

spec2nexus

Converts SPEC data files and scans into NeXus HDF5 files:

$ spec2nexus path/to/file/specfile.dat

Writes path/to/file/specfile.hdf5

Provides

	spec2nexus : command-line tool: Convert SPEC [http://certif.com] data files to NeXus [http://nexusformat.org] HDF5 [http://hdfgroup.org]

	extractSpecScan : command-line tool: Save columns from SPEC data file scan(s) to TSV files

	spec : library: python binding to read SPEC data files

	eznx : library: (Easy NeXus) supports writing NeXus HDF5 files using h5py

	specplot : command-line tool: plot a SPEC scan to an image file

	specplot_gallery : command-line tool: call specplot for all scans in a list of files, makes a web gallery

Package Information

	author: Pete R. Jemian

	email: prjemian@gmail.com

	copyright: 2014-2020, Pete R. Jemian

	license: Creative Commons Attribution 4.0 International Public License (see LICENSE.txt [https://prjemian.github.io/spec2nexus/license.html] file)

	URL: documentation: https://prjemian.github.io/spec2nexus/

	git: source: https://github.com/prjemian/spec2nexus

	PyPI: Distribution: https://pypi.python.org/pypi/spec2nexus/

	OpenHub: Compare open source software: https://www.openhub.net/p/spec2nexus

	version: 2021.1.11

	release: 0.g2c26a11.dirty

	published: Feb 24, 2022

Contents

	spec2nexus
	How to use spec2nexus

	show installed version

	command-line options

	source code documentation

	extractSpecScan
	How to use extractSpecScan

	Example

	source code documentation

	specplot
	How to use specplot

	Usage

	Help

	specplot_gallery
	How to use specplot_gallery: command line

	How to use specplot_gallery: periodic background task (cron)

	source code documentation

	spec2nexus.spec
	How to use spec2nexus.spec

	SPEC data files

	source code summary

	spec2nexus.charts
	source code documentation

	How to write a custom scan handling for specplot
	Overview

	Data Model

	Steps

	Examples

	Usage

	spec2nexus.eznx
	How to use spec2nexus.eznx

	NeXus HDF5 File Structure

	source code methods

	source code documentation

	spec2nexus.plugin
	Supplied spec plugin modules

	Writing a custom plugin

	Overview of the supplied spec plugins

	source code documentation

	Common Methods: spec2nexus.utils
	source code documentation

	spec2nexus.scanf
	source code documentation

	spec2nexus.singletons
	source code documentation

	spec2nexus.writer
	source code documentation

	Installation

	Required Libraries

	Optional Libraries

	Unit Testing

	Example data
	About these example data files

	Downloads

	Change History
	Production

	Development: GitHub repository

	Development: NeXpy branch

	Production: USAXS livedata

	License

Indices and tables

	Index

	Module Index

	Search Page

spec2nexus

Converts SPEC data files and scans into NeXus HDF5 files.

How to use spec2nexus

Convert all scans in a SPEC data file:

$ spec2nexus path/to/file/specfile.dat

Writes path/to/file/specfile.hdf5 (Will not
overwrite if the HDF5 exists, use the -f option
to force overwrite).

show installed version

Verify the version of the installed spec2nexus:

$ spec2nexus -v
2014.03.02

command-line options

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	 user@host ~$ spec2nexus.py -h
 usage: spec2nexus [-h] [-e HDF5_EXTENSION] [-f] [-v] [-s SCAN_LIST] [-t]
 [--quiet | --verbose]
 infile [infile ...]

 spec2nexus: Convert SPEC data file into a NeXus HDF5 file.

 positional arguments:
 infile SPEC data file name(s)

 optional arguments:
 -h, --help show this help message and exit
 -e HDF5_EXTENSION, --hdf5-extension HDF5_EXTENSION
 NeXus HDF5 output file extension, default = .hdf5
 -f, --force-overwrite
 overwrite output file if it exists
 -v, --version show program's version number and exit
 -s SCAN_LIST, --scan SCAN_LIST
 specify which scans to save, such as: -s all or -s 1
 or -s 1,2,3-5 (no spaces!), default = all
 --quiet suppress all program output (except errors), do not
 use with --verbose option
 --verbose print more program output, do not use with --quiet
 option

Note

Where’s the source code to spec2nexus?

In the source code, the spec2nexus program
is started from file nexus.py
(in the spec2nexus.nexus.main()
method, for those who look at the source code):

$ python nexus.py specfile.dat

You’re not really going to call that from the source directory, are you?
It will work, if you have put that source directory on your PYTHONPATH.

 extractSpecScan

extractSpecScan

Command line tool to extract scan data from a SPEC data file.

How to use extractSpecScan

Extract one scan from a SPEC data file:

user@host ~$ extractSpecScan data/APS_spec_data.dat -s 1 -c mr USAXS_PD I0 seconds

the usage message:

user@host ~$ extractSpecScan
usage: extractSpecScan [-h] [-v] [--nolabels] -s SCAN [SCAN ...] -c COLUMN
 [COLUMN ...] [-G] [-P] [-Q] [-V] [--quiet | --verbose]
 spec_file

the version number:

user@host ~$ extractSpecScan -v
2017.0201.0

the help message:

user@host ~$ extractSpecScan -h
usage: extractSpecScan [-h] [-v] [--nolabels] -s SCAN [SCAN ...] -c COLUMN
 [COLUMN ...] [-G] [-P] [-Q] [-V] [--quiet | --verbose]
 spec_file

Save columns from SPEC data file scan(s) to TSV files URL:
https://prjemian.github.io/spec2nexus//extractSpecScan.html v2016.1025.0

positional arguments:
 spec_file SPEC data file name(s)

optional arguments:
 -h, --help show this help message and exit
 -v, --version print version number and exit
 --nolabels do not write column labels to output file (default:
 write labels)
 -s SCAN [SCAN ...], --scan SCAN [SCAN ...]
 scan number(s) to be extracted (must specify at least
 one)
 -c COLUMN [COLUMN ...], --column COLUMN [COLUMN ...]
 column label(s) to be extracted (must specify at least
 one)
 -G report scan Geometry (#G) header information
 -P report scan Positioners (#O & #P) header information
 -Q report scan Q (#Q) header information
 -V report scan (UNICAT-style #H & #V) header information
 --quiet suppress all program output (except errors), do not
 use with --verbose option
 --verbose print more program output, do not use with --quiet
 option

Example

Extract four columns (mr, USAXS_PD, I0, seconds) from two
scans (1, 6) in a SPEC data file:

$ extractSpecScan data/APS_spec_data.dat -s 1 6 -c mr USAXS_PD I0 seconds

program: /path/to/extractSpecScan.py
read: data/APS_spec_data.dat
wrote: data/APS_spec_data_1.dat
wrote: data/APS_spec_data_6.dat

Here’s the contents of data/APS_spec_data_6.dat:

mr USAXS_PD I0 seconds
15.61017 9.0 243.0 0.3
15.61 13.0 325.0 0.3
15.60984 19.0 460.0 0.3
15.60967 30.0 609.0 0.3
15.6095 54.0 883.0 0.3
15.60934 161.0 1780.0 0.3
15.60917 499.0 3649.0 0.3
15.609 1257.0 6588.0 0.3
15.60884 2832.0 10245.0 0.3
15.60867 7294.0 13118.0 0.3
15.6085 139191.0 16527.0 0.3
15.60834 299989.0 17893.0 0.3
15.60817 299989.0 18276.0 0.3
15.608 299989.0 18240.0 0.3
15.60784 299989.0 18266.0 0.3
15.60767 299989.0 18616.0 0.3
15.6075 299989.0 19033.0 0.3
15.60734 299989.0 19036.0 0.3
15.60717 299988.0 18587.0 0.3
15.607 299989.0 17471.0 0.3
15.60684 123003.0 14814.0 0.3
15.60667 11060.0 11861.0 0.3
15.6065 2217.0 8131.0 0.3
15.60634 637.0 4269.0 0.3
15.60617 254.0 2632.0 0.3
15.606 132.0 1927.0 0.3
15.60584 79.0 1406.0 0.3
15.60567 58.0 1075.0 0.3
15.6055 32.0 695.0 0.3
15.60534 17.0 374.0 0.3
15.60517 10.0 245.0 0.3

source code documentation

 specplot

specplot

Read a SPEC data file and plot a thumbnail image.

This code can be called as a standalone program or it can be
imported into another program and called as a subroutine,
as shown in the specplot_gallery program.

The standard representation of a SPEC scan is a line plot of the
last data column versus the first data column. Any SPEC macro
which name ends with scan ([1]) will be plotted as a line plot.

A special case SPEC scan macro is the hklscan where one of the
three reciprocal space axes is scanned while the other two remain
constant. A special handler (SPEC’s hklscan macro)
is provided to pick properly the scanned
axis (not always the first column) for representation as a line plot.

Some SPEC macros scan two positioners over a grid to collect a
2-D image one pixel at a time. These scans are represented as
color-mapped images where the first two columns are the vertical
and horizontal axes and the image is color-mapped to intensity.
Any SPEC macro which name ends with mesh will be plotted as
an image plot.

[1]
scan: any scan where the last four letters converted
to lower case match scan,
such as ascan, a2scan, Escan,
tscan, uascan, FlyScan, unusual_custom_user_scan, …

Different handling can be customized for scan macros, as described in
How to write a custom scan handling for specplot.

How to use specplot

Plot a scan from one of the sample data files supplied with spec2nexus:

user@host ~$ specplot src/spec2nexus/data/APS_spec_data.dat 2 specplot.png

[image: _images/specplot.png]

Plot of scan #2 from example data file APS_spec_data.dat.

Usage

user@host ~$ specplot
usage: specplot.py [-h] specFile scan_number plotFile

Help

user@host ~$ specplot -h
usage: specplot.py [-h] specFile scan_number plotFile

read a SPEC data file and plot scan n

positional arguments:
 specFile SPEC data file name
 scan_number scan number in SPEC file
 plotFile output plot file name

optional arguments:
 -h, --help show this help message and exit

source code documentation

 specplot_gallery

specplot_gallery

Read a list of SPEC data files (or directory(s) containing SPEC data
files) and plot images of all scans. specplot_gallery
will store these images in subdirectories
of the given base directory (default: current directory) based on this structure:

{base directory}
 /{year}
 /{month}
 /{spec file name}
 /index.html
 s00001.png
 s00002.png

The year and month are taken from the SPEC data file when the data were
collected. The plot names include the scan numbers padded with leading
zeroes to five places (so the file names sort numerically).

The results will be shown as a WWW page (index.html) of thumbnail images
and a separate list of any scans that could not generate plots.
A reason will accompany these scans, as shown in the example.

How to use specplot_gallery: command line

Here is an example:

user@host ~$ specplot_gallery -d ./__demo__ ../src/spec2nexus/data/33bm_spec.dat

[image: _images/gallery_screen_33bm.png]

Example of specplot_gallery showing scans from test file 33bm_spec.dat.

Note that one of the scans could not be plotted.
Looking at the data file, it shows there is no data to plot (this particular
scan was aborted before any data was collected):

#C Wed Jun 16 19:00:10 2010. Scan aborted after 0 points.

The last scan shown is from a hklmesh (2-D) scan. It is mostly a
constant background level, thus the large black area.

Each of the plots in the web page can be enlarged (by clicking on it).

How to use specplot_gallery: periodic background task (cron)

This script could be called from a Linux background task scheduler (cron) entry.
To add the entry, type the crontab -e command which opens the task list in a
screen editor and add lines such as these to the file:

every five minutes (generates no output from outer script)
0-59/5 * * * * /path/to/specplot_gallery.py -d /web/page/dir /spec/data/file/dirs

If the specplot_gallery script is called too frequently and the list of plots to
be generated is large enough, it is possible for more than one process to be running.
In one extreme case, many processes were found running due to problems with the data
files. To identify and stop all processes of this program, use this on the command line:

kill -9 `ps -ef | grep python | awk '/specplot_gallery.py/ {print $2}' -`

source code documentation

 spec2nexus.spec

spec2nexus.spec

Library of classes to read the contents of a SPEC data file.

How to use spec2nexus.spec

spec2nexus.spec provides Python support to read
the scans in a SPEC data file. (It does not provide a command-line interface.)
Here is a quick example how to use spec:

	1
2
3
4
5
6
7
8
9

	from spec2nexus.spec import SpecDataFile

specfile = SpecDataFile('data/33id_spec.dat')
print 'SPEC file name:', specfile.specFile
print 'SPEC file time:', specfile.headers[0].date
print 'number of scans:', len(specfile.scans)

for scanNum, scan in specfile.scans.items():
 print scanNum, scan.scanCmd

For one example data file provided with spec2nexus.spec, the output starts with:

How to read one scan

Here is an example how to read one scan:

	1
2
3
4
5
6

	from spec2nexus.spec import SpecDataFile

specfile = SpecDataFile('data/33id_spec.dat')
specscan = specfile.getScan(5)
print specscan.scanNum
print specscan.scanCmd

which has this output:

5
ascan del 84.3269 84.9269 30 1

The data columns are provided in a dictionary. Using the example above,
the dictionary is specscan.data where the keys are the column labels (from the
#L line) and the values are from each row. It is possible to make a default
plot of the last column vs. the first column. Here’s how to find that data:

	1
2
3
4

	x_label = specscan.L[0] # first column from #L line
y_label = specscan.L[-1] # last column from #L line
x_data = specscan.data[x_label] # data for first column
y_data = specscan.data[y_label] # data for last column

Get a list of the scans

The complete list of scan numbers from the data file is obtained
(sorting is necessary since the list of dictionary keys is returned
in a scrambled order):

all_scans = sorted(specfile.scans.keys())

SPEC data files

The SPEC data file format is described in the SPEC manual. [1]
This manual is taken as a suggested starting point for most users.
Data files with deviations from this standard are produced at some facilities.

[1]
SPEC manual: http://www.certif.com/spec_manual/user_1_4_1.html

Assumptions about data file structure

These assumptions are used to parse SPEC data files:

	SPEC data files are text files organized by lines.
The lines can be categorized as: control lines, data lines, and blank lines.

	line type

	description

	control

	contain a # character in the first column followed by a command word [2]

	data

	generally contain a row of numbers (the scan data)

	special data

	containing MCA data [3]

	Lines in a SPEC data file start with a file name control line,
then series of blocks. Each block may be either a file header block
or a scan block. (Most SPEC files have only one header block. A new header
block is created if the list of positioners is changed in SPEC
without creating a new file. SPEC users are encouraged to always start a new
data file after changing the list of positioners.)
A block consists of a series of control, data, and blank lines.

SPEC data files are composed of a sequence of a single file header block
and zero or more scan blocks. [4]

	A SPEC data file always begins with this control lines: #F, such as:

#F samplecheck_7_17_03

	A file header block begins with these control lines in order: #E #D #C, such as:

#E 1058427452
#D Thu Jul 17 02:37:32 2003
#C psic User = epix

	A scan block begins with these command lines in order: #S #D, such as:

#S 78 ascan del 84.6484 84.8484 20 1
#D Thu Jul 17 08:03:54 2003

[2]
See Example of Control Lines

[3]
See Example of MCA data lines

[4]
It is very unusual to have more than one file header block in a SPEC data file.

Control lines (keys) defined by SPEC

Here is a list [5] of keys (command words) from the comments in the file.mac (SPEC v6) macro source file:

	command word

	description

	#C

	comment line

	#D date

	current date and time in UNIX format

	#E num

	the UNIX epoch (seconds from 00:00 GMT 1/1/70)

	#F name

	name by which file was created

	#G1 …

	geometry parameters from G[] array (geo mode, sector, etc)

	#G2 …

	geometry parameters from U[] array (lattice constants, orientation reflections)

	#G3 …

	geometry parameters from UB[] array (orientation matrix)

	#G4 …

	geometry parameters from Q[] array (lambda, frozen angles, cut points, etc)

	#I num

	a normalizing factor to apply to the data

	#j% …

	mnemonics of counter (% = 0,1,2,… with eight counters per row)

	#J% …

	names of counters (each separated by two spaces)

	#L s1 …

	labels for the data columns

	#M num

	data was counted to this many monitor counts

	#N num [num2]

	number of columns of data [num2 sets per row]

	#o% …

	mnemonics of motors (% = 0,1,2,… with eight motors per row)

	#O% …

	names of motors (each separated by two spaces)

	#P% …

	positions of motors corresponding to above #O/#o

	#Q

	a reciprocal space position (H K L)

	#R

	user-defined results from a scan

	#S num

	scan number

	#T num

	data was counted for this many seconds

	#U

	user defined

	#X

	a temperature

	#@MCA fmt

	this scan contains MCA data (array_dump() format, as in "%16C")

	#@CALIB a b c

	coefficients for x[i] = a + b * i + c * i * i for MCA data

	#@CHANN n f l r

	MCA channel information (number_saved, first_saved, last_saved, reduction coef)

	#@CTIME p l r

	MCA count times (preset_time, elapsed_live_time, elapsed_real_time)

	#@ROI n f l

	MCA ROI channel information (ROI_name, first_chan, last_chan)

[5]
Compare with Supplied spec plugin modules

Example of Control Lines

The command word of a control line may have a number at the end,
indicating it is part of a sequence, such as these control lines
(see Control lines (keys) defined by SPEC for how to interpret):

Example of MCA data lines

Lines with MCA array data begin with the @A command word.
(If such a data line ends with a continuation character \,
the next line is read as part of this line.)

This is an example of a 91-channel MCA data array with trivial (zero) values:

	1
2
3
4
5
6

	@A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\
 0 0 0 0 0 0 0 0 0 0 0

Several MCA spectra may be written to a scan. In this case, a number
follows @A indicating which spectrum, such as in this example with
four spectra:

	1
2
3
4

	 @A1 0 0 0 0 0 0 35 0 0 35
 @A2 0 0 0 0 0 0 0 35 0 35
 @A3 0 0 35 35 0 0 0 0 0 0
 @A4 0 0 0 0 0 35 35 0 35 0

Supported header keys (command words)

The SPEC data file keys recognized by spec
are listed in Supplied spec plugin modules.

source code summary

classes

	spec2nexus.spec.SpecDataFile

	

	spec2nexus.spec.SpecDataFileHeader

	

	spec2nexus.spec.SpecDataFileScan

	

methods

	strip_first_word

	return everything after the first space on the line from the spec data file

	spec2nexus.spec.is_spec_file

	

exceptions

	spec2nexus.spec.SpecDataFileNotFound

	

	spec2nexus.spec.SpecDataFileCouldNotOpen

	

	spec2nexus.spec.SpecDataFileNotFound

	

	spec2nexus.spec.DuplicateSpecScanNumber

	

	spec2nexus.spec.UnknownSpecFilePart

	

dependencies

	os

	OS routines for NT or Posix depending on what system we’re on.

	re

	Support for regular expressions (RE).

	sys

	This module provides access to some objects used or maintained by the interpreter and to functions that interact strongly with the interpreter.

internal structure of spec2nexus.spec.SpecDataFileScan

The internal variables of a Python class are called attributes.
It may be convenient, for some, to think of them as variables.

scan attributes

	parent:

	obj - instance of spec2nexus.spec.SpecDataFile

	scanNum:

	int - SPEC scan number

	scanCmd:

	str - SPEC command line

	raw:

	str - text of scan, as reported in SPEC data file

scan attributes (variables) set after call to plugins

These attributes are only set after the scan’s interpret() method is called.
This method is called automatically when trying to read any of the following scan attributes:

	comments:

	[str] - list of all comments reported in this scan

	data:

	{label,[number]} - written by spec2nexus.plugins.spec_common_spec2nexus.data_lines_postprocessing()

	data_lines:

	[str] - raw data (and possibly MCA) lines with comment lines removed

	date:

	str - written by spec2nexus.plugins.spec_common_spec2nexus.SPEC_Date

	G:

	{key,[number]} - written by spec2nexus.plugins.spec_common_spec2nexus.SPEC_Geometry

	I:

	float - written by spec2nexus.plugins.spec_common_spec2nexus.SPEC_NormalizingFactor

	header:

	obj - instance of spec2nexus.spec.SpecDataFileHeader

	L:

	[str] - written by spec2nexus.plugins.spec_common_spec2nexus.SPEC_Labels

	M:

	str - written by spec2nexus.plugins.spec_common_spec2nexus.SPEC_Monitor

	positioner:

	{key,number} - written by spec2nexus.plugins.spec_common_spec2nexus.SPEC_Positioners.postprocess

	N:

	[int] - written by spec2nexus.plugins.spec_common_spec2nexus.SPEC_NumColumns

	P:

	[str] - written by spec2nexus.plugins.spec_common_spec2nexus.SPEC_Positioners

	Q:

	[number] - written by spec2nexus.plugins.spec_common_spec2nexus.SPEC_HKL

	S:

	str - written by spec2nexus.plugins.spec_common_spec2nexus.SPEC_Scan

	T:

	str - written by spec2nexus.plugins.spec_common_spec2nexus.SPEC_CountTime

	V:

	{key,number|str} - written by spec2nexus.plugins.unicat_spec2nexus.UNICAT_MetadataValues

	column_first:

	str - label of first (ordinate) data column

	column_last:

	str - label of last (abscissa) data column

internal use only - do not modify

These scan attributes are for internal use only and are not part of the public interface.
Do not modify them or write code that depends on them.

	postprocessors:

	{key,obj} - dictionary of postprocessing methods

	h5writers:

	{key,obj} - dictionary of methods that write HDF5 structure

	__lazy_interpret__:

	bool - Is lazy (on-demand) call to interpret() needed?

	__interpreted__:

	bool - Has interpret() been called?

source code documentation

 spec2nexus.charts

spec2nexus.charts

source code documentation

charting for spec2nexus

	make_png(image, image_file[, axes, title, …])

	read the image from the named HDF5 file and make a PNG file

	xy_plot(x, y, plot_file[, title, subtitle, …])

	with MatPlotLib, generate a plot of a scan (as if data from a scan in a SPEC file)

	
spec2nexus.charts.make_png(image, image_file, axes=None, title='2-D data', subtitle='', log_image=False, hsize=9, vsize=5, cmap='cubehelix', xtitle=None, ytitle=None, timestamp_str=None)

	read the image from the named HDF5 file and make a PNG file

Test that the HDF5 file exists and that the path to the data exists in that file.
Read the data from the named dataset, mask off some bad values,
convert to log(image) and use Matplotlib to make the PNG file.

	Parameters:

	
	image (obj) – array of data to be rendered

	image_file (str) – name of image file to be written (path is optional)

	log_image (bool) – plot log(image)

	hsize (int) – horizontal size of the PNG image (default: 7)

	hsize – vertical size of the PNG image (default: 3)

	cmap (str) – colormap for the image (default: ‘cubehelix’), ‘jet’ is another good one

	Return str:

	image_file

The HDF5 file could be a NeXus file, or some other layout.

	
spec2nexus.charts.xy_plot(x, y, plot_file, title=None, subtitle=None, xtitle=None, ytitle=None, xlog=False, ylog=False, hsize=9, vsize=5, timestamp_str=None)

	with MatPlotLib, generate a plot of a scan (as if data from a scan in a SPEC file)

	Parameters:

	
	x ([float]) – horizontal axis data

	y ([float]) – vertical axis data

	plot_file (str) – file name to write plot image

	xtitle (str) – horizontal axis label (default: not shown)

	ytitle (str) – vertical axis label (default: not shown)

	title (str) – title for plot (default: date time)

	subtitle (str) – subtitle for plot (default: not shown)

	xlog (bool) – should X axis be log (default: False=linear)

	ylog (bool) – should Y axis be log (default: False=linear)

	timestamp_str (str) – date to use on plot (default: now)

Tip

when using this module as a background task …

MatPlotLib has several interfaces for plotting.
Since this module runs as part of a background job
generating lots of plots, MatPlotLib’s standard plt code is
not the right model. It warns after 20 plots and
will eventually run out of memory.

Here’s the fix used in this module:
http://stackoverflow.com/questions/16334588/create-a-figure-that-is-reference-counted/16337909#16337909

 How to write a custom scan handling for specplot

How to write a custom scan handling for specplot

Sometimes, it will be obvious that a certain scan macro never generates
any plot images, or that the default handling creates a plot that
is a poor representation of the data, such as the
hklscan where
only one of the the axes hkl is scanned. To pick the scanned axis
for plotting, it is necessary to prepare custom handling and replace
the default handling.

Overview

It is possible to add in additional handling by writing a Python module.
This module creates a subclass of the standard handling, such as
LinePlotter,
MeshPlotter, or their superclass
ImageMaker.
The support is added to the macro selection class
Selector with code such as in the brief
example described below: Change the plot title text in ascan macros:

selector = spec2nexus.specplot.Selector()
selector.add('ascan', Custom_Ascan)
spec2nexus.specplot_gallery.main()

Data Model

The data to be plotted is kept in an appropriate subclass
of PlotDataStructure in attributes
show in the next table. The data model is an adaptation of the
NeXus NXdata base class. [1]

	attribute

	description

	self.signal

	name of the dependent data (y axis or image) to be plotted

	self.axes

	list of names of the independent axes [2]

	self.data

	dictionary with the data, indexed by name

[1]
NeXus NXdata base class:
http://download.nexusformat.org/doc/html/classes/base_classes/NXdata.html

[2]
The number of names provided in self.axes is equal to the rank
of the signal data (self.data[self.signal]).
For 1-D data, self.axes has one name and the signal data is one-dimensional.
For 2-D data, self.axes has two names and the signal data is two-dimensional.

Steps

In all cases, custom handling of a specific SPEC macro name is provided by
creating a subclass of ImageMaker and defining
one or more of its methods. In the simplest case, certain settings may be
changed by calling spec2nexus.specplot.ImageMaker.configure() with
the custom values. Examples of further customization are provided below, such
as when the data to be plotted is stored outside of the SPEC data file. This
is common for images from area detectors.

It may also be necessary to create a subclass
of PlotDataStructure to gather the data to be plotted
or override the default spec2nexus.specplot.ImageMaker.plottable() method.
An example of this is shown with the MeshPlotter and
associated MeshStructure classes.

Examples

A few exmaples of custom macro handling are provided, some simple, some complex.
In each example, decisions have been made about where to provide the desired features.

Change the plot title text in ascan macros

The SPEC ascan macro is a workhorse and records the scan
of a positioner and the measurement of data in a counter.
Since this macro name ends with “scan”, the default selection
in specplot images this data
using the LinePlotter class.
Here is a plot of the default handling of data from the ascan macro:

[image: _images/ascan.png]

Standard plot of data from ascan macro

We will show how to change the plot title as a means to illustrate
how to customize the handling for a scan macro.

We write Custom_Ascan which is a subclass of
LinePlotter. The get_plot_data method is written
(overrides the default method) to gain access to the place
where we can introduce the change. The change is made by the call to
the configure method (defined in the superclass). Here’s the code:

ascan.py example

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

	#!/usr/bin/env python

'''
Plot all scans that used the SPEC `ascan` macro, showing only the scan number (not full scan command)

This is a simple example of how to customize the scan macro handling.
There are many more ways to add complexity.
'''

import spec2nexus.specplot
import spec2nexus.specplot_gallery

class Custom_Ascan(spec2nexus.specplot.LinePlotter):
 '''simple customization'''

 def retrieve_plot_data(self):
 '''substitute with the data&time the plot was created'''
 import datetime
 spec2nexus.specplot.LinePlotter.retrieve_plot_data(self)
 self.set_plot_subtitle(str(datetime.datetime.now()))

def main():
 selector = spec2nexus.specplot.Selector()
 selector.add('ascan', Custom_Ascan)
 spec2nexus.specplot_gallery.main()

if __name__ == '__main__':
 main()

:author: Pete R. Jemian
:email: prjemian@gmail.com
:copyright: (c) 2014-2022, Pete R. Jemian
#
Distributed under the terms of the Creative Commons Attribution 4.0 International Public License.
#
The full license is in the file LICENSE.txt, distributed with this software.

See the changed title:

[image: _images/ascan_custom.png]

Customized plot of data from ascan macro

Make the y-axis log scale

A very simple customization can make the Y axis to be logarithmic scale.
(This customization is planned for an added feature [3] in a future relase of the
spec2nexus package.) We present two examples.

modify handling of a2scan

One user wants all the a2scan images to be plotted with a logarithmic
scale on the Y axis. Here’s the code:

custom_a2scan_gallery.py example

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

	#!/usr/bin/env python

'''
Customization for specplot_gallery: plot a2scan with log(y) axis

This program changes the plotting for all scans that used the *a2scan* SPEC macro.
The Y axis of these plots will be plotted as logarithmic if all the data values are
greater than zero. Otherwise, the Y axis scale will be linear.
'''

import spec2nexus.specplot
import spec2nexus.specplot_gallery

class Custom_a2scan_Plotter(spec2nexus.specplot.LinePlotter):
 '''plot `a2scan` y axis as log if possible'''

 def retrieve_plot_data(self):
 '''plot the vertical axis on log scale'''
 spec2nexus.specplot.LinePlotter.retrieve_plot_data(self)

 choose_log_scale = False

 if self.signal in self.data: # log(y) if all data positive
 choose_log_scale = min(self.data[self.signal]) > 0

 self.set_y_log(choose_log_scale)

def main():
 selector = spec2nexus.specplot.Selector()
 selector.add('a2scan', Custom_a2scan_Plotter)
 spec2nexus.specplot_gallery.main()

if __name__ == '__main__':
 # debugging_setup()
 main()

'''
Instructions:

Save this file in a directory you can write and call it from your cron tasks.

Note that in cron entries, you cannot rely on shell environment variables to
be defined. Best to spell things out completely. For example, if your $HOME
directory is `/home/user` and you have these directories:

* `/home/user/bin`: various custom executables you use
* `/home/user/www/specplots`: a directory you access with a web browser for your plots
* `/home/user/spec/data`: a directory with your SPEC data files

then save this file to `/home/user/bin/custom_a2scan_gallery.py` and make it executable
(using `chmod +x ./home/user/bin/custom_a2scan_gallery.py`).

Edit your list of cron tasks using `crontab -e` and add this (possibly
replacing a call to `specplot_gallery` with this call `custom_a2scan_gallery.py`)::

 # every five minutes (generates no output from outer script)
 0-59/5 * * * * /home/user/bin/custom_a2scan_gallery.py -d /home/user/www/specplots /home/user/spec/data 2>&1 >> /home/user/www/specplots/log_cron.txt

Any output from this periodic task will be recorded in the file
`/home/user/www/specplots/log_cron.txt`. This file can be reviewed
for diagnostics or troubleshooting.
'''

custom uascan

The APS USAXS instrument uses a custom scan macro called uascan for routine step scans.
Since this macro name ends with “scan”, the default selection in specplot images this data
using the LinePlotter class.
Here is a plot of the default handling of data from the uascan macro:

[image: _images/uascan_as_ascan.png]

USAXS uascan, handled as LinePlotter

The can be changed by making the y axis log scale.
To do this, a custom version of LinePlotter
is created as Custom_Ascan. The get_plot_data method is written
(overrides the default method) to make the y axis log-scale by calling
the configure method (defined in the superclass). Here’s the code:

usaxs_uascan.py example

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

	#!/usr/bin/env python

'''
Plot data from the USAXS uascan macro

.. autosummary::

 ~UAscan_Plotter

'''

import spec2nexus.specplot
import spec2nexus.specplot_gallery

class UAscan_Plotter(spec2nexus.specplot.LinePlotter):
 '''simple customize of `uascan` handling'''

 def retrieve_plot_data(self):
 '''plot the vertical axis on log scale'''
 spec2nexus.specplot.LinePlotter.retrieve_plot_data(self)

 if self.signal in self.data:
 if min(self.data[self.signal]) <= 0:
 # TODO: remove any data where Y <= 0 (can't plot on log scale)
 msg = 'cannot plot Y<0: ' + str(self.scan)
 raise spec2nexus.specplot.NotPlottable(msg)

 # in the uascan, a name for the sample is given in `self.scan.comments[0]`
 self.set_y_log(True)
 self.set_plot_subtitle(
 '#%s uascan: %s' % (str(self.scan.scanNum), self.scan.comments[0]))

def debugging_setup():
 import os, sys
 import shutil
 import ascan
 selector = spec2nexus.specplot.Selector()
 selector.add('ascan', ascan.Custom_Ascan) # just for the demo
 path = '__usaxs__'
 shutil.rmtree(path, ignore_errors=True)
 os.mkdir(path)
 sys.argv.append('-d')
 sys.argv.append(path)
 sys.argv.append(os.path.join('..', 'src', 'spec2nexus', 'data', 'APS_spec_data.dat'))

def main():
 selector = spec2nexus.specplot.Selector()
 selector.add('uascan', UAscan_Plotter)
 spec2nexus.specplot_gallery.main()

if __name__ == '__main__':
 # debugging_setup()
 main()

:author: Pete R. Jemian
:email: prjemian@gmail.com
:copyright: (c) 2014-2022, Pete R. Jemian
#
Distributed under the terms of the Creative Commons Attribution 4.0 International Public License.
#
The full license is in the file LICENSE.txt, distributed with this software.

Note that in the uascan, a name for the sample provided by the user
is given in self.scan.comments[0]. The plot title is changed to
include this and the scan number.
The customized plot has a logarithmic y axis:

[image: _images/uascan_log_y.png]

USAXS uascan, with logarithmic y axis

The most informative view of this data is when the raw data are
reduced to \(I(Q)\) and viewed on a log-log plot,
but that process is beyond this simple example.
See the example Get xy data from HDF5 file below.

[3]
specplot: add option for default log(signal) [https://github.com/prjemian/spec2nexus/issues/102]

SPEC’s hklscan macro

The SPEC hklscan macro appears in a SPEC data file due to
either a hscan, kscan, or lscan. In each of these one of the hkl
vectors is scanned while the other two remain constant.

The normal handling of the ascan macro plots the last data column
against the first. This works for data collected with the hscan.
For kscan or lscan macros, the h axis is still plotted by default
since it is in the first column.

[image: _images/hklscan_as_ascan.png]

SPEC hklscan (lscan, in this case), plotted against the (default) first axis H

To display the scanned axis, it is necessary to examine the data in a custom
subclass of LinePlotter. The
HKLScanPlotter subclass,
provided with specplot, defines the get_plot_data() method
determines the scanned axis, setting it by name:

plot.axes = [axis,]
self.scan.column_first = axis

Then, the standard plot handling used by LinePlotter
uses this information to make the plot.

[image: _images/hklscan.png]

SPEC hklscan (lscan), plotted against L

Get xy data from HDF5 file

One example of complexity is when SPEC has been used to direct data collection
but the data is not stored in the SPEC data file. The SPEC data file scan
must provide some indication about where the collected scan data has been stored.

The USAXS instrument at APS has a FlyScan macro that commands the instrument
to collect data continuously over the desired \(Q\) range. The data is written
to a NeXus HDF5 data file. Later, a data reduction process converts the arrays of
raw data to one-dimensional \(I(Q)\) profiles. The best representation of this
reduced data is on a log-log plot to reveal the many decades of both \(I\) and
\(Q\) covered by the measurement.

With the default handling by LinePlotter, no plot
can be generated since the dfata is given in a separate HDF5 file. That file
is read with the custom handling of the usaxs_flyscan.py demo:

usaxs_flyscan.py example

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

	#!/usr/bin/env python

'''
Plot data from the USAXS FlyScan macro

.. autosummary::

 ~read_reduced_fly_scan_file
 ~retrieve_flyScanData
 ~USAXS_FlyScan_Structure
 ~USAXS_FlyScan_Plotter

'''

import h5py
import numpy
import os

import spec2nexus.specplot
import spec2nexus.specplot_gallery

methods picked (& modified) from the USAXS livedata project
def read_reduced_fly_scan_file(hdf5_file_name):
 '''
 read any and all reduced data from the HDF5 file, return in a dictionary

 dictionary = {
 'full': dict(Q, R, R_max, ar, fwhm, centroid)
 '250': dict(Q, R, dR)
 '5000': dict(Q, R, dR)
 }
 '''

 reduced = {}
 hdf = h5py.File(hdf5_file_name, 'r')
 entry = hdf['/entry']
 for key in entry.keys():
 if key.startswith('flyScan_reduced_'):
 nxdata = entry[key]
 d = {}
 for dsname in ['Q', 'R']:
 if dsname in nxdata:
 value = nxdata[dsname]
 if value.size == 1:
 d[dsname] = float(value[0])
 else:
 d[dsname] = numpy.array(value)
 reduced[key[len('flyScan_reduced_'):]] = d
 hdf.close()
 return reduced

$URL: https://subversion.xray.aps.anl.gov/small_angle/USAXS/livedata/specplot.py $
REDUCED_FLY_SCAN_BINS = 250 # the default
def retrieve_flyScanData(scan):
 '''retrieve reduced, rebinned data from USAXS Fly Scans'''
 path = os.path.dirname(scan.header.parent.fileName)
 key_string = 'FlyScan file name = '
 comment = scan.comments[2]
 index = comment.find(key_string) + len(key_string)
 hdf_file_name = comment[index:-1]
 abs_file = os.path.abspath(os.path.join(path, hdf_file_name))

 plotData = {}
 if os.path.exists(abs_file):
 reduced = read_reduced_fly_scan_file(abs_file)
 s_num_bins = str(REDUCED_FLY_SCAN_BINS)

 choice = reduced.get(s_num_bins) or reduced.get('full')

 if choice is not None:
 plotData = {axis: choice[axis] for axis in 'Q R'.split()}

 return plotData

class USAXS_FlyScan_Plotter(spec2nexus.specplot.LinePlotter):
 '''
 customize `FlyScan` handling, plot :math:`log(I)` *vs.* :math:`log(Q)`

 The USAXS FlyScan data is stored in a NeXus HDF5 file in a subdirectory
 below the SPEC data file. This code uses existing code from the
 USAXS instrument to read that file.
 '''

 def retrieve_plot_data(self):
 '''retrieve reduced data from the FlyScan's HDF5 file'''
 # get the data from the HDF5 file
 fly_data = retrieve_flyScanData(self.scan)

 if len(fly_data) != 2:
 raise spec2nexus.specplot.NoDataToPlot(str(self.scan))

 self.signal = 'R'
 self.axes = ['Q',]
 self.data = fly_data

 # customize the plot just a bit
 # sample name as given by the user?
 subtitle = '#' + str(self.scan.scanNum)
 subtitle += ' FlyScan: ' + self.scan.comments[0]
 self.set_plot_subtitle(subtitle)
 self.set_x_log(True)
 self.set_y_log(True)
 self.set_x_title(r'$|\vec{Q}|, 1/\AA$')
 self.set_y_title(r'USAXS $R(|\vec{Q}|)$, a.u.')

 def plottable(self):
 '''
 can this data be plotted as expected?
 '''
 if self.signal in self.data:
 signal = self.data[self.signal]
 if signal is not None and len(signal) > 0 and len(self.axes) == 1:
 if len(signal) == len(self.data[self.axes[0]]):
 return True
 return False

def debugging_setup():
 import sys
 import shutil
 sys.path.insert(0, os.path.join('..', 'src'))
 path = '__usaxs__'
 shutil.rmtree(path, ignore_errors=True)
 os.mkdir(path)
 sys.argv.append('-d')
 sys.argv.append(path)
 sys.argv.append(os.path.join('..', 'src', 'spec2nexus', 'data', '02_03_setup.dat'))

def main():
 selector = spec2nexus.specplot.Selector()
 selector.add('FlyScan', USAXS_FlyScan_Plotter)
 spec2nexus.specplot_gallery.main()

if __name__ == '__main__':
 # debugging_setup()
 main()

:author: Pete R. Jemian
:email: prjemian@gmail.com
:copyright: (c) 2014-2022, Pete R. Jemian
#
Distributed under the terms of the Creative Commons Attribution 4.0 International Public License.
#
The full license is in the file LICENSE.txt, distributed with this software.

The data is then rendered in a customized log-log plot of \(I(Q)\):

[image: _images/usaxs_flyscan.png]

USAXS FlyScan, handled by USAXS_FlyScan_Plotter

Usage

When a custom scan macro handler is written and installed using code
similar to the custom ascan handling above:

def main():
 selector = spec2nexus.specplot.Selector()
 selector.add('ascan', Custom_Ascan)
 spec2nexus.specplot_gallery.main()

if __name__ == '__main__':
 main()

then the command line arugment handling from spec2nexus.specplot_gallery.main()
can be accessed from the command line for help and usage information.

Usage:

user@localhost ~/.../spec2nexus/demo $./ascan.py
usage: ascan.py [-h] [-r] [-d DIR] paths [paths ...]
ascan.py: error: too few arguments

Help:

user@localhost ~/.../spec2nexus/demo $./ascan.py -h
usage: ascan.py [-h] [-r] [-d DIR] paths [paths ...]

read a list of SPEC data files (or directories) and plot images of all scans

positional arguments:
 paths SPEC data file name(s) or directory(s) with SPEC data
 files

optional arguments:
 -h, --help show this help message and exit
 -r sort images from each data file in reverse chronolgical
 order
 -d DIR, --dir DIR base directory for output (default:/home/prjemian/Documen
 ts/eclipse/spec2nexus/demo)

 spec2nexus.eznx

spec2nexus.eznx

(Easy NeXus) support library for reading & writing NeXus HDF5 files using h5py

How to use spec2nexus.eznx

Here is a simple example to write a NeXus data file using eznx:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

	#!/usr/bin/env python
-*- coding: utf-8 -*-

"""
Writes a simple NeXus HDF5 file using h5py with links.

This example is based on ``writer_2_1`` of the NeXus Manual:
http://download.nexusformat.org/doc/html/examples/h5py/index.html
"""

from spec2nexus import eznx

HDF5_FILE = "eznx_example.hdf5"

I_v_TTH_DATA = """
17.92608 1037
17.92558 2857
17.92508 23819
17.92458 49087
17.92408 66802
17.92358 66206
17.92308 64129
17.92258 56795
17.92208 29315
17.92158 6622
17.92108 1321
"""

tthData, countsData = zip(
 *[map(float, _.split()) for _ in I_v_TTH_DATA.strip().splitlines()]
)

f = eznx.makeFile(HDF5_FILE) # create the HDF5 NeXus file
f.attrs["default"] = "entry"

nxentry = eznx.makeGroup(f, "entry", "NXentry", default="data")
nxinstrument = eznx.makeGroup(nxentry, "instrument", "NXinstrument")
nxdetector = eznx.makeGroup(nxinstrument, "detector", "NXdetector")

tth = eznx.makeDataset(nxdetector, "two_theta", tthData, units="degrees")
counts = eznx.makeDataset(nxdetector, "counts", countsData, units="counts")

nxdata = eznx.makeGroup(
 nxentry,
 "data",
 "NXdata",
 signal=1,
 axes="two_theta",
 two_theta_indices=0,
)
eznx.makeLink(nxdetector, tth, nxdata.name + "/two_theta")
eznx.makeLink(nxdetector, counts, nxdata.name + "/counts")

f.close() # be CERTAIN to close the file

:author: Pete R. Jemian
:email: prjemian@gmail.com
:copyright: (c) 2014-2022, Pete R. Jemian
#
Distributed under the terms of the Creative Commons Attribution 4.0 International Public License.
#
The full license is in the file LICENSE.txt, distributed with this software.

The output of this code is an HDF5 file (binary).
It has this structure:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	 eznx_example.hdf5:NeXus data file
 @default = entry
 entry:NXentry
 @NX_class = NXentry
 @default = data
 data:NXdata
 @NX_class = NXdata
 @signal = counts
 @axes = two_theta
 @two_theta_indices = 0
 counts --> /entry/instrument/detector/counts
 two_theta --> /entry/instrument/detector/two_theta
 instrument:NXinstrument
 @NX_class = NXinstrument
 detector:NXdetector
 @NX_class = NXdetector
 counts:NX_FLOAT64[11] = __array
 @units = counts
 @target = /entry/instrument/detector/counts
 __array = [1037.0, 2857.0, 23819.0, '...', 1321.0]
 two_theta:NX_FLOAT64[11] = __array
 @units = degrees
 @target = /entry/instrument/detector/two_theta
 __array = [17.926079999999999, 17.92558, 17.925080000000001, '...', 17.92108]

NeXus HDF5 File Structure

The output of this code is an HDF5 file (binary).
It has this general structure (indentation shows HDF5 groups,
@ signs describe attributes of the preceding item):

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

	 hdf5_file:NeXus data file
 @default = S1
 S1:NXentry (one NXentry for each scan)
 @default = data
 title = #S
 T or M: #T or #M
 comments: #C for entire scan
 date: #D
 scan_number: #S
 G:NXcollection
 @description = SPEC geometry arrays, meanings defined by SPEC diffractometer support
 G0:NX_FLOAT64[] #G0
 G1:NX_FLOAT64[] #G1
 ...
 data:NXdata
 @description = SPEC scan data (content from #L and data lines)
 @signal = I0
 @axes = mr
 @mr_indices = 0
 Epoch:NX_FLOAT64[]
 I0:NX_FLOAT64[] (last data column)
 @spec_name = I0
 mr:NX_FLOAT64[] (first data column)
 ...
 metadata:NXcollection
 @description = SPEC metadata (UNICAT-style #H & #V lines)
 ARenc_0:NX_FLOAT64 = 0.0
 ...
 positioners:NXcollection
 @description = SPEC positioners (#P & #O lines)
 mr:NX_FLOAT64
 ...

APIs provided:

	spec2nexus.writer

source code methods

	addAttributes

	add attributes to an h5py data item

	makeFile

	create and open an empty NeXus HDF5 file using h5py

	makeDataset

	create and write data to a dataset in the HDF5 file hierarchy

	makeExternalLink

	create an external link from sourceFile, sourcePath to targetPath in hdf5FileObject

	makeGroup

	create a NeXus group

	openGroup

	open or create the NeXus/HDF5 group, return the object

	makeLink

	create an internal NeXus (hard) link in an HDF5 file

	read_nexus_field

	get a dataset from the HDF5 parent group

	read_nexus_group_fields

	return the fields in the NeXus group as a dict(name=dataset)

	write_dataset

	write to the NeXus/HDF5 dataset, create it if necessary, return the object

source code documentation

(Easy NeXus) support reading & writing NeXus HDF5 files using h5py

	predecessor:

	NeXus h5py example code: my_lib.py [1]

[1]
http://download.nexusformat.org/doc/html/examples/h5py/index.html#mylib-support-module

Dependencies

	h5py: interface to HDF5 file format

Exceptions raised

	None

Example

root = eznx.makeFile('test.h5', creator='eznx', default='entry')
nxentry = eznx.makeGroup(root, 'entry', 'NXentry', default='data')
ds = eznx.write_dataset(nxentry, 'title', 'simple test data')
nxdata = eznx.makeGroup(nxentry, 'data', 'NXdata', signal='counts', axes='tth', tth_indices=0)
ds = eznx.write_dataset(nxdata, 'tth', [10.0, 10.1, 10.2, 10.3], units='degrees')
ds = eznx.write_dataset(nxdata, 'counts', [1, 50, 1000, 5], units='counts', axes="tth")
root.close()

The resulting (binary) data file has this structure:

test.h5:NeXus data file
 @creator = eznx
 @default = 'entry'
 entry:NXentry
 @NX_class = NXentry
 @default = 'data'
 title:NX_CHAR = simple test data
 data:NXdata
 @NX_class = NXdata
 @signal = 'counts'
 @axes = 'tth'
 @tth_indices = 0
 counts:NX_INT64[4] = [1, 50, 1000, 5]
 @units = counts
 @axes = tth
 tth:NX_FLOAT64[4] = [10.0, 10.1, 10.199999999999999, 10.300000000000001]
 @units = degrees

Classes and Methods

	
spec2nexus.eznx.addAttributes(parent, **attr)

	add attributes to an h5py data item

	Parameters:

	
	parent (obj) – h5py parent object

	attr (dict) – optional dictionary of attributes

	
spec2nexus.eznx.makeDataset(parent, name, data=None, **attr)

	create and write data to a dataset in the HDF5 file hierarchy

Any named parameters in the call to this method
will be saved as attributes of the dataset.

	Parameters:

	
	parent (obj) – parent group

	name (str) – valid NeXus dataset name

	data (obj) – the information to be written

	attr (dict) – optional dictionary of attributes

	Returns:

	h5py dataset object

	
spec2nexus.eznx.makeExternalLink(hdf5FileObject, sourceFile, sourcePath, targetPath)

	create an external link from sourceFile, sourcePath to targetPath in hdf5FileObject

	Parameters:

	
	hdf5FileObject (obj) – open HDF5 file object

	sourceFile (str) – file containing existing HDF5 object at sourcePath

	sourcePath (str) – path to existing HDF5 object in sourceFile

	targetPath (str) – full node path to be created in current open HDF5 file,
such as /entry/data/data

Note

Since the object retrieved is in a different file,
its “.file” and “.parent” properties will refer to
objects in that file, not the file in which the link resides.

 spec2nexus.writer

spec2nexus.writer

This is an internal library of the spec2nexus software.
It is not expected that users of this package will need to call
the writer module directly.

source code documentation

 spec2nexus.plugin

spec2nexus.plugin

An extensible plug-in architecture is used to handle the different possible
control line
control lines (such as #F, #E, #S, …) in a SPEC data file.

A SPEC control line provides metadata about the SPEC scan or SPEC data file.

Plugins can be used to parse or ignore certain control lines in SPEC data files.
Through this architecture, it is possible to support custom control lines,
such as #U (SPEC standard control line for any user data).
One example is support for the UNICAT-style of metadata
provided in the scan header.

Plugins are now used to handle all control lines in spec2nexus.spec.
Any control line encountered but not recognized will be placed as text
in a NeXus NXnote group named unrecognized_NNN (where NNN
is from 1 to the maximum number of unrecognized control lines).

Supplied spec plugin modules

These plugin modules are supplied:

	spec2nexus.plugins.spec_common

	

	spec2nexus.plugins.fallback

	

	spec2nexus.plugins.apstools_specwriter

	

	spec2nexus.plugins.unicat

	

	spec2nexus.plugins.uim

	

	spec2nexus.plugins.uxml

	

	spec2nexus.plugins.XPCS

	

Writing a custom plugin

While spec2nexus provides a comprehensive set of plugins
to handle the common SPEC control line control lines, custom control lines
are used at many facilities to write additional scan data
and scan metadata into the SPEC data file. Custom plugins
are written to process these additions.

	How to write a custom plugin module
	Load a plugin module

	Write a plugin module

	Full Example: #PV control line

	Example to ignore a #Y control line

	Postprocessing

	Custom HDF5 writer

	Custom key match function

	Summary Requirements for custom plugin

	Changes in plugin format with release 2021.0.0

	Footnotes

Overview of the supplied spec plugins

Plugins for these control lines [1] are provided in spec2nexus:

	spec2nexus.plugins.spec_common.SPEC_File

	

	spec2nexus.plugins.spec_common.SPEC_Epoch

	

	spec2nexus.plugins.spec_common.SPEC_Date

	

	spec2nexus.plugins.spec_common.SPEC_Comment

	

	spec2nexus.plugins.spec_common.SPEC_Geometry

	

	spec2nexus.plugins.spec_common.SPEC_NormalizingFactor

	

	spec2nexus.plugins.spec_common.SPEC_CounterNames

	

	spec2nexus.plugins.spec_common.SPEC_CounterMnemonics

	

	spec2nexus.plugins.spec_common.SPEC_Labels

	

	spec2nexus.plugins.spec_common.SPEC_Monitor

	

	spec2nexus.plugins.spec_common.SPEC_NumColumns

	

	spec2nexus.plugins.spec_common.SPEC_PositionerNames

	

	spec2nexus.plugins.spec_common.SPEC_PositionerMnemonics

	

	spec2nexus.plugins.spec_common.SPEC_Positioners

	

	spec2nexus.plugins.spec_common.SPEC_HKL

	

	spec2nexus.plugins.spec_common.SPEC_Scan

	

	spec2nexus.plugins.spec_common.SPEC_CountTime

	

	spec2nexus.plugins.spec_common.SPEC_UserReserved

	

	spec2nexus.plugins.spec_common.SPEC_TemperatureSetPoint

	

	spec2nexus.plugins.spec_common.SPEC_DataLine

	

	spec2nexus.plugins.spec_common.SPEC_MCA

	

	spec2nexus.plugins.spec_common.SPEC_MCA_Array

	

	spec2nexus.plugins.spec_common.SPEC_MCA_Calibration

	

	spec2nexus.plugins.spec_common.SPEC_MCA_ChannelInformation

	

	spec2nexus.plugins.spec_common.SPEC_MCA_CountTime

	

	spec2nexus.plugins.spec_common.SPEC_MCA_RegionOfInterest

	

	spec2nexus.plugins.fallback.UnrecognizedControlLine

	

	spec2nexus.plugins.unicat.UNICAT_MetadataMnemonics

	

	spec2nexus.plugins.unicat.UNICAT_MetadataValues

	

	spec2nexus.plugins.uim.UIM_generic

	

	spec2nexus.plugins.XPCS.XPCS_VA

	

	spec2nexus.plugins.XPCS.XPCS_VD

	

	spec2nexus.plugins.XPCS.XPCS_VE

	

[1]
Compare this list with Control lines (keys) defined by SPEC

source code documentation

define the plug-in architecture

Use spec2nexus.plugin.ControlLineHandler as a metaclass
to create a plugin handler class for each SPEC control line.
In each such class, it is necessary to:

	define a string value for the key (class attribute)

	override the definition of process()

It is optional to:

	define postprocess()

	define writer()

	define match_key()

Classes

	ControlLineHandler

	base class for SPEC data file control line handler plugins

	PluginManager()

	Manage the set of SPEC data file control line plugins

Exceptions

	DuplicateControlLineKey

	This control line key regular expression has been used more than once.

	DuplicateControlLinePlugin

	This control line handler has been used more than once.

	DuplicatePlugin

	This plugin file name has been used more than once.

	PluginBadKeyError

	The plugin ‘key’ value is not acceptable.

	PluginDuplicateKeyError

	This plugin key has been used before.

	PluginKeyNotDefined

	Must define ‘key’ in class declaration.

	PluginProcessMethodNotDefined

	Must define ‘process()’ method in class declaration.

	
class spec2nexus.plugin.AutoRegister(*args)

	plugin to handle a single control line in a SPEC data file

This class is a metaclass to auto-register plugins to handle
various parts of a SPEC data file.
See spec_common for many examples.

	Parameters:

	key (str) – regular expression to match a control line key, up to the first space

	Returns:

	None

	
class spec2nexus.plugin.ControlLineHandler

	base class for SPEC data file control line handler plugins

define one ControlLineHandler class for each different type of control line

	Parameters:

	
	key (str) – regular expression to match a control line key, up to the first space

	scan_attributes_defined ([str]) – list of scan attributes defined in this class

	Returns:

	None

EXAMPLE of match_key method:

Declaration of the match_key method is optional in a subclass.
This is used to test a given line from a SPEC data file against the
key of each ControlLineHandler.

If this method is defined in the subclass, it will be called
instead of match_key().
This is the example used by
SPEC_DataLine:

def match_key(self, text):
 try:
 float(text.strip().split()[0])
 return True
 except ValueError:
 return False

	
postprocess(header, *args, **kws)

	optional: additional processing deferred until after data file has been read

	
process(text, spec_file_obj, *args, **kws)

	required: handle this line from a SPEC data file

	
writer(h5parent, writer, scan, nxclass=None, *args, **kws)

	optional: Describe how to store this data in an HDF5 NeXus file

	
exception spec2nexus.plugin.DuplicateControlLineKey

	This control line key regular expression has been used more than once.

	
exception spec2nexus.plugin.DuplicateControlLinePlugin

	This control line handler has been used more than once.

	
exception spec2nexus.plugin.DuplicatePlugin

	This plugin file name has been used more than once.

	
exception spec2nexus.plugin.PluginBadKeyError

	The plugin ‘key’ value is not acceptable.

	
exception spec2nexus.plugin.PluginDuplicateKeyError

	This plugin key has been used before.

	
exception spec2nexus.plugin.PluginException

	parent exception for this module

	
exception spec2nexus.plugin.PluginKeyNotDefined

	Must define ‘key’ in class declaration.

	
class spec2nexus.plugin.PluginManager

	Manage the set of SPEC data file control line plugins

Class Methods

	get(key)

	return the handler identified by key or None

	getKey(spec_data_file_line)

	Find the key that matches this line in a SPEC data file.

	load_plugins()

	load all spec2nexus plugin modules

	match_key(text)

	test if any handler’s key matches text

	process(key, *args, **kw)

	pick the control line handler by key and call its process() method

	register_control_line_handler(handler)

	auto-registry of all AutoRegister plugins

	
get(key)

	return the handler identified by key or None

	
getKey(spec_data_file_line)

	Find the key that matches this line in a SPEC data file. Return None if not found.

	Parameters:

	spec_data_file_line (str) – one line from a SPEC data file

	
load_plugins()

	load all spec2nexus plugin modules

called from spec2nexus.plugin.get_plugin_manager()

	
match_key(text)

	test if any handler’s key matches text

	Parameters:

	text (str) – first word on the line,
up to but not including the first whitespace

	Returns:

	key or None

Applies a regular expression match using each handler’s
key as the regular expression to match with text.

	
process(key, *args, **kw)

	pick the control line handler by key and call its process() method

	
register_control_line_handler(handler)

	auto-registry of all AutoRegister plugins

Called from AutoRegister.__init__

	
exception spec2nexus.plugin.PluginProcessMethodNotDefined

	Must define ‘process()’ method in class declaration.

	
spec2nexus.plugin.get_plugin_manager()

	get the instance of the plugin_manager (a singleton)

Create instance of PluginManager() if necessary.
Also,

 XPCS plugin

XPCS plugin

 apstools SpecWriterCallback metadata plugin

apstools SpecWriterCallback metadata plugin

Looks for #MD control line control lines.
These lines contain metadata supplied to the bluesky RunEngine
and recorded during the execution of a scan. The data are stored
in a dictionary of each scan: scan.MD. If there are no
#MD control lines, then scan.MD does not exist.

see https://prjemian.github.io/spec2nexus/source/_filewriters.html#apstools.filewriters.SpecWriterCallback

 Fallback plugin

Fallback plugin

 SPEC standard plugin

SPEC standard plugin

 UIM plugin

UIM plugin

 unicat plugin

unicat plugin

 #UXML: UXML metadata plugin

#UXML: UXML metadata plugin

Looks for #UXML control line control lines.
These lines contain metadata written as XML structures
and formatted according to the supplied XML Schema uxml.xsd
in the same directory as the uxml.py plugin.
The lines which comprise the XML are written as a list in
each scan: scan.UXML. If there are no
#UXML control lines, then scan.UXML does not exist.

Once the scan has been fully read scan.UXML is converted
into an XML document structure (using the lxml.etree package)
which is stored in scan.UXML_root. The structure is validated
against the XML Schema uxml.xsd. If invalid, the error message
is reported by raising a UXML_Error python exception.

A fully-validated structure can be written using the
Writer class. The UXML metadata is
written to the scan’s NXentry group as subgroup named UXML
with NeXus base class NXnote. The hierarchy within this UXML
is defined from the content provided in the SPEC scan.

Please consult the XML Schema file for the rules governing the
use of #UXML in a SPEC data file:
* uxml.xsd

 How to write a custom plugin module

How to write a custom plugin module

The code to write plugins has changed with release 2021.0.0.

The changes are summarized in the
section below titled Changes in plugin format with release 2021.0.0.

Sections

	Load a plugin module

	Write a plugin module

	Full Example: #PV control line

	Example to ignore a #Y control line

	Postprocessing

	Example postprocessing

	Summary Example Custom Plugin with postprocessing

	Custom HDF5 writer

	Custom key match function

	Summary Requirements for custom plugin

	Changes in plugin format with release 2021.0.0

	Footnotes

A custom plugin module for spec2nexus.spec is provided in
a python module (Python source code file).
In this custom plugin module are subclasses for each new
control line
to be supported. An exception will
be raised if a custom plugin module tries to provide support
for an existing control line.

Load a plugin module

Control line handling plugins for spec2nexus will automatically
register themselves when their module is imported. Be sure that
you call get_plugin_manager() before
you import your plugin code. This step sets up the
plugin manager to automatically register your new plugin.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	import spec2nexus.plugin
import spec2nexus.spec

get the plugin manager BEFORE you import any custom plugins
manager = plugin.get_plugin_manager()

import MY_PLUGIN_MODULE
... more if needed ...

read a SPEC data file, scan 5
spec_data_file = spec2nexus.spec.SpecDataFile("path/to/spec/datafile")
scan5 = spec_data_file.getScan(5)

Write a plugin module

Give the custom plugin module a name ending with .py.
As with any Python module, the name must be unique within a directory.
If the plugin is not in your working directory,
there must be a __init__.py file in the same directory (even if
that file is empty) so that your plugin module can be loaded with import <MODULE>.

Plugin module setup

The six package

The six package is used to make our plugins run with either
Python 2.7 or Python 3.5+.

Please view the existing plugins in spec_common
for examples. The custom plugin module should contain, at minimum one subclass of
spec2nexus.plugin.ControlLineHandler which is decorated
with @six.add_metaclass(spec2nexus.plugin.AutoRegister).
The add_metaclass decorator allows our custom ControlLineHandlers
to register themselves when their module is imported.
A custom plugin module can contain many such handlers, as needs dictate.

Useful import

It is also useful to import the
strip_first_word()
utility method.

These imports are necessary to to write plugins for spec2nexus:

	1
2
3
4

	import six
from spec2nexus.plugin import AutoRegister
from spec2nexus.plugin import ControlLineHandler
from spec2nexus.utils import strip_first_word

regular expressions

There are several regular expression testers available on the web.
Try this one, for example: http://regexpal.com/

Attribute: ``key`` (required)

Each subclass must define key key as a regular expression match for the
control line key.
It is possible to override any of the supplied plugins for scan control line
control lines.
Caution is advised to avoid introducing instability.

Attribute: ``scan_attributes_defined`` (optional)

If your plugin creates any attributes to the
spec2nexus.spec.SpecDataScan object
(such as the hypotetical scan.hdf5_path and scan.hdf5_file),
you declare the new attributes in the
scan_attributes_defined list. Such as this:

	1

	scan_attributes_defined = ['hdf5_path', 'hdf5_file']

Method: ``process()`` (required)

Each subclass must also define a process() method to process the control line.
A NotImplementedError exception is raised if key is not defined.

Method: ``match_key()`` (optional)

For difficult regular expressions (or other situations), it is possible to replace
the function that matches for a particular control line key. Override the
handler’s match_key() method.
For more details, see the section Custom key match function.

Method: ``postprocess()`` (optional)

For some types of control lines, processing can only be completed
after all lines of the scan have been read. In such cases, add
a line such as this to the process() method:

scan.addPostProcessor(self.key, self.postprocess)

(You could replace self.key here with some other text.
If you do, make sure that text will be unique as it is used
internally as a python dictionary key.)
Then, define a postprocess() method in your handler:

def postprocess(self, scan, *args, **kws):
 # handle your custom info here

See section Postprocessing below for more details.
See spec2nexus.plugins.spec_common for many examples.

Method: ``writer()`` (optional)

Writing a NeXus HDF5 data file is one of the main goals of the spec2nexus
package. If you intend data from your custom control line handler to
end up in the HDF5 data file, add a line such as this to either the process()
or postprocess() method:

scan.addH5writer(self.key, self.writer)

Then, define a writer() method in your handler. Here’s an example:

def writer(self, h5parent, writer, scan, nxclass=None, *args, **kws):
 """Describe how to store this data in an HDF5 NeXus file"""
 desc='SPEC positioners (#P & #O lines)'
 group = makeGroup(h5parent, 'positioners', nxclass, description=desc)
 writer.save_dict(group, scan.positioner)

See section Custom HDF5 writer below for more details.

Full Example: #PV control line

Consider a SPEC data file (named pv_data.txt) with the contrived
example of a #PV control
line that associates a mnemonic with an EPICS process variable (PV).
Suppose we take this control line content to be two words (text
with no whitespace):

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	#F pv_data.txt
#E 1454539891
#D Wed Feb 03 16:51:31 2016
#C pv_data.txt User = spec2nexus
#O0 USAXS.a2rp USAXS.m2rp USAXS.asrp USAXS.msrp mr unused37 mst ast
#O1 msr asr unused42 unused43 ar ay dy un47

#S 1 ascan mr 10.3467 10.3426 30 0.1
#D Wed Feb 03 16:52:03 2016
#T 0.1 (seconds)
#P0 3.5425 6.795 7.7025 5.005 10.34465 0 0 0
#P1 7.6 17.17188 -8.67896 -0.351 10.318091 0 18.475664 0
#C tuning USAXS motor mr
#PV mr ioc:m1
#PV ay ioc:m2
#PV dy ioc:m3
#N 18
#L mr ay dy ar_enc pd_range pd_counts pd_rate pd_curent I0_gain I00_gain Und_E Epoch seconds I00 USAXS_PD TR_diode I0 I0
10.34665 0.000 18.476 10.318091 1 5 481662 0.000481658 1e+07 1e+09 18.172565 33.037 0.1 199 2 1 114 114
10.34652 0.000 18.476 10.318091 1 5 481662 0.000481658 1e+07 1e+09 18.172565 33.294 0.1 198 2 1 139 139
10.34638 0.000 18.476 10.318091 1 5 481662 0.000481658 1e+07 1e+09 18.172565 33.553 0.1 198 2 1 181 181
10.34625 0.000 18.476 10.318091 1 5 481662 0.000481658 1e+07 1e+09 18.172565 33.952 0.1 198 2 1 274 274
10.34278 0.000 18.476 10.318091 1 5 481662 0.000481658 1e+07 1e+09 18.172309 41.621 0.1 198 2 1 232 232
10.34265 0.000 18.476 10.318091 1 5 481662 0.000481658 1e+07 1e+09 18.172565 41.867 0.1 199 2 1 159 159
#C Wed Feb 03 16:52:14 2016. removed many data rows for this example.

A plugin (named pv_plugin.py) to handle the #PV control lines could be written as:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	from collections import OrderedDict
import six
from spec2nexus.plugin import AutoRegister
from spec2nexus.plugin import ControlLineHandler
from spec2nexus.utils import strip_first_word

@six.add_metaclass(AutoRegister)
class PV_ControlLine(ControlLineHandler):
 '''**#PV** -- EPICS PV associates mnemonic with PV'''

 key = '#PV'
 scan_attributes_defined = ['EPICS_PV']

 def process(self, text, spec_obj, *args, **kws):
 args = strip_first_word(text).split()
 mne = args[0]
 pv = args[1]
 if not hasattr(spec_obj, "EPICS_PV"):
 # use OrderedDict since it remembers the order we found these
 spec_obj.EPICS_PV = OrderedDict()
 spec_obj.EPICS_PV[mne] = pv

When the scan parser encounters the #PV lines in our SPEC data file,
it will call this
process() code with the full text of the line and the
spec scan object where
this data should be stored.
We will choose to store this (following the pattern of other data
names in SpecDataFileScan) as
scan_obj.EPICS_PV using a dictionary.

It is up to the user what to do with the scan_obj.EPICS_PV data.
We will not consider the write() method in this example.
(We will not write this infromation to a NeXus HDF5 file.)

We can then write a python program (named pv_example.py) that will
load the data file and interpret it using our custom plugin:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	import spec2nexus.plugin
import spec2nexus.spec

call get_plugin_manager() BEFORE you import any custom plugins
manager = spec2nexus.plugin.get_plugin_manager()

show our plugin is not loaded
print("known: ", "#PV" in manager.registry) # expect False

import pv_plugin
show that our plugin is registered
print("known: ", "#PV" in manager.registry) # expect True

read a SPEC data file, scan 1
spec_data_file = spec2nexus.spec.SpecDataFile("pv_data.txt")
scan = spec_data_file.getScan(1)

Do we have our PV data?
print(hasattr(scan, "EPICS_PV")) # expect True
print(scan.EPICS_PV)

The output of our program:

	1
2
3
4
5

	known: False
known: True
False
True
OrderedDict([('mr', 'ioc:m1'), ('ay', 'ioc:m2'), ('dy', 'ioc:m3')])

Example to ignore a #Y control line

Suppose a control line in a SPEC data file must be ignored.
For example, suppose a SPEC file contains this control line: #Y 1 2 3 4 5.
Since there is no standard handler for this control line,
we create one that ignores processing by doing nothing:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	import six
from spec2nexus.plugin import AutoRegister
from spec2nexus.plugin import ControlLineHandler

@six.add_metaclass(AutoRegister)
class Ignore_Y_ControlLine(ControlLineHandler):
 '''
 #Y -- as in ``#Y 1 2 3 4 5``

 example: ignore any and all #Y control lines
 '''

 key = '#Y'

 def process(self, text, spec_obj, *args, **kws):
 pass # do nothing

Postprocessing

Sometimes, it is necessary to defer a step of processing until after the complete
scan data has been read. One example is for 2-D or 3-D data that has been acquired
as a vector rather than matrix. The matrix must be constructed only after all the
scan data has been read. Such postprocessing is handled in a method in a plugin file.
The postprocessing method is registered from the control line handler by calling the
addPostProcessor() method of the spec_obj argument received by the
handler’s process() method. A key name [1] is supplied when registering to avoid
registering this same code more than once. The postprocessing function will be called
with the instance of SpecDataFileScan as its only argument.

An important role of the postprocessing is to store the result in the scan object.
It is important not to modify other data in the scan object. Pick an attribute
named similarly to the plugin (e.g., MCA configuration uses the MCA attribute,
UNICAT metadata uses the metadata attribute, …) This attribute will define
where and how the data from the plugin is available. The writer() method
(see below) is one example of a user of this attribute.

Example postprocessing

Consider the #U control line example above. For some contrived reason,
we wish to store the sum of the numbers as a separate number, but only after
all the scan data has been read. This can be done with the simple expression:

	1

	spec_obj.U_sum = sum(spec_obj.U)

To build a postprocessing method, we write:

	1
2
3
4
5
6
7

	def contrived_summation(scan):
 '''
 add up all the numbers in the #U line

 :param SpecDataFileScan scan: data from a single SPEC scan
 '''
 scan.U_sum = sum(scan.U)

To register this postprocessing method, place this line in the process()
of the handler:

	1

	spec_obj.addPostProcessor('contrived_summation', contrived_summation)

Summary Example Custom Plugin with postprocessing

Gathering all parts of the examples above, the custom plugin module is:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

	import six
from spec2nexus.plugin import AutoRegister
from spec2nexus.plugin import ControlLineHandler
from spec2nexus.utils import strip_first_word

@six.add_metaclass(AutoRegister)
class User_ControlLine(ControlLineHandler):
 '''**#U** -- User data (#U user1 user2 user3)'''

 key = '#U'

 def process(self, text, spec_obj, *args, **kws):
 args = strip_first_word(text).split()
 user1 = float(args[0])
 user2 = float(args[1])
 user3 = float(args[2])
 spec_obj.U = [user1, user2, user3]
 spec_obj.addPostProcessor('contrived_summation', contrived_summation)

def contrived_summation(scan):
 '''
 add up all the numbers in the #U line

 :param SpecDataFileScan scan: data from a single SPEC scan
 '''
 scan.U_sum = sum(scan.U)

@six.add_metaclass(AutoRegister)
class Ignore_Y_ControlLine(ControlLineHandler):
 '''**#Y** -- as in ``#Y 1 2 3 4 5``'''

 key = '#Y'

 def process(self, text, spec_obj, *args, **kws):
 pass

Custom HDF5 writer

A custom HDF5 writer method defines how the data from the
plugin
will be written to the HDF5+NeXus data file. The writer will
be called with several arguments:

h5parent: obj : the HDF5 group that will hold this plugin’s data

writer: obj : instance of spec2nexus.writer.Writer that manages the content of the HDF5 file

scan: obj : instance of spec2nexus.spec.SpecDataFileScan containing this scan’s data

nxclass: str : (optional) name of NeXus base class to be created

Since the file is being written according to the NeXus data standard [2],
use the NeXus base classes [3] as references for how to structure the data
written by the custom HDF5 writer.

One responsibility of a custom HDF5 writer method is to create
unique names for every object written in the h5parent group.
Usually, this will be a NXentry [4] group. You can determine the
NeXus base class of this group using code such as this:

	1
2

	>>> print h5parent.attrs['NX_class']
<<< NXentry

If your custom HDF5 writer
must create group and you are uncertain which base class to select,
it is recommended to use a NXcollection [5] (an unvalidated catch-all
base class) which can store any content.
But, you are encouraged to find one of the other NeXus base classes that
best fits your data. Look at the source code of the supplied plugins
for examples.

The writer uses the spec2nexus.eznx module to create and write
the various parts of the HDF5 file.

Here is an example writer() method from the
spec2nexus.plugins.unicat module:

	1
2
3
4
5
6

	 def writer(self, h5parent, writer, scan, nxclass=None, *args, **kws):
 '''Describe how to store this data in an HDF5 NeXus file'''
 if hasattr(scan, 'metadata') and len(scan.metadata) > 0:
 desc='SPEC metadata (UNICAT-style #H & #V lines)'
 group = eznx.makeGroup(h5parent, 'metadata', nxclass, description=desc)
 writer.save_dict(group, scan.metadata)

Custom key match function

The default test that a given line
matches a specific spec2nexus.plugin.ControlLineHandler subclass
is to use a regular expression match.

	1
2
3
4
5
6
7

	 def match_key(self, text):
 '''default regular expression match, based on self.key'''
 t = re.match(self.key, text)
 if t is not None:
 if t.regs[0][1] != 0:
 return True
 return False

In some cases, that may
prove tedious or difficult, such as when testing for a
floating point number with optional preceding white space
at the start of a line. This is typical for data lines in a scan
or continued lines from an MCA spectrum. in such cases, the handler
can override the match_key() method. Here is an example
from SPEC_DataLine:

	1
2
3
4
5
6
7
8
9

	 def match_key(self, text):
 '''
 Easier to try conversion to number than construct complicated regexp
 '''
 try:
 float(text.strip().split()[0])
 return True
 except ValueError:
 return False

Summary Requirements for custom plugin

	file can go in your working directory or any directory that has __init__.py file

	multiple control line handlers can go in a single file

	for each control line:

	subclass spec2nexus.plugin.ControlLineHandler

	add @six.add_metaclass(AutoRegister) decorator to auto-register the plugin

	import the module you defined (FIXME: check this and revise)

	identify the control line pattern

	define key with a regular expression to match [6]

	key is used to identify control line handlers

	redefine existing supported control line control lines to replace supplied behavior (use caution!)

	Note: key="scan data" is used to process the scan data: spec2nexus.plugins.spec_common.SPEC_DataLine()

	define process() to handle the supplied text

	define writer() to write the in-memory data structure from this plugin to HDF5+NeXus data file

	(optional) define match_key() to override the default regular expression to match the key

	for each postprocessing function:

	write the function

	register the function with spec_obj.addPostProcessor(key_name, the_function) in the handler’s process()

Changes in plugin format with release 2021.0.0

With release 2021.0.0, the code to setup plugins has changed.
The new code allows all plugins in a module to auto-register themselves
as long as the module is imported.
All custom plugins must be modified and import code revised
to work with new system.
See the spec2nexus.plugins.spec_common source code for many examples.

	SAME: The basics of writing the plugins remains the same.

	CHANGED: The method of registering the plugins has changed.

	CHANGED: The declaration of each plugin has changed.

	CHANGED: The name of each plugin file has been relaxed.

	CHANGED: Plugin files do not have to be in their own directory.

	REMOVED: The SPEC2NEXUS_PLUGIN_PATH environment variable has been eliminated.

Footnotes

[1]
The key name must be unique amongst all postprocessing functions.
A good choice is the name of the postprocessing function itself.

[2]
http://nexusformat.org

[3]
http://download.nexusformat.org/doc/html/classes/base_classes/

[4]
http://download.nexusformat.org/doc/html/classes/base_classes/NXentry.html

[5]
http://download.nexusformat.org/doc/html/classes/base_classes/NXcollection.html

[6]
It is possible to override the default regular expression match
in the subclass with a custom match function. See the
match_key()
method for an example.

 Common Methods: spec2nexus.utils

Common Methods: spec2nexus.utils

source code documentation

(internal library) common methods used in spec2nexus modules

	clean_name(key)

	create a name that is allowed by both HDF5 and NeXus rules

	iso8601(date)

	convert SPEC time (example: Wed Nov 03 13:39:34 2010) into ISO8601 string

	strip_first_word(line)

	return everything after the first space on the line from the spec data file

	sanitize_name(group, key)

	make name that is allowed by HDF5 and NeXus rules

	reshape_data(scan_data, scan_shape)

	Shape scan data from raw to different dimensionality

	
spec2nexus.utils.clean_name(key)

	create a name that is allowed by both HDF5 and NeXus rules

	Parameters:

	key (str) – identifying string from SPEC data file

	See:

	http://download.nexusformat.org/doc/html/datarules.html

The “sanitized” name fits this regexp:

[A-Za-z_][\w_]*

An easier expression might be: [\w_]* but this will not pass
the rule that valid NeXus group or field names cannot start with a digit.

	
spec2nexus.utils.iso8601(date)

	convert SPEC time (example: Wed Nov 03 13:39:34 2010) into ISO8601 string

	Parameters:

	date (str) – time string from SPEC data file

Example

	SPEC:

	Wed Nov 03 13:39:34 2010

	ISO8601:

	2010-11-03T13:39:34

	SPOCK:

	09/15/17 04:39:10

	ISO8601:

	2017-09-15T04:39:10

	
spec2nexus.utils.reshape_data(scan_data, scan_shape)

	Shape scan data from raw to different dimensionality

Some SPEC macros collect data in a mesh or grid yet
report the data as a 1-D sequence of observations.
For further processing (such as plotting), the scan data
needs to be reshaped according to its intended dimensionality.

modified from nexpy.readers.readspec.reshape_data

	
spec2nexus.utils.sanitize_name(group, key)

	make name that is allowed by HDF5 and NeXus rules

	Note:

	deprecated use clean_name() instead (group is never used)

	Parameters:

	
	group (str) – unused

	key (str) – identifying string from SPEC data file

	See:

	http://download.nexusformat.org/doc/html/datarules.html

sanitized name fits this regexp:

[A-Za-z_][\w_]*

An easier expression might be: [\w_]* but this will not pass
the rule that valid names cannot start with a digit.

	
spec2nexus.utils.split_column_labels(text)

	SPEC labels may contain one space

	
spec2nexus.utils.strip_first_word(line)

	return everything after the first space on the line from the spec data file

 spec2nexus.scanf

spec2nexus.scanf

Simple scanf-implementation.
This module provides an easy way to parse simple formatted strings.
It works similar to the version C programmers are used to.

source code documentation

Small scanf-implementation.

	Created by Henning Schroeder on Mon, 12 Feb 2007

	PSF license

Python has powerful regular expressions but sometimes they are totally overkill
when you just want to parse a simple-formatted string.
C programmers use the scanf-function for these tasks (see link below).

This implementation of scanf translates the simple scanf-format into
regular expressions. Unlike C you can be sure that there are no buffer overflows
possible.

source: http://code.activestate.com/recipes/502213-simple-scanf-implementation/

For more information see:

	http://www.python.org/doc/current/lib/node49.html

	http://en.wikipedia.org/wiki/Scanf

	
spec2nexus.scanf.scanf(fmt, s=None)

	scanf supports the following formats:

	format

	description

	%c

	One character

	%5c

	5 characters

	%d

	int value

	%7d

	int value with length 7

	%f

	float value

	%o

	octal value

	%X, %x

	hex value

	%s

	string terminated by whitespace

Examples:
>>> scanf(“%s - %d errors, %d warnings”, “/usr/sbin/sendmail - 0 errors, 4 warnings”)
(‘/usr/sbin/sendmail’, 0, 4)
>>> scanf(“%o %x %d”, “0123 0x123 123”)
(66, 291, 123)

If the parameter s is a file-like object, s.readline is called.
If s is not specified, stdin is assumed.

The function returns a tuple of found values
or None if the format does not match.

 spec2nexus.singletons

spec2nexus.singletons

This is an internal library of the spec2nexus software.
It is not expected that users of this package will need to call
the singletons module directly.

source code documentation

singletons: Python 2 and 3 Compatible Version

	see:

	http://stackoverflow.com/questions/6760685/creating-a-singleton-in-python

USAGE:

class Logger(Singleton):
 pass

	
class spec2nexus.singletons.Singleton

	Public interface

 spec2nexus.writer

spec2nexus.writer

This is an internal library of the spec2nexus software.
It is not expected that users of this package will need to call
the writer module directly.

source code documentation

 Installation

Installation

Released versions of spec2nexus are available on PyPI [https://pypi.python.org/pypi/spec2nexus].

If you have pip installed, then you can install:

$ pip install spec2nexus

If you are using Anaconda Python and have conda installed,
then you can install with either of these:

$ conda install -c aps-anl-tag spec2nexus
$ conda install -c aps-anl-dev spec2nexus
$ conda install -c prjemian spec2nexus

Note that channel aps-anl-tag is for production versions
while channel aps-anl-dev is for development/testing versions.
The channel prjemian is an alternate with all versions available.

The latest development versions of spec2nexus can be downloaded from the
GitHub repository listed above:

$ git clone http://github.com/prjemian/spec2nexus.git

To install in the standard Python location:

$ cd spec2nexus
$ python setup.py install

To install in user’s home directory:

$ python setup.py install --user

To install in an alternate location:

$ python setup.py install --prefix=/path/to/installation/dir

Required Libraries

These libraries are required to write NeXus data files.
They are not required to read SPEC data files.

	Library

	URL

	h5py

	http://www.h5py.org

	numpy

	http://numpy.scipy.org/

Optional Libraries

These libraries are used by the specplot
and specplot_gallery modules
of the spec2nexus package but are not required
just to read SPEC data files or write NeXus data files.

	Library

	URL

	MatPlotLib

	http://matplotlib.org/

 Unit Testing

Unit Testing

Since release 2017.0201.0, this project relies on the Python unittest [1]
package to apply
unit testing [2] to the source code. The test code is in the tests
directory. Various tests have been developed starting with the 2017.0201.0
release to provide features or resolve problems reported. The tests are not
yet exhaustive yet the reported code coverage [3] is well over 80%.

The unit tests are implemented in a standard manner such that independent
review [4] can run the tests on this code based on the instructions provided
in a .travis.yml configuration file in the project directory.

This command will run the unit tests locally:

python tests

Additional information may be learned with a Python package to run the tests:

coverage run -a tests && coverage report -m

The coverage command ([5]), will run the tests and then prepare a report of
the percentage of the Python source code that has been executed during the
unit tests.

Note

The number of lines reported by coverage may differ from that
reported by travis-ci. The primary reason is that certain tests involving
access to information from GitHub may succeed or not depending on the
“Github API rate limit”. [6]

 Example data

Example data

About these example data files

These files are examples of various
data files that may be read by spec2nexus.
They are used to test various components of the interface.

	file

	
	type description

	02_03_setup.dat

	SPEC scans

	1-D scans, some have no data lines (data are stored in HDF5 file)

	03_06_JanTest.dat

	SPEC scans

	1-D scans, USAXS scans, Fly scans, #O+#o and #J+#j control lines

	05_02_test.dat

	SPEC scans

	1-D scans, USAXS scans, Fly scans, multiple #F control lines, multiple #S 1 control lines

	33bm_spec.dat

	SPEC scans

	1-D & 2-D scans (includes hklscan & hklmesh)

	33id_spec.dat

	SPEC scans

	1-D & 2-D scans (includes mesh & Escan scans & MCA data)

	APS_spec_data.dat

	SPEC scans

	1-D scans (ascan & uascan), includes lots of metadata and comments

	CdOsO

	SPEC scans

	1-D scans (ascan), four #E (2, 3659, 3692, 3800) and two #S 1 (35, 3725)

	CdSe

	SPEC scans

	1-D scans (ascan), problem with scan abort on lines 5918-9, in scan 92

	compression.h5

	NeXus HDF5

	2-D compressed image, also demonstrates problem to be resolved in code

	Data_Q.h5

	NeXus HDF5

	2-D image at /entry/data/{I,Q}, test file and variable-length strings

	lmn40.spe

	SPEC scans

	1-D & 2-D scans (hklmesh), two #E lines, has two header sections

	mca_spectra_example.dat

	SPEC scans

	1-D scans (cscan) with 4 MCA spectra in each scan (issue #55)

	spec_from_spock.spc

	SPEC scans

	no header section, uses “nan”, from sardana

	startup_1.spec

	SPEC scans

	1-D scans with SCA spectra & UXML headers for RSM code

	user6idd.dat

	SPEC scans

	1-D scans, aborted scan, control lines: #R #UB #UE #UX #UX1 #UX2 #X,
non-default format in #X lines

	usaxs-bluesky-specwritercallback.dat

	SPEC scans

	1-D scans, #MD control lines

	writer_1_3.h5

	NeXus HDF5

	1-D NeXus User Manual example

	YSZ011_ALDITO_Fe2O3_planar_fired_1.spc

	SPEC scans

	1-D scans, text in #V metadata, also has #UIM control lines

Downloads

These downloads are also available online:
https://github.com/prjemian/spec2nexus/tree/master/src/spec2nexus/data

	33bm_spec.dat

	33id_spec.dat

	APS_spec_data.dat

	CdSe

	compression.h5

	Data_Q.h5

	lmn40.spe

	mca_spectra_example.dat

	user6idd.dat

	writer_1_3.h5

	YSZ011_ALDITO_Fe2O3_planar_fired_1.spc

 Change History

Change History

Production

	2021.2.0:

	release expected 2022-03-15

	2021.1.11:

	released 2022.02.24

	re-release due to documentation publishing workflow problem

	2021.1.10:

	released 2022.02.24

	re-release due to documentation publishing workflow problem

	2021.1.9:

	released 2022.02.24

	
	#239 [https://github.com/prjemian/spec2nexus/issues/239]

	publish documentation at https://prjemian.github.io/spec2nexus/

	2021.1.8:

	released 2020.11.10

	
	#221 [https://github.com/prjemian/spec2nexus/issues/221]

	move CI from travis-ci to Github Actions, test with python 3.8

	
	#217 [https://github.com/prjemian/spec2nexus/issues/217]

	raise ValueError when #L and #N lines do not agree

Note

Python 2 end of support

spec2nexus stopped development for Python 2 after release 2021.1.7, 2019-11-21.
For more information, visit https://python3statement.org/.

 License

License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms and conditions of this Creative Commons Attribution 4.0 International Public License ("Public License"). To the extent this Public License may be interpreted as a contract, You are granted the Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor grants You such rights in consideration of benefits the Licensor receives from making the Licensed Material available under these terms and conditions.

Section 1 -- Definitions.

 Adapted Material means material subject to Copyright and Similar Rights that is derived from or based upon the Licensed Material and in which the Licensed Material is translated, altered, arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed Material is a musical work, performance, or sound recording, Adapted Material is always produced where the Licensed Material is synched in timed relation with a moving image.
 Adapter's License means the license You apply to Your Copyright and Similar Rights in Your contributions to Adapted Material in accordance with the terms and conditions of this Public License.
 Copyright and Similar Rights means copyright and/or similar rights closely related to copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis Database Rights, without regard to how the rights are labeled or categorized. For purposes of this Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.
 Effective Technological Measures means those measures that, in the absence of proper authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.
 Exceptions and Limitations means fair use, fair dealing, and/or any other exception or limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.
 Licensed Material means the artistic or literary work, database, or other material to which the Licensor applied this Public License.
 Licensed Rights means the rights granted to You subject to the terms and conditions of this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of the Licensed Material and that the Licensor has authority to license.
 Licensor means the individual(s) or entity(ies) granting rights under this Public License.
 Share means to provide material to the public by any means or process that requires permission under the Licensed Rights, such as reproduction, public display, public performance, distribution, dissemination, communication, or importation, and to make material available to the public including in ways that members of the public may access the material from a place and at a time individually chosen by them.
 Sui Generis Database Rights means rights other than copyright resulting from Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere in the world.
 You means the individual or entity exercising the Licensed Rights under this Public License. Your has a corresponding meaning.

Section 2 -- Scope.

 License grant.
 Subject to the terms and conditions of this Public License, the Licensor hereby grants You a worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed Rights in the Licensed Material to:
 reproduce and Share the Licensed Material, in whole or in part; and
 produce, reproduce, and Share Adapted Material.
 Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations apply to Your use, this Public License does not apply, and You do not need to comply with its terms and conditions.
 Term. The term of this Public License is specified in Section 6(a).
 Media and formats; technical modifications allowed. The Licensor authorizes You to exercise the Licensed Rights in all media and formats whether now known or hereafter created, and to make technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right or authority to forbid You from making technical modifications necessary to exercise the Licensed Rights, including technical modifications necessary to circumvent Effective Technological Measures. For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4) never produces Adapted Material.
 Downstream recipients.
 Offer from the Licensor -- Licensed Material. Every recipient of the Licensed Material automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms and conditions of this Public License.
 No downstream restrictions. You may not offer or impose any additional or different terms or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.
 No endorsement. Nothing in this Public License constitutes or may be construed as permission to assert or imply that You are, or that Your use of the Licensed Material is, connected with, or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive attribution as provided in Section 3(a)(1)(A)(i).

 Other rights.
 Moral rights, such as the right of integrity, are not licensed under this Public License, nor are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent necessary to allow You to exercise the Licensed Rights, but not otherwise.
 Patent and trademark rights are not licensed under this Public License.
 To the extent possible, the Licensor waives any right to collect royalties from You for the exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly reserves any right to collect such royalties.

Section 3 -- License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

 Attribution.

 If You Share the Licensed Material (including in modified form), You must:
 retain the following if it is supplied by the Licensor with the Licensed Material:
 identification of the creator(s) of the Licensed Material and any others designated to receive attribution, in any reasonable manner requested by the Licensor (including by pseudonym if designated);
 a copyright notice;
 a notice that refers to this Public License;
 a notice that refers to the disclaimer of warranties;
 a URI or hyperlink to the Licensed Material to the extent reasonably practicable;
 indicate if You modified the Licensed Material and retain an indication of any previous modifications; and
 indicate the Licensed Material is licensed under this Public License, and include the text of, or the URI or hyperlink to, this Public License.
 You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the medium, means, and context in which You Share the Licensed Material. For example, it may be reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the required information.
 If requested by the Licensor, You must remove any of the information required by Section 3(a)(1)(A) to the extent reasonably practicable.
 If You Share Adapted Material You produce, the Adapter's License You apply must not prevent recipients of the Adapted Material from complying with this Public License.

Section 4 -- Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the Licensed Material:

 for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce, and Share all or a substantial portion of the contents of the database;
 if You include all or a substantial portion of the database contents in a database in which You have Sui Generis Database Rights, then the database in which You have Sui Generis Database Rights (but not its individual contents) is Adapted Material; and
 You must comply with the conditions in Section 3(a) if You Share all or a substantial portion of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 -- Disclaimer of Warranties and Limitation of Liability.

 Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor offers the Licensed Material as-is and as-available, and makes no representations or warranties of any kind concerning the Licensed Material, whether express, implied, statutory, or other. This includes, without limitation, warranties of title, merchantability, fitness for a particular purpose, non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors, whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in part, this disclaimer may not apply to You.
 To the extent possible, in no event will the Licensor be liable to You on any legal theory (including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental, consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or in part, this limitation may not apply to You.

 The disclaimer of warranties and limitation of liability provided above shall be interpreted in a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver of all liability.

Section 6 -- Term and Termination.

 This Public License applies for the term of the Copyright and Similar Rights licensed here. However, if You fail to comply with this Public License, then Your rights under this Public License terminate automatically.

 Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:
 automatically as of the date the violation is cured, provided it is cured within 30 days of Your discovery of the violation; or
 upon express reinstatement by the Licensor.
 For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to seek remedies for Your violations of this Public License.
 For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate terms or conditions or stop distributing the Licensed Material at any time; however, doing so will not terminate this Public License.
 Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 -- Other Terms and Conditions.

 The Licensor shall not be bound by any additional or different terms or conditions communicated by You unless expressly agreed.
 Any arrangements, understandings, or agreements regarding the Licensed Material not stated herein are separate from and independent of the terms and conditions of this Public License.

Section 8 -- Interpretation.

 For the avoidance of doubt, this Public License does not, and shall not be interpreted to, reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully be made without permission under this Public License.
 To the extent possible, if any provision of this Public License is deemed unenforceable, it shall be automatically reformed to the minimum extent necessary to make it enforceable. If the provision cannot be reformed, it shall be severed from this Public License without affecting the enforceability of the remaining terms and conditions.
 No term or condition of this Public License will be waived and no failure to comply consented to unless expressly agreed to by the Licensor.
 Nothing in this Public License constitutes or may be interpreted as a limitation upon, or waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal processes of any jurisdiction or authority.

 Python Module Index

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 spec2nexus	

 	
 	
 spec2nexus.charts	
 charting for spec2nexus

 	
 	
 spec2nexus.eznx	
 (Easy NeXus) support reading & writing NeXus HDF5 files using h5py

 	
 	
 spec2nexus.plugin	
 Define the plug-in architecture.

 	
 	
 spec2nexus.scanf	
 Simple scanf-implementation.

 	
 	
 spec2nexus.singletons	
 singletons: Python 2 and 3 Compatible Version

 	
 	
 spec2nexus.utils	
 common methods used by **spec2nexus** modules

 Index

Index

 A
 | C
 | D
 | E
 | G
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | W
 | X

A

 	
 	addAttributes() (in module spec2nexus.eznx)

 	
 	AutoRegister (class in spec2nexus.plugin)

C

 	
 	clean_name() (in module spec2nexus.utils)

 	
 	control line, [1], [2], [3], [4], [5]

 	ControlLineHandler (class in spec2nexus.plugin)

D

 	
 	DuplicateControlLineKey

 	
 	DuplicateControlLinePlugin

 	DuplicatePlugin

E

 	
 	
 examples

 	SPEC MCA data

 	SPEC control lines

 	data files

 	extractSpecScan

 	eznx

 	spec

 	spec2nexus

G

 	
 	get() (spec2nexus.plugin.PluginManager method)

 	
 	get_plugin_manager() (in module spec2nexus.plugin)

 	getKey() (spec2nexus.plugin.PluginManager method)

I

 	
 	iso8601() (in module spec2nexus.utils)

K

 	
 	key

L

 	
 	load_plugins() (spec2nexus.plugin.PluginManager method)

M

 	
 	make_png() (in module spec2nexus.charts)

 	makeDataset() (in module spec2nexus.eznx)

 	makeExternalLink() (in module spec2nexus.eznx)

 	
 	makeFile() (in module spec2nexus.eznx)

 	makeGroup() (in module spec2nexus.eznx)

 	makeLink() (in module spec2nexus.eznx)

 	match_key() (spec2nexus.plugin.PluginManager method)

N

 	
 	
 NeXus structure

 	SPEC data

O

 	
 	openGroup() (in module spec2nexus.eznx)

P

 	
 	PluginBadKeyError

 	PluginDuplicateKeyError

 	PluginException

 	PluginKeyNotDefined

 	
 	PluginManager (class in spec2nexus.plugin)

 	PluginProcessMethodNotDefined

 	postprocess() (spec2nexus.plugin.ControlLineHandler method)

 	process() (spec2nexus.plugin.ControlLineHandler method)

 	(spec2nexus.plugin.PluginManager method)

R

 	
 	read_nexus_field() (in module spec2nexus.eznx)

 	read_nexus_group_fields() (in module spec2nexus.eznx)

 	
 	register_control_line_handler() (spec2nexus.plugin.PluginManager method)

 	reshape_data() (in module spec2nexus.utils)

S

 	
 	sanitize_name() (in module spec2nexus.utils)

 	scanf() (in module spec2nexus.scanf)

 	Singleton (class in spec2nexus.singletons)

 	
 SPEC

 	control lines

 	data file structure

 	data lines

 	special data lines

 	
 	SPEC data file keys

 	spec2nexus.charts (module)

 	spec2nexus.eznx (module)

 	spec2nexus.plugin (module)

 	spec2nexus.scanf (module)

 	spec2nexus.singletons (module)

 	spec2nexus.utils (module)

 	split_column_labels() (in module spec2nexus.utils)

 	strip_first_word() (in module spec2nexus.utils)

W

 	
 	write_dataset() (in module spec2nexus.eznx)

 	
 	writer() (spec2nexus.plugin.ControlLineHandler method)

X

 	
 	xy_plot() (in module spec2nexus.charts)

nav.xhtml

 Table of Contents

 		
 spec2nexus

_images/ascan.png
Isrc/spec2nexus/data/APS_spec_data dat

#1: ascan_mr 15.6102 15.6052 30 0.3
20000

15000

© 10000

5000

0
15.605 15.606 15.607 15.608 15.609 15.610 15.611
mr

_images/ascan_custom.png
Isrc/spec2nexu