
Softinux Base Documentation
Documentation

Release Latest

Benjamin Nolmans, Barbara Post

Jul 16, 2019

Installation

1 SOFTINUX Base Documentation 1

2 Basic Concepts 3

Index 29

i

ii

CHAPTER 1

SOFTINUX Base Documentation

Warning: The documentation is not complete and therefore undergoes frequent changes.

SOFTINUX Base is a free, open source and cross-platform based on and framework. It runs on Windows, Mac and
Linux. It is built using the best and the most modern tools and languages.

It is completely modular and extendable.

Using the features of the underlying ExtCore framework you can easily create your own extensions to extend its
functionality.

1

Softinux Base Documentation Documentation, Release Latest

2 Chapter 1. SOFTINUX Base Documentation

CHAPTER 2

Basic Concepts

Softinux Base is a framework that looks like a .NET Core web application, but is intended to host mini web applications
called extensions. Every extension will plug its content (pages, menu items) as well as security and authentication
related items (permissions, roles, links. . .).

Base manages the common stuff so that the developer can focus on its extension and business logic, just having
to provide what we call metadata to know how to display and authorize access to content, and use our version of
Authorize attribute.

2.1 Installation

2.1.1 Restore npm packages

After cloning Base repository, go to Barebone folder and run npm ci --save-dev command so that dependencies
packages are installed and settings updated.

Note: You must have to restore web dependencies.

2.1.2 Restore nuGet packages

Restoring the nuGet packages is now an implicit command executed at application build so you don’t need to do it
manually.

2.1.3 Update database with migration

Go to WebApplication folder and run dotnet ef database update.
This will create the database.
See appsettings.json (“ConnectionStrings:Default” section) for database path.

3

Softinux Base Documentation Documentation, Release Latest

The Entity Framework database context is defined in web application’s Startup.cs (line with
services_.AddDbContext<...).
We use Sqlite but you can change this easily.

2.1.4 Build the application

Go to the root folder and run bp.bat under Windows or bp.sh under Linux/Macos. (use -h for help).

Note: You must have to compile and build the application.

2.1.5 Configure the application

The application have some values to configure in appsettings.json file.
Theses values are stored into sections:
- Extensions : this is the path to find Extensions. Important : see extensions folder.
If you wish to change this path, read what changes to make.
- ConnectionStrings : the connection configuration to database. See to help you configure.
- Corporate : the name and logo for the application
- RestSeed : identification used to create admin user.

See configuration section for a full explanation.

2.1.6 Run the app

Warning: Remove the SeedDatabase.dll to avoid any attempt to create a new administrator. See RestSeed
configuration section.

Go to WebApplication folder and type dotnet run.
(If you want, you can also execute from root solution folder with this command dotnet run --project
WebApplication\WebApplication.csproj).

After that, the application is available on http://localhost:5000/

Note about Visual Studio 2017

If you launched application from Visual Studio, this port will change, being randomly defined, and value is stored in
WebApplication/Properties/launchSettings.json
You can edit this value in Visual Studio: WebApplication’s properties > Debug tab > Web Server Settings/App URL
or directly in launchSettings file.
After, the default port used by dotnet run is the port defined in WebApplication/Properties/launchSettings.json.

4 Chapter 2. Basic Concepts

http://localhost:5000/

Softinux Base Documentation Documentation, Release Latest

Note about Rider 2017.3

Rider 2017.3 cannot execute the PostBuildEvent declared into WebApplication.csproj
You need to execute ./bp.sh copyexts and ./bp.sh copydeps after building the solution or project.
Have a look after Rider useful configuration section.

2.1.7 Add the administrator user

With Postman (or the program of your choice) make a POST request to this url:
http://localhost:5000/dev/seed/create-user
By command line:

• curl: curl -i -X POST -H 'Content-Type: application/json' http://
localhost:5000/dev/seed/create-user -d {}

• powershell: Invoke-WebRequest -Uri http://localhost:5000/dev/seed/create-user
-Method POST

This will create the administrator user with general permissions.

Note: Actually, we creating demo user. The first user is johndoe.

2.1.8 Login with demo user

user: johndoe@softinux.com or johndoe
password: 123_Password
(password is case sensitive)

2.2 Configuration

The configuration is stored into appsettings.json file.
Only the following sections are read by Base:

• Extensions

• ConnectionStrings

• Corporate

• RestSeed

• SignIn

• LockoutUser

• ValidateUser

• PasswordStrategy

• ConfigureApplicationCookie

• Logging

2.2. Configuration 5

http://localhost:5000/dev/seed/create-user

Softinux Base Documentation Documentation, Release Latest

• Serilog

You can add others sections, but it’s up to you to read them.

2.2.1 Extensions

By default, extensions ares stored into WebApplication/Extensions folder.
But you can change this if you need. If you make that, you must change the variables into the build script:

• bp.bat for windows

• bp.sh for *nix system.

You have four variables :

• netVersion: folder name defined by .NET Core TargetFramework tag into cs proj file.

• ext_folder: extensions folder path.

• dep_folder: dependencies folder path.

• pub_folder: publish folder path.

:: set .NET output folder name (use .NET Core version defined into csproj files)
set netVersion="netcoreapp2.2"
:: Extensions folder
set ext_folder=".\WebApplication\Extensions\"
:: Dependencies folder
set dep_folder=".\WebApplication\bin\Debug\%netVersion%\"
:: Publish folder
set pub_folder=".\WebApplication\bin\Debug\%netVersion%\publish"

2.2.2 ConnectionStrings

In this section, you can configure your database connection.
The file come with commented examples of connections strings.

"ConnectionStrings": {
// Please use '/' for directory separator
"Default": "Data Source=basedb.sqlite"
// SqlServer
//"Default": "Data Source=localhost;Initial Catalog=Softinux;

→˓MultipleActiveResultSets=True;Persist Security Info=True;User ID=softinux;Password=?
→˓"

// PostgreSql
//"Default": "Host=localhost;Port=5432;Database=softinux;Pooling=true;User

→˓ID=softinux;Password=?;"
// localdb
//"Default": "Data Source=(localdb)\mssqllocaldb;Database=softinux;Trusted_

→˓Connection=True;MultipleActiveResultSets=true"
}

6 Chapter 2. Basic Concepts

Softinux Base Documentation Documentation, Release Latest

2.2.3 Corporate

Here you can set you Company name and logo.

"Corporate": {
"Name": "SOFTINUX",
"BrandLogo": "softinux_logo-bg-transparent.png"

}

The logo is to be place into : wwwroot\img

2.2.4 RestSeed

Here is the SECRET configuration for create first user.
The first user is the application administrator.

"RestSeed": {
"UserName": "",
"UserPassword": "",
"Id": "",
"Guid": ""

}

You need to set these values.
Id and Guid is used into REST api call to create admin user.

Warning: Is strongly recommended to remove the SeedDatabase.dll to avoid any attempt to create a new
administrator. This can happen if you change the information in the configuration file and restart the application.

2.2.5 SignIn, LockoutUser, ValidateUser, PasswordStrategy, ConfigureApplication-
Cookie

These settings are used by .

2.2.6 Logging

This is the standard .NET Core Logging configuration.

2.2.7 Serilog

This is the nuGet package configuration. This allows to log to a file.

Here we’ll describe what to know about extensions and how to customize things.

2.2. Configuration 7

Softinux Base Documentation Documentation, Release Latest

2.3 Extension structure

2.3.1 ExtCore concepts

Read ExtCore documentation to learn about extensions and how they are structured into several projects.

2.3.2 Embedded resources

In your .csproj, you’ll find this:

<ItemGroup>
<EmbeddedResource Include="Styles**;Scripts***.min.js;Views**" />

</ItemGroup>

So that your embedded styles, scripts and views are embedded.

You’ll also find complementary stuff like this, to be sure that any file used in your project but provided by another
project is correctly built as an embedded resource only:

<ItemGroup>
<None Remove="Views\SomeView.cshtml" />
<None Remove="... path_to_some_file_of_other_project.js" />

</ItemGroup>
<ItemGroup>

<EmbeddedResource Include="... path_to_some_file_of_other_project.js" />
</ItemGroup>

2.3.3 Bundling

Bundling is a convenient way to save bandwith and processor time when dealing with .css files etc. This is not specific
to our project but we share our preferred way of doing this, so you would do the same in your extension project:

We use a bundleconfig.json file in concerned projects and the .csproj contains something like this:

<DotNetCliToolReference Include="BundlerMinifier.Core" Version="2.8.391" />

As a side note, embedded resources are bundled first.

2.3.4 Base’s common interface

In your extension main project, a class should implement the Infrastructure.IExtensionMetadata inter-
face, so that the application knows what the extension provides in matter of display (menu items. . .).

We usually name it ExtensionMetadata.

Menu groups and menu items

Menu groups are ordered by position then alphabetically.
They’re not displayed if they contain no menu items. The first occurrence of a menu group defines the associated
icon. Menu items (of a menu group) are ordered by position.

8 Chapter 2. Basic Concepts

http://docs.extcore.net/en/latest/

Softinux Base Documentation Documentation, Release Latest

General useful properties

Base.Infrastructure.IExtensionMetadata and ExtCore.Infrastructure.
IExtensionMetadata interfaces will require implementation of some properties. We recommend using
the following code, using assembly attributes.

/// <summary>
/// Gets the current assembly object.
/// </summary>
public Assembly CurrentAssembly => Assembly.GetExecutingAssembly();

/// <summary>
/// Gets the full path with assembly name.
/// </summary>
public string CurrentAssemblyPath => CurrentAssembly.Location;

/// <summary>
/// Gets the name of the extension.
/// </summary>
public string Name => CurrentAssembly.GetName().Name;

/// <summary>
/// Gets the URL of the extension.
/// </summary>
public string Url => Attribute.GetCustomAttribute(CurrentAssembly,
→˓typeof(AssemblyTitleAttribute)).ToString();

/// <summary>
/// Gets the version of the extension.
/// </summary>
public string Version => Attribute.GetCustomAttribute(CurrentAssembly,
→˓typeof(AssemblyVersionAttribute)).ToString();

/// <summary>
/// Gets the authors of the extension (separated by commas).
/// </summary>
public string Authors => Attribute.GetCustomAttribute(CurrentAssembly,
→˓typeof(AssemblyCompanyAttribute)).ToString();

/// <summary>
/// Gets the description of the extension (separated by commas).
/// </summary>
public string Description => Attribute.GetCustomAttribute(CurrentAssembly,
→˓typeof(AssemblyDescriptionAttribute)).ToString();

2.3.5 MVC structure

Controllers

Your controllers should inherit from Infrastructure.ControllerBase so that you have access to storage
layer (IStorage) and optionally logging (ILoggerFactory).

2.3. Extension structure 9

https://docs.microsoft.com/en-us/dotnet/core/tools/csproj#assemblyinfo-properties

Softinux Base Documentation Documentation, Release Latest

Additional configuration to web application

Any implementation of the ExtCore.Infrastructure.Actions.IConfigureServicesAction
interface allows you to define your injections to the web application services container.
Please use Priority above 1000, the values below are reserved to project.

2.3.6 Utilities

Logging

When you need logging, use ILoggerFactory from your controller and instantiate a private logger in your class
with:

ILogger _logger = _loggerFactory.CreateLogger(GetType().FullName);

Then you can adjust log level in app’s configuration.

2.3.7 Authentication

Introduction

Our application uses claims to grant access to protected pages.
The Security.Common extension manages authenticated access to the application by decorating controllers or
controllers’ methods.
The Security extensions allows to manage authentication data (administration).

Permissions, Scopes and Claims

An extension defines its scope (assembly simple name) so that the Admin, Write and Read permissions are granted
by scope. There is also the global scope that is named “Security”.
In administration interface you can manage how the permissions are granted.

In your extensions controllers, use PermissionRequirementAttribute or
AnyPermissionRequirementAttribute attribute from Security.Common.Attributes.
Then provide the permission level (see Security.Common.Enums.Permission enumeration) and scope
(extension assembly short name without the version and culture stuff).

A custom claim of type Permission will be created for every scope, its value being the highest permission level.
For example, if the Write and Read checkboxes are checked for a given scope in administration page, the highest
granted permission level is Write and the claim will have Write value.

You will be able to use it to filter menu items too (work in progress, issue #9).

10 Chapter 2. Basic Concepts

https://github.com/SOFTINUX/Base/issues/9

Softinux Base Documentation Documentation, Release Latest

2.4 Create your extensions

Warning: You cannot place your web application’s Extensions folder to another drive. See #2981

You can use Visual Studio 2017, Visual Studio Code or JetBrains Rider to make your own extension. If you decide to
use Visual Studio, be aware that projects are not compatible with Visual Studio 2015.

2.4.1 What there is to know

Warning: You cannot place your web application’s Extensions folder to another drive. See #2981

You can use Visual Studio 2017, Visual Studio Code or JetBrains Rider to make your own extension. If you decide to
use Visual Studio, be aware that projects are not compatible with Visual Studio 2015.

In this section, we talking of SampleApi. This project is availiable on Github to :

Todo: add git repos for sample app

2.4.2 New Extension with Base source

Use Base solution and add your extension code into it.

Add a new project

Using command-line (easy and cross-platform):

$ dotnet new classlib -o <your_new_project> -f netcoreapp2.2

Assuming Base’s Infrastructure framework version is 2.2. Check its .csproj file.

If you don’t specify framework version, it will default to netstandardxxx, which is not what we expect.

Add project reference to the solution

Go to solution folder and type:

$ dotnet sln add <path_to_your_new_project_csproj>

Write your code

In your new project, add a reference to Base’s Infrastructure and also Security.Common.
Then create a ExtensionMetadata class that implements Infrastructure.IExtensionMetadata.

Have a look at write your extensions, feel free to open issues for questions.

2.4. Create your extensions 11

https://github.com/dotnet/core-setup/issues/2981#issuecomment-322572374
https://www.visualstudio.com/fr/downloads/
https://code.visualstudio.com/
https://www.jetbrains.com/rider/
https://github.com/dotnet/core-setup/issues/2981#issuecomment-322572374
https://www.visualstudio.com/fr/downloads/
https://code.visualstudio.com/
https://www.jetbrains.com/rider/

Softinux Base Documentation Documentation, Release Latest

2.4.3 Using Base as dependency

Use your own solution and Base as a dependency. This is an alternative to using Base’s solution.

Configure a new project with Visual Studio 2017/2019

Create new solution with a new ASP.NET Core project targeted on framework .NET Core 2.2.

Creation in Visual Studio 2019

Creation in Visual Studio 2017

Verification

Check if your new project is targeted on framework .NET Core 2.2.

Add references

Add references to the Base and ExtCore (ExtCore is a dependency of Base).

12 Chapter 2. Basic Concepts

Softinux Base Documentation Documentation, Release Latest

2.4. Create your extensions 13

Softinux Base Documentation Documentation, Release Latest

14 Chapter 2. Basic Concepts

Softinux Base Documentation Documentation, Release Latest

Fig. 1: Project properties, Application tab.

2.4. Create your extensions 15

Softinux Base Documentation Documentation, Release Latest

Configure pre-build scripts

Before building, you need to copy all Base dependencies to $(SolutionDir)$(OutDir) folder:

Configure post-build scripts

After building, you need to copy your extension into Base’s extensions folder:

Configure debug tab

Most important, configure debugging. Your extension is a partial app and is not directly executed. Here is how to
configure your application to enable possibility of debugging.

16 Chapter 2. Basic Concepts

Softinux Base Documentation Documentation, Release Latest

Now, you can debug your extension into Visual Studio.

With commande line and Visual Studio Code

Create a new project

$ dotnet new classlib -o <your_new_project> -f netcoreapp2.2

Open your new .csproj file and adapt it with highlighted lines as in example:

Listing 1: SampleApi csproj file

1 <Project Sdk="Microsoft.NET.Sdk.Web">
2

3 <PropertyGroup>
4 <TargetFramework>netcoreapp2.2</TargetFramework>
5 <AspNetCoreHostingModel>InProcess</AspNetCoreHostingModel>
6 <ApplicationIcon />
7 <OutputType>Library</OutputType>
8 <StartupObject />
9 </PropertyGroup>

10

11 <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|AnyCPU'">
12 <DocumentationFile>$(BaseOutputPath)bin\$(Configuration)\$(TargetFramework)\

→˓$(AssemblyName).xml</DocumentationFile>
13 <NoWarn>1701;1702;1591</NoWarn>
14 </PropertyGroup>
15

16 <ItemGroup>
(continues on next page)

2.4. Create your extensions 17

Softinux Base Documentation Documentation, Release Latest

(continued from previous page)

17 <EmbeddedResource Include="Styles**;Scripts***.min.js;Views**" />
18 </ItemGroup>
19

20 <ItemGroup>
21 <PackageReference Include="ExtCore.Infrastructure" Version="4.1.0" />
22 <PackageReference Include="Microsoft.AspNetCore.App" />
23 <PackageReference Include="Microsoft.AspNetCore.Razor.Design" Version="2.2.0"

→˓PrivateAssets="All" />
24 <PackageReference Include="Swashbuckle.AspNetCore" Version="4.0.1" />
25 </ItemGroup>
26

27 <ItemGroup>
28 <Reference Include="SoftinuxBase.Infrastructure, Version=0.0.1.0, Culture=neutral,

→˓ PublicKeyToken=null">
29 <HintPath>..\..\Base\SoftinuxBase.Infrastructure.dll</HintPath>
30 </Reference>
31 <Reference Include="SoftinuxBase.Security.Common, Version=0.0.1.0,

→˓Culture=neutral, PublicKeyToken=null">
32 <HintPath>..\..\Base\SoftinuxBase.Security.Common.dll</HintPath>
33 </Reference>
34 </ItemGroup>
35

36 <PropertyGroup>
37 <SolutionDir Condition=" '$(SolutionDir)' == '' ">

→˓$([MSBuild]::GetDirectoryNameOfFileAbove($(MSBuildThisFileDirectory), SampleApi.
→˓sln))</SolutionDir>

38 </PropertyGroup>
39

40 <Target Name="PreBuild" BeforeTargets="PreBuildEvent">
41 <Exec Command="xcopy $(SolutionDir)..\..\Base*.* $(SolutionDir)$(OutDir) /E /Y" /

→˓>
42 </Target>
43

44 <Target Name="PostBuild" AfterTargets="PostBuildEvent">
45 <Exec Command="mkdir $(SolutionDir)$(OutDir)Extensions
copy

→˓$(SolutionDir)$(OutDir)SampleApi.dll $(SolutionDir)$(OutDir)Extensions /Y

→˓copy $(SolutionDir)$(OutDir)SampleApi.xml $(SolutionDir)$(OutDir)Extensions /Y" />

46 </Target>
47

48 </Project>

Note:

Path in <HintPath> are given as examples.
Lines 36 to 38 set the value of the Visual Studio $(SolutionDir) macro because dotnet doesn’t use it.

Visual Studio Code Configuration

Tasks.json

Add lines 26 to 29 and 38 to 40.
Modify line 35 to use WebApplication.dll as entry point of application.

18 Chapter 2. Basic Concepts

Softinux Base Documentation Documentation, Release Latest

Note: The order sequence makes build on every launch.

Listing 2: SampleApi Visual Studio Code tasks file

1 {
2 "version": "2.0.0",
3 "tasks": [
4 {
5 "label": "build",
6 "command": "dotnet",
7 "type": "process",
8 "args": [
9 "build",

10 "${workspaceFolder}/src/SampleApi/SampleApi.csproj"
11],
12 "problemMatcher": "$tsc"
13 },
14 {
15 "label": "publish",
16 "command": "dotnet",
17 "type": "process",
18 "args": [
19 "publish",
20 "${workspaceFolder}/src/SampleApi/SampleApi.csproj"
21],
22 "problemMatcher": "$tsc"
23 },
24 {
25 "label": "watch",
26 "dependsOrder": "sequence",
27 "dependsOn":[
28 "build"
29],
30 "command": "dotnet",
31 "type": "process",
32 "args": [
33 "watch",
34 "run",
35 "${workspaceFolder}/src/SampleApi/bin/Debug/netcoreapp2.2/

→˓WebApplication.dll"
36],
37 "problemMatcher": "$tsc",
38 "presentation": {
39 "reveal": "always",
40 "panel": "new"
41 }
42 }
43]
44 }

Launch.json

Modify line 13 to use WebApplication.dll as the program to execute.
Modify line 15 to specify execution folder.

2.4. Create your extensions 19

Softinux Base Documentation Documentation, Release Latest

Listing 3: SampleApi Visual Studio Code launch file

1 {
2 // Use IntelliSense to find out which attributes exist for C# debugging
3 // Use hover for the description of the existing attributes
4 // For further information visit https://github.com/OmniSharp/omnisharp-vscode/

→˓blob/master/debugger-launchjson.md
5 "version": "0.2.0",
6 "configurations": [
7 {
8 "name": ".NET Core Launch (web)",
9 "type": "coreclr",

10 "request": "launch",
11 "preLaunchTask": "build",
12 // If you have changed target frameworks, make sure to update the program

→˓path.
13 "program": "${workspaceFolder}/src/SampleApi/bin/Debug/netcoreapp2.2/

→˓WebApplication.dll",
14 "args": [],
15 "cwd": "${workspaceFolder}/src/SampleApi/bin/Debug/netcoreapp2.2/",
16 "stopAtEntry": false,
17 // Enable launching a web browser when ASP.NET Core starts. For more

→˓information: https://aka.ms/VSCode-CS-LaunchJson-WebBrowser
18 "serverReadyAction": {
19 "action": "openExternally",
20 "pattern": "^\\s*Now listening on:\\s+(https?://\\S+)"
21 },
22 "env": {
23 "ASPNETCORE_ENVIRONMENT": "Development"
24 },
25 "sourceFileMap": {
26 "/Views": "${workspaceFolder}/Views"
27 }
28 },
29 {
30 "name": ".NET Core Attach",
31 "type": "coreclr",
32 "request": "attach",
33 "processId": "${command:pickProcess}"
34 }
35]
36 }

2.5 About Entity Framework

By definition, ExtCore uses Entity Framework but provides several projects to define:

• the entities in YourExtension.Data.Entities

• the entities mapping in YourExtension.Data.EntityFramework (EntityRegistrar class)

• the EF provider to actually use, in YourExtension.Data.EntityFramework.ProviderName

The SecurityTest test project in Testing/Unit references the three aforementioned projects related to
Security extension

20 Chapter 2. Basic Concepts

Softinux Base Documentation Documentation, Release Latest

and also uses CommonTest.ApplicationStorageContext class to indicate the DbContext structure.

2.6 Internals

Implementations of IConfigureServicesAction They register services implementations to web application
container so that they become available for dependency injection (ExtCore feature).

Security project:

• priority 200: ConfigureAuthentication

• priority 201: AddAuthorizationPolicies

Implementations of IConfigureAction They record web application’s request pipelines (ExtCore feature).

Security project:

• priority 100: ActivateAuthentication

2.7 Unit testing

2.7.1 Introduction

We use xUnit and its shared context feature. Our base project is in Testing/Unit/CommonTest.
It contains the DatabaseFixture class, that does several things:

• read configuration files, register services (same principle as web application’s Startup)

• expose ExtCore core components such as IStorage to test classes

• expose Identity RoleManager and UserManager to test classes

In addition, to perform an EF migration, an implementation of IDesignTimeDbContextFactory has been pro-
vided, as CommonTest isn’t a console but library project.

The test projects use an identical database to the one web application uses, but empty.

2.7.2 How to setup a test project

When you want to create a migration, be sure that your test project adds references to these projects:

• your extension’s entities project (YourExtension.Data.Entities)

• your extension’s EF project where lives entities registrar and repositories implementations
(YourExtension.Data.EntityFramework)

If you just want to use ExtCore’s repositories pattern to query DB, reference your extension’s repositories project
YourExtension.Data.EntityFramework.

2.7.3 Running tests

• Perform any necessary migration (at least from Testing/Unit/CommonTest, with dotnet ef database
update).

2.6. Internals 21

https://xunit.github.io/docs/shared-context

Softinux Base Documentation Documentation, Release Latest

• If testing with VS Code IDE, we use dotnet-test-explorer extension with some configuration in .vs-
code/settings.json (workspace configuration file).

2.8 How to log

We’ve integrated Serilog by associating it to the logger factory that ASP.NET Core creates at application startup.

Log level is defined in appsettings.json of web application, sections “Logging” and “Serilog”.

To log a custom message, inject Microsoft.Extensions.Logging.ILoggerFactory into your class
constructor.
Then instantiate your logger:

Microsoft.Extensions.Logging.ILogger myLogger = _loggerFactory.CreateLogger(GetType().
→˓FullName);

and log:

myLogger.LogInformation("Hello");

2.9 Configure Rider

Note: This page is for Rider 2018.2 and upper.

Rider doesn’t use all .sln tag to build your application.
In this page, we show to configure Rider to build bundles before build the application.

2.9.1 Create an external tool

Click on edit configuration

If you have already one configuration, click on it

22 Chapter 2. Basic Concepts

https://marketplace.visualstudio.com/items?itemName=formulahendry.dotnet-test-explorer

Softinux Base Documentation Documentation, Release Latest

And click the plus sign in section Before launch (number 2 on picture).
In popup menu, select external tool

In new window click on plus sign:

2.9. Configure Rider 23

Softinux Base Documentation Documentation, Release Latest

Now, in external tool configuration window:

1. enter a name for your new external tool configuration.

2. in program field, enter same text as screen shot. Help yourself with macros.

3. in arguments field enter bundles.

4. working directory is auto completed.

5. click on save.

Once you’ve configured this external tool, copy it and create the two other ones:

Change argument field to copyexts for the second external tool and copydeps for the third external tool. Be sure
you have the external tools and the project build tasks in this order:

24 Chapter 2. Basic Concepts

Softinux Base Documentation Documentation, Release Latest

2.9.2 Create an file watcher for javascript minification

In this example, we use Uglifyjs. You can install with nodejs by npm install uglify-js -g.

Goto Settings (Ctrl + Alt + S), section Tools -> File Watchers

In right of window, click on + sign (or Ctrl + n) to add a new file watcher.
Select Uglify in list and give a name to your new file watcher.

In Edit Watcher window, click on three dot of Scope field.

2.9. Configure Rider 25

Softinux Base Documentation Documentation, Release Latest

In Scope window, select your javascript file and click to add.

26 Chapter 2. Basic Concepts

Softinux Base Documentation Documentation, Release Latest

Finish by clicking on Ok. Close all settings windows.

2.10 Faq for Linux

Q. I have this message during the build:
Permission denied for editing the folder
'/usr/share/dotnet/sdk/NuGetFallbackFolder'.

A.: You need to execute dotnet restore with root privilege because, the current user ave not right to write into
/usr/share/dotnet/sdk/NuGetFallbackFolder

Q. Th extension .NET Core Text Explorer cannot find unit Test
A.: The problem is due to Permission denied for editing the folder
'/usr/share/dotnet/sdk/NuGetFallbackFolder'.

You must declare and set the DOTNET_SKIP_FIRST_TIME_EXPERIENCE environment variable to 1 (or true)

2.10. Faq for Linux 27

Softinux Base Documentation Documentation, Release Latest

2.11 TODO

As mentioned before, all this is work-in-progress.

2.11.1 List of TODOs

The following list is automatically created by the Sphinx TODO plugin. If there is no list, either all TODOs are done
(very unlikely), or they are disabled with the option todo_include_todos = False in the file conf.py.

Todo: add git repos for sample app

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/softinux-
base/checkouts/latest/source/implement_your_extension/what_you_need_to_know.rst, line 13.)

28 Chapter 2. Basic Concepts

http://sphinx-doc.org/ext/todo.html

Index

D
dep_folder, 6

E
environment variable

dep_folder, 6
ext_folder, 6
netVersion, 6
pub_folder, 6

ext_folder, 6

N
netVersion, 6

P
pub_folder, 6

29

	SOFTINUX Base Documentation
	Basic Concepts
	Index

