

Welcome to spead2’s documentation!

Contents:

	Introduction to spead2
	Preparation

	Installing spead2 for Python

	Installing spead2 for C++

	Python API for spead2
	SPEAD flavours

	Mapping of SPEAD protocol to Python

	Stream control items

	Items and item groups

	Thread pools

	Receiving

	Sending

	Logging

	Support for ibverbs

	C++ API for spead2
	C++ API stability

	Asynchronous I/O

	Receiving

	Sending

	Logging

	Support for ibverbs

	Support for netmap

	Performance tuning
	System tuning

	Protocol design

	Application tuning

	Other tools
	mcdump

	Changelog

	License

Indices and tables

	Index

	Module Index

	Search Page

Introduction to spead2

spead2 is an implementation of the SPEAD [https://casper.berkeley.edu/wiki/SPEAD] protocol, with both Python and C++
bindings. The 2 in the name indicates that this is a new implementation of
the protocol; the protocol remains essentially the same. Compared to the
PySPEAD [https://github.com/ska-sa/PySPEAD/] implementation, spead2:

	is at least an order of magnitude faster when dealing with large heaps;

	correctly implements several aspects of the protocol that were implemented
incorrectly in PySPEAD (bug-compatibility is also available);

	correctly implements many corner cases on which PySPEAD would simply fail;

	cleanly supports several SPEAD flavours (e.g. 64-40 and 64-48) in one
module, with the receiver adapting to the flavour used by the sender;

	supports Python 3;

	supports asynchronous operation, using trollius [http://trollius.readthedocs.io/].

Preparation

spead2 requires a modern C++ compiler supporting C++11 (currently only GCC 4.8
and Clang 3.4 have been tried) as well as Boost (including compiled libraries).
The Python bindings have additional dependencies — see below. At the moment
only GNU/Linux has been tested but other POSIX-like systems should work too (OS
X is tested occasionally).

There is optional support for netmap [https://github.com/luigirizzo/netmap] and ibverbs [https://www.openfabrics.org/downloads/libibverbs/README.html] for higher performance. If
the libraries (including development headers) libraries are installed, they
will automatically be detected and used.

If you are installing spead2 from a git checkout, it is first necessary to run
./bootstrap.sh to prepare the configure script and related files. When
building from a packaged download this is not required.

High-performance usage requires larger buffer sizes than Linux allows by
default. The following commands will increase the permitted buffer sizes on
Linux:

sysctl net.core.wmem_max=16777216
sysctl net.core.rmem_max=16777216

Note that these commands are not persistent across reboots, and the settings
need to be stored in /etc/sysctl.conf or /etc/sysctl.d.

Installing spead2 for Python

The only Python dependencies are numpy [http://www.numpy.org] and six [https://pythonhosted.org/six/], although support for
asynchronous I/O also requires trollius [http://trollius.readthedocs.io/]. Running the test suite additionally
requires nose [https://nose.readthedocs.io/en/latest/], decorator [http://pythonhosted.org/decorator/] and netifaces [https://pypi.python.org/pypi/netifaces], and some tests depend on PySPEAD [https://github.com/ska-sa/PySPEAD/]
(they will be skipped if it is not installed). It is also necessary to have the
development headers for Python, and Boost.Python.

To install (which will automatically pull in the mandatory dependencies), run:

./setup.py install

Other standard methods for installing Python packages should work too.

Installing spead2 for C++

The C++ API uses the standard autoconf installation flow i.e.:

./configure [options]
make
make install

For generic help with configuration, see INSTALL in the top level of
the source distribution. Optional features are autodetected by default, but can
be disabled by passing options to configure (run ./configure -h
to see a list of options).

One option that may squeeze out a very small amount of extra performance is
--enable-lto to enable link-time optimization. Up to version 1.2.0
this was enabled by default, but it has been disabled because it often needs
other compiler or OS-specific configuration to make it work. For GCC, typical
usage is

./configure --enable-lto AR=gcc-ar RANLIB=gcc-ranlib

The installation will install some benchmark tools, a static library, and the
header files. At the moment there is no intention to create a shared library,
because the ABI is not stable.

Python API for spead2

This documentation does not cover all the classes and methods in the module.
Instead, it documents those that are expected to be commonly used by the user,
and omits those designed for the classes to communicate with each other or
with the C++ backend.

	SPEAD flavours

	Mapping of SPEAD protocol to Python

	Stream control items

	Items and item groups

	Thread pools

	Receiving
	Blocking receive

	Asynchronous receive

	Memory allocators

	Sending
	Blocking send

	Asynchronous send

	Logging

	Support for ibverbs
	System configuration

	Receiving

	Sending

SPEAD flavours

The SPEAD protocol is versioned and within a version allows for multiple
flavours, with different numbers of bits for item pointer fields. The spead2
library supports all SPEAD-64-XX flavours of version 4, where XX is a
multiple of 8.

Furthermore, PySPEAD 0.5.2 has a number of bugs in its implementation of the
protocol, which effectively defines a new protocol. This is treated as part of
the flavour in spead2. Some receive functions have a bug_compat parameter
which specifies which of these bugs to maintain compatibility with:

	spead2.BUG_COMPAT_DESCRIPTOR_WIDTHS: the descriptors are encoded
with shape and format fields sized as for SPEAD-64-40, regardless of the
actual flavour.

	spead2.BUG_COMPAT_SHAPE_BIT_1: the first byte of a shape is set
to 2 to indicate a variably-sized dimension, instead of 1.

	spead2.BUG_COMPAT_SWAP_ENDIAN: numpy arrays are encoded/decoded
in the opposite endianness to that specified in the descriptor.

	spead2.BUG_COMPAT_NO_SCALAR_NUMPY: scalar items specified with
a descriptor are transmitted with a descriptor, even if it is possible to
convert it to a dtype.

	spead2.BUG_COMPAT_PYSPEAD_0_5_2: all of the above (and any other
bugs later found in this version of PySPEAD).

For sending, the full flavour is specified by a spead2.Flavour
object. It allows all the fields to be specified to allow for future
expansion, but ValueError is raised unless version is 4 and
item_pointer_bits is 64. There is a default constructor that returns
SPEAD-64-40 with bug compatibility disabled.

	
class Flavour(version, item_pointer_bits, heap_address_bits, bug_compat=0)

	

The constructor arguments are available as read-only attributes.

Mapping of SPEAD protocol to Python

	Any descriptor with a numpy header is handled by numpy. The value is
converted to native endian, but is otherwise left untouched.

	Strings are expected to use ASCII encoding only. At present this is variably
enforced, and enforcement may differ between Python 2 and 3. Future versions
may apply stricter enforcement. This applies to names, descriptions, and to
values passed with the c format code.

	The c format code may only be used with length 8, and f may only be used
with lengths 32 or 64.

	The 0 format code is not supported.

	All values sent or received are converted to numpy arrays. If the descriptor
uses a numpy header, this is the type of the array. Otherwise, a dtype is
constructed by converting the format code. The following are converted to
numpy primitive types:

	u8, u16, u32, u64

	i8, i16, i32, i64

	f32, f64

	b8 (converted to dtype bool)

	c8 (converted to dtype S1)

Other fields will be kept as Python objects. If there are multiple fields,
their names will be generated by numpy (f0, f1, etc). If all the fields
convert to native types, a fast path will be used for sending and receiving
(as fast as using an explicit numpy header).

	At most one element of the shape may indicate a variable-length field,
whose length will be computed from the size of the item, or zero if any
other element of the shape is zero.

When transmitting data, one case is handled specially: if the expected shape
is one-dimensional, but the provided value is an instance of
bytes, str or unicode, it will be broken
up into its individual characters. This is a convenience for sending
variable-length strings.

When receiving data, some transformations are made:

	A zero-dimensional array is returned as a scalar, rather than a
zero-dimensional array object.

	If the format is given and is c8 and the array is one-dimensional, it is
joined together into a Python str.

Stream control items

A heap with the CTRL_STREAM_STOP flag will shut down the
stream, but the heap is not passed on to the application. Senders should thus
avoid putting any other data in such heaps. These heaps are not automatically
sent; use spead2.send.HeapGenerator.get_end() to produce such a heap.

In contrast, stream start flags (CTRL_STREAM_START) have no
effect on internal processing. Senders can generate them using
spead2.send.HeapGenerator.get_start() and receivers can detect them using
spead2.recv.Heap.is_start_of_stream().

Items and item groups

Each data item that can be communicated over SPEAD is described by a
spead2.Descriptor. Items combine a descriptor with a current
value, and a version number that is used to detect which items have been
changed (either in the library when transmitting, or by the user when
receiving).

	
class spead2.Descriptor(id, name, description, shape, dtype=None, order='C', format=None)

	Metadata for a SPEAD item.

There are a number of restrictions in the way the parameters combine,
which will cause ValueError to be raised if violated:

	At most one element of shape can be None.

	Exactly one of dtype and format must be non-None.

	If dtype is specified, shape cannot have any unknown dimensions.

	If format is specified, order must be ‘C’

	Parameters:	
	id (int) – SPEAD item ID

	name (str) – Short item name, suitable for use as a key

	description (str) – Long item description

	shape (sequence) – Dimensions, with None indicating a variable-size dimension

	dtype (numpy data type, optional) – Data type, or None if format will be used instead

	order ({'C', 'F'}) – Indicates C-order or Fortran-order storage

	format (list of pairs, optional) – Structure fields for generic (non-numpy) type. Each element of the list
is a tuple of field code and bit length.

	
itemsize_bits

	Number of bits per element

	
is_variable_size()

	Determine whether any element of the size is dynamic

	
dynamic_shape(max_elements)

	Determine the dynamic shape, given incoming data that is big enough
to hold max_elements elements.

	
compatible_shape(shape)

	Determine whether shape is compatible with the (possibly
variable-sized) shape for this descriptor

	
class spead2.Item(*args, **kwargs, value=None)

	A SPEAD item with a value and a version number.

	Parameters:	value (object, optional) – Initial value

	
value

	Current value. Assigning to this will increment the version number.
Assigning None will raise ValueError because there is no way to
encode this using SPEAD.

Warning

If you modify a mutable value in-place, the change will
not be detected, and the new value will not be transmitted. In this
case, either manually increment the version number, or reassign the
value.

	
version

	Version number

	
class spead2.ItemGroup

	Items are collected into sets called item groups, which can be indexed by
either item ID or item name.

There are some subtleties with respect to re-issued item descriptors. There are
two cases:

	The item descriptor is identical to a previous seen one. In this case, no
action is taken.

	Otherwise, any existing items with the same name or ID (which could be two
different items) are dropped, the new item is added, and its value
becomes None. The version is set to be higher than version on an item
that was removed, so that consumers who only check the version will
detect the change.

	
add_item(*args, **kwargs)

	Add a new item to the group. The parameters are used to construct an
Item. If id is None, it will be automatically populated
with an ID that is not already in use.

See the class documentation for the behaviour when the name or ID
collides with an existing one. In addition, if the item descriptor is
identical to an existing one and a value, this value is assigned to
the existing item.

	
keys()

	Item names

	
values()

	Item values

	
items()

	Dictionary style (name, value) pairs

	
ids()

	Item IDs

	
update(heap)

	Update the item descriptors and items from an incoming heap.

	Parameters:	heap (spead2.recv.Heap) – Incoming heap

	Returns:	Items that have been updated from this heap, indexed by name

	Return type:	dict

Thread pools

The actual sending and receiving of packets is done by separate C threads.
Each stream is associated with a thread pool, which is a pool of threads
able to process its packets. See the performance guidelines for advice on how many threads to use.

There is one important consideration for deciding whether streams share a
thread pool: if a received stream is not being consumed, it may block one of
the threads from the thread pool [1]. Thus, if several streams share a thread
pool, it is important to be responsive to all of them. Deciding that one
stream is temporarily uninteresting and can be discarded while listening only
to another one can thus lead to a deadlock if the two streams share a thread
pool with only one thread.

	[1]	This is a limitation of the current design that will hopefully be
overcome in future versions.

	
class spead2.ThreadPool(threads=1, affinity=[])

	Construct a thread pool and start the threads. A list of integers can be
provided for affinity to have the threads bound to specific CPU cores
(this is only implemented for glibc). If there are fewer values than
threads, the list is reused cyclically (although in this case you’re
probably better off having fewer threads in this case).

	
stop()

	Shut down the worker threads. Calling this while there are still open
streams is not advised. In most cases, garbage collection is sufficient.

	
static set_affinity(core)

	Binds the caller to CPU core core.

Receiving

The classes associated with receiving are in the spead2.recv
package. A stream represents a logical stream, in that packets with
the same heap ID are assumed to belong to the same heap. A stream can have
multiple physical transports.

Streams yield heaps, which are the basic units of data transfer and contain
both item descriptors and item values. While it is possible to directly
inspect heaps, this is not recommended or supported. Instead, heaps are
normally passed to spead2.ItemGroup.update().

	
class spead2.recv.Heap

	
	
cnt

	Heap identifier (read-only)

	
flavour

	SPEAD flavour used to encode the heap (see SPEAD flavours)

	
is_start_of_stream()

	Returns true if the packet contains a stream start control item.

Note

Malformed packets (such as an unsupported SPEAD version, or
inconsistent heap lengths) are dropped, with a log message. However,
errors in interpreting a fully assembled heap (such as invalid/unsupported
formats, data of the wrong size and so on) are reported as
ValueError exceptions. Robust code should thus be prepared to
catch exceptions from heap processing.

Blocking receive

To do blocking receive, create a spead2.recv.Stream, and add
transports to it with add_buffer_reader() and
add_udp_reader(). Then either iterate over it,
or repeatedly call get().

	
class spead2.recv.Stream(thread_pool, bug_compat=0, max_heaps=4, ring_heaps=4)

	

	Parameters:	
	thread_pool (spead2.ThreadPool) – Thread pool handling the I/O

	bug_compat (int) – Bug compatibility flags (see SPEAD flavours)

	max_heaps (int) – The number of partial heaps that can be live at one
time. This affects how intermingled heaps can be (due to out-of-order
packet delivery) before heaps get dropped.

	ring_heaps (int) – The capacity of the ring buffer between the network
threads and the consumer. Increasing this may reduce lock contention at
the cost of more memory usage.

	
set_memory_allocator(allocator)

	Set or change the memory allocator for a stream. See
Memory allocators for details.

	Parameters:	pool (spead2.MemoryAllocator) – New memory allocator

	
set_memcpy(id)

	Set the method used to copy data from the network to the heap. The
default is MEMCPY_STD. This can be changed to
MEMCPY_NONTEMPORAL, which writes to the destination with a
non-temporal cache hint (if SSE2 is enabled at compile time). This can
improve performance with large heaps if the data is not going to be used
immediately, by reducing cache pollution. Be careful when benchmarking:
receiving heaps will generally appear faster, but it can slow down
subsequent processing of the heap because it will not be cached.

	Parameters:	id ({MEMCPY_STD, MEMCPY_NONTEMPORAL}) – Identifier for the copy function

	
add_buffer_reader(buffer)

	Feed data from an object implementing the buffer protocol.

	
add_udp_reader(port, max_size=DEFAULT_UDP_MAX_SIZE, buffer_size=DEFAULT_UDP_BUFFER_SIZE, bind_hostname='', socket=None)

	Feed data from a UDP port.

	Parameters:	
	port (int) – UDP port number

	max_size (int) – Largest packet size that will be accepted.

	buffer_size (int) – Kernel socket buffer size. If this is 0, the OS
default is used. If a buffer this large cannot be allocated, a warning
will be logged, but there will not be an error.

	bind_hostname (str) – If specified, the socket will be bound to the
first IP address found by resolving the given hostname. If this is a
multicast group, then it will also subscribe to this multicast group.

	socket (socket.socket) – If specified, this socket is used rather
than a new one. The socket must be open but unbound. The caller must
not use this socket any further, although it is not necessary to keep
it alive. This is mainly useful for fine-tuning socket options such
as multicast subscriptions.

	
add_udp_reader(multicast_group, port, max_size=DEFAULT_UDP_MAX_SIZE, buffer_size=DEFAULT_UDP_BUFFER_SIZE, interface_address)

	Feed data from a UDP port with multicast (IPv4 only).

	Parameters:	
	multicast_group (str) – Hostname/IP address of the multicast group to subscribe to

	port (int) – UDP port number

	max_size (int) – Largest packet size that will be accepted.

	buffer_size (int) – Kernel socket buffer size. If this is 0, the OS
default is used. If a buffer this large cannot be allocated, a warning
will be logged, but there will not be an error.

	interface_address (str) – Hostname/IP address of the interface which
will be subscribed, or the empty string to let the OS decide.

	
add_udp_reader(multicast_group, port, max_size=DEFAULT_UDP_MAX_SIZE, buffer_size=DEFAULT_UDP_BUFFER_SIZE, interface_index)

	Feed data from a UDP port with multicast (IPv6 only).

	Parameters:	
	multicast_group (str) – Hostname/IP address of the multicast group to subscribe to

	port (int) – UDP port number

	max_size (int) – Largest packet size that will be accepted.

	buffer_size (int) – Kernel socket buffer size. If this is 0, the OS
default is used. If a buffer this large cannot be allocated, a warning
will be logged, but there will not be an error.

	interface_index (str) – Index of the interface which will be
subscribed, or 0 to let the OS decide.

	
get()

	Returns the next heap, blocking if necessary. If the stream has been
stopped, either by calling stop() or by receiving a stream
control packet, it raises spead2.Stopped. However, heap that
were already queued when the stream was stopped are returned first.

A stream can also be iterated over to yield all heaps.

	
get_nowait()

	Like get(), but if there is no heap available it raises
spead2.Empty.

	
stop()

	Shut down the stream and close all associated sockets. It is not
possible to restart a stream once it has been stopped; instead, create a
new stream.

Asynchronous receive

Asynchronous I/O is supported through trollius [http://trollius.readthedocs.io/], which is a Python 2 backport
of the Python 3 asyncio module. It can be combined with other
asynchronous I/O frameworks like twisted [https://twistedmatrix.com/trac/].

	
class spead2.recv.trollius.Stream(*args, **kwargs, loop=None)

	See spead2.recv.Stream (the base class) for other constructor
arguments.

	Parameters:	loop – Default Trollius event loop for async operations. If not
specified, uses the default Trollius event loop. Do not call
get_nowait from the base class.

	
get(loop=None)

	Coroutine that yields the next heap, or raises spead2.Stopped
once the stream has been stopped and there is no more data. It is safe
to have multiple in-flight calls, which will be satisfied in the order
they were made.

	Parameters:	loop – Trollius event loop to use, overriding constructor.

Memory allocators

To allow for performance tuning, it is possible to use an alternative memory
allocator for heap payloads. A few allocator classes are provided; new classes
must currently be written in C++. The default (which is also the base class
for all allocators) is spead2.MemoryAllocator, which has no
constructor arguments or methods. An alternative is
spead2.MmapAllocator.

	
class spead2.MmapAllocator(flags=0)

	An allocator using mmap(2). This may be slightly faster for large
allocations, and allows setting custom mmap flags. This is mainly intended
for use with the C++ API, but is exposed to Python as well.

	Parameters:	flags (int) – Extra flags to pass to mmap(2). Finding the numeric values
for OS-specific flags is left as a problem for the user.

The most important custom allocator is spead2.MemoryPool. It allocates
from a pool, rather than directly from the system. This can lead to
significant performance improvements when the allocations are large enough
that the C library allocator does not recycle the memory itself, but instead
requests memory from the kernel.

A memory pool has a range of sizes that it will handle from its pool, by
allocating the upper bound size. Thus, setting too wide a range will waste
memory, while setting too narrow a range will prevent the memory pool from
being used at all. A memory pool is best suited for cases where the heaps are
all roughly the same size.

A memory pool can optionally use a background task (scheduled onto a thread
pool) to replenish the pool when it gets low. This is useful when heaps are
being captured and stored indefinitely rather than processed and released.

	
class spead2.MemoryPool(thread_pool, lower, upper, max_free, initial, low_water, allocator=None)

	Constructor. One can omit thread_pool and low_water to skip the
background refilling.

	Parameters:	
	thread_pool (ThreadPool) – thread pool used for
refilling the memory pool

	lower (int) – Minimum allocation size to handle with the pool

	upper (int) – Size of allocations to make

	max_free (int) – Maximum number of allocations held in the pool

	initial (int) – Number of allocations to put in the free pool
initially.

	low_water (int) – When fewer than this many buffers remain, the
background task will be started and allocate new memory until initial
buffers are available.

	allocator (MemoryAllocator) – Underlying memory allocator

Sending

Unlike for receiving, each stream object can only use a single transport.
There is currently no support for collective operations where multiple
producers cooperate to construct a heap between them. It is still possible to
do multi-producer, single-consumer operation if the heap IDs are kept separate.

Because each stream has only one transport, there is a separate class for
each, rather than a generic Stream class. Because there is common
configuration between the stream classes, configuration is encapsulated in a
spead2.send.StreamConfig.

	
class spead2.send.StreamConfig(max_packet_size=1472, rate=0.0, burst_size=65536, max_heaps=4)

	

	Parameters:	
	max_packet_size (int) – Heaps will be split into packets of at most this size.

	rate (double) – Maximum transmission rate, in bytes per second, or 0
to send as fast as possible.

	burst_size (int) – Bursts of up to this size will be sent as fast as
possible. Setting this too large (larger than available buffer sizes)
risks losing packets, while setting it too small may reduce throughput by
causing more sleeps than necessary.

	max_heaps (int) – For asynchronous transmits, the maximum number of
heaps that can be in-flight.

The constructor arguments are also instance attributes.

Streams send pre-baked heaps, which can be constructed by hand, but are more
normally created from an ItemGroup by a
spead2.send.HeapGenerator. To simplify cases where one item group
is paired with one heap generator, a convenience class
spead2.send.ItemGroup is provided that inherits from both.

	
class spead2.send.HeapGenerator(item_group, descriptor_frequency=None, flavour=<Mock name='mock.Flavour()' id='139789692756488'>)

	Tracks which items and item values have previously been sent and
generates delta heaps.

	Parameters:	
	item_group (spead2.ItemGroup) – Item group to monitor.

	descriptor_frequency (int, optional) – If specified, descriptors will be re-sent once every descriptor_frequency heaps
generated by this method.

	flavour (spead2.Flavour) – The SPEAD protocol flavour used for heaps generated by get_heap() and
get_end().

	
add_to_heap(heap, descriptors='stale', data='stale')

	Update a heap to contains all the new items and item descriptors
since the last call.

	Parameters:	
	heap (Heap) – The heap to update.

	descriptors ({'stale', 'all', 'none'}) – Which descriptors to send. The default (‘stale’) sends only
descriptors that have not been sent, or have not been sent recently
enough according to the descriptor_frequency passed to the
constructor. The other options are to send all the descriptors or
none of them. Sending all descriptors is useful if a new receiver
is added which will be out of date.

	data ({'stale', 'all', 'none'}) – Which data items to send.

	item_group (ItemGroup, optional) – If specified, uses the items from this item group instead of the
one passed to the constructor (which could be None).

	Raises:	ValueError – if descriptors or data is not one of the legal values

	
get_heap(*args, **kwargs)

	Return a new heap which contains all the new items and item
descriptors since the last call. This is a convenience wrapper
around add_to_heap().

	
get_start()

	Return a heap that contains only a start-of-stream marker.

	
get_end()

	Return a heap that contains only an end-of-stream marker.

Blocking send

	
class spead2.send.UdpStream(thread_pool, hostname, port, config, buffer_size=DEFAULT_BUFFER_SIZE, socket=None)

	Stream using UDP. Note that since UDP is an unreliable protocol, there is
no guarantee that packets arrive.

	Parameters:	
	thread_pool (spead2.ThreadPool) – Thread pool handling the I/O

	hostname (str) – Peer hostname

	port (int) – Peer port

	config (spead2.send.StreamConfig) – Stream configuration

	buffer_size (int) – Socket buffer size. A warning is logged if this
size cannot be set due to OS limits.

	socket (socket.socket) – If specified, this socket is used rather
than a new one. The socket must be open but unbound. The caller must
not use this socket any further, although it is not necessary to keep
it alive. This is mainly useful for fine-tuning socket options.

	
send_heap(heap, cnt=-1)

	Sends a spead2.send.Heap to the peer, and wait for
completion. There is currently no indication of whether it successfully
arrived.

If not specified, a heap cnt is chosen automatically (the choice can be
modified by calling set_cnt_sequence()). If a non-negative value
is specified for cnt, it is used instead. It is the user’s
responsibility to avoid collisions.

	
set_cnt_sequence(next, step)

	Modify the linear sequence used to generate heap cnts. The next heap
will have cnt next, and each following cnt will be incremented by
step. When using this, it is the user’s responsibility to ensure
that the generated values remain unique. The initial state is next =
1, cnt = 1.

This is useful when multiple senders will send heaps to the same
receiver, and need to keep their heap cnts separate.

	
class spead2.send.UdpStream(thread_pool, multicast_group, port, config, buffer_size=DEFAULT_BUFFER_SIZE, ttl)

	Stream using UDP, with multicast TTL. Note that the regular constructor will
also work with UDP, but does not give any control over the TTL.

	Parameters:	
	thread_pool (spead2.ThreadPool) – Thread pool handling the I/O

	multicast_group (str) – Multicast group hostname/IP address

	port (int) – Destination port

	config (spead2.send.StreamConfig) – Stream configuration

	buffer_size (int) – Socket buffer size. A warning is logged if this
size cannot be set due to OS limits.

	ttl (int) – Multicast TTL

	
class spead2.send.UdpStream(thread_pool, multicast_group, port, config, buffer_size=524288, ttl, interface_address)

	Stream using UDP, with multicast TTL and interface address (IPv4 only).

	Parameters:	
	thread_pool (spead2.ThreadPool) – Thread pool handling the I/O

	multicast_group (str) – Multicast group hostname/IP address

	port (int) – Destination port

	config (spead2.send.StreamConfig) – Stream configuration

	buffer_size (int) – Socket buffer size. A warning is logged if this
size cannot be set due to OS limits.

	ttl (int) – Multicast TTL

	interface_address (str) – Hostname/IP address of the interface on which
to send the data

	
class spead2.send.UdpStream(thread_pool, multicast_group, port, config, buffer_size=524288, ttl, interface_index)

	Stream using UDP, with multicast TTL and interface index (IPv6 only).

	Parameters:	
	thread_pool (spead2.ThreadPool) – Thread pool handling the I/O

	multicast_group (str) – Multicast group hostname/IP address

	port (int) – Destination port

	config (spead2.send.StreamConfig) – Stream configuration

	buffer_size (int) – Socket buffer size. A warning is logged if this
size cannot be set due to OS limits.

	ttl (int) – Multicast TTL

	interface_index (str) – Index of the interface on which to send the
data

	
class spead2.send.BytesStream(thread_pool, config)

	Stream that collects packets in memory and makes the concatenated stream
available.

	Parameters:	
	thread_pool (spead2.ThreadPool) – Thread pool handling the I/O

	config (spead2.send.StreamConfig) – Stream configuration

	
send_heap(heap)

	Appends a spead2.send.Heap to the memory buffer.

	
getvalue()

	Return a copy of the memory buffer.

	Return type:	bytes

Asynchronous send

As for asynchronous receives, asynchronous sends are managed by trollius [http://trollius.readthedocs.io/]. A
stream can buffer up multiple heaps for asynchronous send, up to the limit
specified by max_heaps in the StreamConfig. If this
limit is exceeded, heaps will be dropped, and the returned future has an
IOError exception set. An IOError could also indicate a
low-level error in sending the heap (for example, if the packet size exceeds
the MTU).

Logging

Logging is done with the standard Python logging module, and logging
can be configured with the usual utilities. However, in the default build the
debug logging is completely disabled for performance reasons [1]. To enable
it, add -DSPEAD2_MAX_LOG_LEVEL=spead2::log_level::debug to the compiler
options in setup.py.

	[1]	Logging is done from separate C threads, which have to wait for
Python’s Global Interpreter Lock (GIL) in order to do logging.

Support for ibverbs

Receiver performance can be significantly improved by using the Infiniband
Verbs API instead of the BSD sockets API. This is currently only tested on
Linux with Mellanox ConnectX®-3 NICs. It depends on device managed flow
steering (DMFS), which may require using the Mellanox OFED version of
libibverbs.

There are a number of limitations in the current implementation:

	Only IPv4 is supported

	VLAN tagging, IP optional headers, and IP fragmentation are not supported

	Only multicast is supported

Within these limitations, it is quite easy to take advantage of this faster
code path. The main difficulty is that one must specify the IP address of
the interface that will send or receive the packets. The netifaces [https://pypi.python.org/pypi/netifaces] module can
help find the IP address for an interface by name.

System configuration

It is likely that some system configuration will be needed to allow this mode
to work correctly. For ConnectX®-3, add the following to
/etc/modprobe.d/mlnx.conf:

options ib_uverbs disable_raw_qp_enforcement=1
options mlx4_core fast_drop=1
options mlx4_core log_num_mgm_entry_size=-1

For more information, see the libvma documentation [https://github.com/Mellanox/libvma].

Receiving

The ibverbs API can be used programmatically by using an extra method of
spead2.recv.Stream.

	
spead2.recv.Stream.add_udp_ibv_reader(endpoints, interface_address, max_size=DEFAULT_UDP_IBV_MAX_SIZE, buffer_size=DEFAULT_UDP_IBV_BUFFER_SIZE, comp_vector=0, max_poll=DEFAULT_UDP_IBV_MAX_POLL)

	Feed data from multicast IPv4 traffic. For backwards compatibility, one
can also pass a single address and port as two separate arguments in
place of endpoints.

	Parameters:	
	endpoints (list) – List of 2-tuples, each containing a
hostname/IP address the multicast group and the UDP port number.

	interface_address (str) – Hostname/IP address of the interface which
will be subscribed

	max_size (int) – Maximum packet size that will be accepted

	buffer_size (int) – Requested memory allocation for work requests. Note
that this is used to determine the number of packets
to buffer; if the packets are smaller than max_size,
then fewer bytes will be buffered.

	comp_vector (int) – Completion channel vector (interrupt)
for asynchronous operation, or
a negative value to poll continuously. Polling
should not be used if there are other users of the
thread pool. If a non-negative value is provided, it
is taken modulo the number of available completion
vectors. This allows a number of readers to be
assigned sequential completion vectors and have them
load-balanced, without concern for the number
available.

	max_poll (int) – Maximum number of times to poll in a row, without
waiting for an interrupt (if comp_vector is
non-negative) or letting other code run on the
thread (if comp_vector is negative).

Environment variables

An existing application can be forced to use ibverbs for all multicast IPv4
readers, by setting the environment variable SPEAD2_IBV_INTERFACE to the IP
address of the interface to receive the packets. Note that calls to
spead2.recv.Stream.add_udp_reader() that pass an explicit interface
will use that interface, overriding SPEAD2_IBV_INTERFACE; in this case,
SPEAD2_IBV_INTERFACE serves only to enable the override.

It is also possible to specify SPEAD2_IBV_COMP_VECTOR to override the
completion channel vector from the default.

Note that this environment variable currently has no effect on senders.

Sending

Sending is done by using the class spead2.send.UdpIbvStream instead
of spead2.send.UdpStream. It has a different constructor, but the
same methods. There is also a spead2.send.trollius.UdpIbvStream class,
analogous to spead2.send.trollius.UdpStream.

	
class spead2.send.UdpIbvStream(thread_pool, multicast_group, port, config, interface_address, buffer_size, ttl=1, comp_vector=0, max_poll=DEFAULT_MAX_POLL)

	Create a multicast IPv4 UDP stream using the ibverbs API

	Parameters:	
	thread_pool (spead2.ThreadPool) – Thread pool handling the I/O

	multicast_group (str) – Multicast group hostname/IP address

	port (int) – Destination port

	config (spead2.send.StreamConfig) – Stream configuration

	interface_address (str) – Hostname/IP address of the interface which
will be subscribed

	buffer_size (int) – Socket buffer size. A warning is logged if this
size cannot be set due to OS limits.

	ttl (int) – Multicast TTL

	buffer_size – Requested memory allocation for work requests.

	comp_vector (int) – Completion channel vector (interrupt)
for asynchronous operation, or
a negative value to poll continuously. Polling
should not be used if there are other users of the
thread pool. If a non-negative value is provided, it
is taken modulo the number of available completion
vectors. This allows a number of streams to be
assigned sequential completion vectors and have them
load-balanced, without concern for the number
available.

	max_poll (int) – Maximum number of times to poll in a row, without
waiting for an interrupt (if comp_vector is
non-negative) or letting other code run on the
thread (if comp_vector is negative).

C++ API for spead2

The C++ API is at a lower level than the Python API. In particular, item
values are treated as uninterpreted binary blobs. The protocol is directly
tied to numpy’s type system, so it is not practical to implement this in C++.
The C++ API is thus best suited to situations which require the maximum
possible performance and where the data formats can be fixed in advance.

There is also no equivalent to the spead2.ItemGroup and
spead2.send.HeapGenerator classes. The user is responsible for
maintaining previously seen descriptors (if they are desired) and tracking
which descriptors and items need to be inserted into heaps.

The C++ documentation is far from complete. As a first step, consult the Python
documentation; in many cases it is just wrapping the C++ interface with Pythonic
names, whereas the C++ interface uses lowercase with underscores for
all names. If that doesn’t help, consult the Doxygen-style comments in the
source code.

The compiler and link flags necessary for compiling and linking against spead2
can be found with pkg-config i.e.,

	pkg-config --cflags spead2 to get the compiler flags

	pkg-config --libs --static spead2 to get the linker flags

Note that when installed with the default setup on a GNU/Linux system, the
spead2.pc file is installed outside pkg-config‘s default
search path, and you need to set PKG_CONFIG_PATH to
/usr/local/lib/pkgconfig first.

	C++ API stability

	Asynchronous I/O

	Receiving
	Heaps

	Streams

	Readers

	Memory allocators

	Sending
	Heaps

	Streams

	Logging

	Support for ibverbs

	Support for netmap
	Introduction

	Usage

C++ API stability

The C++ API is less stable between versions than the Python API. The
most-derived classes defining specific transports are expected to be stable.
Applications that subclass the base classes to define new transports may be
broken by future API changes, as there is still room for improvement in the
API between these classes and the core.

Asynchronous I/O

The C++ API uses Boost.Asio for asynchronous operations. There is a
spead2::thread_pool class (essentially the same as the Python
spead2.ThreadPool class). However, it is not
required to use this, and you may for example run everything in one thread to
avoid multi-threading issues.

	
class spead2::thread_pool

	Combination of a boost::asio::io_service with a set of threads to handle the callbacks.

The threads are created by the constructor and shut down and joined in the destructor.

Subclassed by spead2::thread_pool_wrapper

Public Functions

	
thread_pool(int num_threads, const std::vector<int> &affinity)

	Construct with explicit core affinity for the threads.

The affinity list can be shorter or longer than num_threads. Threads are allocated in round-robin fashion to cores. Failures to set affinity are logged but do not cause an exception.

	
boost::asio::io_service &get_io_service()

	Retrieve the embedded io_service.

	
void stop()

	Shut down the thread pool.

Public Static Functions

	
void set_affinity(int core)

	Set CPU affinity of current thread.

A number of the APIs use callbacks. These follow the usual Boost.Asio
guarantee that they will always be called from threads running
boost::asio::io_service::run(). If using a
thread_pool, this will be one of the threads managed by
the pool. Additionally, callbacks for a specific stream are serialised, but
there may be concurrent callbacks associated with different streams.

Receiving

Heaps

Unlike the Python bindings, the C++ bindings expose two heap types: live heaps
(spead2::recv::live_heap) are used for heaps being constructed,
and may be missing data; frozen heaps (spead2::recv::heap)
always have all their data. Frozen heaps can be move-constructed from live
heaps, which will typically be done in the callback.

	
class spead2::recv::live_heap

	A SPEAD heap that is in the process of being received.

Once it is fully received, it is converted to a heap for further processing.

Any SPEAD-64-* flavour can be used, but all packets in the heap must use the same flavour. It may be possible to relax this, but it hasn’t been examined, and may cause issues for decoding descriptors (whose format depends on the flavour).

A heap can be:
	complete: a heap length item was found in a packet, and we have received all the payload corresponding to it. No more packets are expected.

	contiguous: the payload we have received is a contiguous range from 0 up to some amount, and cover all items described in the item pointers. A complete heap is also contiguous, but not necessarily the other way around. Only contiguous heaps can be frozen.

Public Functions

	
bool is_complete() const

	True if the heap is complete.

	
bool is_contiguous() const

	True if the heap is contiguous.

	
bool is_end_of_stream() const

	True if an end-of-stream heap control item was found.

	
s_item_pointer_t get_cnt() const

	Retrieve the heap ID.

	
bug_compat_mask get_bug_compat() const

	Get protocol bug compatibility flags.

	
class spead2::recv::heap

	Received heap that has been finalised.

Subclassed by spead2::recv::heap_wrapper

Public Functions

	
heap(live_heap &&h)

	Freeze a heap, which must satisfy live_heap::is_contiguous.

The original heap is destroyed.

	
s_item_pointer_t get_cnt() const

	Get heap ID.

	
const flavour &get_flavour() const

	Get protocol flavour used.

	
const std::vector<item> &get_items() const

	Get the items from the heap.

This includes descriptors, but excludes any items with ID <= 4.

	
descriptor to_descriptor() const

	Extract descriptor fields from the heap.

Any missing fields are default-initialized. This should be used on a heap constructed from the content of a descriptor item.

The original PySPEAD package (version 0.5.2) does not follow the specification here. The macros in common_defines.h can be used to control whether to interpret the specification or be bug-compatible.

The protocol allows descriptors to use immediate-mode items, but the decoding of these into variable-length strings is undefined. This implementation will discard such descriptor fields.

	
std::vector<descriptor> get_descriptors() const

	Extract and decode descriptors from this heap.

	
bool is_start_of_stream() const

	Convenience function to check whether any of the items is a CTRL_STREAM_START.

	
struct spead2::recv::item

	An item extracted from a heap.

Subclassed by spead2::recv::item_wrapper

Public Members

	
s_item_pointer_t id

	Item ID.

	
std::uint8_t *ptr

	Start of memory containing value.

	
std::size_t length

	Length of memory.

	
item_pointer_t immediate_value

	The immediate interpreted as an integer (undefined if not immediate)

	
bool is_immediate

	Whether the item is immediate.

	
struct spead2::descriptor

	An unpacked descriptor.

If numpy_header is non-empty, it overrides format and shape.

Public Members

	
s_item_pointer_t id = 0

	SPEAD ID.

	
std::string name

	Short name.

	
std::string description

	Long description.

	
std::vector<std::pair<char, s_item_pointer_t>> format

	Legacy format.

Each element is a specifier character (e.g. ‘u’ for unsigned) and a bit width.

	
std::vector<s_item_pointer_t> shape

	Shape.

Elements are either non-negative, or -1 is used to indicate a variable-length size. At most one dimension may be variable-length.

	
std::string numpy_header

	Description in the format used in .npy files.

Streams

At the lowest level, heaps are given to the application via a callback to a
virtual function. While this callback is running, no new packets can be
received from the network socket, so this function needs to complete quickly
to avoid data loss when using UDP. To use this interface, subclass
spead2::recv::stream and implement heap_ready() and
optionally override stop_received().

	
class spead2::recv::stream

	Stream that is fed by subclasses of reader.

Unless otherwise specified, methods in stream_base may only be called while holding the strand contained in this class. The public interface functions must be called from outside the strand (and outside the threads associated with the io_service), but are not thread-safe relative to each other.

This class is thread-safe. This is achieved mostly by having operations run as completion handlers on a strand. The exception is stop, which uses a once to ensure that only the first call actually runs.

Inherits from spead2::recv::stream_base

Subclassed by callback_stream, recv_stream, spead2::recv::ring_stream_base

Public Functions

	
template <typename T, typename... Args>

	
void emplace_reader(Args&&... args)

	Add a new reader by passing its constructor arguments, excluding the initial stream argument.

	
void stop()

	Stop the stream and block until all the readers have wound up.

After calling this there should be no more outstanding completion handlers in the thread pool.

In most cases subclasses should override stop_received rather than this function.

Protected Functions

	
void stop_received()

	Shut down the stream.

This calls flush. Subclasses may override this to achieve additional effects, but must chain to the base implementation.

It is undefined what happens if add_packet is called after a stream is stopped.

	
void flush()

	Flush the collection of live heaps, passing them to heap_ready.

A potentially more convenient interface is
spead2::recv::ring_stream<Ringbuffer>, which places received
heaps into a fixed-size thread-safe ring buffer. Another thread can then pull
from this ring buffer in a loop. The template parameter selects the ringbuffer
implementation. The default is a good light-weight choice, but if you need to
use select()-like functions to wait for data, you can use
spead2::ringbuffer<spead2::recv::live_heap, spead2::semaphore_fd, spead2::semaphore>.

	
template <typename Ringbuffer = ringbuffer<live_heap>>

	
class spead2::recv::ring_stream

	Specialisation of stream that pushes its results into a ringbuffer.

The ringbuffer class may be replaced, but must provide the same interface as ringbuffer. If the ring buffer fills up, add_packet will block the reader.

On the consumer side, heaps are automatically frozen as they are extracted.

This class is thread-safe.

Inherits from spead2::recv::ring_stream_base

Readers

Reader classes are constructed inside a stream by calling
spead2::recv::stream::emplace_reader().

	
class spead2::recv::udp_reader

	Asynchronous stream reader that receives packets over UDP.

Inherits from spead2::recv::udp_reader_base

Public Functions

	
udp_reader(stream &owner, const boost::asio::ip::udp::endpoint &endpoint, std::size_t max_size = default_max_size, std::size_t buffer_size = default_buffer_size)

	Constructor.

If endpoint is a multicast address, then this constructor will subscribe to the multicast group, and also set SO_REUSEADDR so that multiple sockets can be subscribed to the multicast group.

	Parameters

	
	owner: Owning stream

	endpoint: Address on which to listen

	max_size: Maximum packet size that will be accepted.

	buffer_size: Requested socket buffer size. Note that the operating system might not allow a buffer size as big as the default.

	
udp_reader(stream &owner, const boost::asio::ip::udp::endpoint &endpoint, std::size_t max_size, std::size_t buffer_size, const boost::asio::ip::address &interface_address)

	Constructor with explicit multicast interface address (IPv4 only).

The socket will have SO_REUSEADDR set, so that multiple sockets can all listen to the same multicast stream. If you want to let the system pick the interface for the multicast subscription, use boost::asio::ip::address_v4::any(), or use the default constructor.

	Parameters

	
	owner: Owning stream

	endpoint: Multicast group and port

	max_size: Maximum packet size that will be accepted.

	buffer_size: Requested socket buffer size.

	interface_address: Address of the interface which should join the group

	Exceptions

	
	std::invalid_argument: If endpoint is not an IPv4 multicast address

	std::invalid_argument: If interface_address is not an IPv4 address

	
udp_reader(stream &owner, const boost::asio::ip::udp::endpoint &endpoint, std::size_t max_size, std::size_t buffer_size, unsigned int interface_index)

	Constructor with explicit multicast interface index (IPv6 only).

The socket will have SO_REUSEADDR set, so that multiple sockets can all listen to the same multicast stream. If you want to let the system pick the interface for the multicast subscription, set interface_index to 0, or use the standard constructor.

	See

	if_nametoindex(3)

	Parameters

	
	owner: Owning stream

	endpoint: Multicast group and port

	max_size: Maximum packet size that will be accepted.

	buffer_size: Requested socket buffer size.

	interface_index: Address of the interface which should join the group

	
udp_reader(stream &owner, boost::asio::ip::udp::socket &&socket, const boost::asio::ip::udp::endpoint &endpoint, std::size_t max_size = default_max_size, std::size_t buffer_size = default_buffer_size)

	Constructor using an existing socket.

This allows socket options (e.g., multicast subscriptions) to be fine-tuned by the caller. The socket should not be bound. Note that there is no special handling for multicast addresses here.

	Parameters

	
	owner: Owning stream

	socket: Existing socket which will be taken over. It must use the same I/O service as owner.

	endpoint: Address on which to listen

	max_size: Maximum packet size that will be accepted.

	buffer_size: Requested socket buffer size. Note that the operating system might not allow a buffer size as big as the default.

	
class spead2::recv::mem_reader

	Reader class that feeds data from a memory buffer to a stream.

The caller must ensure that the underlying memory buffer is not destroyed before this class.

	Note

	For simple cases, use mem_to_stream instead. This class is only necessary if one wants to plug in to a stream.

Inherits from spead2::recv::reader

Subclassed by spead2::recv::buffer_reader

Memory allocators

In addition to the memory allocators described in Memory allocators,
new allocators can be created by subclassing spead2::memory_allocator.
For an allocator set on a stream, a pointer to a
spead2::recv::packet_header is passed as a hint to the allocator,
allowing memory to be placed according to information in the packet. Note that
this can be any packet from the heap, so you must not rely on it being the
initial packet.

	
class spead2::memory_allocator

	Polymorphic class for managing memory allocations in a memory pool.

This can be overloaded to provide custom memory allocations.

Inherits from std::enable_shared_from_this< memory_allocator >

Subclassed by spead2::memory_pool, spead2::mmap_allocator, spead2::unittest::mock_allocator

Public Functions

	
memory_allocator::pointer allocate(std::size_t size, void *hint)

	Allocate size bytes of memory.

The default implementation uses new and pre-faults the memory.

	Return

	Pointer to newly allocated memory

	Parameters

	
	size: Number of bytes to allocate

	hint: Usage-dependent extra information

	Exceptions

	
	std::bad_alloc: if allocation failed

Private Functions

	
void free(std::uint8_t *ptr, void *user)

	Free memory previously returned from allocate.

	Parameters

	
	ptr: Value returned by allocate

	user: User-defined handle returned by allocate

Sending

Heaps

	
class spead2::send::heap

	Heap that is constructed for transmission.

Subclassed by spead2::send::heap_wrapper

Public Functions

	
heap(const flavour &flavour_ = flavour ())

	Constructor.

	Parameters

	
	flavour_: SPEAD flavour that will be used to encode the heap

	
const flavour &get_flavour() const

	Return flavour.

	
template <typename... Args>

	
void add_item(s_item_pointer_t id, Args&&... args)

	Construct a new item.

	
void add_pointer(std::unique_ptr<std::uint8_t[]> &&pointer)

	Take over ownership of pointer and arrange for it to be freed when the heap is freed.

	
void add_descriptor(const descriptor &descriptor)

	Encode a descriptor to an item and add it to the heap.

	
void add_start()

	Add a start-of-stream control item.

	
void add_end()

	Add an end-of-stream control item.

	
struct spead2::send::item

	An item to be inserted into a heap.

An item does not own its memory.

Public Functions

	
item()

	Default constructor.

This item has undefined values and is not usable.

	
item(s_item_pointer_t id, const void *ptr, std::size_t length, bool allow_immediate)

	Create an item referencing existing memory.

	
item(s_item_pointer_t id, s_item_pointer_t immediate)

	Create an item with a value to be encoded as an immediate.

	
item(s_item_pointer_t id, const std::string &value, bool allow_immediate)

	Construct an item referencing the data in a string.

	
item(s_item_pointer_t id, const std::vector<std::uint8_t> &value, bool allow_immediate)

	Construct an item referencing the data in a vector.

Public Members

	
s_item_pointer_t id

	Item ID.

	
bool is_inline

	If true, the item’s value is stored in-place and must be encoded as an immediate.

Non-inline values can still be encoded as immediates if they have the right length.

	
bool allow_immediate

	If true, the item’s value may be encoded as an immediate.

This must be false if the item is variable-sized, because in that case the actual size can only be determined from address differences.

If is_inline is true, then this must be true as well.

	
const std::uint8_t *ptr

	Pointer to the value.

	
std::size_t length

	Length of the value.

	
s_item_pointer_t immediate

	Integer value to store (host endian).

This is used if and only if is_inline is true.

Streams

All stream types are derived from spead2::send::stream using the
curiously recurring template pattern [http://en.wikipedia.org/wiki/Curiously_recurring_template_pattern] and implementing an
async_send_packet function.

	
typedef std::function<void(const boost::system::error_code &ec, item_pointer_t bytes_transferred)> spead2::send::stream::completion_handler

	

	
class spead2::send::stream

	Abstract base class for streams.

Subclassed by spead2::send::stream_impl< Derived >, spead2::send::stream_impl< streambuf_stream >, spead2::send::stream_impl< udp_ibv_stream >, spead2::send::stream_impl< udp_stream >

Public Functions

	
boost::asio::io_service &get_io_service() const

	Retrieve the io_service used for processing the stream.

	
virtual void set_cnt_sequence(item_pointer_t next, item_pointer_t step) = 0

	Modify the linear sequence used to generate heap cnts.

The next heap will have cnt next, and each following cnt will be incremented by step. When using this, it is the user’s responsibility to ensure that the generated values remain unique. The initial state is next = 1, cnt = 1.

This is useful when multiple senders will send heaps to the same receiver, and need to keep their heap cnts separate.

	
virtual bool async_send_heap(const heap &h, completion_handler handler, s_item_pointer_t cnt = -1) = 0

	Send h asynchronously, with handler called on completion.

The caller must ensure that h remains valid (as well as any memory it points to) until handler is called.

If this function returns true, then the heap has been added to the queue. The completion handlers for such heaps are guaranteed to be called in order.

If this function returns false, the heap was rejected due to insufficient space. The handler is called as soon as possible (from a thread running the io_service), with error code boost::asio::error::would_block.

By default the heap cnt is chosen automatically (see set_cnt_sequence). An explicit value can instead be chosen by passing a non-negative value for cnt. When doing this, it is entirely the responsibility of the user to avoid collisions, both with other explicit values and with the automatic counter. This feature is useful when multiple senders contribute to a single stream and must keep their heap cnts disjoint, which the automatic assignment would not do.

	Return Value

	
	false: If the heap was immediately discarded

	true: If the heap was enqueued

	
virtual void flush() = 0

	Block until all enqueued heaps have been sent.

This function is thread-safe, but can be live-locked if more heaps are added while it is running.

	
class spead2::send::udp_stream

	Inherits from spead2::send::stream_impl< udp_stream >

Public Functions

	
udp_stream(boost::asio::io_service &io_service, const boost::asio::ip::udp::endpoint &endpoint, const stream_config &config = stream_config (), std::size_t buffer_size = default_buffer_size)

	Constructor.

	
udp_stream(boost::asio::ip::udp::socket &&socket, const boost::asio::ip::udp::endpoint &endpoint, const stream_config &config = stream_config (), std::size_t buffer_size = default_buffer_size)

	Constructor using an existing socket.

The socket must be open but not bound.

	
udp_stream(boost::asio::io_service &io_service, const boost::asio::ip::udp::endpoint &endpoint, const stream_config &config, std::size_t buffer_size, int ttl)

	Constructor with multicast hop count.

	Parameters

	
	io_service: I/O service for sending data

	endpoint: Multicast group and port

	config: Stream configuration

	buffer_size: Socket buffer size (0 for OS default)

	ttl: Maximum number of hops

	Exceptions

	
	std::invalid_argument: if endpoint is not a multicast address

	
udp_stream(boost::asio::io_service &io_service, const boost::asio::ip::udp::endpoint &endpoint, const stream_config &config, std::size_t buffer_size, int ttl, const boost::asio::ip::address &interface_address)

	Constructor with multicast hop count and outgoing interface address (IPv4 only).

	Parameters

	
	io_service: I/O service for sending data

	endpoint: Multicast group and port

	config: Stream configuration

	buffer_size: Socket buffer size (0 for OS default)

	ttl: Maximum number of hops

	interface_address: Address of the outgoing interface

	Exceptions

	
	std::invalid_argument: if endpoint is not an IPv4 multicast address

	std::invalid_argument: if interface_address is not an IPv4 address

	
udp_stream(boost::asio::io_service &io_service, const boost::asio::ip::udp::endpoint &endpoint, const stream_config &config, std::size_t buffer_size, int ttl, unsigned int interface_index)

	Constructor with multicast hop count and outgoing interface address (IPv6 only).

	See

	if_nametoindex(3)

	Parameters

	
	io_service: I/O service for sending data

	endpoint: Multicast group and port

	config: Stream configuration

	buffer_size: Socket buffer size (0 for OS default)

	ttl: Maximum number of hops

	interface_index: Index of the outgoing interface

	Exceptions

	
	std::invalid_argument: if endpoint is not an IPv6 multicast address

	
class spead2::send::streambuf_stream

	Puts packets into a streambuf (which could come from an ostream).

This should not be used for a blocking stream such as a wrapper around TCP, because doing so will block the asio handler thread.

Inherits from spead2::send::stream_impl< streambuf_stream >

Subclassed by spead2::send::stream_wrapper< streambuf_stream >

Public Functions

	
streambuf_stream(boost::asio::io_service &io_service, std::streambuf &streambuf, const stream_config &config = stream_config ())

	Constructor.

Logging

By default, log messages are all written to standard error. However, the
logging function can be replaced by calling
spead2::set_log_function().

	
void spead2::set_log_function(std::function<void(log_level, const std::string&)> f)

	

Support for ibverbs

The support for libibverbs is essentially the same as for Python, with the same limitations. The programmatic interface is via
the spead2::recv::udp_ibv_reader and
spead2::send::udp_ibv_stream classes:

	
class spead2::recv::udp_ibv_reader

	Synchronous or asynchronous stream reader that reads UDP packets using the Infiniband verbs API.

It currently only supports multicast IPv4, with no fragmentation, IP header options, or VLAN tags.

Inherits from spead2::recv::udp_reader_base

Public Functions

	
udp_ibv_reader(stream &owner, const boost::asio::ip::udp::endpoint &endpoint, const boost::asio::ip::address &interface_address, std::size_t max_size = default_max_size, std::size_t buffer_size = default_buffer_size, int comp_vector = 0, int max_poll = default_max_poll)

	Constructor.

	Parameters

	
	owner: Owning stream

	endpoint: Multicast group and port

	max_size: Maximum packet size that will be accepted

	buffer_size: Requested memory allocation for work requests. Note that this is used to determine the number of packets to buffer; if the packets are smaller than max_size, then fewer bytes will be buffered.

	interface_address: Address of the interface which should join the group and listen for data

	comp_vector: Completion channel vector (interrupt) for asynchronous operation, or a negative value to poll continuously. Polling should not be used if there are other users of the thread pool. If a non-negative value is provided, it is taken modulo the number of available completion vectors. This allows a number of readers to be assigned sequential completion vectors and have them load-balanced, without concern for the number available.

	max_poll: Maximum number of times to poll in a row, without waiting for an interrupt (if comp_vector is non-negative) or letting other code run on the thread (if comp_vector is negative).

	Exceptions

	
	std::invalid_argument: If endpoint is not an IPv4 multicast address

	std::invalid_argument: If interface_address is not an IPv4 address

	
udp_ibv_reader(stream &owner, const std::vector<boost::asio::ip::udp::endpoint> &endpoints, const boost::asio::ip::address &interface_address, std::size_t max_size = default_max_size, std::size_t buffer_size = default_buffer_size, int comp_vector = 0, int max_poll = default_max_poll)

	Constructor with multiple endpoints.

	Parameters

	
	owner: Owning stream

	endpoints: Multicast groups and ports

	max_size: Maximum packet size that will be accepted

	buffer_size: Requested memory allocation for work requests. Note that this is used to determine the number of packets to buffer; if the packets are smaller than max_size, then fewer bytes will be buffered.

	interface_address: Address of the interface which should join the group and listen for data

	comp_vector: Completion channel vector (interrupt) for asynchronous operation, or a negative value to poll continuously. Polling should not be used if there are other users of the thread pool. If a non-negative value is provided, it is taken modulo the number of available completion vectors. This allows a number of readers to be assigned sequential completion vectors and have them load-balanced, without concern for the number available.

	max_poll: Maximum number of times to poll in a row, without waiting for an interrupt (if comp_vector is non-negative) or letting other code run on the thread (if comp_vector is negative).

	Exceptions

	
	std::invalid_argument: If any element of endpoints is not an IPv4 multicast address

	std::invalid_argument: If interface_address is not an IPv4 address

	
class spead2::send::udp_ibv_stream

	Stream using Infiniband versions for acceleration.

Only IPv4 multicast with an explicit source address are supported.

Inherits from spead2::send::stream_impl< udp_ibv_stream >

Public Functions

	
udp_ibv_stream(boost::asio::io_service &io_service, const boost::asio::ip::udp::endpoint &endpoint, const stream_config &config, const boost::asio::ip::address &interface_address, std::size_t buffer_size = default_buffer_size, int ttl = 1, int comp_vector = 0, int max_poll = default_max_poll)

	Constructor.

	Parameters

	
	io_service: I/O service for sending data

	endpoint: Multicast group and port

	config: Stream configuration

	interface_address: Address of the outgoing interface

	buffer_size: Socket buffer size (0 for OS default)

	ttl: Maximum number of hops

	comp_vector: Completion channel vector (interrupt) for asynchronous operation, or a negative value to poll continuously. Polling should not be used if there are other users of the thread pool. If a non-negative value is provided, it is taken modulo the number of available completion vectors. This allows a number of readers to be assigned sequential completion vectors and have them load-balanced, without concern for the number available.

	max_poll: Maximum number of times to poll in a row, without waiting for an interrupt (if comp_vector is non-negative) or letting other code run on the thread (if comp_vector is negative).

	Exceptions

	
	std::invalid_argument: if endpoint is not an IPv4 multicast address

	std::invalid_argument: if interface_address is not an IPv4 address

Support for netmap

Introduction

As an experimental feature, it is possible to use the netmap framework to
receive packets at a higher rate than is possible with the regular sockets
API. This is particularly useful for small packets.

This is not for the faint of heart: it requires root access, it can easily
hang the whole machine, and it imposes limitations, including:

	Only the C++ API is supported. If you need every drop of performance, you
shouldn’t be using Python anyway.

	Only Linux is currently tested. It should be theoretically possible to
support FreeBSD, but you’re on your own (patches welcome).

	Only IPv4 is supported.

	Fragmented IP packets, and IP headers with optional fields are not
supported.

	Checksums are not validated (although possibly the NIC will check them).

	Only one reader is supported per network interface.

	All packets that arrive with the correct UDP port will be processed,
regardless of destination address. This could mean, for example, that
unrelated multicast streams will be processed even though they aren’t
wanted.

Usage

Once netmap is installed and the header file net/netmap_user.h is placed in
a system include directory, pass NETMAP=1 to make to include netmap
support in the library.

Then, instead of spead2::recv::udp_reader, use
spead2::recv::netmap_udp_reader.

	
class spead2::recv::netmap_udp_reader

	Inherits from spead2::recv::reader

Public Functions

	
netmap_udp_reader(stream &owner, const std::string &device, uint16_t port)

	Constructor.

	Parameters

	
	owner: Owning stream

	device: Name of the network interface e.g., eth0

	port: UDP port number to listen to

Performance tuning

While spead2 tries to be performant out of the box, there are a number of ways
one can tune both the system and the application using spead2. It is usually
necessary to do at least some of these steps to achieve performance of
10Gb/s+, but your mileage may vary depending on your hardware and
application.

This guide focuses mostly on the problem of receiving data, because my
experience with high-bandwidth SPEAD has been with data produced by FPGAs.
Nevertheless, some of these tips also apply to sending data.

All advice is for a GNU/Linux system with an Intel CPU. You will need to
consult other documentation to find equivalent commands for other systems.

System tuning

The first thing to do is to increase the maximum socket buffer sizes. See
Introduction to spead2 for details.

The kernel firewall can affect performance, particularly if
small packets are not being used (in this context, anything that isn’t a jumbo
frame is considered “small”). If possible, remove all firewall rules and
unload the kernel modules (those prefixed with ipt or nf). In
particular, simply having the nf_conntrack module loaded can reduce
performance by several percent.

IP fragmentation also causes performance problems on the receiver. Check that
the routers in your network have a sufficiently large MTU that packets do not
get fragmented, particularly if using jumbo frames. You can use
tcpdump -v to see fragments.

On a system with multiple CPU sockets, it is important to pin the process
using spead2 to a single socket, so that memory accesses do not cross the QPI
bus. For best performance, use the same socket as the NIC, which can be
determined from the output of hwloc-ls. See numactl(8),
hwloc-ls(1), hwloc-bind(1).

There are a number of settings that can be adjusted to improve the system’s
ability to respond to bursts of data. These will probably not improve peak
performance, but can reduce the number of lost heaps, particularly when a
stream starts and the system must ramp up performance in response.

	Disable hyperthreading.

	Disable CPU frequency scaling.

	Disable C states beyond C1 (for example, by passing
intel_idle.max_state=1 to the Linux kernel). Disabling
C1 as well may reduce latency, but will likely limit the gains from Turbo
Boost.

	Investigate disabling the P-state driver by passing intel_pstate=disable
on the kernel command line. The P-state driver has sometimes been reported
to be much slower [1], [2], but can also be faster
[3].

	Disable adaptive interrupt moderation on the NIC: ethtool
-C interface adaptive-rx off adaptive-tx off. You may then need to
experiment to tune the interrupt moderation settings — consult
ethtool(8) for details.

	Disable Ethernet flow control: ethtool -A interface
rx off tx off.

	Use the isolcpus [https://codywu2010.wordpress.com/2015/09/27/isolcpus-numactl-and-taskset/] kernel option to completely isolate some CPU cores from
other tasks, and pin the receiver to those cores (I have not actually tried
this).

	Use chrt(1) to run the receiver with real-time scheduling (I have
not actually tried this).

	[1]	https://www.phoronix.com/scan.php?page=article&item=intel_pstate_linux315

	[2]	https://www.phoronix.com/scan.php?page=article&item=linux-47-schedutil

	[3]	https://www.phoronix.com/scan.php?page=news_item&px=Linux-4.4-CPUFreq-P-State-Gov

Protocol design

If you are designing a new SPEAD-based protocol, you have an opportunity to
make design choices that will make it easier for the sender and/or receiver to
reach the desired performance.

Heap size

The primary influence comes from heap size. There is some degree of overhead
for every heap (particularly for a Python receiver), and very small heaps will
cause this overhead to dominate. Heaps smaller than 16KiB are not recommended.
Very large heaps that do not fit into CPU caches will also reduce performance,
but not excessively. Memory usage also depends on the heap size. A number of
application tuning techniques described below also depend on knowing the heap
payload size a priori; thus, it is good practice to communicate this the
receiver in some way, whether by sending the descriptor early in the SPEAD
stream or by an out-of-band method.

Packet size

Packet size is not strictly part of the protocol, but also has a large impact
on performance. For 10Gb/s or faster streams, jumbo frames are highly
recommended, although with the kernel bypass techniques described below), this
is far less of an issue.

When using spead2 on the send side, the default packet size is 1472 bytes,
which is a safe value for IPv4 in a standard Ethernet setup [4].
The packet size is set in the StreamConfig. You
should pick a packet size, that, when added to the overhead for IP and UDP
headers, does not exceed the MTU of the link. For example, with IPv4 and an
MTU of 9200, use a packet size of 9172.

	[4]	The UDP and IP header together add 28 bytes, bringing the IP packet to
the conventional MTU of 1500 bytes.

Alignment

Because items directly reference the received data (where possible), it is
possible that data will be misaligned. While numpy allows this, it could make
access to the data inefficient. The sender should ensure that data are
aligned. The spead2 sending API currently does not provide a way to enforce
this, but using items with round sizes will help.

Endianness

When using numpy builtin types, data are converted to native endian when they
are received, to allow for more efficient operations on them. This can
reduce the maximum rate at which packets are received. Thus, using the native
endian on the wire (little-endian for x86) will give better performance.

Data format

Item descriptors can be specified using either a format or a dtype (numpy
data type). In many common cases, either can be used, and performance on a
Python receiver should be the same (a PySPEAD receiver, however, will be much
faster with dtype). The dtype is the only way to use Fortran order or
little-endian. The format approach is easier for a C++ receiver to parse
(since it does not need to decode a Python literal). It also allows for a
wider variety of types (such as bit vectors), but encoding or decoding these
types in Python takes a very slow path.

Application tuning

This section describes a number of ways the application can be modified to
improve performance. Most of these tuning options can be explored using a
provided benchmarking tool which measures the sustained performance on a
connection. This makes it possible to quickly identify the techniques that
will make the most difference before implementing them.

There are two versions of the benchmarking tool: one implemented in Python
(spead2_bench.py) and one in C++ (spead2_bench), which
are installed by the corresponding installers. The examples show the Python
version, but the C++ version functions very similarly.

On the receiver, pick a port number (which must be free for both TCP and UDP)
and run

spead2_bench.py slave <port>

Then, on the sender, run

spead2_bench.py master [options] <host> <port>

where host is the hostname of the receiver. This script will run tests at a
variety of speeds to determine the maximum speed at which the connection seems
reliable most of the time. This speed is right at the edge of stability: for a
totally reliable setup, you should use a lower speed.

There are also separate spead2_send and spead2_recv (and
Python equivalents) programs. The former generates a stream of meaningless
data, while the latter consumes an existing stream and reports the heaps and
items that it finds. Apart from being useful for debugging a stream,
spead2_recv has a similar plethora of command-line options for
tuning that allow for exploration.

Kernel bypass APIs

There are two low-level kernel bypass networking APIs supported:
ibverbs and netmap. These provide a
zero-copy path from the NIC into the spead2 library, without the kernel being
involved. This can make a huge performance difference, particularly for small
packet sizes.

Of these, ibverbs is the recommended one: it can be used without
being a root user, it is supported by both the Python and C++ APIs, can be
used for both sending and receiving, can be used by multiple processes or
streams simultaneously, and in simple cases requires only an environment
variable to be set. The netmap support is no longer developed or tested.

These APIs are not free: they will only work with some NICs, require special
kernel drivers and setup, have limitations in what networking features they
can support, and require the application to specify which network device to
use. Refer to the links above for more details.

Memory allocation

Using a memory pool is the single most important
tool for fast and reliable data transfer. It is particularly important when
heap sizes are large enough that malloc() and free() use
mmap() (M_MMAP_THRESHOLD in glibc). For very small heaps,
memory pooling may be a net loss.

To use a memory pool, it is necessary to know the maximum heap payload size (a
conservative estimate is fine too — you will just use more memory). You also
need to size the pool appropriately. It is possible to specify a small
initial size and a larger maximum; however, each time the pool grows the CPU
will be busy with allocation and may drop packets. To avoid starvation, you
will need to provide:

	A buffer per partial heap (max_heaps parameter to
spead2.recv.Stream)

	A buffer per complete heap in the ring buffer (ring_heaps parameter to
spead2.recv.Stream)

	A buffer for every heap that has been taken off the ring buffer but not yet
destroyed.

	A few extra for heaps that are in-flight between queues. The exact number
may vary between releases, but 4 should be safe.

In general, it is best to err on the side of adding a few extra, provided that
this does not consume too much memory. At present there are unfortunately no
good tools for analysing memory pool performance.

Heap lifetime (Python)

All the payload for a heap is stored in a single memory allocation, and where
possible, items reference this memory. This means that the entire heap remains
live as long as any of the values encoded in it are live. Thus, a small but
seldom-changing value can cause a very large heap to remain live long after
the rest of the values in that heap have been replaced. This can waste memory,
and also affects memory pool sizing.

To avoid this, senders should try to group items together that are updated at
the same frequency, rather than mixing low- and high-frequency items in the
same heap. Receivers can avoid this problem by copying values that are known to
be slowly varying.

Custom allocators (C++)

If you are doing an extra copy purely to put values into a special memory type
(for example, shared memory to communicate with another process, or pinned
memory for transfer to a GPU), then consider subclassing
spead2::memory_allocator.

Tuning based on heap size

The library has a number of tuning parameters that are reasonable for
medium-to-large heaps (megabytes or larger). If using many
smaller heaps, some of the tuning parameters may need to be adjusted. In
particular

	Increase the max_heaps parameter to the
spead2.send.StreamConfig constructor.

	Increase the max_heaps parameter to the spead2.recv.Stream
constructor if you expect the network to reorder packets significantly
(e.g., because data is arriving from multiple senders which are not
completely synchronised). For single-packet heaps this has no effect.

	Increase the ring_heaps parameter to the spead2.recv.Stream
constructor to reduce lock contention. This has rapidly diminishing returns
beyond about 16.

It is important to experiment to determine good values. Simply cranking
everything way up can actually reduce performance by increase memory usage and
thus reducing cache efficiency.

For very large heaps (gigabytes) some of these values can be decreased to 2
(or possibly even 1) to keep memory usage under control.

Thread pools

Each stream in spead2 has an associated thread pool, which provides worker
threads for handling incoming or outgoing packets. Each thread pool can have
some number of threads, defaulting to 1. Here are some rules of thumb:

	For a small number of streams (up to about the number of CPU cores), it is
best to have one single-threaded thread pool per stream. This gives
better cache affinity than a shared thread pool.

	For a large number of lower-bandwidth streams, use a shared thread pool with
multiple threads. The number of threads should be chosen based on the number
of CPU cores that you can dedicate to packet handling rather than other
tasks in your application.

	A single stream cannot be processed by multiple threads at the same time, so
there is never any benefit (and often detriment) to have more threads in a
thread pool than there are streams serviced by that thread pool.

	Jitter (experienced as occasionally lost heaps) can be reduced by passing
an affinity list to the thread pool constructor, to pin threads to specific
cores. The main thread can be pinned as well, using
spead2.ThreadPool.set_affinity().

Other tools

mcdump

mcdump is a tool similar to tcpdump [http://www.tcpdump.org/], but specialised for high-speed capture of
multicast UDP traffic using hardware that supports the Infiniband Verbs API. It
has only been tested on Mellanox ConnectX-3 NICs. Like gulp [http://corey.elsewhere.org/gulp/], it uses a
separate thread for disk I/O and CPU core affinity to achieve reliable
performance.

It is not limited to capturing SPEAD data. It is included with spead2 rather
than released separately because it reuses a lot of the spead2 code.

Installation

The tool is automatically compiled and installed with spead2, provided that
libiverbs support is detected at configure time.

It may also be necessary to configure the system to work with ibverbs. See
Support for ibverbs for more information.

Usage

The simplest incantation is

mcdump -i xx.xx.xx.xx output.pcap yy.yy.yy.yy:zzzz

which will capture on the interface with IP address xx.xx.xx.xx, for the
multicast group yy.yy.yy.yy on UDP port zzzz. mcdump will take care of
subscribing to the multicast group. Note that only IPv4 is supported. Capture
continues until interrupted by Ctrl-C. You can also list more
group:port pairs, which will all stored in the same pcap file.

Unfortunately, unlike tcpdump, it is not possible to tell directly tell whether
packets were dropped. NIC counters (on Linux, accessed with ethtool
-S) can give an indication, although sometimes packets are dropped during the
shutdown process.

These options are important for performance:

	
-N <cpu>, -C <cpu>, -D <cpu>

	Set CPU core IDs for various threads. The -D option can be repeated
multiple times to use multiple threads for disk I/O. By default, the threads
are not bound to any particular core. It is recommended that these cores be
on the same CPU socket as the NIC.

	
--direct-io

	Use the O_DIRECT flag to open the file. This bypasses the kernel page
cache, and can in some cases yield higher performance. However, not all
filesystems support it, and it can also reduce performance when capturing
a small enough amount of data that it will fit into RAM.

Limitations

	Packets are not timestamped (they all have a zero timestamp in the file).

	Only IPv4 is supported.

Changelog

Version 1.2.2

	Fix rate limiting causing longer sleeps than necessary (fixes #53).

Version 1.2.1

	Disable LTO by default and require the user to opt in, because even if the
compiler supports it, linking can still fail (fixes #51).

Version 1.2.0

	Support multiple endpoints for one udp_ibv_reader
(fixes #48).

	Fix compilation on OS X 10.9 (fixes #49)

	Fix spead2::ringbuffer<T>::emplace() and spead2::ringbuffer<T>::try_emplace()

	Improved error messages when passing invalid arguments to mcdump

Version 1.1.2

	Only log descriptor replacement if it actually replaces an existing name or
ID (regression in 1.1.1).

	Fix build on ARM where compiling against asio requires linking against
pthread.

	Updated and expanded performance tuning guide.

Version 1.1.1

	Report the item name in exception for “too few elements for shape” errors

	Overhaul of rules for handling item descriptors that change the name or ID
of an item. This prevents stale items from hanging around when the sender
changes the name of an item but keeps the same ID, which can cause unrelated
errors on the receiver if the shape also changes.

Version 1.1.0

	Allow heap cnt to be set explicitly by sender, and the automatic heap cnt
sequence to be specified as a start value and step.

Version 1.0.1

	Fix exceptions to include more information about the source of the failure

	Add mcdump tool

Version 1.0.0

	The C++ API installation has been changed to use autoconf and automake. As a
result, it is possible to run make install and get the static library,
headers, and tools installed.

	The directory structure has changed. The spead2_* tools are now
installed, example code is now in the examples directory, and the
headers have moved to include/spead2.

	Add support for sending data using libibverbs API (previously only supported
for receiving)

	Fix async_send_heap (in Python) to return a future instead of being a
coroutine: this fixes a problem with undefined ordering in the trollius
example.

	Made sending streams polymorphic, with abstract base class
spead2::send::stream, to simplify writing generic code that can
operate on any type of stream. This will break code that depended on the
old template class of the same name, which has been renamed to
spead2::send::stream_impl.

	Add --memcpy-nt to spead2_recv.py and
spead2_bench.py

	Multicast support in spead2_bench.py and spead2_bench

	Changes to the algorithm for spead2_bench.py and
spead2_bench: it now starts by computing the maximum send speed,
and then either reporting that this is the limiting factor, or using it to
start the binary search for the receive speed. It is also stricter about
lost heaps.

	Some internal refactoring of code for dealing with raw packets, so that it
is shared between the netmap and ibv readers.

	Report function name that failed in semaphore system_error exceptions.

	Make the unit tests pass on OS X (now tested on travis-ci.org)

Version 0.10.4

	Refactor some of the Boost.Python glue code to make it possible to reuse
parts of it in writing new Python extensions that use the C++ spead2 API.

Version 0.10.3

	Suppress “operation aborted” warnings from UDP reader when using the API
to stop a stream (introduced in 0.10.0).

	Improved elimination of duplicate item pointers, removing them as they’re
received rather than when freezing a live heap (fixes #46).

	Use hex for reporting item IDs in log messages

	Fix reading from closed file descriptor after stream.stop() (fixes #42)

	Fix segmentation fault when using ibverbs but trying to bind to a
non-RDMA device network interface (fixes #45)

Version 0.10.2

	Fix a performance problem when a heap contains many packets and every
packet contains item pointers. The performance was quadratic instead of
linear.

Version 0.10.1

	Fixed a bug in registering add_udp_ibv_reader in Python, which broke
spead2_recv.py, and possibly any other code using this API.

	Fixed spead2_recv.py ignoring --ibv-max-poll option

Version 0.10.0

	Added support for libibverbs for improved performance in both Python and C++.

	Avoid per-packet shared_ptr reference counting, accidentally introduced in
0.9.0, which caused a small performance regression. This is unfortunately a
breaking change to the interface for implementing custom memory
allocators.

Version 0.9.1

	Fix using a MemoryPool with a thread pool and low water
mark (regression in 0.9.0).

Version 0.9.0

	Add support for custom memory allocators.

Version 0.8.2

	Ensure correct operation when loop=None is passed explicitly to trollius
stream constructors, for consistency with functions that have it as a keyword
parameter.

Version 0.8.1

	Suppress recvmmsg: resource temporarily unavailable warnings (fixes #43)

Version 0.8.0

	Extend MemoryPool to allow a background thread to
replenish the pool when it gets low.

	Extend ThreadPool to allow the user to pin the threads to
specific CPU cores (on glibc).

Version 0.7.1

	Fix ring_stream destructor to not deadlock (fixes #41)

Version 0.7.0

	Change handling of incomplete heaps (fixes #39). Previously, incomplete heaps
were only abandoned once there were more than max_heaps of them. Now, they
are abandoned once max_heaps more heaps are seen, even if those heaps were
complete. This causes the warnings for incomplete heaps to appear closer to
the time they arrived, and also has some extremely small performance
advantages due to changes in the implementation.

	backwards-incompatible change: remove
set_max_heaps(). It was not previously
documented, so hopefully is not being used. It could not be efficiently
supported with the design changes above.

	Add spead2.recv.Stream.set_memcpy() to control non-temporal caching
hints.

	Fix C++ version of spead2_bench to actually use the memory pool

	Reduce memory usage in spead2_bench (C++ version)

Version 0.6.3

	Partially fix #40: set_max_heaps() and
set_memory_pool() will no longer deadlock if
called on a stream that has already had a reader added and is receiving
data.

Version 0.6.2

	Add a fast path for integer items that exactly fit in an immediate.

	Optimise Python code by replacing np.product with a pure Python
implementation.

Version 0.6.1

	Filter out duplicate items from a heap. It is undefined which of a set of
duplicates will be retained (it was already undefined for
spead2.ItemGroup).

Version 0.6.0

	Changed item versioning on receive to increment version number on each update
rather that setting to heap id. This is more robust to using a single item
or item group with multiple streams, and most closely matches the send path.

	Made the protocol enums from the C++ library available in the Python library
as well.

	Added functions to create stream start items (send) and detect them (recv).

Version 0.5.0

	Added friendlier support for multicast. When a multicast address is passed
to add_udp_reader(), the socket will
automatically join the multicast group and set SO_REUSEADDR so
that multiple sockets can consume from the same stream. There are also new
constructors and methods to give explicit control over the TTL (send)
and interface (send and receive), including support for IPv6.

Version 0.4.7

	Added in-memory mode to the C++ version of spead2_bench, to measure the
packet handling speed independently of the lossy networking code

	Optimization to duplicate packet checks. This makes a substantial
performance improvement when using small (e.g. 512 byte) packets and large
heaps.

Version 0.4.6

	Fix a data corruption (use-after-free) bug on send side when data is being
sent faster than the socket can handle it.

Version 0.4.5

	Fix bug causing some log messages to be remapped to DEBUG level

Version 0.4.4

	Increase log level for packet rejection from DEBUG to INFO

	Some minor optimisations

Version 0.4.3

	Handle heaps that have out-of-range item offsets without crashing (#32)

	Fix handling of heaps without heap length headers

	spead2.send.UdpStream.send_heap() now correctly raises
IOError if the heap is rejected due to being full, or if there was
an OS-level error in sending the heap.

	Fix spead2.send.trollius.UdpStream.async_send_heap() for the case
where the last sent heap failed.

	Use eventfd(2) for semaphores on Linux, which makes a very small
improvement in ringbuffer performance.

	Prevent messages about descriptor replacements for descriptor reissues with
no change.

	Fix a use-after-free bug (affecting Python only).

	Throw OverflowError on out-of-range UDP port number, instead of
wrapping.

Version 0.4.2

	Fix compilation on systems without glibc

	Fix test suite for non-Linux systems

	Add spead2.send.trollius.UdpStream.async_flush()

Version 0.4.1

	Add C++ version of spead2_recv, a more fully-featured alternative to test_recv

	backwards-incompatible change:
Add ring_heaps parameter to ring_stream
constructor. Code that specifies the
contiguous_only parameter will need to be
modified since the position has changed. Python code is unaffected.

	Increased the default for ring_heaps from 2 (previously hardcoded) to 4 to
improve throughput for small heaps.

	Add support for user to provide the socket for UDP communications. This
allows socket options to be set by the user, for example, to configure
multicast.

	Force numpy>=1.9.2 to avoid a numpy [bug](https://github.com/numpy/numpy/issues/5356).

	Add experimental support for receiving packets via netmap

	Improved receive performance on Linux, particularly for small packets, using
[recvmmsg](http://linux.die.net/man/2/recvmmsg).

Version 0.4.0

	Enforce ASCII encoding on descriptor fields.

	Warn if a heap is dropped due to being incomplete.

	Add –ring option to C++ spead2_bench to test ringbuffer performance.

	Reading from a memory buffer (e.g. with
add_buffer_reader()) is now reliable, instead of
dropping heaps if the consumer doesn’t keep up (heaps can still be dropped if
packets extracted from the buffer are out-of-order, but it is
deterministic).

	The receive ringbuffer now has a fixed size (2), and pushes are blocking. The
result is lower memory usage, and it is no longer necessary to pass a large
max_heaps value to deal with the consumer not always keeping up. Instead,
it may be necessary to increase the socket buffer size.

	backwards-incompatible change:
Calling spead2::recv::ring_stream::stop() now discards remaining
partial heaps instead of adding them to the ringbuffer. This only affects the
C++ API, because the Python API does not provide any access to partial heaps
anyway.

	backwards-incompatible change:
A heap with a stop flag is swallowed rather than passed to
heap_ready() (see issue
[#29](https://github.com/ska-sa/spead2/issues/29)).

Version 0.3.0

This release contains a number of backwards-incompatible changes in the Python
bindings, although most uses will probably not notice:

	When a received character array is returned as a string, it is now of type
str (previously it was unicode in Python 2).

	An array of characters with a numpy descriptor with type S1 will no longer
automatically be turned back into a string. Only using a format of
[(‘c’, 8)] will do so.

	The c format code may now only be used with a length of 8.

	When sending, values will now always be converted to a numpy array first,
even if this isn’t the final representation that will be put on the network.
This may lead to some subtle changes in behaviour.

	The BUG_COMPAT_NO_SCALAR_NUMPY introduced in 0.2.2 has been removed. Now,
specifying an old-style format will always use that format at the protocol
level, rather than replacing it with a numpy descriptor.

There are also some other bug-fixes and improvements:

	Fix incorrect warnings about send buffer size.

	Added –descriptors option to spead2_recv.py.

	The dtype argument to spead2.ItemGroup.add_item() is now
optional, removing the need to specify dtype=None when passing a format.

Version 0.2.2

	Workaround for a PySPEAD bug that would cause PySPEAD to fail if sent a
simple scalar value. The user must still specify scalars with a format
rather than a dtype to make things work.

Version 0.2.1

	Fix compilation on OS X again. The extension binary will be slightly larger as
a result, but still much smaller than before 0.2.0.

Version 0.2.0

	backwards-incompatible change: for sending, the heap count is now tracked
internally by the stream, rather than an attribute of the heap. This affects
both C++ and Python bindings, although Python code that always uses
HeapGenerator rather than directly creating heaps
will not be affected.

	The HeapGenerator is extended to allow items to be
added to an existing heap and to give finer control over whether descriptors
and/or values are put in the heap.

	Fixes a bug that caused some values to be cast to non-native endian.

	Added overloaded equality tests on Flavour objects.

	Strip the extension binary to massively reduce its size

Version 0.1.2

	Coerce values to int for legacy ‘u’ and ‘i’ fields

	Fix flavour selection in example code

Version 0.1.1

	Fixes to support OS X

Version 0.1.0

	First public release

License

This program is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option) any
later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details.

You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see http://www.gnu.org/licenses/.

 Python Module Index

 s

 		 	

 		
 s	

 	
 	
 spead2	

Index

 Symbols
 | A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | M
 | P
 | S
 | U
 | V

Symbols

 	
 	
 --direct-io

 	command line option

 	
 	
 -N <cpu>, -C <cpu>, -D <cpu>

 	command line option

A

 	
 	add_buffer_reader() (spead2.recv.Stream method)

 	add_item() (spead2.ItemGroup method)

 	
 	add_to_heap() (spead2.send.HeapGenerator method)

 	add_udp_ibv_reader() (spead2.recv.Stream method)

 	add_udp_reader() (spead2.recv.Stream method), [1], [2]

C

 	
 	cnt (spead2.recv.Heap attribute)

 	
 command line option

 	--direct-io

 	-N <cpu>, -C <cpu>, -D <cpu>

 	
 	compatible_shape() (spead2.Descriptor method)

D

 	
 	Descriptor (class in spead2)

 	
 	dynamic_shape() (spead2.Descriptor method)

E

 	
 	
 environment variable

 	M_MMAP_THRESHOLD

 	PKG_CONFIG_PATH

 	SPEAD2_IBV_COMP_VECTOR

 	SPEAD2_IBV_INTERFACE, [1], [2]

F

 	
 	Flavour (built-in class)

 	
 	flavour (spead2.recv.Heap attribute)

G

 	
 	get() (spead2.recv.Stream method)

 	(spead2.recv.trollius.Stream method)

 	get_end() (spead2.send.HeapGenerator method)

 	
 	get_heap() (spead2.send.HeapGenerator method)

 	get_nowait() (spead2.recv.Stream method)

 	get_start() (spead2.send.HeapGenerator method)

 	getvalue() (spead2.send.BytesStream method)

H

 	
 	HeapGenerator (class in spead2.send)

I

 	
 	ids() (spead2.ItemGroup method)

 	is_variable_size() (spead2.Descriptor method)

 	Item (class in spead2)

 	
 	ItemGroup (class in spead2)

 	items() (spead2.ItemGroup method)

 	itemsize_bits (spead2.Descriptor attribute)

K

 	
 	keys() (spead2.ItemGroup method)

M

 	
 	M_MMAP_THRESHOLD

P

 	
 	PKG_CONFIG_PATH

S

 	
 	send_heap() (spead2.send.BytesStream method)

 	(spead2.send.UdpStream method)

 	set_affinity() (spead2.spead2.ThreadPool static method)

 	set_cnt_sequence() (spead2.send.UdpStream method)

 	set_memcpy() (spead2.recv.Stream method)

 	set_memory_allocator() (spead2.recv.Stream method)

 	spead2 (module)

 	spead2.MemoryPool (built-in class)

 	spead2.MmapAllocator (built-in class)

 	spead2.recv.Heap (built-in class)

 	spead2.recv.Heap.is_start_of_stream() (built-in function)

 	spead2.recv.Stream (built-in class)

 	spead2.recv.trollius.Stream (built-in class)

 	spead2.send.BytesStream (built-in class)

 	spead2.send.StreamConfig (built-in class)

 	spead2.send.UdpIbvStream (built-in class)

 	spead2.send.UdpStream (built-in class), [1], [2], [3]

 	spead2.ThreadPool (class in spead2)

 	spead2::descriptor (C++ class)

 	spead2::descriptor::description (C++ member)

 	spead2::descriptor::format (C++ member)

 	spead2::descriptor::id (C++ member)

 	spead2::descriptor::name (C++ member)

 	spead2::descriptor::numpy_header (C++ member)

 	spead2::descriptor::shape (C++ member)

 	spead2::memory_allocator (C++ class)

 	spead2::memory_allocator::allocate (C++ function)

 	spead2::memory_allocator::free (C++ function)

 	spead2::recv::heap (C++ class)

 	spead2::recv::heap::get_cnt (C++ function)

 	spead2::recv::heap::get_descriptors (C++ function)

 	spead2::recv::heap::get_flavour (C++ function)

 	spead2::recv::heap::get_items (C++ function)

 	spead2::recv::heap::heap (C++ function)

 	spead2::recv::heap::is_start_of_stream (C++ function)

 	spead2::recv::heap::to_descriptor (C++ function)

 	spead2::recv::item (C++ class)

 	spead2::recv::item::id (C++ member)

 	spead2::recv::item::immediate_value (C++ member)

 	spead2::recv::item::is_immediate (C++ member)

 	spead2::recv::item::length (C++ member)

 	spead2::recv::item::ptr (C++ member)

 	spead2::recv::live_heap (C++ class)

 	spead2::recv::live_heap::get_bug_compat (C++ function)

 	spead2::recv::live_heap::get_cnt (C++ function)

 	spead2::recv::live_heap::is_complete (C++ function)

 	spead2::recv::live_heap::is_contiguous (C++ function)

 	spead2::recv::live_heap::is_end_of_stream (C++ function)

 	spead2::recv::mem_reader (C++ class)

 	
 	spead2::recv::netmap_udp_reader (C++ class)

 	spead2::recv::netmap_udp_reader::netmap_udp_reader (C++ function)

 	spead2::recv::ring_stream (C++ class)

 	spead2::recv::stream (C++ class)

 	spead2::recv::stream::emplace_reader (C++ function)

 	spead2::recv::stream::stop (C++ function)

 	spead2::recv::stream::stop_received (C++ function)

 	spead2::recv::stream_base::flush (C++ function)

 	spead2::recv::udp_ibv_reader (C++ class)

 	spead2::recv::udp_ibv_reader::udp_ibv_reader (C++ function), [1]

 	spead2::recv::udp_reader (C++ class)

 	spead2::recv::udp_reader::udp_reader (C++ function), [1], [2], [3]

 	spead2::send::heap (C++ class)

 	spead2::send::heap::add_descriptor (C++ function)

 	spead2::send::heap::add_end (C++ function)

 	spead2::send::heap::add_item (C++ function)

 	spead2::send::heap::add_pointer (C++ function)

 	spead2::send::heap::add_start (C++ function)

 	spead2::send::heap::get_flavour (C++ function)

 	spead2::send::heap::heap (C++ function)

 	spead2::send::item (C++ class)

 	spead2::send::item::allow_immediate (C++ member)

 	spead2::send::item::id (C++ member)

 	spead2::send::item::immediate (C++ member)

 	spead2::send::item::is_inline (C++ member)

 	spead2::send::item::item (C++ function), [1], [2], [3], [4]

 	spead2::send::item::length (C++ member)

 	spead2::send::item::ptr (C++ member)

 	spead2::send::stream (C++ class)

 	spead2::send::stream::async_send_heap (C++ function)

 	spead2::send::stream::completion_handler (C++ type)

 	spead2::send::stream::flush (C++ function)

 	spead2::send::stream::get_io_service (C++ function)

 	spead2::send::stream::set_cnt_sequence (C++ function)

 	spead2::send::streambuf_stream (C++ class)

 	spead2::send::streambuf_stream::streambuf_stream (C++ function)

 	spead2::send::udp_ibv_stream (C++ class)

 	spead2::send::udp_ibv_stream::udp_ibv_stream (C++ function)

 	spead2::send::udp_stream (C++ class)

 	spead2::send::udp_stream::udp_stream (C++ function), [1], [2], [3], [4]

 	spead2::set_log_function (C++ function)

 	spead2::thread_pool (C++ class)

 	spead2::thread_pool::get_io_service (C++ function)

 	spead2::thread_pool::set_affinity (C++ function)

 	spead2::thread_pool::stop (C++ function)

 	spead2::thread_pool::thread_pool (C++ function)

 	SPEAD2_IBV_COMP_VECTOR

 	SPEAD2_IBV_INTERFACE, [1], [2]

 	stop() (spead2.recv.Stream method)

 	(spead2.spead2.ThreadPool method)

U

 	
 	update() (spead2.ItemGroup method)

V

 	
 	value (spead2.Item attribute)

 	
 	values() (spead2.ItemGroup method)

 	version (spead2.Item attribute)

 _static/down-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/down.png

_static/comment.png

nav.xhtml

 Table of Contents

 		Welcome to spead2's documentation!

 		Introduction to spead2

 		Preparation

 		Installing spead2 for Python

 		Installing spead2 for C++

 		Python API for spead2

 		SPEAD flavours

 		Mapping of SPEAD protocol to Python

 		Stream control items

 		Items and item groups

 		Thread pools

 		Receiving

 		Blocking receive

 		Asynchronous receive

 		Memory allocators

 		Sending

 		Blocking send

 		Asynchronous send

 		Logging

 		Support for ibverbs

 		System configuration

 		Receiving

 		Sending

 		C++ API for spead2

 		C++ API stability

 		Asynchronous I/O

 		Receiving

 		Heaps

 		Streams

 		Readers

 		Memory allocators

 		Sending

 		Heaps

 		Streams

 		Logging

 		Support for ibverbs

 		Support for netmap

 		Introduction

 		Usage

 		Performance tuning

 		System tuning

 		Protocol design

 		Heap size

 		Packet size

 		Alignment

 		Endianness

 		Data format

 		Application tuning

 		Kernel bypass APIs

 		Memory allocation

 		Tuning based on heap size

 		Thread pools

 		Other tools

 		mcdump

 		Installation

 		Usage

 		Limitations

 		Changelog

 		License

_static/up.png

_static/minus.png

_static/comment-close.png

