

Welcome!

Sparkplug is a simple command framework designed with chat bots in mind.

Contents:

	Quickstart Guide

	Terminology
	Host

	Unit

	Command

	Strategy

	API Reference
	sparkplug.host

	sparkplug.strategies

Indices and tables

	Index

	Module Index

	Search Page

Quickstart Guide

Commands are modularized into units, like the one below. A unit can be anything with callable attributes.
Any callable attribute that doesn’t begin with an underscore is assumed to be a user-facing command.

The parameters of commands should be annotated in order to tell the command host how to fill them in based on the user
input.

>>> class SomeCommands:
... def add_one(self, number: int):
... return number + 1
... def say_hello(self, person: 'word', times: int):
... return ' '.join(['Hello ' + person] * times)
... def repeat(self, text: 'my_text_getter'):
... return text
... def repeat_context(self, text: 'context_text'):
... return text

If, for some reason, type annotations cannot be used, a decorator is available. The following will produce the same
result as above when given processed by a command host:

>>> class SomeCommands:
... @parameter_types(number=int)
... def add_one(self, number):
... return number + 1
... @parameter_types(person='word', times=int)
... def say_hello(self, person: 'word', times: int):
... return ' '.join(['Hello ' + person] * times)
... @parameter_types(text='my_text_getter')
... def repeat(self, text):
... return text
... @parameter_types(text='repeat_context')
... def repeat_context(self, text):
... return text

A command host contains units like this in which it calls commands from.

>>> host = CommandHost()

An async variant is available, but just note that it will await both commands and strategies.

>>> host = AsyncCommandHost()

We’ll stick with the synchronous command host for this example.

Units can be added in a few different ways:

>>> host += 'foo', SomeCommands() # Name specified explicitly
>>> host['foo'] = SomeCommands() # Name specified explicitly
>>> host += SomeCommands() # __name__ of type used to guess name

A command host also contains strategies, which are used to fill in the annotated types of commands. They are functions
that should accept parameters in string form, and return a tuple of the object interpreted from the string and the
remaining parameters that were not used.

Strategies can also accept an arbitrary context parameter passed to them by the host. If a strategy that needs context
is called without a context parameter given to the host, then it defaults to None.

If invalid input is given, a strategy can handle this however it wants (i.e. raising an error, using a default value).

>>> host.add_strategy(int, strategies.int_getter) # Default strategies for common types are available
>>> host.add_strategy('word', strategies.word_getter)
>>> host.add_strategy('text', lambda s: (s, '')) # Returns the entire input. Everything is consumed, so '' is returned
>>> host.add_strategy('context_text', lambda s, c: (c, s)) # Returns the context without consuming any text

Once all of the desired commands and strategies are set up, call can be used with a command string to parse and
execute it.

>>> host.call('add_one 41')
42
>>> host.call('say_hello John 3')
'Hello John Hello John Hello John'
>>> host_call('repeat after me')
'after me'
>>> host_call('repeat_context', context='some context')
'some context'

In the event of a command clash (suppose we had a unit 'bar' that also had a command named repeat), unit names
can explicitly be specified.

>>> host.call('foo:repeat after me')
'after me'

Finally, if for some reason a unit needs to be unloaded, it can be done by subtracting its name from the host.

>>> host -= 'foo'

Terminology

Sparkplug breaks its command management system into multiple parts. Definitions of each of the parts and how they
are related are below.

Host

A host is the main part of the system. It contains units and can call the commands contained within them given a string
that the user has entered.

Unit

A unit is a provider of commands. It is an object in which all of the callable attributes (that don’t begin with an
underscore) are assumed to be accessible by the host.

Command

A command is a function that belongs to a unit and executes a certain task. Its parameters (other than self) should
be annotated in order to tell the host executing it how to fulfill its parameters.

Strategy

A strategy is what a host uses to resolve the parameters of a command. It is a function that should take a string
(which contains the arguments passed to the command) and return a tuple of the object interpreted from it and a string
containing the parameters that were not used to interpret the object. These remaining arguments are passed into the
next strategy which parses the next argument, if it exists.

A local strategy is a strategy that only applies to a certain unit.

API Reference

This page outlines sparkplug’s API.

sparkplug.host

This module contains the sparkplug command hosts and errors they might raise.

	
class sparkplug.host.CommandHost(use_fallback_strategy=False)

	Provides a modular command system.

	Parameters

	use_fallback_strategy – Whether or not a default fallback strategy (that provides None) should be used in
the event of an undefined strategy.

	
add_local_strategy(unit_name, annotation, strategy)

	Adds a local strategy to this CommandHandler. A local strategy functions similarly to a normal, global one, but
takes takes precedence over global ones for a specific unit.

	Parameters

	
	unit_name – Unit to apply this strategy to.

	annotation – Parameter annotation to match to the given strategy.

	strategy – Callable strategy to get an appropriate object from.

	
add_strategy(annotation, strategy)

	Adds a strategy to this CommandHandler.

	Parameters

	
	annotation – Parameter annotation to match to the given strategy.

	strategy – Callable strategy to get an appropriate object from.

	
call(command_call, context=None)

	Calls a command and fulfills its parameters using known strategies with the given call as a string.

	Parameters

	
	command_call – Name and parameters given to the command as a string.

	context – Optional context object that is passed to any strategies that will accept it.

	Returns

	Return value from the command.

	
get_parameter(annotation, text_args, context=None, domain=None)

	Gets the value for a parameter using known strategies and given arguments. If given a domain, local strategies
will take priority over global ones.

	Parameters

	
	annotation – Parameter annotation, determines which strategy to use.

	text_args – Arguments that can be used to determine parameters.

	context – Optional context object that is passed to the strategy. defaults to None.

	domain – Name of the unit that the parameter applies to, used to prioritize local strategies.

	Returns

	Extracted parameter and remaining arguments afterwards.

	
get_strategy(annotation, unit_name=None)

	Gets a strategy to resolve a parameter, optionally with a specific domain.

	Parameters

	
	annotation – Parameter annotation find a strategy for.

	unit_name – Domain to check a local strategy for first.

	Raises

	NonexistentStrategyError – if use_fallback_strategy is false and a strategy was not found.

	Returns

	Strategy for getting a parameter with the given annotation.

	
class sparkplug.host.AsyncCommandHost(use_fallback_strategy=False)

	An extension of CommandHost which awaits strategies and commands.

	
class sparkplug.host.CommandHostError

	Represents an exception that was raised by a CommandHost.

	
class sparkplug.host.NonexistentCommandError(attempted_command, available_commands)

	Represents an exception that occurred from attempting to call a command that does not exist.

	
class sparkplug.host.NonexistentUnitError(unit_name)

	Represents an exception that occurred from attempting to access a unit that does not exist.

	
class sparkplug.host.NonexistentStrategyError(wanted_type)

	Represents an exception that occurred from attempting to fulfill a parameter with an annotation that no strategy
is defined for.

	
class sparkplug.host.AmbiguityError(attempted_command)

	Represents an exception that occurred from attempting to call a command that is defined in multiple units
without explicity specifying a domain.

sparkplug.strategies

This module contains simple strategies for use with command hosts.

	
sparkplug.strategies.int_getter(text)

	Gets an integer from the beginning of the given text.

	Parameters

	text – Parameters to work with.

	Raises

	ValueError – if text does not begin with an integer.

	Returns

	Tuple of extracted number and remaining parameters.

	
sparkplug.strategies.default_int_getter(default)

	Returns an integer getter that returns a default value if the given parameters don’t start with an integer.

	Parameters

	default – Default value to return in the event of invalid input.

	Returns

	Wrapped integer getter function.

	
sparkplug.strategies.word_getter(text)

	Gets the first word separated by a space from text.

	Parameters

	text – Parameters to work with.

	Returns

	Tuple of the first word of the parameters and the remaining text.

	
sparkplug.strategies.remaining_text_getter(text)

	Consumes all of the remaining parameters.

	Parameters

	text – Parameters to work with.

	Returns

	Tuple of the given parameters and an empty string.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 sparkplug	

 	
 	
 sparkplug.host	

 	
 	
 sparkplug.strategies	

Index

 A
 | C
 | D
 | G
 | I
 | N
 | R
 | S
 | W

A

 	
 	add_local_strategy() (sparkplug.host.CommandHost method)

 	add_strategy() (sparkplug.host.CommandHost method)

 	
 	AmbiguityError (class in sparkplug.host)

 	AsyncCommandHost (class in sparkplug.host)

C

 	
 	call() (sparkplug.host.CommandHost method)

 	
 	CommandHost (class in sparkplug.host)

 	CommandHostError (class in sparkplug.host)

D

 	
 	default_int_getter() (in module sparkplug.strategies)

G

 	
 	get_parameter() (sparkplug.host.CommandHost method)

 	
 	get_strategy() (sparkplug.host.CommandHost method)

I

 	
 	int_getter() (in module sparkplug.strategies)

N

 	
 	NonexistentCommandError (class in sparkplug.host)

 	
 	NonexistentStrategyError (class in sparkplug.host)

 	NonexistentUnitError (class in sparkplug.host)

R

 	
 	remaining_text_getter() (in module sparkplug.strategies)

S

 	
 	sparkplug.host (module)

 	
 	sparkplug.strategies (module)

W

 	
 	word_getter() (in module sparkplug.strategies)

 nav.xhtml

 Table of Contents

 		
 Welcome!

 		
 Quickstart Guide

 		
 Terminology

 		
 Host

 		
 Unit

 		
 Command

 		
 Strategy

 		
 API Reference

 		
 sparkplug.host

 		
 sparkplug.strategies

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

