
spatiocyte
Release 1.0

August 03, 2015

Contents

1 A guide to modeling reaction-diffusion of molecules with Spatiocyte 1
1.1 Abstract . 1
1.2 Introduction . 1

2 Spatiocyte Method 3

3 Installing and Running Spatiocyte 5
3.1 Ubuntu Linux . 5
3.2 Mac OS X . 5
3.3 Testing the installation and running a model . 5

4 Spatiocyte Modules 9
4.1 Compartment . 9
4.2 SpatiocyteStepper . 15
4.3 MoleculePopulateProcess . 16
4.4 DiffusionProcess . 17
4.5 PeriodicBoundaryDiffusionProcess . 18
4.6 DiffusionInfluencedReactionProcess . 18
4.7 SpatiocyteNextReactionProcess . 19
4.8 VisualizationLogProcess . 20
4.9 MicroscopyTrackingProcess . 20
4.10 IteratingLogProcess . 21
4.11 SpatiocyteVisualizer . 22

5 Parameter Tuning Example 23

6 Concluding Remarks 25

7 Acknowledgments 27

8 References 29

9 index 31

i

ii

CHAPTER 1

A guide to modeling reaction-diffusion of molecules with Spatiocyte

Satya N. V. Arjunan
satya@riken.jp
RIKEN Quantitative Biology Center, Furuedai, Suita, Osaka 565-0874, Japan

1.1 Abstract

The E-Cell System is an advanced platform intended for mathematical modeling and simulation of well-stirred bio-
chemical systems. We have recently implemented the Spatiocyte method as a set of plug in modules to the E-Cell
System, allowing simulations of complicated multicompartment dynamical processes with inhomogeneous molecu-
lar distributions. With Spatiocyte, the diffusion and reaction of each molecule can be handled individually at the
microscopic scale. Here we describe the basic theory of the method and provide the installation and usage guides
of the Spatiocyte modules. Where possible, model examples are also given to quickly familiarize the reader with
spatiotemporal model building and simulation.

Keywords: spatial modeling, stochastic simulation, diffusion, membrane, multicompartment, intercompartment, Spa-
tiocyte

1.2 Introduction

The E-Cell System version 3 can model and simulate both deterministic and stochastic biochemical processes
(Takakashi et al., 2004). Simulated molecules are assumed to be dimensionless and homogeneously distributed in
a compartment. Some processes such as cell signaling and cytokinesis, however, depend on cellular geometry and
spatially localized molecules to carry out their functions. To reproduce such processes using spatially resolved models
in silico, we have developed a lattice-based stochastic reaction-diffuson (RD) simulation method, called Spatiocyte
(Arjunan and Tomita, 2010), and implemented it as a set of plug in modules to the E-Cell System (Arjunan and Tomita,
2009). Spatiocyte allows diffusion and reaction to take place between different compartments: for example, a volume
molecule in the cytoplasm can diffuse and react with a surface molecule on the plasma membrane. Since molecules
are represented as spheres with dimensions, it can also reproduce anomalous diffusion of molecules in a crowded com-
partment (Dix and Verkman, 2008, Hall and Hoshino, 2010). Using Spatiocyte simulated microscopy visualization
feature, simulation results of spatiotemporal localization of molecules can be evaluated by directly comparing them
with experimentally obtained fluorescent microscopy images.

The theory and algorithm of the Spatiocyte method are provided in (Arjunan and Tomita, 2010) while the imple-
mentation details are described in (Arjunan and Tomita, 2009). In this chapter, we provide a guide on how to build
spatiotemporal RD models using Spatiocyte modules. We begin with the basic theory of the method and proceed

1

mailto:satya@riken.jp

spatiocyte, Release 1.0

with the installation procedures. The properties of each module are outlined in the subsequent section. Some exam-
ple models are given to familiarize the reader with the common model structures while describing the modules. We
conclude this chapter by outlining the planned future directions of Spatiocyte development.

2 Chapter 1. A guide to modeling reaction-diffusion of molecules with Spatiocyte

CHAPTER 2

Spatiocyte Method

In this section, we summarize the underlying features of the Spatiocyte method that are necessary to build an RD
model. For a more detailed description of the method we direct the reader to a previous article (Arjunan and Tomita,
2010).

The Spatiocyte method discretizes the space into a hexagonal close-packed (HCP) lattice of regular sphere voxels
with radius rv. Each voxel has 12 adjoining neighbors. To represent a surface compartment such as a cell or a
nuclear membrane, all empty voxels of the compartment are occupied with immobile lipid molecules. The method
also allows molecules to be simulated at microscopic and compartmental spatial scales simultaneously. In the former,
each molecule is discrete and treated individually. For example, each diffusing molecule at the microscopic scale is
moved independently by a DiffusionProcess from a source voxel to a target neighbor voxel after a given diffusion step
interval. Immobile molecules are also simulated at the microscopic scale. Conversely at the compartmental scale,
molecules are assumed to be homogeneously distributed (HD) and thus, the concentration information of each HD
species is sufficient without explicit diffusion movements. Depending on the simulated spatial scale and the mobility
of the reacting species, molecules can undergo either diffusion-influenced or diffusion-decoupled reactions.

All second-order reactions comprising two diffusing reactants, or a diffusing and an immobile reactant are diffusion-
influenced, and are therefore, executed by the DiffusionInfluencedReactionProcess. The remaining reactions, which
include all zeroth- and first-order reactions, and second-order reactions that involve two adjoining immobile reactants
or at least one HD reactant, can be decoupled from diffusion. These diffusion-decoupled reactions are performed by
the SpatiocyteNextReactionProcess.

We proceed with the execution of DiffusionInfluencedReactionProcess for a reaction j. Following our discretized
scheme (Arjunan and Tomita, 2010) of the Collins and Kimball RD approach (Collins and Kimball, 1949), when a
diffusing molecule collides with a reactant pair of j at the target voxel, they react with probability

where the constant 𝛾 = (2
√
2+4

√
3+3

√
6+

√
22)2

72(6
√
2+4

√
3+3

√
6)

, L is the lipid species, k is the intrinsic reaction rate of j, D is the
diffusion coefficient, while the species subscripts v and s denote volume and surface species respectively.

The DiffusionProcess handles the voxel-to-voxel random walk of diffusing molecules and the collisions that take place
between each walk. The latter is necessary when a diffusing species participates in a strongly diffusion-limited reaction
and the time slice between each walk is too large for an accurate value of pj. Given ts is the current simulation time,
the next time a molecule of a diffusing species i with a diffusion coefficient Di can be moved to a randomly selected
neighbor voxel is

where in the HCP lattice, the constant 𝛼𝑖 =
2
3 if it is a volume species or 𝛼𝑖 = (2

√
2+4

√
3+3

√
6+

√
22

6
√
2+4

√
3+3

√
6

)2 if it belongs to
a surface compartment. However, if i participates in a diffusion-limited reaction, a reactive collision may take place at
time slices smaller than the walk interval 𝛼𝑖𝑟

2
𝑣

𝐷𝑖
, causing pj > 1. To ensure pj 1, we reduce the DiffusionProcess interval

such that its next execution time becomes

Here Pi is an arbitrarily set reaction probability limit (default value is unity) such that 0 Pi 1, and 𝜌i=max{p1, . . . ,
pJ} where J is the total number of diffusion-influenced reactions participated by the species i. At each process interval,
the molecule can collide as usual with a neighbor reactant pair and react with a scaled probability of pjPi/𝜌i. In the

3

spatiocyte, Release 1.0

diffusion-limited case, 𝜌i > Pi and because of the reduced interval, the walk probability becomes less than unity to
Pi/𝜌i.

Reactions that can be decoupled from diffusion such as zeroth- and first-order reactions, and second-order reactions
that involve two adjoining immobile reactants or at least one HD reactant, are event-driven by the SpatiocyteNextRe-
actionProcess. The reaction product can be made up of one or two molecules, which can be either HD or nonHD
molecules. The SpatiocyteNextReactionProcess is an adapted implementation of the Next Reaction (NR) method
(Gibson and Bruck, 2000), which itself is a variation of the Gillespie algorithm (Gillespie 1976, 1977).

In the process, the reaction propensity 𝑎𝜇 (unit s-1) is calculated from the rate coefficient according to

Here, S and V are area and volume of the reaction compartment respectively, while kS (unit ms-1) is the surface-
average adsorption rate of an HD volume species A. In the second-order reactions, V is replaced with S if both reactants
are in a surface compartment. The next reaction time of a randomly selected molecule in a first order reaction or a pair
of molecules in a second-order reaction is given by

with ur a uniformly distributed random number in the range (0,1).

If a reaction has a nonHD product, the new molecule will replace a nonHD reactant in the product compartment.
Otherwise if the reaction only involves HD reactants or if the product belongs to a different compartment, the new
nonHD molecule will be placed in a random vacant voxel of the product compartment. The placement of a second
nonHD product also follows the same procedure. For intercompartmental reactions, a nonHD product will occupy a
vacant voxel adjoining both compartments.

Dynamic localization patterns of simulated molecules can be directly compared with experimentally obtained fluores-
cence microscopy images and videos using the MicroscopyTrackingProcess and the SpatiocyteVisualizer. Together,
these modules simulate the microphotography process by recording the trajectory of simulated molecules over the
camera exposure time and displaying their spatially localized densities. The MicroscopyTrackingProcess records the
number of times the molecules of a species occupy each voxel at diffusion step intervals over the exposure time. The
SpatiocyteVisualizer then displays the species color at each voxel with intensity and opacity levels that are directly
proportional the voxel occupancy frequency. Colors from different species occupying the same voxel are blended to
mimic co-localization patterns observed in multiple-labeling experiments.

4 Chapter 2. Spatiocyte Method

CHAPTER 3

Installing and Running Spatiocyte

The Spatiocyte source code is distributed as open-source software under the GNU General Public License and is
available at GitHub. At the time of writing, the Spatiocyte has been tested to run on Linux and Mac OS X systems.

3.1 Ubuntu Linux

Spatiocyte has been tested to run well on Ubuntu Linux. On a freshly installed Ubuntu, Spatiocyte requires several
additional packages. To install these packages and Spatiocyte, open a terminal and execute the following instructions:

$ wget https://raw.githubusercontent.com/ecell/spatiocyte/master/install-spatiocyte-ubuntu.sh
$ sh -x install-spatiocyte-ubuntu.h

3.2 Mac OS X

Spatiocyte has been tested to run on the Yosemite Mac OS X system. Spatiocyte requires XQuartz and several addi-
tional packages. We recommend using homebrew to manage packages. To install these packages and Spatiocyte, open
a terminal and peform the following instructions:

$ curl -O https://raw.githubusercontent.com/ecell/spatiocyte/master/install-spatiocyte-mac.sh
$ sh -x install-spatiocyte-mac.h

Since Spatiocyte also requires the Blender software for rendering and the VLC software to view simulation movies,
you can download and install them separately. Blender can be downloaded from http://www.blender.org/, while VLC
from http://www.videolan.org/.

3.3 Testing the installation and running a model

The above instructions will retrive and execute the Spatiocyte installation script. The script will download all packages
required by Spatiocyte and install the software. Enter your password when requested since some packages require the
administrator privilege. If you have any issues during install please post error messages during install to the Spatiocyte
users forum at https://groups.google.com/forum/?hl=en#!forum/spatiocyte-users. Note that on the Mac system, the
installation script will take about 30 minutes to 1 hour, depending on the internet connection speed, to finish executing.

After the script has terminated, close and reopen the terminal for the installation to take effect. To test if the installation
is successful, run the following command in the terminal:

5

http://www.blender.org/
http://www.videolan.org/
https://groups.google.com/forum/?hl=en#!forum/spatiocyte-users

spatiocyte, Release 1.0

$ ecell3-session-monitor

The window shown in Figure 1 should appear. Congratulations! You have now sucessfully installed Spatiocyte. Next,
we can try running a simple 1D diffusion model written in Python, 1D.py:

$ cd $HOME/wrk/spatiocyte/examples/1D
$ ecell3-session 1D.py
$ spatiocyte

The Spatiocyte package includes the MinDE model (see Figure 2) as reported by Arjunan and Tomita, 2010. We can
now attempt to run the model with the following steps:

$ cd $HOME/wrk/spatiocyte/examples/published/2010.arjunan.syst.synth.biol
$ ecell3-em2eml 2010.arjunan.syst.synth.biol.wt.em
$ ecell3-session-monitor

Load the model 2010.arjunan.syst.synth.biol.wt.eml and try running the simulation for 180 seconds.

We can also run Spatioctye models using command line interface of the E-Cell System:

$ ecell3-em2eml 2010.arjunan.syst.synth.biol.wt.em
$ ecell3-session -f 2010.arjunan.syst.synth.biol.wt.eml
<2010.arjunan.syst.synth.biol.wt.eml, t=0>>> run(180)
<2010.arjunan.syst.synth.biol.wt.eml, t=180>>> exit()

When running a Spatiocyte model with the VisualizationLogProcess module enabled, the three-dimensional positional
information of a logged molecule species will be stored in VisualLog.dat (default file name). The molecules can
be viewed in a separate visualizer window even while the simulation is still running. To view them, we can run
SpatiocyteVisualizer by issuing

$ spatiocyte

The visualizer will load the VisualLog.dat file by default and display the molecules at every log interval (see Figure
3). The keyboard shortcuts that are available for the visualizer are listed in the SpatiocyteVisualizer module section.
There are many example models available in the examples directory. Instructions to run each model are given in the
respective README file.

To update the local Spatiocyte code to the latest source, under the ecell3-spatiocyte directory, issue the following:

$ git pull
$ make clean
$ make -j4

To checkout a specific committed version of the source:

$ git checkout <10 digit hex commit code>

The 10 digit hex commit codes are available at https://github.com/ecell/spatiocyte/commits/master/

Figure 1: The E-Cell Session Monitor

1 Stepper SpatiocyteStepper(SS) {
2 VoxelRadius 1e-8; # m
3 SearchVacant 1; }
4 System System(/) {
5 StepperID SS;
6 Variable Variable(GEOMETRY) { Value 3; } # rod shaped compartment
7 Variable Variable(LENGTHX) { Value 4.5e-6; } # m
8 Variable Variable(LENGTHY) { Value 1e-6; } # m
9 Variable Variable(VACANT) { Value 0; }

6 Chapter 3. Installing and Running Spatiocyte

https://github.com/ecell/ecell3-spatiocyte/commits/master/

spatiocyte, Release 1.0

10 Variable Variable(MinDatp) { Value 0; } # molecule number
11 Variable Variable(MinDadp) { Value 1300; } # molecule number
12 Variable Variable(MinEE) { Value 0; } # molecule number
13 Process DiffusionProcess(diffuseMinDatp) {
14 VariableReferenceList [_ Variable:/:MinDatp];
15 D 16e-12; } # m^2/s
16 Process DiffusionProcess(diffuseMinDadp) {
17 VariableReferenceList [_ Variable:/:MinDadp];
18 D 16e-12; } # m^2/s
19 Process DiffusionProcess(diffuseMinE) {
20 VariableReferenceList [_ Variable:/:MinEE];
21 D 10e-12; } # m^2/s
22 Process VisualizationLogProcess(visualize) {
23 VariableReferenceList [_ Variable:/Surface:MinEE]
24 [_ Variable:/Surface:MinDEE]
25 [_ Variable:/Surface:MinDEED]
26 [_ Variable:/Surface:MinD];
27 LogInterval 0.5; } # s
28 Process MicroscopyTrackingProcess(track) {
29 VariableReferenceList [_ Variable:/Surface:MinEE 2]
30 [_ Variable:/Surface:MinDEE 3]
31 [_ Variable:/Surface:MinDEED 4]
32 [_ Variable:/Surface:MinD 1]
33 [_ Variable:/Surface:MinEE -2]
34 [_ Variable:/Surface:MinDEED -2]
35 [_ Variable:/Surface:MinEE -1]
36 [_ Variable:/Surface:MinDEED -4]
37 [_ Variable:/Surface:MinD -1]; }
38 Process MoleculePopulateProcess(populate) {
39 VariableReferenceList [_ Variable:/:MinDatp]
40 [_ Variable:/:MinDadp]
41 [_ Variable:/:MinEE]
42 [_ Variable:/Surface:MinD]
43 [_ Variable:/Surface:MinDEE]
44 [_ Variable:/Surface:MinDEED]
45 [_ Variable:/Surface:MinEE]; }
46 }
47

48 System System(/Surface) {
49 StepperID SS;
50 Variable Variable(DIMENSION) { Value 2; } # surface compartment
51 Variable Variable(VACANT) { Value 0; }
52 Variable Variable(MinD) { Value 0; } # molecule number
53 Variable Variable(MinEE) { Value 0; } # molecule number
54 Variable Variable(MinDEE) { Value 700; } # molecule number
55 Variable Variable(MinDEED) { Value 0; } # molecule number
56 Process DiffusionProcess(diffuseMinD) {
57 VariableReferenceList [_ Variable:/Surface:MinD];
58 D 0.02e-12; } # m^2/s
59 Process DiffusionProcess(diffuseMinEE) {
60 VariableReferenceList [_ Variable:/Surface:MinEE];
61 D 0.02e-12; } # m^2/s
62 Process DiffusionProcess(diffuseMinDEE) {
63 VariableReferenceList [_ Variable:/Surface:MinDEE];
64 D 0.02e-12; } # m^2/s
65 Process DiffusionProcess(diffuseMinDEED) {
66 VariableReferenceList [_ Variable:/Surface:MinDEED];
67 D 0.02e-12; } # m^2/s

3.3. Testing the installation and running a model 7

spatiocyte, Release 1.0

68 Process DiffusionInfluencedReactionProcess(reaction1) {
69 VariableReferenceList [_ Variable:/Surface:VACANT -1]
70 [_ Variable:/:MinDatp -1]
71 [_ Variable:/Surface:MinD 1];
72 k 2.2e-8; } # m/s
73 Process DiffusionInfluencedReactionProcess(reaction2) {
74 VariableReferenceList [_ Variable:/Surface:MinD -1]
75 [_ Variable:/:MinDatp -1]
76 [_ Variable:/Surface:MinD 1]
77 [_ Variable:/Surface:MinD 1];
78 k 3e-20; } # m^3/s
79 Process DiffusionInfluencedReactionProcess(reaction3) {
80 VariableReferenceList [_ Variable:/Surface:MinD -1]
81 [_ Variable:/:MinEE -1]
82 [_ Variable:/Surface:MinDEE 1];
83 k 5e-19; } # m^3/s
84 Process SpatiocyteNextReactionProcess(reaction4) {
85 VariableReferenceList [_ Variable:/Surface:MinDEE -1]
86 [_ Variable:/Surface:MinEE 1]
87 [_ Variable:/:MinDadp 1];
88 k 1; } # s^{-1}
89 Process SpatiocyteNextReactionProcess(reaction5) {
90 VariableReferenceList [_ Variable:/:MinDadp -1]
91 [_ Variable:/:MinDatp 1];
92 k 5; } # s^{-1}
93 Process DiffusionInfluencedReactionProcess(reaction6) {
94 VariableReferenceList [_ Variable:/Surface:MinDEE -1]
95 [_ Variable:/Surface:MinD -1]
96 [_ Variable:/Surface:MinDEED 1];
97 k 5e-15; } # m^2/s
98 Process SpatiocyteNextReactionProcess(reaction7) {
99 VariableReferenceList [_ Variable:/Surface:MinDEED -1]

100 [_ Variable:/Surface:MinDEE 1]
101 [_ Variable:/:MinDadp 1];
102 k 1; } # s^{-1}
103 Process SpatiocyteNextReactionProcess(reaction8) {
104 VariableReferenceList [_ Variable:/Surface:MinEE -1]
105 [_ Variable:/:MinEE 1];
106 k 0.83; } # s^{-1}
107 }

Figure 2: E-Cell Model (EM) description file for the MinDE model. The file is available in the Spatiocyte source
package in the examples directory as 2010.arjunan.syst.synth.biol.wt.em.

Figure 3: The SpatiocyteVisualizer displaying simulated membrane-bound proteins of the MinDE model.

8 Chapter 3. Installing and Running Spatiocyte

CHAPTER 4

Spatiocyte Modules

In Spatiocyte modules, the unit of numeric values is given in meters, seconds, radians and molecule numbers. A
Spatiocyte model file created using the E-Cell Model (EM) language is shown in Figure 2. The file contains the
wildtype Escherichia coli MinDE cytokinesis regulation model that was reported in (Arjunan and Tomita, 2010). A
schematic representation of the model is given in Figure 4. Python script examples to build models with more complex
compartments are provided in Figures 5 and 6. Figures 7 and 8 illustrate 3D visualizations of the resulting models.

Figure 4: A schematic representation of the MinDE model.

4.1 Compartment

Compartments are defined hierarchically and follow the format used by the E-Cell System version 3 (see the E-Cell
Simulation Environment Version 3 User’s Manual for details). Each sub-compartment within a parent compartment is
created according to the alphabetical order of the compartment names. Predefined Variables that specify the Compart-
ment properties include DIMENSION, GEOMETRY, LENGTHX, LENGTHY, LENGTHZ, ORIGINX, ORIGINY,
ORIGINZ, ROTATEX, ROTATEY, ROTATEZ, XYPLANE, XZPLANE, YZPLANE, VACANT, DIFFUSIVE and RE-
ACTIVE. Examples of these variable definitions can be seen in Figures 2 (lines 4-7 and 33-34), 5 (lines 5-8, 17-24,
31-32, 41-49 and 52-54) and 6 (lines 46-49, 59-60, 63-69 and 71-72).

1 # Example of python scripting to create a neuron with 5 minor processes
2 theSimulator.createStepper('SpatiocyteStepper', 'SS').VoxelRadius = 10e-8
3 # Create the root container compartment using the default Cuboid geometry:
4 theSimulator.rootSystem.StepperID = 'SS'
5 theSimulator.createEntity('Variable', 'Variable:/:LENGTHX').Value = 61e-6
6 theSimulator.createEntity('Variable', 'Variable:/:LENGTHY').Value = 25e-6
7 theSimulator.createEntity('Variable', 'Variable:/:LENGTHZ').Value = 5.5e-6
8 theSimulator.createEntity('Variable', 'Variable:/:VACANT')
9 logger = theSimulator.createEntity('VisualizationLogProcess', 'Process:/:logger')

10 logger.LogInterval = 1
11 logger.VariableReferenceList = [['_', 'Variable:/Soma/Membrane:VACANT'], ['_', 'Variable:/Soma:K']]
12 logger.VariableReferenceList = [['_', 'Variable:/Dendrite%d/Membrane:VACANT' %i] for i in range(5)]
13 populator = theSimulator.createEntity('MoleculePopulateProcess', 'Process:/:populate')
14 populator.VariableReferenceList = [['_', 'Variable:/Soma:K']]
15 # Create the Soma compartment of the Neuron:
16 theSimulator.createEntity('System', 'System:/:Soma').StepperID = 'SS'
17 theSimulator.createEntity('Variable', 'Variable:/Soma:GEOMETRY').Value = 1
18 theSimulator.createEntity('Variable', 'Variable:/Soma:LENGTHX').Value = 10e-6
19 theSimulator.createEntity('Variable', 'Variable:/Soma:LENGTHY').Value = 10e-6
20 theSimulator.createEntity('Variable', 'Variable:/Soma:LENGTHZ').Value = 6.5e-6
21 theSimulator.createEntity('Variable', 'Variable:/Soma:ORIGINX').Value = -0.48
22 theSimulator.createEntity('Variable', 'Variable:/Soma:ORIGINY').Value = -0.2

9

spatiocyte, Release 1.0

23 theSimulator.createEntity('Variable', 'Variable:/Soma:ORIGINZ').Value = -0.6
24 theSimulator.createEntity('Variable', 'Variable:/Soma:VACANT')
25 theSimulator.createEntity('Variable', 'Variable:/Soma:K').Value = 1000
26 diffuser = theSimulator.createEntity('DiffusionProcess', 'Process:/Soma:diffuseK')
27 diffuser.VariableReferenceList = [['_', 'Variable:.:K']]
28 diffuser.D = 0.2e-12
29 # Create the Soma membrane:
30 theSimulator.createEntity('System', 'System:/Soma:Membrane').StepperID = 'SS'
31 theSimulator.createEntity('Variable', 'Variable:/Soma/Membrane:DIMENSION').Value = 2
32 theSimulator.createEntity('Variable', 'Variable:/Soma/Membrane:VACANT')
33 # Parameters of Dendrites/Minor Processes:
34 dendritesLengthX = [40e-6, 10e-6, 10e-6, 10e-6, 10e-6]
35 dendritesOriginX = [0.32, -0.78, -0.48, -0.3, -0.66]
36 dendritesOriginY = [-0.2, -0.2, 0.52, -0.65, -0.65]
37 dendritesRotateZ = [0, 0, 1.57, 0.78, -0.78]
38 for i in range(5):
39 # Create the Dendrite:
40 theSimulator.createEntity('System', 'System:/:Dendrite%d' %i).StepperID = 'SS'
41 theSimulator.createEntity('Variable', 'Variable:/Dendrite%d:GEOMETRY' %i).Value = 3
42 theSimulator.createEntity('Variable', 'Variable:/Dendrite%d:LENGTHX' %i).Value = dendritesLengthX[i]
43 theSimulator.createEntity('Variable', 'Variable:/Dendrite%d:LENGTHY' %i).Value = 1.5e-6
44 theSimulator.createEntity('Variable', 'Variable:/Dendrite%d:ORIGINX' %i).Value = dendritesOriginX[i]
45 theSimulator.createEntity('Variable', 'Variable:/Dendrite%d:ORIGINY' %i).Value = dendritesOriginY[i]
46 theSimulator.createEntity('Variable', 'Variable:/Dendrite%d:ORIGINZ' %i).Value = -0.6
47 theSimulator.createEntity('Variable', 'Variable:/Dendrite%d:ROTATEZ' %i).Value = dendritesRotateZ[i]
48 theSimulator.createEntity('Variable', 'Variable:/Dendrite%d:VACANT' %i)
49 theSimulator.createEntity('Variable', 'Variable:/Dendrite%d:DIFFUSIVE' %i).Name = '/:Soma'
50 # Create the Dendrite membrane:
51 theSimulator.createEntity('System', 'System:/Dendrite%d:Membrane' %i).StepperID = 'SS'
52 theSimulator.createEntity('Variable', 'Variable:/Dendrite%d/Membrane:DIMENSION' %i).Value = 2
53 theSimulator.createEntity('Variable', 'Variable:/Dendrite%d/Membrane:VACANT' %i)
54 theSimulator.createEntity('Variable', 'Variable:/Dendrite%d/Membrane:DIFFUSIVE' %i).Name = '/Soma:Membrane'
55 run(100)

Figure 5: A Python script to create a neuron-shaped model. The file is available in the Spatiocyte source package as
2012.arjunan.chapter.neuron.py.

1 import math
2 import random
3 minDist = 75e-9
4 dendriteRadius = 0.75e-6
5 dendriteLength = 10e-6
6 lengths = [8.4e-6, 6.3e-6, 4.2e-6, 2.1e-6, 1e-6]
7 lengthFreqs = [7, 10, 11, 21, 108]
8 mtOriginX = []
9 mtOriginZ = []

10 mtOriginY = []
11 expandedLengths = []
12

13 def isSpacedOut(x, y, z, length):
14 for i in range(len(expandedLengths)-1):
15 maxOriX = mtOriginX[i]*dendriteLength/2 + expandedLengths[i]/2
16 minOriX = mtOriginX[i]*dendriteLength/2 - expandedLengths[i]/2
17 maxX = x*dendriteLength/2 + length/2
18 minX = x*dendriteLength/2 - length/2
19 y2 = math.pow((y-mtOriginY[i])*dendriteRadius, 2)
20 z2 = math.pow((z-mtOriginZ[i])*dendriteRadius, 2)
21 if((minX <= maxOriX or maxX >= minOriX) and math.sqrt(y2+z2) < minDist):

10 Chapter 4. Spatiocyte Modules

spatiocyte, Release 1.0

22 return False
23 elif(minX > maxOriX and math.sqrt(y2+z2+math.pow(minX-maxOriX, 2)) < minDist):
24 return False
25 elif(maxX < minOriX and math.sqrt(y2+z2+math.pow(maxX-minOriX, 2)) < minDist):
26 return False
27 return True
28

29 for i in range(len(lengthFreqs)):
30 maxX = (dendriteLength-lengths[i])/dendriteLength
31 for j in range(int(lengthFreqs[i])):
32 expandedLengths.append(lengths[i])
33 x = random.uniform(-maxX, maxX)
34 y = random.uniform(-0.95, 0.95)
35 z = random.uniform(-0.95, 0.95)
36 while(y*y+z*z > 0.9 or not isSpacedOut(x, y, z, lengths[i])):
37 x = random.uniform(-maxX, maxX)
38 y = random.uniform(-0.95, 0.95)
39 z = random.uniform(-0.95, 0.95)
40 mtOriginX.append(x)
41 mtOriginY.append(y)
42 mtOriginZ.append(z)
43

44 theSimulator.createStepper('SpatiocyteStepper', 'SS').VoxelRadius = 0.8e-8
45 theSimulator.rootSystem.StepperID = 'SS'
46 theSimulator.createEntity('Variable', 'Variable:/:GEOMETRY').Value = 3
47 theSimulator.createEntity('Variable', 'Variable:/:LENGTHX').Value = dendriteLength
48 theSimulator.createEntity('Variable', 'Variable:/:LENGTHY').Value = dendriteRadius*2
49 theSimulator.createEntity('Variable', 'Variable:/:VACANT')
50 theSimulator.createEntity('Variable', 'Variable:/:K').Value = 100
51 diffuser = theSimulator.createEntity('DiffusionProcess', 'Process:/:diffuseK')
52 diffuser.VariableReferenceList = [['_', 'Variable:/:K']]
53 diffuser.D = 0.2e-12
54 visualLogger = theSimulator.createEntity('VisualizationLogProcess', 'Process:/:visualLogger')
55 visualLogger.LogInterval = 1
56 visualLogger.VariableReferenceList = [['_', 'Variable:/Membrane:VACANT'], ['_', 'Variable:/:K']]
57 theSimulator.createEntity('MoleculePopulateProcess', 'Process:/:populate').VariableReferenceList = [['_', 'Variable:/:K']]
58 theSimulator.createEntity('System', 'System:/:Membrane').StepperID = 'SS'
59 theSimulator.createEntity('Variable', 'Variable:/Membrane:DIMENSION').Value = 2
60 theSimulator.createEntity('Variable', 'Variable:/Membrane:VACANT')
61 for i in range(len(expandedLengths)):
62 theSimulator.createEntity('System', 'System:/:Microtubule%d' %i).StepperID = 'SS'
63 theSimulator.createEntity('Variable', 'Variable:/Microtubule%d:GEOMETRY' %i).Value = 2
64 theSimulator.createEntity('Variable', 'Variable:/Microtubule%d:LENGTHX' %i).Value = expandedLengths[i]
65 theSimulator.createEntity('Variable', 'Variable:/Microtubule%d:LENGTHY' %i).Value = 6e-9
66 theSimulator.createEntity('Variable', 'Variable:/Microtubule%d:ORIGINX' %i).Value = mtOriginX[i]
67 theSimulator.createEntity('Variable', 'Variable:/Microtubule%d:ORIGINY' %i).Value = mtOriginY[i]
68 theSimulator.createEntity('Variable', 'Variable:/Microtubule%d:ORIGINZ' %i).Value = mtOriginZ[i]
69 theSimulator.createEntity('Variable', 'Variable:/Microtubule%d:VACANT' %i)
70 theSimulator.createEntity('System', 'System:/Microtubule%d:Membrane' %i).StepperID = 'SS'
71 theSimulator.createEntity('Variable', 'Variable:/Microtubule%d/Membrane:DIMENSION' %i).Value = 2
72 theSimulator.createEntity('Variable', 'Variable:/Microtubule%d/Membrane:VACANT' %i)
73 visualLogger.VariableReferenceList = [['_', 'Variable:/Microtubule%d/Membrane:VACANT' %i]]
74 run(100)

Figure 6: A Python script to create a compartment with randomly distributed microtubules. The file is available in the
Spatiocyte source package as 2012.arjunan.chapter.microtubules.py.

Molecule species within a Compartment are also defined as a Variable. The Value property of each species stipulates
the molecule number during initialization. All species by default are nonHD. Examples of nonHD species definitions

4.1. Compartment 11

spatiocyte, Release 1.0

can be seen in Figures 2 (lines 8-10 and 35-38), 5 (line 25) and 6 (line 50). To define a HD species, the Name property
of the Variable should be set to “HD” as shown in the EM and Python examples below:

Variable Variable(A) {
Value 100;
Name "HD"; }

A = theSimulator.createEntity('Variable', 'Variable:.:A')
A.Value = 100
A.Name = “HD”

4.1.1 DIMENSION

The DIMENSION variable defines the spatial dimension of the compartment, whether it is a filament (‘1’), surface
(‘2’) or a volume (‘3’) type. At the time of writing, the filament compartment type is still in development. A surface
compartment encloses its parent volume compartment, and as a result, it cannot be defined independently without a
volume compartment to enclose with. A surface compartment does not have any child volume or surface compartment.
The root compartment should always be defined as a volume compartment. Since the default DIMENSION value is
‘3’, a volume compartment can be defined without the DIMENSION variable. A volume compartment can also use
the predefined variables GEOMETRY, LENGTHX, LENGTHY, LENGTHZ, ORIGINX, ORIGINY, ORIGINZ, RO-
TATEX, ROTATEY, ROTATEZ, XYPLANE, XZPLANE, YZPLANE, DIFFUSIVE and VACANT, whereas a surface
compartment only requires the DIMENSION and VACANT variables and inherits the remaining relevant properties
from its parent compartment. In addition, surface compartments can also define the DIFFUSIVE and REACTIVE
variables. See Figures 2 (line 33), 5 (lines 31 and 52) and 6 (lines 59 and 71) for examples of the DIMENSION
variable definition.

Figure 7: A neuron-shaped compartment created from a combination of rod and ellipsoid compartment geometries.
The model is created from the Python script shown in Figure 5.

Figure 8: A rod compartment containing randomly distributed microtubules built from cylinder compartments. The
model is created from the Python script shown in Figure 6. The steps to create each of the displayed panels in
SpatiocyteVisualizer are as follows: (A) (i) select all species (i.e., the default configuration), (ii) decrease the +x range
to the desired level, (iii) deselect the membrane.VACANT species, (iv) increase the +x range to the maximum level,
and (v) select the membrane.VACANT species; (B) the same steps as in (A) and increase -y range to the desired level;
and (C) the same steps as in (A) and rotate to the desired angle.

4.1.2 GEOMETRY

The GEOMETRY variable of a volume compartment specifies one of the six supported geometric primitives: cuboid
(‘0’), ellipsoid (‘1’), cylinder (‘2’), rod (‘3’), pyramid (‘4’) and erythrocyte (‘5’). More complex forms can be con-
structed using a combination of these primitives. Figures 4 and 6 illustrate the construction of a neuron-shaped model
using a combination of ellipsoid and rod compartments. Compartments without the GEOMETRY definition is set to
the cuboid form since the default value is ‘0’. For examples of GEOMETRY definition see Figures 2 (line 4), 5 (lines
17 and 41) and 6 (lines 46 and 63).

4.1.3 LENGTH[X, Y, Z]

The three variables LENGTH[X, Y, Z] can specify the compartment lengths in the directions of [x, y, z]-axes, respec-
tively. The cuboid, ellipsoid and pyramid compartments use all three variables. If all three lengths are equal, a cube or
a sphere compartment can be created with a cuboid or an ellipsoid geometry, respectively. For the pyramid compart-
ment, LENGTH[X, Y, Z] stipulate its base length, height and base width, respectively. For a cylinder compartment,
LENGTHX defines the cylinder length, while its diameter is given by LENGTHY. In the case of a rod compartment,

12 Chapter 4. Spatiocyte Modules

spatiocyte, Release 1.0

LENGTHX indicates the length from the tip of one pole to the other while LENGTHY defines its diameter. For an ery-
throcyte, its width in the x and y directions are given by LENGTHX and LENGTHY respectively, whereas LENGTHZ
determines its thickness. LENGTH[X, Y, Z] definitions examples are given in Figures 2 (lines 5-6), 5 (lines 5-7, 18-20,
and 42-43) and 6 (lines 47-48 and 64-65).

4.1.4 [XY, XZ, YZ]PLANE

When a volume compartment has the cuboid geometry, the boundary type or the presence of the [xy, xz, yz]-plane
surfaces enclosing the compartment can be specified using [XY, XZ, YZ]PLANE variables. The boundary type can
be reflective (‘0’), periodic (‘1’) or semi-periodic (‘2’). A semi-periodic boundary allows nonHD molecules to move
unidirectionally from one boundary to the other. When a surface compartment is defined to enclose the cuboid com-
partment, we can remove one or both faces of the cuboid in a given [XY, XZ, YZ]PLANE. To remove the surface
on the upper or the lower face of the cuboid in a plane, we can set the variable to ‘3’ or ‘4’, respectively, whereas to
remove both faces we can set it to ‘5’. If the variable is not defined, the boundary type is set to the default reflective
(‘0’) type. Examples in EM and Python to remove both of the cuboid XYPLANE faces are given below:

Variable Variable(XYPLANE) { Value 5; }
theSimulator.createEntity('Variable', 'Variable:.:XYPLANE').Value = 5

4.1.5 ORIGIN[X, Y, Z]

A child volume compartment can be placed at any location within a parent compartment using the variables ORI-
GIN[X, Y, Z]. The variables define the origin (center) coordinates of the child compartment relative to its parent center
point. The variable values ‘-1’ and ‘1’ correspond to the normalized lowest and the highest points of the parent com-
partment in a given axis, respectively. Since the default value of these variables is ‘0’, the child compartment will be
placed at the center of its parent if they are not defined. Figures 5 (lines 21-24 and 44-46) and 6 (lines 66-68) give
some examples of the ORIGIN[X, Y, Z] variables definition.

4.1.6 ROTATE[X, Y, Z]

A compartment can be rotated along the [x, y, z]-axis with the origin at the compartment center using the ROTATE[X,
Y, Z] variables respectively. The unit of the variables is in radians. If there are multiple rotation definitions, they follow
the [x, y, z]-axis rotation order. Compartments are not rotated if the variables are not defined since their default value
is ‘0’. An example of compartment rotation definition is given in Figure 5 (line 47).

4.1.7 VACANT

Every compartment must have a VACANT variable that represents the ‘species’ of empty voxels within the compart-
ment. The VACANT voxels of a surface compartment are analogous to the lipid molecules mentioned in the Spatiocyte
Method section and in (Arjunan and Tomita, 2010). Examples of the VACANT variable definition are shown in Fig-
ures 2 (lines 7 and 34), 5 (lines 8, 24, 32, 48 and 53) and 6 (lines 49, 60, 69 and 72). The variable can be used to
define sink (e.g., A -> VACANT) and membrane binding reactions (e.g., BV + VACANTS -> BS) of nonHD species,
as shown in the EM and Python examples below:

First-Order Sink Reaction, A → Ø

Process SpatiocyteNextReactionProcess(sink) {
VariableReferenceList [_ Variable:/:A -1]

[_ Variable:/:VACANT 1];
k 0.3; }

Second-Order Surface-Adsorption Reaction, Bv + Surface.VACANT → Bs

4.1. Compartment 13

spatiocyte, Release 1.0

Process DiffusionInfluencedReactionProcess(bind) {
VariableReferenceList [_ Variable:/:B -1]

[_ Variable:/Surface:VACANT -1]
[_ Variable:/Surface:B 1];

k 2e-8; }

First-Order Sink Reaction, A → Ø

sinker = theSimulator.createEntity('SpatiocyteNextReactionProcess',
'Process:/:sink')
sinker.VariableReferenceList = [['_', 'Variable:/:A', '-1']]
sinker.VariableReferenceList = [['_', 'Variable:/:VACANT', '1']]
sinker.k = 0.3

Second-Order Surface-Adsorption Reaction, Bv + Surface.VACANT → Bs

binder = theSimulator.createEntity('DiffusionInfluencedReactionProcess',
'Process:/:bind')
binder.VariableReferenceList = [['_', 'Variable:/:B', '-1']]
binder.VariableReferenceList = [['_', 'Variable:/Surface:VACANT',
'-1']]
binder.VariableReferenceList = [['_', 'Variable:/Surface:B', '1']]
binder.k = 2e-8

Figure 9: Cross-sections of two intersected peer compartments. Two sphere compartments in green and white are
intersecting in space. Turquoise and purple molecules belong to the green and white compartments respectively. See
text of the VACANT variable and Table 1 for a detailed description of the intersections. The EM file to create the
intersections is available in the Spatiocyte source package as 2012.arjunan.chapter.peer.em.

For a volume compartment, the Value of the VACANT variable determines if the compartment has a higher occupancy
priority when it intersects with a peer compartment. Figure 9 displays cross-sections of various intersection forms
of two spherical peer compartments with different volume and surface VACANT values (listed in Table 1). In the
case of a surface compartment, the VACANT variable determines if it fully encloses a parent compartment that has
an intersection. A nonzero value indicates that the parent will be fully enclosed even at the location of intersection.
Otherwise if the value is ‘0’, the surface will be open at the intersecting region. Figure 10 shows four possible
enclosure forms when a compartment intersects with a root compartment. Figure 7 illustrates the intersection of
various compartments to create a unified neuron-shaped compartment.

Table 1: Combinations of volume and surface VACANT values and their corresponding intersected peer compartment
forms. In all cases X is an integer and the DIFFUSIVE variable is not set.

Green Sphere Compartment White Sphere Component Intersection
Form in Figure
9

Volume
VACANT.Value

Surface
VACANT.Value

Volume
VACANT.Value

Surface
VACANT.Value

X 0 X 0 A
X nonzero X nonzero B
X 0 X nonzero C
< X 0 X 0 D
< X 0 X nonzero E

4.1.8 DIFFUSIVE

To unify intersecting compartments, the DIFFUSIVE variable can be specified. It enables nonHD molecules to diffuse
into and from an intersecting compartment. The Name property of the DIFFUSIVE variable defines the path and
name of the diffusible intersecting compartment. With the DIFFUSIVE variable defined, the VACANT species of the

14 Chapter 4. Spatiocyte Modules

spatiocyte, Release 1.0

unified compartments become identical. Figure 5 (lines 49 and 54) gives some examples of the DIFFUSIVE variable
definition and usage.

4.1.9 REACTIVE

The REACTIVE variable enables nonHD molecules in a surface compartment to collide and react with the VACANT
voxels (i.e., lipids) and nonHD molecules in an adjacent surface compartment. The Name property of the REACTIVE
variable specifies the path and name of the reactive adjacent surface compartment. Examples of the REACTIVE
variable definition in EM and Python are given below:

Variable Variable(REACTIVE) { Name "/Cell:Surface"; }
theSimulator.createEntity('Variable', 'Variable:/Surface:REACTIVE').Name
= "/Cell:Surface"

Figure 10: Cross-sections of intersected root and child compartments. The VACANT surface voxels of the cuboid
root compartment are shown in green while those of the ellipsoid child compartment are in white. The blue molecules
belong to the child volume compartment. (A) root surface.VACANT = 0 and child surface.VACANT = 0, (B) root
surface.VACANT = 1 and child surface.VACANT = 0, (C) root surface.VACANT = 0 and child surface.VACANT = 1,
and (D) root surface.VACANT = 1 and child surface.VACANT = 1. The EM file to create the intersections is available
in the Spatiocyte source package as 2012.arjunan.chapter.root.em.

4.2 SpatiocyteStepper

The SpatiocyteStepper is the only stepper used by Spatiocyte in the E-Cell System and must be defined to run all
simulations. It advances the simulation in an event-driven manner. Initialization examples of the SpatiocyteStepper
are shown in Figures 2 (line 1), 5 (line 2) and 6 (line 44). In each compartment, the StepperID must be set to the
SpatiocyteStepper ID. Examples of SpatiocyteStepper ID definition in compartments are given in Figures 2 (lines 3
and 32), 5 (lines 4, 16, 30, 40 and 51) and 6 (lines 45, 58, 62 and 70).

4.2.1 VoxelRadius

The radius of the HCP lattice voxels can be set in the SpatiocyteStepper using the VoxelRadius property. The default
radius is 10e-9 m. Figures 2 (line 1), 5 (line 2) and 6 (line 44) show some examples of the VoxelRadius initialization.

4.2.2 SearchVacant

The SearchVacant property of the SpatiocyteStepper provides an option to direct the simulator to search for all adjacent
voxels for vacancy during dissociation reactions that result in nonHD product molecules. The reaction can only take
place if there is an available target vacant voxel. This option is useful when evaluating the effects of a crowded
compartment. The value of SearchVacant by default is false (‘0’). To enable it, we can set it to ‘1’. When disabled,
an adjacent target voxel is selected randomly and the reaction is only executed if the voxel is vacant. EM and Python
examples of SearchVacant initialization are as follows:

Stepper SpatiocyteStepper(SS) { SearchVacant 0; }

theSimulator.createStepper(‘SpatiocyteStepper’, ‘SS’).SearchVacant = 0

4.2. SpatiocyteStepper 15

spatiocyte, Release 1.0

4.3 MoleculePopulateProcess

The initial positions of all nonHD species with nonzero initial molecule numbers must be specified with the Molecule-
PopulateProcess. The molecules can be either uniformly or normally distributed within the compartment. By default,
without any MoleculePopulateProcess parameter definition, molecules are uniformly distributed over the entire com-
partment. Otherwise if the GaussianSigma is set to a nonzero value, the compartment will be populated according to
the Gaussian distribution. MoleculePopulateProcess definitions can be seen in Figures 2 (lines 26-28), 5 (lines 13-14)
and 6 (line 57). A Python example showing two different species populated at the poles of a rod surface compartment
is also listed in Figure 11 with the corresponding output in Figure 12.

1 # Example of python scripting to populate molecules at the poles of a rod compartment
2 theSimulator.createStepper('SpatiocyteStepper', 'SS').VoxelRadius = 8e-8
3 # Create the root container compartment using the rod geometry:
4 theSimulator.rootSystem.StepperID = 'SS'
5 theSimulator.createEntity('Variable', 'Variable:/:GEOMETRY').Value = 3
6 theSimulator.createEntity('Variable', 'Variable:/:LENGTHX').Value = 10e-6
7 theSimulator.createEntity('Variable', 'Variable:/:LENGTHY').Value = 2e-6
8 theSimulator.createEntity('Variable', 'Variable:/:VACANT')
9 logger = theSimulator.createEntity('VisualizationLogProcess', 'Process:/:logger')

10 logger.LogInterval = 1
11 logger.VariableReferenceList = [['_', 'Variable:/Surface:A'], ['_', 'Variable:/Surface:B']]
12 populator = theSimulator.createEntity('MoleculePopulateProcess', 'Process:/:populateLeft')
13 populator.VariableReferenceList = [['_', 'Variable:/Surface:A']]
14 populator.OriginX = -1
15 populator.UniformLengthX = 0.5
16 populator = theSimulator.createEntity('MoleculePopulateProcess', 'Process:/:populateRight')
17 populator.VariableReferenceList = [['_', 'Variable:/Surface:B']]
18 populator.OriginX = 1
19 populator.UniformLengthX = 0.5
20 # Create the surface compartment:
21 theSimulator.createEntity('System', 'System:/:Surface').StepperID = 'SS'
22 theSimulator.createEntity('Variable', 'Variable:/Surface:DIMENSION').Value = 2
23 theSimulator.createEntity('Variable', 'Variable:/Surface:VACANT')
24 theSimulator.createEntity('Variable', 'Variable:/Surface:A').Value = 500
25 theSimulator.createEntity('Variable', 'Variable:/Surface:B').Value = 500
26 run(100)

Figure 11: A Python script to populate molecules at the poles of a rod surface compartment. The file is available in
the Spatiocyte source package as 2012.arjunan.chapter.populate.py.

Figure 12: Visualization of molecules populated at the poles of a rod surface compartment. The model is created from
the Python script shown in Figure 11.

4.3.1 Priority

Priority determines the order to populate multiple species using multiple MoleculePopulateProcess. This is necessary
when the population of a species takes precedence over other species. The value of Priority is an integer which
determines the priority of the process in the sequence. A higher value of Priority denotes a higher priority in the
sequence. The default value of Priority is 0.

4.3.2 Origin[X, Y, Z]

Origin[X, Y, Z] is the origin point relative to the compartment center point for a species population. The molecules
may have a uniform or a Gaussian distribution from this point. The range of the point along each axis covering the

16 Chapter 4. Spatiocyte Modules

spatiocyte, Release 1.0

entire compartment is [-1, 1]. Therefore, the origin is at the center of the compartment if Origin[X, Y, Z] is fixed to [0,
0, 0], the default set of values.

4.3.3 GaussianSigma[X, Y, Z]

GaussianSigma[X, Y, Z] stipulates the sigma value for a Gaussian distributed population from the origin in [x, y,
z]-axis, respectively.

4.3.4 UniformLength[X, Y, Z]

The uniformly distributed normalized population radius from the origin point in [x, y, z]-axis is given by the Uniform-
Length[X, Y, Z] parameter. Since the default values of UniformLength[X, Y, Z] and Origin[X, Y, Z] are [1, 1, 1] and
[0, 0, 0], respectively, the molecules are spread uniformly within the entire compartment when the parameters are not
defined.

4.3.5 ResetTime

To place the molecules at a certain interval after the simulation has started, we can use the ResetTime parameter. This
parameter is useful when the positions of a molecule species need to be actively altered after a simulation interval.

4.4 DiffusionProcess

The DiffusionProcess handles the voxel-to-voxel random walk of diffusing molecules and the collisions that take place
between each walk. A DiffusionProcess can diffuse multiple species having the same diffusion coefficient and within
the same compartment. The VariableReference coefficient of the diffusing species must be set to 0, the default value.
We can set a species to diffuse only over a designated species (i.e., it acts as a vacant species to the diffusing species)
by including the designated species in the VariableReference list and setting its coefficient to -1. Examples of the
DiffusionProcess usage are shown in Figures 2 (lines 11-16 and 39-50), 5 (lines 26-28) and 6 (lines 51-53). Below is
a Python example to diffuse A molecules over B molecules with a diffusion coefficient of 1e-12 m2s-1.

diffuser = theSimulator.createEntity('DiffusionProcess',
'Process:/:diffuse')
binder.VariableReferenceList = [['_', 'Variable:/Surface:A']]
binder.VariableReferenceList = [['_', 'Variable:/Surface:B', '-1']]
binder.D = 1e-12

4.4.1 D

In the DiffusionProcess, the diffusion coefficient of the molecule species is set with D, which has the unit m2s-1. The
default value is 0 m2s-1.

4.4.2 P

P is an arbitrarily set reaction probability limit of the diffusing species, within the range [0, 1]. The default value is
‘1’, which is sufficient to produce accurate simulations. We can set it to a smaller value to perform reaction-diffusion
processes at smaller intervals.

4.4. DiffusionProcess 17

spatiocyte, Release 1.0

4.5 PeriodicBoundaryDiffusionProcess

We can use the PeriodicBoundaryDiffusionProcess in place of the DiffusionProcess when a molecule species needs
to be diffused across periodic two-dimensional surface edges. The surface compartment must be enclosing a cuboid
parent compartment. The process overcomes the limitation of setting [XY, XZ, YZ]PLANE of the Compartment
variable to periodic, which only supports periodic volume edges. It inherits the diffusion coefficient, D and the
reaction probability limit, P from the DiffusionProcess. Examples of PeriodicBoundaryDiffusionProcess in EM and
Python are as follows:

Process PeriodicBoundaryDiffusionProcess(diffuse) {
VariableReferenceList [_ Variable:/Surface:A];
D 0.2e-12; }

diffuser = theSimulator.createEntity('PeriodicBoundaryDiffusionProcess',
'Process:/:diffuse')
diffuser.VariableReferenceList = [['_', 'Variable:/Surface:A']]
diffuser.D = 0.2e-12

4.6 DiffusionInfluencedReactionProcess

The DiffusionInfluencedReactionProcess is used to execute all second-order reactions comprising two diffusing re-
actants, or a diffusing and an immobile reactant (Reactant 1 and Reactant 2 are nonHD molecules). Figure 2 (lines
51-60 and lines 67-69) shows several usage examples of DiffusionInfluencedReactionProcess. A python example of
the process definition is provided below:

Second-Order Reaction, A + B → C

binder = theSimulator.createEntity('DiffusionInfluencedReactionProcess',
'Process:/:associate')
binder.VariableReferenceList = [['_', 'Variable:/:A', '-1']]
binder.VariableReferenceList = [['_', 'Variable:/:B', '-1']]
binder.VariableReferenceList = [['_', 'Variable:/:C', '1']]
binder.p = 0.5

4.6.1 k

The intrinsic rate constant of the diffusion-influenced reaction is set to k. In volume reactions, the relationship between
the intrinsic rate constant with the macroscopic rate constant kon is given by 1/kon = 1/k + 1/kd, where kd= 4𝜋DR is
the maximally diffusion-limited reaction rate, D is the diffusion coefficient and R is the contact radius (i.e., 2rv). The
units of k for various reaction types are given in Table 2.

4.6.2 p

The absolute reactive collision probability of the reaction is given by p. This process requires either the value of k or
p.

Table 2: Units of the rate constant, k in *DiffusionInfluencedReactionProcess (Reactant 1 and Reactant 2 are nonHD)
and †SpatiocyteNextReactionProcess (Reactant 1 and/or Reactant 2 are HD).

18 Chapter 4. Spatiocyte Modules

spatiocyte, Release 1.0

Reactant1 Reactant2 Product1 Product2 k(units)
*†Volume Volume Volume Volume m3s-1
*†Surface Surface Surface Surface m2s-1
*†Volume Surface Volume Volume m2s-1
*†Volume Surface Surface Surface m3s-1
*†Volume Surface Volume Surface m3s-1
*†Volume Surface,VACANT Surface None ms-1
†Volume None Surface None ms-1
†Volume None Volume None s-1
†Surface None Surface None s-1
†Surface None Volume None s-1

4.7 SpatiocyteNextReactionProcess

The SpatiocyteNextReactionProcess is used to execute all reactions that can be decoupled from diffusion such as
zeroth- and first-order reactions, and second-order reactions that involve two adjoining immobile reactants or at least
one HD reactant. Each reaction is performed according to the Next Reaction method (Gibson and Bruck, 2000). Unlike
in the DiffusionInfluencedReactionProcess, the membrane-adsorption reaction where a HD species binds to the mem-
brane is represented as a first-order reaction (see example below). EM examples of the SpatiocyteNextReactionProcess
are given in Figure 2 (lines 61-66 and 70-75), while Python examples of zeroth- and first-order (surface-adsorption)
reactions are given below:

Zeroth-Order Reaction, 1 → A

zero = theSimulator.createEntity('SpatiocyteNextReactionProcess',
'Process:/:create')
zero.VariableReferenceList = [['_', 'Variable:/:A', '1']]
zero.k = 0.01

First-Order Surface-Adsorption Reaction, Av → As

uni = theSimulator.createEntity('SpatiocyteNextReactionProcess',
'Process:/:adsorp')
uni.VariableReferenceList = [['_', 'Variable:/:A', '-1']]
uni.VariableReferenceList = [['_', 'Variable:/Surface:A', '1']]
uni.k = 0.01

4.7.1 k

The rate constant of the event-driven reaction. For second-order reactions, the units are listed in Table 2. In the case
of the intercompartmental surface-adsorption reaction, the unit is in ms-1. For all other first-order reactions the unit is
in s-1.

4.7.2 Space[A, B, C]

Sometimes the size of the compartment containing the reacting species is too large and all the molecules within the
compartment are HD species. To avoid unnecessarily allocating a large amount of memory to represent the com-
partment that are unpopulated with any nonHD species, we can override the declared size of the compartment with
the variables Space[A, B, C]. SpaceA and SpaceB correspond to the size of the compartment containing the first and
second reactants respectively, whereas SpaceC denotes the size of the product compartment. The units of Space[A, B,
C] correspond to the dimensions of the respective compartment. By default, the values of Space[A, B, C] are set to
zero. Only a nonzero positive value will override the respective compartment size.

4.7. SpatiocyteNextReactionProcess 19

spatiocyte, Release 1.0

4.8 VisualizationLogProcess

We can use the VisualizationLogProcess to log the coordinates of nonHD species at a specified periodic interval. The
SpatiocyteVisualizer can load the log file to display the molecules in 3D. Figures 2 (lines 17-20), 5 (lines 9-12) and 6
(lines 54-56 and 73) show some examples of VisualizationLogProcess usage.

4.8.1 FileName

FileName is the name of the binary log file. The default name is ‘visualLog0.dat’, which is also the default file name
loaded by SpatiocyteVisualizer.

4.8.2 LogInterval

The interval for logging the coordinates is determined by LogInterval. The default value is ‘0’, which means that the
interval would be set to the smallest diffusion or collision interval of the logged nonHD species. If LogInterval > 0,
the log interval will be set to the specified value. The unit of LogInterval is in seconds.

4.9 MicroscopyTrackingProcess

The MicroscopyTrackingProcess mimics the fluorescent microphotography process by logging the trajectory of
nonHD molecules averaged over a specified camera exposure time. It inherits the FileName and LogInterval proper-
ties from the VisualizationLogProcess. After each LogInterval, the number of times a voxel is occupied by a molecule
species is counted. At the end of a given ExposureTime, the frequency is averaged over the total number of intervals
and logged. Figure 2 (lines 21-25) shows an example of the MicroscopyTrackingProcess definition. A Python example
is given below:

tracker = theSimulator.createEntity('MicroscopyTrackingProcess',
'Process:/:track')
tracker.VariableReferenceList = [['_', 'Variable:/Surface:MinEE', '2']]
tracker.VariableReferenceList = [['_', 'Variable:/Surface:MinDEE',
'3']]
tracker.VariableReferenceList = [['_', 'Variable:/Surface:MinE', '-2']]
tracker.VariableReferenceList = [['_', 'Variable:/Surface:MinDE',
'-2']]
tracker.VariableReferenceList = [['_', 'Variable:/Surface:MinE', '-1']]
tracker.FileName = “microscopyLog0.dat”

MicroscopyTrackingProcess enables representation of different fluorescent colored subunits within a complex accord-
ing to the coefficient assigned to each variable. In the Python example above, the coefficient of the first variable
MinEE is 2, representing two subunits of MinE within the complex MinEE. Similarly for MinDEE, the three subunits
(one MinD and two MinE’s) are represented by the coefficient 3. Each unique variable with a negative coefficient is
assigned a different color during visualization. The first negative variable, MinE, has a coefficient of -2, which means
that two subunits from the first positive variable, MinEE, are assigned a unique color of MinE. The second negative
variable MinDE also has a coefficient of -2, specifying that two subunits of the second positive variable, MinDEE, is
assigned the color of MinDE. The third negative variable MinE has a coefficient of -1, corresponding to the color of
the remaining one MinE subunit of the second positive variable MinDEE.

4.9.1 ExposureTime

The simulated camera exposure time is specified by ExposureTime. The default value is 0.5 s.

20 Chapter 4. Spatiocyte Modules

spatiocyte, Release 1.0

4.9.2 MeanCount

MeanCount is the maximum number of voxel occupancy frequency before it is averaged. The default value is ‘0’,
which indicates that the specified LogInterval or the smallest collision or diffusion interval should be used. In this
case, the MeanCount will be ExposureTime/LogInterval. Otherwise if MeanCount > 0, the LogInterval is set to
ExposureTime/MeanCount.

4.10 IteratingLogProcess

The IteratingLogProcess executes multiple simulation runs with different random seeds and logs the averaged physical
values of molecules, such as their displacement or survival probability, over the total runs. The values are logged in a
file using the comma-separated values (csv) format. By default the process logs the number of available molecules of
recorded species at the specified interval periodically.

4.10.1 LogDuration

LogDuration is the total duration of a simulation run (i.e., an iteration).

4.10.2 LogInterval

LogInterval is the interval for logging physical values of molecules within an iteration.

4.10.3 Iterations

The number of simulation runs before the logged values are averaged and saved in the log file is specified by the
Iterations parameter.

4.10.4 FileName

The file name of the log file is given by FileName. The default file name is “Log.csv”.

4.10.5 SaveInterval

When running many iterations, it is useful to save the logged data in a backup file for quick analysis, or to avoid
restarting the runs because of some unexpected failures (e.g., power failure). To this end, a backup file of the logged
values can be saved at the iteration intervals given by Iterations/SaveInterval. The default value of SaveInterval is ‘0’,
which indicates that a backup file will not be saved.

4.10.6 Survival

The Survival parameter can be set to ‘1’ to log the survival probability of a molecule species. The default value of the
parameter is ‘0’.

4.10.7 Displacement

Set the Displacement to ‘1’ to log the displacement of a molecule species. The default value of Displacement is ‘0’.

4.10. IteratingLogProcess 21

spatiocyte, Release 1.0

4.10.8 Diffusion

If the Diffusion parameter is set to ‘1’, the apparent diffusion coefficient of a molecule species will be logged. The
default Diffusion value is ‘0’.

4.11 SpatiocyteVisualizer

The SpatiocyteVisualizer can be started by executing spatiocyte in any directory. Figure 3 illustrates the Spatiocyte-
Visualizer interface, while its features and keyboard shortcuts are listed in Table 3. To change the color of a species,
right mouse click on the species and select a desired color. The visualizer can display each species within a specified
range in each axis using the bounding feature. Figure 8 displays the output after specifying a set of ranges for the cell
membrane. Each displayed frame can be saved into the Portable Network Graphics (PNG) image format. A quick way
to create a movie from the saved images is to use the ffmpeg program:

$ avconv -i image%07d.png -vcodec qtrle out.mov

Table 3: SpatiocyteVisualizer features and keyboard shortcuts

Feature Keyboard shortcut(s)
Play Forward Right arrow
Play Backward Left arrow
Step Forward Up arrow or Enter
Step Backward Down arrow or Shift+Enter
Pause/Play Space
Zoom In f or Ctrl++ or Ctrl+= or PageUp
Zoom Out b or Ctrl+- or PageDown
Reset View Ctrl+0 or Home
Rotate along x-axis clockwise Ctrl+Up Arrow
Rotate along x-axis counter-clockwise Ctrl+Down Arrow
Rotate along y-axis clockwise Ctrl+Right Arrow
Rotate along y-axis counter-clockwise Ctrl+Left Arrow
Rotate along z-axis clockwise z
Rotate along z-axis counter-clockwise Z
Translate Up Shift+Up Arrow
Translate Down Shift+Down Arrow
Translate Right Shift+Right Arrow
Translate Left Shift+Left Arrow
Translate Front F
Translate Back B
Save current frame as a PNG image s
Start/Stop recording PNG frames S

22 Chapter 4. Spatiocyte Modules

CHAPTER 5

Parameter Tuning Example

Sometimes it is necessary to tune the parameters of a spatially resolved RD model, which usually takes a significant
amount of effort and time when done manually. Here we provide a Python script example that automatically generates
the visualization log data for a given range of a set of parameters. The user can then view the logged data using
SpatiocyteVisualizer to select the set of parameters that most closely reproduces the expected spatiotemporal behavior
of the simulated molecules. In this particular example, we would like to determine the parameters of a model that can
generate clusters of molecules on the membrane. We know that the model consists of the following reactions,

A + A → Ac + Ac
A + Ac → Ac + Ac
Ac → A

where A is a diffusing surface species and Ac is a nondiffusing surface cluster species. The first two reactions have
the binding probabilities p1 and p2, respectively, while the third reaction has the rate k. We would like to determine
the values of p1, p2 and k such that several Ac clusters are formed on the membrane. First, we need to create a Python
model file that describes the reactions and the diffusion of the molecules, as shown in Figure 13.

1 message('\\nrunning: ' + FileName)
2 theSimulator.createStepper('SpatiocyteStepper', 'SS').VoxelRadius = 0.5
3 # Create the system compartment:
4 theSimulator.rootSystem.StepperID = 'SS'
5 theSimulator.createEntity('Variable', 'Variable:/:LENGTHX').Value = 250
6 theSimulator.createEntity('Variable', 'Variable:/:LENGTHY').Value = 250
7 theSimulator.createEntity('Variable', 'Variable:/:LENGTHZ').Value = 20
8 theSimulator.createEntity('Variable', 'Variable:/:VACANT')
9 theSimulator.createEntity('Variable', 'Variable:/:XYPLANE').Value = 3

10 theSimulator.createEntity('Variable', 'Variable:/:YZPLANE').Value = 5
11 theSimulator.createEntity('Variable', 'Variable:/:XZPLANE').Value = 5
12 logger = theSimulator.createEntity('VisualizationLogProcess', 'Process:/:logger')
13 logger.LogInterval = 500
14 logger.VariableReferenceList = [['_', 'Variable:/Surface:A'], ['_', 'Variable:/Surface:Ac']]
15 logger.FileName = FileName
16 # Create the surface compartment:
17 theSimulator.createEntity('System', 'System:/:Surface').StepperID = 'SS'
18 theSimulator.createEntity('Variable', 'Variable:/Surface:DIMENSION').Value = 2
19 theSimulator.createEntity('Variable', 'Variable:/Surface:VACANT')
20 theSimulator.createEntity('Variable', 'Variable:/Surface:A').Value = 15300
21 theSimulator.createEntity('Variable', 'Variable:/Surface:Ac').Value = 250
22 populator = theSimulator.createEntity('MoleculePopulateProcess', 'Process:/:populate')
23 populator.VariableReferenceList = [['_', 'Variable:/Surface:A'], ['_', 'Variable:/Surface:Ac']]
24 diffuser = theSimulator.createEntity('PeriodicBoundaryDiffusionProcess', 'Process:/:diffuse')
25 diffuser.VariableReferenceList = [['_', 'Variable:/Surface:A']]
26 diffuser.D = 4.3e-3
27 binder = theSimulator.createEntity('DiffusionInfluencedReactionProcess', 'Process:/:Reaction1')

23

spatiocyte, Release 1.0

28 binder.VariableReferenceList = [['_', 'Variable:/Surface:A','-1']]
29 binder.VariableReferenceList = [['_', 'Variable:/Surface:A','-1']]
30 binder.VariableReferenceList = [['_', 'Variable:/Surface:Ac','1']]
31 binder.VariableReferenceList = [['_', 'Variable:/Surface:Ac','1']]
32 binder.p = p1
33 binder = theSimulator.createEntity('DiffusionInfluencedReactionProcess', 'Process:/:Reaction2')
34 binder.VariableReferenceList = [['_', 'Variable:/Surface:A','-1']]
35 binder.VariableReferenceList = [['_', 'Variable:/Surface:Ac','-1']]
36 binder.VariableReferenceList = [['_', 'Variable:/Surface:Ac','1']]
37 binder.VariableReferenceList = [['_', 'Variable:/Surface:Ac','1']]
38 binder.p = p2
39 uni = theSimulator.createEntity('SpatiocyteNextReactionProcess', 'Process:/:Reaction3')
40 uni.VariableReferenceList = [['_', 'Variable:/Surface:Ac','-1']]
41 uni.VariableReferenceList = [['_', 'Variable:/Surface:A','1']]
42 uni.k = k
43 run(100000)

Figure 13: A Python script to create clusters on a membrane. The file is available in the Spatiocyte source package as
2012.arjunan.chapter.cluster.py.

Next, we execute the Python script shown in Figure 14 by issuing

$ python 2012.arjunan.chapter.parameter.py

to run the cluster model multiple times with different parameter values. Each run will generate the visualization log
data resulting from the given set of parameters. Finally, we can load and view the log data using SpatiocyteVisualizer
and select the set of parameters that best captures the expected result. Figure 15 shows an example Python script that
loads all the visualization log files within a directory.

1 import os
2 p1 = [2.2e-6]
3 p2 = [0.1, 0.2, 0.3]
4 k = [2.5e-3]
5 FileName = ''
6 for x in p1:
7 for y in p2:
8 for z in k:
9 os.system('ecell3-session --parameters=\\"{\\'FileName\\':\\'' + FileName + \\

10 str(x) + '_' + str(y) + '_' + str(z) + '_visualLog0.dat\\',\\'p1\\':' + \\
11 str(x) + ',\\'p2\\':' + str(y) + ',\\'k\\':' + str(z) +'}\\" \\
12 2012.arjunan.chapter.cluster.py')

Figure 14: A Python script to run the cluster model multiple times with different parameter values. The file is available
in the Spatiocyte source package as 2012.arjunan.chapter.parameter.py.

1 import glob
2 import os
3 files = glob.glob('*0.dat')
4 for i in files:
5 print "\\nloading file " + i + "..."
6 os.system('spatiocyte ' + i)

Figure 15: A Python script to sequentially load multiple visualization log files. The file is available in the Spatiocyte
source package as 2012.arjunan.chapter.loadLogs.py.

24 Chapter 5. Parameter Tuning Example

CHAPTER 6

Concluding Remarks

Building computational models of biochemical processes is usually a demanding task, especially for experimental
biologists without modeling experience. This chapter aims to provide a guide on how one can quickly build and
simulate spatially resolved biochemical models with the Spatiocyte software. We started with the basic theory of the
Spatiocyte method and continued with the installation and simulation procedures. The various modules available to
Spatiocyte users were also explained with accompanying model examples.

We plan to continuously develop and improve the Spatiocyte software and user experience. The contents of this guide
will also therefore, evolve with the addition of new features and enhancements. The latest version of this guide will
be available along with the Spatiocyte source code, which at the time of writing, is hosted at GitHub. The Spatiocyte
website, http://spatiocyte.org also contains the latest information about the Spatiocyte method and software.

In future, we would like to introduce the ability of subunits to polymerize on the membrane and in the cytoplasm. A
polymerization strategy using the HCP lattice was proposed recently (Arjunan, 2009). Diffusion of compartments, and
molecules with different shapes and sizes are also in the future development plan. Parallel implementation of the Spa-
tiocyte method to run on multi-core architectures and graphics processing units is also being considered. We are also
currently working on introducing compartments with complex surface geometries. Spatiocyte users are encouraged to
submit feature requests and bug reports, while independent developers can submit their own algorithm modules, code
improvements and bug fixes.

25

http://spatiocyte.org/

spatiocyte, Release 1.0

26 Chapter 6. Concluding Remarks

CHAPTER 7

Acknowledgments

The author thanks Goh Su Hua for creating the cluster model in the parameter tuning example.

27

spatiocyte, Release 1.0

28 Chapter 7. Acknowledgments

CHAPTER 8

References

1. Arjunan, S. N. V. (2009) Modeling three-dimensional spatial regulation of bacterial cell division. PhD Thesis,
Keio University.

2. Arjunan, S. N. V. and Tomita, M. (2009). Modeling reaction-diffusion of molecules on surface and in volume
spaces with the E-Cell System. International Journal of Computer Science and Information Security. 3(1):
211–216.

3. Arjunan, S. N. V. and Tomita, M. (2010). A new multicompartmental reaction-diffusion modeling method links
transient membrane attachment of E. coli MinE to E-ring formation. Systems and Synthetic Biology 4(1): 35-53

4. Collins, F. C. and Kimball, G. E. (1949). Diffusion-controlled reaction rates. J Colloid Sci 4(4):425–437.

5. Gibson, M. and Bruck, J. (2000). Efficient exact stochastic simulation of chemical systems with many species
and many channels. J Phys Chem A 104(9):1876–1889

6. Gillespie, D. T. (1976). A general method for numerically simulating the stochastic time evolution of coupled
chemical reactions. J Comput Phys 22(4):403–434

7. Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. J Phys Chem
81(25):2340–2361

8. Dix JA, Verkman AS. (2008). Crowding effects on diffusion in solutions and cells. Annu Rev Biophys. 37:247-
63.

9. Hall D, Hoshino M. (2010). Effects of macromolecular crowding on intracellular diffusion from a single particle
perspective. Biophysical Reviews. 2(1):39-53.

10. Takahashi, K., Kaizu, K., Hu, B. and Tomita, M. (2004). A multi-algorithm, multi-timescale method for cell
simulation. Bioinformatics. 20(4):538–546

29

spatiocyte, Release 1.0

30 Chapter 8. References

CHAPTER 9

index

• genindex

• modindex

• search

31

	A guide to modeling reaction-diffusion of molecules with Spatiocyte
	Abstract
	Introduction

	Spatiocyte Method
	Installing and Running Spatiocyte
	Ubuntu Linux
	Mac OS X
	Testing the installation and running a model

	Spatiocyte Modules
	Compartment
	SpatiocyteStepper
	MoleculePopulateProcess
	DiffusionProcess
	PeriodicBoundaryDiffusionProcess
	DiffusionInfluencedReactionProcess
	SpatiocyteNextReactionProcess
	VisualizationLogProcess
	MicroscopyTrackingProcess
	IteratingLogProcess
	SpatiocyteVisualizer

	Parameter Tuning Example
	Concluding Remarks
	Acknowledgments
	References
	index

