
Soapy Documentation
Release v0.13.1-dirty

Andrew Reeves

Jul 19, 2017





Contents

1 Introduction 3
1.1 Quick-Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Installation 5
2.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Required Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Mac OSX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Any OS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Basic Usage 9
3.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Creating Phase Screens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Running the Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Retrieving Simulation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Simple Tutorial 15
4.1 Running an Example SCAO Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Creating a new SCAO configuration file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Examining data and changing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 GLAO Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Configuration 21
5.1 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Telescope Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Atmosphere Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.4 Wave-front Sensor Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.5 Laser Guide Star Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.6 Deformable Mirror Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.7 Science Camera Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Data Sources 27
6.1 Simulation Run Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7 Simulation Design 29
7.1 Data flow and modularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

i



7.2 Class Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

8 Simulation 31

9 Atmosphere 37
9.1 Atmosphere Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.2 Phase Screen Creation and Saving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

10 Line Of Sight 41
10.1 soapy.lineofsight module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

11 Wave-front Sensors 45
11.1 WFS Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

12 Deformable Mirrors 51
12.1 DMs in Soapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
12.2 Adding New DMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
12.3 Base DM Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
12.4 Real DM Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

13 Laser Guide Stars 55
13.1 soapy.LGS module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

14 Reconstructors 57
14.1 soapy.RECON module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

15 Science Camera 61
15.1 soapy.SCI module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

16 Utilities 63
16.1 soapy.logger module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
16.2 soapy.AOFFT module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
16.3 soapy.aoSimLib module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
16.4 soapy.opticalPropagationLib module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
16.5 soapy.confParse module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

17 Indices and tables 73

Python Module Index 75

ii



Soapy Documentation, Release v0.13.1-dirty

Contents:

Contents 1



Soapy Documentation, Release v0.13.1-dirty

2 Contents



CHAPTER 1

Introduction

Soapy is a Montecarlo Adaptive Optics (AO) simulation written exclusively in the Python programming language. It
is aimed at rapidly developing new AO concepts and being a learning tool for those new to the field of AO.

The code can be used as an end to end simulation, where the entire system parameters are controlled by a configuration
file. This can be used from the Python command line, python scripts or a GUI which is included, operation is described
in the Basic Usage section.

The codes real strength lies in its modular nature. Each AO component is modelled as a Python object, with intuitive
methods and attributes. Components can be imported and used separately to create novel AO configurations. Starting
with the main Simulation module, these are described in detail in this documentation.

Quick-Start

Try out some of the code examples in the conf directory, either run the soapy script in bin, or load a python or IPython
terminal:

import soapy
sim = soapy.Sim("configFilename")
sim.aoinit()
sim.makeIMat()
sim.aoloop()

Data will now be saved in the directory specified as filePrefix in the configuration file.

Alternatively, the GUI can be started with:

soapy -g <configFilename>

The use the buttons to initialise the simulation, make interaction matrices and run the AO loop. The interactive python
console can be used to view data or change parameters

3



Soapy Documentation, Release v0.13.1-dirty

4 Chapter 1. Introduction



CHAPTER 2

Installation

Firstly, you’ll need Python. This comes with pretty much every linux distribution and is also installed by default on
Mac OS X. For Windows, I’d recommend using a Python distribution, such as anaconda or enthought canopy. The
code should be compatible with Windows as Python and all the libraries used are platform independent. Nonetheless,
I only use it on Mac OSX and Linux so I can’t guarantee that there won’t be bugs not present on other OSs.

Installation

Once all the requirements outlined below are met, you are ready to install Soapy. Download the source from github,
either as a zip file, or clone the git repository with:

git clone https://github.com/soapy/soapy.git

If downloading the code as a zip, you can choose which version to use with the drop down box on the left of the page,
entitled branch:master. Whilst I try not to, the master branch will occasionally be broken so you might want to
get the latest stable version by clicking “tags” in the dropdown list, and selecting the most recent version number.

Once the code is downloaded (and unzipped) or cloned, navigate to the resulting directory using the command line.
You can import it into python straight away from this directory. To use the soapy script, run:

python soapy <options> <configfile>

If you wish to have it available elsewhere on your system, either set the relavant PATH and PYTHONPATH variables
to <soapy dir>/bin and <soapy dir>/ respectively, or run the install script with:

python setup.py install

This latter method may require superuser permissions for your system and should setup the paths for you. You should
now be able to run soapy and import soapy into python from any directory on your system.

5

https://github.com/andrewpaulreeves/soapy


Soapy Documentation, Release v0.13.1-dirty

Required Libraries

soapy doesn’t have too many requirements in terms of external libraries, though it does rely on some. There are also
some optional libraries which are recommended for plotting or performance.

Required

numpy
scipy
pyfits *or* astropy

Recommended

for performance

pyfftw (Highly Recommended!)

for gui

PyQt4
pyqtgraph (http://www.pyqtgraph.org)
matplotlib
ipython

Linux

If your starting with python from scratch, there a couple of options. For Ubuntu (14.04+) linux users, all these packages
can be installed via apt-get:

sudo apt-get install python-numpy python-scipy python-fftw python-astropy python-qt4
→˓python-matplotlib ipython ipython-qtconsole python-pyqtgraph

for Red-hat based systems these packages should also be available from repositories, though I’m not sure of they’re
names. Again, get pyqtgraph from http://www.pyqtgraph.org, but download the source. pyqtgraph, like most python
packages is pretty easy to install from source, just download the package, unpack, navigate into the package and run
sudo python setup.py install

Mac OSX

for mac os, all of these packages can be install via macports, with:

sudo port install python27 py27-numpy py27-scipy py27-astropy py27-pyfftw py27-pyqt4
→˓py27-ipython py27-pyqtgraph py27-jupyter

6 Chapter 2. Installation

http://www.pyqtgraph.org


Soapy Documentation, Release v0.13.1-dirty

Any OS

For any OS, including Windows, python distributions exist which include lots of python packages useful for science.
A couple of good examples are Enthought Canopy (https://www.enthought.com), which is free for academics, and
Anaconda (https://store.continuum.io/cshop/anaconda/) which is also free.

A lot of python packages are also listed on pypi. Usually when python is installed, a script called easy_install is
installed also, which can be used to get any package on pypi with easy_install <package>. Confusingly, pip
is now the recommended Python package manager instead of easy_install. If you’ve only got easy_install
you can install pip using easy_install pip, or it can be installed using the script linked here.

Once you have pip, the required libraries can be installed by using the requirements.txt file. From the soapy
directory, just run (may need to be as sudo):

pip -r requirements.txt

and all the requirements should be installed for you!

Testing

Once you think everything is installed, tests can be run by navigating to the test directory and running

python testSimulation.py

Currently, this only runs system wide tests, but further, more atomic tests will be added in future. To run the tests,
soapy must be either “installed”, or manually put into the PYTHONPATH.

2.5. Any OS 7

https://www.enthought.com
https://store.continuum.io/cshop/anaconda/
https://pypi.python.org/pypi
https://pip.readthedocs.org/en/latest/installing.html


Soapy Documentation, Release v0.13.1-dirty

8 Chapter 2. Installation



CHAPTER 3

Basic Usage

This section describes how to the simulation for basic cases, that is, using the full end to end code to create and
save data which can then be analysed afterwards. Such a scenario is a common one when exploring parameters on
conventional AO systems.

Configuration

In Soapy, all AO parameters are controlled from the configuration file. This is a python script which contains all
the information required to run many AO configurations. A few examples are provided in the conf directory when
you download the code. All parameters are held in one large dictionary, titled simConfiguration, and are then
grouped into relavent sections.

Sim parameters control simulation wide parameters, such as the filename to save data, the number of simulated phase
points, the number of WFSs, DMs and Science cameras as well as the name of the reconstructor used to tie them
together. The simName parameter specifies a directory, which will be created if it does not already exist, where all
AO run data will be recorderd. Each run will create a new time-stamped directory within the parent simName one
to save run specific data. Data applying to all runs, such as the interaction and control matrices are stored in the
simName directory.

Atmosphere parameters are responsible for the structure of the simulated atmosphere. This includes the number
of simulated turbulence layers and the integrated seeing strength, r0. Some values in the Atmosphere group must be
formatted as a list or array, as they describe parameters which apply to different turbulence layers.

Parameters describing the physical telescope are given in the Telescope group. These include the telescope and
central obscuration diameters, and a pupil mask.

WFSs, LGSs, DMs and Science camera are configured by the WFS, LGS, DM and Science parameter groups. As
multiple instances of each of these components may be present, every parameters in these groups is represented by
either a list or numpy array, where each element specifies that component number. For WFSs and DMs, a type
parameter is also given. This is a the name of the python object which will be used to represent that component, and a
class of the same name must be present in the WFS.py or DM.py module, respectively. Other WFS or DM parameters
may then have different behaviours depending on the type which is to be used.

Each parameter that can be set is described in the Configuration section.

9



Soapy Documentation, Release v0.13.1-dirty

Creating Phase Screens

For most applications of Soapy, some randomly generated phase screens are required. These can either be created
just before the simulation begins, during the initialisation phase, or some existing screens can be specified for the
simulation to use. To generate new phase screens with the parameters specified in Atmosphere each time the
simulation is run, set the Atmosphere parameter, newScreens to True.

If instead you wish to used existing phase screens, provide the path to, and filename of each screen in the
screenNames parameter as a list. Screens specified to be loaded must be saved as FITS files, where each file contains
a single, 2 dimensional phase screen. The simulation will largely trust that the screen parameters are valid, so other pa-
rameters in the Atmosphere group, such as the wholeScreenSize, r0 and L0 may be discounted. If you would
like the simulation to be able to scale your phase screens such that they adhere to the r0 and screenStrength
values set in the configuration file, then the FITS file header must contain a parameter R0 which is expressed in units
of phase pixels.

Running the Simulation

Once all the configuration parameters have been set, and you have decided how whether to load or generate phase
screens, the simulation is ready to be run. This can be either from the GUI, the command line or from a script.

Graphical User Interface

When running Soapy configurations for the first time it can be a good idea to run them in the GUI to sure that
components look to be operating as expected. The GUI is shown below running a simple SCAO case, with a tip-tilt
mirror and a stack array DM.

10 Chapter 3. Basic Usage



Soapy Documentation, Release v0.13.1-dirty

If soapy has been installed, or the bin directory is in the bash PATH, the GUI is started from the command line with
the command:

soapy -g path/to/configFile.yaml

The soapy script can do a few other things as well, use soapy --help to see all other available options.

Once the GUI has loaded it will begin the initialisation of the simulation. This stage initialises all the simulated
components, loads or generates phase screens, allocates data buffers and calculates various required parameters from
the parameters given in the configuration file. If any parameters or the configuration file is changed at any point, this
initialisation step can be rerun by clicking the “AO Init” button.

The next step in most systems will be to record an interaction matrix, where the effect of each DM influence on
the WFS(s) is recorded, and used to calculate a command matrix. From the GUI, this is achieved by clicking
the “makeIMat” button. Interaction matrices, command matrices and DM influence functions can be saved in the
simName directory and the simulation checks to see if there are valid ones in that directory it can load instead of
making them again. If you would like to force a new interaction matrix to be made, perhaps because you’ve changed
parameters which may effect the new interaction matrix, tick the “Force new?” box.

Once this is complete, you can now click “Run!” to run the simulation. You will now see the atmospheric phase
moving across the WFS(s), and the resulting measurements on the WFS. This will be recorded, and transformed to
DM commands measurements via the reconstructor, and finally, the science phase will be corrected and a better PSF
achieved. The loop gain for each DM can be altered using the spin boxes in the top right of the GUI.

Using the GUI significantly slows down the simulation operation, but this can be aleviated by limiting the simulation
update rate using the top spin box.

3.3. Running the Simulation 11



Soapy Documentation, Release v0.13.1-dirty

The console in the bottom left of the GUI can be used to either change parameters of the simulation or visualise other
data sources. It is a complete python console, provided by the IPython library. To load a new config file into the GUI,
go the file>Load Configuration File. You will then have to click “AO Init” to begin initialisation.

Command Line and Scripting

To run the simulation from the command line, either use

soapy -i /path/to/configFile.yaml

which will initialise the simulation before dropping you into an interaction ipython prompt, or simply start or python
interpretter of choice and run

import soapy #Imports python library
sim = soapy.Sim("/path/to/configFile.yaml") #Loads the configuration file
sim.aoinit() #Initialises all AO simulated objects

The above code would also be used in scripts to run the simulation.

To measure the interaction matrix run:

sim.makeIMat()

or:

sim.makeIMat(forceNew=True)

if you’d like to force the creation of interaction matrices, command matrices and DM influence functions.

Once complete, you’re now ready to run the simulation with:

sim.aoloop()

You should now see a rolling counter of the frame number and current Strehl ratio of each science target.

Retrieving Simulation Data

After a simulation run has completed, the resulting data must be retrieved for analysis. The data stored by Soapy
depends on the parameters set in the sim group in the configuration file. Once a aoloop has completed, the data
will be saved into the simName directory, in a further, time-stamped directory for that particular run. Whithin the
simulation, the data is stored in numpy array structures which can be accessed either after the run has completed or
during the run (if it is run in the, or in a python thread on the command line).

The strehl ratio of each science target is always stored. Internally, it is kept in the arrays:

sim.instStrehl

and:

sim.longStrehl

Which are the instantaneous and long exposure strehl ratio for each science target. Each of these is of shape sim.
config.sim.nSci by sim.config.sim.nIters. Note that this is even the case for only a single science
target, when the science target Strehl ratios are always accessed with sim.longStrehl[0]. Strehl ratios may also
saved in the simName directory as instStrehl.fits and longStrehl.fits.

12 Chapter 3. Basic Usage



Soapy Documentation, Release v0.13.1-dirty

There are many other data sources available to save or access from the simulation, these are listed in Data Sources.

3.4. Retrieving Simulation Data 13



Soapy Documentation, Release v0.13.1-dirty

14 Chapter 3. Basic Usage



CHAPTER 4

Simple Tutorial

This tutorial will go through some example AO systems using Soapy. We’ll see how to make configuration files to run
the AO system that you’d like to, then extract data which can be subsequently analysed. CANARY is an AO system
on the 4.2m William Herschel Telescope on La Palma. It is designed to be very flexible to run various “modes” of AO,
so makes a nice test bed for us to simulate. We’ll simulate it in SCAO mode, in GLAO with multiple guide-stars and
in SCAO with a LGS.

Running an Example SCAO Configuration

Before making new configuration files though, its a pretty good idea to make sure everything is working as ex-
pected by running one of the examples. First, lets create a directory where we do this tutorial, call it something like
soapy_tutorial, make a further directory called conf inside and copy the example configuration file sh_8x8.
yaml form the downloaded or cloned Soapy directory into it.

To open the Graphical User Interface (GUI), type in the command line:

soapy --gui conf/sh_8x8.yaml

This relies on soapy being in you’re PATH. If thats not the case, run:

python <path/to/soapy>/bin/soapy --gui conf/sh8x8.yaml

You should see a window which looks a bit like this pop up:

15



Soapy Documentation, Release v0.13.1-dirty

If you don’t want to run the GUI, then open a python terminal and run:

import soapy
sim = soapy.Sim("conf/sh8x8.yaml")

Before the simulation can be started, some initialisation routines must be run. If running the GUI, then this will
automatically when you start it up. In the command line, to initialise run:

sim.aoinit()

Next, the interaction matrixes between the DMs and the WFSs. In the GUI this is achieved by clicking “makIMat”,
and in the command line with:

sim.makeIMat()

This simulation will save command matrices, interaction matrices and DM influence functions for a simulation, so that
it doesn’t alway have to remake them. If you’d like to override the loading them from file and make them from scratch,
tick the “force new” button in the GUI, or pass the argument forceNew=True to the makeIMat command.

To actually run the simulation, click “aoloop” in the GUI, or type:

sim.aoloop()

at the command line. This will run the simulation for the configured number of iterations, and estimate the performance
of the specified AO system.

16 Chapter 4. Simple Tutorial



Soapy Documentation, Release v0.13.1-dirty

Creating a new SCAO configuration file

Now the simulation is working, lets start to simulate CANARY. We’ll use the sh_8x8.yaml configuration file as a
template. Copy it to another file called CANARY_SCAO.yaml, and open this file in your favourite text editor. The
configuration file contains all the parameters which determine the configuration of the simulated AO system. All
the parameters are held in a YAML configuration file and parameters are grouped into sub-dictionaries depending on
which components they control. Descriptions of all possible parameters are given in the Configuration section.

Sim Parameters

The first of these groups are parameters are those which have a system wide effect, so-called Sim parameters. They
should have no indendation in the YAML file.

The first parameter to change is the simName, this is the directory where data will be saved during and after an
AO run. Set it to CANARY_SCAO. The logFile is the filename of a log which records all text output from the
simulation, set it to CANARY_SCAO.log. The value of loopTime specifies the frame rate of the simulation, which
is usually, though not always, also the frame rate of the WFSs and DMs. More accurately though, it is the time between
movements of the atmosphere. For CANARY, make the system run at 200Hz, so set this to 0.005. For the purposes
of this tutorial, lets also set the number of iterations which will be run, nIters to around 500 so that it will run
quickly.

The Sim group also contains parameters which determine the data which will be stored and saved from the simulation.
Set values to True if you’d like them to be continually saved in a memory buffer before being written to disk in a AO
run specific, time-stamped directory within the simName directory.

Atmosphere Parameters

As would be expected, this group of parameters describe the nature of the atmospheric turbulence. Currently, this
configuration file features an atmosphere with 4 discrete turbulence layers, increase that to 5 by setting scrnNo to
5. The r0 parameter is the Fried parameter in metres and controls the integrated seeing strength, set this to 0.
14. screenHeights, scrnStrengths, windDirs and windSpeed control the layer heights, relative CN

2

strengths, wind directions and wind velocities. These must be formatted as a list at least as long as scrnNo, so add
another value to each.

Phase screens can be either created on each simulation run, or can be loaded from file. To load screens from file a
parameter, scrnNames, must be set with the filename of each phase screen in a list.

Telescope Parameters

The diameter of the simulated telescope and its central obscuration are determined by the telDiam and obsDiam
parameters in the Telescope parameters. The mask value determines the shape if the pupil mask. If set to circle,
this will simple be a circular telescope pupil, with a circular obscuration cut out the centre. If something more complex
is desired, this value should be set to filename of 2-d fits file with shape (sim.pupilSize, sim.pupilSize),
set to 0 at opaque parts of the pupil and 1 at transparent parts.

CANARY is hosted by the WHT, which is a 4.2 metre diameter telescope with a central obscuration of approximately
1.2 metres. Set these values, and keep mask set to circle.

WFS Parameters

Each WFS must be specified seperately, with an index or 0, 1, 2...etc. Set nxSubaps, the number of Shack-Hartmann
sub-apertures in a single dimension to 7 and pxlsPerSubap to 14. The pixel scale is defined by the parameter

4.2. Creating a new SCAO configuration file 17



Soapy Documentation, Release v0.13.1-dirty

subapFOV, which is actually the FOV of the entire sub-aperture, set this to 2.5.

DM Parameters

As with WFS parameters, each DM is specified seperately, with an integer index. There must be at least sim.nDM``s
specified. The first DM will be a Tip-tilt mirror, hence the ``type is set to TT. The
second is a higher spatial order stack array type denoted in the simulation as Piezo. These names correspond to
classes which are defined in the DM.py module. Set the number of actuators in one dimension to 8, by setting the
second value in nxActuators to 8.

Science Parameters

The final group of parameters which define the simulation are the Science parameters which define the science
targets and detectors to be used to measure AO performance. Again, multiple science cameras can be specified, so
each requires an index. There must be at least sim.nSci science cameras specified. Change the Field of View of the
science detector by setting FOV to 3.0.

Run it!

Run the simulation as before, either in the GUI or in the command line with either:

soapy --gui conf/CANARY_SCAO.yaml

click makeIMat click aoloop

or:

import soapy
sim = soapy.Sim("conf/CANARY_SCAO.yaml")
sim.makeIMat()
sim.aoloop()

The resulting Strehl ratio should be around 0.65, though there will be some variation due to the random generation of
the phase screens.

Examining data and changing parameters

Once a simulation has been completed, the task then turns to extracting an analysing the resulting data. Many data
sources can be saved from Soapy, they are listed in Data Sources. Whether they are saved or not is a result of the
parameters set in the Sim section. If so, they will be saved to a directory of <simName>/<timestamp>/ in
the FITS standard format. They can also be accessed from the simulation object using sim.<dataSource>. For
example, to plot the long exposure Strehl ratio recorded on the first science detector over the course of the simulation,
type either in a command line or in the GUI terminal:

from matplotlib import pyplot
pyplot.plot(sim.longStrehl[0])
pyplot.show()

The first science detector image can be retrieved with:

imshow(sim.sciImgs[0])

18 Chapter 4. Simple Tutorial



Soapy Documentation, Release v0.13.1-dirty

and the measurements recored on all WFSs with:

imshow(sim.allSlopes)

The parameters which were originally defined in the configuration file can also be accessed and altered. The variables
holding the parameters have the same name as the configuration file parameters, though the names of the groups may
be shortened. Assuming that the simulation object is called sim (as in this tutorial), any configuration parameter can
be access with:

sim.config.<configGroup>.<param>

So to check or change the pupilSize parameter, one could do the following:

print(sim.config.sim.pupilSize)
sim.config.sim.pupilSize = 256

For the parameter groups WFS, DM and Science, which are set as lists, access of the parameter for item
n is through sim.config.wfss[n].<param>, sim.config.dms[n].<param> and sim.config.
scis[n].<param>. For example, to check, then change the 1st WFS centroiding method:

print(sim.config.wfss[0].centMethod)
sim.config.wfss[0].centMethod = "simple"

or to set the number of DM actuators on the high order DM:

print(sim.config.dms[1].nxActuators)
sim.config.dms[1].nxActuators[1] = 16

After changing these values, click aoinit or type sim.aoinit, then makeImat or sim.makeIMat() and finally
aoloop or sim.aoloop to run the simulation and observe the effect of the change parameters. Some parameters can
be changed while the simulation is running. This is useful when using the GUI and optimising parameters for an AO
system. Parameters which are safe to change during AO operation are denoted in the Configuration section with ** at
the end of the parameter description.

GLAO Example

CANARY is an experimental AO system which has been designed to explore tomographic AO. As such it would
be thoroughly rude not to simulate it in a tomographic configuration. As tomographic AO often involves complex
reconstructors out of the scope of this tutorial, it shall be run in the simplest tomographic case, Ground Layer AO
(GLAO). This is where the measurements of several WFSs observing off-axis are effectively averaged, which corrects
well when the WFS field of views overlap, such as at low-layers, but not so well when they have diverged, such as at
high layers. This mode of AO can be performed using the MVM reconstructor used previously without modification.

Copy the CANARY_SCAO configuration file to another file name CANARY_GLAO. The only parameters which require
changing are the number and position of WFSs. In the Simulation group set nGS to 3. Copy the first WFS
set of parameters and paste them below it twice. Change the index, currently set at 0 to 1 and 2 respectively. The
GSPosition values may be set to an asterism such as [0, 30], [-24.5, -25], [24.5, -15] which forms
a triangle around the science target.

Run this new configuration file. The AO performance should have decreased significantly as only the lowest turbulence
layer will be corrected effectively, but extra off-axis science targets would show that the performance is more consistent
across a wide-field.

4.4. GLAO Example 19



Soapy Documentation, Release v0.13.1-dirty

20 Chapter 4. Simple Tutorial



CHAPTER 5

Configuration

Configuration of the system is handled by the confParse module, that reads the simulation parameters from a given
configuration file. This file should be a YAML file, which contains groups for each simulation sub-module. Where a
sub-module may consist of multiple components i.e. Wave-front sensors, each WFS must be specified seperately, with
an integer index, for example:

WFS:
0:

GSMag: 0
GSPosition: (0, 0)

1:
GSMag: 1
GSPosition: (1, 0)

Example configuration files can be found in the conf directory of the soapy package. (Note: Previously, a Python
file was used for configuration. This format is still supported but can lead to messy configuration files! There are still
examples of these in the source repository if you prefer.)

Below is a list of all possible simulation parameters. Parameters which have a description ending in ** can be altered
while the simulation is running. When others are changed and aoinit must be run before they will take effect and
they may break a running simulation.

Simulation Parameters

class soapy.confParse.SimConfig(N=None)
Configuration parameters relavent for the entire simulation. These should be held at the beginning of the param-
eter file with no indendation.

Required:

Parameter Description
pupilSize int: Number of phase points across the simulation pupil
nIters int: Number of iteration to run simulation
loopTime float: Time between simulation frames (1/framerate)

21



Soapy Documentation, Release v0.13.1-dirty

Optional:

Parameter Description De-
fault

nGS int: Number of Guide Stars and WFS 0
nDM int: Number of deformable Mirrors 0
nSci int: Number of Science Cameras 0
reconstructorstr: name of reconstructor class to use. See reconstructor module for

available reconstructors.
"MVM"

simName str: directory name to store simulation data None
wfsMP bool: Each WFS uses its own process False
verbosity int: debug output for the simulation ranging from 0 (no-ouput) to 3 (all

debug output)
2

logfile str: name of file to store logging data, None
learnIters int: Number of learn iterations for Learn & Apply reconstructor 0
learnAtmos str: if random, then random phase screens used for learn random
simOversize float: The fraction to pad the pupil size with to reduce edge effects 1.2
loopDelay int: loop delay in integer count of loopTime 0

Data Saving (all default to False):

Parameter Description
saveSlopes Save all WFS slopes. Accessed from sim with sim.allSlopes
saveDmCommands Saves all DM Commands. Accessed from sim with sim.allDmCommands
saveWfsFrames Saves all WFS pixel data. Saves to disk a after every frame to avoid using too

much memory
saveStrehl Saves the science camera Strehl Ratio. Accessed from sim with

sim.longStrehl and sim.instStrehl
saveWfe Saves the science camera wave front error. Accessed from sim with sim.WFE.
saveSciPsf Saves the science PSF.
saveInstPsf Saves the instantenous science PSF.
saveInstScieFieldSaves the instantaneous electric field at focal plane.
saveSciRes Save Science residual phase

Telescope Parameters

class soapy.confParse.TelConfig(N=None)

Configuration parameters characterising the Telescope. These should be held in the Telescope
group in the parameter file.

Required: Parameter Description
telDiam float: Diameter of telescope pupil in metres

Optional:
Parameter Description Default
obsDiam float: Diameter of central obscuration 0
mask str: Shape of pupil (only accepts circle currently) circle

Atmosphere Parameters

class soapy.confParse.AtmosConfig(N=None)
Configuration parameters characterising the atmosphere. These should be held in the Atmosphere group in
the parameter file.

22 Chapter 5. Configuration



Soapy Documentation, Release v0.13.1-dirty

Required:

Parameter Description
scrnNo int: Number of turbulence layers
scrnHeights list, int: Phase screen heights in metres
scrnStrength list, float: Relative layer scrnStrength
windDirs list, float: Wind directions in degrees.
windSpeeds list, float: Wind velocities in m/s
r0 float: integrated seeing strength (metres at 550nm)
wholeScrnSize int: Size of the phase screens to store in the atmosphere object

Optional:

Parameter Description De-
fault

scrnNames list, string: filenames of phase if loading from fits files. If None will make
new screens.

None

subHarmonicsbool: Use sub-harmonic screen generation algorithm for better tip-tilt
statistics - useful for small phase screens.

False

L0 list, float: Outer scale of each layer. Kolmogorov turbulence if None. None
randomScrnsbool: Use a random set of phase phase screens for each loop iteration? False
tau0 float: Turbulence coherence time, if set wind speeds are scaled. None

Wave-front Sensor Parameters

class soapy.confParse.WfsConfig(N=None)
Configuration parameters characterising Wave-front Sensors. These should be held in the WFS group in the
parameter file. Each WFS is specified by first specifying an index, then the WFS parameters. Any entries above
sim.nGS will be ignored.

Required:

Parameter Description
GSPosition tuple: position of GS on-sky in arc-secs
wavelength float: wavelength of GS light in metres
nxSubaps int: number of SH sub-apertures

5.4. Wave-front Sensor Parameters 23



Soapy Documentation, Release v0.13.1-dirty

Optional:

Parame-
ter

Description Default

type string: Which WFS object to load from WFS.py? ShackHartmann
GSMag float: Apparent magnitude of the guide star 0
photonNoisebool: Include photon (shot) noise. False
eReadNoisefloat: Electrons of read noise 0
throughputfloat: Throughput of the entire optical and electronic system from guide

star photons to recorded WFS detector counts. Includes atmospheric
effects, the optical train and detector gain.

1.

propagationModestring: Mode of light propogation from GS. Can be “Physical” or
“Geometric”**.

"Geometric"

subapFieldStopbool: if True, add a field stop to the wfs to prevent spots wandering into
adjacent sub-apertures. if False, oversample subap FOV by a factor of 2 to
allow into adjacent subaps.

False

removeTT bool: if True, remove TT signal from WFS slopes before reconstruction.** False
fftOversampint: Multiplied by the number of of phase points required for FOV to

increase fidelity from FFT.
3

GSHeight float: Height of GS beacon. 0 if at infinity. 0
subapThresholdfloat: How full should subap be to be used for wavefront sensing? 0.5
lgs bool: is WFS an LGS? False
centMethodstring: Method used for Centroiding. Can be centreOfGravity,

brightestPxl, or correlation.**
centreOfGravity

referenceImagearray: Reference images used in the correlation centroider. Full image
plane image, each subap has a separate reference image

None

angleEquivNoisefloat: width of gaussian noise added to slopes measurements in arc-secs 0
centThresholdfloat: Centroiding threshold as a fraction of the max subap value.** 0.1
exposureTimefloat: Exposure time of the WFS camera - must be higher than loopTime.

If None, will be set to loopTime.
None

wvlBandWidthfloat: Width of wavelength band sent to WFS in nm 100
extendedObjectndarray or str: The object used as extended source for WFS, of size

2*fftOversamp*pxlsPerSubap. The FOV of the object should be twice the
FOV of the sub-aperture.

None

fftwThreadsint: number of threads for fftw to use. If 0, will use system processor
number.

1

fftwFlag str: Flag to pass to FFTW when preparing plan. FFTW_PATIENT
pxlsPerSubapint: number of pixels per sub-apertures 10
subapFOV float: Field of View of sub-aperture in arc-secs 5
correlationFFTPadint: Padding for correlation WFS None

Laser Guide Star Parameters

class soapy.confParse.LgsConfig(N=None)

Configuration parameters characterising the Laser Guide Stars. These should be held in the LGS
sub-group of the WFS parameter group.

24 Chapter 5. Configuration



Soapy Documentation, Release v0.13.1-dirty

Optional:

Parameter Description Default
uplink bool: Include LGS uplink effects False
pupilDiam float: Diameter of LGS launch aperture in metres. 0.3
wavelength float: Wavelength of laser beam in metres 600e-9
propagationModestr: Mode of light propogation from GS. Can be “Physical” or

“Geometric”.
"Phsyical"

height float: Height to use physical propogation of LGS (does not effect
cone-effect) in metres

90000

elongationDepthfloat: Depth of LGS elongation in metres 0
elongationLayersint: Number of layers to simulate for elongation. 10
launchPositiontuple: The launch position of the LGS in units of the pupil radii, where

(0,0) is the centre launched case, and (1,0) is side-launched.
(0,0)

fftwThreadsint: number of threads for fftw to use. If 0, will use system processor
number.

1

fftwFlag str: Flag to pass to FFTW when preparing plan. FFTW_PATIENT
naProfile list: The relative sodium layer strength for each elongation layer. If None,

all equal.
None

Deformable Mirror Parameters

class soapy.confParse.DmConfig(N=None)
Configuration parameters characterising Deformable Mirrors. These should be held in the DM sub-group of the
parameter file. Each DM is specified seperately, by first specifying an index, then the DM parameters. Any
entries above sim.nGS will be ignored.

Required:

Parameter Description
type string: Type of DM. This must the name of a class in the DM module.
nxActuatorsint: Number independent DM shapes. e.g., for stack-array DMs this is number of

actuators in one dimension, for Zernike DMs this is number of Zernike modes.
gain float: The loop gain for the DM.**
svdConditioningfloat: The conditioning parameter used in the pseudo inverse of the interaction matrix.

This is performed by numpy.linalg.pinv.

Optional:

Science Camera Parameters

class soapy.confParse.SciConfig(N=None)
Configuration parameters characterising Science Cameras. These should be held in the Science of the param-
eter file. Each Science target is created seperately with an integer index. Any entries above sim.nSci will be
ignored.

Required:

Parameter Description
position tuple: The position of the science camera in the field in arc-seconds
FOV float: The field of fiew of the science detector in arc-seconds
wavelength float: The wavelength of the science detector light
pxls int: Number of pixels in the science detector

5.6. Deformable Mirror Parameters 25

http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.pinv.html


Soapy Documentation, Release v0.13.1-dirty

Optional:

Parameter Description Default
pxlScale float: Pixel scale of science camera, in arcseconds. If set,

overwrites FOV.
None

type string: Type of science camera This must the name of a class in the
SCI module.

PSF

fftOversamp int: Multiplied by the number of of phase points required for FOV
to increase fidelity from FFT.

2

fftwThreads int: number of threads for fftw to use. If 0, will use system
processor number.

1

fftwFlag str: Flag to pass to FFTW when preparing plan. FFTW_MEASURE
height float: Altitude of the object. 0 denotes infinity. 0
propagationModestr: Mode of light propogation from object. Can be “Physical” or

“Geometric”.
"Geometric"

instStrehlWithTTbool: Whether or not to include tip/tilt in instantaneous Strehl
calculations.

False

26 Chapter 5. Configuration



CHAPTER 6

Data Sources

In this section, the data sources which are stored in soapy are listed and a description of how they are obtained is given.

Simulation Run Data

The following sources of data are recorded for each simulation run and are saved as a fits file in a time stamped run
specific directory inside the simName directory. They can be accessed by sim.<data>, where <data> is listed
in the “Internal data structure” column. As the storing of some of these data sources can increase memory usage
significantly, they are not all saved by default, and the flag must be set in the configuration file.

Data Saved filename Internal data
structure

Description

Instanta-
neous Strehl
ratio

instStrehl.fits instStrehl The instantaneous strehl ratio for each
science target frame

Long
exposure
Strehl ratio

longStrehl.fits longStrehl The long exposure strehl ratio for each
science target frame

Wavefront
Error

WFE.fits WFE The corrected wave- front error for each
science target in nm

Science PSF sciPsf_n.fits sciImgs[n] The science camera PSFs where n indicates
the camera number

Residual
Science
phase

sciResidual_n
.fits

sciPhase[n] The residual uncorrected phase across science
target n

WFS mea-
surements

slopes.fits allSlopes All WFS measurements stored in a numpy
array of size (nIters, totalSlopes)

WFS Frames wfsFPFrames/
wfs-n_frame-i
.fits

sim.wfss[n].
wfsDetectorPlane

WFS detector image, only last frame stored in
memory. Can save each frame, i, from wfs n

DM
Commands

dmCommands.fits allDmCommands DM commands for all DMs present in numpy
of size (nIters, totaldmCommands)

27



Soapy Documentation, Release v0.13.1-dirty

28 Chapter 6. Data Sources



CHAPTER 7

Simulation Design

Data flow and modularity

Soapy has been designed from the beginning to be extremely modular, where each AO component can be used indi-
vidually. In fact, the file simulation.py, really only acts as a shepherd, moving data around between the components,
with some fancy bits for saving data and printing nice outputs. A simple control loop to replace that file could be
written from scratch in only 5-10 lines of Python!

This modularity is well illustrated by a data flow diagram describing the simulations, show in Figure 1, below.

Figure 1. Soapy Data Flow

Class Hierarchy

Pythons Object Orientated nature has also been exploited. Categories of AO component have a base class, which
deals with most of the interfaces to the main simulation module and other boiler-plate style code. The classes which
represent actual AO modules inherit this base class, and hopefully need only add interesting functionality specific to
that new component. This is illustrated in the class diagram in Figure 2, with some example methods and attributes of
each class.

Figure 2. Class diagram with example attributes and methods

It is aimed that in future developments of Soapy, this philosophy will be extended. Currently the WFS, science camera
and LGS modules all deal with optical propagation through turbulence separately, clearly this should be combined into
one place to ease code readability and maintenance. This work is currently under development. Figure 3 shows all the
Soapy classes in a simplified class diagram, including the new LineOfSight class currently under construction.

Figure 3. Full, simplified class diagram with the lineOfSight class under construction.

29



Soapy Documentation, Release v0.13.1-dirty

30 Chapter 7. Simulation Design



CHAPTER 8

Simulation

High level interface to run and examine a simulation The main Soapy Simulation module

This module contains the Sim class, which can be used to run an end-to-end simulation. Initally, a configuration file
is read, the system is initialised, interaction and command matrices calculated and finally a loop run. The simulation
outputs some information to the console during the simulation.

The Sim class holds all configuration information and data from the simulation.

Examples

To initialise the class:

import soapy
sim = soapy.Sim("sh_8x8_4.2m.py")

Configuration information has now been loaded, and can be accessed through the config attribute of the sim class.
In fact, each sub-module of the system has a configuration object accessed through this config attribute:

print(sim.config.sim.pupilSize)
sim.config.wfss[0].pxlsPerSubap = 10

Next, the system is initialised, this entails calculating various parameters in the system sub-modules, so must be done
after changing some simulation parameters:

sim.aoinit()

DM Interation and command matrices are calculated now. If sim.config.sim.simName is not None, then these
matrices will be saved in data/simName (data will be saved here also in a time-stamped directory):

sim.makeIMat()

Finally, the loop is run with the command:

31



Soapy Documentation, Release v0.13.1-dirty

sim.aoloop()

Some output will be printed to the console. After the loop has finished, data specified to be saved in the config file
will be saved to data/simName (if it is not set to None). Data can also be accessed from the simulation class, e.g.
sim.allSlopes, sim.longStrehl

Author Andrew Reeves

class soapy.simulation.DelayBuffer
Bases: list

A delay buffer.

Each time delay() is called on the buffer, the input value is stored. If the buffer is larger than count, the oldest
value is removed and returned. If the buffer is not yet full, a zero of similar shape as the last input is returned.

delay(value, count)

class soapy.simulation.Sim(configFile=None)
Bases: object

The soapy Simulation class.

This class holds all configuration information, data and control methods of the simulation. It contains high level
methods dealing with initialising all component objects, making reconstructor control matrices, running the loop
and saving data after the loop has run.

Can be sub-classed and the ‘aoloop’ method overwritten for different loops to be used

Parameters configFile (string) – The filename of the AO configuration file

addToGuiQueue()
Adds data to a Queue object provided by the soapy GUI.

The soapy GUI doesn’t need to plot every frame from the simulation. When it wants a frame, it will request
if by setting waitingPlot = True. As this function is called on every iteration, data is passed to the
GUI only if waitingPlot = True. This allows efficient and abstracted interaction between the GUI
and the simulation

aoinit()
Initialises all simulation objects.

Initialises and passes relevant data to sim objects. This does important pre-run tasks, such as creating
or loading phase screens, determining WFS geometry, setting propagation modes and pre-allocating data
arrays used later in the simulation.

aoloop()
Main AO Loop

Runs a WFS iteration, reconstructs the phase, runs DMs and finally the science cameras. Also makes some
nice output to the console and can add data to the Queue for the GUI if it has been requested. Repeats for
nIters.

finishUp()
Prints a message to the console giving timing data. Used on sim end.

getTimeStamp()
Returns a formatted timestamp

Returns nicely formatted timestamp of current time.

Return type string

32 Chapter 8. Simulation

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/string.html#module-string
https://docs.python.org/2/library/string.html#module-string


Soapy Documentation, Release v0.13.1-dirty

initSaveData()
Initialise data structures used for data saving.

Initialise the data structures which will be used to store data which will be saved or analysed once the
simulation has ended. If the simName = None, no data is saved, other wise a directory called simName
is created, and data from simulation runs are saved in a time-stamped directory inside this.

loopFrame()
Runs a single from of the entire AO system.

Moves the atmosphere, runs the WFSs, finds the corrective DM shape and finally runs the science cameras.
This can be called over and over to form the “loop”

makeIMat(forceNew=False, progressCallback=None)
Creates interaction and control matrices for simulation reconstruction

Makes and inverts Interaction matrices for each DM in turn to create a DM control Matrix for each DM.
Each DM’s control Matrix is independent of the others, so care must be taken so DM correction modes
do not “overlap”. Some reconstruction modes may require WFS frames to be taken for the creation of a
control matrix. Depending on set parameters, can load previous control and interaction matrices.

Parameters

• forceNew (bool) – if true, will force making of new iMats and cMats, otherwise will
attempt to load previously made matrices from same simName

• progressCallback (func) – function called to report progress of interaction matrix
construction

makeSaveHeader()
Forms a header which can be used to give a header to FITS files saved by the simulation.

printOutput(iter, strehl=False)
Prints simulation information to the console

Called on each iteration to print information about the current simulation, such as current strehl ratio, to the
console. Still under development :param label: Simulation Name :type label: str :param iter: simulation
frame number :type iter: int :param strehl: current strehl ration if science cameras are present to record it.
:type strehl: float, optional

readParams(configFile=None)
Reads configuration file parameters

Calls the radParams function in confParse to read, parse and if required set reasonable defaults to AO
parameters

runDM(dmCommands, closed=True)
Runs a single frame of the deformable mirrors

Calculates the total combined shape of all deformable mirrors (DMs), given an array of DM commands.
DM commands correspond to shapes generated during the making of interaction matrices, the final DM
shape for each DM is a combination of these. The DM commands will have already been calculated by
the systems reconstructor.

Parameters

• dmCommands (ndarray) – an array of dm commands corresponding to dm shapes

• closed (bool) – if True, indicates to DM that slopes are residual errors from previous
frame, if False, slopes correspond to total phase error over pupil.

Returns the combined DM shape

Return type ndArray

33

https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool


Soapy Documentation, Release v0.13.1-dirty

runSciCams(dmShape=None)
Runs a single frame of the science Cameras

Calculates the image recorded by all science cameras in the system for the current phase over the telescope
one frame. If a dmShape is present (which it usually will be in AO!) this correction is applied to the science
phase before the image is calculated.

Parameters correction (list or ndarray, optional) – An array of the combined
system DM shape to correct the science path. If not given science cameras are in open loop.

runWfs_MP(scrns=None, dmShape=None, wfsList=None, loopIter=None)
Runs all WFSs using multiprocessing

Runs a single frame for each WFS in wfsList, passing the given phase screens and optional dmShape (if
WFS in closed loop). If LGSs are present it will also deals with LGS propagation. Finally, the slopes
from all WFSs are returned. Each WFS is allocated a separate process to complete the frame, giving a
significant increase in speed, especially for computationally heavy WFSs.

Parameters

• scrns (list) – List of phase screens passing over telescope

• dmShape (ndarray, optional) – 2-dimensional array of the total corrector shape

• wfsList (list, optional) – A list of the WFSs to be run, if not set, runs all WFSs

• loopIter (int, optional) – The loop iteration number

Returns The slope data return from the WFS frame (may not be actual slopes if WFS other than
SH used)

Return type ndarray

runWfs_noMP(scrns=None, dmShape=None, wfsList=None, loopIter=None)
Runs all WFSs

Runs a single frame for each WFS in wfsList, passing the given phase screens and optional dmShape (if
WFS in closed loop). The WFSs are only read out if the wfs frame time co-incides with the WFS frame
rate, else old slopes are provided. If iter is not given, then all WFSs are run and read out. If LGSs are
present it will also deals with LGS propagation. Finally, the slopes from all WFSs are returned.

Parameters

• scrns (list) – List of phase screens passing over telescope

• dmShape (ndarray, optional) – 2-dim array of the total corrector shape

• wfsList (list, optional) – A list of the WFSs to be run

• loopIter (int, optional) – The loop iteration number

Returns The slope data return from the WFS frame (may not be actual slopes if WFS other than
SH used)

Return type ndarray

saveData()
Saves all recorded data to disk

Called once simulation has ended to save the data recorded during the simulation to disk in the directories
created during initialisation.

setLoggingLevel(level)
sets which messages are printed from logger.

34 Chapter 8. Simulation

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int


Soapy Documentation, Release v0.13.1-dirty

if logging level is set to 0, nothing is printed. if set to 1, only warnings are printed. if set to 2, warnings
and info is printed. if set to 3 detailed debugging info is printed.

Parameters level (int) – the desired logging level

storeData(i)
Stores data from each frame in an appropriate data structure.

Called on each frame to store the simulation data into various data structures corresponding to different
data sources in the system.

Parameters i (int) – The system iteration number

soapy.simulation.make_mask(config)
Generates a Soapy pupil mask

Parameters config (SoapyConfig) – Config object describing Soapy simulation

Returns 2-d pupil mask

Return type ndarray

soapy.simulation.multiWfs(scrns, wfsObj, dmShape, read, queue)
Function to run the WFS in multiprocessing mode.

Function is called by each of the new WFS processes spawned to run each WFS. Does the same job as the sim
runWfs_noMP method of running LGS, then getting slopes from each WFS.

Parameters

• scrns (list) – list of the phase screens over the WFS

• wfsObj (WFS object) – the WFS object being run

• dmShape (ndArray) – shape of system DMs for WFS phase correction

• queue (Queue object) – a multiprocessing Queue object used to pass data back to host
process.

35

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int


Soapy Documentation, Release v0.13.1-dirty

36 Chapter 8. Simulation



CHAPTER 9

Atmosphere

The Soapy module used to simulate the atmosphere.

This module contains an atmos object, which can be used to create or load a specified number of phase screens
corresponding to atmospheric turbulence layers. The layers can then be moved with the moveScrns method, at
a specified wind velocity and direction, where the screen is interpolated if it does not fall on an integer number of
pixels. Alternatively, random screens with the same statistics as the global phase screens can be generated using the
randomScrns method.

The module also contains a number of functions used to create the phase screens, many of these are ported from the
book Numerical Simulation of Optical Propagation, Schmidt, 2010. It is possible to create a number of phase screens
using the makePhaseScreens() function which are saved to file in a format which can be read by the simulation.

Examples

To get the configuration objects:

from soapy import confParse, atmosphere

config = confParse.loadSoapyConfig("configfile.yaml")

Initialise the amosphere (creating or loading phase screens):

atmosphere = atmosphere.atmos(config)

Run the atmosphere for 10 time steps:

for i in range(10):
phaseScrns = atmosphere.moveScrns()

or create 10 sets of random screens:

for i in range(10):
randomPhaseScrns = atmosphere.randomScrns()

37



Soapy Documentation, Release v0.13.1-dirty

Atmosphere Class

class soapy.atmosphere.atmos(soapyConfig)
Class to simulate atmosphere above an AO system.

On initialisation of the object, new phase screens can be created, or others loaded from .fits file. The
atmosphere is created with parameters given in ConfigObj.sim and ConfigObj.atmos. These are soapy
configuration objects, which can be created by the :ref:confParse module, or could be created manually. If
created manually, check the :ref: confParse section to see which attributes the configuration objects must
contain.

If loaded from file, the screens should have a header with the parameter R0 specifying the r0 fried parameter of
the screen in pixels.

The method moveScrns can be called on each iteration of the AO system to move the scrns forward by one
time step. The size of this is defined by parameters given in

The method randomScrns returns a set of random phase screens with the smame statistics as the atmos
object.

Parameters soapyConfig (ConfigObj) – The Soapy config object

moveScrns()
Moves the phase screens one time-step, defined by the atmosphere object parameters.

Returned phase is in units of nana-meters

Returns a dictionary containing the new set of phase screens

Return type dict

randomScrns(subHarmonics=True, l0=0.01)
Generated random phase screens defined by the atmosphere object parameters.

Returned phase is in units of nana-meters

Returns a dictionary containing the new set of phase screens

Return type dict

saveScrns(DIR)
Saves the currently loaded phase screens to file, saving the r0 value in the fits header (in units of pixels).
Saved phase data is in radians @500nm

Parameters DIR (string) – The directory to save the screens

Phase Screen Creation and Saving

soapy.atmosphere.makePhaseScreens(nScrns, r0, N, pxlScale, L0, l0, returnScrns=True,
DIR=None, SH=False)

Creates and saves a set of phase screens to be used by the simulation.

Creates nScrns phase screens, with the required parameters, then saves them to the directory specified by DIR.
Each screen is given a FITS header with its value of r0, which will be scaled by on simulation when its loaded.

Parameters

• nScrns (int) – The number of screens to make.

• r0 (float) – r0 value of the phase screens in metres.

• N (int) – Number of elements across each screen.

38 Chapter 9. Atmosphere

https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/string.html#module-string
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#int


Soapy Documentation, Release v0.13.1-dirty

• pxlScale (float) – Size of each element in metres.

• L0 (float) – Outer scale of each screen.

• l0 (float) – Inner scale of each screen.

• returnScrns (bool, optional) – Whether to return a list of screens. True by de-
fault, but if screens are very large, False might be preferred so they aren’t kept in memory if
saving to disk.

• DIR (str, optional) – The directory to save the screens.

• SH (bool, optional) – If True, add sub-harmonics to screens for more accurate power
spectra, though screens no-longer periodic.

Returns A list containing all the screens.

Return type list

9.2. Phase Screen Creation and Saving 39

https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool


Soapy Documentation, Release v0.13.1-dirty

40 Chapter 9. Atmosphere



CHAPTER 10

Line Of Sight

soapy.lineofsight module

A generalised module to provide phase or the EField through a “Line Of Sight”

Line of Sight Object

The module contains a ‘lineOfSight’ object, which calculates the resulting phase or complex amplitude from pro-
pogating through the atmosphere in a given direction. This can be done using either geometric propagation, where
phase is simply summed for each layer, or physical propagation, where the phase is propagated between layers using
an angular spectrum propagation method. Light can propogate either up or down.

The Object takes a ‘config’ as an argument, which is likely to be the same config object as the module using it (WFSs,
ScienceCams, or LGSs). It should contain paramters required, such as the observation direction and light wavelength.
The config also determines whether to use physical or geometric propagation through the ‘propagationMode’ param-
eter.

Examples:

from soapy import confParse, lineofsight

# Initialise a soapy conifuration file
config = confParse.loadSoapyConfig('conf/sh_8x8.py')

# Can make a 'LineOfSight' for WFSs
los = lineofsight.LineOfSight(config.wfss[0], config)

# Get resulting complex amplitude through line of sight
EField = los.frame(some_phase_screens)

class soapy.lineofsight.LineOfSight(config, soapyConfig, propagationDirection=’down’, out-
PxlScale=None, nOutPxls=None, mask=None, metaPupil-
Pos=None)

Bases: object

41

https://docs.python.org/2/library/functions.html#object


Soapy Documentation, Release v0.13.1-dirty

A “Line of sight” through a number of turbulence layers in the atmosphere, observing ing a given direction.

Parameters

• config – The soapy config for the line of sight

• simConfig – The soapy simulation config object

• propagationDirection (str, optional) – Direction of light propagation, either
“up” or “down”

• outPxlScale (float, optional) – The EField pixel scale required at the output
(m/pxl)

• nOutPxls (int, optional) – Number of pixels to return in EFIeld

• mask (ndarray, optional) – Mask to apply at the beginning of propagation

• metaPupilPos (list, dict, optional) – A list or dictionary of the meta pupil
position at each turbulence layer height ub metres. If None, works it out from GS position.

allocDataArrays()
Allocate the data arrays the LOS will require

Determines and allocates the various arrays the LOS will require to avoid having to re-alloc memory during
the running of the LOS and keep it fast. This includes arrays for phase and the E-Field across the LOS

calcInitParams(outPxlScale=None, nOutPxls=None)
Calculates some parameters required later

Parameters

• outPxlScale (float) – Pixel scale of required phase/EField (metres/pxl)

• nOutPxls (int) – Size of output array in pixels

calcMetaPupilSize(scrnHeight, GSHeight)
Calculates the radius of a meta pupil at a altitude layer, of a GS at a give altitude

Parameters

• scrnHeight (float) – Altitude of meta-pupil

• GSHeight (float) – Altitude of guide star

Returns Radius of metapupil in metres

Return type float

findMetaPupilSizes(GSHeight)
Evaluates the sizes of the effective metePupils at each screen height - if a GS of finite height is used.

Parameters GSHeight (float) – The height of the GS in metres

Returns A dictionary containing the radii of a meta-pupil at each screen height in phase pixels

Return type dict

frame(scrns=None, correction=None)
Runs one frame through a line of sight

Finds the phase or complex amplitude through line of sight for a single simulation frame, with a given set
of phase screens and some optional correction.

Parameters

• scrns (list) – A list or dict containing the phase screens

42 Chapter 10. Line Of Sight

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/stdtypes.html#dict


Soapy Documentation, Release v0.13.1-dirty

• correction (ndarray, optional) – The correction term to take from the phase
screens before the WFS is run.

• read (bool, optional) – Should the WFS be read out? if False, then WFS image is
calculated but slopes not calculated. defaults to True.

Returns WFS Measurements

Return type ndarray

getMetaPupilPhase(scrn, height, radius=None, apos=None, pos=None)
Returns the phase across a metaPupil at some height and angular offset in arcsec. Interpolates phase to
size of the pupil if cone effect is required

Parameters

• scrn (ndarray) – An array representing the phase screen

• height (float) – Height of the phase screen

• radius (float, optional) – Radius of the meta-pupil. If not set, will use system
pupil size.

• apos (ndarray, optional) – X, Y angular position of the guide star in asecs, oth-
erwise will use that set in config or ‘pos’

• pos (ndarray, optional) – X, Y central position of the metapupil in metres. If
None, then config used to calculate it from config pos, or ‘apos’.

Returns The meta pupil at the specified height

Return type ndarray

getMetaPupilPos(height, apos=None)
Finds the centre of a metapupil at a given height, when offset by a given angle in arsecs, in metres from
the central position

Parameters

• height (float) – Height of the layer in metres

• apos (ndarray, optional) – The angular position of the GS in asec. If not set, will
use the config position

Returns The position of the centre of the metapupil in metres

Return type ndarray

height

makePhase(radii=None, apos=None)
Generates the required phase or EField. Uses difference approach depending on whether propagation is
geometric or physical (makePhaseGeometric or makePhasePhys respectively)

Parameters

• radii (dict, optional) – Radii of each meta pupil of each screen height in pixels.
If not given uses pupil radius.

• apos (ndarray, optional) – The angular position of the GS in radians. If not set,
will use the config position

makePhaseGeometric(radii=None, apos=None)
Creates the total phase along line of sight offset by a given angle using a geometric ray tracing approach

Parameters

10.1. soapy.lineofsight module 43

https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/stdtypes.html#dict


Soapy Documentation, Release v0.13.1-dirty

• radii (dict, optional) – Radii of each meta pupil of each screen height in pixels.
If not given uses pupil radius.

• apos (ndarray, optional) – The angular position of the GS in radians. If not set,
will use the config position

makePhasePhys(radii=None, apos=None)
Finds total line of sight complex amplitude by propagating light through phase screens

Parameters

• radii (dict, optional) – Radii of each meta pupil of each screen height in pixels.
If not given uses pupil radius.

• apos (ndarray, optional) – The angular position of the GS in radians. If not set,
will use the config position

performCorrection(correction)
Corrects the aberrated line of sight with some given correction phase

Parameters correction (list or ndarray) – either 2-d array describing correction, or
list of correction arrays

position

zeroData(**kwargs)
Sets the phase and complex amp data to zero

44 Chapter 10. Line Of Sight

https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/stdtypes.html#dict


CHAPTER 11

Wave-front Sensors

WFS Module

The Soapy WFS module.

This module contains a number of classes which simulate different adaptive optics wavefront sensor (WFS) types. All
wavefront sensor classes can inherit from the base WFS class. The class provides the methods required to calculate
phase over a WFS pointing in a given WFS direction and accounts for Laser Guide Star (LGS) geometry such as cone
effect and elongation. This is If only pupil images (or complex amplitudes) are required, then this class can be used
stand-alone.

Example

Make configuration objects:

from soapy import WFS, confParse

config = confParse.Configurator("config_file.py")
config.loadSimParams()

Initialise the wave-front sensor:

wfs = WFS.WFS(config, 0 mask)

Set the WFS scrns (these should be made in advance, perhaps by the soapy.atmosphere module). Then run the
WFS:

wfs.scrns = phaseScrnList
wfs.makePhase()

Now you can view data from the WFS frame:

45



Soapy Documentation, Release v0.13.1-dirty

frameEField = wfs.EField

A Shack-Hartmann WFS is also included in the module, this contains further methods to make the focal plane, then
calculate the slopes to send to the reconstructor.

Example

Using the config objects from above...:

shWfs = WFS.ShackHartmann(config, 0, mask)

As we are using a full WFS with focal plane making methods, the WFS base classes frame method can be used to
take a frame from the WFS:

slopes = shWfs.frame(phaseScrnList)

All the data from that WFS frame is available for inspection. For instance, to obtain the electric field across the WFS
and the image seen by the WFS detector:

EField = shWfs.EField
wfsDetector = shWfs.wfsDetectorPlane

Adding new WFSs

New WFS classes should inherit the WFS class, then create methods which deal with creating the focal plane and
making a measurement from it. To make use of the base-classes frame method, which will run the WFS entirely, the
new class must contain the following methods:

calcFocalPlane(self)
makeDetectorPlane(self)
calculateSlopes(self)

The Final calculateSlopes method must set self.slopes to be the measurements made by the WFS. If LGS
elongation is to be used for the new WFS, create a detectorPlane, which is added to for each LGS elongation
propagation. Have a look at the code for the Shack-Hartmann and experimental Pyramid WFSs to get some
ideas on how to do this.

Author Andrew Reeves

Base WFS Class

class soapy.wfs.base.WFS(soapyConfig, nWfs=0, mask=None)
A WFS class.

This is a base class which contains methods to initialise the WFS, and calculate the phase across the WFSs input
aperture, given the WFS guide star geometry.

Parameters

• soapyConfig (ConfigObj) – The soapy configuration object

• nWfs (int) – The ID number of this WFS

• mask (ndarray, optional) – An array or size (simConfig.simSize, simCon-
fig.simSize) which is 1 at the telescope aperture and 0 else-where.

46 Chapter 11. Wave-front Sensors

https://docs.python.org/2/library/functions.html#int


Soapy Documentation, Release v0.13.1-dirty

addPhotonNoise()
Add photon noise to wfsDetectorPlane using numpy.random.poisson

addReadNoise()
Adds read noise to wfsDetectorPlane using ``numpy.random.normal. This generates a
normal (guassian) distribution of random numbers to add to the detector. Any CCD bias is assumed to
have been removed, so the distribution is centred around 0. The width of the distribution is determined by
the value eReadNoise set in the WFS configuration.

calcElongPhaseAddition(elongLayer)
Calculates the phase required to emulate layers on an elongated source

For each ‘elongation layer’ a phase addition is calculated which accounts for the difference in height from
the nominal GS height where the WFS is focussed, and accounts for the tilt seen if the LGS is launched
off-axis.

Parameters elongLayer (int) – The number of the elongation layer

Returns The phase addition required for that layer.

Return type ndarray

calcElongPos(elongLayer)
Calculates the difference in GS position for each elongation layer only makes a difference if LGS launched
off-axis

Parameters elongLayer (int) – which elongation layer

Returns The effective position of that layer GS on the simulation phase grid

Return type float

frame(scrns, correction=None, read=True, iMatFrame=False)
Runs one WFS frame

Runs a single frame of the WFS with a given set of phase screens and some optional correction. If elonga-
tion is set, will run the phase calculating and focal plane making methods multiple times for a few different
heights of LGS, then sum these onto a wfsDetectorPlane.

Parameters

• scrns (list) – A list or dict containing the phase screens

• correction (ndarray, optional) – The correction term to take from the phase
screens before the WFS is run.

• read (bool, optional) – Should the WFS be read out? if False, then WFS image is
calculated but slopes not calculated. defaults to True.

• iMatFrame (bool, optional) – If True, will assume an interaction matrix is being
measured. Turns off some AO loop features before running

Returns WFS Measurements

Return type ndarray

initLGS()
Initialises the LGS objects for the WFS

Creates and initialises the LGS objects if the WFS GS is a LGS. This included calculating the phases
additions which are required if the LGS is elongated based on the depth of the elongation and the launch
position. Note that if the GS is at infinity, elongation is not possible and a warning is logged.

11.1. WFS Module 47

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool


Soapy Documentation, Release v0.13.1-dirty

initLos()
Initialises the LineOfSight object, which gets the phase or EField in a given direction through turbu-
lence.

makeElongationFrame(correction=None)
Find the focal plane resulting from an elongated guide star, such as LGS.

Runs the phase stacking and propagation routines multiple times with different GS heights, positions
and/or aberrations to simulation the effect of a number of points in an elongation guide star.

setMask(mask)
Sets the pupil mask as seen by the WFS.

This method can be called during a simulation

class soapy.wfs.shackhartmann.ShackHartmann(soapyConfig, nWfs=0, mask=None)
Class to simulate a Shack-Hartmann WFS

allocDataArrays()
Allocate the data arrays the WFS will require

Determines and allocates the various arrays the WFS will require to avoid having to re-alloc memory
during the running of the WFS and keep it fast.

applyLgsUplink()
A method to deal with convolving the LGS PSF with the subap focal plane.

calcFocalPlane(intensity=1)
Calculates the wfs focal plane, given the phase across the WFS

Parameters intensity (float) – The relative intensity of this frame, is used when multiple
WFS frames taken for extended sources.

calcInitParams()
Calculate some parameters to be used during initialisation

calcTiltCorrect()
Calculates the required tilt to add to avoid the PSF being centred on only 1 pixel

calculateSlopes()
Calculates WFS slopes from wfsFocalPlane

Returns array of all WFS measurements

Return type ndarray

findActiveSubaps()
Finds the subapertures which are not empty space determined if mean of subap coords of the mask is above
threshold.

getStatic()
Computes the static measurements, i.e., slopes with flat wavefront

initFFTs()
Initialise the FFT Objects required for running the WFS

Initialised various FFT objects which are used through the WFS, these include FFTs to calculate focal
planes, and to convolve LGS PSFs with the focal planes

makeDetectorPlane()
Scales and bins intensity data onto the detector with a given number of pixels.

If required, will first convolve final PSF with LGS PSF, then bin PSF down to detector size. Finally puts
back into wfsFocalPlane array in correct order.

48 Chapter 11. Wave-front Sensors

https://docs.python.org/2/library/functions.html#float


Soapy Documentation, Release v0.13.1-dirty

zeroData(detector=True, FP=True)
Sets data structures in WFS to zero.

Parameters

• detector (bool, optional) – Zero the detector? default:True

• FP (bool, optional) – Zero intermediate focal plane arrays? default: True

11.1. WFS Module 49

https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool


Soapy Documentation, Release v0.13.1-dirty

50 Chapter 11. Wave-front Sensors



CHAPTER 12

Deformable Mirrors

The module simulating Deformable Mirrors in Soapy

DMs in Soapy

DMs are represented in Soapy by python objects which are initialised at startup with some configuration parameters
given, as well as a list of one or more WFS objects which can be used to measure an interaction matrix.

Upon creation of an interaction matrix, the object first generations all the possible independant shapes which the DM
may form, known as “influence functions”. Then each influence function is passed to the specified WFS(s) and the
response noted to form an interaction matrix. The interaction matrix may then be used to forma reconstructor.

During the AO loop, commands corresponding to the required amplitude of each DM influence function are sent to
the DM.dmFrame() method, which returns an array representing the DMs shape.

Adding New DMs

New DMs are easy to add into the simulation. At its simplest, the DM class is inherited by the new DM class. Only
a ‘‘makeIMatShapes‘ method need be provided, which creates the independent influence function the DM can make.
The base class deals with the rest, including making interaction matrices and loop operation.

Base DM Class

class soapy.DM.DM(soapyConfig, nDm=0, wfss=None, mask=None)
Bases: object

The base DM class

This class is intended to be inherited by other DM classes which describe real DMs. It provides methods to
create DM shapes and then interaction matrices, given a specific WFS or WFSs.

51

https://docs.python.org/2/library/functions.html#object


Soapy Documentation, Release v0.13.1-dirty

Parameters

• soapyConfig (ConfigObj) – The soapy configuration object

• nDm (int) – The ID number of this DM

• wfss (list, optional) – A list of Soapy WFS object with which to record the inter-
action matrix

• mask (ndarray, optional) – An array or size (simConfig.simSize, simCon-
fig.simSize) which is 1 at the telescope aperture and 0 else-where. If None then a circle
is generated.

dmFrame(dmCommands, closed=False)
Uses interaction matrix to calculate the final DM shape.

Given the supplied DM commands, this method will apply a gain and add to the previous DM commands.
This works differently for open or closed loop DMs. Multiplies each of the DM influence functions by the
corresponding DM command, then sums to create the final DM shape. Lastly, the mean value is subtracted
to avoid piston terms building up.

Parameters

• dmCommands (ndarray) – A 1-dimensional vector of the multiplying factor of each
DM influence function

• closed (bool, optional) – Specifies how to great gain. If ‘‘True” (closed) then
‘‘dmCommands” are multiplied by gain and summed with previous commands. If ‘‘False”
(open), then ‘‘dmCommands” are multiplied by gain, and summed withe previous com-
mands multiplied by (1-gain).

Returns A 2-d array with the DM shape

Return type ndarray

getActiveActs()
Method returning the total number of actuators used by the DM - May be overwritten in DM classes

Returns number of active DM actuators

Return type int

makeIMat(callback=None)
Makes DM Interation Matrix

Initially, the DM influence functions are created using the method ‘‘makeIMatShapes’‘, then if a rotation
is specified these are rotated. Each of the influence functions is passed to the specified ‘‘WFS” and wfs
measurements recorded.

Parameters callback (function) – Function to be called on each WFS run

Returns 2-dimensional interaction matrix

Return type ndarray

Real DM Classes

class soapy.DM.TT(soapyConfig, nDm=0, wfss=None, mask=None)
Bases: soapy.DM.DM

A class representing a tip-tilt mirror.

52 Chapter 12. Deformable Mirrors

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#int


Soapy Documentation, Release v0.13.1-dirty

This can be used as a tip-tilt mirror, it features two actuators, where each influence function is simply a tip and
a tilt.

getActiveActs()
Returns the number of active actuators on the DM. Always 2 for a TT.

makeIMatShapes()
Forms the DM influence functions, in this case just a tip and a tilt.

class soapy.DM.Zernike(soapyConfig, nDm=0, wfss=None, mask=None)
Bases: soapy.DM.DM

A DM which corrects using a provided number of Zernike Polynomials

makeIMatShapes()
Creates all the DM shapes which are required for creating the interaction Matrix. In this case, this is a
number of Zernike Polynomials

class soapy.DM.Piezo(soapyConfig, nDm=0, wfss=None, mask=None)
Bases: soapy.DM.DM

A DM emulating a Piezo actuator style stack-array DM.

This class represents a standard stack-array style DM with push-pull actuators behind a continuous phase sheet.
The number of actuators is given in the configuration file.

Each influence function is created by started with an N x N grid of zeros, where N is the number of actuators
in one direction, and setting a single value to 1, which corresponds with a “pushed” actuator. This grid is then
interpolated up to the pupilSize, to form the shape of the DM when that actuator is activated. This is repeated
for all actuators.

getActiveActs()
Finds the actuators which will affect phase whithin the pupil to avoid reconstructing for redundant actua-
tors.

makeIMatShapes()
Generate Piezo DM influence functions

Generates the shape of each actuator on a Piezo stack DM (influence functions). These are created by
interpolating a grid on the size of the number of actuators, with only the ‘poked’ actuator set to 1 and all
others set to zero, up to the required simulation size. This grid is actually padded with 1 extra actuator
spacing to avoid strange edge effects.

class soapy.DM.GaussStack(soapyConfig, nDm=0, wfss=None, mask=None)
Bases: soapy.DM.Piezo

A Stack Array DM where each influence function is a 2-D Gaussian shape.

This class represents a Stack-Array DM, similar to the Piezo DM, where each influence function is a 2-
dimensional Gaussian function. Though not realistic, it provides a known influence function which can be
useful for some analysis.

makeIMatShapes()
Generates the influence functions for the GaussStack DM.

Creates a number of Guassian distributions which are centred at points across the pupil to act as DM
influence functions. The width of the guassian is determined from the configuration file.

12.4. Real DM Classes 53



Soapy Documentation, Release v0.13.1-dirty

54 Chapter 12. Deformable Mirrors



CHAPTER 13

Laser Guide Stars

Classes simulating Laser guide stars - usually contained by a WFS object.

soapy.LGS module

class soapy.LGS.LGS(wfsConfig, soapyConfig, nOutPxls=None, outPxlScale=None)
Bases: object

A class to simulate the propogation of a laser up through turbulence. Given a set of phase screens, this will
return the PSF which would be present on-sky.

Parameters

• simConfig – The Soapy simulation config

• wfsConfig – The relavent Soapy WFS configuration

• atmosConfig – The relavent Soapy atmosphere configuration

• nOutPxls (int) – Number of pixels required in output LGS

• outPxlScale (float) – The pixel scale of the output LGS PSF in arcsecs per pixel

calcInitParams()

getLgsPsf(scrns)

initFFTs()
Virtual Method as many LGS implentations will require extra FFTs

initLos()
Initialises the LineOfSight object, which gets the phase or EField in a given direction through turbu-
lence.

class soapy.LGS.LGS_Geometric(wfsConfig, soapyConfig, nOutPxls=None, outPxlScale=None)
Bases: soapy.LGS.LGS

55

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#float


Soapy Documentation, Release v0.13.1-dirty

A class to simulate the propogation of a laser up through turbulence using a geometric algorithm. Given a set of
phase screens, this will return the PSF which would be present on-sky.

Parameters

• simConfig – The Soapy simulation config

• wfsConfig – The relavent Soapy WFS configuration

• atmosConfig – The relavent Soapy atmosphere configuration

• nOutPxls (int) – Number of pixels required in output LGS

• outPxlScale (float) – The pixel scale of the output LGS PSF in arcsecs per pixel

calcInitParams()
Calculate some useful paramters to be used later

getLgsPsf(scrns)

initFFTs()

class soapy.LGS.LGS_Physical(wfsConfig, soapyConfig, nOutPxls=None, outPxlScale=None)
Bases: soapy.LGS.LGS

A class to simulate the propogation of a laser up through turbulence using a geometric algorithm. Given a set of
phase screens, this will return the PSF which would be present on-sky.

Parameters

• simConfig – The Soapy simulation config

• wfsConfig – The relavent Soapy WFS configuration

• atmosConfig – The relavent Soapy atmosphere configuration

• nOutPxls (int) – Number of pixels required in output LGS

• outPxlScale (float) – The pixel scale of the output LGS PSF in arcsecs per pixel

calcInitParams()
Calculate some useful paramters to be used later

getLgsPsf(scrns=None)
Return the LGS PSF to be used in WFS calculation

soapy.LGS.lgsOALaunchMetaPupilPos(gsPos, launchPos, lgsHt, layerHt)
Finds the centre of a meta-pupil in the atmosphere sampled by an LGS launched from a position off-axis from
the centre of the telescope.

Parameters

• gsPos (ndarray) – The X,Y position of the guide star in arcsecs

• launchPos (ndarray) – The X, Y launch position of the telescope in metres from the
telescope centre

• lgsHt (float) – The altitude of the LGS beacon

• layerHt (float) – The height of the meta-pupil of interest

Returns Position in X,Y from the on-axis line-of-sight of the meta-pupil centre.

Return type ndarray

56 Chapter 13. Laser Guide Stars

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float


CHAPTER 14

Reconstructors

Classes simulating AO reconstructors.

soapy.RECON module

class soapy.RECON.ANN(soapyConfig, dms, wfss, atmos, runWfsFunc=None)
Bases: soapy.RECON.Reconstructor

Reconstructs using a neural net Assumes on axis slopes are WFS 0

Net must be set by setting sim.recon.net = net before loop is run net object must have a run method,
which accepts slopes and returns on Axis slopes

calcCMat(callback=None, progressCallback=None)

reconstruct(slopes)
Determine DM commands using previously made reconstructor from slopes. Uses Artificial Neural Net-
work.

Slopes are normalised before being run through the network.

Parameters slopes (ndarray) – array of slopes to reconstruct from

Returns array to comands to be sent to DM

Return type ndarray

class soapy.RECON.GLAO_4LGS(soapyConfig, dms, wfss, atmos, runWfsFunc=None)
Bases: soapy.RECON.MVM

Reconstructor of LGS TT prediction algorithm.

Uses one TT DM and a high order DM. The TT WFS controls the TT DM and the second WFS controls the
high order DM. The TT WFS and DM are assumed to be the first in the system.

initControlMatrix()

57



Soapy Documentation, Release v0.13.1-dirty

reconstruct(slopes)
Determine DM commands using previously made reconstructor from slopes. :param slopes: array of
slopes to reconstruct from :type slopes: ndarray

Returns array to commands to be sent to DM

Return type ndarray

removeCommonTT(slopes, wfsList)

class soapy.RECON.LearnAndApply(soapyConfig, dms, wfss, atmos, runWfsFunc=None)
Bases: soapy.RECON.MVM

Class to perform a simply learn and apply algorithm, where “learn” slopes are recorded, and an interaction
matrix between off-axis and on-axis WFS is computed from these slopes.

Assumes that on-axis sensor is WFS 0

calcCMat(callback=None, progressCallback=None)
Uses the slopes recorded in the “learn” and DM interaction matrices to create a CMat.

initControlMatrix()

learn(callback=None, progressCallback=None)
Takes “self.learnFrames” WFS frames, and computes the tomographic reconstructor for the system. This
method uses the “truth” sensor, and assumes that this is WFS0

loadCMat()

reconstruct(slopes)
Determine DM commands using previously made reconstructor from slopes. :param slopes: array of
slopes to reconstruct from :type slopes: ndarray

Returns array of commands to be sent to DM

Return type ndarray

saveCMat()

class soapy.RECON.LearnAndApplyLTAO(soapyConfig, dms, wfss, atmos, runWfsFunc=None)
Bases: soapy.RECON.LearnAndApply , soapy.RECON.MVM_SeparateDMs

Class to perform a simply learn and apply algorithm, where “learn” slopes are recorded, and an interaction
matrix between off-axis and on-axis WFS is computed from these slopes.

This is an ‘‘ Assumes that on-axis sensor is WFS 1

calcCMat(callback=None, progressCallback=None)
Uses the slopes recorded in the “learn” and DM interaction matrices to create a CMat.

initControlMatrix()

reconstruct(slopes)
Determine DM commands using previously made reconstructor from slopes. :param slopes: array of
slopes to reconstruct from :type slopes: ndarray

Returns array to comands to be sent to DM

Return type ndarray

class soapy.RECON.LgsTT(soapyConfig, dms, wfss, atmos, runWfsFunc=None)
Bases: soapy.RECON.LearnAndApply

Reconstructor of LGS TT prediction algorithm.

58 Chapter 14. Reconstructors



Soapy Documentation, Release v0.13.1-dirty

Uses one TT DM and a high order DM. The TT WFS controls the TT DM and the second WFS controls the
high order DM. The TT WFS and DM are assumed to be the first in the system.

calcCMat(callback=None, progressCallback=None)
Uses the slopes recorded in the “learn” and DM interaction matrices to create a CMat.

initControlMatrix()

reconstruct(slopes)
Determine DM commands using previously made reconstructor from slopes. :param slopes: array of
slopes to reconstruct from :type slopes: ndarray

Returns array to commands to be sent to DM

Return type ndarray

removeCommonTT(slopes, wfsList)

class soapy.RECON.MVM(soapyConfig, dms, wfss, atmos, runWfsFunc=None)
Bases: soapy.RECON.Reconstructor

Re-constructor which combines all DM interaction matrices from all DMs and WFSs and inverts the resulting
matrix to form a global interaction matrix.

calcCMat(callback=None, progressCallback=None)
Uses DM object makeIMat methods, then inverts each to create a control matrix

class soapy.RECON.MVM_SeparateDMs(soapyConfig, dms, wfss, atmos, runWfsFunc=None)
Bases: soapy.RECON.Reconstructor

Re-constructor which treats a each DM Separately.

Similar to MVM re-constructor, except each DM has its own control matrix. Its is assumed that each DM is
“associated” with a different WFS.

calcCMat(callback=None, progressCallback=None)
Uses DM object makeIMat methods, then inverts each to create a control matrix

reconstruct(slopes)
Returns DM commands given some slopes

First, if there’s a TT mirror, remove the TT from the TT WFS (the 1st WFS slopes) and get TT commands
to send to the mirror. These slopes may then be used to reconstruct commands for others DMs, or this
could be the responsibility of other WFSs depending on the config file.

class soapy.RECON.Reconstructor(soapyConfig, dms, wfss, atmos, runWfsFunc=None)
Bases: object

initControlMatrix()

loadCMat()

loadIMat()

makeCMat(loadIMat=True, loadCMat=True, callback=None, progressCallback=None)

makeIMat(callback, progressCallback)

reconstruct(slopes)

saveCMat()

saveIMat()

class soapy.RECON.WooferTweeter(soapyConfig, dms, wfss, atmos, runWfsFunc=None)
Bases: soapy.RECON.Reconstructor

14.1. soapy.RECON module 59

https://docs.python.org/2/library/functions.html#object


Soapy Documentation, Release v0.13.1-dirty

Reconstructs a 2 DM system, where 1 DM is of low order, high stroke and the other has a higher, but low stroke.

Reconstructs dm commands for each DM, then removes the low order component from the high order commands
by propagating back to the slopes corresponding to the lower order DM shape, and propagating to the high order
DM shape.

calcCMat(callback=None, progressCallback=None)
Creates control Matrix. Assumes that DM 0 is low order, and DM 1 is high order.

60 Chapter 14. Reconstructors



CHAPTER 15

Science Camera

A science camera class to measure system performance

soapy.SCI module

class soapy.SCI.PSF(soapyConfig, nSci=0, mask=None)
Bases: object

calcFocalPlane()
Takes the calculated pupil phase, scales for the correct FOV, and uses an FFT to transform to the focal
plane.

calcInstStrehl()
Calculates the instantaneous Strehl, including TT if configured.

calcTiltCorrect()
Calculates the required tilt to add to avoid the PSF being centred on one pixel only

frame(scrns, correction=None)
Runs a single science camera frame with one or more phase screens

Parameters

• scrns (ndarray, list, dict) – One or more 2-d phase screens. Phase in units of
nm.

• phaseCorrection (ndarray) – Correction phase in nm

Returns Resulting science PSF

Return type ndarray

soapy.SCI.ScienceCam
alias of PSF

soapy.SCI.scienceCam
alias of PSF

61

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/stdtypes.html#dict


Soapy Documentation, Release v0.13.1-dirty

class soapy.SCI.singleModeFibre(soapyConfig, nSci=0, mask=None)
Bases: soapy.SCI.PSF

calcInstStrehl()

fibreEfield(size)

refCouplingLoss(size)

62 Chapter 15. Science Camera



CHAPTER 16

Utilities

Modules containing some functions and classes commonly used throughout the simulation.

soapy.logger module

A module to provide a common logging interface for all simulation code.

Contains a Logger object, which can either, print information, save to file or both. The verbosity can also be adjusted
between 0 and 3, where all is logged when verbosity is 3, debugging and warning information is logged when verbosity
is 2, warnings logged when verbosity is 1 and nothing is logged when verbosity is 0.

soapy.logger.debug(message)
Logs messages if debug level is 3. Intended for very detailed debugging information.

Parameters message (string) – The message to log

soapy.logger.info(message)
Logs message if verbosity is 2 or higher. Useful for information which is not vital, but good to know.

Parameters message (string) – The message to log

soapy.logger.print_(message)
Always logs message, regardless of verbosity level

Parameters message (str) – The message to log

soapy.logger.setLoggingFile(logFile)

soapy.logger.setLoggingLevel(level)
sets which messages are printed from logger.

if logging level is set to 0, nothing is printed. if set to 1, only warnings are printed. if set to 2, warnings and info
is printed. if set to 3 detailed debugging info is printed.

Parameters level (int) – the desired logging level

soapy.logger.setStatusFunc(func)

63

https://docs.python.org/2/library/string.html#module-string
https://docs.python.org/2/library/string.html#module-string
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#int


Soapy Documentation, Release v0.13.1-dirty

soapy.logger.statusMessage(i, maxIter, message)

soapy.logger.warning(message)
Logs messages if debug level is 1 or over. Intended for warnings

Parameters message (string) – The message to log

soapy.AOFFT module

A Module to perform FFTs, wrapping a variety of FFT Backends in a common interface. Currently supports either
pyfftw (requires FFTW3), the scipy fftpack or some GPU algorithms

class soapy.AOFFT.Convolve(shape1, shape2=None, mode=’pyfftw’,
fftw_FLAGS=(‘FFTW_MEASURE’, ), threads=0, axes=(-2, -1))

Bases: object

class soapy.AOFFT.FFT(inputSize, axes=(-1, ), mode=’pyfftw’, dtype=’complex64’,
direction=’FORWARD’, fftw_FLAGS=(‘FFTW_MEASURE’,
‘FFTW_DESTROY_INPUT’), THREADS=None, loggingLevel=None)

Bases: object

Class for performing FFTs in a variety of ways, with the same API.

Once the class has been initialised, FFTs going in the same direction and using the same padding size can be
performed with re-initialising. The inputSize set is actually the padding size, any array smaller than this can
then be transformed.

Usually, its best to best to pass the data when performing the fft, either calling the class directly
(fftobj(fftData)) or calling the fft method of the class. If though, you’re certain the array to trans-
form is C-contiguous, and its size is the same as inputSize, then you can set:

fftObj.inputData = fftData

then:

outputData = fftObj()

where fftData is the data to be transformed. This is faster, as it avoids an array copying operation, but is
dangerous as the FFT may fail if the input data is not correct.

Parameters

• inputSize (tuple) – The size of the input array, including any padding

• axes (tuple, optional) – The axes to transform. defaults to the last.

• mode (string, optional) – Which FFT library to use, can by 'pyfftw', 'scipy'
or 'gpu'. Defaults to 'pyfftw'.

• dtype (str, optional) – The data type to transform, defaults to 'complex64'

• direction (str, optional) – Forward or inverse FFT. Either FORWARD or BACK-
WARD. Default is FORWARD.

• THREADS (int, optional) – Number of threads to use for FFT. Defualt is 1

fft(data=None)
Perform the fft of data.

64 Chapter 16. Utilities

https://docs.python.org/2/library/string.html#module-string
https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#tuple
https://docs.python.org/2/library/functions.html#tuple
https://docs.python.org/2/library/string.html#module-string
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#int


Soapy Documentation, Release v0.13.1-dirty

Parameters data (ndarray, optional) – The data to transform. Optional as sometimes
it can be faster to access inputData directly, though if and only if the data will be c-
contiguous.

Returns The transformed data

Return type ndarray

soapy.AOFFT.convolve(img1, img2, mode=’pyfftw’, fftw_FLAGS=(‘FFTW_MEASURE’, ), threads=0)
Convolves two, 2-dimensional arrays Uses the AOFFT library to do fast convolution of 2, 2-dimensional numpy
ndarrays. The FFT mode, and some parameters can be set in the arguments. :param img1: 1st array to be
convolved :type img1: ndarray :param img2: 2nd array to be convolved :type img2: ndarray :param mode:
The fft mode used, defaults to fftw :type mode: string, optional :param fftw_FLAGS: flags for fftw, defaults to
(“FFTW_MEASURE”,) :type fftw_FLAGS: tuple, optional :param threads: Number of threads used if mode is
fftw :type threads: int, optional

Returns The convolved 2-dimensional array

Return type ndarray

soapy.AOFFT.ftShift2d(inputData, outputData=None)
Helper function to shift an array of 2-D FFT data

Parameters

• inputData (ndarray) – array of data to be shifted. Will shift final 2 axes

• outputData (ndarray, optional) – array to place data. If not given, will overwrite
inputData

class soapy.AOFFT.mpFFT(inputSize, axes=(-1, ), mode=’pyfftw’, dtype=’complex64’, direc-
tion=’FORWARD’, fftw_FLAGS=(‘FFTW_MEASURE’, ), processes=None)

Bases: object

Class to perform FFTs on a large number of problems, using the FFT class, and seperate processes for different
problems. The input array will be split in the 0 axis onto different processes

doMpFFT(fftObj, data, Q)

fft()

soapy.aoSimLib module

soapy.opticalPropagationLib module

soapy.confParse module

A module to generate configuration objects for Soapy, given a parameter file.

This module defines a number of classes, which when instantiated, create objects used to configure the entire simula-
tion, or just submodules. All configuration objects are stored in the Configurator object which deals with loading
parameters from file, checking some potential conflicts and using parameters to calculate some other parameters used
in parts of the simulation.

The ConfigObj provides a base class used by other module configuration objects, and provides methods to read the
parameters from the dictionary read from file, and set defaults if appropriate. Each other module in the system has its
own configuration object, and for components such as wave-front sensors (WFSs), Deformable Mirrors (DMs), Laser
Guide Stars (LGSs) and Science Cameras, lists of the config objects for each component are created.

16.3. soapy.aoSimLib module 65

https://docs.python.org/2/library/functions.html#object


Soapy Documentation, Release v0.13.1-dirty

class soapy.confParse.AtmosConfig(N=None)
Bases: soapy.confParse.ConfigObj

Configuration parameters characterising the atmosphere. These should be held in the Atmosphere group in
the parameter file.

Required:

Parameter Description
scrnNo int: Number of turbulence layers
scrnHeights list, int: Phase screen heights in metres
scrnStrength list, float: Relative layer scrnStrength
windDirs list, float: Wind directions in degrees.
windSpeeds list, float: Wind velocities in m/s
r0 float: integrated seeing strength (metres at 550nm)
wholeScrnSize int: Size of the phase screens to store in the atmosphere object

Optional:

Parameter Description De-
fault

scrnNames list, string: filenames of phase if loading from fits files. If None will make
new screens.

None

subHarmonicsbool: Use sub-harmonic screen generation algorithm for better tip-tilt
statistics - useful for small phase screens.

False

L0 list, float: Outer scale of each layer. Kolmogorov turbulence if None. None
randomScrnsbool: Use a random set of phase phase screens for each loop iteration? False
tau0 float: Turbulence coherence time, if set wind speeds are scaled. None

allowedAttrs = [’scrnNo’, ‘scrnHeights’, ‘scrnStrengths’, ‘r0’, ‘windDirs’, ‘windSpeeds’, ‘wholeScrnSize’, ‘normScrnStrengths’, ‘N’, ‘scrnNames’, ‘subHarmonics’, ‘L0’, ‘randomScrns’, ‘tau0’]

calcParams()

calculatedParams = [’normScrnStrengths’]

optionalParams = [(‘scrnNames’, None), (‘subHarmonics’, False), (‘L0’, None), (‘randomScrns’, False), (‘tau0’, None)]

p = (‘tau0’, None)

requiredParams = [’scrnNo’, ‘scrnHeights’, ‘scrnStrengths’, ‘r0’, ‘windDirs’, ‘windSpeeds’, ‘wholeScrnSize’]

class soapy.confParse.ConfigObj(N=None)
Bases: object

calcParams()
Dummy method to be overidden if required

initParams()

loadParams(configDict)

warnAndDefault(param, newValue)

warnAndExit(param)

exception soapy.confParse.ConfigurationError
Bases: exceptions.Exception

soapy.confParse.Configurator
alias of PY_Configurator

class soapy.confParse.DmConfig(N=None)
Bases: soapy.confParse.ConfigObj

Configuration parameters characterising Deformable Mirrors. These should be held in the DM sub-group of the
parameter file. Each DM is specified seperately, by first specifying an index, then the DM parameters. Any
entries above sim.nGS will be ignored.

66 Chapter 16. Utilities

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/exceptions.html#exceptions.Exception


Soapy Documentation, Release v0.13.1-dirty

Required:

Parameter Description
type string: Type of DM. This must the name of a class in the DM module.
nxActuatorsint: Number independent DM shapes. e.g., for stack-array DMs this is number of

actuators in one dimension, for Zernike DMs this is number of Zernike modes.
gain float: The loop gain for the DM.**
svdConditioningfloat: The conditioning parameter used in the pseudo inverse of the interaction matrix.

This is performed by numpy.linalg.pinv.

Optional:

allowedAttrs = [’type’, ‘N’, ‘nxActuators’, ‘svdConditioning’, ‘gain’, ‘closed’, ‘iMatValue’, ‘wfs’, ‘rotation’, ‘interpOrder’, ‘gaussWidth’, ‘altitude’, ‘diameter’, ‘gauss_width’]

calcParams()

calculatedParams = []

optionalParams = [(‘nxActuators’, None), (‘svdConditioning’, 0), (‘gain’, 0.6), (‘closed’, True), (‘iMatValue’, 10), (‘wfs’, None), (‘rotation’, 0), (‘interpOrder’, 2), (‘gaussWidth’, 0.5), (‘altitude’, 0.0), (‘diameter’, None), (‘gauss_width’, 0.7)]

p = (‘gauss_width’, 0.7)

requiredParams = [’type’]

class soapy.confParse.LgsConfig(N=None)
Bases: soapy.confParse.ConfigObj

Configuration parameters characterising the Laser Guide Stars. These should be held in the LGS
sub-group of the WFS parameter group.

Optional:

Parameter Description Default
uplink bool: Include LGS uplink effects False
pupilDiam float: Diameter of LGS launch aperture in metres. 0.3
wavelength float: Wavelength of laser beam in metres 600e-9
propagationModestr: Mode of light propogation from GS. Can be “Physical” or

“Geometric”.
"Phsyical"

height float: Height to use physical propogation of LGS (does not effect
cone-effect) in metres

90000

elongationDepthfloat: Depth of LGS elongation in metres 0
elongationLayersint: Number of layers to simulate for elongation. 10
launchPositiontuple: The launch position of the LGS in units of the pupil radii, where

(0,0) is the centre launched case, and (1,0) is side-launched.
(0,0)

fftwThreadsint: number of threads for fftw to use. If 0, will use system processor
number.

1

fftwFlag str: Flag to pass to FFTW when preparing plan. FFTW_PATIENT
naProfile list: The relative sodium layer strength for each elongation layer. If None,

all equal.
None

allowedAttrs = [’position’, ‘N’, ‘uplink’, ‘pupilDiam’, ‘wavelength’, ‘propagationMode’, ‘height’, ‘fftwFlag’, ‘fftwThreads’, ‘elongationDepth’, ‘elongationLayers’, ‘launchPosition’, ‘naProfile’]

calcParams()

calculatedParams = [’position’]

optionalParams = [(‘uplink’, False), (‘pupilDiam’, 0.3), (‘wavelength’, 6e-07), (‘propagationMode’, ‘Physical’), (‘height’, 90000), (‘fftwFlag’, ‘FFTW_PATIENT’), (‘fftwThreads’, 0), (‘elongationDepth’, 0), (‘elongationLayers’, 10), (‘launchPosition’, <Mock name=’mock()’ id=‘140662491446352’>), (‘naProfile’, None)]

p = (‘naProfile’, None)

requiredParams = []

class soapy.confParse.PY_Configurator(filename)
Bases: object

The configuration class holding all simulation configuration information

16.5. soapy.confParse module 67

http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.pinv.html
https://docs.python.org/2/library/functions.html#object


Soapy Documentation, Release v0.13.1-dirty

This class is used to load the parameter dictionary from file, instantiate each configuration object and calculate
some other parameters from the parameters given.

The configuration file given to this class must contain a python dictionary, named simConfiguration. This
must contain other dictionaries for each sub-module of the system, Sim, Atmosphere, Telescope, WFS,
LGS, DM, Science. For the final 4 sub-dictionaries, each entry must be formatted as a list (or numpy array)
where each value corresponds to that component.

The number of components on the module will only depend on the number set in the Sim dict. For example,
if nGS is set to 2 in Sim, then in the WFS dict, each parameters must have at least 2 entries, e.g. subaps :
[10,10]. If the parameter has more than 2 entries, then only the first 2 will be noted and any others discarded.

Descriptions of the available parameters for each sub-module are given in that that config classes documentation

Parameters filename (string) – The name of the configuration file

calcParams()
Calculates some parameters from the configuration parameters.

loadSimParams()

readfile()

class soapy.confParse.SciConfig(N=None)
Bases: soapy.confParse.ConfigObj

Configuration parameters characterising Science Cameras. These should be held in the Science of the param-
eter file. Each Science target is created seperately with an integer index. Any entries above sim.nSci will be
ignored.

Required:

Parameter Description
position tuple: The position of the science camera in the field in arc-seconds
FOV float: The field of fiew of the science detector in arc-seconds
wavelength float: The wavelength of the science detector light
pxls int: Number of pixels in the science detector

Optional:

Parameter Description Default
pxlScale float: Pixel scale of science camera, in arcseconds. If set,

overwrites FOV.
None

type string: Type of science camera This must the name of a class in the
SCI module.

PSF

fftOversamp int: Multiplied by the number of of phase points required for FOV
to increase fidelity from FFT.

2

fftwThreads int: number of threads for fftw to use. If 0, will use system
processor number.

1

fftwFlag str: Flag to pass to FFTW when preparing plan. FFTW_MEASURE
height float: Altitude of the object. 0 denotes infinity. 0
propagationModestr: Mode of light propogation from object. Can be “Physical” or

“Geometric”.
"Geometric"

instStrehlWithTTbool: Whether or not to include tip/tilt in instantaneous Strehl
calculations.

False

allowedAttrs = [’position’, ‘wavelength’, ‘pxls’, ‘N’, ‘pxlScale’, ‘FOV’, ‘type’, ‘fftOversamp’, ‘fftwFlag’, ‘fftwThreads’, ‘instStrehlWithTT’, ‘height’, ‘propagationMode’]

calcParams()

calculatedParams = []

optionalParams = [(‘pxlScale’, None), (‘FOV’, None), (‘type’, ‘PSF’), (‘fftOversamp’, 2), (‘fftwFlag’, ‘FFTW_MEASURE’), (‘fftwThreads’, 1), (‘instStrehlWithTT’, False), (‘height’, 0), (‘propagationMode’, ‘Geometric’)]

p = (‘propagationMode’, ‘Geometric’)

68 Chapter 16. Utilities

https://docs.python.org/2/library/string.html#module-string


Soapy Documentation, Release v0.13.1-dirty

requiredParams = [’position’, ‘wavelength’, ‘pxls’]

class soapy.confParse.SimConfig(N=None)
Bases: soapy.confParse.ConfigObj

Configuration parameters relavent for the entire simulation. These should be held at the beginning of the param-
eter file with no indendation.

Required:

Parameter Description
pupilSize int: Number of phase points across the simulation pupil
nIters int: Number of iteration to run simulation
loopTime float: Time between simulation frames (1/framerate)

Optional:

Parameter Description De-
fault

nGS int: Number of Guide Stars and WFS 0
nDM int: Number of deformable Mirrors 0
nSci int: Number of Science Cameras 0
reconstructorstr: name of reconstructor class to use. See reconstructor module for

available reconstructors.
"MVM"

simName str: directory name to store simulation data None
wfsMP bool: Each WFS uses its own process False
verbosity int: debug output for the simulation ranging from 0 (no-ouput) to 3 (all

debug output)
2

logfile str: name of file to store logging data, None
learnIters int: Number of learn iterations for Learn & Apply reconstructor 0
learnAtmos str: if random, then random phase screens used for learn random
simOversize float: The fraction to pad the pupil size with to reduce edge effects 1.2
loopDelay int: loop delay in integer count of loopTime 0

Data Saving (all default to False):

Parameter Description
saveSlopes Save all WFS slopes. Accessed from sim with sim.allSlopes
saveDmCommands Saves all DM Commands. Accessed from sim with sim.allDmCommands
saveWfsFrames Saves all WFS pixel data. Saves to disk a after every frame to avoid using too

much memory
saveStrehl Saves the science camera Strehl Ratio. Accessed from sim with

sim.longStrehl and sim.instStrehl
saveWfe Saves the science camera wave front error. Accessed from sim with sim.WFE.
saveSciPsf Saves the science PSF.
saveInstPsf Saves the instantenous science PSF.
saveInstScieFieldSaves the instantaneous electric field at focal plane.
saveSciRes Save Science residual phase

allowedAttrs = [’pupilSize’, ‘nIters’, ‘loopTime’, ‘pxlScale’, ‘simPad’, ‘simSize’, ‘scrnSize’, ‘totalWfsData’, ‘totalActs’, ‘saveHeader’, ‘N’, ‘nGS’, ‘nDM’, ‘nSci’, ‘gain’, ‘reconstructor’, ‘simName’, ‘saveSlopes’, ‘saveDmCommands’, ‘saveLgsPsf’, ‘saveLearn’, ‘saveStrehl’, ‘saveWfsFrames’, ‘saveSciPsf’, ‘saveInstPsf’, ‘saveInstScieField’, ‘saveWfe’, ‘saveSciRes’, ‘wfsMP’, ‘verbosity’, ‘logfile’, ‘learnIters’, ‘learnAtmos’, ‘simOversize’, ‘loopDelay’]

calculatedParams = [’pxlScale’, ‘simPad’, ‘simSize’, ‘scrnSize’, ‘totalWfsData’, ‘totalActs’, ‘saveHeader’]

optionalParams = [(‘nGS’, 0), (‘nDM’, 0), (‘nSci’, 0), (‘gain’, 0.6), (‘reconstructor’, ‘MVM’), (‘simName’, None), (‘saveSlopes’, False), (‘saveDmCommands’, False), (‘saveLgsPsf’, False), (‘saveLearn’, False), (‘saveStrehl’, False), (‘saveWfsFrames’, False), (‘saveSciPsf’, False), (‘saveInstPsf’, False), (‘saveInstScieField’, False), (‘saveWfe’, False), (‘saveSciRes’, False), (‘wfsMP’, False), (‘verbosity’, 2), (‘logfile’, None), (‘learnIters’, 0), (‘learnAtmos’, ‘random’), (‘simOversize’, 1.2), (‘loopDelay’, 0)]

p = (‘loopDelay’, 0)

requiredParams = [’pupilSize’, ‘nIters’, ‘loopTime’]

class soapy.confParse.TelConfig(N=None)
Bases: soapy.confParse.ConfigObj

Configuration parameters characterising the Telescope. These should be held in the Telescope
group in the parameter file.

16.5. soapy.confParse module 69



Soapy Documentation, Release v0.13.1-dirty

Required: Parameter Description
telDiam float: Diameter of telescope pupil in metres

Optional:
Parameter Description Default
obsDiam float: Diameter of central obscuration 0
mask str: Shape of pupil (only accepts circle currently) circle

allowedAttrs = [’telDiam’, ‘N’, ‘obsDiam’, ‘mask’]

calculatedParams = []

optionalParams = [(‘obsDiam’, 0), (‘mask’, ‘circle’)]

p = (‘mask’, ‘circle’)

requiredParams = [’telDiam’]

class soapy.confParse.WfsConfig(N=None)
Bases: soapy.confParse.ConfigObj

Configuration parameters characterising Wave-front Sensors. These should be held in the WFS group in the
parameter file. Each WFS is specified by first specifying an index, then the WFS parameters. Any entries above
sim.nGS will be ignored.

Required:

Parameter Description
GSPosition tuple: position of GS on-sky in arc-secs
wavelength float: wavelength of GS light in metres
nxSubaps int: number of SH sub-apertures

70 Chapter 16. Utilities



Soapy Documentation, Release v0.13.1-dirty

Optional:

Parame-
ter

Description Default

type string: Which WFS object to load from WFS.py? ShackHartmann
GSMag float: Apparent magnitude of the guide star 0
photonNoisebool: Include photon (shot) noise. False
eReadNoisefloat: Electrons of read noise 0
throughputfloat: Throughput of the entire optical and electronic system from guide

star photons to recorded WFS detector counts. Includes atmospheric
effects, the optical train and detector gain.

1.

propagationModestring: Mode of light propogation from GS. Can be “Physical” or
“Geometric”**.

"Geometric"

subapFieldStopbool: if True, add a field stop to the wfs to prevent spots wandering into
adjacent sub-apertures. if False, oversample subap FOV by a factor of 2 to
allow into adjacent subaps.

False

removeTT bool: if True, remove TT signal from WFS slopes before reconstruction.** False
fftOversampint: Multiplied by the number of of phase points required for FOV to

increase fidelity from FFT.
3

GSHeight float: Height of GS beacon. 0 if at infinity. 0
subapThresholdfloat: How full should subap be to be used for wavefront sensing? 0.5
lgs bool: is WFS an LGS? False
centMethodstring: Method used for Centroiding. Can be centreOfGravity,

brightestPxl, or correlation.**
centreOfGravity

referenceImagearray: Reference images used in the correlation centroider. Full image
plane image, each subap has a separate reference image

None

angleEquivNoisefloat: width of gaussian noise added to slopes measurements in arc-secs 0
centThresholdfloat: Centroiding threshold as a fraction of the max subap value.** 0.1
exposureTimefloat: Exposure time of the WFS camera - must be higher than loopTime.

If None, will be set to loopTime.
None

wvlBandWidthfloat: Width of wavelength band sent to WFS in nm 100
extendedObjectndarray or str: The object used as extended source for WFS, of size

2*fftOversamp*pxlsPerSubap. The FOV of the object should be twice the
FOV of the sub-aperture.

None

fftwThreadsint: number of threads for fftw to use. If 0, will use system processor
number.

1

fftwFlag str: Flag to pass to FFTW when preparing plan. FFTW_PATIENT
pxlsPerSubapint: number of pixels per sub-apertures 10
subapFOV float: Field of View of sub-aperture in arc-secs 5
correlationFFTPadint: Padding for correlation WFS None

allowedAttrs = [’GSPosition’, ‘wavelength’, ‘nxSubaps’, ‘position’, ‘pxlsPerSubap2’, ‘dataStart’, ‘lgs’, ‘N’, ‘propagationMode’, ‘fftwThreads’, ‘fftwFlag’, ‘angleEquivNoise’, ‘subapFieldStop’, ‘removeTT’, ‘angleEquivNoise’, ‘fftOversamp’, ‘GSHeight’, ‘subapThreshold’, ‘lgs’, ‘centThreshold’, ‘centMethod’, ‘type’, ‘exposureTime’, ‘referenceImage’, ‘throughput’, ‘eReadNoise’, ‘photonNoise’, ‘GSMag’, ‘wvlBandWidth’, ‘extendedObject’, ‘pxlsPerSubap’, ‘subapFOV’, ‘correlationFFTPad’]

calcParams()

calculatedParams = [’position’, ‘pxlsPerSubap2’, ‘dataStart’, ‘lgs’]

optionalParams = [(‘propagationMode’, ‘Geometric’), (‘fftwThreads’, 1), (‘fftwFlag’, ‘FFTW_PATIENT’), (‘angleEquivNoise’, 0), (‘subapFieldStop’, False), (‘removeTT’, ‘False’), (‘angleEquivNoise’, 0), (‘fftOversamp’, 3), (‘GSHeight’, 0), (‘subapThreshold’, 0.5), (‘lgs’, None), (‘centThreshold’, 0.3), (‘centMethod’, ‘centreOfGravity’), (‘type’, ‘ShackHartmann’), (‘exposureTime’, None), (‘referenceImage’, None), (‘throughput’, 1.0), (‘eReadNoise’, 0), (‘photonNoise’, False), (‘GSMag’, 0.0), (‘wvlBandWidth’, 100.0), (‘extendedObject’, None), (‘pxlsPerSubap’, 10), (‘subapFOV’, 5), (‘correlationFFTPad’, None)]

p = (‘correlationFFTPad’, None)

requiredParams = [’GSPosition’, ‘wavelength’, ‘nxSubaps’]

class soapy.confParse.YAML_Configurator(filename)
Bases: soapy.confParse.PY_Configurator

loadSimParams()

readfile()

16.5. soapy.confParse module 71



Soapy Documentation, Release v0.13.1-dirty

soapy.confParse.loadSoapyConfig(configfile)

soapy.confParse.test()

72 Chapter 16. Utilities



CHAPTER 17

Indices and tables

• genindex

• modindex

• search

73



Soapy Documentation, Release v0.13.1-dirty

74 Chapter 17. Indices and tables



Python Module Index

s
soapy.AOFFT, 64
soapy.atmosphere, 37
soapy.DM, 51
soapy.LGS, 55
soapy.lineofsight, 41
soapy.logger, 63
soapy.RECON, 57
soapy.SCI, 61
soapy.simulation, 31
soapy.wfs.base, 45

75



Soapy Documentation, Release v0.13.1-dirty

76 Python Module Index



Index

A
addPhotonNoise() (soapy.wfs.base.WFS method), 47
addReadNoise() (soapy.wfs.base.WFS method), 47
addToGuiQueue() (soapy.simulation.Sim method), 32
allocDataArrays() (soapy.lineofsight.LineOfSight

method), 42
allocDataArrays() (soapy.wfs.shackhartmann.ShackHartmann

method), 48
ANN (class in soapy.RECON), 57
aoinit() (soapy.simulation.Sim method), 32
aoloop() (soapy.simulation.Sim method), 32
applyLgsUplink() (soapy.wfs.shackhartmann.ShackHartmann

method), 48
atmos (class in soapy.atmosphere), 38
AtmosConfig (class in soapy.confParse), 22

C
calcCMat() (soapy.RECON.ANN method), 57
calcCMat() (soapy.RECON.LearnAndApply method), 58
calcCMat() (soapy.RECON.LearnAndApplyLTAO

method), 58
calcCMat() (soapy.RECON.LgsTT method), 59
calcCMat() (soapy.RECON.MVM method), 59
calcCMat() (soapy.RECON.MVM_SeparateDMs

method), 59
calcCMat() (soapy.RECON.WooferTweeter method), 60
calcElongPhaseAddition() (soapy.wfs.base.WFS

method), 47
calcElongPos() (soapy.wfs.base.WFS method), 47
calcFocalPlane() (soapy.SCI.PSF method), 61
calcFocalPlane() (soapy.wfs.shackhartmann.ShackHartmann

method), 48
calcInitParams() (soapy.LGS.LGS method), 55
calcInitParams() (soapy.LGS.LGS_Geometric method),

56
calcInitParams() (soapy.LGS.LGS_Physical method), 56
calcInitParams() (soapy.lineofsight.LineOfSight method),

42

calcInitParams() (soapy.wfs.shackhartmann.ShackHartmann
method), 48

calcInstStrehl() (soapy.SCI.PSF method), 61
calcInstStrehl() (soapy.SCI.singleModeFibre method), 62
calcMetaPupilSize() (soapy.lineofsight.LineOfSight

method), 42
calcTiltCorrect() (soapy.SCI.PSF method), 61
calcTiltCorrect() (soapy.wfs.shackhartmann.ShackHartmann

method), 48
calculateSlopes() (soapy.wfs.shackhartmann.ShackHartmann

method), 48
Convolve (class in soapy.AOFFT), 64
convolve() (in module soapy.AOFFT), 65

D
debug() (in module soapy.logger), 63
delay() (soapy.simulation.DelayBuffer method), 32
DelayBuffer (class in soapy.simulation), 32
DM (class in soapy.DM), 51
DmConfig (class in soapy.confParse), 25
dmFrame() (soapy.DM.DM method), 52
doMpFFT() (soapy.AOFFT.mpFFT method), 65

F
FFT (class in soapy.AOFFT), 64
fft() (soapy.AOFFT.FFT method), 64
fft() (soapy.AOFFT.mpFFT method), 65
fibreEfield() (soapy.SCI.singleModeFibre method), 62
findActiveSubaps() (soapy.wfs.shackhartmann.ShackHartmann

method), 48
findMetaPupilSizes() (soapy.lineofsight.LineOfSight

method), 42
finishUp() (soapy.simulation.Sim method), 32
frame() (soapy.lineofsight.LineOfSight method), 42
frame() (soapy.SCI.PSF method), 61
frame() (soapy.wfs.base.WFS method), 47
ftShift2d() (in module soapy.AOFFT), 65

G
GaussStack (class in soapy.DM), 53

77



Soapy Documentation, Release v0.13.1-dirty

getActiveActs() (soapy.DM.DM method), 52
getActiveActs() (soapy.DM.Piezo method), 53
getActiveActs() (soapy.DM.TT method), 53
getLgsPsf() (soapy.LGS.LGS method), 55
getLgsPsf() (soapy.LGS.LGS_Geometric method), 56
getLgsPsf() (soapy.LGS.LGS_Physical method), 56
getMetaPupilPhase() (soapy.lineofsight.LineOfSight

method), 43
getMetaPupilPos() (soapy.lineofsight.LineOfSight

method), 43
getStatic() (soapy.wfs.shackhartmann.ShackHartmann

method), 48
getTimeStamp() (soapy.simulation.Sim method), 32
GLAO_4LGS (class in soapy.RECON), 57

H
height (soapy.lineofsight.LineOfSight attribute), 43

I
info() (in module soapy.logger), 63
initControlMatrix() (soapy.RECON.GLAO_4LGS

method), 57
initControlMatrix() (soapy.RECON.LearnAndApply

method), 58
initControlMatrix() (soapy.RECON.LearnAndApplyLTAO

method), 58
initControlMatrix() (soapy.RECON.LgsTT method), 59
initControlMatrix() (soapy.RECON.Reconstructor

method), 59
initFFTs() (soapy.LGS.LGS method), 55
initFFTs() (soapy.LGS.LGS_Geometric method), 56
initFFTs() (soapy.wfs.shackhartmann.ShackHartmann

method), 48
initLGS() (soapy.wfs.base.WFS method), 47
initLos() (soapy.LGS.LGS method), 55
initLos() (soapy.wfs.base.WFS method), 47
initSaveData() (soapy.simulation.Sim method), 32

L
learn() (soapy.RECON.LearnAndApply method), 58
LearnAndApply (class in soapy.RECON), 58
LearnAndApplyLTAO (class in soapy.RECON), 58
LGS (class in soapy.LGS), 55
LGS_Geometric (class in soapy.LGS), 55
LGS_Physical (class in soapy.LGS), 56
LgsConfig (class in soapy.confParse), 24
lgsOALaunchMetaPupilPos() (in module soapy.LGS), 56
LgsTT (class in soapy.RECON), 58
LineOfSight (class in soapy.lineofsight), 41
loadCMat() (soapy.RECON.LearnAndApply method), 58
loadCMat() (soapy.RECON.Reconstructor method), 59
loadIMat() (soapy.RECON.Reconstructor method), 59
loopFrame() (soapy.simulation.Sim method), 33

M
make_mask() (in module soapy.simulation), 35
makeCMat() (soapy.RECON.Reconstructor method), 59
makeDetectorPlane() (soapy.wfs.shackhartmann.ShackHartmann

method), 48
makeElongationFrame() (soapy.wfs.base.WFS method),

48
makeIMat() (soapy.DM.DM method), 52
makeIMat() (soapy.RECON.Reconstructor method), 59
makeIMat() (soapy.simulation.Sim method), 33
makeIMatShapes() (soapy.DM.GaussStack method), 53
makeIMatShapes() (soapy.DM.Piezo method), 53
makeIMatShapes() (soapy.DM.TT method), 53
makeIMatShapes() (soapy.DM.Zernike method), 53
makePhase() (soapy.lineofsight.LineOfSight method), 43
makePhaseGeometric() (soapy.lineofsight.LineOfSight

method), 43
makePhasePhys() (soapy.lineofsight.LineOfSight

method), 44
makePhaseScreens() (in module soapy.atmosphere), 38
makeSaveHeader() (soapy.simulation.Sim method), 33
moveScrns() (soapy.atmosphere.atmos method), 38
mpFFT (class in soapy.AOFFT), 65
multiWfs() (in module soapy.simulation), 35
MVM (class in soapy.RECON), 59
MVM_SeparateDMs (class in soapy.RECON), 59

P
performCorrection() (soapy.lineofsight.LineOfSight

method), 44
Piezo (class in soapy.DM), 53
position (soapy.lineofsight.LineOfSight attribute), 44
print_() (in module soapy.logger), 63
printOutput() (soapy.simulation.Sim method), 33
PSF (class in soapy.SCI), 61

R
randomScrns() (soapy.atmosphere.atmos method), 38
readParams() (soapy.simulation.Sim method), 33
reconstruct() (soapy.RECON.ANN method), 57
reconstruct() (soapy.RECON.GLAO_4LGS method), 57
reconstruct() (soapy.RECON.LearnAndApply method),

58
reconstruct() (soapy.RECON.LearnAndApplyLTAO

method), 58
reconstruct() (soapy.RECON.LgsTT method), 59
reconstruct() (soapy.RECON.MVM_SeparateDMs

method), 59
reconstruct() (soapy.RECON.Reconstructor method), 59
Reconstructor (class in soapy.RECON), 59
refCouplingLoss() (soapy.SCI.singleModeFibre method),

62
removeCommonTT() (soapy.RECON.GLAO_4LGS

method), 58

78 Index



Soapy Documentation, Release v0.13.1-dirty

removeCommonTT() (soapy.RECON.LgsTT method), 59
runDM() (soapy.simulation.Sim method), 33
runSciCams() (soapy.simulation.Sim method), 33
runWfs_MP() (soapy.simulation.Sim method), 34
runWfs_noMP() (soapy.simulation.Sim method), 34

S
saveCMat() (soapy.RECON.LearnAndApply method), 58
saveCMat() (soapy.RECON.Reconstructor method), 59
saveData() (soapy.simulation.Sim method), 34
saveIMat() (soapy.RECON.Reconstructor method), 59
saveScrns() (soapy.atmosphere.atmos method), 38
SciConfig (class in soapy.confParse), 25
ScienceCam (in module soapy.SCI), 61
scienceCam (in module soapy.SCI), 61
setLoggingFile() (in module soapy.logger), 63
setLoggingLevel() (in module soapy.logger), 63
setLoggingLevel() (soapy.simulation.Sim method), 34
setMask() (soapy.wfs.base.WFS method), 48
setStatusFunc() (in module soapy.logger), 63
ShackHartmann (class in soapy.wfs.shackhartmann), 48
Sim (class in soapy.simulation), 32
SimConfig (class in soapy.confParse), 21
singleModeFibre (class in soapy.SCI), 61
soapy.AOFFT (module), 64
soapy.atmosphere (module), 37
soapy.DM (module), 51
soapy.LGS (module), 55
soapy.lineofsight (module), 41
soapy.logger (module), 63
soapy.RECON (module), 57
soapy.SCI (module), 61
soapy.simulation (module), 31
soapy.wfs.base (module), 45
statusMessage() (in module soapy.logger), 63
storeData() (soapy.simulation.Sim method), 35

T
TelConfig (class in soapy.confParse), 22
TT (class in soapy.DM), 52

W
warning() (in module soapy.logger), 64
WFS (class in soapy.wfs.base), 46
WfsConfig (class in soapy.confParse), 23
WooferTweeter (class in soapy.RECON), 59

Z
Zernike (class in soapy.DM), 53
zeroData() (soapy.lineofsight.LineOfSight method), 44
zeroData() (soapy.wfs.shackhartmann.ShackHartmann

method), 48

Index 79


	Introduction
	Quick-Start

	Installation
	Installation
	Required Libraries
	Linux
	Mac OSX
	Any OS
	Testing

	Basic Usage
	Configuration
	Creating Phase Screens
	Running the Simulation
	Retrieving Simulation Data

	Simple Tutorial
	Running an Example SCAO Configuration
	Creating a new SCAO configuration file
	Examining data and changing parameters
	GLAO Example

	Configuration
	Simulation Parameters
	Telescope Parameters
	Atmosphere Parameters
	Wave-front Sensor Parameters
	Laser Guide Star Parameters
	Deformable Mirror Parameters
	Science Camera Parameters

	Data Sources
	Simulation Run Data

	Simulation Design
	Data flow and modularity
	Class Hierarchy

	Simulation
	Atmosphere
	Atmosphere Class
	Phase Screen Creation and Saving

	Line Of Sight
	soapy.lineofsight module

	Wave-front Sensors
	WFS Module

	Deformable Mirrors
	DMs in Soapy
	Adding New DMs
	Base DM Class
	Real DM Classes

	Laser Guide Stars
	soapy.LGS module

	Reconstructors
	soapy.RECON module

	Science Camera
	soapy.SCI module

	Utilities
	soapy.logger module
	soapy.AOFFT module
	soapy.aoSimLib module
	soapy.opticalPropagationLib module
	soapy.confParse module

	Indices and tables
	Python Module Index

