

Base Documentation

SOFTINUX Base Documentation

Warning

The documentation is not complete and therefore undergoes frequent changes.

SOFTINUX Base is a free, open source and cross-platform based on ASP.NET Core and ExtCore framework.
It runs on Windows, Mac and Linux.
It is built using the best and the most modern tools and languages.

It is completely modular and extendable.

Using the features of the underlying ExtCore framework you can easily create your own extensions to extend its functionality.

Basic Concepts

Softinux Base is a framework that looks like a .NET Core web application, but is intended to host mini web applications called extensions. Every extension will plug its content (pages, menu items) as well as security and authentication related items (permissions, roles, links…).

Base manages the common stuff so that the developer can focus on its extension and business logic, just having to provide what we call metadata to know how to display and authorize access to content, and use our version of Authorize attribute.

Installation

	Installation

	Configuration

Extensions

	Extension structure

	Create your extensions

Misc

	About Entity Framework

	Internals

	Unit testing

How To

	How to log

	Configure Rider

FAQ

	Faq for Linux

	TODO
	List of TODOs

Installation

Restore npm packages

After cloning Base repository, go to Barebone folder and run npm ci --save-dev command so that dependencies packages are installed and settings updated.

Note

You must have Nodejs to restore web dependencies.

Restore nuGet packages

Restoring the nuGet packages is now an implicit command executed at application build so you don’t need to do it manually.

Update database with migration

Go to WebApplication folder and run dotnet ef database update.

This will create the database.

See appsettings.json (“ConnectionStrings:Default” section) for database path.

The Entity Framework database context is defined in web application’s Startup.cs (line with services_.AddDbContext<...).

We use Sqlite but you can change this easily.

Build the application

Go to the root folder and run bp.bat under Windows or bp.sh under Linux/Macos. (use -h for help).

Note

You must have .NET Core SDK to compile and build the application.

Configure the application

The application have some values to configure in appsettings.json file.

Theses values are stored into sections:

- Extensions : this is the path to find Extensions. Important : see extensions folder.

If you wish to change this path, read what changes to make.

- ConnectionStrings : the connection configuration to database. See connections strings to help you configure.

- Corporate : the name and logo for the application

- RestSeed : identification used to create admin user.

See configuration section for a full explanation.

Run the app

Warning

Remove the SeedDatabase.dll to avoid any attempt to create a new administrator. See RestSeed configuration section.

Go to WebApplication folder and type dotnet run.

(If you want, you can also execute from root solution folder with this command dotnet run --project WebApplication\WebApplication.csproj).

After that, the application is available on http://localhost:5000/

Note about Visual Studio 2017

If you launched application from Visual Studio, this port will change, being randomly defined, and value is stored in WebApplication/Properties/launchSettings.json

You can edit this value in Visual Studio: WebApplication’s properties > Debug tab > Web Server Settings/App URL or directly in launchSettings file.

After, the default port used by dotnet run is the port defined in WebApplication/Properties/launchSettings.json.

Note about Rider 2017.3

Rider 2017.3 cannot execute the PostBuildEvent declared into WebApplication.csproj

You need to execute ./bp.sh copyexts and ./bp.sh copydeps after building the solution or project.

Have a look after Rider useful configuration section.

Add the administrator user

With Postman (or the program of your choice) make a POST request to this url: http://localhost:5000/dev/seed/create-user

By command line:

	curl: curl -i -X POST -H 'Content-Type: application/json' http://localhost:5000/dev/seed/create-user -d {}

	powershell: Invoke-WebRequest -Uri http://localhost:5000/dev/seed/create-user -Method POST

This will create the administrator user with general permissions.

Note

Actually, we creating demo user. The first user is johndoe.

Login with demo user

user: johndoe@softinux.com or johndoe

password: 123_Password

(password is case sensitive)

Configuration

The configuration is stored into appsettings.json file.

Only the following sections are read by Base:

	Extensions

	ConnectionStrings

	Corporate

	RestSeed

	SignIn

	LockoutUser

	ValidateUser

	PasswordStrategy

	ConfigureApplicationCookie

	Logging

	Serilog

You can add others sections, but it’s up to you to read them.

Extensions

By default, extensions ares stored into WebApplication/Extensions folder.

But you can change this if you need. If you make that, you must change the variables into the build script:

	bp.bat for windows

	bp.sh for *nix system.

You have four variables :

	netVersion: folder name defined by .NET Core TargetFramework tag into cs proj file.

	ext_folder: extensions folder path.

	dep_folder: dependencies folder path.

	pub_folder: publish folder path.

:: set .NET output folder name (use .NET Core version defined into csproj files)
set netVersion="netcoreapp2.2"
:: Extensions folder
set ext_folder=".\WebApplication\Extensions\"
:: Dependencies folder
set dep_folder=".\WebApplication\bin\Debug\%netVersion%\"
:: Publish folder
set pub_folder=".\WebApplication\bin\Debug\%netVersion%\publish"

ConnectionStrings

In this section, you can configure your database connection.

The file come with commented examples of connections strings.

"ConnectionStrings": {
 // Please use '/' for directory separator
 "Default": "Data Source=basedb.sqlite"
 // SqlServer
 //"Default": "Data Source=localhost;Initial Catalog=Softinux;MultipleActiveResultSets=True;Persist Security Info=True;User ID=softinux;Password=?"
 // PostgreSql
 //"Default": "Host=localhost;Port=5432;Database=softinux;Pooling=true;User ID=softinux;Password=?;"
 // localdb
 //"Default": "Data Source=(localdb)\mssqllocaldb;Database=softinux;Trusted_Connection=True;MultipleActiveResultSets=true"
 }

Corporate

Here you can set you Company name and logo.

"Corporate": {
 "Name": "SOFTINUX",
 "BrandLogo": "softinux_logo-bg-transparent.png"
}

The logo is to be place into : wwwroot\img

RestSeed

Here is the SECRET configuration for create first user.

The first user is the application administrator.

"RestSeed": {
 "UserName": "",
 "UserPassword": "",
 "Id": "",
 "Guid": ""
}

You need to set these values.

Id and Guid is used into REST api call to create admin user.

Warning

Is strongly recommended to remove the SeedDatabase.dll to avoid any attempt to create a new administrator.
This can happen if you change the information in the configuration file and restart the application.

SignIn, LockoutUser, ValidateUser, PasswordStrategy, ConfigureApplicationCookie

These settings are used by ASP.NET Core Identity.

Logging

This is the standard .NET Core Logging configuration.

Serilog

This is the Serilog nuGet package configuration. This allows to log to a file.

 Here we’ll describe what to know about extensions and how to customize things.

Extension structure

ExtCore concepts

Read ExtCore documentation [http://docs.extcore.net/en/latest/] to learn about extensions and how they are structured into several projects.

Embedded resources

In your .csproj, you’ll find this:

<ItemGroup>
 <EmbeddedResource Include="Styles**;Scripts***.min.js;Views**" />
</ItemGroup>

So that your embedded styles, scripts and views are embedded.

You’ll also find complementary stuff like this, to be sure that any file used in your project but provided by another project
is correctly built as an embedded resource only:

<ItemGroup>
 <None Remove="Views\SomeView.cshtml" />
 <None Remove="... path_to_some_file_of_other_project.js" />
</ItemGroup>
<ItemGroup>
 <EmbeddedResource Include="... path_to_some_file_of_other_project.js" />
</ItemGroup>

Bundling

Bundling is a convenient way to save bandwith and processor time when dealing with .css files etc.
This is not specific to our project but we share our preferred way of doing this,
so you would do the same in your extension project:

We use a bundleconfig.json file in concerned projects and the .csproj contains something like this:

<DotNetCliToolReference Include="BundlerMinifier.Core" Version="2.8.391" />

As a side note, embedded resources are bundled first.

Base’s common interface

In your extension main project, a class should implement the Infrastructure.IExtensionMetadata interface,
so that the application knows what the extension provides in matter of display (menu items…).

We usually name it ExtensionMetadata.

Menu groups and menu items

Menu groups are ordered by position then alphabetically.

They’re not displayed if they contain no menu items. The first occurrence of a menu group defines the associated icon. Menu items (of a menu group) are ordered by position.

General useful properties

Base.Infrastructure.IExtensionMetadata and ExtCore.Infrastructure.IExtensionMetadata interfaces will require implementation of some properties.
We recommend using the following code, using assembly attributes [https://docs.microsoft.com/en-us/dotnet/core/tools/csproj#assemblyinfo-properties].

/// <summary>
/// Gets the current assembly object.
/// </summary>
public Assembly CurrentAssembly => Assembly.GetExecutingAssembly();

/// <summary>
/// Gets the full path with assembly name.
/// </summary>
public string CurrentAssemblyPath => CurrentAssembly.Location;

/// <summary>
/// Gets the name of the extension.
/// </summary>
public string Name => CurrentAssembly.GetName().Name;

/// <summary>
/// Gets the URL of the extension.
/// </summary>
public string Url => Attribute.GetCustomAttribute(CurrentAssembly, typeof(AssemblyTitleAttribute)).ToString();

/// <summary>
/// Gets the version of the extension.
/// </summary>
public string Version => Attribute.GetCustomAttribute(CurrentAssembly, typeof(AssemblyVersionAttribute)).ToString();

/// <summary>
/// Gets the authors of the extension (separated by commas).
/// </summary>
public string Authors => Attribute.GetCustomAttribute(CurrentAssembly, typeof(AssemblyCompanyAttribute)).ToString();

/// <summary>
/// Gets the description of the extension (separated by commas).
/// </summary>
public string Description => Attribute.GetCustomAttribute(CurrentAssembly, typeof(AssemblyDescriptionAttribute)).ToString();

MVC structure

Controllers

Your controllers should inherit from Infrastructure.ControllerBase so that you have access to storage layer (IStorage) and optionally logging (ILoggerFactory).

Additional configuration to web application

Any implementation of the ExtCore.Infrastructure.Actions.IConfigureServicesAction interface allows you to define your injections to the web application services container.

Please use Priority above 1000, the values below are reserved to project.

Utilities

Logging

When you need logging, use ILoggerFactory from your controller and instantiate a private logger in your class with:

ILogger _logger = _loggerFactory.CreateLogger(GetType().FullName);

Then you can adjust log level in app’s configuration.

Authentication

Introduction

Our application uses claims to grant access to protected pages.

The Security.Common extension manages authenticated access to the application by decorating controllers or controllers’ methods.

The Security extensions allows to manage authentication data (administration).

Permissions, Scopes and Claims

An extension defines its scope (assembly simple name) so that the Admin, Write and Read permissions are granted by scope. There is also the global scope that is named “Security”.

In administration interface you can manage how the permissions are granted.

In your extensions controllers, use PermissionRequirementAttribute or AnyPermissionRequirementAttribute attribute from Security.Common.Attributes.

Then provide the permission level (see Security.Common.Enums.Permission enumeration) and scope (extension assembly short name without the version and culture stuff).

A custom claim of type Permission will be created for every scope, its value being the highest permission level.

For example, if the Write and Read checkboxes are checked for a given scope in administration page, the highest granted permission level is Write and the claim will have Write value.

You will be able to use it to filter menu items too (work in progress, issue #9 [https://github.com/SOFTINUX/Base/issues/9]).

Create your extensions

Warning

You cannot place your web application’s Extensions folder to another drive. See #2981 [https://github.com/dotnet/core-setup/issues/2981#issuecomment-322572374]

You can use Visual Studio 2017 [https://www.visualstudio.com/fr/downloads/], Visual Studio Code [https://code.visualstudio.com/] or JetBrains Rider [https://www.jetbrains.com/rider/] to make your own extension.
If you decide to use Visual Studio, be aware that projects are not compatible with Visual Studio 2015.

	What there is to know

	New Extension with Base source
	Add a new project

	Add project reference to the solution

	Write your code

	Using Base as dependency
	Configure a new project with Visual Studio 2017/2019

	With commande line and Visual Studio Code

What there is to know

Warning

You cannot place your web application’s Extensions folder to another drive. See #2981 [https://github.com/dotnet/core-setup/issues/2981#issuecomment-322572374]

You can use Visual Studio 2017 [https://www.visualstudio.com/fr/downloads/], Visual Studio Code [https://code.visualstudio.com/] or JetBrains Rider [https://www.jetbrains.com/rider/] to make your own extension.
If you decide to use Visual Studio, be aware that projects are not compatible with Visual Studio 2015.

In this section, we talking of SampleApi. This project is availiable on Github to :

Todo

add git repos for sample app

New Extension with Base source

Use Base solution and add your extension code into it.

Add a new project

Using command-line (easy and cross-platform):

$ dotnet new classlib -o <your_new_project> -f netcoreapp2.2

Assuming Base’s Infrastructure framework version is 2.2. Check its .csproj file.

If you don’t specify framework version, it will default to netstandardxxx, which is not what we expect.

Add project reference to the solution

Go to solution folder and type:

$ dotnet sln add <path_to_your_new_project_csproj>

Write your code

In your new project, add a reference to Base’s Infrastructure and also Security.Common.

Then create a ExtensionMetadata class that implements Infrastructure.IExtensionMetadata.

Have a look at write your extensions, feel free to open issues for questions.

Using Base as dependency

Use your own solution and Base as a dependency. This is an alternative to using Base’s solution.

	Configure a new project with Visual Studio 2017/2019

	With commande line and Visual Studio Code

Configure a new project with Visual Studio 2017/2019

Create new solution with a new ASP.NET Core project targeted on framework .NET Core 2.2.

Creation in Visual Studio 2019

[image: visual studio 2019 add new project]

[image: visual studio 2019 add new project]

Creation in Visual Studio 2017

[image: visual studio 2019 add new project]

[image: visual studio 2019 add new project]

Verification

Check if your new project is targeted on framework .NET Core 2.2.

[image: sample extension configuration application tab]
Project properties, Application tab.

Add references

Add references to the Base and ExtCore (ExtCore is a dependency of Base).

[image: dependencies of sample application]

Configure pre-build scripts

Before building, you need to copy all Base dependencies to $(SolutionDir)$(OutDir) folder:

[image: pre build tab configuration]

Configure post-build scripts

After building, you need to copy your extension into Base’s extensions folder:

[image: post build tab configuration]

Configure debug tab

Most important, configure debugging.
Your extension is a partial app and is not directly executed. Here is how to configure your application to enable possibility of debugging.

[image: debug tab configuration]
Now, you can debug your extension into Visual Studio.

With commande line and Visual Studio Code

Create a new project

$ dotnet new classlib -o <your_new_project> -f netcoreapp2.2

Open your new .csproj file and adapt it with highlighted lines as in example:

SampleApi csproj file

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

	<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp2.2</TargetFramework>
 <AspNetCoreHostingModel>InProcess</AspNetCoreHostingModel>
 <ApplicationIcon />
 <OutputType>Library</OutputType>
 <StartupObject />
 </PropertyGroup>

 <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|AnyCPU'">
 <DocumentationFile>$(BaseOutputPath)bin\$(Configuration)\$(TargetFramework)\$(AssemblyName).xml</DocumentationFile>
 <NoWarn>1701;1702;1591</NoWarn>
 </PropertyGroup>

 <ItemGroup>
 <EmbeddedResource Include="Styles**;Scripts***.min.js;Views**" />
 </ItemGroup>

 <ItemGroup>
 <PackageReference Include="ExtCore.Infrastructure" Version="4.1.0" />
 <PackageReference Include="Microsoft.AspNetCore.App" />
 <PackageReference Include="Microsoft.AspNetCore.Razor.Design" Version="2.2.0" PrivateAssets="All" />
 <PackageReference Include="Swashbuckle.AspNetCore" Version="4.0.1" />
 </ItemGroup>

 <ItemGroup>
 <Reference Include="SoftinuxBase.Infrastructure, Version=0.0.1.0, Culture=neutral, PublicKeyToken=null">
 <HintPath>..\..\Base\SoftinuxBase.Infrastructure.dll</HintPath>
 </Reference>
 <Reference Include="SoftinuxBase.Security.Common, Version=0.0.1.0, Culture=neutral, PublicKeyToken=null">
 <HintPath>..\..\Base\SoftinuxBase.Security.Common.dll</HintPath>
 </Reference>
 </ItemGroup>

 <PropertyGroup>
 <SolutionDir Condition=" '$(SolutionDir)' == '' ">$([MSBuild]::GetDirectoryNameOfFileAbove($(MSBuildThisFileDirectory), SampleApi.sln))</SolutionDir>
 </PropertyGroup>

 <Target Name="PreBuild" BeforeTargets="PreBuildEvent">
 <Exec Command="xcopy $(SolutionDir)..\..\Base*.* $(SolutionDir)$(OutDir) /E /Y" />
 </Target>

 <Target Name="PostBuild" AfterTargets="PostBuildEvent">
 <Exec Command="mkdir $(SolutionDir)$(OutDir)Extensions
copy $(SolutionDir)$(OutDir)SampleApi.dll $(SolutionDir)$(OutDir)Extensions /Y
copy $(SolutionDir)$(OutDir)SampleApi.xml $(SolutionDir)$(OutDir)Extensions /Y" />
 </Target>

</Project>

Note

Path in <HintPath> are given as examples.

Lines 36 to 38 set the value of the Visual Studio $(SolutionDir) macro because dotnet doesn’t use it.

Visual Studio Code Configuration

Tasks.json

Add lines 26 to 29 and 38 to 40.

Modify line 35 to use WebApplication.dll as entry point of application.

Note

The order sequence makes build on every launch.

SampleApi Visual Studio Code tasks file

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

	{
 "version": "2.0.0",
 "tasks": [
 {
 "label": "build",
 "command": "dotnet",
 "type": "process",
 "args": [
 "build",
 "${workspaceFolder}/src/SampleApi/SampleApi.csproj"
],
 "problemMatcher": "$tsc"
 },
 {
 "label": "publish",
 "command": "dotnet",
 "type": "process",
 "args": [
 "publish",
 "${workspaceFolder}/src/SampleApi/SampleApi.csproj"
],
 "problemMatcher": "$tsc"
 },
 {
 "label": "watch",
 "dependsOrder": "sequence",
 "dependsOn":[
 "build"
],
 "command": "dotnet",
 "type": "process",
 "args": [
 "watch",
 "run",
 "${workspaceFolder}/src/SampleApi/bin/Debug/netcoreapp2.2/WebApplication.dll"
],
 "problemMatcher": "$tsc",
 "presentation": {
 "reveal": "always",
 "panel": "new"
 }
 }
]
}

Launch.json

Modify line 13 to use WebApplication.dll as the program to execute.

Modify line 15 to specify execution folder.

SampleApi Visual Studio Code launch file

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

	{
 // Use IntelliSense to find out which attributes exist for C# debugging
 // Use hover for the description of the existing attributes
 // For further information visit https://github.com/OmniSharp/omnisharp-vscode/blob/master/debugger-launchjson.md
 "version": "0.2.0",
 "configurations": [
 {
 "name": ".NET Core Launch (web)",
 "type": "coreclr",
 "request": "launch",
 "preLaunchTask": "build",
 // If you have changed target frameworks, make sure to update the program path.
 "program": "${workspaceFolder}/src/SampleApi/bin/Debug/netcoreapp2.2/WebApplication.dll",
 "args": [],
 "cwd": "${workspaceFolder}/src/SampleApi/bin/Debug/netcoreapp2.2/",
 "stopAtEntry": false,
 // Enable launching a web browser when ASP.NET Core starts. For more information: https://aka.ms/VSCode-CS-LaunchJson-WebBrowser
 "serverReadyAction": {
 "action": "openExternally",
 "pattern": "^\\s*Now listening on:\\s+(https?://\\S+)"
 },
 "env": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 },
 "sourceFileMap": {
 "/Views": "${workspaceFolder}/Views"
 }
 },
 {
 "name": ".NET Core Attach",
 "type": "coreclr",
 "request": "attach",
 "processId": "${command:pickProcess}"
 }
]
}

About Entity Framework

By definition, ExtCore uses Entity Framework but provides several projects to define:

	the entities in YourExtension.Data.Entities

	the entities mapping in YourExtension.Data.EntityFramework (EntityRegistrar class)

	the EF provider to actually use, in YourExtension.Data.EntityFramework.ProviderName

The SecurityTest test project in Testing/Unit references the three aforementioned projects related to Security extension

and also uses CommonTest.ApplicationStorageContext class to indicate the DbContext structure.

Internals

Implementations of IConfigureServicesAction They register services implementations to web application container so that they become available for dependency injection (ExtCore feature).

Security project:

	priority 200: ConfigureAuthentication

	priority 201: AddAuthorizationPolicies

Implementations of IConfigureAction They record web application’s request pipelines (ExtCore feature).

Security project:

	priority 100: ActivateAuthentication

Unit testing

Introduction

We use xUnit and its shared context [https://xunit.github.io/docs/shared-context] feature. Our base project is in Testing/Unit/CommonTest.

It contains the DatabaseFixture class, that does several things:

	read configuration files, register services (same principle as web application’s Startup)

	expose ExtCore core components such as IStorage to test classes

	expose Identity RoleManager and UserManager to test classes

In addition, to perform an EF migration, an implementation of IDesignTimeDbContextFactory has been provided,
as CommonTest isn’t a console but library project.

The test projects use an identical database to the one web application uses, but empty.

How to setup a test project

When you want to create a migration, be sure that your test project adds references to these projects:

	your extension’s entities project (YourExtension.Data.Entities)

	your extension’s EF project where lives entities registrar and repositories implementations (YourExtension.Data.EntityFramework)

If you just want to use ExtCore’s repositories pattern to query DB, reference your extension’s repositories project
YourExtension.Data.EntityFramework.

Running tests

	Perform any necessary migration (at least from Testing/Unit/CommonTest, with dotnet ef database update).

	If testing with VS Code IDE, we use dotnet-test-explorer [https://marketplace.visualstudio.com/items?itemName=formulahendry.dotnet-test-explorer] extension with some configuration in .vscode/settings.json (workspace configuration file).

How to log

We’ve integrated Serilog by associating it to the logger factory that ASP.NET Core creates at application startup.

Log level is defined in appsettings.json of web application, sections “Logging” and “Serilog”.

To log a custom message, inject Microsoft.Extensions.Logging.ILoggerFactory into your class constructor.

Then instantiate your logger:

Microsoft.Extensions.Logging.ILogger myLogger = _loggerFactory.CreateLogger(GetType().FullName);

and log:

myLogger.LogInformation("Hello");

Configure Rider

Note

This page is for Rider 2018.2 and upper.

Rider doesn’t use all .sln tag to build your application.

In this page, we show to configure Rider to build bundles before build the application.

Create an external tool

Click on edit configuration

[image: open configuration]
If you have already one configuration, click on it

[image: configuration editor]

And click the plus sign in section Before launch (number 2 on picture).

In popup menu, select external tool

[image: ../_images/screen3.png]
In new window click on plus sign:

[image: ../_images/screen4.png]
Now, in external tool configuration window:

	enter a name for your new external tool configuration.

	in program field, enter same text as screen shot. Help yourself with macros.

	in arguments field enter bundles.

	working directory is auto completed.

	click on save.

[image: ../_images/screen5.png]
Once you’ve configured this external tool, copy it and create the two other ones:

[image: ../_images/screen6.png]
Change argument field to copyexts for the second external tool and copydeps for the third external tool.
Be sure you have the external tools and the project build tasks in this order:

[image: ../_images/screen7.png]

Create an file watcher for javascript minification

In this example, we use Uglifyjs. You can install with nodejs by npm install uglify-js -g.

Goto Settings (Ctrl + Alt + S), section Tools -> File Watchers

[image: ../_images/rider_watcher1.png]

In right of window, click on + sign (or Ctrl + n) to add a new file watcher.

Select Uglify in list and give a name to your new file watcher.

In Edit Watcher window, click on three dot of Scope field.

[image: ../_images/rider_watcher3.png]
In Scope window, select your javascript file and click to add.

[image: ../_images/rider_watcher5.png]
Finish by clicking on Ok. Close all settings windows.

Faq for Linux

Q. I have this message during the build:

Permission denied for editing the folder '/usr/share/dotnet/sdk/NuGetFallbackFolder'.

A.: You need to execute dotnet restore with root privilege because, the current user ave not right to write into /usr/share/dotnet/sdk/NuGetFallbackFolder

Q. Th extension .NET Core Text Explorer cannot find unit Test

A.: The problem is due to Permission denied for editing the folder '/usr/share/dotnet/sdk/NuGetFallbackFolder'.

You must declare and set the DOTNET_SKIP_FIRST_TIME_EXPERIENCE environment variable to 1 (or true)

TODO

As mentioned before, all this is work-in-progress.

List of TODOs

The following list is automatically created by the
Sphinx TODO plugin [http://sphinx-doc.org/ext/todo.html].
If there is no list, either all TODOs are done (very unlikely), or they are
disabled with the option todo_include_todos = False in the file
conf.py.

Todo

add git repos for sample app

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/softinux-base/checkouts/latest/source/implement_your_extension/what_you_need_to_know.rst, line 13.)

SOFTINUX Base Documentation

Warning

The documentation is not complete and therefore undergoes frequent changes.

SOFTINUX Base is a free, open source and cross-platform based on ASP.NET Core and ExtCore framework.
It runs on Windows, Mac and Linux.
It is built using the best and the most modern tools and languages.

It is completely modular and extendable.

Using the features of the underlying ExtCore framework you can easily create your own extensions to extend its functionality.

Basic Concepts

Softinux Base is a framework that looks like a .NET Core web application, but is intended to host mini web applications called extensions. Every extension will plug its content (pages, menu items) as well as security and authentication related items (permissions, roles, links…).

Base manages the common stuff so that the developer can focus on its extension and business logic, just having to provide what we call metadata to know how to display and authorize access to content, and use our version of Authorize attribute.

FAQ

	Faq for Linux

How To

	How to log

	Configure Rider

Visual Studio Code Configuration

Tasks.json

Add lines 26 to 29 and 38 to 40.

Modify line 35 to use WebApplication.dll as entry point of application.

Note

The order sequence makes build on every launch.

SampleApi Visual Studio Code tasks file

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

	{
 "version": "2.0.0",
 "tasks": [
 {
 "label": "build",
 "command": "dotnet",
 "type": "process",
 "args": [
 "build",
 "${workspaceFolder}/src/SampleApi/SampleApi.csproj"
],
 "problemMatcher": "$tsc"
 },
 {
 "label": "publish",
 "command": "dotnet",
 "type": "process",
 "args": [
 "publish",
 "${workspaceFolder}/src/SampleApi/SampleApi.csproj"
],
 "problemMatcher": "$tsc"
 },
 {
 "label": "watch",
 "dependsOrder": "sequence",
 "dependsOn":[
 "build"
],
 "command": "dotnet",
 "type": "process",
 "args": [
 "watch",
 "run",
 "${workspaceFolder}/src/SampleApi/bin/Debug/netcoreapp2.2/WebApplication.dll"
],
 "problemMatcher": "$tsc",
 "presentation": {
 "reveal": "always",
 "panel": "new"
 }
 }
]
}

Launch.json

Modify line 13 to use WebApplication.dll as the program to execute.

Modify line 15 to specify execution folder.

SampleApi Visual Studio Code launch file

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

	{
 // Use IntelliSense to find out which attributes exist for C# debugging
 // Use hover for the description of the existing attributes
 // For further information visit https://github.com/OmniSharp/omnisharp-vscode/blob/master/debugger-launchjson.md
 "version": "0.2.0",
 "configurations": [
 {
 "name": ".NET Core Launch (web)",
 "type": "coreclr",
 "request": "launch",
 "preLaunchTask": "build",
 // If you have changed target frameworks, make sure to update the program path.
 "program": "${workspaceFolder}/src/SampleApi/bin/Debug/netcoreapp2.2/WebApplication.dll",
 "args": [],
 "cwd": "${workspaceFolder}/src/SampleApi/bin/Debug/netcoreapp2.2/",
 "stopAtEntry": false,
 // Enable launching a web browser when ASP.NET Core starts. For more information: https://aka.ms/VSCode-CS-LaunchJson-WebBrowser
 "serverReadyAction": {
 "action": "openExternally",
 "pattern": "^\\s*Now listening on:\\s+(https?://\\S+)"
 },
 "env": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 },
 "sourceFileMap": {
 "/Views": "${workspaceFolder}/Views"
 }
 },
 {
 "name": ".NET Core Attach",
 "type": "coreclr",
 "request": "attach",
 "processId": "${command:pickProcess}"
 }
]
}

 _static/images/rider_watcher6.png
Tooks » FileWatchers @ For current solution Reset

Enabled | Name [Level

_static/images/screen1.png
v Default v
£ Edit Configurations.

v Default

_static/images/rider_watcher4.png
+

Add scope

Select a scope to view or edit its details here.

P I = e

_static/images/rider_watcher5.png
'+ - B R

@ securiy Neme: | Security

Pattern: | file:Security/Scripts/security_user.is

Scope contains 1 of total 259 files
(IR g (Non-project files are not shown)

[T — . e

B Crinook DataniyFramenork Safte

M Exension?

M Globalstion

M nfastucture Blude

 Securty

» B Controlles

e

> Mot

v M scips
Bl

“«vvvvy

15 securty_userjs
e —
1) security_userminjs.map

B ServiceConfiguration

. Styles

. Tooks

. Typescript

I ViewModels

- Views

Ch Assemblylnfo.cs

1) bundieconfig,son

Yvvvvy

B Recursively included
£ bundicconfig json bindings W Partialy included
Share scope.

_images/SampleExtensionPreBuild.png
Base\".” S(SolutionDin)S(OutDir) /E /Y.

Edit Pre-build...

_static/images/screen4.png

_images/rider_watcher1.png
Q- Tools » File Watchers

Enabled
» Appearance & Behavior

> tator
Plugins
b VersonContrd B
> Buld Exccton.Deplpment
e ——
¥ Tods
e Bowses
=T
B
e B
> Duabse
— B
i -
P
> oifaviege
p—
A
Dot Toos ©
Remote 5 xtemalTools

o

Server Certificates

Settings Repository
Startup Tasks a
> Tasks a
Vaarant a

2| Manage Layers

For current solution

Name.

No file watchers configured

Level

_static/images/screen5.png
Name: Bundles

Description:
Tool settings.
Program: $solutionDirsbp.sh
Arguments: bundles

Working directory: | $ProjectFileDir$

~ Advanced Options

VI synchronize fles after execution
I Open console for tool output

Group:

Make console active on message in stdout

Make console active on message in stderr

Output fiters:

External Tools -

Insert Macro.

Insert Macro...

Insert Macro...

_images/SampleExtensionDeps1.png
pendencies

Analyzers

4 v Assemblies
 SoftinuxBasenfrastructure

A SoftinuxBase Security.Common
4 @ NuGet

b (@ ExtCoreinfrastructure (4.10)
b |'® Microsoft AspNetCore.App 22.0)
B Microsoft AspNetCore Razor Design (2.2

>
b sk

_static/images/screen2.png
+ - B F L Name: | Default Share [V Single instance only
v v NET Project

IR _riovion G etk

> # Templates

Project: S WebApplication -
Target framework: NETCoreApp,Version=v2.1 -
Exe path: teveloppements/Base/WebApplication/bin/Debug/netcoreapp2.1/WebApplication.dil
Program arguments:

Working directory: /home/xarkam/Developpements/Base/WebApplication

Environment variables: | PNETCORE_ENVIRONMENT=Development/ASPNETCORE_URLS=http/localhost:5000

Runtime arguments:

Use external console:

~ Before launch: External tool, Buld Project, Activate tool window
2 N
% External tool ‘External Tools/Bundles’
“ Build project
Showthis page V] Activate tool window

_images/SampleExtensionPostBuild.png
mikdir S(SolutionDinS(OutDir)Extensions
‘copy S(SolutionDir)S(QutDir)SampleApi.di (SolutionDin}S(OutDir)Extensions /Y.
copy S(SolutionDin)S(OutDir)SampleApi.xmi S(SolutionDin/S(OutDin)Extensions /Y.

Edit Post-build...

_static/images/screen3.png
+ -7 <
Add New Configuration

HRunbdemaltool

P Run Another Configuration

@ Launch Web Browser

“ Build Project

A Build Solution

Run File Watchers

® Run Grunt task

¥ Run gulp task

[l Run npm script

19 Compile Typescript

& Generate CoffeeScript Source Maps
% Run Remote External tool

_images/screen1.png
v Default v
£ Edit Configurations.

v Default

_images/screen2.png
+ - B F L Name: | Default Share [V Single instance only
v v NET Project

IR _riovion G etk

> # Templates

Project: S WebApplication -
Target framework: NETCoreApp,Version=v2.1 -
Exe path: teveloppements/Base/WebApplication/bin/Debug/netcoreapp2.1/WebApplication.dil
Program arguments:

Working directory: /home/xarkam/Developpements/Base/WebApplication

Environment variables: | PNETCORE_ENVIRONMENT=Development/ASPNETCORE_URLS=http/localhost:5000

Runtime arguments:

Use external console:

~ Before launch: External tool, Buld Project, Activate tool window
2 N
% External tool ‘External Tools/Bundles’
“ Build project
Showthis page V] Activate tool window

_images/rider_watcher3.png
Nome Ugiys
Files to Waten

Fil type: & Jovascript B

scope: A Potries . .

Toolto Run on Changes
Brogram: ugliyjs

Arguments: Aames -0 $FilellameWithoutExtensions min.is

Output pathsto refresh: | FileNameWithoutExtensionS.min.js

» Working Directory and Environment Variables

» Advanced Options S

VI Track only root fles

A Unknown scope

Insert Macro..
Insert Macro..

Insert Macro..

) (o] | oma

_static/images/screen6.png
External Tools

+ -7 -~g

v V| External Tools

V| CopyExts
Vi CopyDeps

_images/rider_watcher5.png
'+ - B R

@ securiy Neme: | Security

Pattern: | file:Security/Scripts/security_user.is

Scope contains 1 of total 259 files
(IR g (Non-project files are not shown)

[T — . e

B Crinook DataniyFramenork Safte

M Exension?

M Globalstion

M nfastucture Blude

 Securty

» B Controlles

e

> Mot

v M scips
Bl

“«vvvvy

15 securty_userjs
e —
1) security_userminjs.map

B ServiceConfiguration

. Styles

. Tooks

. Typescript

I ViewModels

- Views

Ch Assemblylnfo.cs

1) bundieconfig,son

Yvvvvy

B Recursively included
£ bundicconfig json bindings W Partialy included
Share scope.

_static/images/screen7.png
% External tool 'External Tools/Bundles’
<, Build project

% External tool 'External Tools/CopyDeps’
External tool 'External Tools/CopyExts'

_images/screen3.png
+ -7 <
Add New Configuration

HRunbdemaltool

P Run Another Configuration

@ Launch Web Browser

“ Build Project

A Build Solution

Run File Watchers

® Run Grunt task

¥ Run gulp task

[l Run npm script

19 Compile Typescript

& Generate CoffeeScript Source Maps
% Run Remote External tool

_images/screen4.png

_images/SampleExtensionConfig1.png
N/A

N/A

Assembly name: Default namespace:

ampieapi | [ompea

Target ramewors Ouputypes

NeTCore22 %) [ty S
Satup object

(Not set) ~

Resources

‘Specify how application resources will be managed:

@ Icon and manifest

A manifest determines specific settings for an application. To embed a custom manifest, fist add it to
your project and then select it from the list below.

Icon:
[efaut con)

Embed manifest with default settings

O Resource file:

_images/SampleExtensionDebugTabApp.png
Profile:
Launch:
Executable

Application arguments:

Working directory:

Environment variables:

Ensble natve code debugging

[sampleapi][New..][Delete
[Exccutable -]

[dotnetene | [erowse. |
S(SolutionDir]$(CutDir\WebApplication.dil

§(SolutionDi)$(OutDir) | [Browse.. |

Neme Value

ASPNETCORE_ENVIRONMENT Development

_static/images/vs2019_add_new_project2.png
Create a new ASP.NET Core Web Application

NET Core ~| |asp.eT Core 22 dJ

[

(et additional project templates

Empty

An empty project template for creating an ASP.NET Core application. This template does not have any
content in i

APl

A project template for creating an ASP.NET Core application with an example Controller for a RESTrul HTTP
service. This template can also be used for ASP.NET Core MVC Views and Controllers.

Web Application

A project template for creating an ASP.NET Core application with example ASP.NET Core Razor Pages content.

Web Application (Model-View-Controller)

A project template for creating an ASP.NET Core application with example ASP.NET Core MVC Views and
Controllers. This template can also be used for RESTul HTTP services.

Razor Class Library

A project template for creating a Razor class library.

Angular

Authentication

No Authentication

Advanced

Configure for HTTPS

] Enable Docker Support

(Requires Docker Desktop)

Linux

Author: Microsoft
Source: SDK 2.2.300

Back

Create

_images/screen5.png
Name: Bundles

Description:
Tool settings.
Program: $solutionDirsbp.sh
Arguments: bundles

Working directory: | $ProjectFileDir$

~ Advanced Options

VI synchronize fles after execution
I Open console for tool output

Group:

Make console active on message in stdout

Make console active on message in stderr

Output fiters:

External Tools -

Insert Macro.

Insert Macro...

Insert Macro...

nav.xhtml

 Table of Contents

 		
 Base Documentation

 		
 Installation

 		
 Restore npm packages

 		
 Restore nuGet packages

 		
 Update database with migration

 		
 Build the application

 		
 Configure the application

 		
 Run the app

 		
 Note about Visual Studio 2017

 		
 Note about Rider 2017.3

 		
 Add the administrator user

 		
 Login with demo user

 		
 Configuration

 		
 Extensions

 		
 ConnectionStrings

 		
 Corporate

 		
 RestSeed

 		
 SignIn, LockoutUser, ValidateUser, PasswordStrategy, ConfigureApplicationCookie

 		
 Logging

 		
 Serilog

 		
 Extension structure

 		
 ExtCore concepts

 		
 Embedded resources

 		
 Bundling

 		
 Base’s common interface

 		
 Menu groups and menu items

 		
 General useful properties

 		
 MVC structure

 		
 Controllers

 		
 Additional configuration to web application

 		
 Utilities

 		
 Logging

 		
 Authentication

 		
 Introduction

 		
 Permissions, Scopes and Claims

 		
 Create your extensions

 		
 What there is to know

 		
 New Extension with Base source

 		
 Add a new project

 		
 Add project reference to the solution

 		
 Write your code

 		
 Using Base as dependency

 		
 Configure a new project with Visual Studio 2017/2019

 		
 With commande line and Visual Studio Code

 		
 About Entity Framework

 		
 Internals

 		
 Unit testing

 		
 Introduction

 		
 How to setup a test project

 		
 Running tests

 		
 How to log

 		
 Configure Rider

 		
 Create an external tool

 		
 Create an file watcher for javascript minification

 		
 Faq for Linux

 		
 TODO

 		
 List of TODOs

_static/images/vs2017_add_new_project2.png
NET Core (ASP.NET Core22 v] Leam more

| o I I o
T e we we e
sopicaion doplcion Ly

(Model-View-

Controller)

B @& &

Angular Reactjs Reactjsand
Redux

An empty project template for creating an ASP.NET
Core application. This template does not have any
contentinit.

Learn more

Author: Microsoft
Source: SDK 22104

1) Enable Docker Support (Requires Docker for Windows)

05: (Windows

Configure for HTTPS

Authentication: No Authentication

Change Authentication|

_static/images/vs2019_add_new_project.png
Add a new project Search for proecttemplates O +| Language Platform © Projectiype

Recent project templates ﬁ Console Asp (NET Core]
A project for creating a command-lin application that can run on .NET Core on

D ASP.NET Core Web Application c Windows, Linux and Mac0S.

$§ Closs Library (NET Core) - ¢ Lnx macos Windows Console

ASP.NET Core Web Application

Project templates for creating ASPNET Core applications for Windows, Linux and
macOS using .NET Core or .NET Framework. Create Razor Pages, MVC, Web APl, and
Single Page (SPA) Applications.

C* Wndows Lnix mac0S Web

WPF App (NET Framevork)

Windows Presentation Foundation client application

& Wndows Desitop

g Gy (T Sanc
B A project for creating a clas ibray that targets NET Standard.
¢ aod 05 Lnox mecoS Wndows Loray
Ky e ncsons
Atemplate to create an Azure Function project

& are Cow

Next

_images/vs2017_add_new_project.png
b Recent 2 Sortby: Default - Search (Ctrl+E) p-
4 Installed
-:)ﬁ ‘Console App (NET Core) Visualce Type: Visual G
4 Visusl C2 » Project templates forcreating ASP.NET
Get Started N ClassLibrary CNET Core) Visual s Corespplictions for Windows, Linuxand
UmEEE s Framework. Create Razor Pages, MVC,
Windows Deskiop lﬁ] MTest Test Project (NET Core) Visusl C# Web APL and Singe Page (SPA)
b Web s) Applications.
NET Core lﬁ] Nunit Test Project (NET Core) Visual C#
NET Standard .)
Android JR] st TestPrject (NET Core) Visual C#
Apple TV
Bl e
Cloud
Cross-Platform
105 Extensions
Phone & Pad
Test
Not finding what you ae looking for?
Open Visual Studio Installer
Name: WebApplicationl
Location: CA\Users\GCNSB8\sourcelrepos - | Browse..
Solubonname | [[0 Gmntrmsy e

[—

oK Cancel

_images/vs2017_add_new_project2.png
NET Core (ASP.NET Core22 v] Leam more

| o I I o
T e we we e
sopicaion doplcion Ly

(Model-View-

Controller)

B @& &

Angular Reactjs Reactjsand
Redux

An empty project template for creating an ASP.NET
Core application. This template does not have any
contentinit.

Learn more

Author: Microsoft
Source: SDK 22104

1) Enable Docker Support (Requires Docker for Windows)

05: (Windows

Configure for HTTPS

Authentication: No Authentication

Change Authentication|

_images/screen6.png
External Tools

+ -7 -~g

v V| External Tools

V| CopyExts
Vi CopyDeps

_images/screen7.png
% External tool 'External Tools/Bundles’
<, Build project

% External tool 'External Tools/CopyDeps’
External tool 'External Tools/CopyExts'

_static/ajax-loader.gif

_images/vs2019_add_new_project.png
Add a new project Search for proecttemplates O +| Language Platform © Projectiype

Recent project templates ﬁ Console Asp (NET Core]
A project for creating a command-lin application that can run on .NET Core on

D ASP.NET Core Web Application c Windows, Linux and Mac0S.

$§ Closs Library (NET Core) - ¢ Lnx macos Windows Console

ASP.NET Core Web Application

Project templates for creating ASPNET Core applications for Windows, Linux and
macOS using .NET Core or .NET Framework. Create Razor Pages, MVC, Web APl, and
Single Page (SPA) Applications.

C* Wndows Lnix mac0S Web

WPF App (NET Framevork)

Windows Presentation Foundation client application

& Wndows Desitop

g Gy (T Sanc
B A project for creating a clas ibray that targets NET Standard.
¢ aod 05 Lnox mecoS Wndows Loray
Ky e ncsons
Atemplate to create an Azure Function project

& are Cow

Next

_images/vs2019_add_new_project2.png
Create a new ASP.NET Core Web Application

NET Core ~| |asp.eT Core 22 dJ

[

(et additional project templates

Empty

An empty project template for creating an ASP.NET Core application. This template does not have any
content in i

APl

A project template for creating an ASP.NET Core application with an example Controller for a RESTrul HTTP
service. This template can also be used for ASP.NET Core MVC Views and Controllers.

Web Application

A project template for creating an ASP.NET Core application with example ASP.NET Core Razor Pages content.

Web Application (Model-View-Controller)

A project template for creating an ASP.NET Core application with example ASP.NET Core MVC Views and
Controllers. This template can also be used for RESTul HTTP services.

Razor Class Library

A project template for creating a Razor class library.

Angular

Authentication

No Authentication

Advanced

Configure for HTTPS

] Enable Docker Support

(Requires Docker Desktop)

Linux

Author: Microsoft
Source: SDK 2.2.300

Back

Create

_static/comment-bright.png

_static/images/vs2017_add_new_project.png
b Recent 2 Sortby: Default - Search (Ctrl+E) p-
4 Installed
-:)ﬁ ‘Console App (NET Core) Visualce Type: Visual G
4 Visusl C2 » Project templates forcreating ASP.NET
Get Started N ClassLibrary CNET Core) Visual s Corespplictions for Windows, Linuxand
UmEEE s Framework. Create Razor Pages, MVC,
Windows Deskiop lﬁ] MTest Test Project (NET Core) Visusl C# Web APL and Singe Page (SPA)
b Web s) Applications.
NET Core lﬁ] Nunit Test Project (NET Core) Visual C#
NET Standard .)
Android JR] st TestPrject (NET Core) Visual C#
Apple TV
Bl e
Cloud
Cross-Platform
105 Extensions
Phone & Pad
Test
Not finding what you ae looking for?
Open Visual Studio Installer
Name: WebApplicationl
Location: CA\Users\GCNSB8\sourcelrepos - | Browse..
Solubonname | [[0 Gmntrmsy e

[—

oK Cancel

_static/comment-close.png

_static/comment.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/images/SampleExtensionConfig1.png
N/A

N/A

Assembly name: Default namespace:

ampieapi | [ompea

Target ramewors Ouputypes

NeTCore22 %) [ty S
Satup object

(Not set) ~

Resources

‘Specify how application resources will be managed:

@ Icon and manifest

A manifest determines specific settings for an application. To embed a custom manifest, fist add it to
your project and then select it from the list below.

Icon:
[efaut con)

Embed manifest with default settings

O Resource file:

_static/up.png

_static/images/SampleExtensionPostBuild.png
mikdir S(SolutionDinS(OutDir)Extensions
‘copy S(SolutionDir)S(QutDir)SampleApi.di (SolutionDin}S(OutDir)Extensions /Y.
copy S(SolutionDin)S(OutDir)SampleApi.xmi S(SolutionDin/S(OutDin)Extensions /Y.

Edit Post-build...

_static/images/SampleExtensionPreBuild.png
Base\".” S(SolutionDin)S(OutDir) /E /Y.

Edit Pre-build...

_static/images/SampleExtensionDebugTabApp.png
Profile:
Launch:
Executable

Application arguments:

Working directory:

Environment variables:

Ensble natve code debugging

[sampleapi][New..][Delete
[Exccutable -]

[dotnetene | [erowse. |
S(SolutionDir]$(CutDir\WebApplication.dil

§(SolutionDi)$(OutDir) | [Browse.. |

Neme Value

ASPNETCORE_ENVIRONMENT Development

_static/images/SampleExtensionDeps1.png
pendencies

Analyzers

4 v Assemblies
 SoftinuxBasenfrastructure

A SoftinuxBase Security.Common
4 @ NuGet

b (@ ExtCoreinfrastructure (4.10)
b |'® Microsoft AspNetCore.App 22.0)
B Microsoft AspNetCore Razor Design (2.2

>
b sk

_static/images/rider_watcher3.png
Nome Ugiys
Files to Waten

Fil type: & Jovascript B

scope: A Potries . .

Toolto Run on Changes
Brogram: ugliyjs

Arguments: Aames -0 $FilellameWithoutExtensions min.is

Output pathsto refresh: | FileNameWithoutExtensionS.min.js

» Working Directory and Environment Variables

» Advanced Options S

VI Track only root fles

A Unknown scope

Insert Macro..
Insert Macro..

Insert Macro..

) (o] | oma

_static/images/rider_watcher1.png
Q- Tools » File Watchers

Enabled
» Appearance & Behavior

> tator
Plugins
b VersonContrd B
> Buld Exccton.Deplpment
e ——
¥ Tods
e Bowses
=T
B
e B
> Duabse
— B
i -
P
> oifaviege
p—
A
Dot Toos ©
Remote 5 xtemalTools

o

Server Certificates

Settings Repository
Startup Tasks a
> Tasks a
Vaarant a

2| Manage Layers

For current solution

Name.

No file watchers configured

Level

_static/images/rider_watcher2.png
level 4

Choose Template
& <custom>

& Babel

& Closure Compler
£ Coffeescript

2, VU Compresz iEss miss
£ YUl Compressors >8mD

.

