
Soft-Boiled Documentation
Release 0.9.0

Lab41

Mar 21, 2017

Contents

1 Spatial Label Propagation [slp.py]: 3
1.1 Usage: . 3
1.2 Options: . 4

2 Gaussian Mixture Model [gmm.py] 5
2.1 Usage: . 5
2.2 Options: . 6

3 Contents: 7

4 Indices and tables 17

Python Module Index 19

i

ii

Soft-Boiled Documentation, Release 0.9.0

The usage examples below assume that you have created a zip file containing the top level directory of the repo called
soft-boiled.zip. To create zip file run “zip -r soft-boiled.zip __init__.py src” from inside the repository directory.

Example IPython notebooks demonstrating the functionality of these algorithms can also be found in the notebooks
directory of this repository.

Contents 1

Soft-Boiled Documentation, Release 0.9.0

2 Contents

CHAPTER 1

Spatial Label Propagation [slp.py]:

Usage:

sc.addPyFile ('/path/to/zip/soft-boiled.zip') # Can be an hdfs path
from src.algorithms import slp

Create dataframe from parquet data
tweets = sqlCtx.read.parquet('hdfs:///post_etl_datasets/twitter')
tweets.registerTempTable('my_tweets')

Get Known Locations
locs_known = slp.get_known_locs(sqlCtx, 'my_tweets', min_locs=3, dispersion_
→˓threshold=50, num_partitions=30)

Get at mention network, bi-directional at mentions
edge_list = slp.get_edge_list(sqlCtx, 'my_tweets')

Run Spatial label propagation with 5 iterations
estimated_locs = slp.train_slp(filtered_locs_known, edge_list, 5, dispersion_
→˓threshold=100)

prepare the input functions to the evaluate function. In this case, we create a
→˓holdout function
that filter approximately 10% of the data for testing, and we also have a closure
→˓that prepopulates
some of the parameters to the train_slp function
holdout_10pct = lambda (src_id): src_id[-1] != '9'
train_f = lambda locs, edges : slp.train_slp(locs, edges, 4, neighbor_threshold=4,
→˓dispersion_threshold=150)

Test results
test_results = slp.evaluate(locs_known, edge_list, holdout_10pct, train_f)```

3

Soft-Boiled Documentation, Release 0.9.0

Options:

Related to calculating the median point amongst a collection of points:

dispersion_threshold: This is the maximum median distance in km a point can be from the remaining points and still
estimate a location

min_locs: Number of geotagged posts that a user must have to be included in ground truth.

Related to the actual label propagation: num_iters: This controls the number of iterations of label propagation
performed

4 Chapter 1. Spatial Label Propagation [slp.py]:

CHAPTER 2

Gaussian Mixture Model [gmm.py]

Usage:

sc.addPyFile ('/path/to/zip/soft-boiled.zip') # Can be an hdfs path
from src.algorithms import gmm

Create dataframe from parquet data
tweets = sqlCtx.read.parquet('hdfs:///post_etl_datasets/twitter')
tweets.registerTempTable('my_tweets')

Train GMM model
gmm_model = gmm.train_gmm(sqlCtx, 'my_tweets', ['user.location', 'text'], min_
→˓occurrences=10, max_num_components=12)

Test GMM model
test_results = gmm.run_gmm_test(sc, sqlCtx, 'my_tweets', ['user.location', 'text'],
→˓gmm_model)
print test_results

Use GMM model to predict tweets
other_tweets = sqlCtx.read.parquet('hdfs:///post_etl_datasets/twitter')
estimated_locs = gmm.predict_user_gmm(sc, other_tweets, ['user.location'], gmm_model,
→˓radius=100, predict_lower_bound=0.2)

Save model for future prediction use
gmm.save_model(gmm_model, '/local/path/to/model_file.csv.gz')

Load a model, produces the same output as train
gmm_model = gmm.load_model('/local/path/to/model_file.csv.gz')

5

Soft-Boiled Documentation, Release 0.9.0

Options:

Related to GMM:

fields: A set of fields to use to train/test the GMM model. Currently only user.location and text are supported

min_occurrences: Number of times that a token must appear with a known location in the text to be estimated

max_num_components: Limit on the number of GMM components that can be used

Predict User Options:

radius: Predict the probability that the user is within this distance of most likely point, used with predict_lower_bound

predict_lower_bound: Used with radius to filter user location estimates with probability lower than threshold

6 Chapter 2. Gaussian Mixture Model [gmm.py]

CHAPTER 3

Contents:

class src.algorithms.slp.LocEstimate(geo_coord, dispersion, dispersion_std_dev)

dispersion
Alias for field number 1

dispersion_std_dev
Alias for field number 2

geo_coord
Alias for field number 0

src.algorithms.slp.evaluate(locs_known, edges, holdout_func, slp_closure)
This function is used to assess various stats regarding how well SLP is running. Given all locs that are known
and all edges that are known, this funciton will first apply the holdout to the locs_known, allowing for a ground
truth comparison to be used. Then, it applies the non-holdout set to the training function, which should yield
the locations of the holdout for comparison.

For example:

holdout = lambda (src_id) : src_id[-1] == '6'
trainer = lambda l, e : slp.train_slp(l, e, 3)
results = evaluate(locs_known, edges, holdout, trainer)

Parameters

• locs_known (rdd of LocEstimate objects) – The complete list of locations

• edges (rdd of (src_id, (dest_id, weight)) – all available edge information

• holdout_func (function) – function responsible for filtering a holdout data set. For
example:

lambda (src_id) : src_id[-1] == '6'

7

Soft-Boiled Documentation, Release 0.9.0

can be used to get approximately 10% of the data since the src_id’s are evenly distributed
numeric values

• slp_closure (function closure) – a closure over the slp train function. For ex-
ample:

lambda locs, edges :

slp.train_slp(locs, edges, 4, neighbor_threshold=4,
→˓dispersion_threshold=150)

can be used for training with specific threshold parameters

Returns

stats of the results from the SLP algorithm

median: median difference of predicted versus actual

mean: mean difference of predicted versus actual

coverage: ratio of number of predicted locations to number of original unknown loca-
tions

reserved_locs: number of known locations used to train

total_locs: number of known locations input into this function

found_locs: number of predicted locations

holdout_ratio: ratio of the holdout set to the entire set

Return type results (dict)

src.algorithms.slp.get_edge_list(sqlCtx, table_name, num_partitions=300)
Given a loaded twitter table, this will return the @mention network in the form (src_id, (dest_id,
num_@mentions))

Parameters

• sqlCtx (Spark SQL Context) – A Spark SQL context

• table_name (string) – Table name that was registered when loading the data

• num_paritions (int) – Optimizer for specifying the number of paritions for the result-
ing RDD to use

Returns edges loaded from the table

Return type edges (rdd (src_id, (dest_id, weight)))

src.algorithms.slp.get_known_locs(sqlCtx, table_name, include_places=True, min_locs=3,
num_partitions=30, dispersion_threshold=50)

Given a loaded twitter table, this will return all the twitter users with locations. A user’s location is determined
by the median location of all known tweets. A user must have at least min_locs locations in order for a location
to be estimated

Parameters

• sqlCtx (Spark SQL Context) – A Spark SQL context

• table_name (string) – Table name that was registered when loading the data

• min_locs (int) – Minimum number tweets that have a location in order to infer a location
for the user

8 Chapter 3. Contents:

mailto:num_@mentions

Soft-Boiled Documentation, Release 0.9.0

• num_partitions (int) – Optimizer for specifying the number of partitions for the re-
sulting RDD to use.

• dispersion_threhold (int) – A distance threhold on the dispersion of the estimated
location for a user. We consider those estimated points with dispersion greater than the
treshold unable to be predicted given how dispersed the tweet distances are from one another.

Returns Found locations of users. This rdd is often used as the ground truth of locations

Return type locations (rdd of LocEstimate)

src.algorithms.slp.median(distance_func, vertices, weights=None)
given a python list of vertices, and a distance function, this will find the vertex that is most central relative to all
other vertices. All of the vertices must have geocoords

Parameters

• distance_func (function) – A function to calculate the distance between two Geo-
Coord objects

• vertices (list) – List of GeoCoord objects

Returns The median point

Return type LocEstimate

src.algorithms.slp.train_slp(locs_known, edge_list, num_iters, neighbor_threshold=3, disper-
sion_threshold=100)

Core SLP algorithm

Parameters

• locs_known (rdd of LocEstimate objects) – Locations that are known for the
SLP network

• edge_list (rdd of edges (src_id, (dest_id, weight))) – edges repre-
senting the at mention network

• num_iters (int) – number of iterations to run the algorithm

• neighbor_threshold (int) – The minimum number of neighbors required in order
for SLP to try and predict a location of a node in the network

• dispersion_theshold (int) – The maximum median distance amoung a local at
mention network in order to predict a node’s location.

Returns The locations found and known

Return type locations (rdd of LocEstimate objects)

src.algorithms.gmm.GMMLocEstimate
alias of LocEstimate

src.algorithms.gmm.combine_gmms(gmms)
Takes an array of gaussian mixture models and produces a GMM that is the weighted sum of the models

Parameters gmms (list) – A list of (mixture.GMM, median_error_on_training) models

Returns A single GMM model that is the weighted sum of the input gmm models

Return type new_gmm (mixture.GMM)

src.algorithms.gmm.fit_gmm_to_locations(geo_coords, max_num_components)
Searches within bounts to fit a GMM with the optimal number of components

Parameters

9

Soft-Boiled Documentation, Release 0.9.0

• geo_coords (list) – A list of GeoCoord points to fit a GMM distribution to

• max_num_components (int) – The maximum number of components that the GMM
model can have

Returns Tuple containing the best mixture.GMM and the error of that model on the training data

Return type gmm_estimate (tuple)

src.algorithms.gmm.get_errors(model, points)
Computes the median error for a GMM model and a set of training points

Parameters

• model (mixture.GMM) – A GMM model for a word

• points (list) – A list of (lat, lon) tuples

Returns The median distance to the training points from the most likely point

Return type median (float)

src.algorithms.gmm.get_location_from_tweet(row)
Extract location from a tweet object. If geo.coordinates not present use center of place.bounding_box.

Parameters row (Row) – A spark sql row containing a tweet

Retruns: GeoCoord: The location in the tweet

src.algorithms.gmm.get_most_likely_point(tokens, model_bcast, radius=None)
Create the combined GMM and find the most likely point. This function is called in a flatMap so return a list
with 0 or 1 item

Parameters

• tokens (list) – list of words in tweet

• model_bcast (pyspark.Broadcast) – A broadcast version of a dictionary of GMM
model for the entire vocabulary

• radius (float) – Distance from most likely point at which we should estimate contain-
ment probability (if not None)

Returns A list with 0 or 1 GMMLocEstimates

Return type loc_estimate (list)

src.algorithms.gmm.load_model(input_fname)
Load a pre-trained model

Parameters input_fname (str) – Local file path to read GMM model from

Returns A dictionary of the form {word: (mixture.GMM, error)}

Return type model (dict)

src.algorithms.gmm.predict_probability_area(model, upper_bound, lower_bound)
Predict the probability that the true location is within a specified bounding box given a GMM model

Parameters

• model (mixture.GMM) – GMM model to use

• upper_bound (list) – [upper lat, right lon] of bounding box

• lower_bound (list) – [lower_lat, left_lon] of bounding box

10 Chapter 3. Contents:

Soft-Boiled Documentation, Release 0.9.0

Returns Probability from 0 to 1 of true location being in bounding box

Return type total_prob (float)

src.algorithms.gmm.predict_probability_radius(gmm_model, radius, center_point)
Attempt to estimate the probability that the true location is within some radius of a given center point. Estimate
is based on estimating probability in corners of bounding box and subtracting from total probability mass

Parameters

• gmm_model (mixture.GMM) – GMM model to use

• radius (float) – Radius from center point to include in estimate

• center_point (tuple) – (lat, lon) center point

Returns Probability from 0 to 1 of true location being in the specified radius

Return type total_prob (float)

src.algorithms.gmm.predict_user_gmm(sc, tweets_to_predict, fields, model, radius=None, pre-
dict_lower_bound=0, num_partitions=5000)

Takes a set of tweets and for each user in those tweets it predicts a location Also returned are the probability of
that prediction location being w/n 100 km of the true point

Parameters

• sc (pyspark.SparkContext) – Spark Context to use for execution

• tweets_to_predict (RDD) – RDD of twitter Row objects

• fields (list) – List of field names to extract and then use for GMM prediction

• model (dict) – Dictionary of {word:(mixture.GMM, error)}

• radius (float) – Distance from most likely point at which we should estimate contain-
ment probability (if not None)

• predict_lower_bound (float) – Probability hreshold below which we should filter
tweets

• num_partitions (int) – Number of partitions. Should be based on size of the data

Returns An RDD of (id_str, GMMLocEstimate)

Return type loc_est_by_user (RDD)

src.algorithms.gmm.run_gmm_test(sc, sqlCtx, table_name, fields, model, where_clause=’‘)
Test a pretrained model on a table of test data

Parameters

• sc (pyspark.SparkContext) – Spark Context to use for execution

• sqlCtx (pyspark.sql.SQLContext) – Spark SQL Context to use for sql queries

• table_name (str) – Table name to query for test data

• fields (list) – List of field names to extract and then use for GMM prediction

• model (dict) – Dictionary of {word:(mixture.GMM, error)}

• where_clause (str) – A where clause that can be applied to the query

Returns A description of the performance of the GMM Algorithm

Return type final_result (dict)

11

Soft-Boiled Documentation, Release 0.9.0

src.algorithms.gmm.save_model(model, output_fname)
Save the current model for future use

Parameters

• model (dict) – A dictionary of the form {word: (mixture.GMM, error)}

• output_fname (str) – Local file path to store GMM model

src.algorithms.gmm.tokenize_tweet(inputRow, fields)
A simple tokenizer that takes a tweet as input and, splitting on whitespace, and returns words in the tweet

Parameters

• inputRow (Row) – A spark sql row containing a tweet

• fields (list) – A list of field names which directs tokenize on which fields to use as
source data

Returns A list of words appearing in the tweet

Return type tokens (list)

src.algorithms.gmm.train_gmm(sqlCtx, table_name, fields, min_occurrences=10,
max_num_components=12, where_clause=’‘)

Train a set of GMMs for a given set of training data

Parameters

• sqlCtx (pyspark.sql.SQLContext) – Spark SQL Context to use for sql queries

• table_name (str) – Table name to query for test data

• fields (list) – List of field names to extract and then use for GMM prediction

• min_occurrences (int) – Number of times a word must appear to be incldued in the
model

• max_num_components (int) – The maximum number of components that the GMM
model can have

• where_clause (str) – A where clause that can be applied to the query

Returns Dictionary of {word:(mixture.GMM, error)}

Return type model (dict)

class src.algorithms.estimator.EstimatorCurve(w_stdev, wo_stdev)
The EstimatorCurve class is used to assess the confidence of a predicted location for SLP.

w_stdev
numpy arr – A two dimensional numpy array representing the estimator curve. The x axis is the standard
deviations and y axis is the probability. The curve is a CDF. This curve is generated from known locations
where at least two neighbors are at different locations.

wo_stdev
numpy_arr – A two dimensional numpy array representing the estimator curve

static build_curve(vals, desired_samples)
Static helper method for building the curve from a set of stdev stample

Parameters

• vals (rdd of floats) – The rdd containing the standard deviation from the distance
between the estimated location and the actual locationn

12 Chapter 3. Contents:

Soft-Boiled Documentation, Release 0.9.0

• desired_samples (int) – For larger RDDs it is more efficient to take a sample for
the collect

Returns

two dimensional array representing the curve.

Column 0 is the sorted stdevs and column 1 is the percentage for the CDF.

Return type curve (numpy.ndarray)

confidence_estimation_viewer(sc, eval_rdd)
Displays a plot of the estimated and actual probability that the true point is within an array of radius values

Parameters

• curve (numpy.darray) – x axis is stdev, y axis is percent

• eval_rdd (rdd (src_id, (dist, loc_estimate))) – this is the result of the
evaluator function

static load_from_file(name=’estimator’)
Loads an Estimator curve from csv files

Parameters name (string) – prefix name for the two CSV files

static load_from_rdds(locs_known, edges, desired_samples=1000, dispersion_threshold=150,
neighbor_threshold=3)

Creates an EstimatorCurve

Parameters

• locs_known (rdd of LocEstimate) – RDD of locations that are known

• edges (rdd of (src_id (dest_id, weight)) – RDD of edges in the network

• desired_samples (int) – Limit the curve to just a sample of data

Returns A new EstimatorCurve representing the known input data

Return type EstimatorCurve

lookup(val, axis=0)

static lookup_static(table, val, axis=0)
lookups up closes stdev by subtracting from lookup table, taking absolute value and finding which is closest
to zero by sorting and taking the first element

Args: num_std_devs (float): the stdev to lookup

Returns: CDF (float) : Percentage of actual locations found to be within the input stdev

plot(w_stdev_lim=10, wo_stdev_lim=1000)
Plots both the stdev curve and the distance curve for when the stdev is 0

Parameters

• w_stdev_lim (int) – x axis limit for the plot

• wo_stdev_lim (int) – x axis limit for the plot

predict_probability_area(upper_bound, lower_bound, estimated_loc)
Given a prediction and a bounding box this will return a confidence range for that prediction

Parameters

• upper_bound (geoCoord) – bounding box top right geoCoord

• lower_bound (geoCoord) – bounding box bottom left geoCoord

13

Soft-Boiled Documentation, Release 0.9.0

• estimated_loc (LocEstimate) – geoCoord of the estimated location

Returns A probability range tuple (min probability, max probability)

Return type Probability Tuple(Tuple(float,float))

save(name=’estimator’)
Saves the EstimatorCurve as a csv

Parameters name (string) – A prefix name for the filename. Two CSVs will be created– one
for when the stdev is 0, and one for when it is greater than 0

validator(sc, eval_rdd)
Validates a curve

Parameters

• curve (numpy.darray) – x axis is stdev, y axis is percent

• eval_rdd (rdd (src_id, (dist, loc_estimate))) – this is the result of the
evaluator function

class src.algorithms.estimator.EstimatorCurve(w_stdev, wo_stdev)
The EstimatorCurve class is used to assess the confidence of a predicted location for SLP.

w_stdev
numpy arr – A two dimensional numpy array representing the estimator curve. The x axis is the standard
deviations and y axis is the probability. The curve is a CDF. This curve is generated from known locations
where at least two neighbors are at different locations.

wo_stdev
numpy_arr – A two dimensional numpy array representing the estimator curve

static build_curve(vals, desired_samples)
Static helper method for building the curve from a set of stdev stample

Parameters

• vals (rdd of floats) – The rdd containing the standard deviation from the distance
between the estimated location and the actual locationn

• desired_samples (int) – For larger RDDs it is more efficient to take a sample for
the collect

Returns

two dimensional array representing the curve.

Column 0 is the sorted stdevs and column 1 is the percentage for the CDF.

Return type curve (numpy.ndarray)

confidence_estimation_viewer(sc, eval_rdd)
Displays a plot of the estimated and actual probability that the true point is within an array of radius values

Parameters

• curve (numpy.darray) – x axis is stdev, y axis is percent

• eval_rdd (rdd (src_id, (dist, loc_estimate))) – this is the result of the
evaluator function

static load_from_file(name=’estimator’)
Loads an Estimator curve from csv files

Parameters name (string) – prefix name for the two CSV files

14 Chapter 3. Contents:

Soft-Boiled Documentation, Release 0.9.0

static load_from_rdds(locs_known, edges, desired_samples=1000, dispersion_threshold=150,
neighbor_threshold=3)

Creates an EstimatorCurve

Parameters

• locs_known (rdd of LocEstimate) – RDD of locations that are known

• edges (rdd of (src_id (dest_id, weight)) – RDD of edges in the network

• desired_samples (int) – Limit the curve to just a sample of data

Returns A new EstimatorCurve representing the known input data

Return type EstimatorCurve

lookup(val, axis=0)

static lookup_static(table, val, axis=0)
lookups up closes stdev by subtracting from lookup table, taking absolute value and finding which is closest
to zero by sorting and taking the first element

Args: num_std_devs (float): the stdev to lookup

Returns: CDF (float) : Percentage of actual locations found to be within the input stdev

plot(w_stdev_lim=10, wo_stdev_lim=1000)
Plots both the stdev curve and the distance curve for when the stdev is 0

Parameters

• w_stdev_lim (int) – x axis limit for the plot

• wo_stdev_lim (int) – x axis limit for the plot

predict_probability_area(upper_bound, lower_bound, estimated_loc)
Given a prediction and a bounding box this will return a confidence range for that prediction

Parameters

• upper_bound (geoCoord) – bounding box top right geoCoord

• lower_bound (geoCoord) – bounding box bottom left geoCoord

• estimated_loc (LocEstimate) – geoCoord of the estimated location

Returns A probability range tuple (min probability, max probability)

Return type Probability Tuple(Tuple(float,float))

save(name=’estimator’)
Saves the EstimatorCurve as a csv

Parameters name (string) – A prefix name for the filename. Two CSVs will be created– one
for when the stdev is 0, and one for when it is greater than 0

validator(sc, eval_rdd)
Validates a curve

Parameters

• curve (numpy.darray) – x axis is stdev, y axis is percent

• eval_rdd (rdd (src_id, (dist, loc_estimate))) – this is the result of the
evaluator function

15

Soft-Boiled Documentation, Release 0.9.0

16 Chapter 3. Contents:

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

17

Soft-Boiled Documentation, Release 0.9.0

18 Chapter 4. Indices and tables

Python Module Index

s
src.algorithms.estimator, 12
src.algorithms.gmm, 9
src.algorithms.slp, 7

19

Soft-Boiled Documentation, Release 0.9.0

20 Python Module Index

Index

B
build_curve() (src.algorithms.estimator.EstimatorCurve

static method), 12, 14

C
combine_gmms() (in module src.algorithms.gmm), 9
confidence_estimation_viewer()

(src.algorithms.estimator.EstimatorCurve
method), 13, 14

D
dispersion (src.algorithms.slp.LocEstimate attribute), 7
dispersion_std_dev (src.algorithms.slp.LocEstimate at-

tribute), 7

E
EstimatorCurve (class in src.algorithms.estimator), 12, 14
evaluate() (in module src.algorithms.slp), 7

F
fit_gmm_to_locations() (in module src.algorithms.gmm),

9

G
geo_coord (src.algorithms.slp.LocEstimate attribute), 7
get_edge_list() (in module src.algorithms.slp), 8
get_errors() (in module src.algorithms.gmm), 10
get_known_locs() (in module src.algorithms.slp), 8
get_location_from_tweet() (in module

src.algorithms.gmm), 10
get_most_likely_point() (in module src.algorithms.gmm),

10
GMMLocEstimate (in module src.algorithms.gmm), 9

L
load_from_file() (src.algorithms.estimator.EstimatorCurve

static method), 13, 14
load_from_rdds() (src.algorithms.estimator.EstimatorCurve

static method), 13, 14

load_model() (in module src.algorithms.gmm), 10
LocEstimate (class in src.algorithms.slp), 7
lookup() (src.algorithms.estimator.EstimatorCurve

method), 13, 15
lookup_static() (src.algorithms.estimator.EstimatorCurve

static method), 13, 15

M
median() (in module src.algorithms.slp), 9

P
plot() (src.algorithms.estimator.EstimatorCurve method),

13, 15
predict_probability_area() (in module

src.algorithms.gmm), 10
predict_probability_area()

(src.algorithms.estimator.EstimatorCurve
method), 13, 15

predict_probability_radius() (in module
src.algorithms.gmm), 11

predict_user_gmm() (in module src.algorithms.gmm), 11

R
run_gmm_test() (in module src.algorithms.gmm), 11

S
save() (src.algorithms.estimator.EstimatorCurve method),

14, 15
save_model() (in module src.algorithms.gmm), 11
src.algorithms.estimator (module), 12
src.algorithms.gmm (module), 9
src.algorithms.slp (module), 7

T
tokenize_tweet() (in module src.algorithms.gmm), 12
train_gmm() (in module src.algorithms.gmm), 12
train_slp() (in module src.algorithms.slp), 9

21

Soft-Boiled Documentation, Release 0.9.0

V
validator() (src.algorithms.estimator.EstimatorCurve

method), 14, 15

W
w_stdev (src.algorithms.estimator.EstimatorCurve

attribute), 12, 14
wo_stdev (src.algorithms.estimator.EstimatorCurve at-

tribute), 12, 14

22 Index

	Spatial Label Propagation [slp.py]:
	Usage:
	Options:

	Gaussian Mixture Model [gmm.py]
	Usage:
	Options:

	Contents:
	Indices and tables
	Python Module Index

