

    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/solid/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/solid/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.
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The MIT License (MIT)

Copyright (c) 2015 Gregory Rosenbaum

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.





          

      

      

    

  

    
      
          
            
  
Imms



Imms is a library of persistent [http://en.wikipedia.org/wiki/Persistent_data_structure], and immutable [http://en.wikipedia.org/wiki/Immutable_object] collections for the .NET framework.

It is available on NuGet [https://www.nuget.org/packages/Imms/]. The F# integration library is available here [https://www.nuget.org/packages/Imms.FSharp].


More info on the Imms website [http://imms.github.io].







          

      

      

    

  

    
      
          
            
  
Imms



Imms is a library of persistent [http://en.wikipedia.org/wiki/Persistent_data_structure], and immutable [http://en.wikipedia.org/wiki/Immutable_object] collections for the .NET framework.

It is available on NuGet [https://www.nuget.org/packages/Imms/]. The F# integration library is available here [https://www.nuget.org/packages/Imms.FSharp].

There are a bunch of similar libraries but, well, Imms is better than them in some pretty important respects.


	More Functionality: Imms collections provide more operations than other libraries. A lot of these are unique to immutable collections, such as very fast splitting and concatenation. Others were added for the sake of completeness. For example, maps support key-based joins, ordered sets support slices and retrieval by index, and more.

	Higher Performance: Imms collections typically perform as well or (quite often) a lot better than other collections.

	Lots of Documentation: The public API is largely documented. Every method and type has a informative summary at the very least. There is a lot more that will be done though, especially with exception and performance information.

	LINQ Interface: Imms mostly follows the much more expressive LINQ API [https://msdn.microsoft.com/en-us/library/system.linq.enumerable(v=vs.100).aspx#memberList], rather than duplicating the awkward and seldom-used traditional API [https://msdn.microsoft.com/en-us/library/6sh2ey19(v=vs.110).aspx#idMethods-] found in the Collections namespace.

	High Level of Polish: Imms collections throw the right exceptions at the right times (no NullReferenceExceptions popping up at awkward moments), have a consistent and intuitive API, etc.

	F# Integration: Although Imms itself is written in C# for technical reasons and is primarily targeted for that language, it comes with an optional F# integration library that contains things like module bindings, active patterns, collection builders, and everything else. The test code (exclusively in F#) was written with the aid of this library.

	Tons of other things that don’t fit on this list. For example, the library also provides a nifty Optional type, structural equality for collections, ...



Currently, all library assemblies require .NET Framework 4.0 Client Profile, and all test assemblies require .NET Framework 4.5.1. The F# libraries require F# 3.0.


What is an Immutable Collection

It’s a collection that cannot be modified, but still support all kinds of operations, such as Add and Remove. Instead of modifying the collection, operations such as Add return a new version of the collection, but with the additional modifications.

They’re a lot like .NET strings, where operations such as Replace don’t modify the string, but return a new string instead.

For that matter, they’re also like numbers, where 4 + 1 does not modify the number 4 (which doesn’t even make sense), and instead returns a different number with our ‘modification’ included.

The benefit of immutability is that after string.Replace, the original string hasn’t been changed. After 4 + 1, the number 4 also thankfully remains the same (as far as we know).

Writing an immutable and persistent collection is pretty hard. Or it’s hard to write an efficient one, at least. You can always make an immutable and persistent array by copying the whole thing every time a modification is made, and the problem there is obvious. But collections in libraries such as Imms make use of structural sharing, which makes the collections a lot more practical and efficient, and basically means that small operations still take little time.

Really, there is a lot to be said about immutable collections, or immutability in general. And a lot of people have said it, many of them much more interesting to read than I. So here are some links. Most of them don’t really concern .NET, because immutability is something that works in every language.


	Why immutable collections? [https://scott.mn/2014/04/27/why_immutable_collections/]

	Objects Should Be Immutable [http://www.yegor256.com/2014/06/09/objects-should-be-immutable.html]

	Java theory and practice: To mutate or not to mutate? [http://www.ibm.com/developerworks/library/j-jtp02183/]



For a more thorough discussion on Immutability, I strongly recommend Eric Lippert’s blog and his (still-relevant) series about immutability and C#. It even tells you how to implement one of the data structures in this library! Well, kind of, anyway.


	Eric Lippert: Immutability, Results Page 3 [https://blogs.msdn.microsoft.com/ericlippert/tag/immutability/page/3/]



Then again, I do have a few things to say on the subject as well, so I might write something up about it myself too.




The Collections

Imms provides 5 main collections, divided into 3 groups. These are “building block” type collections and can be used to implement more specialized collections in various ways (in fact, I might do so eventually, if someone else doesn’t beat me to it).


Sequentials

Sequential collections store elements in order. An example of a sequential collection is List<T>.

The primary sequential collection is ImmList,

Imms provides the following sequential collections:


	ImmList: A very versatile sequential collection that supports pretty much every operation you can name, including addition/removal at either end, get and set by index, insert/remove by index, concatenation, splitting, subsequences... all of these are implemented using specialized algorithms that perform up to O(logn).



	ImmVector: Offers less functionality than ImmList, but performs a lot better for some operations. It is generally recommended that you use ImmList for most purposes. ImmVector’s performance approaches mutable collections for some operations.

This collection is greyed out because it needs a bit more work, performance-wise (it’s still great, but it could be better)








Sets

Sets store collections of unique elements. An example of a set is HashSet<T>.

Imms provides the following set collections:


	ImmSet, which is an equality-based set that uses hashing, similarly to HashSet (except that it is immutable, of course).

	ImmSortedSet, which is a comparison-based set that stores elements in order. Supports additional operations, such as retrieval by sort order index.



Both sets support the following various set-theoretic operations. These operations accept an IEnumerable<T>, but are actually significantly faster when the input collection is of the same type and uses the same membership semantics. The sets support the following:


	Add, Remove, Contains, Length, ...

	Intersect, Union, Except, (Symmetric) Difference

	RelatesTo, which returns the set relation as an enumeration (with values such as ProperSubsetOf).

	IsSetRelation-type operations, such as IsSubsetOf.






Maps

Maps store key-value pairs and allow for fast retrieval by the key. They are also known as dictionaries. An example of a map is Dictionary<TKey, TValue>.

Imms provides the following map collections:


	ImmMap, which is equality-based and uses hashing, similarly to Dictionary<,> (except that it is immutable).

	ImmSortedMap, which is ordered by the key. Provides additional operations, such as retrieval by sort order index.



Both maps support set-theoretic operations extended to maps. These operations IEnumerable<T>, but are actually significantly faster when the input collection is of the same type and uses the same key semantics. The maps support the following:


	Add, Remove, Contains, Length, ...

	Join, which is similar to the LINQ operation of the same name, and is analogous to Intersect over sets. You must provide a selector to determine the value in the result map.

	Merge, which combines two maps into one. It’s analogous to Union over sets. You can provide a selector to determine the value in the result map, in case of a duplicate.

	Subtract, which is similar to Except over sets, except that you provide a selector that determines the value in the result map, and this selector may also indicate that the key-value pair should be removed.

	Difference, which is similar to Difference over sets. No selector can be provided in this case.








API Gotcha’s

A few things you should be aware of about the API.


	Length returns the length of a collection, not Count. Count is instead a method that counts the number of items in the collection (like in LINQ).

	Collections don’t have visible constructors. You must construct them using factory methods, e.g. ImmList.Empty<int>().

	Collections support negative indexing (see sections below). This means that things that used to throw exceptions can instead cause unexpected behavior.

	AddLast/AddFirst add items to sequential collections, not Add alone.

	The collections ‘override’ LINQ operations. To use the original LINQ operations (which are lazy and return IEnumerable), use AsEnumerable.

	The collections are sealed.




F# Companion Library


	F# option type is not the same as Imms‘s Optional type. Sorry.

	Instance methods exposed by collections often take parameters of type Func<T>, which isn’t directly compatible with F#’s function objects. To get around this, use the module bindings.

	Some constructs in the Imms.FSharp.Implementation namespace are accessible, but are not meant to be used in user code, and aren’t supported.






Note about Maps and Sets

The set and map collections in this library support custom equality and comparison semantics (by accepting an IComparer<T> or IEqualityComparer<T>). This isn’t as trivial as it sounds.

Remember that these collections use special algorithms for operations such as Intersect and Union. These algorithms only make sense when both collections are compatible, i.e. use the same equality or comparison semantics. Otherwise, the result will be corrupted.

To avoid dangerous and hard to track bugs, Imms collections only use the special algorithms if both collections use the same equi/comp handler. This is determined by calling .Equals. For this reason, if you plan to use a custom handler, you should either:


	Make sure to use the same handler instance for all Imms collections that use that handler. This pattern is made more convenient by extension methods on handlers that lets you use them as ‘factories’ of collections. An example is IComparer<T>.CreateSortedSet.

	Override .Equals on your custom handler to support functional equality.



If Imms decides that the comparison handlers are different, a generic implementation will be used, which can be significantly slower. That is to say, the implementation is as slow as what some other collection libraries use.






Extra Features


Compatibility Interfaces

Imms collections implement various interfaces such as IList<T> and others for the sake of compatibility.




Implicit Optimization

Although re-iterated in other parts, it is worth noting here as well. Imms allows you to specify an IEnumerable<T> for many operations.

However, operations can often be much faster (sometimes by several orders of magnitude) if the input is a collection of the same type. When this applies, it will be noted in the description.

Milder performance benefits can also be achieved for other known collection types.

This approach is chosen because otherwise, collections would be cluttered up by many methods that essentially do the same thing.




LINQ Implementation

Imms collections implement ‘override’ LINQ operations so that they return a collection of the same kind. This is usually very convenient. In addition, the implementation is generally much faster than the generic LINQ implementation for various reasons.

You can still use the default LINQ operations by calling AsEnumerable.




Optional type

Imms provides an optional value type. An optional value type is used to indicate a possibly missing value. It is similar to how we sometimes us int? to indicate the possibility of a missing integer.

This option type is called Optional<T> and has two ‘states’:


	Some(v), in which state the object wraps a value v of type T.

	None, in which state the object indicates a missing value.



It’s really very similar to a nullable type, except that it can be used on reference types as well. You can even have Optional<Optional<T>>.

Optional<T> is a struct, which has many advantages. For example, you can always view it in the debugger, you can always call methods such as ToString() on it, you can always recover what missing T it represents, etc. It is initialized to None by default.

Imms provides a variety of methods to work with optional values, such as Map.


Use in Imms

The optional value type is used quite frequently. Generally, any method like bool TryX(object,out T) is instead written with the more elegant, Optional<T> TryX(object).

Another example is the method Choose, which is similar to Select, except that it takes a selector of the form Func<T, Optional<TOut>> and returning None indicates that the value should be ignored.






Convenience Features

The library offers the following minor features:


Negative Indexing

Every operation supports negative indexes, which indicate distance from the end of the list.

For example, list[-1] gets the last item of list and list[-3] gets the third one from the end. Using negative indexing, list[-list.Length] gets the first item.




Slices Indexer

Collections that support indexing allow you to get a slice of the collection using the [int,int] indexer. For example, the following gives you a slice starting with index 2 and stretching to the end of the list: list[2, -1].




Sequence Equality

Imms‘s sequential collections implement structural equality, overriding Equals and GetHashCode, as well as the == operator.

For two collections to be equal, they must be of the exact same type, and must also contain the same sequence of elements.

The equality comparer used to equate elements is the default equality comparer, and this cannot be changed. However, the SequenceEquals method lets you provide your own comparer.






F# Integration

Imms is written primarily in C# and targets that language. But the library has a separate companion assembly, Imms.FSharp, that provides various extensions and modules for use with F#.

These modules were heavily used in performance and integrity testing.

Here are some example features:


	Special F# operators for adding elements to collections, and concatenating them.

	Module bindings for most of the instance-level operations.

	Generic active patterns for decomposing collections in various ways.

	Computational expressions (aka monads) for constructing Imms collections. You can also construct maps and sets in this way.








Performance

To see up to date benchmarks you can go to the benchmarks folder [https://github.com/GregRos/**Imms**/tree/master/**Imms**/**Imms**.Tests.Performance/Benchmarks]. Each set of benchmarks includes charts, a CSV table, and a CSV log file with explicit information about the parameters of the benchmark. The log files are very detailed.

The benchmarking system itself is available in the namespace Imms.Tests.Performance. It really is a system, and the way it works is quite complicated. However, running it is quite self-explanatory. There are lots of settings you can tweak.

It’s written in F#, and heavily uses (or perhaps abuses is a better word) the inline functions feature, which basically allows performance test code to be generated implicitly, so that the human-written code is generic, but still executes with very little overhead. I’ll write an article about it at some point, as it involves concepts that can be reused.


Sequential Collections


Complexity

Here is an overview of the time complexity of the operations offered by the different sequential collections. Note that time complexity is not always a good indicator of performance in the real world.

| Collection/Operation | AddFirst     | AddFirstRange | Concat  | AddLast      | AddLastRange | RemoveFirst  | RemoveLast   | Insert  | InsertRange | InsertConcat | Lookup  | Remove  | Skip    | Take    | Update  |
|----------------------|--------------|---------------|---------|--------------|--------------|--------------|--------------|---------|-------------|--------------|---------|---------|---------|---------|---------|
| FSharpx.Deque        | O(1)         | O(m)          | X       | O(1)         | O(m)         | O(1)/O(n)    | O(1)/O(n)    | X       | X           | X            | X       | X       | X       | X       | X       |
| FSharpx.Vector       | X            | X             | X       | O(logn)      | O(m log s)   | X            | O(logn)      | X       | X           | X            | O(logn) | X       | X       | X       | O(logn) |
| ImmList              | O(1)/O(logn) | O(m)/?        | O(logn) | O(1)/O(logn) | O(m)/?       | O(1)/O(logn) | O(1)/O(logn) | O(logn) | O(m + logn) | O(logn)      | O(logn) | O(logn) | O(logn) | O(logn) | O(logn) |
| ImmVector            | X            | O(m + n)      | X       | O(logn)      | O(m + logn)  | X            | O(logn)      | X       | O(m + n)    | X            | O(logn) | X       | O(n)    | O(logn) | O(logn) |
| System.ImmutableList | O(logn)      | O(m log s)    | X       | O(logn)      | O(m log s)   | O(logn)      | O(logn)      | O(logn) | O(m log s)  | X            | O(logn) | O(logn) | O(n)    | O(n)    | O(logn) |

X   Operation is unavailable
/   Means that the complexity to the left is amortized. Worst case is to the right.
?   I have no idea what the complexity is here
n   length of the target collection
m   length of the input collection (where applicable)
s   m + n








Benchmarks

These are the benchmark results for the sequential collections, compared with similar collections in different libraries. Different benchmark settings can yield somewhat different results.

| Collection/Test      | AddFirst | AddFirstRange | AddFirstRange (concat) | AddLast | AddLastRange | AddLastRange (concat) | IEnumerator | Insert | Insert Range | Insert Range (concat) | Iterate | Lookup | Remove | RemoveFirst | RemoveLast | Skip  | Take  | Update |
|----------------------|----------|---------------|------------------------|---------|--------------|-----------------------|-------------|--------|--------------|-----------------------|---------|--------|--------|-------------|------------|-------|-------|--------|
| FSharpx.Deque        | 0.448    | 1.987         | 2.229                  | 0.414   | 1.802        | 2.437                 | 0.172       | X      | X            | X                     | 0.23    | X      | X      | 0.33        | 1.208      | X     | X     | X      |
| FSharpx.Vector       | X        | X             | X                      | 1.208   | 6.212        | 6.604                 | 0.15        | X      | X            | X                     | 0.197   | 0.282  | X      | X           | 4.381      | X     | X     | 5.983  |
| ImmList              | 2.139    | 1.651         | 0.011                  | 2.006   | 1.834        | 0.012                 | 0.425       | 14.892 | 1.793        | 0.025                 | 0.092   | 1.548  | 10.395 | 0.948       | 0.969      | 0.007 | 0.008 | 6.6    |
| ImmVector            | X        | 0.64          | 0.538                  | 2.504   | 0.102        | 0.273                 | 0.115       | X      | 0.378        | 0.546                 | 0.032   | 0.415  | X      | X           | 2.21       | 0.161 | 0.002 | 2.853  |
| System.ImmutableList | 9.618    | 17.089        | 22.52                  | 9.508   | 17.148       | 22.937                | 1.612       | 11.69  | 17.947       | 23.7                  | 1.923   | 1.161  | 8.048  | 4.812       | 5.261      | 1.817 | 1.376 | 5.07   |










Sets


Time Complexity

The following is the time complexity of Imms sets for different operations. Time complexity is much better when the two inputs are sets of the same type and with the same membership semantics.

I don’t have similar data about sets from other libraries.

| Set Operation           | Compatible                  | Naive             
|-------------------------|-----------------------------|-------------------
| Add, Remove, Contains   | logn                        |                   
| IsSuperset/IsSubset/etc | min(m,n)                    | m logm + min(m, n)
| Intersect               | min(m logn, n logm, m + n)* | m (logn + logm)   
| Union                   | min(m logn, n logm, m + n)* | m log(m + n)      
| Except                  | min(m logn, n logm, m + n)* | m log n           
| Xor / Sym. Difference   | min(m logn, n logm, m + n)* | (m + n) log(m + n)
* Heuristically, based on the original algorithms.  





The naive option is used when one of the collections is not a set. Note that in pretty much all cases, operations between two compatible sets take time proportional to the smaller of the two.




Benchmarks

(Note strings were used to benchmark the collections. F#’s ordered map and set force ordinal comparison for strings, which generally means that the collections can’t order strings properly, but perform better)

Like I implied in the previous section, in order to properly appreciate the performance of sets you have to test them at different numbers of elements, and with different types of elements. Comparison-based sets don’t do very well with long string-based keys, but the opposite is true for integer keys.

In this benchmark, the input collection and the target collection both had 10,000 elements (for AddRange, etc), and the key was string based.

| Collection/Test           | Add     | AddRange | Contains | Difference | Except | IEnumerator | Intersection | IsProperSubset | IsProperSuperset | Iterate | Remove | RemoveRange | SetEquals | Union  |
|---------------------------|---------|----------|----------|------------|--------|-------------|--------------|----------------|------------------|---------|--------|-------------|-----------|--------|
| FSharp.Set                | 61.475  | 61.298   | 3.109    | 118.343    | 46.464 | 0.605       | 9.833        | 0.002          | 0.002            | 0.756   | 12.53  | 25.874      | 0.007     | 21.08  |
| ImmSet                    | 53.953  | 21.787   | 1.773    | 21.722     | 7.295  | 0.984       | 8.105        | 0.002          | 0.001            | 0.25    | 5.979  | 9.274       | 0.005     | 10.429 |
| ImmSortedSet             | 109.294 | 60.933   | 15.481   | 47.394     | 16.212 | 0.78        | 36.875       | 0.002          | 0.001            | 0.12    | 20.646 | 33.55       | 0.006     | 17.64  |
| System.ImmutableSet       | 75.933  | 38.076   | 2.368    | 106.883    | 18.302 | 3.737       | 18.279       | 14.165         | 0.008            | 4.326   | 14.685 | 18.173      | 14.092    | 49.788 |
| System.ImmutableSortedSet | 100.757 | 79.588   | 17.452   | 306.202    | 74.829 | 2.424       | 65.854       | 50.431         | 0.019            | 2.956   | 24.725 | 40.408      | 49.866    | 91.959 |





Here is another set of benchmarks in which the target collection has 100 elements but the input collection has 10,000 elements (relevant for operations with an input collection). It demonstrates how performance scales with the size of the smaller collection.

| Collection/Test           | Add    | AddRange | Contains | Difference | Except | IEnumerator | Intersection | IsProperSubset | IsProperSuperset | Iterate | Remove | RemoveRange | SetEquals | Union  |
|---------------------------|--------|----------|----------|------------|--------|-------------|--------------|----------------|------------------|---------|--------|-------------|-----------|--------|
| FSharp.Set                | 47.892 | 47.515   | 1.03     | 18.364     | 17.115 | 0.61        | 3.474        | 0.002          | 0.002            | 0.01    | 3.896  | 0.096       | 0.006     | 0.395  |
| ImmSet                    | 43.781 | 15.273   | 0.566    | 0.686      | 0.327  | 0.852       | 0.226        | 0.006          | 0.001            | 0.004   | 3.106  | 0.039       | 0.002     | 0.282  |
| ImmSortedSet             | 75.199 | 41.317   | 7.678    | 1.572      | 0.51   | 0.747       | 0.912        | 0.009          | 0.001            | 0.001   | 10.715 | 0.146       | 0.001     | 0.613  |
| System.ImmutableSet       | 64.296 | 32.131   | 1.36     | 47.848     | 16.171 | 3.702       | 15.645       | 16.928         | 0.008            | 0.053   | 7.665  | 0.104       | 14.281    | 43.856 |
| System.ImmutableSortedSet | 87.077 | 57.689   | 7.742    | 126.132    | 37.829 | 2.46        | 39.116       | 75.305         | 0.011            | 0.037   | 11.961 | 0.181       | 49.086    | 0.802  |










Maps and dictionaries


Benchmarks

Technical Note: System.Collections.Immutable dictionaries have a mechanism that checks whether values are equal (using the default equality comparer), and if they are, it doesn’t update them. I forced this mechanism off for the purpose of this benchmark because of the way I generate data (as identical key-value pairs).

| Collection/Test            | Add     | AddRange | IEnumerator | Iterate | Lookup | RemoveKey | RemoveRange |
|----------------------------|---------|----------|-------------|---------|--------|-----------|-------------|
| FSharp.Map                 | 63.886  | 63.895   | 0.648       | 0.823   | 3.266  | 13.633    | 28.199      |
| ImmMap                     | 57.989  | 25.13    | 0.845       | 0.414   | 1.837  | 9.445     | 9.499       |
| ImmSortedMap              | 100.089 | 68.299   | 0.664       | 0.27    | 15.43  | 22.604    | 33.056      |
| System.ImmutableDict       | 99.958  | 47.393   | 3.819       | 4.351   | 2.702  | 23.377    | 20.237      |
| System.ImmutableSortedDict | 101.172 | 75.326   | 2.084       | 2.674   | 15.63  | 28.808    | 42.563      |












Possibilities

Imms is designed with users directly in mind. However, its combination of power and performance can provide the basis for other libraries. Here are some of the things that could be implemented using the features provided by Imms:


	Mutable, observable, thread-safe collections supporting such things as implicit copying, snapshots, and history tracking (undo/redo).

	An immutable workflow object, composed of individual computation steps, which is also catenable.

	Various specialized collections, such as immutable and persistent multimaps, multisets, and priority queues.

	An immutable lazy list, with caching functionality and concatenation.









          

      

      

    

  

    
      
          
            
  
Beware all ye who enter here

This part of the library contains aggressively optimized data structure code that discards all semblance of good OOP design (or any other form of good design, or indeed the very concept of ‘good’ itself) in order to reduce overhead.

Every allocation is seen as a sin and every method call as a potential hurdle.

All sorts of weird things are done, largely to encourage the JITter to inline method calls.

This is why reviewing the code with an eye towards such frippery as DRY, single responsibility principles, design patterns, and so forth, is wrong.

This library’s whole point is high performance. If high performance is sacrificed for good design, we have a well-designed piece of junk.

Here are some examples of the kinds of optimizations that are done. Note that no object in the Implementation namespace is meant to be user-visible.


	Fields are always used instead of property accessors. This is to avoid unnecessary method calls. It is true that the JITter is supposed to inline simple method calls, but the process is totally opaque and properties have no advantage over fields in this case. It sounds like a bigger headache to track down method calls that fail to be inlined for whatever reason.

	Fields are public, just to make sure some kind of accessibility/security related issue don’t discourage the JITter from inlining method calls when it should.

	#If directives are usually used instead of the Conditional attribute because it’s easier to control which parts get excluded







          

      

      

    

  

    
      
          
            
  
FingerTree

This is an implementation of a 2-3(-4) finger tree, but it’s somewhat different from the source for many reasons.


Differences

Firstly, I use a lot of imperative constructs and some safe mutation behind the scenes in order to improve performance. Object allocation is expensive in .NET, so it’s usually better to reuse old objects rather than to construct new ones, if this can be done without affecting the data structure’s overall persistence and immutability, as seen from the user’s point of view. More discussion about how safe mutation is achieved can be found in other places.

Secondly, the structure of the finger tree is somewhat different.


	The original version had a Tree, a Digit (1/2/3/4), and Node2/Node3 (as well as, possibly, a Leaf). This one just has a Tree, Digit, and Leaf. Digit is used for nodes as well as digits. This removes some of the allocation overhead.

	In order to allow other optimizations, there is a single Digit object with 4 fields (some of which may be empty), rather than different digit objects for each digit type. The rule of the finger tree is still obeyed for addition/removal from the ends: only Digit objects containing 2 or 3 elements may be found inside the deeper tree as elements. Insertion in the middle breaks this rule somewhat, allowing digits in the middle to have 4 elements, but this does not worsen the complexity or performance.

	In the original finger tree, Tree has three cases: Empty, Single v, and Deep where Single v contains a single element. In this version, Single contains one digit instead, which itself may contain from 1 to 4 elements. The original reason behind this was simply a misunderstanding, but it actually makes some algorithms simpler, like split and concat.



As is the case with many implementations, this one is specialized for sequences, rather than using arbitrary measures. You could transform the code so the measure is a max measure instead, for a priority queue, but you’d have to do it rather carefully, as the data structure wasn’t written for this directly in mind.

This is a massive class, no doubt about it, and very complicated. I’m using the same class structure as for the other data structures.

FingerTree<TValue> is a static partial container class that contains most of the classes involved in the implementation of a finger tree containing leaf values of type TValue. In this structure, all finger tree classes are aware of the leaf value, even though the deeper trees don’t store values of that type directly. This gets rid of some of the overhead involved in the finger tree.

FingerTree shares the common TValue parameter among multiple classes, so I don’t have to parameterize every class unnecessarily.


	The finger tree case classes.

	The digit class.



It also shares the TChild parameter, which specifies the immediate children of the data structure. For a level 1 tree, this would be Leaf<TValue>, giving the type FingerTree<TValue>.FTree<Leaf<TValue>>. For a level 2 tree, it would be FingerTree<TValue>.FTree<Leaf<TValue>>.Digit, or just Digit when I refer to it inside a level 1 tree, giving the type (again, in the level 1 tree) FTree<Digit>.


Iteration

A big problem of my earlier FingerTree implementations and FingerTree implementations in general is iteration using an IEnumerator. Naively, we might iterate over an FTree recursively:

let rec iterateDigit digit = seq {
    | One a -> yield! iterateDigit a
    | Two a b ->
        yield! iterateDigit a
        yield! iterateDigit b
    | Three a b c ->
        // ... 
}

let rec iterateTree ftree = seq  {
    match ftree with
    | Empty -> ()
    | Single digit -> yield! iterateDigit digit
    | Compound left deep right -> 
        yield! iterateDigit left
        yield! iterateTree deep
        yield! iterateDigit right
}





Now, this obviously works, but the problem is that each yield! call involves allocating a new object. And there is no benefit to this additional cost, as the process is still mutable.

The problem with iterating over the FTree using any other way, is that as we go deeper into the tree, type information becomes very complicated and impossible to abstract over.

So basically, we hide all of that type information behind FingerTreeElement. We simply treat every finger tree node (which includes an FTree) as a node in a tree with some number of children.
For example, a Compound FTree has 3 children (some of which may be empty), a Single has 1 child and a Digit has 1-4 children.
We iterate over the tree using a stack (an array list, not a linked list) by iterating over every child of every node, ignoring the node’s actual type. The HasValue property tells if a given node has a value (i.e. is a leaf) or not. We only try to get the values of nodes that have them.




Insertion & Removal

This finger tree has custom algorithms for insertion and removal in the middle which perform several times faster than naive algorithms (by “naive” I mean, efficient split followed by Add, followed by efficient concat).

However, they are obviously still O(logn), but they are optimal in terms of allocations performed.
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