
SpaceEZ Documentation
Release v1.0.0

Juniper Networks Inc.

July 13, 2015

Contents

1 Class Index 1

2 Module Index 3

3 Rest 5

4 Resource 9

5 Collection 13

6 Method 17

7 Service 19

8 Application 21

9 Async 23

10 Factory 25

11 XML Util 27

12 Indices and tables 29

Python Module Index 31

i

ii

CHAPTER 1

Class Index

jnpr.space.rest.Space(url[, user, passwd, ...]) Encapsulates a Junos Space cluster and provides access to all RESTful web-service APIs provided by Space.
jnpr.space.resource.Resource(type_name, ...) Represents a resource that is exposed by Junos Space REST API.
jnpr.space.collection.Collection(parent, ...) Represents a collection that is exposed by Junos Space REST API.
jnpr.space.method.Method(parent, name, mobj) Represents a method that is exposed by Junos Space REST API.
jnpr.space.service.Service(rest_end_point, ...) Represents a service that is exposed by Junos Space REST API.
jnpr.space.application.Application(...) Represents an application that is hosted on Junos Space platform.
jnpr.space.async.TaskMonitor(rest_end_point, ...) Encapsulates the logic required to monitor the progress of tasks using a hornet-q.

1

SpaceEZ Documentation, Release v1.0.0

2 Chapter 1. Class Index

CHAPTER 2

Module Index

jnpr.space.factory A module with functions using which new resource objects can be created.
jnpr.space.xmlutil A module with utility functions for XML handling.

3

SpaceEZ Documentation, Release v1.0.0

4 Chapter 2. Module Index

CHAPTER 3

Rest

This module defines the Space class.

exception jnpr.space.rest.RestException(message, response)
An exception that is raised when a REST API invocation returns a response indicating an error. The exception
contains the complete response inside.

Attributes: response: The response object (requests.Response) which resulted in this exception.

__weakref__
list of weak references to the object (if defined)

class jnpr.space.rest.Space(url, user=None, passwd=None, cert=None, use_session=False, re-
quired_node=None, profile_file=None)

Encapsulates a Junos Space cluster and provides access to all RESTful web-service APIs provided by Space.
An instance of this class is also referred to as a ‘rest end point’ in this documentation.

Note: In most cases, you don’t directly invoke methods of this class. The typical usage pattern is to create an
instance of this class and then access contained services and collections and invoke methods on them.

For example, the snippet below creates a Space instance and then performs a GET on the devices collection
contained by the device-management web service:

>>> s = rest.Space(url='https://1.1.1.1',
user='super',
passwd='password')

>>> devs = s.device_management.devices.get()

Note: Instances of this class are thread-safe. So you can have multiple threads invoking APIs on the same
Junos Space cluster using one instance of this class.

__getattr__(attr)
This method is overridden in the class so that applications & services contained by this instance can be
accessed as normal Python attributes of this object.

Parameters attr (str) – Name of the app or web-service being accessed.

Returns jnpr.space.service.Service or jnpr.space.application.Application
being accessed.

Raises AttributeError if there is no application or service with the given name.

__getitem__(attr)
This method is overridden so that contained elements can be accessed using their ‘xml names’ - e.g.
user[’first-name’]. The implementation just calls __getattr__ internally.

5

http://docs.python-requests.org/en/latest/api/#requests.Response/

SpaceEZ Documentation, Release v1.0.0

See doc for __getattr__ for more details.

__init__(url, user=None, passwd=None, cert=None, use_session=False, required_node=None, pro-
file_file=None)

Creates an instance of this class to represent a Junos Space cluster.

Parameters

• url (str) – URL of the Junos Space cluster using its VIP address. E.g. https://<VIP>

• user (str) – A valid userid for invoking APIs on this Space cluster. Can be omitted if
cert is provided for X.509 certificate based authentication to Junos Space.

• passwd (str) – Password for the userid.

• cert (tuple) – X.509 certificate details for authentication. This is to be used only to
access Junos Space that is configured to perform X.509 certificate based authentication.
Otherwise, this parameter defaults to None. If used, it MUST be a tuple that contains (1)
the full pathname of the X.509 certificate PEM file; and (2) the full pathname of the X.509
certificate key file. It is recommended that the key file is unencrypted - otherwise the SSL
layer will prompt you to enter the passphrase used for encrypting key file and this prompt
will appear for each SSL connection.

• use_session (bool) – Whether to use a session based login or not. It is False by
default.

• required_node (str) – This parameter is used only if use_session is set to True.
This is used to specify the name of the Junos Space node (e.g. space-000c2980f778) in the
cluster on which the session should be established. This parameter is None by default.

• profile_file (str) – Full pathname of a file where response times for each API call is
to be recorded. This parameter is None by default.

Returns An instance of this class encapsulating the Junos Space cluster whose url was given as
a parameter. It can be used to access all APIs provided by Space.

delete(delete_url)
Performs an HTTP DELETE on the given url. Acts as a wrapper over requests.delete() function.

Parameters url (str) – URL for performing DELETE

Returns

The response object (requests.Response) returned by the POST request.

get(url, headers={})
Performs an HTTP GET on the given url. Acts as a wrapper over requests.get() function.

Parameters

• url (str) – URL for performing GET

• headers (dict) – A dict with the headers that need to be sent with the GET request.
Defaults to {}.

Returns

The response object (requests.Response) returned by the GET request.

head(url, headers={})
Performs an HTTP HEAD on the given url. Acts as a wrapper over requests.head() function.

Parameters

• url (str) – URL for performing HEAD

6 Chapter 3. Rest

https:/
http://docs.python-requests.org/en/latest/api/#requests.Response/
http://docs.python-requests.org/en/latest/api/#requests.Response/

SpaceEZ Documentation, Release v1.0.0

• headers (dict) – A dict with the headers that need to be sent with the HEAD request.
Defaults to {}.

Returns

The response object (requests.Response) returned by the HEAD request.

login(required_node=None)
Logs into Space and creates a session (connection) that is maintained. All API calls will use this session
and will use the JSESSIONID, JSESSIONIDSSO cookies - they will not be individually authenticated.

Parameters required_node (str) – This is used to specify the name of the Junos Space node
in the cluster on which the session should be established. It is None by default.

logout()
Logs out the current session being used.

post(url, headers, body)
Performs an HTTP POST on the given url. Acts as a wrapper over requests.post() function.

Parameters

• url (str) – URL for performing POST

• headers (dict) – A dict with the headers that need to be sent with the POST request.
This is a mandatory parameter.

• body (str) – A string that forms the body of the POST request. This is a mandatory
parameter.

Returns

The response object (requests.Response) returned by the POST request.

put(put_url, headers, body)
Performs an HTTP PUT on the given url. Acts as a wrapper over requests.put() function.

Parameters

• url (str) – URL for performing PUT

• headers (dict) – A dict with the headers that need to be sent with the PUT request. This
is a mandatory parameter.

• body (str) – A string that forms the body of the PUT request. This is a mandatory param-
eter.

Returns

The response object (requests.Response) returned by the PUT request.

7

http://docs.python-requests.org/en/latest/api/#requests.Response/
http://docs.python-requests.org/en/latest/api/#requests.Response/
http://docs.python-requests.org/en/latest/api/#requests.Response/

SpaceEZ Documentation, Release v1.0.0

8 Chapter 3. Rest

CHAPTER 4

Resource

This module defines the Resource class.

class jnpr.space.resource.MetaResource(app_name, service_name, key, values)
Encapsulates the meta data for a resource type.

create_collection(resrc, name)
Creates a collection object.

Parameters

• resrc (jnpr.space.resource.Resource) – Parent resource.

• name (str) – Name of the collection.

Returns A jnpr.space.collection.Collection object.

create_method(resrc, name)
Creates a method object.

Parameters

• resrc (jnpr.space.resource.Resource) – Parent resource.

• name (str) – Name of the method.

Returns A jnpr.space.method.Method object.

get_media_type(version)
Returns media-type modelled in the yaml file.

class jnpr.space.resource.Resource(type_name, rest_end_point, xml_data=None, at-
tributes=None, parent=None)

Represents a resource that is exposed by Junos Space REST API. Some examples of resources are:

•A device (/api/space/device-management/devices/{id})

•Configuration of a device (/api/space/device-management/devices/{id}/configurations/raw)

•A user (/api/space/user-management/users/{id})

•A tag (/api/space/tag-management/tags/{id})

delete()
Deletes this resource on Space by sending a DELETE request with the url of this resource.

Returns None

Raises jnpr.space.rest.RestException if the DELETE method results in an error
response. The exception’s response attribute will have the full response from Space.

9

SpaceEZ Documentation, Release v1.0.0

form_xml()
Forms an XML representation of the state of this resource based on its attribute values.

Returns An lxml.etree.Element object representing the state of this resource.

get(attr=None, accept=None)
This is an overloaded method that does two things: If the attr parameter is passed, it returns the cor-
responding XML attribute from the top level XML data element contained by this resource. If the attr
parameter is not passed, it performs an HTTP GET for this resource and get its current state.

Parameters

• attr (str) – The name of the XML attribute in the top-level element of the XML state of
the resource. Defaults to None.

• accept (str) – This can be used to supply a media-type that must be used as the Accept
header in the GET request. This defaults to None and in this case SpaceEZ will use the
media-type modeled in the description file.

Returns

• Value of the named XML attribute. OR

• The current state of this resource fetched from Space and represented as a Python object.
You can access the fields of the resource’s state directly as attributes of this object.

Raises jnpr.space.rest.RestException if the GET method results in an error re-
sponse. The exception’s response attribute will have the full response from Space.

get_href()
Gets the href for this resource. If href is available as an attr inside _xml_data, it is returned. Otherwise,
this method checks if _xml_data has a valid uri attr and if so, returns that. Otherwise, it checks if the
_parent reference is set and if yes, it will concat the parent’s href with the id attr from _xml_data. If all this
fail, then it concatentates service_url and collection_name from its meta object and appends the
id attr from _xml_data.

Returns The href of this resource.

get_meta_object()
Returns the meta object which holds meta data for this resource.

Returns jnpr.space.resource.MetaResource

post(accept=None, content_type=None, request_body=None, task_monitor=None, schedule=None,
*args, **kwargs)

Some resources support the POST method. For example, the configuration of a device supports the POST
method which can be used to fetch selected portions of the configuration based on xpath expressions. On
such resources, this method can be used to send the POST request.

Parameters

• accept (str) – This can be used to supply a media-type that must be used as the Accept
header in the request. This defaults to None and in this case SpaceEZ will use the media-
type modeled in the description file.

• content_type (str) – This can be used to supply a media-type that must be used as the
Content-Type header in the request. This defaults to None and in this case SpaceEZ will
use the media-type modeled in the description file.

• request_body (str) – This can be used to supply a string that must be used as the
request body in the request. This defaults to None and in this case SpaceEZ will create
the request body using the modeled template, replacing variables with kwargs.

10 Chapter 4. Resource

SpaceEZ Documentation, Release v1.0.0

• task_monitor (jnpr.space.async.TaskMonitor) – A TaskMonitor object that can be
used to monitor the progress of the POST request, in case of asynchronous invocations.
You need to check Junos Space API documentation to see if the POST invocation on this
resource has asynchronous semantics and supply the task_monitor parameter only if it
is asynchronous. Otherwise, this will default to None and the method will behave with
synchronous semantics.

• schedule (str) – A string specifying a cron expression for scheduling the execution of
the request on the Space server side. This is applicable only if the POST invocation on this
resource has asynchronous semantics and you want to schedule the execution. Otherwise,
this will default to None.

• kwargs (A variable list of name=value arguments.) – Keyword args of the form
name=value which will be used to substitute variables in a pre-defined template (if ap-
plicable) to form the request body.

Returns A Python object constructed from the response body that Space returned for the POST
method invocation. In the case of asynchronous invocation, this will represent a Task object
and will contain the unique id of the Task executing the POST request in Space.

Raises jnpr.space.rest.RestException if the POST method results in an error re-
sponse. The exception’s response attribute will have the full response from Space.

put(new_val_obj=None, request_body=None, accept=None, content_type=None)
Modifies the state of this resource on Space by sending a PUT request with the new state. The attributes
of new_val_obj are formatted to form the XML request body for the PUT request. If the parameter
new_val_obj is None, then the argument request_body, if present, is used as the request body. If this
is also None, then the attributes of this object itself are formatted to form the XML request body. Once the
PUT request successfully completes, it re-initializes the state of this Resource object based on the XML
response from Space.

Parameters

• new_val_obj (jnpr.space.resource.Resource) – A Resource object with the newly de-
sired state for the resource. This defaults to None.

• request_body (str) – This can be used to supply a string that must be used as the
request body in the request. This defaults to None and in this case SpaceEZ will create
the request body using the supplied new_val_obj argument or from the current state of
this object.

• accept (str) – This can be used to supply a media-type that must be used as the Accept
header in the request. This defaults to None and in this case SpaceEZ will use the media-
type modeled in the description file.

• content_type (str) – This can be used to supply a media-type that must be used as the
Content-Type header in the request. This defaults to None and in this case SpaceEZ will
use the media-type modeled in the description file.

Returns None

Raises jnpr.space.rest.RestException if the PUT method results in an error re-
sponse. The exception’s response attribute will have the full response from Space.

state()
Prints the XML string into stdout.

xml_data()
Returns a formatted string that represents the state of this resource.

11

SpaceEZ Documentation, Release v1.0.0

xml_string()
Returns a string that contains formatted XML representing the state of this resource.

jnpr.space.resource.get_meta_object(full_name, values)
Looks up the meta object for a resource based on its fully qualified type name of the form
<service-name>.<type_name> or <app-name>.<service-name>.<type_name>

Parameters full_name (str) – Fully qualified type name of the resource.

Returns A jnpr.space.resource.MetaResource object.

12 Chapter 4. Resource

CHAPTER 5

Collection

This module defines the Collection class.

class jnpr.space.collection.Collection(parent, name, meta_object)
Represents a collection that is exposed by Junos Space REST API. Some examples of collections are:

•The devices collection (/api/space/device-management/devices)

•The users collection (/api/space/user-management/users)

•The tags collection (/api/space/tag-management/tags)

get(accept=None, filter_=None, domain_id=None, paging=None, sortby=None)
Gets the contained resources of this collection from Space.

Parameters

• accept (str) – This can be used to supply a media-type that must be used as the Accept
header in the GET request. This defaults to None and in this case SpaceEZ will use the
media-type modeled in the description file.

• filter (str or dict) – A filter expression to apply on the collection. This can be given
as a dict with name:value pairs to filter with. For example, {’name’:’user1’}. Or
this can be given as a string which forms a valid filter expression for this collection as per
Junos Space API documentation. This parameter defaults to None.

• paging (dict) – A paging expression to apply on the collection. This must be given as
a dict with entries giving values for start and limit paging parameters. For example,
{’start’:10, ’limit’:100}. This parameter defaults to None.

• sortby (list of str) – A list of field names to sort the results by. This parameter defaults
to None.

Returns A list of jnpr.space.resource.Resource objects.

Raises jnpr.space.rest.RestException if the GET method results in an error re-
sponse. The exception’s response attribute will have the full response from Space.

get_href()
Gets the href for this collection. If the meta object has a url set, it is returned. Otherwise, it concatenates
the href of the parent object and the name of this collection to form the href and returns it.

Returns The href of this collection.

post(new_obj=None, accept=None, content_type=None, request_body=None, xml_name=None,
task_monitor=None)

Sends a POST request to the Space server to create a new Resource in this collection.

Parameters

13

SpaceEZ Documentation, Release v1.0.0

• new_obj (A single jnpr.space.resource.Resource instance or a list of them.)
– The new Resource that needs to be created as a member of this collection. This can be
omitted in which case the caller must supply a request body for the POST request as the
request_body argument.

• accept (str) – This can be used to supply a media-type that must be used as the Accept
header in the request. This defaults to None and in this case SpaceEZ will use the media-
type modeled in the description file.

• content_type (str) – This can be used to supply a media-type that must be used as the
Content-Type header in the request. This defaults to None and in this case SpaceEZ will
use the media-type modeled in the description file.

• request_body (str) – This can be used to supply a string that must be used as the
request body in the request. This defaults to None and in this case the caller must supply
the new_obj argument from which the request body will be formed.

• xml_name (str) – Can be used to override the name of the top-level XML element in
the generated request body. This is useful in some cases such as creating a quick config
template. This parameter defaults to None.

• task_monitor (jnpr.space.async.TaskMonitor) – A TaskMonitor object that can be
used to monitor the progress of the POST request, in case of asynchronous invocations.
You need to check Junos Space API documentation to see if the POST invocation on this
resource has asynchronous semantics and supply the task_monitor parameter only if it
is asynchronous. Otherwise, this will default to None and the method will behave with
synchronous semantics.

Returns If the new_obj parameter is a list, then the same list is returned. Otherwise, this method
creates a new Resource object based on the state of the newly created resource, as extracted
from the POST response body. In the case of asynchronous invocation, this will represent a
Task object and will contain the unique id of the Task executing the POST request in Space.

Raises jnpr.space.rest.RestException if the POST method results in an error re-
sponse. The exception’s response attribute will have the full response from Space.

state()
Performs a GET on this collection to fetch the current state and prints it as XML.

class jnpr.space.collection.MetaCollection(app_name, service_name, key, values)
Encapsulates the meta data for a collection type.

create_method(service, name)
Creates a method object corresponding to the given service and name.

Parameters

• service (jnpr.space.service.Service) – Parent service.

• name (str) – Name of the method.

Returns A jnpr.space.method.Method object.

get_media_type(version)
Returns the media-type defined inside the meta object.

class jnpr.space.collection.ResourceList(resource_list)
Encapsulates a list of Resource objects and provides methods to print the state of all of them.

state()
Prints the XML string into stdout.

14 Chapter 5. Collection

SpaceEZ Documentation, Release v1.0.0

xml_data()
Returns a formatted string that represents the state of all resources in this list.

xml_string()
Returns a string that contains formatted XML representing the state of all resources in this list.

jnpr.space.collection.get_meta_object(app_name, service_name, coll_name, values)
Looks up the meta object for a collection based on its fully qualified type name of the form
<service-name>.<coll_name> or <app-name>.<service-name>.<coll-name>.

Parameters

• app_name (str) – Name of the application.

• service_name (str) – Name of the service.

• coll_name (str) – Name of the collection.

Returns A jnpr.space.collection.MetaCollection object.

15

SpaceEZ Documentation, Release v1.0.0

16 Chapter 5. Collection

CHAPTER 6

Method

This module defines the Method class.

class jnpr.space.method.MetaMethod(key, values)
Encapsulates the meta data for a method.

get_media_type(version)
Returns media type modeled in yaml file.

get_request_type(version)
Returns request media type modeled in yaml file.

get_response_type(version)
Returns response media type modeled in yaml file.

class jnpr.space.method.Method(parent, name, mobj)
Represents a method that is exposed by Junos Space REST API. Some examples of methods are:

•exec-rpc on a device (/api/space/device-management/devices/{id}/exec-rpc)

•change-password on a user account (/api/space/user-management/users/{id}/change-password)

get(accept=None)
Performs a GET corresponding to the Method object.

Parameters accept (str) – This can be used to supply a media-type that must be used as the
Accept header in the GET request. This defaults to None and in this case SpaceEZ will use
the media-type modeled in the description file.

Returns A Python object constructed from the response body that Space returned for the GET
request.

Raises jnpr.space.rest.RestException if the GET results in an error response. The
exception’s response attribute will have the full response from Space.

get_href()
Gets the href for this method. If the meta object has its name set as ‘-‘, this returns the href of the parent.
Otherwise, it concatenates the href of the parent object and the name of this method to form the href and
returns it.

Returns The href of this method.

post(accept=None, content_type=None, request_body=None, task_monitor=None, schedule=None,
*args, **kwargs)

This sends a POST request corresponding to this Method object.

Parameters

17

SpaceEZ Documentation, Release v1.0.0

• accept (str) – This can be used to supply a media-type that must be used as the Accept
header in the request. This defaults to None and in this case SpaceEZ will use the media-
type modeled in the description file.

• content_type (str) – This can be used to supply a media-type that must be used as the
Content-Type header in the request. This defaults to None and in this case SpaceEZ will
use the media-type modeled in the description file.

• request_body (str) – This can be used to supply a string that must be used as the
request body in the request. This defaults to None and in this case SpaceEZ will create
the request body using the modeled template, replacing variables with kwargs.

• task_monitor (jnpr.space.async.TaskMonitor) – A TaskMonitor object that can be
used to monitor the progress of the POST request, in case of asynchronous invocations.
You need to check Junos Space API documentation to see if the POST invocation on this
resource has asynchronous semantics and supply the task_monitor parameter only if it
is asynchronous. Otherwise, this will default to None and the method will behave with
synchronous semantics.

• schedule (str) – A string specifying a cron expression for scheduling the execution of
the request on the Space server side. This is applicable only if the POST invocation on this
resource has asynchronous semantics and you want to schedule the execution. Otherwise,
this will default to None.

• kwargs (A variable list of name=value arguments.) – Keyword args of the form
name=value which will be used to substitute variables in a pre-defined template to form
the request body. The template name is specified inside the meta data for this Method
object.

Returns A Python object constructed from the response body that Space returned for the POST
method invocation. In the case of asynchronous invocation, this will represent a Task object
and will contain the unique id of the Task executing the POST request in Space.

Raises jnpr.space.rest.RestException if the POST method results in an error re-
sponse. The exception’s response attribute will have the full response from Space.

jnpr.space.method.get_meta_object(app_name, service_name, method_name, values)
Looks up the meta object for a method based on its fully qualified type name of the form
<service-name>.<method_name> or <app-name>.<service-name>.<method-name>.

Parameters

• app_name (str) – Name of the application.

• service_name (str) – Name of the service.

• method_name (str) – Name of the service.

Returns A jnpr.space.method.MetaMethod object.

18 Chapter 6. Method

CHAPTER 7

Service

This module defines the Service class.

class jnpr.space.service.MetaService(name, values, application=None)
Encapsulates the meta data for a service.

create_collection(service, name)
Creates a collection object corresponding to the given service and name.

Parameters

• service (str) – Name of the parent service.

• name (str) – Name of the collection.

Returns A jnpr.space.collection.Collection object.

create_method(service, name)
Creates a method object corresponding to the given service and name.

Parameters

• service (jnpr.space.service.Service) – Parent service.

• name (str) – Name of the method.

Returns A jnpr.space.method.Method object.

get_application_name()
Returns the name of the containing application if there is one.

get_meta_resource(name)
Returns the MetaResource object with the given name.

Parameters name (str) – Name of the resource.

Returns A jnpr.space.resource.MetaResource object.

class jnpr.space.service.Service(rest_end_point, name, values, application=None)
Represents a service that is exposed by Junos Space REST API. Some examples of services are:

•Device Management (/api/space/device-management)

•User Management (/api/space/user-management)

get_href()
Returns the href of this service.

get_meta_resource(resource_type)
Returns the MetaResource object with the given name.

19

SpaceEZ Documentation, Release v1.0.0

Parameters name (str) – Name of the resource.

Returns A jnpr.space.resource.MetaResource object.

20 Chapter 7. Service

CHAPTER 8

Application

This module defines the Application class.

class jnpr.space.application.Application(rest_end_point, name, values)
Represents an application that is hosted on Junos Space platform. Some examples of applications are:

•Service Now (/api/juniper/servicenow)

•Service Insight (/api/juniper/serviceinsight)

get_href()
Returns the href of this application.

class jnpr.space.application.MetaApplication(name, values)
Encapsulates the meta data for an application.

21

SpaceEZ Documentation, Release v1.0.0

22 Chapter 8. Application

CHAPTER 9

Async

This module defines the TaskMonitor class.

class jnpr.space.async.TaskMonitor(rest_end_point, qname, wait_time=10,
max_consecutive_attempts=10)

Encapsulates the logic required to monitor the progress of tasks using a hornet-q. An instance of this class acts
as a wrapper over a hornet-q. When you instantiate this class, it internally creates a hornet-q with the given
qname. You can then use this TaskMonitor instance when invoking asynchronous APIs using the SpaceEZ
library. Each asynchronous API invocation will create a new task (a.k.a Job) in Junos Space. You can wait for
a single task to complete using the wait_for_task method which returns the ProgressUpdate message
for the task with completion state and status of the task. If you use the same TaskMonitor object to create
multiple tasks, you can wait for the completion of all of them using the wait_for_tasks method which
returns a list of ProgressUpdate messages - one for each task.

The snippet below shows an example where a TaskMonitor is used in creating a discover-devices task and
waiting for its completion:

>>> s = rest.Space(url='https://1.1.1.1',
user='super',
passwd='password')

>>> devs = s.device_management.devices.get()
>>> tm = async.TaskMonitor(s, 'test_DD_q')
>>> result = s.device_management.discover_devices.post(

task_monitor=tm,
hostName='test-host-name',
manageDiscoveredSystemsFlag=True,
userName='regress', password='MaRtInI')

>>> pu = tm.wait_for_task(result.id)
>>> print pu.state, pu.status

Note: If you use multi-threaded programming, make sure that you do not share a TaskMonitor instance
across multiple threads. You should use separate TaskMonitor objects for separate threads.

__init__(rest_end_point, qname, wait_time=10, max_consecutive_attempts=10)
Creates an instance of this class to encapsulate a hornet-q.

Parameters

• rest_end_point – An instance of rest.Space class which encapsulates a Junos
Space system on which tasks need to be monitored.

• qname (str) – The name of the underlying hornet-q.

• wait_time (int) – Number of seconds to sleep between trying to pull progress-update

23

SpaceEZ Documentation, Release v1.0.0

messages from the hornet-q. This is also used as the value of the accept-wait header
when pulling messages from the hornet-q. The default value of this argument is 10.

• max_consecutive_attempts (int) – The maximum number of consecutive attempts
that will be made to pull progress-update messages from the hornet-q. This defaults to 10.
We will consider the task as hanging if we are not able to pull a progress-update message
from the hornet-q after this many attempts.

Returns An instance of this class encapsulating a hornet-q with the given name (qname).

__module__ = ‘jnpr.space.async’

delete()
Cleanup by deleting the hornet-q encapsulated by this object.

get_final_progress_update(pu_message)
Gets the final progress-update message for a job, based on the href inside the pu_message argument
supplied. The pu_message arg is the last progress-update message obtained from a hornet-q and it does
not contain the full result of the job. The progress-update message fetched and returned by this method
will contain the full result inside the data field.

get_queue_url()
Returns the full URL for the encapsulated hornet-q

pull_message()
Pull the next message from the hornet-q. It specifies an accept-wait header with the value that was
given as the wait_time argument in the constructor so that the pull waits for this many seconds on the
server side waiting for a message.

Returns If a message is pulled, it is parsed into a Python object and returned. If no message was
pulled, returns None.

wait_for_task(task_id)
Waits for the given task to complete by periodically pulling progress-update messages from the hornet-q
and checking if the message indicates that the task is Done. The time between consecutive pulls is the
value given as the wait_time argument in the constructor. The maximum number of consecutive pulls
is determined by the max_consecutive_attempts argument in the constructor. If we’re unable to
pull a progress-update message from hornet-q after this many consecutive attempts, we will consider the
task as hanging and this method will raise an Exception.

Note: You should use this method only when you have created one task using this TaskMonitor object. If
you created multiple tasks, you must use the wait_for_tasks() method to wait for their completion.

Returns The final progress-update message for the task is fetched and returned inside a Python
object. The data attribute of this object will contain the full result from the task.

wait_for_tasks(task_id_list)
Waits for all the tasks in the given list to complete by periodically pulling progress-update messages from
the hornet-q and checking if the message indicates that any of the given tasks is Done. The time between
consecutive pulls is the value given as the wait_time argument in the constructor.

The maximum number of consecutive pulls is determined by the max_consecutive_attempts ar-
gument in the constructor. If we’re unable to pull a progress-update message from hornet-q after this many
consecutive attempts, we will consider the tasks as hanging and this method will raise an Exception.

Returns A list of progress-update messages indicating the completion state and status of all the
given tasks. Each entry in the list is a Python object representing the final progress-update
message for a task. The data attribute of this object will contain the full result from the
task.

24 Chapter 9. Async

CHAPTER 10

Factory

A module with functions using which new resource objects can be created. Resources are instances of
jnpr.space.resource.Resource.

jnpr.space.factory.fetch_resource(rest_end_point, href)
This is the method you should use to create a Resource instance if you have the href for it. It gets the current
state of the resource with the given href. Once the current state is fetched from the Space server, this method
creates a new instance of jnpr.space.resource.Resource with this state and returns it.

Parameters

• rest_end_point (jnpr.space.rest.Space) – A Space object encapsulating the Junos
Space cluster which contains this resource.

• href (str) – The href of the resource that needs to be fetched.

Returns A new instance of jnpr.space.resource.Resource

Raises jnpr.space.rest.RestException if the GET request results in an error response.
The exception’s response attribute will have the full response from Space.

jnpr.space.factory.make_resource(type_name, rest_end_point, xml_data=None, at-
tributes=None, parent=None)

Creates a new instance of jnpr.space.resource.Resource based on the given parameters. This method creates it
in-memory locally and not on the Space server. The post() method must be invoked on the Resource object to
get it created on the Space server.

Parameters

• type_name (str) – Fully qualified type name for the Resource to be created. It is of the
format <service_name>.<resource_type>. Some examples are:

– device_management.device

– user_management.user

• rest_end_point (jnpr.space.rest.Space) – A Space object encapsulating the Junos
Space cluster which is to contain this resource.

• xml_data (lxml.etree.Element) – The state of the resource as an XML object. This defaults
to None.

• attributes (dict) – The state of the resource as a dict where the keys are attribute names
and values are attribute values. This defaults to None.

• parent (jnpr.space.collection.Collection) – The parent object of this resource. This de-
faults to None.

25

SpaceEZ Documentation, Release v1.0.0

Returns A new instance of jnpr.space.resource.Resource

26 Chapter 10. Factory

CHAPTER 11

XML Util

A module with utility functions for XML handling.

jnpr.space.xmlutil.cleanup(src)
Some responses from Space contains escaped form for XML special characters. E.g. ‘<’ for ‘<’, etc. This
method removes these escaped notations.

Parameters src (str) – Source string

Returns String with escaped notations replaced.

jnpr.space.xmlutil.get_text_from_response(response)
Returns text from Response object that will be str (unicode) in both python 2 and 3.

jnpr.space.xmlutil.get_xml_obj_from_response(response)
Returns an XML object (lxml.Element) from the text inside the Response object.

jnpr.space.xmlutil.make_xml_name(attr_name)
Convert an attribute name to its XML equivalent by replacing all ‘_’ with ‘-‘. CamelCase names are retained as
such.

Parameters attr_name (str) – Name of the attribute

Returns Attribute name in XML format.

jnpr.space.xmlutil.remove_default_namespace(src)
Remove default xmlns from the given string.

Parameters src (str) – Source string

Returns String with xmlns definitions removed.

jnpr.space.xmlutil.remove_junos_group(src)
Remove XML attribute junos:group from the given string.

Parameters src (str) – Source string

Returns String with junos:group occurrences removed.

jnpr.space.xmlutil.unmake_xml_name(attr_name)
Convert an XML attribute name to its pythonic equivalent by replacing all ‘-‘ with ‘_’. CamelCase names are
retained as such.

Parameters attr_name (str) – Name of the attribute

Returns Attribute name in pythonic format.

jnpr.space.xmlutil.xml2obj(src)
Uses lxml.objectify to parse the given XML string and returns a Python object.

27

SpaceEZ Documentation, Release v1.0.0

Parameters src (str) – Source XML string

Returns An instance of ‘lxml.objectify.ObjectifiedElement‘

28 Chapter 11. XML Util

CHAPTER 12

Indices and tables

• genindex

• modindex

• search

29

SpaceEZ Documentation, Release v1.0.0

30 Chapter 12. Indices and tables

Python Module Index

j
jnpr.space.application, 21
jnpr.space.async, 23
jnpr.space.collection, 13
jnpr.space.factory, 25
jnpr.space.method, 17
jnpr.space.resource, 9
jnpr.space.rest, 5
jnpr.space.service, 19
jnpr.space.xmlutil, 27

31

SpaceEZ Documentation, Release v1.0.0

32 Python Module Index

Index

Symbols
__getattr__() (jnpr.space.rest.Space method), 5
__getitem__() (jnpr.space.rest.Space method), 5
__init__() (jnpr.space.async.TaskMonitor method), 23
__init__() (jnpr.space.rest.Space method), 6
__module__ (jnpr.space.async.TaskMonitor attribute), 24
__weakref__ (jnpr.space.rest.RestException attribute), 5

A
Application (class in jnpr.space.application), 21

C
cleanup() (in module jnpr.space.xmlutil), 27
Collection (class in jnpr.space.collection), 13
create_collection() (jnpr.space.resource.MetaResource

method), 9
create_collection() (jnpr.space.service.MetaService

method), 19
create_method() (jnpr.space.collection.MetaCollection

method), 14
create_method() (jnpr.space.resource.MetaResource

method), 9
create_method() (jnpr.space.service.MetaService

method), 19

D
delete() (jnpr.space.async.TaskMonitor method), 24
delete() (jnpr.space.resource.Resource method), 9
delete() (jnpr.space.rest.Space method), 6

F
fetch_resource() (in module jnpr.space.factory), 25
form_xml() (jnpr.space.resource.Resource method), 9

G
get() (jnpr.space.collection.Collection method), 13
get() (jnpr.space.method.Method method), 17
get() (jnpr.space.resource.Resource method), 10
get() (jnpr.space.rest.Space method), 6

get_application_name() (jnpr.space.service.MetaService
method), 19

get_final_progress_update()
(jnpr.space.async.TaskMonitor method),
24

get_href() (jnpr.space.application.Application method),
21

get_href() (jnpr.space.collection.Collection method), 13
get_href() (jnpr.space.method.Method method), 17
get_href() (jnpr.space.resource.Resource method), 10
get_href() (jnpr.space.service.Service method), 19
get_media_type() (jnpr.space.collection.MetaCollection

method), 14
get_media_type() (jnpr.space.method.MetaMethod

method), 17
get_media_type() (jnpr.space.resource.MetaResource

method), 9
get_meta_object() (in module jnpr.space.collection), 15
get_meta_object() (in module jnpr.space.method), 18
get_meta_object() (in module jnpr.space.resource), 12
get_meta_object() (jnpr.space.resource.Resource

method), 10
get_meta_resource() (jnpr.space.service.MetaService

method), 19
get_meta_resource() (jnpr.space.service.Service method),

19
get_queue_url() (jnpr.space.async.TaskMonitor method),

24
get_request_type() (jnpr.space.method.MetaMethod

method), 17
get_response_type() (jnpr.space.method.MetaMethod

method), 17
get_text_from_response() (in module jnpr.space.xmlutil),

27
get_xml_obj_from_response() (in module

jnpr.space.xmlutil), 27

H
head() (jnpr.space.rest.Space method), 6

33

SpaceEZ Documentation, Release v1.0.0

J
jnpr.space.application (module), 21
jnpr.space.async (module), 23
jnpr.space.collection (module), 13
jnpr.space.factory (module), 25
jnpr.space.method (module), 17
jnpr.space.resource (module), 9
jnpr.space.rest (module), 5
jnpr.space.service (module), 19
jnpr.space.xmlutil (module), 27

L
login() (jnpr.space.rest.Space method), 7
logout() (jnpr.space.rest.Space method), 7

M
make_resource() (in module jnpr.space.factory), 25
make_xml_name() (in module jnpr.space.xmlutil), 27
MetaApplication (class in jnpr.space.application), 21
MetaCollection (class in jnpr.space.collection), 14
MetaMethod (class in jnpr.space.method), 17
MetaResource (class in jnpr.space.resource), 9
MetaService (class in jnpr.space.service), 19
Method (class in jnpr.space.method), 17

P
post() (jnpr.space.collection.Collection method), 13
post() (jnpr.space.method.Method method), 17
post() (jnpr.space.resource.Resource method), 10
post() (jnpr.space.rest.Space method), 7
pull_message() (jnpr.space.async.TaskMonitor method),

24
put() (jnpr.space.resource.Resource method), 11
put() (jnpr.space.rest.Space method), 7

R
remove_default_namespace() (in module

jnpr.space.xmlutil), 27
remove_junos_group() (in module jnpr.space.xmlutil), 27
Resource (class in jnpr.space.resource), 9
ResourceList (class in jnpr.space.collection), 14
RestException, 5

S
Service (class in jnpr.space.service), 19
Space (class in jnpr.space.rest), 5
state() (jnpr.space.collection.Collection method), 14
state() (jnpr.space.collection.ResourceList method), 14
state() (jnpr.space.resource.Resource method), 11

T
TaskMonitor (class in jnpr.space.async), 23

U
unmake_xml_name() (in module jnpr.space.xmlutil), 27

W
wait_for_task() (jnpr.space.async.TaskMonitor method),

24
wait_for_tasks() (jnpr.space.async.TaskMonitor method),

24

X
xml2obj() (in module jnpr.space.xmlutil), 27
xml_data() (jnpr.space.collection.ResourceList method),

14
xml_data() (jnpr.space.resource.Resource method), 11
xml_string() (jnpr.space.collection.ResourceList

method), 15
xml_string() (jnpr.space.resource.Resource method), 11

34 Index

	Class Index
	Module Index
	Rest
	Resource
	Collection
	Method
	Service
	Application
	Async
	Factory
	XML Util
	Indices and tables
	Python Module Index

