

 Navigation

 	
 index

 	
 next |

 	SPARTA-teaching 1.0 documentation

RNA-seq teaching module using SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis

SPARTA is a workflow aimed at analyzing single-end Illumina RNA-seq data. The software is
supported on Windows, Mac OS X, and Linux platforms. The workflow combines several tools:
Trimmomatic (read trimming/adapter removal), FastQC (read quality analysis), Bowtie
(mapping reads to the reference genome), HTSeq (transcript/gene feature abundance counting),
and edgeR (differential gene expression analysis). Within the differential gene expression
analysis step, batch effects can be detected and the user is warned of the potential, unintended
additional variable. The analysis procedure is outlined below.

However, before we can dive into doing the data analysis with our own data or some example data
it is worth having a look at some background information first.

[image: Workflow Procedure]

How to get and use SPARTA:

Mac Users - Mac OS X tutorial

Windows Users - Windows tutorial

Linux Users - Linux tutorial

Contents:

	Contribute: If you would like to contribute to the project, the source code for each platform can be found in the GitHub repository [http://www.github.com/biobenkj].

	
	Bugs: If you found a bug, please have a look at the issues page and add a description (please be explicit and include error message if possible) of the bug/error.

	
	Mac OS X issues [http://www.github.com/biobenkj/SPARTA_Mac/issues]

	Windows issues [http://www.github.com/biobenkj/SPARTA_Windows/issues]

	Linux issues [http://www.github.com/biobenkj/SPARTA_Linux/issues]

	Frequently Asked Questions

	License

	Release notes

	Citation and Acknowledgements

	Functionality wishlist

 Copyright 2015, Benjamin K. Johnson.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SPARTA-teaching 1.0 documentation

RNA-seq background information, data analysis procedure, and details of the analysis tools

Before we dig into the data and begin trimming and aligning the reads to the genome, I think it is useful to understand what happens after you submit your RNA to the sequencing facility. This sort of knowledge can be very useful in understanding what could potentially provide bias and any number of issues to the end dataset. In this session we will cover several things including:

	RNA-seq background information

	Basic analysis procedure

	Trimmomatic

	FastQC

	Bowtie

	HTSeq

	Differential gene expression with edgeR

RNA-seq background information

Before we begin, let’s watch a video about how Illumina sequencing works [https://www.youtube.com/watch?v=womKfikWlxM].

This video does a pretty good job explaining how, in generalities the sequencing process works for DNA. So for sequencing RNA, the process is as follows:

[image: RNAseq workflow]
Adapted from: Zhernakova et al., PLoS Genetics 2013

So actually, we aren’t sequencing RNA at all! We are sequencing the cDNA made from the RNA. RNA-seq is a high resolution next generation sequencing (NGS) method to assess the transcriptome of an organism and compare transcriptional changes between organisms/treatments to ascertain specific pathways/genes that are moving in response. But now, let’s talk about what can add bias to the data and what we do with the data to make sure that it is reasonable to proceed to further analysis steps.

But first, let’s brainstorm a little bit. Look back at the RNA-seq workflow figure above and let’s suggest a few places where things could potentially affect the output dataset.

Here are a few thoughts...

	How could the random priming step affect downstream results?

	How could RNA secondary structures affect the library preparation process?

	Would GC content be a problem?

	Could gene length cause issues?

	What might happen if you have genes with substantially different expression levels?

	During the cluster generation on the Illumina flow cell, what might happen if you have too few clusters? Too many?

	How is it possible to sequence many samples at one time?

	What if you run out of reagents from one kit and have to open another kit to finish the library preparation process?

	Could sequencing depth be an issue?

So now that you may be questioning the validity of any RNA-seq dataset, take heart! Many very smart people have thought about these issues and come up with ways to assess technical artifacts and correct for them. So again, let’s brainstorm some potential solutions to these problems. Which problems can be addressed through better chemistries/processes vs. mathematical/computational correction?

These sorts of issues should always be considered, but recognize that RNA-seq is becoming fairly commonplace and solutions to many of these questions exist. Be critical of your data and always look at the raw data.

Multiplexing the sequencing process by pooling several samples together is not only cheaper, it can overcome what are known as batch effects. Batch effects are when you have samples that correlate with one another based on batch/time/etc. instead of biological replication. This is a very real phenomenon and can be caused by using different lots of the same kit/flow cells when preparing samples! You can correct for this, but we will get there later... For now, have a look at the diagram showing how multiplexing is achieved.

[image: Multiplexing samples diagram]
From: http://www.illumina.com/content/dam/illumina-marketing/documents/products/sequencing_introduction_microbiology.pdf

This is an example of what a batch effect looks like. Note how DMSO1 and ETZ1 group together and DMSO2 and ETZ2 group together (e.g. by batch).

[image: Batch effect example]
We can determine what is considered a “good” base call from a “bad” one through using what is known as the Phred scoring system or Q-score.

Where Q is defined as a property that is logarithmically related to the base call error probability:

[image: Q = -10 \log_{10} P\ |\ error\ probability = P^2]

So this means:

[image: Phred scoring table]
From: http://res.illumina.com/documents/products/technotes/technote_q-scores.pdf

Illumina tends to output sequence results with a Q > 30. So let’s have a look at what some raw data looks like in terms of Q-scores before and after trimming adapters and low quality reads.

[image: Raw vs trimmed alignment]
This is why we do the trimming before attempting to align the reads to the reference genome. Since we are using FastQC, let’s have a look at some sample data of what good Illumina data looks like [http://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_sequence_short_fastqc.html].

So, we have come to the end of the background section. Even with all of the great tools and chemistries that have been developed to handle RNA-seq datasets, the old mantra still applies: garbage in; garbage out and with great power comes great responsibility. Take care in analyzing these sorts of data as they typically influence many downstream experiments.

Questions!

Basic analysis procedure

Now that we have began to understand the background of RNA-seq technologies, how libraries
are prepared and sequenced, and thought aboutpotential pitfalls during the data analysis process,
let’s have a look at the basic workflow and some tools that we will use for each step:

[image: RNA-seq workflow using SPARTA]
Remember that we can have both single- and paired-end reads. Each type of output will require
slightly different tools and procedure. The data that we will be working with is single-end
Illumina reads.

	Let’s brainstorm for a minute:

	
	If the Illumina sequencing procedure (as seen in the video above) requires specific adapters, what are some ways we could remove them?

	What are some potential issues specifically with our reads that could cause misalignments or no alignments at all to a reference genome?

	Why don’t we use a reference transcriptome instead of a genome since RNA-seq is a transcriptional profiling experiment?

	What are other genomic features in bacteria that could potentially be identified using RNA-seq data?

Trimmomatic

Trimmomatic is a lightweight java application that can remove Illumina adapter sequences and low quality reads. It uses a sliding window to analyze chunks of each read, examining the quality score, minimum read length, if it corresponds to an adapter sequence, etc. Let’s have a look at the documentation [http://www.usadellab.org/cms/index.php?page=trimmomatic] to see what each option does.

When we run the analysis, you will likely see some output that looks like this:

TrimmomaticSE: Started with arguments: -threads 4 /mnt/home/john3434/RNAseq/Data/gly7a.fq.gz /mnt/home/john3434/RNAseq/QC/trimmedgly7a.fq.gz ILLUMINACLIP:/opt/software/Trimmomatic/0.32/adapters/TruSeq3-SE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36
Using Long Clipping Sequence: 'AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTA'
Using Long Clipping Sequence: 'AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC'
ILLUMINACLIP: Using 0 prefix pairs, 2 forward/reverse sequences, 0 forward only sequences, 0 reverse only sequences
Quality encoding detected as phred33
Input Reads: 100000 Surviving: 96867 (96.87%) Dropped: 3133 (3.13%)
TrimmomaticSE: Completed successfully

Note

It is important to log this output into a text file somewhere and save it (fortunately the software we are going to use will log it for you). You might want this for a report when you’re finished.

Let’s remind ourselves what each command and parameter is doing. Look through the command and discuss with a neighbor what is going on there. If you don’t remember what each parameter does, have another look at the documentation [http://www.usadellab.org/cms/index.php?page=trimmomatic].

Let me know if you have questions by placing a red sticky note on your computer.

FastQC

FastQC is a piece of software that allows us to analyze the quality of our data before proceeding to aligning the reads to the reference genome. Let’s have a look again at what good Illumina data [http://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_sequence_short_fastqc.html] and bad Illumina data [http://www.bioinformatics.babraham.ac.uk/projects/fastqc/bad_sequence_fastqc.html] look like. This will help us determine the quality of our own sequence based on their examples.

The output from FastQC will look like this (with a different file name instead of ‘trimmedgly7a.fq.gz’:

Started analysis of trimmedgly7a.fq.gz
 Approx 5% complete for trimmedgly7a.fq.gz
 Approx 10% complete for trimmedgly7a.fq.gz
 Approx 15% complete for trimmedgly7a.fq.gz
 Approx 20% complete for trimmedgly7a.fq.gz
 Approx 25% complete for trimmedgly7a.fq.gz
 Approx 30% complete for trimmedgly7a.fq.gz
 Approx 35% complete for trimmedgly7a.fq.gz
 Approx 40% complete for trimmedgly7a.fq.gz
 Approx 45% complete for trimmedgly7a.fq.gz
 Approx 50% complete for trimmedgly7a.fq.gz
 Approx 55% complete for trimmedgly7a.fq.gz
 Approx 60% complete for trimmedgly7a.fq.gz
 Approx 65% complete for trimmedgly7a.fq.gz
 Approx 70% complete for trimmedgly7a.fq.gz
 Approx 75% complete for trimmedgly7a.fq.gz
 Approx 80% complete for trimmedgly7a.fq.gz
 Approx 85% complete for trimmedgly7a.fq.gz
 Approx 90% complete for trimmedgly7a.fq.gz
 Approx 95% complete for trimmedgly7a.fq.gz
 Analysis complete for trimmedgly7a.fq.gz

We can open the report file in a browser like FireFox. Here are two different reports report1.html and report2.html What do we think? Good or bad data?

Please work with a neighbor and discuss the FastQC analysis reports. Put a green sticky note on your computer once you have done this and viewed the results in a browser.

Bowtie

What is Bowtie?

“Bowtie is an ultrafast, memory-efficient short read aligner geared toward quickly aligning large sets of short DNA sequences (reads) to large genomes... Bowtie indexes the genome with a Burrows-Wheeler [http://en.wikipedia.org/wiki/Burrows%E2%80%93Wheeler_transform] index to keep its memory footprint small...”

What isn’t Bowtie?

“Bowtie is not a general-purpose alignment tool like MUMer, BLAST, or Vmatch. Bowtie works best when aligning short reads to large genomes, though it supports arbitrarily small reference sequences (e.g. amplicons) and reads as long as 1024 bases. Bowtie is designed to be extremely fast for sets of short reads where (a) many of the reads have at least one good, valid alignment, (b) many of the reads are relatively high-quality, and (c) the number of alignments reported per read is small (close to 1).”

From: http://bowtie-bio.sourceforge.net/manual.shtml#what-is-bowtie

In order for Bowtie to work, we need to provide it with trimmed reads files and the reference genome in a FASTA format file. This type of file typically ends in .fa or .fasta.

We can acquire our favorite reference genome and feature file (GTF) from the Ensembl website [http://bacteria.ensembl.org/info/website/ftp/index.html].

Once we get our data from the RTSF, we will download the L. reuteri JCM1112 genome file and feature file. The feature file contains data to inform HTSeq where the start and end of a gene is. This is important as HTSeq produces the number of transcripts per gene identified in a given sample.

HTSeq

This step will take the longest time, computationally, out of the entire workflow.

HTSeq [http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html] is a powerful Python package for analyzing NGS data. For our purposes, we will be using the counting feature of HTSeq. Let’s have a look at the way HTSeq can count whether a read maps to a gene [http://www-huber.embl.de/users/anders/HTSeq/doc/count.html#count].

We need to supply htseq-count with a couple things:

	A genome feature file (GTF) so that HTSeq “knows” where the start and end of a gene is

	The .sam file that was output from Bowtie

Differential gene expression with edgeR

Up to this point we have done several things: trimmed, QC’d, aligned, and counted reads that mapped to each gene. Now, we will finally move to the step where we will analyze the differential gene expression between the untreated and treated L. reuteri samples!

To do this, we have chosen to utilize an analysis package written in the R programming language called edgeR [http://bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf]. edgeR stands for differential expression analysis of digital gene expression data in R. This is a fantastic tool that is actively maintained (as seen by the date of the most recent user guide update) and fairly easy to use. Several diagnostic plots are produced throughout the analysis that provide meaningful information as to whether we can even perform differential gene expression between samples and if there are batch effects we have to deal with.

RNA-seq data does not typically assume a normal (Gaussian) distribution, so to glean which genes are changing in a statistically significant manner, we have to model the data slightly differently. EdgeR implements what is called a negative binomial distribution [http://en.wikipedia.org/wiki/Negative_binomial_distribution#Related_distributions], sometimes referred to as a gamma-Poisson model. If you really enjoy statistics and would like to dig into the mathematical underpinnings of this software, see the references at the bottom of this page. If you are less interested in understanding the math behind all of this, here is the short summary: we need to examine the data to make sure they separate enough between treatments to determine differential gene expression and we always use a false-discovery rate correction to determine significance (even then, it’s worth looking at the fold-change differences to decide if it is “real”; though this is slightly more arbitrary).

Presentation time!

Please have one person from each treatment group come and present a representative report from each treatment, assessing the results.

Note

Save your report so that we can compile them at the end of the module.

 Copyright 2015, Benjamin K. Johnson.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SPARTA-teaching 1.0 documentation

Frequently Asked Questions

 Copyright 2015, Benjamin K. Johnson.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SPARTA-teaching 1.0 documentation

Mac OS X tutorial

Download the workflow: SPARTA for Mac [http://www.github.com/biobenkj/SPARTA_Mac/archive/master.zip]

	Introduction

	Basic Terminal Commands

	Install Dependencies

	Initializing SPARTA

	Analyzing Example Data

	Analyzing Your Data

	Identifying Potential Batch Effects

	Altering Workflow Execution Options

Introduction

Many bioinformatics software packages and workflows require the user to utilize them from
the command line or terminal. SPARTA is no different. The reason the command line interface
is utilized is that a great deal of power and flexibility can be gained without the use of
a graphical user interface (GUI). Further, a GUI can be difficult to implement across various
platforms. To find the command line interface/Terminal on Mac OS X, go to Finder -> Applications -> Utilities -> Terminal (might just be worth dragging it onto your dock).

[image: Navigate to terminal on a Mac]
Decompress the SPARTA_Mac-master.zip file by double-clicking on it. Now, drag and drop the
decompressed folder onto your desktop.

SPARTA expects either compressed (.gz) or uncompressed FASTQ files (.fq or .fastq) as input,
with a reference genome file in FASTA format and a genome feature file (.gtf) within the folder
that contains the input data. To see an example of appropriate input data, look inside the
ExampleData folder within the SPARTA_Mac-master folder.

To download a reference genome and genome feature file for your favorite bacteria, go to
the Ensembl website [http://bacteria.ensembl.org/info/website/ftp/index.html].

Basic Terminal Commands

Let’s have a look at some basic Terminal commands, we will cover the commands necessary to:

1. Move through folders

2. List the contents of a folder

3. Make new folders

4. Rename files/folders

5. Delete files/folders

	
	Command
	What it does
	Examples

	1.
	cd
	Change directory/folder
	cd ~ (this changes to your home directory); cd .. (this goes back one folder)

	2.
	ls
	List the contents of a folder
	ls

	3.
	mkdir
	Make a new directory/folder
	mkdir NewFolder (this will make a new folder called ‘NewFolder’ in your current directory)

	4.
	mv
	Rename or move a file from one name to another
	mv file1 file2 (this will rename/move file1 to file2)

	5.
	rm
	Remove a file (add the -r flag to remove a folder)
	rm file1 (remove file1); rm -r folder1 (remove folder1)

Command reference sheet

[image: Linux/Unix command list]
Ref. sheet from: http://files.fosswire.com/2007/08/fwunixref.pdf

Install Dependencies

The SPARTA workflow requires a few things in order to run: Python, Java, NumPy, and R.
If you already have these installed, great! If you don’t, let’s start by downloading the
latest version of Python 2 [https://www.python.org/downloads/release/python-2710/]
(see image below). You will want to download and install the red boxed version of Python 2.
Follow the prompts to install Python with the default values.

[image: Python download for Mac]
Great! Let’s check and see if Java is already installed on your system. Open up the terminal,
(if you don’t remember how to do this, head back to the Introduction) and type:

java -version

If Java is already installed, it will produce some output that looks like this:

java version "1.8.0_31"
Java(TM) SE Runtime Environment (build 1.8.0_31-b13)
Java HotSpot(TM) 64-Bit Server VM (build 25.31-b07, mixed mode)

If the output does not look something like this, Java is likely not installed and two of
the tools require Java to function (Trimmomatic and FastQC). Let’s download and install a
suitable version of Java [http://www.oracle.com/technetwork/java/javase/downloads/index.html]
(see image below). You will want to download and install the red boxed version of Java JRE.
Follow the prompts to install Java.

[image: Java JRE download for Mac]
To install NumPy, go back to or open the Terminal and type:

sudo pip install numpy

This will prompt you for your password. Enter your password and hit Enter/Return.

Note

As you type in your password, no characters will appear but you are entering characters.

Once you have entered your password and hit Enter/Return, NumPy will be downloaded and installed
on your system.

Finally, let’s install R. Navigate to the SPARTA_Mac folder and go to the folder labeled
“Install_R”. Within this folder is an R installer. Double-click on the installer and follow
the prompts to install R.

Congratulations! You’ve installed the necessary dependencies to run SPARTA!

Initializing SPARTA

Once SPARTA is initialized, the workflow will seek to identify that all of the necessary
dependencies are met. If they are not satisfied, a message specific to what is not installed
will appear as output in the terminal window.

To initialize SPARTA, go to the Terminal and navigate to the SPARTA_Mac-master folder on your desktop by typing:

cd ~/Desktop/SPARTA_Mac-master

To start the workflow, type:

python SPARTA.py

This will start the software and check for dependencies.

Analyzing Example Data

SPARTA is distributed with some example data. Specifically, it is the first 100,000 reads
of each sample from Baker et al. [http://onlinelibrary.wiley.com/doi/10.1111/mmi.12688/abstract].

To begin the analysis, navigate into the SPARTA_Mac-master folder and drag and drop the folder
called “ExampleData” out onto the desktop.

If you haven’t already, initialize SPARTA from the Terminal.

If all the dependencies are met, SPARTA will pause and prompt
the user:

Is the RNAseq data in a folder on the Desktop? (Y or N):

Type:

Y

Hit Enter/Return

Note

SPARTA assumes the data is located in a folder on the desktop by default. It is easiest if all future analyses have the data in a folder (WITHOUT SPACES IN THE NAME) on the desktop.

Now it will prompt the user for the name of the folder:

What is the name of the folder on the Desktop containing the RNAseq data?:

Type:

ExampleData

This is the name of the folder on the desktop that contains the input example data.
Hit Enter/Return.
From here, the software will trim, QC, align, and count transcript abundance for each sample.
All output/analyses are put in a folder that SPARTA generates on the desktop called “RNAseq_Data”.
Within this folder are separate folders for each SPARTA run that are denoted by the date (e.g. 2015-06-04).
Within these folders are four more folders that separate each step of the analysis and are
called: 1) QC, 2) Bowtie, 3) HTSeq, and 4) DEanalysis.

Once the trimming, QC, alignment, and counting are complete, SPARTA will again pause and prompt
the user for how many experimental conditions exist within the analysis.

The output at this point will look like this:

[image: Condition output]
At the prompt that says:

How many conditions are there?:

Type:

4

Hit Enter/Return.
There are 4 experimental conditions that we are considering:

	Glycerol pH 7.0

	Glycerol pH 5.7

	Pyruvate pH 7.0

	Pyruvate pH 5.7

Each condition has 2 replicates. The next prompt will read:

Enter the relevant file names, based on the names given in 'SPARTA has these files', with the replicates separated by a comma.
As an example, please see the 'conditions_input_example.txt' in the DEanalysis folder.
Once you have entered the file names, hit Enter/Return:

At this point, we need to do a few things.

	Navigate to the SPARTA output folder called RNAseq_Data located on the desktop

	Go to the current run folder (will be the last folder listed if sorted by name)

	Go into the DEanalysis folder

	Open the conditions_input.txt file in a text editor (NOT MICROSOFT WORD) such as TextEdit

The number of experimental conditions listed are based on the number entered at the prompt
asking “How many conditions are there?:”. Thus, in our case, there are 4. The contents of
the file will look like:

Reference_Condition_Files:
Experimental_Condition_2_Files:
Experimental_Condition_3_Files:
Experimental_Condition_4_Files:

We now need to enter the file names of the replicates in each condition. These are comma-separated
file names that correspond to the output given by SPARTA (denoted with red bracket)

[image: Condition output highlighted]

Note

The file names are case-sensitive and must be spelled exactly as listed in the output given by SPARTA

Thus, when all the file names are inputed, the conditions_input.txt file should look like this:

Reference_Condition_Files: mapgly7a.sam, mapgly7b.sam
Experimental_Condition_2_Files:mapgly5a.sam, mapgly5b.sam
Experimental_Condition_3_Files:mappyr7a.sam, mappyr7b.sam
Experimental_Condition_4_Files:mappyr5a.sam, mappyr5b.sam

Now, save the changes by going to File -> Save.
Go back to the terminal and hit Enter/Return. From here, the workflow will perform the differential
gene expression analysis through edgeR. If a batch effect may be present, the output will attempt to
warn the user of the potential, unintended variable that must be accounted for before drawing
experimental conclusions.

All the differential gene expression output is located in the RNAseq_Data -> date of your current run -> DEanalysis
folder. The file output includes:

	Differential gene expression tables

	MDS plot (somewhat analogous to a principle component analysis plot) which will show whether your replicates group together and treatment groups separate based on the treatment

	BCV plot (biological coefficient of variation) to look at gene level variation between samples

Congratulations! You’ve analyzed RNA-seq data from raw reads to differential gene expression!

Analyzing Your Data

If you haven’t already, we recommend working through the example data analysis
first before attempting to work through your own data set to familiarize yourself with the
workflow.

As stated in the Introduction, SPARTA expects either compressed (.gz) or uncompressed FASTQ files (.fq or .fastq) as input,
with a reference genome file in FASTA format and a genome feature file (.gtf) within the folder
that contains the input data on your desktop. To see an example of appropriate input data, look inside the
ExampleData folder within the SPARTA_Mac-master folder.

Now, to analyze your own data, follow the steps to initialize SPARTA,
and start the analysis!

If you would like to tweak the analysis options for a given step/tool, have a look at the
Altering Workflow Execution Options.

Identifying Potential Batch Effects

Batch effects can be a source of variation in RNA-seq data that can confound biological conclusions.
In fact, there have been documented cases of batch effects present in published studies that led
readers to be concerned for the validity of the results.

To quote a previously published paper in Nature Reviews Genetics [http://www.nature.com/nrg/journal/v11/n10/full/nrg2825.html],
“Batch effects are sub-groups of measurements that have qualitatively different behaviour across conditions and are unrelated
to the biological or scientific variables in a study. For example, batch effects may occur if a subset of experiments was run on
Monday and another set on Tuesday, if two technicians were responsible for different subsets of the experiments or if two different
lots of reagents, chips or instruments were used.”

Thus, it is paramount that one address batch effects within their data before drawing biological
conclusions from a specific RNA-seq experiment. To illustrate what a batch effect may look
like within the data, we will utilize several different plots.

This first plot comes from the Nature Reviews Genetics [http://www.nature.com/nrg/journal/v11/n10/full/nrg2825.html]
paper where they examine Affymetrix data from a published bladder cancer study [http://cancerres.aacrjournals.org/content/64/11/4040.long].
You can quickly see that panels C and D from Figure 1 show that samples from batch 1 (blue)
cluster together based on gene expression and samples from batch 2 (orange) cluster together.

[image: Batch effect example]
Within RNA-seq data, using SPARTA and the MDS plot generated by edgeR, another example of
batch effects within a study comparing Mycobacterium tuberculosis treated with a compound, we can clearly
see that the mock-treated samples (DMSO) and compound-treated samples (ETZ) separate based on batch (A vs B)
instead of by treatment. Ideally, we would have the samples group together based on treatment
as opposed to batch.

[image: Batch effect example in RNA-seq data]
If a potential batch effect is detected in the data set, SPARTA will output a message into
the terminal that says:

IMPORTANT! YOU MAY HAVE A BATCH EFFECT! PLEASE LOOK AT THE MDS PLOT!

If this occurs, have a look at the MDS plot in the RNAseq_Data folder -> date of current run -> DEanalysis folder -> MDSplot.png

From here, you will want to adjust your model to account for the batch effect. Within edgeR, this can be
accomplished through an additive linear model. The documentation for edgeR contains a tutorial on
how to deal with batch effects that can be found here [http://bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf].

Future implementations of SPARTA will include the ability to adjust for batch effects.

Altering Workflow Execution Options

SPARTA is capable of allowing the user to alter the parameters associated with each analysis
step to be tailored to specific use cases. Below are the different parameters that can be altered
and their usage.

Options:

-h, --help show this help message and exit
--SE Single-end read input. Default input choice is single-
 end if nothing is specified
--PE Paired-end read input. Must have the exact same file
 name and end with _F for the forward read and _R for
 the reverse read
--cleanup=CLEANUP Clean up the intermediate files to save space. Default
 action is to retain the intermediate files. Usage:
 --cleanup=True
--verbose Display more output for each step of the analysis.
--noninteractive Non-interactive mode. This is for running SPARTA
 without any user input. Assumes data is on the
 desktop. If this option is specified, you must fill
 out the configuration file (ConfigFile.txt) with the
 appropriate experimental conditions in the SPARTA
 folder.

Trimmomatic options:
 The order the options will be run are: ILLUMINACLIP, LEADING,
 TRAILING, SLIDINGWINDOW, MINLEN

 --clip=ILLUMINACLIP
 ILLUMINACLIP options. MiSeq & HiSeq usually
 TruSeq3.fa; GAII usually TruSeq2.fa. Default is
 ILLUMINACLIP:TruSeq3-SE.fa:2:30:10. Usage:
 --clip=<adapterseqs>:<seed mismatches>:<palindrome
 clip threshold>:<simple clip threshold>
 --lead=LEADING Set the minimun quality required to keep a base.
 Default is LEADING=3. Usage: --lead=<quality>
 --trail=TRAILING Set the minimum quality required to keep a base.
 Default is TRAILING=3. Usage: --trail=<quality>
 --slidewin=SLIDINGWINDOW
 SLIDINGWINDOW options. Default is SLIDINGWINDOW:4:15.
 Usage: --slidewin=<window_size>:<required_quality>

HTSeq options:
 --stranded=STRANDED
 Stranded options: yes, no, reverse. Default is
 --stranded=reverse. Usage: --stranded=yes/no/reverse
 --order=ORDER Order options: name, pos. Usage: --order=name/pos.
 --minqual=MINQUAL Skip all reads with quality lower than the given
 value. Default is --minqual=10. Usage:
 --minqual=<value>
 --idattr=IDATTR Feature ID from the GTF file to identify counts in the
 output table Default is --idattr=gene_id. Usage:
 --idattr=<id attribute>
 --mode=MODE Mode to handle reads overlapping more than one
 feature. Default is --mode=union. Usage: --mode=union
 /intersection-strict/intersection-nonempty

 Copyright 2015, Benjamin K. Johnson.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SPARTA-teaching 1.0 documentation

Windows tutorial

Download the workflow: SPARTA for Windows [http://www.github.com/biobenkj/SPARTA_Windows/archive/master.zip]

	Introduction

	Basic Terminal Commands

	Install Dependencies

	Initializing SPARTA

	Analyzing Example Data

	Analyzing Your Data

	Identifying Potential Batch Effects

	Altering Workflow Execution Options

Introduction

Many bioinformatics software packages and workflows require the user to utilize them from
the command line or terminal. SPARTA is no different. The reason the command line interface
is utilized is that a great deal of power and flexibility can be gained without the use of
a graphical user interface (GUI). Further, a GUI can be difficult to implement across various
platforms. To find the command line interface/Terminal on Windows, go to Windows start button -> Search -> Type in: cmd -> Terminal is now open to enter commands.

[image: Navigate to terminal on Windows]
Decompress the SPARTA_Windows-master.zip file by double-clicking on it. Now, drag and drop the
decompressed folder onto your desktop.

SPARTA expects either compressed (.gz) or uncompressed FASTQ files (.fq or .fastq) as input,
with a reference genome file in FASTA format and a genome feature file (.gtf) within the folder
that contains the input data. To see an example of appropriate input data, look inside the
ExampleData folder within the SPARTA_Windows-master folder.

To download a reference genome and genome feature file for your favorite bacteria, go to
the Ensembl website [http://bacteria.ensembl.org/info/website/ftp/index.html].

Basic Terminal Commands

Let’s have a look at some basic Terminal commands, we will cover the commands necessary to:

1. Move through folders

2. List the contents of a folder

3. Make new folders

4. Rename files/folders

5. Delete files/folders

	
	Command
	What it does
	Examples

	1.
	cd
	Change directory/folder
	cd ~ (this changes to your home directory); cd .. (this goes back one folder)

	2.
	dir
	List the contents of a folder
	dir

	3.
	mkdir
	Make a new directory/folder
	mkdir NewFolder (this will make a new folder called ‘NewFolder’ in your current directory)

	4.
	move
	Rename or move a file from one name to another
	move file1 file2 (this will rename/move file1 to file2)

	5.
	rm
	Remove a file (rmdir is the command to remove a folder)
	rm file1 (remove file1); rmdir folder1 (remove folder1)

Basic Command Prompt Commands:

x /? = provides syntax info and complete list of all parameters for x (a command, like “cd”)
cd = change directory
cd .. = move to the parent directory
cd\ = move to the root of current drive
cd x = move to the current\x directory
cd z: = change to the z root directory (as opposed to c:\)
copy x y = copy file x to directory y (Ex: D:\games\galaga.exe C:\programs[\awesome.exe]), [] = optional
copy file con = display file contents in console
copy con file.txt = create text file in the console window, end with ctrl+z (^z or F6)
date = change the date
del = delete/erase
del x = deletes all files/folders fitting x
del . = deletes all files within current directory
del *.* = deletes all files within current directory
dir = display contents of current directory (Ex: dir [c:][\programs]), [] = optional
dir *.txt = list all .txt files in current directory
dir *.? = list all files with extensions one character in length in current directory
dir /w /p *.* = display all contents one screen at a time
dir | more = display all contents one line at a time
dir /? = provides syntax info and complete list of all dir parameters
echo = send command line input to display (by default)
echo sometext >> somefile.txt = append line(s) of text to any file
echo sometext > somefile.txt = overwrites file with sometext
erase = delete/erase
exit = exit the command prompt
filename.txt = opens filename.txt in current directory in Notepad (or default .txt program)
format z: = format z drive [Ex: use to format a disc or flash drive]
mkdir x = make directory x in current directory
move x y = more or rename x to y
q = escapes sequential display of contents (i.e. the more parameter)
rd x = remove/delete directory x if it’s empty
ren x y = rename file x to y
time = change the time
type file = display the contents of the file ‘file’ (displays file contents in console)
type file |more = display the contents one line at a time

Ref. sheet from: http://blog.simplyadvanced.net/cheat-sheet-for-windows-command-prompt/

Install Dependencies

The SPARTA workflow requires a few things in order to run: Python, Java, NumPy, and R.
If you already have these installed, great! If you don’t, let’s start by downloading the
latest version of Python 2 [https://www.python.org/downloads/release/python-2710/]
(see image below). You will want to download and install the red boxed version of Python 2.
Follow the prompts to install Python with the default values.

[image: Python download for Windows]
Great! Let’s check and see if Java is already installed on your system. Open up the terminal,
(if you don’t remember how to do this, head back to the Introduction) and type:

java -version

If Java is already installed, it will produce some output that looks like this:

java version "1.8.0_31"
Java(TM) SE Runtime Environment (build 1.8.0_31-b13)
Java HotSpot(TM) 64-Bit Server VM (build 25.31-b07, mixed mode)

If the output does not look something like this, Java is likely not installed and two of
the tools require Java to function (Trimmomatic and FastQC). Let’s download and install a
suitable version of Java [http://www.oracle.com/technetwork/java/javase/downloads/index.html]
(see image below). You will want to download and install the red boxed version of Java JRE.
Follow the prompts to install Java.

[image: Java JRE download for Mac]
To install the remaining dependencies, SPARTA is distributed with installers for each remaining
piece of software, however, there is an ideal order with which to install them.

Navigate to the SPARTA_Windows-master folder and then into the “Software_To_Install” folder.
Inside this folder is a series of executable installers. Double-click and install them in the
following order:

	numpy

	vcredist

	HTSeq

	R

	gzip

Now, there is one remaining batch file called “add_python_and_R_to_path.bat”. This will add
the Python, R, and gzip executables to your path so you can run them from the terminal. To
execute this script, right-click on the file and then click on the option called “Run as administrator”.
Windows may warn you that this script is unsafe because it is from an unknown developer. Click on the
“Details” button and then click on “Run anyway”.

Note

If this script is not run, SPARTA will not function properly.

Congratulations! You’ve installed the necessary dependencies to run SPARTA!

Initializing SPARTA

Once SPARTA is initialized, the workflow will seek to identify that all of the necessary
dependencies are met. If they are not satisfied, a message specific to what is not installed
will appear as output in the terminal window.

To initialize SPARTA, go to the Terminal and navigate to the SPARTA_Windows-master folder on your desktop by typing:

cd Desktop\SPARTA_Windows-master

To start the workflow, type:

python SPARTA.py

This will start the software and check for dependencies.

Analyzing Example Data

SPARTA is distributed with some example data. Specifically, it is the first 100,000 reads
of each sample from Baker et al. [http://onlinelibrary.wiley.com/doi/10.1111/mmi.12688/abstract].

To begin the analysis, navigate into the SPARTA_Mac-master folder and drag and drop the folder
called “ExampleData” out onto the desktop.

If you haven’t already, initialize SPARTA from the Terminal.

If all the dependencies are met, SPARTA will pause and prompt
the user:

Is the RNAseq data in a folder on the Desktop? (Y or N):

Type:

Y

Hit Enter/Return

Note

SPARTA assumes the data is located in a folder on the desktop by default. It is easiest if all future analyses have the data in a folder (WITHOUT SPACES IN THE NAME) on the desktop.

Now it will prompt the user for the name of the folder:

What is the name of the folder on the Desktop containing the RNAseq data?:

Type:

ExampleData

This is the name of the folder on the desktop that contains the input example data.
Hit Enter/Return.
From here, the software will trim, QC, align, and count transcript abundance for each sample.
All output/analyses are put in a folder that SPARTA generates on the desktop called “RNAseq_Data”.
Within this folder are separate folders for each SPARTA run that are denoted by the date (e.g. 2015-06-04).
Within these folders are four more folders that separate each step of the analysis and are
called: 1) QC, 2) Bowtie, 3) HTSeq, and 4) DEanalysis.

Once the trimming, QC, alignment, and counting are complete, SPARTA will again pause and prompt
the user for how many experimental conditions exist within the analysis.

The output at this point will look like this:

[image: Condition output]
At the prompt that says:

How many conditions are there?:

Type:

4

Hit Enter/Return.
There are 4 experimental conditions that we are considering:

	Glycerol pH 7.0

	Glycerol pH 5.7

	Pyruvate pH 7.0

	Pyruvate pH 5.7

Each condition has 2 replicates. The next prompt will read:

Enter the relevant file names, based on the names given in 'SPARTA has these files', with the replicates separated by a comma.
As an example, please see the 'conditions_input_example.txt' in the DEanalysis folder.
Once you have entered the file names, hit Enter/Return:

At this point, we need to do a few things.

	Navigate to the SPARTA output folder called RNAseq_Data located on the desktop

	Go to the current run folder (will be the last folder listed if sorted by name)

	Go into the DEanalysis folder

	Open the conditions_input.txt file in a text editor (NOT MICROSOFT WORD) such as TextEdit

The number of experimental conditions listed are based on the number entered at the prompt
asking “How many conditions are there?:”. Thus, in our case, there are 4. The contents of
the file will look like:

Reference_Condition_Files:
Experimental_Condition_2_Files:
Experimental_Condition_3_Files:
Experimental_Condition_4_Files:

We now need to enter the file names of the replicates in each condition. These are comma-separated
file names that correspond to the output given by SPARTA (denoted with red bracket)

[image: Condition output highlighted]

Note

The file names are case-sensitive and must be spelled exactly as listed in the output given by SPARTA

Thus, when all the file names are inputed, the conditions_input.txt file should look like this:

Reference_Condition_Files: mapgly7a.sam, mapgly7b.sam
Experimental_Condition_2_Files:mapgly5a.sam, mapgly5b.sam
Experimental_Condition_3_Files:mappyr7a.sam, mappyr7b.sam
Experimental_Condition_4_Files:mappyr5a.sam, mappyr5b.sam

Now, save the changes by going to File -> Save.
Go back to the terminal and hit Enter/Return. From here, the workflow will perform the differential
gene expression analysis through edgeR. If a batch effect may be present, the output will attempt to
warn the user of the potential, unintended variable that must be accounted for before drawing
experimental conclusions.

All the differential gene expression output is located in the RNAseq_Data -> date of your current run -> DEanalysis
folder. The file output includes:

	Differential gene expression tables

	MDS plot (somewhat analogous to a principle component analysis plot) which will show whether your replicates group together and treatment groups separate based on the treatment

	BCV plot (biological coefficient of variation) to look at gene level variation between samples

Congratulations! You’ve analyzed RNA-seq data from raw reads to differential gene expression!

Analyzing Your Data

If you haven’t already, we recommend working through the example data analysis
first before attempting to work through your own data set to familiarize yourself with the
workflow.

As stated in the Introduction, SPARTA expects either compressed (.gz) or uncompressed FASTQ files (.fq or .fastq) as input,
with a reference genome file in FASTA format and a genome feature file (.gtf) within the folder
that contains the input data on your desktop. To see an example of appropriate input data, look inside the
ExampleData folder within the SPARTA_Windows-master folder.

Now, to analyze your own data, follow the steps to initialize SPARTA,
and start the analysis!

If you would like to tweak the analysis options for a given step/tool, have a look at the
Altering Workflow Execution Options.

Identifying Potential Batch Effects

Batch effects can be a source of variation in RNA-seq data that can confound biological conclusions.
In fact, there have been documented cases of batch effects present in published studies that led
readers to be concerned for the validity of the results.

To quote a previously published paper in Nature Reviews Genetics [http://www.nature.com/nrg/journal/v11/n10/full/nrg2825.html],
“Batch effects are sub-groups of measurements that have qualitatively different behaviour across conditions and are unrelated
to the biological or scientific variables in a study. For example, batch effects may occur if a subset of experiments was run on
Monday and another set on Tuesday, if two technicians were responsible for different subsets of the experiments or if two different
lots of reagents, chips or instruments were used.”

Thus, it is paramount that one address batch effects within their data before drawing biological
conclusions from a specific RNA-seq experiment. To illustrate what a batch effect may look
like within the data, we will utilize several different plots.

This first plot comes from the Nature Reviews Genetics [http://www.nature.com/nrg/journal/v11/n10/full/nrg2825.html]
paper where they examine Affymetrix data from a published bladder cancer study [http://cancerres.aacrjournals.org/content/64/11/4040.long].
You can quickly see that panels C and D from Figure 1 show that samples from batch 1 (blue)
cluster together based on gene expression and samples from batch 2 (orange) cluster together.

[image: Batch effect example]
Within RNA-seq data, using SPARTA and the MDS plot generated by edgeR, another example of
batch effects within a study comparing Mycobacterium tuberculosis treated with a compound, we can clearly
see that the mock-treated samples (DMSO) and compound-treated samples (ETZ) separate based on batch (A vs B)
instead of by treatment. Ideally, we would have the samples group together based on treatment
as opposed to batch.

[image: Batch effect example in RNA-seq data]
If a potential batch effect is detected in the data set, SPARTA will output a message into
the terminal that says:

IMPORTANT! YOU MAY HAVE A BATCH EFFECT! PLEASE LOOK AT THE MDS PLOT!

If this occurs, have a look at the MDS plot in the RNAseq_Data folder -> date of current run -> DEanalysis folder -> MDSplot.png

From here, you will want to adjust your model to account for the batch effect. Within edgeR, this can be
accomplished through an additive linear model. The documentation for edgeR contains a tutorial on
how to deal with batch effects that can be found here [http://bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf].

Future implementations of SPARTA will include the ability to adjust for batch effects.

Altering Workflow Execution Options

SPARTA is capable of allowing the user to alter the parameters associated with each analysis
step to be tailored to specific use cases. Below are the different parameters that can be altered
and their usage.

Options:

-h, --help show this help message and exit
--cleanup=CLEANUP Clean up the intermediate files to save space. Default
 action is to retain the intermediate files. Usage:
 --cleanup=True
--verbose Display more output for each step of the analysis.
--noninteractive Non-interactive mode. This is for running SPARTA
 without any user input. Assumes data is on the
 desktop. If this option is specified, you must fill
 out the configuration file (ConfigFile.txt) with the
 appropriate experimental conditions in the SPARTA
 folder.

Trimmomatic options:
 The order the options will be run are: ILLUMINACLIP, LEADING,
 TRAILING, SLIDINGWINDOW, MINLEN

 --clip=ILLUMINACLIP
 ILLUMINACLIP options. MiSeq & HiSeq usually
 TruSeq3.fa; GAII usually TruSeq2.fa. Default is
 ILLUMINACLIP:TruSeq3-SE.fa:2:30:10. Usage:
 --clip=<adapterseqs>:<seed mismatches>:<palindrome
 clip threshold>:<simple clip threshold>
 --lead=LEADING Set the minimun quality required to keep a base.
 Default is LEADING=3. Usage: --lead=<quality>
 --trail=TRAILING Set the minimum quality required to keep a base.
 Default is TRAILING=3. Usage: --trail=<quality>
 --slidewin=SLIDINGWINDOW
 SLIDINGWINDOW options. Default is SLIDINGWINDOW:4:15.
 Usage: --slidewin=<window_size>:<required_quality>

HTSeq options:
 --stranded=STRANDED
 Stranded options: yes, no, reverse. Default is
 --stranded=reverse. Usage: --stranded=yes/no/reverse
 --order=ORDER Order options: name, pos. Usage: --order=name/pos.
 --minqual=MINQUAL Skip all reads with quality lower than the given
 value. Default is --minqual=10. Usage:
 --minqual=<value>
 --idattr=IDATTR Feature ID from the GTF file to identify counts in the
 output table Default is --idattr=gene_id. Usage:
 --idattr=<id attribute>
 --mode=MODE Mode to handle reads overlapping more than one
 feature. Default is --mode=union. Usage: --mode=union
 /intersection-strict/intersection-nonempty

 Copyright 2015, Benjamin K. Johnson.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SPARTA-teaching 1.0 documentation

Linux tutorial

Download the workflow: SPARTA for Linux [http://www.github.com/biobenkj/SPARTA_Linux/archive/master.zip]

	Introduction

	Basic Terminal Commands

	Install Dependencies

	Initializing SPARTA

	Analyzing Example Data

	Analyzing Your Data

	Identifying Potential Batch Effects

	Altering Workflow Execution Options

Introduction

Many bioinformatics software packages and workflows require the user to utilize them from
the command line or terminal. SPARTA is no different. The reason the command line interface
is utilized is that a great deal of power and flexibility can be gained without the use of
a graphical user interface (GUI). Further, a GUI can be difficult to implement across various
platforms. To find the command line interface/Terminal on Linux (shown in Ubuntu with red arrows), go to “Search your computer and online sources” button -> Search for “terminal” -> Click on Terminal -> Terminal is now open and ready to enter commands (might just be worth dragging it onto your dock).

[image: Navigate to terminal in Linux]
Decompress the SPARTA_Linux-master.zip file by clicking on it and extracting all the files to the desktop.

SPARTA expects either compressed (.gz) or uncompressed FASTQ files (.fq or .fastq) as input,
with a reference genome file in FASTA format and a genome feature file (.gtf) within the folder
that contains the input data. To see an example of appropriate input data, look inside the
ExampleData folder within the SPARTA_Linux-master folder.

To download a reference genome and genome feature file for your favorite bacteria, go to
the Ensembl website [http://bacteria.ensembl.org/info/website/ftp/index.html].

Basic Terminal Commands

Let’s have a look at some basic Terminal commands, we will cover the commands necessary to:

1. Move through folders

2. List the contents of a folder

3. Make new folders

4. Rename files/folders

5. Delete files/folders

	
	Command
	What it does
	Examples

	1.
	cd
	Change directory/folder
	cd ~ (this changes to your home directory); cd .. (this goes back one folder)

	2.
	ls
	List the contents of a folder
	ls

	3.
	mkdir
	Make a new directory/folder
	mkdir NewFolder (this will make a new folder called ‘NewFolder’ in your current directory)

	4.
	mv
	Rename or move a file from one name to another
	mv file1 file2 (this will rename/move file1 to file2)

	5.
	rm
	Remove a file (add the -r flag to remove a folder)
	rm file1 (remove file1); rm -r folder1 (remove folder1)

Command reference sheet

[image: Linux/Unix command list]
Ref. sheet from: http://files.fosswire.com/2007/08/fwunixref.pdf

Install Dependencies

The SPARTA workflow requires a few things in order to run: Python, Java, NumPy, and R.
If you already have these installed, great! If you don’t, let’s start by downloading and
installing the dependencies by running the bash script called “install_dependencies.sh”.

To run this script, navigate to the SPARTA_Linux-master folder on the desktop:

cd ~/Desktop/SPARTA_Linux-master

Now, type:

bash install_dependencies.sh

This will update, download, and install the necessary dependencies to run SPARTA.

Congratulations! You’ve installed the necessary dependencies to run SPARTA!

Initializing SPARTA

Once SPARTA is initialized, the workflow will seek to identify that all of the necessary
dependencies are met. If they are not satisfied, a message specific to what is not installed
will appear as output in the terminal window.

To initialize SPARTA, go to the Terminal and navigate to the SPARTA_Linux-master folder on your desktop by typing:

cd ~/Desktop/SPARTA_Linux-master

To start the workflow, type:

python SPARTA.py

This will start the software and check for dependencies.

Analyzing Example Data

SPARTA is distributed with some example data. Specifically, it is the first 100,000 reads
of each sample from Baker et al. [http://onlinelibrary.wiley.com/doi/10.1111/mmi.12688/abstract].

To begin the analysis, navigate into the SPARTA_Linux-master folder and drag and drop the folder
called “ExampleData” out onto the desktop.

If you haven’t already, initialize SPARTA from the Terminal.

If all the dependencies are met, SPARTA will pause and prompt
the user:

Is the RNAseq data in a folder on the Desktop? (Y or N):

Type:

Y

Hit Enter/Return

Note

SPARTA assumes the data is located in a folder on the desktop by default. It is easiest if all future analyses have the data in a folder (WITHOUT SPACES IN THE NAME) on the desktop.

Now it will prompt the user for the name of the folder:

What is the name of the folder on the Desktop containing the RNAseq data?:

Type:

ExampleData

This is the name of the folder on the desktop that contains the input example data.
Hit Enter/Return.
From here, the software will trim, QC, align, and count transcript abundance for each sample.
All output/analyses are put in a folder that SPARTA generates on the desktop called “RNAseq_Data”.
Within this folder are separate folders for each SPARTA run that are denoted by the date (e.g. 2015-06-04).
Within these folders are four more folders that separate each step of the analysis and are
called: 1) QC, 2) Bowtie, 3) HTSeq, and 4) DEanalysis.

Once the trimming, QC, alignment, and counting are complete, SPARTA will again pause and prompt
the user for how many experimental conditions exist within the analysis.

The output at this point will look like this:

[image: Condition output]
At the prompt that says:

How many conditions are there?:

Type:

4

Hit Enter/Return.
There are 4 experimental conditions that we are considering:

	Glycerol pH 7.0

	Glycerol pH 5.7

	Pyruvate pH 7.0

	Pyruvate pH 5.7

Each condition has 2 replicates. The next prompt will read:

Enter the relevant file names, based on the names given in 'SPARTA has these files', with the replicates separated by a comma.
As an example, please see the 'conditions_input_example.txt' in the DEanalysis folder.
Once you have entered the file names, hit Enter/Return:

At this point, we need to do a few things.

	Navigate to the SPARTA output folder called RNAseq_Data located on the desktop

	Go to the current run folder (will be the last folder listed if sorted by name)

	Go into the DEanalysis folder

	Open the conditions_input.txt file in a text editor (NOT MICROSOFT WORD) such as TextEdit

The number of experimental conditions listed are based on the number entered at the prompt
asking “How many conditions are there?:”. Thus, in our case, there are 4. The contents of
the file will look like:

Reference_Condition_Files:
Experimental_Condition_2_Files:
Experimental_Condition_3_Files:
Experimental_Condition_4_Files:

We now need to enter the file names of the replicates in each condition. These are comma-separated
file names that correspond to the output given by SPARTA (denoted with red bracket)

[image: Condition output highlighted]

Note

The file names are case-sensitive and must be spelled exactly as listed in the output given by SPARTA

Thus, when all the file names are inputed, the conditions_input.txt file should look like this:

Reference_Condition_Files: mapgly7a.sam, mapgly7b.sam
Experimental_Condition_2_Files:mapgly5a.sam, mapgly5b.sam
Experimental_Condition_3_Files:mappyr7a.sam, mappyr7b.sam
Experimental_Condition_4_Files:mappyr5a.sam, mappyr5b.sam

Now, save the changes by going to File -> Save.
Go back to the terminal and hit Enter/Return. From here, the workflow will perform the differential
gene expression analysis through edgeR. If a batch effect may be present, the output will attempt to
warn the user of the potential, unintended variable that must be accounted for before drawing
experimental conclusions.

All the differential gene expression output is located in the RNAseq_Data -> date of your current run -> DEanalysis
folder. The file output includes:

	Differential gene expression tables

	MDS plot (somewhat analogous to a principle component analysis plot) which will show whether your replicates group together and treatment groups separate based on the treatment

	BCV plot (biological coefficient of variation) to look at gene level variation between samples

Congratulations! You’ve analyzed RNA-seq data from raw reads to differential gene expression!

Analyzing Your Data

If you haven’t already, we recommend working through the example data analysis
first before attempting to work through your own data set to familiarize yourself with the
workflow.

As stated in the Introduction, SPARTA expects either compressed (.gz) or uncompressed FASTQ files (.fq or .fastq) as input,
with a reference genome file in FASTA format and a genome feature file (.gtf) within the folder
that contains the input data on your desktop. To see an example of appropriate input data, look inside the
ExampleData folder within the SPARTA_Mac-master folder.

Now, to analyze your own data, follow the steps to initialize SPARTA,
and start the analysis!

If you would like to tweak the analysis options for a given step/tool, have a look at the
Altering Workflow Execution Options.

Identifying Potential Batch Effects

Batch effects can be a source of variation in RNA-seq data that can confound biological conclusions.
In fact, there have been documented cases of batch effects present in published studies that led
readers to be concerned for the validity of the results.

To quote a previously published paper in Nature Reviews Genetics [http://www.nature.com/nrg/journal/v11/n10/full/nrg2825.html],
“Batch effects are sub-groups of measurements that have qualitatively different behaviour across conditions and are unrelated
to the biological or scientific variables in a study. For example, batch effects may occur if a subset of experiments was run on
Monday and another set on Tuesday, if two technicians were responsible for different subsets of the experiments or if two different
lots of reagents, chips or instruments were used.”

Thus, it is paramount that one address batch effects within their data before drawing biological
conclusions from a specific RNA-seq experiment. To illustrate what a batch effect may look
like within the data, we will utilize several different plots.

This first plot comes from the Nature Reviews Genetics [http://www.nature.com/nrg/journal/v11/n10/full/nrg2825.html]
paper where they examine Affymetrix data from a published bladder cancer study [http://cancerres.aacrjournals.org/content/64/11/4040.long].
You can quickly see that panels C and D from Figure 1 show that samples from batch 1 (blue)
cluster together based on gene expression and samples from batch 2 (orange) cluster together.

[image: Batch effect example]
Within RNA-seq data, using SPARTA and the MDS plot generated by edgeR, another example of
batch effects within a study comparing Mycobacterium tuberculosis treated with a compound, we can clearly
see that the mock-treated samples (DMSO) and compound-treated samples (ETZ) separate based on batch (A vs B)
instead of by treatment. Ideally, we would have the samples group together based on treatment
as opposed to batch.

[image: Batch effect example in RNA-seq data]
If a potential batch effect is detected in the data set, SPARTA will output a message into
the terminal that says:

IMPORTANT! YOU MAY HAVE A BATCH EFFECT! PLEASE LOOK AT THE MDS PLOT!

If this occurs, have a look at the MDS plot in the RNAseq_Data folder -> date of current run -> DEanalysis folder -> MDSplot.png

From here, you will want to adjust your model to account for the batch effect. Within edgeR, this can be
accomplished through an additive linear model. The documentation for edgeR contains a tutorial on
how to deal with batch effects that can be found here [http://bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf].

Future implementations of SPARTA will include the ability to adjust for batch effects.

Altering Workflow Execution Options

SPARTA is capable of allowing the user to alter the parameters associated with each analysis
step to be tailored to specific use cases. Below are the different parameters that can be altered
and their usage.

Options:

-h, --help show this help message and exit
--cleanup=CLEANUP Clean up the intermediate files to save space. Default
 action is to retain the intermediate files. Usage:
 --cleanup=True
--verbose Display more output for each step of the analysis.
--noninteractive Non-interactive mode. This is for running SPARTA
 without any user input. Assumes data is on the
 desktop. If this option is specified, you must fill
 out the configuration file (ConfigFile.txt) with the
 appropriate experimental conditions in the SPARTA
 folder.

Trimmomatic options:
 The order the options will be run are: ILLUMINACLIP, LEADING,
 TRAILING, SLIDINGWINDOW, MINLEN

 --clip=ILLUMINACLIP
 ILLUMINACLIP options. MiSeq & HiSeq usually
 TruSeq3.fa; GAII usually TruSeq2.fa. Default is
 ILLUMINACLIP:TruSeq3-SE.fa:2:30:10. Usage:
 --clip=<adapterseqs>:<seed mismatches>:<palindrome
 clip threshold>:<simple clip threshold>
 --lead=LEADING Set the minimun quality required to keep a base.
 Default is LEADING=3. Usage: --lead=<quality>
 --trail=TRAILING Set the minimum quality required to keep a base.
 Default is TRAILING=3. Usage: --trail=<quality>
 --slidewin=SLIDINGWINDOW
 SLIDINGWINDOW options. Default is SLIDINGWINDOW:4:15.
 Usage: --slidewin=<window_size>:<required_quality>

HTSeq options:
 --stranded=STRANDED
 Stranded options: yes, no, reverse. Default is
 --stranded=reverse. Usage: --stranded=yes/no/reverse
 --order=ORDER Order options: name, pos. Usage: --order=name/pos.
 --minqual=MINQUAL Skip all reads with quality lower than the given
 value. Default is --minqual=10. Usage:
 --minqual=<value>
 --idattr=IDATTR Feature ID from the GTF file to identify counts in the
 output table Default is --idattr=gene_id. Usage:
 --idattr=<id attribute>
 --mode=MODE Mode to handle reads overlapping more than one
 feature. Default is --mode=union. Usage: --mode=union
 /intersection-strict/intersection-nonempty

 Copyright 2015, Benjamin K. Johnson.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SPARTA-teaching 1.0 documentation

License

Copyright (c) 2015, Michigan State University. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
Neither the name of the Michigan State University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Copyright 2015, Benjamin K. Johnson.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SPARTA-teaching 1.0 documentation

Release notes

Version 1.0

 Copyright 2015, Benjamin K. Johnson.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SPARTA-teaching 1.0 documentation

Citation

Insert citation here

Acknowledgements

We would like to thank the members of the Abramovitch Lab for helpful discussions and critical
assessment/bug identification within the workflow. We would also like to thank the developers
and contributors of Python, Trimmomatic, FastQC, Bowtie, HTSeq, and edgeR; without these
individuals, SPARTA would not be possible. Finally, we would like to thank you, the user,
for utilizing the workflow and making it better.

 Copyright 2015, Benjamin K. Johnson.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	SPARTA-teaching 1.0 documentation

Functionality wishlist

	Add paired-end support for SPARTA

	Add more modular approach to implementing different tools (perhaps through option specification?)

	Include the ability to deal with batch effects in an efficient manner, requiring minimal user input

 Copyright 2015, Benjamin K. Johnson.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	SPARTA-teaching 1.0 documentation

Index

 Copyright 2015, Benjamin K. Johnson.
 Created using Sphinx 1.3.1.

 _images/opentermwindows.jpg
T

ks

s

Spors

et

G s

ik

ommand Prompt

rights reserved.

[

_static/comment.png

_images/rnaseqworkflow.jpg

_static/minus.png

_images/javadownloadmac.jpg
Java Platform, Standard Edition

Java SE 8u45
This release includes important security fixes. Oracle strongly recommends that all Java SE 8

users upgrade to this release
Learn more »

= Installation Instructions JDK
DOWNLOAD #

= Release Notes

= Oracle License

= Java SE Products Server JRE
= Third Party Licenses

= Certified System Configurations

= Readme Files

= JDK ReadMe JRE

DOWNLOAD #

= JRE ReadMe

_static/plus.png

_images/linuxcoms.jpg
Unix/Linux Command Reference

Ls - directory listing
1s -al - formatted listing with hiddon files

€d dir - chango directory to dir

cd - change to home

pud — show current directory.

mkdir dir - create a directory dir

 file - delote file

- dir - delete directory dir

- file - force remove file

Fm -rf dir - force remove directory dir*

ep filel file2 - copy filel to file2

€ -r dirl dir2 - copy dirl to dir2; create dir2 if it
doesn't exist

BV filel file2 - rename or mave filel to fle2

I ilo2 Is an existing directory, moves filel into
directory file2

n -5 file Link - croato symbolic link link to file
touch file - create or update file

cat > file - places standard input into file

more file - output tho contonts of file

head file - output tho first 10 lines of file

tail file - output the last 10 linos of file

tail -f file - output the contents of fileas it
grows, starting with the last 10 lines

ps - display your currently active processes
‘top - display all running processes

KAWL pid - kill procoss id pid

KiUall proc - Kill all processes named proc *
bg - lists stopped or background Jobs; resume a
stopped job in the background

g - brinigs the most recent job to foreground
79 n - brings job n to the foreground

| __ File Permissions]
chnod octal file —chango the pormissions of flle
10 octal, which can be found separately for user,
group, and world by adding:

o 4-road ()

o 2 wre (w)

o 1~ oxecute (9
Examplos.
chnod 777 - road, write, executo for all
chnod 755 - rwx for owner, £ for group and warld
For moro options, sec man_chaod.

L ssH
ssh userghost - connct to host as user

ssh -p port user@host - connoct to host on port
port as user.

Ssh-copy-id user@host - add your key to host for
wser to onablo a keyed or passwordioss login
| searching]
grep pattern files - soarch for paltern in fles
grep -r pattern dir - scarch rocursively for
pattern in dir-

conmand | grep pattern - scarch for pattern in the
output of command

Tocate file - find all instances of file

FOSSwire...

System Info
date - show the current date and tme
‘cal - show this month's calendar
uptine - show current uptime
W display who Is online
whoand - who you are logged in as
finger user - display information about user
unane -a - show kernel information
cat /proc/cpuino - cpu information
cat /proc/meminfo - memory information
man conmand - show the manual for command
df - show disk usage
du — show directory space usage
free - show memory and swap usage
whereis app - shw possible locations of app
which app - show which app will be run by default

tar cf file. tar files- croato a tar named
e tar containing files

tar xf file. tar - extract the fles from file tar
tar caf file.tar.gz files - create a tar with
Gaip comprossion

tar xzf file. tar.gz - exiract a tar using Gaip
tar cjf file.tar.bz2 - croate a tar with Bzip2
compression

tar xjf file.tar.bz2 - extract a tar using Bzip2
gzip file - compresses file and renames i to
flegz

Gzip -d file.gz - decompresses fle gz back to
file

ping host - ping host and output rosults
whois domain - got whois information for domain
dig domain - got DN information for domain
dig -x host - roverse lookup host

wget file - dowload file

wget -c file - continiie a stopped download

Installation
Instal from source.
. /contigure
nake
nake install
dpkg -3 pky. deb - install a package (Debian)
Fpn ~Uuh pkg. rpm - install a packago (RPM)

| Shortcuts]
CEPLC - halts the current command.

CErLIZ - stops tho curront command, resume with
g in the foreground or bg in the background
CErLD - Log out of curront sossion, similar 1o exit
CPLM erases one word in the current line
CErLU erases the whole line

CLFUR - type to bring up a recent command

11 - ropoats the last command

exit - log out of current session

[oX

* use with extreme caution.

_static/comment-bright.png

_images/conditionoutputhighlight.jpg
SPARTA has these files:
1) mapgly5a.sam
2) mapgly5b.sam
3) mapgly7a.sam
4) mapgly7b.sam
5) mappyrSa.sam
6) mappyrsb.san
7) mappyr7a.sam
8) mappyr7b.sam

_static/comment-close.png

_images/pythonmacdownload.jpg
Python 2.7.10

Release Date: 2015-05-23

Python 2.7.10 is a bug fix release of the Python 2.7.x series.

Full Changelog

Files

Version
Gzipped source tarball
XZ compressed source tarball

Mac OS X 32-bit i386/PPC installer

Mac OS X 64-bit/32-bit installer

Windows debug information files

Windows debug information files for 64-bit binaries

Windows help file
Windows x86-64 MSI installer

Windows x86 MS| installer

Operating System Description

Source release

Source release

Mac 0S X

Mac 0S X

Windows

Windows

Windows

Windows

Windows

for Mac 0S X 10.5 and later

for Mac 0S X 10.6 and later

for AMD64/EM64T/x64, not Itanium processors

MD5 Sum

d7547558fd673bd9d38e2108c6b42521

c685ef0b8e9f27b5e3db5db12b268ac6

40c01b527ee9898460f8cd515f1c1651

3a5419361628c5425fc28691eb7b773

44c155e72ddae4bfface20932ea2f5¢f

2460724a7ce7ar36e7b5e3ee44879e53

5798437100884d987a57626e11d2c618

35f5c301beab341f6f6c9785939882ee

4ba2c79b103f6003bc4611c837a08208

File Size

16768806

12250696

23985274

22129777

26592322

24626242

6132901

19382272

18423808

GPG
SIG
SIG
sIG
SIG
siG
sIG
SIG
sIG

SIG

_static/up.png

_images/workflowoutline.jpg
Data received from
sequencing facility

What type of
sequence?

Trim and remove
adapters

QC data

Align to reference

Count gene features

Differential gene
expression

_images/batchexample.jpg
Batch 2

Batch1

0

HAe Wmex

G W oke 0 K

[+X caex

O + 43 48 0 X

o <H <0 e

(] H e e

o P o @

O FOk®weo X

X

x

T T T T
o © ~ ©

uolssaidxy

_static/up-pressed.png

_images/batcheffect.jpg
Leading logFC dim 2

00 02 04

02

-0.6

ETZ2
-04

©02 00 02
Leading logFC dim 1

DMSO1

04

121
0.6

_static/down-pressed.png

_static/file.png

_images/pythonforwin.jpg
Python 2.7.10

Release Date: 2015-05-23

Python 2.7.10 is a bug fix release of the Python 2.7.x series.

Full Changelog

Files

Version
Gzipped source tarball
XZ compressed source tarball

Mac OS X 32-bit i386/PPC installer

Mac OS X 64-bit/32-bit installer

Windows debug information files

Windows debug information files for 64-bit binaries

Windows help file

Windows x86-64 MS| installer

Operating System Description

Source release

Source release

Mac 0S X

Mac 0S X

Windows

Windows

Windows

Windows

Windows

for Mac 0S X 10.5 and later

for Mac 0S X 10.6 and later

for AMD64/EM64T/x64, not Itanium processors

MD5 Sum

d7547558fd673bd9d38e2108c6b42521

c685ef0b8e9f27b5e3db5db12b268ac6

40c01b527ee9898460f8cd515f1c1651

3a5419361628c5425fc28691eb7b773

44c155e72ddae4bfface20932ea2f5¢f

2460724a7ce7ar36e7b5e3ee44879e53

5798437100884d987a57626e11d2c618

35f5c301beab341f6f6c9785939882ee

4ba2c79b103f6003bc4611c837a08208

File Size

16768806

12250696

23985274

22129777

26592322

24626242

6132901

19382272

18423808

GPG
SIG
SIG
sIG
SIG
siG
sIG
SIG
siG

SIG

_images/mactermnav.jpg
LN J 38 Utilities

< g =@ ® 6| O o %~
Favorites [# Pytmon2.7 > [Adobe Utiities -CS5 »
33 Dropbox @ QuickTime Player @ AirPort Utility
@R ™ Audio MIDI Setup
B Al My Files @ ros < Bluetootn File Exchange
& iCloud Drive) Reminders § Bluetooth F...are Update
i 1 Remote De...Gonnection 2/ Boot Camp Assistant
(D © rstdo Calrsync Uity
[Desktop @ Rswitch I Console
2 @ safari @ Digital Golor Meter
G benjaminjohn... || Lo Gy & Disk Utity
» /A Applications. 5 Stickies ¥ Grab
B Dacrars @ System Preferences @ Grapher
/ TextEdit S HP Utiity
o @ Textwrangler A Keychain Access
o © Time Machine & MacBook S...are Update
» E Migration Assistant
® Orange ¥ VirtualBox o Script Editor
® Yellow A vic & System Information
[Volocity 6.3 ‘ & Terminal
== W Xcode VolceOver Utilty

& Blua B Xerox X X11

_images/multiplex.jpg
® 0

J.

[

_static/down.png

search.html

 Navigation

 		
 index

 		SPARTA-teaching 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Benjamin K. Johnson.
 Created using Sphinx 1.3.1.

_images/conditionoutput.jpg
SPARTA has these files:

1) mapgly5a.sam

2) mapgly5b.sam

3) mapgly7a.sam

4) mapgly7b.sam

5) mappyr5a.sam

6) mappyr5b.sam

7) mappyr7a.sam

8) mappyr7b.sam

How many conditions are there?:

_static/ajax-loader.gif

_images/workflowprocedure.jpg
SPARTA

Define Experimental
Condition Replicates

l Input Folder l

Trimming and
Quality Analysis

HTSeq: edgeR:

Trimmed Quantify Gene Differential
Reads Features From Expression

Aligned Reads Analysis

Alignment I
SAM Files

(@l Alignment = = .
LAELYEE SAM Files DE Tables D'aglg‘t’ss“c
Reports

Output Folder

_images/basecall.jpg
Table 1: Quality Scores and Base Calling Accuracy

Phred Quality Probability of Base Call
Score Incorrect Base Call Accuracy
10 1in 10 90%
20 11in 100 99%
30 11in 1,000 99.9%
40 1in 10,000 99.99%

50 1in 100,000 99.999%

_images/rawvstrimmedalign.jpg
Untrimmed alignment

Prd uatty Soore

_images/linuxterm.jpg
Terminal

@ ® ® O sparta@sparta-VirtualBox: ~

Ubuntu Desktop

°
' @) sparta@sparta-virtualBox:~$ [I
SPARTA_Linux ki Applications .
))
—

E Terminal Uxterm E

& Reference see2moreresults »

= .'i

Terminal terminal deflmt

M More suggestions see24 more

E e ABU E
7

Be Different Terminal Tower:
II .. BSides 1975-
®

W,

® Weather

Weather

Channel

_images/math/59b717927ea6cc74ef80e1373ef96cc63c624c1b.png
Q

—101logy P | error probabilit;

