

Welcome to Spade’s documentation!

Overview: Spade is at its core a metrics tool that allows quick visualization of
what kinds of CSS properties websites are using. It allows input of
a list of websites to scrape, and it crawls to 1 level on each website
whilst submitting a variety of user agent strings in order to ascertain
different kinds of markup returned as a result. It tries to detect UA
sniffing by commparing the returned markup structure of each site.

All the information is recorded into a database after the crawl, and
is accessible from a web interface. For more information on installation
and use of the tool, please continue through the documentation.

Contents:

	Installation
	Vagrant Setup

	Scraper
	Using the scraper

	Architecture
	spade.controller.management.commands

	spade.model.models

	spade.scraper

	spade.settings

	spade.tests

	spade.utils.data_aggregator

	spade.utils.css_parser

	spade.utils.html_diff

	spade.view.urls

	spade.view.views

	Development
	Tests

	Dependencies

	TODO
	Add support for detecting CSS prefixing issues

	Evaluate adequacy of UA-sniffing-detection method

	Integrate South for schema and data migrations

	Complete the UI

Indices and tables

	Index

	Module Index

	Search Page

Installation

	Install MySQL.

	Install the dependencies in requirements/compiled.txt either via
system-level package manager, or with pip install -r
requirements/compiled.txt (preferably into a virtualenv [http://www.virtualenv.org] in the latter
case).

	If you will need to run the tests or work on Spade development, install the
development-only dependencies into your virtualenv with pip install -r
requirements/dev.txt.

	Copy spade/settings/local.sample.py to spade/settings/local.py and
modify the settings as appropriate for your installation.

	Run ./manage.py syncdb to create the database tables.

Vagrant Setup

	Run vagrant up in a terminal. This will create a new VM that will have
Spade running on it. It will run the necessary Puppet [http://puppetlabs.com/] scripts

	add 127.0.0.1 dev.spade.org to /etc/hosts

	Navigate to http://dev.spade.org:8000 in your browser

Scraper

Spade comes with a built-in scraper to crawl websites. It crawls all urls given
by a text file via command line args, as well as 1-level-deep links within each
site. It saves html, css, and javascript from the pages using whatever user
agents are specified in the database.

Using the scraper

	Add user agent strings that you would like to crawl with by running the
management command:

python manage.py useragents --add "Firefox / 15.0" --desktop
python manage.py useragents --add "Fennec / 15.0" --primary
python manage.py useragents --add "Android / WebKit"

Detecting UA-sniffing issues requires at least three user-agents to be
added: a desktop user-agent to be used as baseline, a “primary” mobile user
agent (the one we want to make sure sites are sniffing, if they sniff mobile
UAs at all), and at least one other mobile UA to check against. A “UA
sniffing issue” will be reported for a URL if that URL returns markedly
different content for any non-primary mobile UA (compared to the desktop UA
content), but returns the desktop content for the primary mobile UA.

	Call the scrape command, giving it a text file of URLs to parse:

python manage.py scrape [newline delimited text file of URLS]

Architecture

The primary components are listed below (by Python module path) and described:

spade.controller.management.commands

Contains the scrape and useragents management commands.

spade.model.models

Contains the database models:

A UserAgent stores a user-agent string that will be used to scrape sites
the next time the scrape management command is run.

A Batch represents a single run of the scrape management command.

A BatchUserAgent stores a user-agent string that actually was used when
scraping a particular batch. This is copied from a UserAgent when
scrape is run; the separation prevents future changes to the user-agent
list from modifying or corrupting data from past runs.

A SiteScan object is created for each top-level URL in the list of URLs
given to the scrape management command.

A URLScan object is created for each URL scanned; this includes the initial
top-level URLs, and all linked pages one level deep.

A URLContent object stores the scraped contents of a single URL for a
particular user agent. In other words, for every URLScan there will be N
URLContent objects, if there are N UserAgent records at the time the
scrape is initiated.

A LinkedCSS contains information about a single linked CSS file. Every CSS
file at a distinct URL has only one LinkedCSS record, even if it was linked
from multiple scraped HTML pages (thus LinkedCSS has a many-to-many
relationship with URLContent).

Similarly, a LinkedJS contains information about a single linked JS file.

When the contents of a LinkedCSS file are parsed by
spade.utils.cssparser.CSSParser, a CSSRule object is created for every
CSS rule in the file, and a CSSProperty object for every property in every
rule.

The various *Data models contain aggregated data about issues detected in
the scan.

spade.scraper

A Scrapy [http://scrapy.org/] scraper that scrapes a list of given URLs with all
user-agent strings listed in the database, following links one level deep, and
saving all response contents (including linked JS and CSS) in the database.

spade.settings

Contains the Django project settings.

spade.tests

Contains the tests.

spade.utils.data_aggregator

Contains a DataAggregator class that populates the BatchData,
SiteScanData, URLScanData, URLContentData and LinkedCSSData
models with summary aggregate data about the scan.

spade.utils.css_parser

Contains a CSSParser class that can take raw CSS, parse it, and store it
into the CSSRule and CSSProperty database models.

spade.utils.html_diff

Contains a HTMLDiff class that can compare the tag structure of two chunks
of HTML, ignoring differences in tag content and attributes, and return a
measure of their similarity (0.0 if they have nothing in common, 1.0 if they
are identical).

spade.view.urls

The URL configuration for the site.

Run python manage.py runserver to fire up a development web server and view
the app in your browser at http://localhost:8000/.

spade.view.views

Contains the Django view functions.

Development

Developing spade requires installing the dev-only dependencies:

pip install -r requirements/dev.txt

Tests

To run the Python tests, run ./runtests.py.

Dependencies

To add or change a pure-Python production dependency, add or modify the
appropriate line in requirements/pure.txt, then run
bin/generate-vendor-lib.py. You should see the actual code changes
in the dependency reflected in vendor/ if you git diff. Commit
both the change to requirements/pure.txt and the changes in
vendor/.

To add or change a non-pure-Python production dependency, simply add or
modify the appropriate line in requirements/compiled.txt.

To add or change a development-only dependency, simply add or modify the
appropriate line in requirements/dev.txt.

TODO

Add support for detecting CSS prefixing issues

The DataAggregator attempts to detect UA-sniffing issues (by comparing
markup structures returned from the same URL for different UAs), but it does
not attempt to detect prefixed-CSS issues. The data needed for this detection
is all present in the database in the CSSRule and CSSProperty models,
but there is no code yet to iterate over those models and look for cases where
a non-mozilla prefixed property is used without the moz-prefixed or unprefixed
equivalent.

Evaluate adequacy of UA-sniffing-detection method

The scraper follows this algorithm when scraping:

	Given a top-level URL from the URLs file, issue a request to that URL with
each configured user-agent string.

	From that point on, each user agent effectively crawls the site separately,
following the links found in the pages delivered to that user agent.

This gives an accurate picture of the site as each user agent would really see
it (which is good for the CSS prefix checking), but in case of redirection to
separate mobile sites, it means that there may be very few (or no) URLs on the
site that are scraped in common by all user agents. The current form of
UA-sniffing detection (looking at markup returned to different UAs for the same
URL) is only effective if a site has at least one URL that returned actual
content to all user agents. It may be necessary to add more sophisticated
UA-sniffing detection code that accounts for different redirects received by
different user agents as well.

Integrate South for schema and data migrations

At the moment, since Spade (including the database schema) is still under heavy
development, it’s often easiest after a model change to simply drop and
recreate the database and run syncdb again, rather than worrying about how to
structure a migration for existing data.

At some point, Spade will be deployed into production and begin collecting
non-throwaway data. Before that happens, South [http://south.aeracode.org] should be integrated so that
future model changes can incorporate migrations to alter the schema and migrate
data as needed.

Complete the UI

The views in spade/view/views.py and the Django templates in spade/view/templates are incomplete, and need to be finished.

Index

 nav.xhtml

 Table of Contents

 		Welcome to Spade's documentation!

 		Installation

 		Vagrant Setup

 		Scraper

 		Using the scraper

 		Architecture

 		spade.controller.management.commands

 		spade.model.models

 		spade.scraper

 		spade.settings

 		spade.tests

 		spade.utils.data_aggregator

 		spade.utils.css_parser

 		spade.utils.html_diff

 		spade.view.urls

 		spade.view.views

 		Development

 		Tests

 		Dependencies

 		TODO

 		Add support for detecting CSS prefixing issues

 		Evaluate adequacy of UA-sniffing-detection method

 		Integrate South for schema and data migrations

 		Complete the UI

_static/up.png

_static/comment-close.png

_static/file.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

