

    
      
          
            
  # Sockeye

[![PyPI version](https://badge.fury.io/py/sockeye.svg)](https://badge.fury.io/py/sockeye)
[![GitHub license](https://img.shields.io/github/license/awslabs/sockeye.svg)](https://github.com/awslabs/sockeye/blob/main/LICENSE)
[![GitHub issues](https://img.shields.io/github/issues/awslabs/sockeye.svg)](https://github.com/awslabs/sockeye/issues)
[![Documentation Status](https://readthedocs.org/projects/sockeye/badge/?version=latest)](http://sockeye.readthedocs.io/en/latest/?badge=latest)
[![Torch Nightly](https://github.com/awslabs/sockeye/actions/workflows/torch_nightly.yml/badge.svg)](https://github.com/awslabs/sockeye/actions/workflows/torch_nightly.yml)

Sockeye is an open-source sequence-to-sequence framework for Neural Machine Translation built on [PyTorch](https://pytorch.org/).
It implements distributed training and optimized inference for state-of-the-art models, powering [Amazon Translate](https://aws.amazon.com/translate/)
and other MT applications.

Recent developments and changes are tracked in our [CHANGELOG](https://github.com/awslabs/sockeye/blob/main/CHANGELOG.md).

For a quickstart guide to training a standard NMT model on any size of data, see the [WMT 2014 English-German tutorial](https://awslabs.github.io/sockeye/tutorials/wmt_large.html).

If you are interested in collaborating or have any questions, please submit a pull request or [issue](https://github.com/awslabs/sockeye/issues/new).
You can also send questions to sockeye-dev-at-amazon-dot-com.
Developers may be interested in [our developer guidelines](development.md).

## Citation

For more information about Sockeye, see our papers ([BibTeX](sockeye.bib)).

##### Sockeye 3.x

> Felix Hieber, Michael Denkowski, Tobias Domhan, Barbara Darques Barros, Celina Dong Ye, Xing Niu, Cuong Hoang, Ke Tran, Benjamin Hsu, Maria Nadejde, Surafel Lakew, Prashant Mathur, Anna Currey, Marcello Federico.
> [Sockeye 3: Fast Neural Machine Translation with PyTorch](https://arxiv.org/abs/2207.05851). ArXiv e-prints.

##### Sockeye 2.x

> Tobias Domhan, Michael Denkowski, David Vilar, Xing Niu, Felix Hieber, Kenneth Heafield.
> [The Sockeye 2 Neural Machine Translation Toolkit at AMTA 2020](https://www.aclweb.org/anthology/2020.amta-research.10/). Proceedings of the 14th Conference of the Association for Machine Translation in the Americas (AMTA’20).

> Felix Hieber, Tobias Domhan, Michael Denkowski, David Vilar.
> [Sockeye 2: A Toolkit for Neural Machine Translation](https://www.amazon.science/publications/sockeye-2-a-toolkit-for-neural-machine-translation). Proceedings of the 22nd Annual Conference of the European Association for Machine Translation, Project Track (EAMT’20).

##### Sockeye 1.x

> Felix Hieber, Tobias Domhan, Michael Denkowski, David Vilar, Artem Sokolov, Ann Clifton, Matt Post.
> [The Sockeye Neural Machine Translation Toolkit at AMTA 2018](https://www.aclweb.org/anthology/W18-1820/). Proceedings of the 13th Conference of the Association for Machine Translation in the Americas  (AMTA’18).
>
> Felix Hieber, Tobias Domhan, Michael Denkowski, David Vilar, Artem Sokolov, Ann Clifton and Matt Post. 2017.
> [Sockeye: A Toolkit for Neural Machine Translation](https://arxiv.org/abs/1712.05690). ArXiv e-prints.
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  # Developer Documentation

## Requirements

There are three types of dependencies: core dependencies, development dependencies and dependencies for generating the documentation.

Install them via

`bash
> pip install -r requirements/requirements.txt
> pip install -r requirements/requirements.dev.txt
> pip install -r requirements/requirements.docs.txt
`

## Developer Guidelines

We welcome contributions to sockeye in form of pull requests on Github.
If you want to develop sockeye, please adhere to the following development guidelines.


	Write Python 3.7, PEP8 compatible code.


	
	Functions should be documented with Sphinx-style docstrings and
	should include type hints for static code analyzers.









```python
def foo(bar: <type of bar>) -> <returnType>:


“””
<Docstring for foo method, followed by a period>.


	param bar

	<Description of bar argument followed by a period>.



	return

	<Description of the return value followed by a period>.





“””




```


	The desired line length of Python modules should not exceed 120 characters.


	Make sure to pass unit tests before submitting a pull request.


	Whenever reasonable, write py.test unit tests covering your contribution.


	When importing other sockeye modules import the entire module instead of individual functions and classes using relative imports:




`python
from . import attention
`

## Unit & Integration Tests

Unit & integration tests are written using py.test.
They can be run with:

`bash
> python setup.py test
`

or:

`bash
> pytest
`

Integration tests run Sockeye CLI tools on small, synthetic data to test for functional correctness.

## System Tests

System tests test Sockeye CLI tools on synthetic tasks (digit sequence copying & sorting) for functional correctness and successful learning. They assert on validation metrics (perplexity) and BLEU scores from decoding.
A subset of the system tests are run as part of Github workflows for every commit/pull request.
You can manually run the system tests with:

`bash
> pytest test/system
`

## Submitting a New Version to PyPI

Before starting make sure you have the [TestPyPI](https://wiki.python.org/moin/TestPyPI) and PyPI accounts and the
corresponding ~/.pypirc set up.


	Build source distribution:
` bash
> python setup.py sdist bdist_wheel
`





	Upload to PyPITest:
`bash
> twine upload dist/sockeye-${VERSION}.tar.gz dist/sockeye-${VERSION}-py3-none-any.whl -r pypitest
`





	In a new python environment check that the package is installable
`bash
> pip install -i https://testpypi.python.org/pypi sockeye
`





	Upload to PyPI
`bash
> twine upload dist/sockeye-${VERSION}.tar.gz dist/sockeye-${VERSION}-py3-none-any.whl
`




When pushing a new git tag to the repository, it is automatically built and deployed to PyPI as a new version via Travis.

## Code of Conduct

This project has adopted the [Amazon Open Source Code of Conduct](https://aws.github.io/code-of-conduct).
For more information see the [Code of Conduct FAQ](https://aws.github.io/code-of-conduct-faq) or contact
opensource-codeofconduct@amazon.com with any additional questions or comments.

## Licensing

See the [LICENSE](https://github.com/awslabs/sockeye/blob/main/LICENSE) file for our project’s licensing. We will ask you confirm the licensing of your contribution.

We may ask you to sign a [Contributor License Agreement (CLA)](http://en.wikipedia.org/wiki/Contributor_License_Agreement) for larger changes.



            

          

      

      

    

  

    
      
          
            
  # Frequently Asked Questions

### What does Sockeye mean?
Sockeye is a salmon found in the Northern Pacific Ocean.



            

          

      

      

    

  

    
      
          
            
  # Translation

Decoding (a.k.a. inference or translation) in sockeye is made available through the sockeye.translate module.

`bash
> python -m sockeye.translate
`

The only required argument is –models, which should point to an <model_dir> folder of trained models.
By default, sockeye chooses the parameters from the best checkpoint and uses these for translation.
You can specify parameters from a specific checkpoint by using –checkpoints X.

You can control the size of the beam using –beam-size and the maximum input length by –max-input-length.
Sentences that are longer than max-input-length are stripped.

Input is read from the standard input and the output is written to the standard output.
The CLI will log translation speed once the input is consumed.
Like in the training module, the first GPU device is used by default.
Note however that multi-GPU translation is not currently supported. For CPU decoding use –use-cpu.

Use the –help option to see a full list of options for translation.

## Ensemble Decoding

Sockeye supports ensemble decoding by specifying multiple model directories and multiple checkpoints.
The given lists must have the same length, such that the first given checkpoint will be taken from the first model directory, the second specified checkpoint from the second directory, etc.

`bash
> python -m sockeye.translate --models [<m1prefix> <m2prefix>] --checkpoints [<cp1> <cp2>]
`

## Visualization

The default mode of the translate CLI is to output translations to STDOUT.
You can also print out an ASCII matrix of the alignments using –output-type align_text, or save the alignment matrix as a PNG plot using –output-type align_plot.
The PNG files will be written to files beginning with the prefix given by the –align-plot-prefix option, one for each input sentence, indexed by the sentence id.

## Source factors

If your [model was trained with source factors](training.md#source-factors), you will need to supply them at test-time, too.
Factors can be provided in three formats: (a) separate, token-parallel files (as in training), (b) direct annotations on words, or (c) in a JSON object.

### Parallel files

You can also provide parallel files, [in the same style as training](training.md#source-factors).
Factor files are token-parallel to the source and are passed in to sockeye.translate via the –input-factors flag.
(In this scenario, the source is another file, passed via –input).

### Direct annotations

Here, factors are appended to each token and delimited with a | symbol.
For example:


The|O boy|O ate|O the|O waff@@|B le|E .|O




Any number of factors can be supplied; just delimit them with |.
Factor representation are dense; each word must be annotated for all factors.

### Input and output with JSON

Sockeye supports JSON for both input and output.
JSON input is enabled by adding the –json-input to the call to sockeye.translate.
In this case, Sockeye will take the text to translate from the “text” field.
Sockeye expects a complete JSON object on each line of input.
This JSON object can also specify the source factors as a list of token-parallel strings, e.g.,

`python
{ "text": "The boy ate the waff@@ le .", "factors": ["O O O O B E O"] }
`

JSON output is enabled with the –output-type json flag.
The translation itself will appear in a translation field, along with other fields such as sentence_id.

If both JSON input and output are enabled, Sockeye will push through all fields in the input object that it doesn’t overwrite.
For example, if your input is:

`json
{ "text": "The boy ate the waff@@ le .", "sentiment_id": "positive" }
`

The output may be:

`json
{ "sentence_id": 1, "sentiment_id": "positive", "text": "The boy ate the waff@@ le .", "translation": "Der Junge aß die Waffel." }
`

Sockeye also supports the use of adding source prefixes to the input during inference. For instance let us assume a multilingual translation model is trained with a source prefix (e.g. 2XX where XX is the target language code) as the translation direction signal. During inference this source prefix can be added with JSON format as follows:

`json
{ "text": "The boy ate the waff@@ le .", "source_prefix": "2XX"}
`

Similar to source factors, source prefix factors can be also specified with JSON format, e.g.,

`json
{ "text": "The boy ate the waff@@ le .", "source_prefix": "2XX", "source_prefix_factors": ["O"]}
`

Finally, Sockeye also supports the use of adding target prefix and target prefix factors to the translation during inference. In the same spirit to the example above, let us assume a multilingual translation model trained with a target prefix 2XX (this time the prefix is added to the target sentence instead of the source sentence). During inference this target prefix can be specified with JSON format as follows:

`json
{ "text": "The boy ate the waff@@ le .", "target_prefix": "2XX"}
`

This forces the decoder to generate 2XX as its first target token (i.e. the one right after the <bos> token).

If your model was trained with target factors, every target translation token aligns with one or more corresponding target factor tokens (depending of the number of target factors of the model). During inference, you can add target prefix factors to the translation with JSON format, e.g.:

`json
{ "text": "The boy ate the waff@@ le .", "target_prefix_factors": ["O"]}
`

Here, the decoder is forced to generate a translation and its corresponding target factors so that the first target token aligns with factor O as its target factor.

Note that you can also add both target prefix and target prefix factors with different length, e.g.,:

`json
{ "text": "The boy ate the waff@@ le .", "target_prefix": "2XX", "target_prefix_factors": ["O O E"]}
`
With this example, 2XX is the force-decoded first target token of the translation. This token also aligns with factor O its corresponding target factor. Moreover, the next two target tokens after 2XX align with O E as their corresponding target factors.

Note that if an input is very long, Sockeye chunks the text and translates each chunk separately. By default, target prefix and target prefix factors are added to all chunks in that case. Alternatively, you can set use_target_prefix_all_chunks to false to add them only to the first chunk, e.g.,:

`json
{ "text": "The boy ate the waff@@ le .", "target_prefix": "2XX", "target_prefix_factors": ["O"], "use_target_prefix_all_chunks": false}
`

Note also that the translation output includes the target prefix as its first string by default. Alternatively, you can remove the target prefix from the translation output by setting keep_target_prefix to false, e.g.,:

`json
{ "text": "The boy ate the waff@@ le .", "target_prefix": "2XX", "keep_target_prefix": false}
`

## N-best translations

Sockeye can return the n best hypotheses per input (nbest lists).
Such nbest lists can for example be used in reranking (python -m sockeye.rerank).

When –nbest-size > 1, each line in the output of translate will contain the following JSON object:
`python
{"alignments": [<1st alignment>, <2nd alignment>, ...], "scores": [<1st score>, <2nd score>, ...], "translations": ["<1st hypothesis>", "<2nd hypothesis>", ...]}
`
Note that –nbest-size must be smaller or equal to –beam-size and –beam-search-stop must be set to all.

## Decoding with brevity penalty

To nudge Sockeye towards longer translations, you can enable a penalty for short translations by setting –brevity-penalty-type to learned or constant.
With the former setting, provided the training was done with –length-task, Sockeye will predict the reference length individually for each sentence
and use it to calculate the (logarithmic) brevity penalty weight * min(0.0, 1 - |ref|/|hyp|) that will be subtracted from the scores to reward longer sentences.
The latter setting, by default, will use a constant length ratio for all sentences that was estimated on the training data.
The value of the constant can be changed with –brevity-penalty-constant-length-ratio.

## Sampling

Instead of filling the beam with the best items at each step of the decoder, Sockeye can sample from the target distributions of each hypothesis using –sample [N].
If the optional parameter N is specified, the sampling will be limited to the top N vocabulary items.
If –sample is used without an integer, the default N = 0 applies. N = 0 means to sample from the full distribution over all target vocabulary items.
Limiting N to a value that is much smaller than the target vocabulary size (say, 5%) can lead to much more sensible samples.
Likewise, you can use –softmax-temperature T to make the target distributions more peaked (T < 1.0) or smoother (T > 1.0).

You can use this with –nbest-size to output multiple samples for each input.
However, note that since each beam item is sampled independently, there is no guarantee that sampled items will be unique.
Also note that the samples in an nbest list will be sorted according to model scores.



            

          

      

      

    

  

    
      
          
            
  # Scoring existing translations

Sockeye provides a fast scoring module that permits the scoring of existing translations.
It works by making use of the training computation graph, but turning off caching of gradients and loss computation.
Just like when training models, the scorer works with raw plain-text data passed in via –source and –target.
It can easily therefore taken any pretrained model, just like in inference.

## Example

To score a source and target dataset, first make sure that all source and target preprocessing have been applied.
Then run this command:


python3 -m sockeye.score -m MODEL –source SOURCE –target TARGET




Sockeye will output a score (a negative log probability) for each sentence pair.

## Command-line arguments

The scorer takes a number of arguments:


	–score-type logprob. Use this to get log probabilities instead of negative log probabilities.


	–batch-size X. Word-based batching is used.
You can use this flag to change the batch size from its default of 500.
If you run out of memory, try lowering this.


	–output-type {score,pair_with_score}. The output type: either the score alone, or the score with the translation pair.
Fields will be separated by a tab.


	–max-seq-len M:N. The maximum sequences length (M the source length, N the target).


	–softmax-temperature X. Scales the logits by dividing by this argument before computing softmax.


	–length-penalty-alpha, –length-penalty-beta. Parameters for length normalization.
Set –length-penalty-alpha 0 to disable normalization.




## Caveat emptor

Some things to watch out for:


	Scoring reads the maximum sentence lengths from the model.
Sentences longer than these will be skipped, meaning the scored output will not be parallel with the input.
A warning message will be printed to STDERR, but beware.






            

          

      

      

    

  

    
      
          
            
  # Setup & Installation

## Dependencies

Sockeye requires:
- Python 3.7 or above
- [PyTorch 1.10](https://github.com/pytorch/pytorch/releases/tag/v1.10.0)
- Numpy

## Installation

There are several options for installing Sockeye and its dependencies.
Below we list several alternatives and the corresponding instructions.

### → via pip…

The easiest way to install is with [pip](https://pypi.org):

`bash
> pip install sockeye
`

### → via source…

If you want to just use Sockeye without extending it, simply install it via
`bash
> pip install -r requirements/requirements.txt
> pip install .
`
after cloning the repository from git.

Developers will be better served by pointing $PYTHONPATH to the root of the git-cloned source.

### → in an Anaconda environment …

In an Anaconda environment such as the one provided by the [AWS DeepLearning AMI](https://aws.amazon.com/amazon-ai/amis/) or Azure when using the [Data Science Virtual Machine](http://aka.ms/dsvm/discover) image, users only need to run the following line to install sockeye (on an instance without a GPU):

`bash
> conda create -n sockeye python=3.8
> source activate sockeye
> pip install sockeye --no-deps
`

### Optional dependencies
In order to write training statistics to a Tensorboard event file for visualization, you can optionally install tensorboard


(``pip install tensorboard``). To visualize these, run the Tensorboard tool with
the logging directory pointed to the training output folder: tensorboard –logdir <model>




In general you can install all optional dependencies from the Sockeye source folder using:
`bash
> pip install '.[optional]'
`

### Running Sockeye

After installation, command line tools such as sockeye-train, sockeye-prepare-data, sockeye-translate, sockeye-average and sockeye-embeddings are available.
For example:

`bash
> sockeye-train <args>
`

Equivalently, if the sockeye directory is on your $PYTHONPATH, you can run the modules directly:

`bash
> python -m sockeye.train <args>
`



            

          

      

      

    

  

    
      
          
            
  # Training

## Data preparation

Sockeye can read the raw data at training time in two sentence-parallel files via the –source and –target command-line options.
You can also prepare the data ahead of time and dump it to disk as MXNet NDArrays.
This eliminates the data loading time when running training (since three passes over the raw data are required), and also reduces memory consumption,
since prepared data is also placed into random shards (which have one million lines each, by default).
To run data preparation, you can use the following command:

```bash
> python -m sockeye.prepare_data
usage: prepare_data.py [-h] –source SOURCE [–source-factors SOURCE_FACTORS [SOURCE_FACTORS …]]


[–source-factors-use-source-vocab SOURCE_FACTORS_USE_SOURCE_VOCAB [SOURCE_FACTORS_USE_SOURCE_VOCAB …]]
[–target-factors TARGET_FACTORS [TARGET_FACTORS …]]
[–target-factors-use-target-vocab TARGET_FACTORS_USE_TARGET_VOCAB [TARGET_FACTORS_USE_TARGET_VOCAB …]] –target
TARGET [–source-vocab SOURCE_VOCAB] [–target-vocab TARGET_VOCAB]
[–source-factor-vocabs SOURCE_FACTOR_VOCABS [SOURCE_FACTOR_VOCABS …]]
[–target-factor-vocabs TARGET_FACTOR_VOCABS [TARGET_FACTOR_VOCABS …]] [–shared-vocab] [–num-words NUM_WORDS]
[–word-min-count WORD_MIN_COUNT] [–pad-vocab-to-multiple-of PAD_VOCAB_TO_MULTIPLE_OF] [–no-bucketing]
[–bucket-width BUCKET_WIDTH] [–bucket-scaling] [–no-bucket-scaling] [–max-seq-len MAX_SEQ_LEN]
[–num-samples-per-shard NUM_SAMPLES_PER_SHARD] [–min-num-shards MIN_NUM_SHARDS] [–seed SEED] –output OUTPUT
[–max-processes MAX_PROCESSES] [–quiet] [–quiet-secondary-workers] [–no-logfile] [–loglevel {INFO,DEBUG}]




prepare_data.py: error: the following arguments are required: –source/-s, –target/-t, –output/-o
```

The main arguments are the required ones above (–source, –target, and –output to specify the directory to write the prepared data to).
Some other important ones are:


	–shared-vocab: to produce a shared vocabulary between the source and target sides of the corpora.


	–num-samples-per-shard: to control the shard size.




At training time (see next section), you then specify –prepared-data instead of –source and –target.

## Training

Training is carried out by the sockeye.train module. Basic usage is given by

```bash
> python -m sockeye.train
usage: train.py [-h] –source SOURCE –target TARGET –validation-source


VALIDATION_SOURCE –validation-target VALIDATION_TARGET
–output OUTPUT […]




```

Training requires 5 arguments:
* –source, –target: give the training data files. Gzipped files are supported, provided that their filenames end with .gz.
* –validation-source, –validation-target: give the validation data files, gzip supported as above.
* –output: gives the output directory where the intermediate and final results will be written to.
Intermediate directories will be created if needed.
Logging will be written to <model_dir>/log as well as being echoed on the console.

For a complete list of supported options use the –help option.

### Data format

All input files files should be UTF-8 encoded, tokenized with standard whitespaces.
Each line should contain a single sentence and the source and target files should have the same number of lines.
Vocabularies will automatically be created from the training data and vocabulary coverage on the validation set during initialization will be reported.

### Checkpointing and early-stopping

Training is governed by the concept of “checkpoints”, rather than epochs.
You can specify the checkpoint interval in terms of updates/batches with –checkpoint-interval.
Training performs early-stopping to prevent overfitting, i.e., training is stopped once a defined evaluation metric computed on the held-out validation data does not improve for a number of checkpoints given by the parameter –max-num-checkpoint-not-improved.
You can specify a maximum number of updates/batches using –max-updates.

Perplexity is the default metric to be considered for early-stopping, but you
can also choose to optimize accuracy or BLEU using the –optimized-metric
argument. In case of optimizing with respect to BLEU, you will need to set –decode-and-evaluate > 0
to decode validation at every checkpoint.

Note that evaluation metrics for training data and held-out validation data are
written in a tab-separated file called metrics.

At each checkpoint, the internal state of the training process is stored to
disk. If the training is interrupted (e.g. due to a hardware failure), you can
start sockeye again, with the same parameters as for the initial call, and
training will resume from the last checkpoint. Note that this is different to
using the –params argument. This argument is used only to initialize the
training with pre-computed values for the parameters of the model, but the
parameters of the optimizer and other parts of the system are initialized from
scratch.

### Monitoring training progress with Tensorboard

Sockeye can write all evaluation metrics in a Tensorboard compatible format.
This way you can monitor the training progress in the browser.
To visualize logged events, install Tensorboard:
`bash
> pip install tensorboard
`

Start tensorboard and point it to the model directory (or any parent directory):
`bash
> tensorboard --logdir model_dir
`

### CPU/GPU training

By default, training is carried out on the first GPU device of your machine.
You can specify an alternative GPU device with the –device-id option.
If you do not have or do not want to use a GPU, specify –use-cpu.
In this case a drop in training throughput is expected.

#### Multi-GPU training

Training can be carried out on multiple GPUs. See the
[WMT 2014 English-German tutorial](tutorials/wmt_large.md) for more information.

### Checkpoint averaging

A common technique for improving model performance is to average the weights for the last checkpoints.
This can be done as follows:
`bash
> python -m sockeye.average <model_dir> -o <model_dir>/model.best.avg.params
`

## Source factors

Sockeye supports source factors, which are described in:

> Rico Sennrich and Barry Haddow. 2016.
> [Linguistic Input Features Improve Neural Machine Translation](http://www.aclweb.org/anthology/W16-2209)
> Proceedings of the First Conference on Machine Translation: Volume 1, Research Papers.

Factors are enabled with two flags: –source-factors and –source-factors-num-embed.
The –source-factors argument takes one or more files that are token-parallel to the source.
This means that each line has the exact same number of whitespace-delimited tokens as the source file (–source).
For example, if you have the following line of a source sentence:

> the boy ate the waff@@ le .

You need a corresponding feature line of the following form:

> O O O O B E O

(Same number of tokens).

This flag can also be supplied to [the data preparation step](#data-preparation).

Each source factor has its own vocabulary and learned embedding.
The source factors can be combined with the word embeddings in two ways: concatenation and summing.
For concatenation (–source-factors-combine concat, the default), you need to specifiy the embedding sizes for each factor.
This is done with –source-factors-num-embed X1 X2 ….
Since these embeddings concatenated to those of the word embeddings, the total source embedding size will be the sum of the word embeddings and all source factor embeddings.
You can also sum the embeddings (–source-factors-combine sum).
In this case, you do not need to specify –source-factors-num-embed, since they are automatically all set to the size of the word embeddings (–num-embed).

You then also have to apply factors for the source side [at inference time](inference.md#source-factors).

## Target factors

Sockeye supports target factors, i.e. alternative tokens/features to be predicted alongside the main decoding output.
Similar to source factors, the target factor files at training time need to be token-parallel to the target side.
For example, if you have the following line of a target sentence:

> der junge aß die waff@@ el .

A POS target factor could look like like this:

> DET N V DET N N PUNC

Internally, Sockeye will shift all target factors to the right by 1 to condition the prediction of the factors on the previously generated target word.
During training, Sockeye will optimize multiple losses in a multi-task setting, one for each target factor. The weight of the losses can be controlled by –target-factors-weight.

To receive the target factor predictions at inference time, use –output-type translation_with_factors.
Target factors do not participate in beam search, i.e. each target factor prediction is the argmax of the corresponding output layer distribution.

## Length ratio prediction

Sockeye supports an auxiliary training objective that predicts length ratio (|reference|/|input|) or the reference length for each input,
that can be enabled by setting –length-task, respectively, to ratio or to length.
Specify –length-task-layers to set the number of layers in the prediction MLP.
The weight of the loss in the global training objective is controlled with –length-task-weight (standard cross-entropy loss has weight 1.0).
During inference the predictions can be used to reward longer translations by enabling –brevity-penalty-type.

## Neural Vocabulary Selection (NVS)

When Neural Vocabulary Selection (NVS) gets enabled a target bag-of-word model will be trained.
During decoding the output vocabulary gets reduced to the set of predicted target words speeding up decoding
This is similar to using –restrict-lexicon for sockeye-translate with the advantage that no external alignment model is required and that the contextualized hidden encoder representations are used to predict the set of target words.
To use NVS simply specify –neural-vocab-selection to sockeye-train.
This will train a model with NVS that is automatically used by sockeye-translate.
If you want look at translations without vocabulary selection specify –skip-nvs as an argument to sockeye-translate.

## Prepended Source Text

If the source contains prepended text and a tag indicating the end of prepended text,
Sockeye supports blocking the cross-attention between decoder and encoded prepended tokens (including the tag).
To enable this operation, specify –end-of-prepending-tag for training or data preparation,
and –transformer-block-prepended-cross-attention for training.



            

          

      

      

    

  

    
      
          
            
  # Step-by-step tutorials

## Setup

For installing Sockeye follow the [installation instructions](setup.md) to manually install Sockeye and all dependencies.
The tutorials below might have additional dependencies that will be mentioned at the beginning of each tutorial.

## Tutorials

Below is the full list of tutorials we provide. We recommend going through them in order as they will gradually
introduce different concepts and parameters used for training and translation.

1. [Sequence copy task](tutorials/seqcopy_tutorial.md)
1. [WMT German to English news translation](tutorials/wmt.md)
1. [Domain adaptation of NMT models](tutorials/adapt.md)
1. [Large data: WMT English-German 2014](tutorials/wmt_large.md)
1. [Multilingual Zero-shot Translation IWSLT 2017](tutorials/multilingual.md)



            

          

      

      

    

  

    
      
          
            
  # Domain adaptation of NMT models

Although the quality of machine translation systems is nowadays remarkably good, sometimes it is important to specialize the MT output to the specifics of certain domains.
These customizations may include preferring some word translation over others or adapting the style of the text, among others.
In this tutorial, we show two methods on how to perform domain adaptation of a general translation system using Sockeye.

We assume you already have a trained Sockeye model, for example the one trained from the [WMT tutorial](wmt.md).
We also assume that you have two training sets, one composed of general or out-of-domain (OOD) data, and one composed of in-domain (ID) data on which you want to adapt your system.
Note that both datasets need to be pre-processed in the same way.

## Preparing the data

First, you must be careful to prepare the in-domain training data using the same vocabulary as the out-of-domain data.
Assuming your prepared OOD data resides in ood_data



	python -m sockeye.prepare_data 
	-s data/id.train.src.bpe -t data/id.train.trg.bpe -o id_data –source_vocab ood_data/vocab.src.0.json –target_vocab ood_data/vocab.trg.0.json








Note: If your in-domain data is small, you may skip this step and add the corresponding arguments to the sockeye.train calls.

## Continuation of training

This method fine-tunes a trained model and starts a second training run on in-domain data, initialized with the parameters obtained from the out-domain data.
Thus you “continue training” on the data you are more interested in.
Freitag and Al-Onaizan (2016) showed that this straightforward technique can achieve good results.

When training a model, you can load a set of parameters with the –params argument in Sockeye, specifying an already trained model.
Assuming the trained model resides in ood, a possible invocation could be



	python -m sockeye.train 
	–config ood/args.yaml -d id_data -vs data/id.dev.src.bpe -vt data/id.dev.trg.bpe –params ood/params.best -o id_continuation








Depending on the size of your training data you may want to adjust the parameters of the learning algorithm (learning rate, decay, etc.) and perhaps the checkpoint interval.

## Learning Hidden Unit Contribution

Learning Hidden Unit Contribution (LHUC) is a method proposed by Vilar (2018), where the output of the hidden units in a network are expanded with an additional multiplicative unit.
This unit can the strengthen or dampen the output of the corresponding unit.

The usage is very similar as the call shown above, but you have to specify an additional –lhuc argument.
This argument accepts a (space separated) list of components where to apply the LHUC units (encoder, decoder or state_init) or you can specify all for adding it to all supported components:



	python -m sockeye.train 
	–config ood/args.yaml -d id_data -vs data/id.dev.src.bpe -vt data/id.dev.trg.bpe –params ood/params.best –lhuc all -o id_lhuc








Again it may be beneficial to adjust the learning parameters for the adaptation run.

## References

> Markus Freitag and Yaser Al-Onaizan. 2016.
> [Fast Domain Adaptation for Neural Machine Translation](http://arxiv.org/pdf/1612.06897v1)
> ArXiv e-prints.

> David Vilar. 2018.
> [Learning Hidden Unit Contribution for Adapting Neural Machine Translation Models](http://aclweb.org/anthology/N18-2080)
> Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers).



            

          

      

      

    

  

    
      
          
            
  # Multilingual Zero-shot Translation IWSLT 2017

In this tutorial we will train a multilingual Sockeye model that can translate between several language pairs,
including ones that we did not have training data for (this is called _zero-shot translation_).

Please note: this tutorial assumes that you are familiar with the introductory tutorials on
[copying sequences](seqcopy_tutorial.md)
and [training a standard WMT model](wmt.md).

## Approach

There are several ways to train a multilingual translation system. This tutorial follows the approach
described in [Johnson et al (2016)](https://arxiv.org/abs/1611.04558).

In a nutshell,


	We only change our _data_, but do not change the model architecture or training procedure at all.


	We need training data for several language pairs.


	For each pair of (source_sentence, target_sentence), such as:




`
Wieder@@ aufnahme der Sitzungs@@ periode
Re@@ sumption of the session
`

we prefix the source sentence with a special token to indicate the desired target language:

`
<2en> Wieder@@ aufnahme der Sitzungs@@ periode
`

(We do not change the target sentence at all.)


	Training batches are _mixed_: they always contain examples from all language pairs.




## Setup

Make sure to create a new Python virtual environment and activate it:

`bash
virtualenv -p python3 sockeye3
source sockeye3/bin/activate
`

Then [install the correct version of Sockeye](../setup.md).
We also install several libraries for preprocessing, monitoring and evaluation:

```bash
pip install matplotlib tensorboard

# install BPE library

pip install subword-nmt

# install sacrebleu for evaluation

pip install sacrebleu

# install Moses scripts for preprocessing

mkdir -p tools

git clone https://github.com/bricksdont/moses-scripts tools/moses-scripts

# install library to download Google drive files

pip install gdown

# download helper scripts

wget https://raw.githubusercontent.com/awslabs/sockeye/main/docs/tutorials/multilingual/prepare-iwslt17-multilingual.sh -P tools
wget https://raw.githubusercontent.com/awslabs/sockeye/main/docs/tutorials/multilingual/add_tag_to_lines.py -P tools
wget https://raw.githubusercontent.com/awslabs/sockeye/main/docs/tutorials/multilingual/remove_tag_from_translations.py -P tools
```

## Data

We will use data provided by the [IWSLT 2017 multilingual shared task](https://sites.google.com/site/iwsltevaluation2017/TED-tasks).

We limit ourselves to using the training data of just 3 languages (DE, EN and IT), but in principle you could include many more
language pairs, for instance NL and RO which are also part of this IWSLT data set.

## Preprocessing

The preprocessing consists of the following steps:


	Extract raw texts from input files.


	Tokenize the text and split with a learned BPE model.


	Prefix the source sentences with a special target language indicator token.




Run the following script to obtain IWSLT17 data in a convenient format,
the code is adapted from the [Fairseq example for preparing IWSLT17 data](https://github.com/pytorch/fairseq/blob/master/examples/translation/prepare-iwslt17-multilingual.sh).

`bash
bash tools/prepare-iwslt17-multilingual.sh
`

After executing this script, all original files will be in iwslt_orig and extracted text files will be
in data.

```bash
MOSES=tools/moses-scripts/scripts
DATA=data


	TRAIN_PAIRS=(
	“de en”
“en de”
“it en”
“en it”





)


	TRAIN_SOURCES=(
	
	“de”
	“it”









)


	TEST_PAIRS=(
	“de en”
“en de”
“it en”
“en it”
“de it”
“it de”






)

We first create symlinks for the reverse training directions, i.e. EN-DE and EN-IT:

```bash
for SRC in “${TRAIN_SOURCES[@]}”; do



	for LANG in “${SRC}” “${TGT}”; do
	
	for corpus in train valid; do
	ln -s $corpus.${SRC}-${TGT}.${LANG} $DATA/$corpus.${TGT}-${SRC}.${LANG}





done





done




done
```

We then normalize and tokenize all texts:

```bash
for PAIR in “${TRAIN_PAIRS[@]}”; do


PAIR=($PAIR)
SRC=${PAIR[0]}
TGT=${PAIR[1]}


	for LANG in “${SRC}” “${TGT}”; do
	
	for corpus in train valid; do
	cat “$DATA/${corpus}.${SRC}-${TGT}.${LANG}” | perl $MOSES/tokenizer/normalize-punctuation.perl | perl $MOSES/tokenizer/tokenizer.perl -a -q -l $LANG  > “$DATA/${corpus}.${SRC}-${TGT}.tok.${LANG}”





done





done




done


	for PAIR in “${TEST_PAIRS[@]}”; do
	PAIR=($PAIR)
SRC=${PAIR[0]}
TGT=${PAIR[1]}


	for LANG in “${SRC}” “${TGT}”; do
	cat “$DATA/test.${SRC}-${TGT}.${LANG}” | perl $MOSES/tokenizer/normalize-punctuation.perl | perl $MOSES/tokenizer/tokenizer.perl -a -q -l $LANG  > “$DATA/test.${SRC}-${TGT}.tok.${LANG}”





done





done
```

On tokenized text, we learn a BPE model as follows:

```bash
cat $DATA/train.*.tok.* > train.tmp


	subword-nmt learn-joint-bpe-and-vocab -i train.tmp 
	–write-vocabulary bpe.vocab –total-symbols –symbols 32000 -o bpe.codes





rm train.tmp
```

This will create a joint source and target BPE vocabulary.
Next, we apply the Byte Pair Encoding to our training and development data:

```bash
for PAIR in “${TRAIN_PAIRS[@]}”; do


PAIR=($PAIR)
SRC=${PAIR[0]}
TGT=${PAIR[1]}


	for LANG in “${SRC}” “${TGT}”; do
	
	for corpus in train valid; do
	subword-nmt apply-bpe -c bpe.codes –vocabulary bpe.vocab –vocabulary-threshold 50 < “$DATA/${corpus}.${SRC}-${TGT}.tok.${LANG}” > “$DATA/${corpus}.${SRC}-${TGT}.bpe.${LANG}”





done





done




done


	for PAIR in “${TEST_PAIRS[@]}”; do
	PAIR=($PAIR)
SRC=${PAIR[0]}
TGT=${PAIR[1]}


	for LANG in “${SRC}” “${TGT}”; do
	subword-nmt apply-bpe -c bpe.codes –vocabulary bpe.vocab –vocabulary-threshold 50 < “$DATA/test.${SRC}-${TGT}.tok.${LANG}” > “$DATA/test.${SRC}-${TGT}.bpe.${LANG}”





done





done
```

We also need to prefix the source sentences with a special tag to indicate target language:

```bash
for PAIR in “${TRAIN_PAIRS[@]}”; do


PAIR=($PAIR)
SRC=${PAIR[0]}
TGT=${PAIR[1]}


	for corpus in train valid; do
	cat $DATA/$corpus.${SRC}-${TGT}.bpe.${SRC} | python tools/add_tag_to_lines.py –tag “<2${TGT}>” > $DATA/$corpus.${SRC}-${TGT}.tag.${SRC}
cat $DATA/$corpus.${SRC}-${TGT}.bpe.${TGT} | python tools/add_tag_to_lines.py –tag “<2${SRC}>” > $DATA/$corpus.${SRC}-${TGT}.tag.${TGT}





done




done


	for PAIR in “${TEST_PAIRS[@]}”; do
	PAIR=($PAIR)
SRC=${PAIR[0]}
TGT=${PAIR[1]}


cat $DATA/test.${SRC}-${TGT}.bpe.${SRC} | python tools/add_tag_to_lines.py –tag “<2${TGT}>” > $DATA/test.${SRC}-${TGT}.tag.${SRC}
cat $DATA/test.${SRC}-${TGT}.bpe.${TGT} | python tools/add_tag_to_lines.py –tag “<2${SRC}>” > $DATA/test.${SRC}-${TGT}.tag.${TGT}








done
```

Concatenate all individual files to obtain final training and development files:

```bash
for corpus in train valid; do


touch $DATA/$corpus.tag.src
touch $DATA/$corpus.tag.trg

# be specific here, to be safe

cat $DATA/$corpus.de-en.tag.de $DATA/$corpus.en-de.tag.en $DATA/$corpus.it-en.tag.it $DATA/$corpus.en-it.tag.en > $DATA/$corpus.tag.src
cat $DATA/$corpus.de-en.tag.en $DATA/$corpus.en-de.tag.de $DATA/$corpus.it-en.tag.en $DATA/$corpus.en-it.tag.it > $DATA/$corpus.tag.trg




done
```

As our test data, we need both the raw text and the preprocessed, tagged version: the tagged file as input for translation, the raw text for evaluation,
to compute detokenized BLEU.

As a sanity check, compute number of lines in all files:

`bash
wc -l $DATA/*
`

Sanity checks to perform at this point:
- Parallel files should still have the same number of lines.
- Most file endings indicate a language, language suffixes should be correct.
- Importantly, corresponding lines in the preprocessed training and validation files should be parallel.

## Training

Before we start training we will prepare the training data by splitting it into shards and serializing it in matrix format:
```bash
python -m sockeye.prepare_data 


-s $DATA/train.tag.src -t $DATA/train.tag.trg -o train_data –shared-vocab




```

We can now kick off the training process:
```bash
python -m sockeye.train -d train_data 


-vs $DATA/valid.tag.src -vt $DATA/valid.tag.trg –shared-vocab –weight-tying-type src_trg_softmax –device-ids 0 –decode-and-evaluate-device-id 0 -o iwslt_model




```

## Translation and Evaluation including Zero-Shot Directions

An interesting outcome of multilingual training is that a trained model is (to some extent) capable of translating between language pairs
that is has not seen training examples for.

To test the zero-shot condition, we translate not only the trained directions, but also
from German to Italian and vice versa. Both of those pairs are unknown to the model.

Let’s first try this for a single sentence in German. Remember to preprocess input text in exactly the same way as the
training data.

```bash
echo “Was für ein schöner Tag!” | 


perl $MOSES/tokenizer/normalize-punctuation.perl | perl $MOSES/tokenizer/tokenizer.perl -a -q -l de | subword-nmt apply-bpe -c bpe.codes –vocabulary bpe.vocab –vocabulary-threshold 50 | python tools/add_tag_to_lines.py –tag “<2it>” | python -m sockeye.translate 


-m iwslt_model –beam-size 10 –length-penalty-alpha 1.0 –device-ids 1







```

If you trained your model for at least several hours, the output should be similar to:

`bash
<2en> Era un bel giorno !
`

Which is a reasonable enough translation! Note that a well-trained model always generates a special language tag as the first token.
In this case it’s <2en> since Italian data was always paired with English data in our training set.

Now let’s translate all of our test sets to evaluate performance in all translation directions:

```bash
mkdir -p translations


	for TEST_PAIR in “${TEST_PAIRS[@]}”; do
	TEST_PAIR=($TEST_PAIR)
SRC=${TEST_PAIR[0]}
TGT=${TEST_PAIR[1]}


	python -m sockeye.translate 
	-i $DATA/test.${SRC}-${TGT}.tag.${SRC} -o translations/test.${SRC}-${TGT}.tag.${TGT} -m iwslt_model –beam-size 10 –length-penalty-alpha 1.0 –device-ids 0 –batch-size 64









done
```

Next we post-process the translations, first removing the special target language tag, then removing BPE,
then detokenizing:

```bash


	for TEST_PAIR in “${TEST_PAIRS[@]}”; do
	TEST_PAIR=($TEST_PAIR)
SRC=${TEST_PAIR[0]}
TGT=${TEST_PAIR[1]}

# remove target language tag


	cat translations/test.${SRC}-${TGT}.tag.${TGT} | 
	python tools/remove_tag_from_translations.py –verbose > translations/test.${SRC}-${TGT}.bpe.${TGT}





# remove BPE encoding

cat translations/test.${SRC}-${TGT}.bpe.${TGT} | sed -r ‘s/@@( |$)//g’ > translations/test.${SRC}-${TGT}.tok.${TGT}

# remove tokenization

cat translations/test.${SRC}-${TGT}.tok.${TGT} | $MOSES/tokenizer/detokenizer.perl -l “${TGT}” > translations/test.${SRC}-${TGT}.${TGT}





done
```

Finally, we compute BLEU scores for both zero-shot directions with [sacreBLEU](https://github.com/mjpost/sacreBLEU):

```bash
for TEST_PAIR in “${TEST_PAIRS[@]}”; do


TEST_PAIR=($TEST_PAIR)
SRC=${TEST_PAIR[0]}
TGT=${TEST_PAIR[1]}

echo “translations/test.${SRC}-${TGT}.${TGT}”
cat translations/test.${SRC}-${TGT}.${TGT} | sacrebleu $DATA/test.${SRC}-${TGT}.${TGT}




done
```

## Summary

In this tutorial you trained a multilingual Sockeye model that can translate between several languages,
including zero-shot pairs that did not occur in the training data.

You now know how to modify the training
data to include special target language tags and how to translate and evaluate zero-shot directions.




            

          

      

      

    

  

    
      
          
            
  # Sequence copy model

This tutorial will show you the basic usage of Sockeye on a on a simple task: copying a sequence.
We will generate sequences consisting of digits of variable lengths.
The task is then to train a model that copies the sequence from the source to the target.
This task is on the one hand difficult enough to be interesting and on the other and allows for quickly training a model.

## Setup
For this tutorial we assume that you have successfully [installed](../setup.md) Sockeye.
We will be using scripts from the Sockeye repository, so you should either clone the repository or manually download the scripts.
Just as a reminder: Everything is run using Python 3, so depending on your setup you may have to replace python with python3 below.
All of the commands below assume you are running on a CPU.
If you have a GPU available you can simply remove –use-cpu.

## 1. Generating the data
As a first step we will generate a synthetic data set consisting of random sequences of digits.
These sequences are then split into disjoint training and development sets.
Run the following command to create the data set:

`bash
wget https://raw.githubusercontent.com/awslabs/sockeye/main/docs/tutorials/seqcopy/genseqcopy.py
python genseqcopy.py
`

After running this script you have (under ‘data/’) a training (train.source, train.target) and a development data set (dev.source, dev.target).
The generated sequences will look like this:

`
2 3 5 5 4 6 7 0 3 8 10 9 3 6
9 9 1 5 3 0 5 4 0 8 8 5 7 7 8 7 3 1 0
9 1 9 7 9 1 9 9 9 3 9 3 2 8 0 1 6 10 4 3 1 9 2 7 1 5 7 7 5 5
2 1 4 10 7 7 7 2 10 9 4 9 9 7 8 4 10 6 8 2 6 7 5 3 2
4 6 0 7 8 8 6 3 4 10 2 10 6 9 5 3
8 0 5 4 1 8 0 8 7 4 4 0 0 9 5 8 9
`

## 2. Training

Now that we have some training data to play with we can train our model.
Start training by running the following command:

```bash
python3 -m sockeye.train -s data/train.source 


-t data/train.target -vs data/dev.source -vt data/dev.target –encoder transformer –decoder transformer –num-layers 1:1 –num-embed 32 –transformer-model-size 32 –transformer-feed-forward-num-hidden 64 –transformer-attention-heads 4 –use-cpu –max-num-checkpoint-not-improved 3 -o seqcopy_model




```

This will train a 1-layer Transformer model with 32 hidden units as the embedding size.
The Feed-Forward sublayers have 64 hidden units and attention mechanisms are using 4 heads.
Looking at the log we can see that our training data was assigned to buckets according to their lengths.
Additionally, Sockeye will take care of correctly padding sequences and masking relevant parts of the network,
in order to deal with sequences of variable length.

### Metrics and checkpointing
During training Sockeye will print relevant metrics on both the training and the validation data.
Validation metrics are evaluated every time we create a checkpoint.
During checkpointing the current model parameters are saved into the model directory and current validation scores are evaluated.
By default Sockeye will create a checkpoint every 4000 updates.
This can be adjusted through the –checkpoint-interval parameter.

From the log you can see that initially the perplexity is around 20.0:
`bash
...
[INFO:sockeye.training] Early stopping by optimizing 'perplexity'
[INFO:sockeye.model] Saved model config to "seqcopy_model/config"
[INFO:sockeye.training] Training started.
[INFO:sockeye.training] Epoch[0] Batch [50]     Speed: 429.27 samples/sec 10879.00 tokens/sec 2.16 updates/sec  perplexity=20.074619
[INFO:sockeye.training] Epoch[0] Batch [100]    Speed: 534.38 samples/sec 13846.37 tokens/sec 2.76 updates/sec  perplexity=17.064554
...
`
As training progresses we see that after the first checkpoint (~7 epochs) the validation perplexity is at ~1.05.
Sockeye performs early stopping based on the validation metrics tracked when checkpointing.
Once the validation metrics have not improved for several checkpoints the training is stopped.
The number of tolerated non-improving checkpoints can be adjusted (–max-num-checkpoint-not-improved).

### Trained model

The trained model can be found in the folder seqcopy_model.
The folder contains everything necessary to run the model after training.
Most importantly params.best contains the parameters with the best validation score.
During training param.best will continously be updated to point to the currently best parameters.
This means that even while the model is still training you can use the model folder for translation, as described in the next section.

All other parameters can be found in files named param.$NUM_CHECKPOINT.
The config contains all model parameters as well as a reference to the data sets used during training.
version references the version of Sockeye used for training in order to check potential compatibility issues with the version used for decoding.

Additionally, we keep a copy of the log that you also saw printed on stdout.
The source and target vocabularies are stored in vocab.src.json and vocab.trg.json.
If you open the file you can see that in addition to the digits Sockeye also added special symbols indicating sentence boundaries, unknown words and padding symbols.

## 3. Translation

```bash
> echo “7 6 7 7 10 2 0 8 0 5 7 3 5 6 4 0 0 2 10 0” | 


python -m sockeye.translate -m seqcopy_model –use-cpu


7 6 7 7 10 2 0 8 0 5 7 3 5 6 4 0 0 2 10 0







```

Note that the model was trained on sequences consisting of between 10 and 30 digits.
Therefore, the model will most likely have some difficulties with sequences shorter than 10 digits.
By default Sockeye will read sentence from stdin and print the translations on stdout.

Internally Sockeye will run a beam search in order to (approximately) find the translation with the highest probability.

Instead of using the parameters with the best validation score we can also use other checkpoints using the -c parameter to use a checkpoint earlier in the training before the model converged:
```bash
> echo “7 6 7 7 10 2 0 8 0 5 7 3 5 6 4 0 0 2 10 0” | 


python -m sockeye.translate -m seqcopy_model –use-cpu -c 3


7 6 7 7 10 2 0 8 0 5 7 0 7 3 5 6 0 0 2 0 10







```
As the model has not converged yet it is still making a few mistakes when copying the sequence.



            

          

      

      

    

  

    
      
          
            
  # WMT German to English news translation

In this tutorial we will train a German to English Sockeye model on a dataset from the [Conference on Machine Translation (WMT) 2017](http://www.statmt.org/wmt17/).

## Setup

Sockeye expects tokenized data as the input.
For this tutorial we use data that has already been tokenized for us.
However, keep this in mind for any other data set you want to use with Sockeye.
In addition to tokenization we will split words into subwords using Byte Pair Encoding (BPE).
In order to do so we use a tool called [subword-nmt](https://github.com/rsennrich/subword-nmt).
Run the following commands to set up the tool:

`bash
git clone https://github.com/rsennrich/subword-nmt.git
export PYTHONPATH=$(pwd)/subword-nmt:$PYTHONPATH
`

We will visualize training progress using Tensorboard.
Install it using:
`bash
pip install tensorboard
`

## GPU

All of the commands below assume you’re running on a CPU.
If you have a GPU available you can simply remove –use-cpu.
With multiple GPUs you can use torchrun to spawn multiple training processes (see [WMT 2014 English-German tutorial](wmt_large.md)).

## Data

We will use the data provided by the WMT 2017 news translation shared task.
Download the data using the following commands:

`bash
wget http://data.statmt.org/wmt17/translation-task/preprocessed/de-en/corpus.tc.de.gz
wget http://data.statmt.org/wmt17/translation-task/preprocessed/de-en/corpus.tc.en.gz
gunzip corpus.tc.de.gz
gunzip corpus.tc.en.gz
curl http://data.statmt.org/wmt17/translation-task/preprocessed/de-en/dev.tgz | tar xvzf -
`

## Preprocessing

The data has already been tokenized. Additionally, we will split words into subwords.
First we need to build our BPE vocabulary:
```bash
python -m learn_joint_bpe_and_vocab –input corpus.tc.de corpus.tc.en 


-s 30000 -o bpe.codes –write-vocabulary bpe.vocab.de bpe.vocab.en




```

This will create a joint source and target BPE vocabulary.
Next, we use apply the Byte Pair Encoding to our training and development data:

```bash
python -m apply_bpe -c bpe.codes –vocabulary bpe.vocab.de –vocabulary-threshold 50 < corpus.tc.de > corpus.tc.BPE.de
python -m apply_bpe -c bpe.codes –vocabulary bpe.vocab.en –vocabulary-threshold 50 < corpus.tc.en > corpus.tc.BPE.en

python -m apply_bpe -c bpe.codes –vocabulary bpe.vocab.de –vocabulary-threshold 50 < newstest2016.tc.de > newstest2016.tc.BPE.de
python -m apply_bpe -c bpe.codes –vocabulary bpe.vocab.en –vocabulary-threshold 50 < newstest2016.tc.en > newstest2016.tc.BPE.en
```

Looking at the data you can see how words are split into subwords separated by the special sequence @@:
`
Globaldarlehen sind Kreditlinien an zwischengeschaltete Institute -> Glob@@ al@@ dar@@ lehen sind Kredit@@ linien an zwischen@@ gesch@@ al@@ tete Institute
`

## Training

Having preprocessed our data we can start training.
Note that Sockeye will load all training data into memory in order to be able to easily reshuffle after every epoch.
Depending on the amount of RAM you have available you might want to reduce size of the training corpus for this tutorial:
`bash
# (Optional: run this if you have limited RAM on the training machine)
head -n 200000 corpus.tc.BPE.de > corpus.tc.BPE.de.tmp && mv corpus.tc.BPE.de.tmp corpus.tc.BPE.de
head -n 200000 corpus.tc.BPE.en > corpus.tc.BPE.en.tmp && mv corpus.tc.BPE.en.tmp corpus.tc.BPE.en
`

Before we start training we will prepare the training data by splitting it into shards and serializing it in matrix format:
```bash
python -m sockeye.prepare_data 


-s corpus.tc.BPE.de -t corpus.tc.BPE.en -o train_data –shared-vocab




```
While this is an optional step it has the advantage of considerably lowering the time needed before training starts and also limiting the memory usage as only one shard is loaded into memory at a time.

We can now kick off the training process:
```bash
python -m sockeye.train -d train_data 


-vs newstest2016.tc.BPE.de -vt newstest2016.tc.BPE.en –max-seq-len 60 –decode-and-evaluate 500 –use-cpu -o wmt_model –shared-vocab –max-num-epochs 3




```

This will train a “base” [Transformer](https://arxiv.org/abs/1706.03762) model.
There are also several parameters controlling training itself.
Unless you specify a different optimizer (–optimizer) [Adam](https://arxiv.org/abs/1412.6980) will be used.
Additionally, you can control the batch size (–batch-size), the learning rate schedule (–learning-rate-schedule) and other parameters relevant for training.

Training will run until the validation perplexity stops improving.
Sockeye starts a decoder in a separate process at every checkpoint running on the same device as training in order to evaluate metrics such as BLEU.
Note that these scores are calculated on the tokens provided to Sockeye, e.g. in this tutorial BLEU will be calculated on the sub-words we created above.
As an alternative to validation perplexity based early stopping you can stop early based on BLEU scores (–optimized-metric bleu).

To make sure the decoder finishes before the next checkpoint one can subsample the validation set for BLEU score calculation.
For example –decode-and-evaluate 500 will decode and evaluate BLEU on a random subset of 500 sentences.
We sample the random subset once and keep it the same during training and also across trainings by fixing the random seed.
Therefore, validation BLEU scores across training runs are comparable.
Perplexity will not be affected by this and still be calculated on the full validation set.

Training a model on this data set is going to take a while.
In the next section we discuss how you can monitor the training progress.

### Monitoring training progress

There are basically three ways of tracking the training progress: the training log and log file, the metrics file and tensorboard.
In addition to printing training and validation metrics on stdout Sockeye also keeps track of them in the file wmt_model/metrics. Here you find all relevant metrics that were calculated during checkpointing.

Tensorboard allows for monitoring training and validation metrics in a browser.
Sockeye will log training events in a Tensorboard file that can be visualized with Tensorboard (pip install tensorboard)

`bash
tensorboard --logdir .
`

Once tensorboard is up and running you can check out the learning curves by opening [http://localhost:6006](http://localhost:6006).

![screenshot of tensorboard](wmt/tb_screenshot.png “Screenshot of tensorboard”)

Now even before training finishes you can already start translating with the model if at least one checkpoint has been written to disk.

## Translation

When translating with Sockeye it is important to keep in mind that it expects the same types of input as seen during training.
For this tutorial we fed in subword units that were obtained through a Byte Pair Encoding.
Therefore, we need to apply the same type of preprocessing before feeding a sentence into Sockeye.
All symbols that have not been seen during training will be replaced by an <unk> symbol.
When the <unk> symbol was observed during training one can that the model will also produce this symbol on the output.
Note though that because of the way we do the preprocessing with BPE above, the model will not actually observe any <unk> symbols.
In the following example we will use a sentence from the development set that is already tokenized and byte pair encode it.
After translation we merge consecutive byte pairs, resulting in a tokenized translated sentence.
This can be done by the following command:

```bash
echo “er ist so ein toller Kerl und ein Familienvater .” | 



	python -m apply_bpe -c bpe.codes –vocabulary bpe.vocab.en 
	–vocabulary-threshold 50 | 





python -m sockeye.translate -m wmt_model 2>/dev/null | sed -r ‘s/@@( |$)//g’




he is a great guy and a family father .
```

At decoding time Sockeye will run a beam search.
You can set the size of the beam (–beam-size) or change other decoding parameters such as –softmax-temperature and –length-penalty-alpha.

### Embedding inspection

You can inspect the embeddings learned by the model during training. Sockeye includes a tool to compute pairwise similarities (Euclidean distance) for all types in the embeddings space.
Given a query token, it returns the nearest neighbors in the space.
You can run it like this:

```
echo “haus” | python3 -m sockeye.embeddings -m wmt_model -s source
[INFO:__main__] Arguments: Namespace(checkpoint=None, gamma=1.0, k=5, model=’wmt_model’, norm=False, side=’source’)
Input: haus
haus id=35


gebaeude id=68 sim=0.8498
Haus id=1759 sim=0.1441
hauser id=295 sim=0.0049




```
(Your own output may look different)

### Model ensembling

Deep learning models usually profit from model ensembling.
In model ensembling we train multiple models with different seeds (sockeye.train has an argument –seed).
After that we can just provide these models to the Sockeye translation CLI:

```bash
echo “er ist so ein toller Kerl und ein Familienvater .” | 



	python -m apply_bpe -c bpe.codes –vocabulary bpe.vocab.en 
	–vocabulary-threshold 50 | 





python -m sockeye.translate –use-cpu -m wmt_model wmt_model_seed2 wmt_model_seed3 2>/dev/null | sed -r ‘s/@@( |$)//g’




he is a great guy and a family father .
```

As we haven’t trained multiple models yet we can simply feed in the same model multiple times:
```bash
echo “er ist so ein toller Kerl und ein Familienvater .” | 



	python -m apply_bpe -c bpe.codes –vocabulary bpe.vocab.en 
	–vocabulary-threshold 50 | 





python -m sockeye.translate –use-cpu -m wmt_model wmt_model wmt_model 2>/dev/null | sed -r ‘s/@@( |$)//g’




he is a great guy and a family father .
```

Internally Sockeye will run each one of the models and combine the predictions.
If all the models are the same you will of course get the same predictions at the expense of running the same model multiple times. However, the point is mainly to show how one would run an ensemble model.

## Checkpoint averaging

An alternative to model ensembling that does not require training multiple models is to average parameters from different checkpoints.
While unlike ensembling basically coming at no cost, this usually leads to smaller gains.
Of course you could also create an ensemble of checkpoint averaged models.
Sockeye provides a CLI that combines the parameter files of a trained model.
In the following we create a copy of the model directory and then replace the link to the best parameters with an checkpointed averaged parameter file:

`bash
cp -r wmt_model wmt_model_avg
python -m sockeye.average -o wmt_model_avg/param.best wmt_model
`

## Summary

Congratulations! You have successfully trained your first real Sockeye translation model.
On top of that you know how to track training progress, how to translate, how to combine models through checkpointing or ensembling and more.



            

          

      

      

    

  

    
      
          
            
  # WMT 2014 English-German

This tutorial covers training a standard big transformer on data of any size.
We start with relatively small data where model training converges quickly (WMT14 En-De).
The same settings can be used for arbitrarily large data.
The training recipe is optimized for 8 local GPUs, but can be scaled down to 4 or 1 for testing.

## Setup

Install Sockeye:
`bash
git clone https://github.com/awslabs/sockeye.git
cd sockeye && pip3 install --editable .
`

Install Subword-NMT:
`bash
pip3 install subword-nmt
`

## Data

We use the WMT 2014 English-German data pre-processed by the [Stanford NLP Group](https://nlp.stanford.edu/projects/nmt/) (4.5M parallel sentences):

```bash
wget ‘https://nlp.stanford.edu/projects/nmt/data/wmt14.en-de/train.en’
wget ‘https://nlp.stanford.edu/projects/nmt/data/wmt14.en-de/train.de’
for YEAR in 2012 2013 2014; do


wget “https://nlp.stanford.edu/projects/nmt/data/wmt14.en-de/newstest${YEAR}.en”
wget “https://nlp.stanford.edu/projects/nmt/data/wmt14.en-de/newstest${YEAR}.de”




done
cat newstest{2012,2013}.en >dev.en
cat newstest{2012,2013}.de >dev.de
cp newstest2014.en test.en
cp newstest2014.de test.de
```

## Preprocessing

The data is already tokenized, so we only need to apply byte-pair encoding ([Sennrich et al., 2016](https://aclanthology.org/P16-1162/)):

```bash
cat train.de train.en |subword-nmt learn-bpe -s 32000 >codes
for SET in train dev test; do


subword-nmt apply-bpe -c codes <${SET}.en >${SET}.en.bpe
subword-nmt apply-bpe -c codes <${SET}.de >${SET}.de.bpe




done
```

## Training

We first split the byte-pair encoded training data into shards and serialize it in PyTorch’s tensor format.
This allows us to train on data of any size by loading and unloading different pieces throughout training:

```bash
sockeye-prepare-data 


–source train.en.bpe –target train.de.bpe –shared-vocab –word-min-count 2 –pad-vocab-to-multiple-of 8 –max-seq-len 95 –num-samples-per-shard 10000000 –output prepared –max-processes $(nproc)




```

We then launch distributed training on 8 GPUs.
The following command trains a big transformer ([Vaswani et al., 2017](https://arxiv.org/abs/1706.03762)) using the large batch recipe described by Ott et al. ([2018](https://arxiv.org/abs/1806.00187)):

```bash
torchrun –no_python –nproc_per_node 8 sockeye-train 


–prepared-data prepared –validation-source dev.en.bpe –validation-target dev.de.bpe –output model –num-layers 6 –transformer-model-size 1024 –transformer-attention-heads 16 –transformer-feed-forward-num-hidden 4096 –amp –batch-type max-word –batch-size 5000 –update-interval 10 –checkpoint-interval 500 –max-updates 15000 –optimizer-betas 0.9:0.98 –dist –initial-learning-rate 0.06325 –learning-rate-scheduler-type inv-sqrt-decay –learning-rate-warmup 4000 –seed 1 –quiet-secondary-workers




```

Alternate command for 4 GPUs:

```bash
torchrun –no_python –nproc_per_node 4 sockeye-train 


–prepared-data prepared –validation-source dev.en.bpe –validation-target dev.de.bpe –output model –num-layers 6 –transformer-model-size 1024 –transformer-attention-heads 16 –transformer-feed-forward-num-hidden 4096 –amp –batch-type max-word –batch-size 5000 –update-interval 20 –checkpoint-interval 500 –max-updates 15000 –optimizer-betas 0.9:0.98 –dist –initial-learning-rate 0.06325 –learning-rate-scheduler-type inv-sqrt-decay –learning-rate-warmup 4000 –seed 1 –quiet-secondary-workers




```

Alternate command for 1 GPU:

```bash
sockeye-train 


–prepared-data prepared –validation-source dev.en.bpe –validation-target dev.de.bpe –output model –num-layers 6 –transformer-model-size 1024 –transformer-attention-heads 16 –transformer-feed-forward-num-hidden 4096 –amp –batch-type max-word –batch-size 5000 –update-interval 80 –checkpoint-interval 500 –max-updates 15000 –optimizer-betas 0.9:0.98 –initial-learning-rate 0.06325 –learning-rate-scheduler-type inv-sqrt-decay –learning-rate-warmup 4000 –seed 1




```

Training on larger data typically requires more updates for the model to reach a perplexity plateau.
When using the above recipe with larger data sets, increase the number of updates (–max-updates) or train until the model does not improve over many checkpoints (specify –max-num-checkpoint-not-improved X instead of –max-updates Y).

## Evaluation

When training is complete, we translate the preprocessed test set:

```bash
sockeye-translate 


–input test.en.bpe –output out.bpe –model model –dtype float16 –beam-size 5 –batch-size 64




```

We then reverse BPE and score the translations against the reference using [sacreBLEU](https://github.com/mjpost/sacreBLEU):

`bash
sed -re 's/(@@ |@@$)//g' <out.bpe >out.tok
sacrebleu test.de -tok none -i out.tok
`

Note that this is still tokenized, normalized, and true-cased data.
If we were actually participating in WMT, we would recase and detokenize the translations for human evaluation.
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