gcvspline Python module (https://github.com/charlesll/gcvspline) is used in the smooth and baseline function. It behaves exactly as the previous wrapping of GCVSPL.f in Julia, such that this should be transparent to users.

Installation

General Instructions

Two ways of using Spectra.jl: [1] with using a cloud-computing approach and [2] with installing everything on your computer.

[1] JuliaBox (https://www.juliabox.org/) allows you to run Julia in your browser. You still need to add Spectra.jl. To do so, run a notebook, and in the first instance, type

Pkg.add("Spectra")

Everything shoul install without trouble. Requirements in Spectra.jl are extensive and will provide you all the packages needed by Spectra.jl’s functions and examples.

[2] You can download the current version of Julia and follow the installation instruction here: http://julialang.org/downloads/ . Then, run

Pkg.add("Spectra")

In the Julia shell. Please note that before installing Spectra.jl, the installation of the MatPlotLib library for Python is strongly recommended. Furthermore, some baseline codes call the SciKit learn library, again belonging to the Python ecosystem. If not already present in your system, those library should be automatically installed when trying to call for the first time Spectra. However, another good option is to install a Python scientific distribution before installing Julia. I recommend Anaconda Python that provides an easy-to-install and nice, fully-featured Python distribution with MatplotLib, SciPy, Numpy and SciKit learn. Follow installation instructions here:

https://www.continuum.io/downloads

Windows users

v0.3.4 and higher

The gcvspline Python library is now used and should allow one to run smoothly Spectra in a Windows environment.

Prior to v0.3.4:

For Windows users, versions of Spectra.jl < 0.3.4 will issue a WARNING message saying that GCVSPL.F is not compiled automatically upon installation, and will point to this page. You will need to compile GCVSPL.F by yourself for now. If you want to avoid this step, I recommand using JuliaBox.org where everything can run smoothly, or using Julia inside a free virtualbox Linux installation (https://www.virtualbox.org/). This makes things pretty easy. If you want to run Julia directly on your Windows system, you can try the following steps to compile GCVSPL.F with cygwin:

1) create bin32 and bin64 folders in the /deps forlder;

2) compile GCVSPL.F as a shared libgcvspl.dll library in ./bin32 or ./bin64. Using cygwin, this can be done as:

i686-w64-mingw32-gfortran -o bin32/libgcvspl.dll -O3 -shared -static-libgfortran -static-libgcc src/gcvspline/*.f

x86_64-w64-mingw32-gfortran -o bin64/libgcvspl.dll -O3 -shared -static-libgfortran -static-libgcc src/gcvspline/*.f

3) if this is not working, you may want to also change the winpath in Spectra.jl, see /Spectra/src/Spectra.jl line 38.

I never tested those steps because I do not have a Windows system available, so I am not sure if they fully work. You might have to tweak things a little bit. This will be corrected soon. If anybody would like to help me with that, please submit a pull request of a working Windows installation procedure.

Another solution: at the moment, we are working on a port to Python of GCVspline, this will solve the problem for Windows users as we will simply PyCall the GCVspline library.

Error messages?

If you see various errors messages when trying to install Spectra or after a Pkg.update() command, please see the Tips section!

Machine Learning Regression

Spectra offers a basic access to some machine learning algorithms from the SciKit Learn python library. In addition to using them for baseline fitting, you can also use them to predict an output. For instance, if you have several spectra that you pre-processed with Spectra, you can organise them with each spectra as a row of a large array. Each column will be a channel, or also called a feature, that the machine learning algorithms will look at. From this, Spectra allows you to call

- the Support Vector or Kernel Ridge regression algorithms from SciKit Learn;

- the Linear Regression algorithm from SciKit Learn.

With those algorithm, you can predict a y value (for instance, the concentration of a component that seems to affect the spectral shape) that is related to changes in your spectra. This is done with the mlregressor function. A more extensive use of the SciKit Learn algorithms can be done directly with calling SciKit Learn using a PyCall instance.

mlregressor(x::Array{Float64},y::Array{Float64},algorithm::AbstractString;X_test::Array{Float64}=[0.0],y_test::Array{Float64}=[0.0],test_sz=0.3,scaler="MinMaxScaler",rand_state=42,param_grid_kr = Dict("alpha"=> [1e1, 1e0, 0.5, 0.1, 5e-2, 1e-2, 5e-3, 1e-3],"gamma"=> logspace(-4, 4, 9)),param_grid_svm=Dict("C"=> [1e0, 2e0, 5e0, 1e1, 5e1, 1e2, 5e2, 1e3, 5e3, 1e4, 5e4, 1e5],"gamma"=> logspace(-4, 4, 9)),user_kernel="rbf")

Peak fitting

Model adjustment

Peak fitting is done with the JuMP framework (https://jump.readthedocs.org/en/latest/). Spectra.jl actually does not provide any peak fitting capacities by itself, but the combination of its functionality with JuMP helps making fitting procedure quite easy. An example is visible in the example section of Spectra.jl.

One goal of Spectra is to promote the use of global optimisation models, where peak parameters are actually calculated from variation in other parameters (chemistry, temperature, etc.), or are shared between several spectra. I will provide very soon an example of such an approach. It can be implemented in a few lines of code with combining Spectra and JuMP, and has the advantage of greatly reducing the errors of the fits.

error calculation with bootstrapping

Error calculation can be done with using bootstrapping. Spectra provides a function that allows generating K new datasetes, by resampling the existing dataset in a non-parametric or parametric way.

bootsample(x::Array{Float64}, y::Array{Float64}; boottype::String = "np", ese::Array{Float64} = [0.0])
bootperf(params_boot::Array{Float64}; plotting::String = "True", parameter::Int64 = 1, feature::Int64 = 1, histogram_step::Int64 = 100, savefigures::String = "False", save_bootrecord::String = "Boot_record.pdf", save_histogram::String = "Boot_histogram.pdf")

For further details, see the following references

Efron, B. 1979. “Bootstrap Methods: Another Look at the Jackknife.” The Annals of Statistics 7 (1): 1–26.

Efron, Bradley. 1981. “Nonparametric Estimates of Standard Error: The Jackknife, the Bootstrap and Other Methods.” Biometrika 68 (3): 589–99. doi:10.1093/biomet/68.3.589.

Efron, B., and Tibshirani, R. 1994. An Introduction to the Bootstrap. CRC press.

Pre-Processing

Temperature and frequency corrections for Raman spectra

Raman spectra can be corrected from temperature and excitation line effects using this function.

tlcorrection(data::Array{Float64},temp::Float64,wave::Float64;correction="long",normalisation="area",density=2210.0)

Removing cristal or epoxy signals

Spectra.jl contains a function that helps removing the signal from crystals in the Raman spectra of glasses. Two spectra are needed: that of the mixed crystal+glass signals, and that of the pure cristal signals. Please note that it also can be used to remove signal from epoxy.

This function is still under test and experimental. Further details on the code will be provided soon. For now, only a short description is provided.

 ctxremoval(liste,in_path,out_path,roi_all;input_properties=('\t',0),algorithm="FastICA",plot_intermediate_show = "no",plot_mixing_show = "yes",plot_final_show = "no",save_fig_switch = "yes", shutdown = 1300.,scaling=100.)

Smoothing signals

Smoothing the signal is achieved with the smooth function. Use of the GCVSplineNSmooth algorithm from the gcvspline Python library is recommended. It seems to give very reasonable smoothing signals. In the present call of GCVSplineNSmooth, errors as sqrt(y) are assumed.

 smooth(x::Array{Float64},y::Array{Float64};filter=:SavitzkyGolay,M=5,N=2)

Baseline subtraction

Baseline subtraction can be made with using the baseline function:

baseline(x::Array{Float64},y::Array{Float64},roi::Array{Float64},basetype::AbstractString;p=1.0,SplOrder=3,roi_out="no")

Frequency shifts correction

In case your spectra are shifted from a reference value, Spectra offers several functions that allows you to correct it from this shift.

To correct a spectrum from a shift of P wavenumbers, you can simply call:

xshift_direct(original_x::Array{Float64}, original_y::Array{Float64}, p::Float64)

Sometime, two signals from the same mineral show a shift in the X axis, while they share a common X axis. To correct from such thing, you can use the function:

xshift_correction(full_x::Array{Float64}, full_shifted_y::Array{Float64}, ref_x::Array{Float64}, ref_y::Array{Float64},shifted_y::Array{Float64})

RamEau

Introductory notes

The RAMEAU function in Spectra is mostly experimental. For a robust use of internal calibrations, please see the rampy.rameau() class built in Python which is more up to date. This function may simply disappear in future versions of Spectra

This is the Julia version of the RamEau software. It allows quantification of the water content of glasses following the internal and external protocols described in:

Thomas, R. 2000. “Determination of Water Contents of Granite Melt Inclusions by Confocal Laser Raman Microprobe Spectroscopy.” American Mineralogist 85 (5-6): 868–72.

Behrens, Harald, Jacques Roux, Daniel R. Neuville, and Michael Siemann. 2006. “Quantification of Dissolved H2O in Silicate Glasses Using Confocal microRaman Spectroscopy.” Chemical Geology 229 (1-3): 96–112. doi:10.1016/j.chemgeo.2006.01.014.

Le Losq, Neuville, Moretti, Roux, 2012. Determination of water content in silicate glasses using Raman spectrometry: Implications for the study of explosive volcanism. American Mineralogist 97, 779-790.

The Rameau Pascal/fortran initial software is available through the american mineralogist website. This version goes much beyond the previous version. It allows using various modes for internal calibration, and further allows using external calibrations too.

Internal calibration mode refers to the technic of using the silicate peaks to scale the water peak, before relating this ratio to the sample water concentration. External calibrations directly refer the integrated intensity of peak height of the O-H stretching band to the water content, through the use of a standard glass for which this relationship is well constrained. It assumes a linear relationship between the water peak height and the glass water content. See the references listed above for more details.

Please read carefully the following description, and after that jump into the examples section of Spectra.jl to see Spectra.rameau in action on a fraction of the dataset published in 2012. For the full dataset, please consult the American Mineralogist website. To conclude, any bug report, contributions on Github and suggestions will help improving this software and Spectra.jl in general. So you’re very welcome to provide any feedback!

NOTE ON ABREVIATIONS: Rws in the following refers to the ratio between the area of the water peak and that of the silicate bands.

Function rameau

rameau(paths::Tuple,switches::Tuple;input_properties=('\t',0),prediction_coef=[0.0059;0.0005],temperature=23.0,laser=532.0,lb_break=1600.,hb_start=2600.,roi_hf_external = [3000. 3100.; 3800. 3900.],basetype="gcvspline",mmap_switch=true)

Quick examples

In this example, the Julia code and the csv liste (myliste.csv) of spectra are in the working folder, the data are in ./raw/, and we want to output the corrected spectra and the figures in the ./treated/ and ./figures/ folders. So we set things like:

in_liste: "./myliste.csv"

in_path = "./raw/"

out_path = "./treated/"

fig_path= "./figures/"

rws_save_file = "./treated/"

rws_save_fig = "./figures/mycalibration.pdf"

paths = (in_liste,in_path,out_path,fig_path,rws_save_file,rws_save_fig)

Now, for performing an internal calibration as explained in Le Losq et al. (2012), enter:

switches = ("internal",""yes","no","yes")

and call Rameau:

rameau(paths,switches,input_properties = ('\t',0))

This will allow you to get your prediction coefficient prediction_coef With this knowledge, you can predict values from the spectra of new glasses with the names in “myliste_newglasses.csv” with using the commands:

in_liste = "myliste_newglasses.csv"

switches = ("internal",""no","no","yes")

rameau(paths,switches,prediction_coef = 0.0059, input_properties = ('\t',0))

For an external calibration, you need a standard glass with known water concentration. You also need the knowledge of the densities of the standard and sample glasses. Then, the following commands allow you to calculate the water content of your sample with using the protocol described in Thomas et al. (2008; see also references cited therein):

in_liste: "./myliste.csv"

in_path = "./raw/"

out_path = "./treated/"

fig_path= "./figures/"

rws_save_file = "water_contents_external_calibration.csv" # this will save the output values

rws_save_fig = "" # not used in the external mode

paths = (in_liste,in_path,out_path,fig_path,rws_save_file,rws_save_fig)

switches = ("external","no","no","no")

rameau(paths,switches,input_properties = ('\t',0))

Input file liste

The great news about RamEau in Julia is that you can work your file liste in Excel, as it is now a CSV file. It makes it much more pleasant to use, and readable.

If using the “internal” mode, this file liste MUST contain:

column 1: the file name and extensions, e.g. myspectrum.txt;

column 2: the name of your product;

column 3: the water content, if known. If unknow, put 0.0;

column 4: the spline coefficient for the silicate part. Note: this value is used in the single baseline procedure for the whole spectrum;

column 5: the spline coefficient for the water part, in case you use the experimental mode with the double baseline fitting procedure (experimental? = "yes" + temperature_laser_correction? = "yes");

columns 6 to end: the beginning and ends of the BIRs, paired. Please keep the same number of BIRs for all the spectra in one batch.

If using the “external” mode, this file liste MUST contain:

column 1: the file name and extensions of the references, e.g. myreference.txt;

column 2: the name of your references;

column 3: the water content of the references, in wt%;

column 4: the density of the references, in kg m-3;

column 5: the file name and extensions of the samples, e.g. mysample.txt;

column 6: the name of your samples;

column 7: the estimated density of your samples, in kg m-3.

WARNING: BE SURE THAT THE NUMBER YOU PROVIDE ARE FLOAT NUMBER!

Temperature and excitation line effects corrections

The “internal” mode uses the “long” mode of the tlcorrection function, whereas the “external” mode uses the “hehlen”, which takes into account the sample density (see tlcorrection function documentation). This allows to intrisically correct the intensity from density effects.

Experimental mode

The experimental mode contains code for solutions that are currently under development. You may prefer not using it.

However, an interesting feature is provided there, the “double” mode:

When setting the switch experimental? to “double” and combining it with the switch tlcorrection “yes”, it allows you to use different smoothing coefficients for the silicate and water signals. In order to use it, you must set the wavenumber of the first ROI for the water band above 2500 cm-1, and the last fo the silicate band below 1600 cm-1 (see the example file for instance). The two different smoothing coefficients are indicated in the dataliste csv file.

KRregression baseline fitting vs GCV splines

This is to be used with the internal calibration mode.

Back in 2012 we mostly used the Generalized Cross-Validated splines for fitting the spectral background. However, recent developments show that KRregression or SVMregression may provid better results with less headache for the user (not need to tune the spline coefficient parameter). From experience, using a spline carefully adjusted provides better result. However, using KRregression may provide good results without headache to adjust any parameter. For now this is an experimental feature.

Updates Spetember 2016: A well-adjusted gcvspline usually outperforms the KRregression mode. I advise sticking with the gcvspline for now.

References

Baek, S.-J., A. Park, Y.-J. Ahn, and J. Choo 2015. Baseline correction using asymmetrically reweighted penalized least squares smoothing, Analyst, 140(1), 250–257, doi:10.1039/C4AN01061B.

Behrens, Harald, Jacques Roux, Daniel R. Neuville, and Michael Siemann. 2006. “Quantification of Dissolved H2O in Silicate Glasses Using Confocal microRaman Spectroscopy.” Chemical Geology 229 (1-3): 96–112. doi:10.1016/j.chemgeo.2006.01.014.

Brooker et al. 1988 Assessment of correction procedures for reduction of Raman spectra. Journal of Raman Spectroscopy 19(2), 71-78.

Efron, B. 1979. “Bootstrap Methods: Another Look at the Jackknife.” The Annals of Statistics 7 (1): 1–26.

Efron, Bradley. 1981. “Nonparametric Estimates of Standard Error: The Jackknife, the Bootstrap and Other Methods.” Biometrika 68 (3): 589–99. doi:10.1093/biomet/68.3.589.

Efron, B., and Tibshirani, R. 1994. An Introduction to the Bootstrap. CRC press.

Eilers, P. H. C. 2003. A Perfect Smoother, Anal. Chem., 75(14), 3631–3636, doi:10.1021/ac034173t.

Eilers, P. H. C. and Boelens H. F. M., 2005. Baseline Correction with Asymmetric Least Squares Smoothing.

Galeener, F. L., and Sen, P. N. 1978. “Theory of the First-Order Vibrational Spectra of Disordered Solids.” Physical Review B 17 (4): 1928–33.

Hehlen, B. 2010. “Inter-Tetrahedra Bond Angle of Permanently Densified Silicas Extracted from Their Raman Spectra.” Journal of Physics: Condensed Matter 22 (2): 025401.

Le Losq, C., D. R. Neuville, R. Moretti, and J. Roux. 2012. Determination of Water Content in Silicate Glasses Using Raman Spectrometry: Implications for the Study of Explosive Volcanism. American Mineralogist 97 (5-6): 779–90. doi:10.2138/am.2012.3831.

Le Losq C., Neuville D. R., Florian P., Henderson G. S. and Massiot D., 2014, The role of Al3+ on rheology and structural changes in sodium silicate and aluminosilicate glasses and melts. Geochimica et Cosmochimica Acta 126, 495-517.

Neuville, D. R., and B. O. Mysen. 1996. “Role of Aluminium in the Silicate Network: In Situ, High-Temperature Study of Glasses and Melts on the Join SiO₂-NaAl0₂.” Geochimica et Cosmochimica Acta 60: 1727–37.

Mysen, B. O., L. W. Finger, D. Virgo, and F. A. Seifert. 1982. “Curve-Fitting of Raman Spectra of Silicate Glasses.” American Mineralogist 67: 686–95.

Shuker, Reuben, and Robert Gammon. 1970. “Raman-Scattering Selection-Rule Breaking and the Density of States in Amorphous Materials.” Physical Review Letters 25 (4): 222–25.

Thomas, R. 2000. “Determination of Water Contents of Granite Melt Inclusions by Confocal Laser Raman Microprobe Spectroscopy.” American Mineralogist 85 (5-6): 868–72.

Woltring, 1986, A FORTRAN package for generalized, cross-validatory spline smoothing and differentiation. Adv. Eng. Softw. 8, 104-113.

Tips

In this section are listed various tips for the use of Julia and Spectra:

Installation

	You need the gfortran, gcc and g++ compilers. ifort also works. Check that you have them on your system. Even Ubuntu does not necessary come with those compilers out of the box. If you don’t know anything about installing them, ask Google: “Installing gcc/gfortran/g++ on my mac/linux/windows”

	Windows users probably need to manually compile the gcvspl.f library if they want to use the GCV spline function. This compilation is automatic on Max OSX and Linux. Please report any problem with that. I actually recommand to either use JuliaBox or to install a Linux distribution in a virtual box to smoothly run Julia and Spectra.

	If you see errors messages linked to PyCall, you may have a problem with your environment variable. To solve it, tyope the following commands in the Julia prompt:

ENV[“PYTHON”]=”“
Pkg.build(“PyCall”)

At this point it should work. If yes, you now can enter:

Pkg.add("Spectra")

Maintenance

	The Julia package ecosystem is constantly evolving, with daily changes. Because of that, it is strongly recommanded to run in the starting Julia prompt a

Pkg.update()

command every day, at the beginning of your session.

	Time to time, after running the Pkg.update() command for instance and trying to directly work with the same Julia session, you may get Warning/Error messages during the packages pre-compilation indicating a problem with Compat. To solve that, just quit the current session (exit the notebooks AND close the terminals), and open a new Julia terminal. Most of the time, this solves the problem.

Running Spectra

	Spectra is changing every week, if not every day in some case. Do not forget to Pkg.update() quite often, and check the website.

	Always be careful to enter float and integer numbers as required by the functions! They will return an error message if you do not do that.

	For the spline, do not hesitate to test a broad range in term of order of magnitudes for the smoothing parameter.

	SVMregression and KRregression will take more time as several models are tried over a broad range of hyperparameters. Therefore, it is normal that those technics require more time, up to ten to twenty minutes for treating 50 to 100 spectra.

Potential problems

	Using Julia on a Fedora Linux installed in a VirtualBox virtual machine, I encountered the issue of memory mapping not working when trying to read with readdlm/readcsv some files that where in a VirtualBox shared folder:

LoadError: SystemError: memory mapping failed: Invalid argument

This issue is solved by setting the optinal argument use_mmap = false in the readcsv/readdlm call. There is an option mmap_switch (false/true) in rameau that allows also to set use_mmap, in case you encouter this problem when calling rameau in a virtual environment.

To Do

Pre-Processing

	Adding access to the SMOOTH spline library, used by the csaps Matlab function.

Integration

	gaussianarea will change in peakarea, with the option to choose between the shape of the peak (gaussian, lorentzian, etc.) ??

	Should we think to add Simpson’s rule integration also?

	Moving Average smoothing ?

Tutorial

Tutorials are available in the examples folder of Spectra.jl (https://github.com/charlesll/Spectra.jl/tree/master/examples) and include notebooks showing how to fit peaks in a Raman spectrum of a glass after subtraction of a baseline. Another example shows how to use Spectra.jl to peak-fit Infrared spectra taken along a diffusion profile in a crystal. Further examples will be added in a very soon future!

Welcome to Spectra.jl’s documentation!

Introduction

Spectra.jl is a package aimed at helping spectroscopic (Raman, Infrared, Nuclear Magnetic Resonance, XAS…) data treatment written with the Julia programming language [http://julialang.org/]. It’s aim is to provide the simplest way to perform actions like baseline fitting and removal or peak fitting for instance, while respecting the freedom offered by data treatment through coding. Therefore, Spectra.jl is aimed to be used explicitly with other packages like JuMP [http://www.juliaopt.org/] for building models. The key is to provide functions for simplifying the life of the spectroscopist, while still leaving him all the freedom offered by treating data with a performant computer language.

Spectra.jl is particularly focused on large datasets because of the high speed of Julia’s, e.g. for performing peak fitting along Infrared diffusion profiles. For peak fitting for instance, the JuMP interface offers a very flexible yet clear way to build models, that can be solve with solvers such as Ipopt or NLopt.

Please consult this documentation to learn using Spectra, do not forget to check the Tips_ section if you have issues, and please report anything you want!

Starting Notes

Using Julia and Spectra.jl for processing your data is quite similar to Matlab, with the flexibility offered by the open-source and free character of Julia. Reading the docs is strongly recommended. A good start will be to read the docs of Julia itself [http://docs.julialang.org/en/release-0.5/].

Programming can be done locally using your browser and the IJulia notebooks [https://github.com/JuliaLang/IJulia.jl], very similar to the IPython ones. For a Matlab-like interface, you can use Atom with Juno [http://junolab.org/].

For maintaining your packages up-to-date, something critical with the fast evolution of Julia packages, I suggest running each day of Julia use the update command:

Pkg.update()

Installation of Spectra is easy:

Pkg.add("Spectra")

See the Installation section for further details, in particular for Windows users.

Any help developing and maintaining this Spectra.jl package is welcome. You can fork the project on GitHub, modify it and commit your modifications. You can also add requests and everything on Github. Please do not hesitate to do so! The functionalities available in Spectra.jl are not exhaustive, and a little help to add new ones will be more that welcome.

Citing Spectra

You can cite Spectra as

LE LOSQ, C. (2016) Spectra.jl: a Julia package for processing spectroscopic data. Zenodo. 10.5281/zenodo.53940

Index

The functions that are in Spectra.jl are listed below. See the other part of the documentation for further information.

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/comment-bright.png

_static/ajax-loader.gif

