
Snorky Documentation
Release 0.1.0-a1

Juan Luis Boya García

February 01, 2017





Contents

1 User’s guide 1
1.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Running the examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Overview of Snorky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Writing services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Connecting to services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Wiring a backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 The DataSync service 21
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Sending change notifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Choosing dealers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Authorizing subscriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5 Acquiring subscriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6 Updating collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7 Using Snorky with AngularJS . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.8 Using Snorky with Django . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Release notes 33
3.1 What’s new in Snorky 0.1.0-a5 . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 What’s new in Snorky 0.1.0-a4 . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 What’s new in Snorky 0.1.0-a3 . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 What’s new in Snorky 0.1.0-a2 . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 First release: Snorky 0.1.0-a1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

i



ii



CHAPTER 1

User’s guide

1.1 Installation

In order to run the Snorky server you need a system with a working Python installation
and a series of dependencies.

1.1.1 Supported systems

Snorky will work on any platform supported by Tornado1. These include Windows, Mac,
Linux and BSD.

In order to achieve the maximum performance in a production server, Linux and BSD
are recommended, as they have fast event selection system calls which are supported by
Tornado (epoll in Linux and kqueue in BSD). At the moment of writing Tornado does not
support IOCP on Windows.

For development, any system is fine.

1.1.2 Which Python version should I choose

There are two versions of the Python language in use, the 2.x branch and the 3.x one.

Python 3.x changes a number of things, for example...

• In Python 2 strings were byte-based and had arbitrary encodings, whilst strings in
Python 3 are character-based by default in order to manage Unicode text better.

• Some old features of the language were removed and other slightly modified. For
example, print was an statement in Python 2 but it is a function in Python 3 and as
a consequence, requires parentheses (i.e. print("Hello World"), not print "Hello
World").

• Although Python 3 has been out there for a long time, there are still some libraries
that only work in Python 2. Still, it is possible to write code that works in both
systems without changes, and many Python packages do this.

Snorky can work with both branches of Python. If you need to use any library which
works only in Python 2, use that; in other case, use Python 3.

1 http://www.tornadoweb.org/

1

http://www.tornadoweb.org/


Snorky Documentation, Release 0.1.0-a1

1.1.3 Installing a Python interpreter

You can download a Python installer for your platform at the official Python web site2.

If you use Windows, it is recommended that you check Add Python to PATH during the
installation.

In Linux based systems it is often either already installed or available through the usual
distribution channels.

Supported versions

Snorky works in either:

• Python 3.3 or later

• Python 2.7 or later.

You can check what version of Python you have writing python --version in a command
shell.

Note: Got “not recognized as an internal or external command” error on Windows?

In that case you probably either did not installed a Python interpreter or, if you did, you
did not add it to the system PATH.

Try running C:\Python34\python.exe --version instead, changing Python34 with the ver-
sion of Python that you installed (in this case it would be 3.4).

If that works, you can either run Python everytime using the full path every time or add
it to the environmental variables of the system3.

1.1.4 Installing the Python package manager

Snorky carries a series of dependencies. In order to be able to install them, you need pip,
the Python package manager.

If you use Python 3.4 or later, you already have it installed. Otherwise you can install it
following its official guide4.

1.1.5 Installing Snorky from the tarball

Download and the last Snorky package5 and extract it. In a terminal, change to the
directory where you extracted the package and run the following command.

python setup.py install

That’s it.
2 https://www.python.org/
3 http://stackoverflow.com/a/6318188
4 http://pip.readthedocs.org/en/latest/installing.html
5 http://snorkyproject.org/

2 Chapter 1. User’s guide

https://www.python.org/
http://stackoverflow.com/a/6318188
http://stackoverflow.com/a/6318188
http://pip.readthedocs.org/en/latest/installing.html
http://pip.readthedocs.org/en/latest/installing.html
http://snorkyproject.org/


Snorky Documentation, Release 0.1.0-a1

1.2 Running the examples

Snorky bundles with a few small demonstration applications that you can use to verify it
works.

You can find them in snorky/demos inside the project root.

1.2.1 Snorky ToDo demo

In snorky/demos/snorky_todo_angular you can find a simple note taking application. The
demo is based in TodoMVC6. It works with Django and AngularJS.

In order to run it, first you must install its dependencies (e.g. Django). To do so you can
run the following command:

pip install -r requirements.txt

Note: If you are on Windows and you get “not recognized as an internal or external
command” error, check your PATH.

You must add both the Python directory (e.g. C:\Python34) and the Python script directory
where pip is installed (e.g. C:\Python34\Script).

Django requires a database to run. The demo uses SQLite, which is included in Python
by default. In order to create the database run:

python manage.py syncdb

Reply no when it asks you to create a super user, you don’t need it.

After that, you can run the Django production server.

python manage.py runserver

Open another terminal, go to the demo directory and run the Snorky server.

python run_snorky_server.py

You can open http://localhost:8000/ in your browser and try adding some notes. Open-
ing it in several browser windows should show how changes are applied on both auto-
matically.

1.3 Overview of Snorky

The following is an example server with Snorky exposing a simple Pub Sub service. The
goal of this section is to explain each of the parts involved on it, both from Snorky and
from Tornado.

6 http://todomvc.com/

1.2. Running the examples 3

http://todomvc.com/
http://localhost:8000/


Snorky Documentation, Release 0.1.0-a1

import os
from tornado.ioloop import IOLoop
from tornado.web import Application
from snorky import ServiceRegistry

from snorky.request_handlers.websocket import SnorkyWebSocketHandler
from snorky.services.pubsub import PubSubService

if __name__ == "__main__":
service_registry = ServiceRegistry()
service_registry.register_service(PubSubService("messaging"))

application = Application([
SnorkyWebSocketHandler.get_route(service_registry, "/ws"),

])
application.listen(8002, address="")

try:
print("Snorky running...")
IOLoop.instance().start()

except KeyboardInterrupt:
pass

1.3.1 The I/O loop

tornado.ioloop.IOLoop7 is the Tornado event loop. Being an asynchronous server, there
are no separate threads for each connection. Instead, all sockets are managed by this
class.

IOLoop performs and endless loop in which tells the operating system to notify it of any
event occurred in the managed sockets and in turn dispatches the event to the class that
owns the socket. This loop starts when IOLoop.instance().start() is called.

IOLoop is a singleton class. In normal usage you even don’t need to keep references
to it, the framework manages this automatically. Most of the times you only need call
IOLoop.instance().start() and go on.

1.3.2 Services

Services are classes which process messages. Messages are JSON entities, that is: they
can be any data type representable with JSON, like strings, arrays (also called lists) or
objects (also called dictionaries). Services often are stateful and track client connections.

Seen in the heading example, snorky.services.pubsub.PubSubService is a service which
accepts several methods: join, leave and publish. Clients can connect to the server and
ask PubSubService to join them to a certain channel (which is also JSON entity, typi-
cally a string). An user can send a publish command to a channel which would trigger
notifications in all those clients which joined that channel.

PubSubService is a simple service which can be useful in a number of situations, but often
you will also write your own services, either from scratch or subclassing other services.

7 http://www.tornadoweb.org/en/stable/ioloop.html#tornado.ioloop.IOLoop

4 Chapter 1. User’s guide

http://www.tornadoweb.org/en/stable/ioloop.html#tornado.ioloop.IOLoop


Snorky Documentation, Release 0.1.0-a1

Writing services explains this in detail.

1.3.3 Service registries

The ServiceRegistry class tracks a fixed number of services, each identified with a name,
which should be a string.

ServiceRegistry is also responsible for delivery of messages to its services. There can be
several instances tracking different services at the same time.

Wiring a backend explains how this can be used to offer both a public set of services on
an interface, and a private one in other, often firewalled. This can be used for example to
only allow a trusted machine to send certain types of events to the clients subscribed to
the public services.

1.3.4 Request handlers

Request handlers are Tornado classes which are intended to respond to HTTP and Web-
Socket requests. They inherit from tornado.web.RequestHandler8 and they are explained
in detail in the Tornado documentation.

Snorky request handlers are associated with a service registry. Their job is to receive
messages from the outside and forward them to the service registry, providing also the
service with means to send messages in the other way.

Several request handlers can be attached to the same service registry or to independent
registries.

Currently there are three request handlers bundled with Snorky:

• snorky.request_handlers.websocket.SnorkyWebSocketHandler: Handles WebSocket
connections.

• snorky.request_handlers.sockjs.SnorkySockJSHandler: Handles SockJS connec-
tions, which are an abstraction layer of WebSocket providing fallbacks for old
browsers which do not support it natively.

• snorky.request_handlers.http.BackendHTTPHandler: This is a more limited request
handler. It works over plain HTTP and each connection can only exchange one mes-
sage from each party, one for the request, and one for the response. It’s usually used
in order to expose a backend interface.

1.3.5 Application

In Tornado, a tornado.web.Application9 is a collection of request handlers that make up a
web application.

This class manages a set of routes, each one consisting of an URL pattern, a
request handler class and optionally a set of parameters which are fed to the

8 http://www.tornadoweb.org/en/stable/web.html#tornado.web.RequestHandler
9 http://www.tornadoweb.org/en/stable/web.html#tornado.web.Application

1.3. Overview of Snorky 5

http://www.tornadoweb.org/en/stable/web.html#tornado.web.RequestHandler
http://www.tornadoweb.org/en/stable/web.html#tornado.web.Application


Snorky Documentation, Release 0.1.0-a1

tornado.web.RequestHandler10 __init__ function. SnorkyWebSocketHandler.get_route()
returns such a route for a WebSocket request handler.

tornado.web.Application.listen() sets up an HTTP server listening on the specified port
and address. If no address is specified, it will listen in all interfaces, both in IPv4 and
IPv6, if supported.

1.3.6 Conclusion

The UML diagram in Fig. 1.1 resumes the collaborations explained above.

The next chapters will cover further details on the inner working of each of the compo-
nents and how they can be extended.

Service

RequestHandlerApplica�on

ServiceRegistry

0..*

0..*

0..*
SnorkyRequestHandler

0..*

0..*

looks for the name of the
service and delivers the

message
0..*

0..*

decodes the messages of the
protocol and sends the

messages

0..*

0..*

0..*

catches requests and
sends them to

0..*
0..*

Fig. 1.1: The overview of Snorky core classes as a simplistic UML diagram.

1.4 Writing services

Services are the main construction blocks of Snorky. In this section you will learn how
services work and how they are created.

1.4.1 The Snorky service protocol

Every message send through Snorky must be directed to a service, identified by a service
name, which shall be an string.

10 http://www.tornadoweb.org/en/stable/web.html#tornado.web.RequestHandler

6 Chapter 1. User’s guide

http://www.tornadoweb.org/en/stable/web.html#tornado.web.RequestHandler


Snorky Documentation, Release 0.1.0-a1

The message itself must be a JSON entity. That includes strings, numbers, arrays, objects
and the null value. The JSON web site11 contains the full specification of the language,
describing each data type in detail.

Often in this documentation, JSON arrays will be referred as lists and JSON objects will
be referred as dictionaries, matching the Python data types those primitive types are
transformed into.

The following is an example of a message sent to an echo service, as it could be sent
through WebSocket:

{"service":"echo","message":"Hello"}

1.4.2 The Service definition

A service class must inherit from Service or one of their descendants. It must provide an
implementation for the method Service.process_message_from() .

The following example service sends back to the client each message it receives:

from snorky.services.base import Service

class EchoService(Service):
def process_message_from(self, client, msg):

self.send_message_to(client, msg)

class snorky.services.base.Service(name)
Subclass this class and redefine process_message_from() in order to create a new
service.

process_message_from(client, msg)
Called when a message is received.

msg contains the message as a JSON decoded entity. msg and all their de-
scedants are always hashable.

send_message_to(client, msg)
Sends a message to a client through the current service.

Services should use this method instead of calling directly to client.send() in
order to add the service header.

client_connected(client)
Called each time a client connects to Snorky through a channel which is con-
nected to the same snorky.ServiceRegistry than this service.

Exceptionally, this method is not called when a client connects from a short-
lived channel like snorky.request_handlers.http.BackendHTTPHandler.

client_disconnected(client)
Called each time a client disconnects from Snorky through a channel which is
connected to the same snorky.ServiceRegistry than this service.

Exceptionally, this method is not called when a client connects from a short-
lived channel like snorky.request_handlers.http.BackendHTTPHandler.

11 http://json.org/

1.4. Writing services 7

http://json.org/


Snorky Documentation, Release 0.1.0-a1

1.4.3 RPC services

Although you could write services inheriting directly from Service and using its simple
methods, they often fall short.

Most services often work, at least partially, in a request-response fashion, ocasionally
sending notifications to the client that are not part of the response.

Snorky leverages this pattern through the subclass RPCService . Currently, all instancia-
ble Snorky services are RPC services, and chances are yours will be too.

class snorky.services.base.RPCService(name)
Subclass this class to make RPC services.

RPC services expose a more convenient interface than bare Snorky services.

Commands

Each RPC service has a series of commands which are defined as methods with the
rpc_command() decorator.

Commands accept a set of parameters which is specified in the signature of the method.
They may have default values.

The return value of a command is sent automatically to the requester client. Every entity
that can be serialized as JSON is a valid return value.

If the method does not return anything, null is sent as response. This is usually done
in order to signal that the request has been processed successfully but there is nothing
interesting to send in return.

The following service calculates sums and logarithms in response to client requests:

import math
from snorky.services.base import RPCService, rpc_command

class CalculatorService(RPCService):
@rpc_command
def sum(self, req, number1, number2):

return number1 + number2

@rpc_command
def log(self, req, number, base=2.718):

return math.log(number, base)

Note: The names of RPC commands and their parameters are usually written in
camelCase instead of snake_case because they are exposed in Javascript with the same
name.

Exceptions

Sometimes you want to signal an error condition. In this cases, instead of returning, raise
an instance of RPCError. For example, raise RPCError("Not authorized").

8 Chapter 1. User’s guide



Snorky Documentation, Release 0.1.0-a1

Snorky already signals some error conditions by default:

• If a client requests a non existing command, Unknown command is raised.

• If the request params don’t fit the ones specified in the method, i.e. nonexistent
parameters are used or required parameters are ommited, Invalid params is raised.

• If an exception different from RPCError is raised while the command is being han-
dled, Internal error is raised.

Asynchronous commands

Sometimes the processing of a command has to be temporarily suspended until a certain
event occurs.

For example, the command may need to perform a HTTP request. It’s undesirable for
the command to block the entire server, as that would kill performance. Instead, asyn-
chronous requests shall be used.

Such RPC commands must use the decorator rpc_asynchronous(), in addition to
rpc_command().

Asynchronous RPC commands do not send a response when the method call returns
nothing. Instead, is expected that the request will be replied eventually as a response to
another event.

The req parameter in RPC commands contains a Request object with methods to send
either a successful reply or signal an error to the client.

1.4.4 The Request class

class snorky.services.base.Request(service, client, msg)
Represents a request against an RPC service and provides methods to resolve it.

reply(data)
Sends a successful response.

Each request can be resolved one time. Calling this method twice or calling both
reply() and error() will trigger a server error.

error(msg)
Sends an error response.

Each request can be resolved one time. Calling this method twice or calling both
reply() and error() will trigger a server error.

client
The client which initiated this requests.

The requester client. It complies with the interface defined in
snorky.client.Client.

command
The requested command.

The requested command name.

1.4. Writing services 9



Snorky Documentation, Release 0.1.0-a1

params
The specified parameters as a dictionary.

The params supplied by the client, as a dictionary.

resolved
Whether the request has been resolved either with success or failure.

True if the request has been resolved either with a successful reply or with an
error.

1.4.5 Sending notifications

At any moment you can send an arbitrary message to any client of your service. These
messages should be JSON objects and should contain a type attribute which must be
neither response or error, since these types are used by RPC calls.

Messages which are neither of type response or error are called notifications.

The following example shows a simple PubSub service in which any client can publish a
message to every client subscribed (including itself):

from snorky.services.base import RPCService, rpc_command

class MinimalPubSubService(RPCService):
def __init__(self, name):

# Call parent constructor
RPCService.__init__(self, name)

self.clients = set()

@rpc_command
def subscribe(self, req):

if req.client not in self.clients:
self.clients.add(req.client)

@rpc_command
def unsubscribe(self, req):

if req.client in self.clients:
self.clients.remove(req.client)

def client_disconnected(self, client):
# Never forget to remove the client from the set after disconnection!
if client in self.clients:

self.clients.remove(client)

@rpc_command
def publish(self, req, message):

for client in self.clients:
self.send_message_to(client, {

"type": "publication",
"message": message,

})

10 Chapter 1. User’s guide



Snorky Documentation, Release 0.1.0-a1

1.4.6 Conclusion

This chapter has explained how to built services with Snorky.

Although Snorky comes with a few services, often you will need to extend them or cre-
ate small specific services for your application. Nevertheless, Snorky utilities should not
make this task difficult.

The next chapter will explain how to connect to Snorky from a web application and how
service connectors are created in Javascript.

1.5 Connecting to services

More often than not, you will want to connect to Snorky from Javascript in a web appli-
cation. For this purpose, there is an official connector, Snorky.js.

1.5.1 Dependencies

Snorky.js has a few dependencies that must be included before it:

• my.class.js12: A lightweight class library for Javascript. Javascript does not have a
declarative syntax to define classes, which makes writing them a tedious and error-
prone process. This is one of many libraries trying to fill that gap.

Once initialized, this class factory is stored in Snorky.Class().

• js-signals13: An event library for Javascript. All events defined in Snorky are created
with this, which allows you to easily add and remove any number of handlers for
each event.

Once initialized, the event class is stored in Snorky.Signal(). Although in vanilla
usage this class will be the same as js-signal’s signals.Signal(), additional initial-
ization code may replace it with a subclass which provides additional functionality.

For example, Angular-Snorky does this in order to request a $digest cycle to Angu-
larJS every time an event is dispatched in order to update the view.

Promises

Additionally, Snorky returns promises for service requests. In order for this to work,
Snorky needs a Promise class.

By default it will use the Promise class defined in ECMAScript 614, but it can be changed
to any other class with a similar interface running the following code after snorky.js has
been included:

Snorky.Promise = <your promise class>;

12 https://github.com/jiem/my-class
13 http://millermedeiros.github.io/js-signals/
14 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

1.5. Connecting to services 11

https://github.com/jiem/my-class
http://millermedeiros.github.io/js-signals/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise


Snorky Documentation, Release 0.1.0-a1

Particularly, Angular-Snorky does this as part of its initialization in order to make Snorky
work with Angular promises15 instead of ES6 promises.

If you choose to use ES6 promises, chances are you will need a polyfill since, at the time
of writing, most browsers don’t support them out of the box yet. Jake Archibald16 has
published such polyfill at GitHub17.

Socket class

Snorky needs a socket class in order to connect to the server. This class must have the
WebSocket interface18.

Nowadays most browsers in use support WebSocket natively, making it an excellent
choice for a number of applications. In cases where older browser support is needed
(e.g. IE9 or older) SockJS19 provides a viable alternative, providing fallback transports for
old browsers but using WebSocket under the hood in modern browsers.

1.5.2 Connecting

Once snorky.js and all the dependencies needed have been included, the Snorky class
will be available in the global namespace.

class Snorky(socketClass, address, services[, options ])
Manages a connection to Snorky and its associated service connectors. Connection
is automatically made on object creation.

Arguments

• socketClass (class ) – The socket class which will be used for the
connection.

It must provide the same interface as WebSocket(). It’s usually either
WebSocket or SockJS.

Note that this parameter requests the class itself, not an instance.

• address (String ) – The URL which will be passed to the constructor
of socketClass. Note that WebSocket uses ws:// or wss:// as proto-
col while SockJS uses http:// or https:// instead.

• services (Object ) – A dictionary matching each service name with a
class. Those classes will be used to interact with the services from
Javascript.

• options (Object ) – An optional dictionary with additional options. At
the moment only one option is supported:

debug
Whether to print debugging information to the console when the
connection is made or lost.

15 https://docs.angularjs.org/api/ng/service/$q
16 https://github.com/jakearchibald
17 https://github.com/jakearchibald/es6-promise
18 http://www.w3.org/TR/2011/WD-websockets-20110419/
19 https://github.com/sockjs/sockjs-client

12 Chapter 1. User’s guide

https://docs.angularjs.org/api/ng/service/\protect \T1\textdollar q
https://github.com/jakearchibald
https://github.com/jakearchibald/es6-promise
http://www.w3.org/TR/2011/WD-websockets-20110419/
https://github.com/sockjs/sockjs-client


Snorky Documentation, Release 0.1.0-a1

address
The address to which the socket has been connected.

socketClass
The socket class used.

debug
Whether the debug mode is enabled.

services
Dictionary of service instances available, indexed by name.

isConnected
Whether there is an active connection to the server.

isConnecting
Whether a connection to the server is being attempted.

logDebug(format[, ... ])
Logs text in the console, but only if the debug mode is active.

Accepts either any object or a format string with arguments like
console.debug().

Events

connected
Event raised when a connection is successfully made to the server.

disconnected
Event raised when a connection is closed, either voluntarily or due to a network
failure.

1.5.3 Service connectors

Snorky.js has a number of classes which provide an interface to the Snorky services
from the client side. They should inherit from Snorky.Service() , or, more frequently,
from Snorky.RPCService() .

class Snorky.Service(name, snorky)
Provides an interface to a Snorky service.

Usually you don’t need to create instances of this class directly, Snorky() does au-
tomatically.

Arguments

• name (String ) – The name of the service instance in the server side.

• snorky (Snorky) – The Snorky object this service connector belongs.

name
The service name.

snorky
The Snorky object this service connector belongs.

1.5. Connecting to services 13



Snorky Documentation, Release 0.1.0-a1

init()
Initialization hook. You usually extend it in your subclasses in order to listen
for events, register attributes or do other initialization work.

sendMessage(message)
Sends a message to the service. message must be serializable to JSON.

Events

packetReceived
Event raised when a new message arrives to this service.

class Snorky.RPCService(name, snorky)
Provides a convenient connector for RPC services.

If you are writing a connector to an RPC service you should subclass this class
instead of Snorky.Service() .

rpcCall(command, params)

Arguments

• command (String ) – The command to request

• params (Object ) – A dictionary of parameters.

Returns

An A+ Promise20.

If the remote call is successful, the promise will be fulfilled with the
value returned from the remote call.

If the remote call fails, the promise will be rejected with the error
message sent by Snorky.

Makes an RPC call.

addRPCMethods(methods)

Arguments

• methods (Array ) – A list of command names

This is an static method.

Adds the specified RPC commands as methods to the class. For each command
a method with the same name will be generated which will accept one argument
with the RPC parameters and will return a Promise.

Internally these methods will call to Snorky.RPCService.addRPCMethods().

Events

notificationReceived
Event raised when a notification is received; that is, a message whose type is
neither response or error.

20 http://promisesaplus.com/

14 Chapter 1. User’s guide

http://promisesaplus.com/


Snorky Documentation, Release 0.1.0-a1

1.5.4 SimplePubSub connector

The following service connector makes easy to use the SimplePubSubService example ser-
vice described in Sending notifications:

var SimplePubSub = new Snorky.Class(Snorky.RPCService, {
init: function() {

// Call the superclass init()
Snorky.RPCService.prototype.init();

// Listen notificationReceived events
this.notificationReceived.add(this.onNotification, this);

// Create new event
this.publicationReceived = new Snorky.Signal();

},

onNotification: function(notification) {
if (notification.type == "publication") {

// Dispatch the publicationReceived event
this.publicationReceived.dispatch(notification.message);

}
}

});
SimplePubSub.addRPCMethods([

"subscribe",
"unsubscribe",
"publish"

]);

1.5.5 Connection example

The following example connects to an Snorky server with the SimplePubSub service de-
scribed above.

var snorky = new Snorky(WebSocket, "ws://localhost:8001/ws", {
"pubsub": SimplePubSub

});

snorky.services contains the instantiated services. The following code would request a
subscription.

snorky.services.pubsub.subscribe({ /* no parameters */ })
.then(function (returnValue) {

console.log("Subscribed!");
});

Note: The services can be used even before the connection has been established. Snorky
will store the messages in a buffer and send them when the connection is made.

Event handlers can be added too at this stage. The following would log messages pub-
lished.

1.5. Connecting to services 15



Snorky Documentation, Release 0.1.0-a1

snorky.services.pubsub.publicationReceived.add(
function(publishedText) {

console.log(publishedText)
});

1.5.6 Conclusion

This chapter has shown the basics of the Javascript Snorky connector, including how to
include it, how connect to it and how services connector can be written and used.

The following chapter will cover the backend interface.

1.6 Wiring a backend

Sometimes there are some actions in your system that you only want to allow to certain
parties, like trusted servers in your network. In Snorky, those are called the backend.

Special services are often exposed to the backend servers, which allow controlling re-
stricted aspects of other services. This is possible due to Snorky allowing to have several
service registries.

1.6.1 Pub Sub with backend

Sometimes you want a Pub Sub service when the end clients are not allowed to publish,
just to subscribe, and publications can only be made by a trusted computer.

Snorky comes with a Pub Sub service, snorky.services.pubsub.PubSubService
which already implements this with another backend service
snorky.services.pubsub.PubSubBackend.

Both could be used like this:

from tornado.ioloop import IOLoop
from tornado.web import Application
from snorky import ServiceRegistry

from snorky.request_handlers.http import BackendHTTPHandler
from snorky.request_handlers.websocket import SnorkyWebSocketHandler

from snorky.services.pubsub import PubSubService, PubSubBackend

class PrivatePubSub(PubSubService):
def can_publish(self, client, channel):

# Publishing is only allowed from the backend
return False

if __name__ == "__main__":
# Create separate service registries, providing separate interfaces to
# services
frontend_registry = ServiceRegistry()
backend_registry = ServiceRegistry()

16 Chapter 1. User’s guide



Snorky Documentation, Release 0.1.0-a1

# Create a PubSub service and register it in the frontend registry
pubsub = PrivatePubSub("pubsub")
frontend_registry.register_service(pubsub)

# Create a PubSub backend service and register it in the backend registry
pubsub_backend = PubSubBackend("pubsub_backend", pubsub)
backend_registry.register_service(pubsub_backend)

# Make frontend_registry attend requests from WebSocket through part 5800
frontend_application = Application([

SnorkyWebSocketHandler.get_route(frontend_registry, "/ws"),
])
frontend_application.listen(5800)

# Make backend_registry attend requests from HTTP through port 5801
backend_application = Application([

(r"/backend", BackendHTTPHandler, {
"service_registry": backend_registry,
"api_key": "swordfish"

}),
])
backend_application.listen(5801)

try:
print("Snorky running...")
IOLoop.instance().start()

except KeyboardInterrupt:
pass

Note the backend and the frontend interface are exposed in different ports. This is not
a requirement, but makes firewalling easier. For example, the backend port may only be
exposed to the local network while the frontend port will usually be exposed to the entire
world.

1.6.2 The API key

In order to provide additional security, the BackendHTTPHandler requires a API key or
password in order to interact with its associated services. This key will be sent as an
HTTP header with name X-Backend-Key.

Make sure to choose an API key and make it secret.

Even if you make the backend interface available only to computers in a restricted net-
work or only to the same machine that runs Snorky, the API key still provides a security
benefit, avoiding successful attacks to other server processes to escalate into Snorky.

1.6.3 Exposing the backend interface only to the local machine

If you only need to communicate with the backend interface within the same machine
Snorky runs, you can bind backend_application to the local address, thus avoiding it to
be reachable from the outside.

1.6. Wiring a backend 17



Snorky Documentation, Release 0.1.0-a1

In order to do this, replace the listen call for backend_application in the code above with
this:

backend_application.listen(5801, address="127.0.0.1")

1.6.4 Communicating with the backend interface

A JSON HTTP request is enough to send a command to the Snorky backend interface.
Virtually every programming language has support for this kind of communication.

The request must contain in the body the JSON message including the service header,
encoded in UTF-8.

The following code shows an example which sends a publish command in Python using
requests21.

import json
import requests

# Publish "Hello world"
response_obj = requests.post("http://localhost:8001/backend", headers={

"X-Backend-Key": "swordfish",
"Content-Type": "application/json",
"Accept": "application/json",

}, data=json.dumps({
"service": "pubsub_backend",
"message": {

"command": "publish",
"params": {

"channel": "announcements",
"message": "Hello World",

}
}

}).encode("UTF-8"))

The body of the response will also have a JSON object encoded in UTF-8. It will consist
on the service response wrapped in the service header.

The following code would print the returned value from the service or signal a failure:

if response_obj.status_code != 200:
print("Non service related error")

else:
response = json.loads(response.content.decode("UTF-8"))
# Remove the service envelop
response = response["message"]
if response["type"] == "response":

print("The service replied: " + repr(response["data"]))
else:

print("The service signaled an error: " + response["message"])

Note: The Snorky HTTP transport is not aware of the RPC system so service failures will

21 http://docs.python-requests.org/

18 Chapter 1. User’s guide

http://docs.python-requests.org/


Snorky Documentation, Release 0.1.0-a1

still send responses with the 200 OK code, yet they will appoint the error message in the
body of the RPC response.

Note that in this case the call returns nothing, so the command response would be None
(equivalent to JSON null).

1.6.5 Using the backend connector

Sending the requests with HTTP libraries is prone to code repetition, so it’s advised to
write helper functions or classes that take care of the low level communication.

If the application that you are connecting to Snorky is written in Python, you can use
the Snorky backend connector for this purpose. For example, the code before would be
reduced to this:

from snorky.backend import SnorkyBackend, SnorkyHTTPTransport, SnorkyError

backend_http = SnorkyHTTPTransport("http://localhost:8001/backend",
key="swordfish")

backend = SnorkyBackend(backend_http)

response = backend.call("pubsub_backend", "publish",
channel="announcements", message="Hello World")

The Snorky backend connector will automatically serialize the request into JSON, send it
to the HTTP endpoint, receive the response, deserialize it, remove the service header and
return the RPC call return value.

If the service returns with error, a SnorkyError, specifying the error message as an
argument. If there is another kind of error, e.g. the Snorky server is not available, a
RuntimeError is thrown, with more details in the error argument also.

1.6. Wiring a backend 19



Snorky Documentation, Release 0.1.0-a1

20 Chapter 1. User’s guide



CHAPTER 2

The DataSync service

2.1 Introduction

The DataSync service provides a systematic way to allow browser clients to fetch data
from a database and keep it synchronized as changes occur.

It’s important to note that DataSync is not a database. You still have to provide the
database, the DataSync service only manages routing of change notifications from the
source of the changes to the browser clients.

In order to use DataSync in your system you need to fulfill the following requirements:

• Establish which data models you have and a systematic JSON representation for
each one.

For example, in a simple SQL database each relevant table could be a model, and
the JSON representation could be a dictionary with all the values of the columns,
labeled by field name.

{
"title": "Something that needs to be done",
"completed": false

}

• Find the code paths that make changes to the database and hook them to send
notifications to Snorky.

You could do this with database triggers, listening to ORM events (if you use an
ORM) or simply looking for the functions who make changes in the database and
modifying them.

On the Snorky side, in order to work, the only thing that matters is that the change
notifications arrive, no matter where they come from.

• Write the dealers. These are small Snorky classes that receive both the data change
notifications and client subscriptions. They job is to match every change notification
to the adequate subscribed clients.

• Make subscription endpoints in your web application. Browser clients cannot ask
Snorky directly for a subscription. Instead, they should ask the server which has
access to the database. It’s the duty of this server to only allow subscriptions to
data the client has access right to access.

21



Snorky Documentation, Release 0.1.0-a1

2.2 Sending change notifications

Change notifications, also called deltas, must be sent to Snorky for each change that may
be subscribed by a user.

These notifications must be sent to the snorky.services.datasync.DataSyncBackend ser-
vice, which must be connected to a snorky.services.datasync.DataSyncService.

The services will be explained later in more detail, but for now, this is how they could be
added to a Snorky server.

from snorky.services.datasync import DataSyncService, DataSyncBackend

datasync = DataSyncService("datasync", [
# dealer list (will be explained in the next chapter)

])
datasync_backend = DataSyncBackend("datasync_backend", datasync)

2.2.1 Delta types

There are three delta types:

• Insertion: A new element of the model class, e.g. a row, was created.

• Update: An already existing element was changed, e.g. a row was edited.

• Delete: An element was removed.

2.2.2 Sending deltas

In order to send one or more deltas, an RPC call to publishDeltas must be made.

DataSyncBackend.publishDeltas(req, deltas)
Distributes one or more deltas to the appropriate dealers which, in turn, will dis-
tribute them to browser clients.

Parameters deltas (list 22) – A list of deltas represented as dictionaries.

Each delta dictionary must have the following fields:

• type: It must be "insert", "update" or "delete", depending on the nature of the
change.

• model: A name for the model class, e.g. the table name. Different data kinds with
different fields should have different values for this property.

• If the delta is an insertion or deletion delta:

– data: The object created or removed, encoded as a JSON entity. It must contain
all the fields that may be required to be displayed by the end application.

• If the delta in an update delta:

– newData: The object as a JSON object, after the update was made. It must con-
tain all the fields that may be required to be displayed by the end application.

22 http://docs.python.org/library/functions.html#list

22 Chapter 2. The DataSync service

http://docs.python.org/library/functions.html#list


Snorky Documentation, Release 0.1.0-a1

– oldData: The object as a JSON object, before the update was made. It must
contain at least enough fields to identify the element that was updated.

If the model can be subscribed filtered by some fields, the fields used as fil-
ter must also be present in order for Snorky to be able to know whether the
matched the filters before and after the update.

2.2.3 When to send deltas

Deltas must be sent after the database has been modified. If several changes are being
made in an atomic transaction, it’s advised not to send the deltas until the transaction
has been committed.

2.2.4 Example

The following code sends an insertion delta using the Snorky Python backend connector.

from snorky.backend import SnorkyBackend, SnorkyHTTPTransport, SnorkyError

backend_http = SnorkyHTTPTransport("http://localhost:8001/backend",
key="swordfish")

backend = SnorkyBackend(backend_http)

backend.call("datasync_backend", "publish", deltas=[{
"type": "insert",
"model": "Task",
"data": {

"title": "Send a delta",
"completed": true

}
}])

2.3 Choosing dealers

Once Snorky receives all relevant deltas, the next step is to re-send them to the interested
clients, if any. This is controlled with dealer classes.

2.3.1 What is a dealer

Dealers are classes which track client subscriptions to certain kinds of models.

Dealers also manage the delivery of deltas, by determining which clients are subscribed
to the information that they carry.

2.3.2 What is a subscription

In Snorky, clients acquire subscriptions to dealers. Each subscription conforms one or
more subscription items. Each subscription item specifies a dealer, and a query to that
dealer.

2.3. Choosing dealers 23



Snorky Documentation, Release 0.1.0-a1

For example, a dealer may be called CommentsByBlogEntry. A subscription may contain
one subscription item having CommentsByBlogEntry as dealer and 15 as query, in order to
get notified of new comments in the blog entry with id 15.

2.3.3 The Dealer API

The most basic dealer API is the Dealer class. You can subclass it to make new dealers.

class snorky.services.datasync.dealers.Dealer
Matches dealer data with subscriptions in order to deliver deltas to clients.

name
The name of the dealer. If not provided will default to the name of the class.

model
The name of the model class that is handled by this dealer. Usually specified as
an static attribute.

add_subscription_item(item)
Called everytime a subscription item referring this Dealer is authorized.

remove_subscription_item(item)
Called everytime a subscription is cancelled, once for each subscription item
which refers to this Dealer.

get_subscription_items_for_model(model)
Called every time a delta arrives. If the delta is of update type, it’s called twice,
once with the old data and another time with the new data.

It must return an iterable set of the subscription items which represent sub-
scriptions to the provided model.

2.3.4 Simple dealers

Often your dealer only has to filter models by a certain field which clients subscribe to.

For example, the CommentsByBlogEntry dealer would receive subscriptions that specify a
blog entry id as query, and each time it receives a delta of model Comment, it would look
which blog entry id it is for, and forward it to those clients which subscribed to it.

Snorky comes with a SimpleDealer class that leverages this pattern.

class snorky.services.datasync.dealers.SimpleDealer
This dealer uses a key function in order to determine which subscription items
match which models.

get_key_for_model(model)
A subclass must define a function here that for each model returns a value,
usually the value of a certain field.

The dealer will forward deltas to those subscriptions whose query equals the
value returned by this function.

24 Chapter 2. The DataSync service



Snorky Documentation, Release 0.1.0-a1

Example

from snorky.services.datasync.dealers import SimpleDealer

class CommentsByBlogEntry(SimpleDealer):
name = "CommentsByBlogEntry" # optional
model = "Comment"

def get_key_for_model(self, model):
return model["entryId"]

2.3.5 Broadcast dealers

Sometimes you want the clients to receive all deltas for a certain model class, unfiltered.
For this purpose there is the BroadcastDealer class.

class snorky.services.datasync.dealers.BroadcastDealer
Dealer that matches all deltas with all subscription items, without filters.

Example

from snorky.services.datasync.dealers import BroadcastDealer

class AllTasks(BroadcastDealer):
name = "AllTasks" # optional
model = "Task"

2.3.6 Filter dealers

For cases where clients need to ask for data filtered to complex criteria FilterDealer
provides an advanced dealer which supports complex filter expressions.

Filter syntax

The subscription query for this dealer must be a JSON list specifying a filter expression
in prefix notation. These are some examples:

• [’==’, ’color’, ’blue’]

color is ‘blue’.

• [’<’, ’age’, 21]

age is less than 21.

• [’>=’, ’age’, 21]

age is greater than or equal to 21.

• [’and’, [’==’, ’service’, ’prosody’], [’>=’, ’severity_level’, 3]]

service is ‘prosody’ and severity_level is greater than or equal to 3.

2.3. Choosing dealers 25



Snorky Documentation, Release 0.1.0-a1

• [’or’, [’not’, [’==’, ’service’, ’java’]], [’>=’, ’severity_level’, 3]]

service is not ‘java’ or severity_level is greater than or equal to 3.

• [’==’, ’player.color’, ’blue’]

player is a dictionary which contains a property color, and the value of that property
is ‘blue’.

Example

from snorky.services.datasync.dealers import BroadcastDealer

class FilteredTasks(FilterDealer):
name = "FilteredTasks" # optional
model = "Task"

2.4 Authorizing subscriptions

In order to maintain the system secure and to avoid race conditions, browser clients
cannot directly ask for subscriptions to Snorky. Instead, they need to ask to another
party, usually your web application, to fetch the data and authorize a subscription.

2.4.1 The subscription process

1. The browser client requests both the current data and a subscription. This can be
done in a RESTful way with the header X-Snorky.

2. The web application sends to Snorky a subscription authorization request to one or
more dealers. The web application receives a subscription token in return.

3. The web application queries the database.

4. The web application sends to the client both the data and the subscription token.

5. The browser client shows the received data on the user interface, connects to Snorky
and sends it the subscription token in order to receive updates.

2.4.2 The authorization request

DataSyncBackend provides the RPC command DataSyncBackend.authorizeSubscription()
to request a subscription token.

DataSyncBackend.authorizeSubscription(req, items)
Requests a subscription authorization token.

Parameters items (dict 23) – Subscription items to be authorized.

Each item must be a dictionary with two properties: dealer and query.

23 http://docs.python.org/library/stdtypes.html#dict

26 Chapter 2. The DataSync service

http://docs.python.org/library/stdtypes.html#dict


Snorky Documentation, Release 0.1.0-a1

Warning: In order to avoid race conditions, the database query must not be made
until the subscription token has been received.

2.4.3 Snorky headers

The subscription mechanism fits well into RESTful APIs. The recommended way to do
this is with additional headers.

When a client wants to get both certain data and a subscription to updates in that data,
it must send a header X-Snorky: Subscribe.

When the server detects this header it must check client permissions and, if it is allowed
to do so, it will ask Snorky for a subscription token for the kind of data requested.

For example, if the client requested the comments for the blog post with id 15, it will put
in the subscription the dealer CommentsByBlogEntry with query 15.

Once received the token, the server will send it to the client in the response header
X-Subscription.

The server will query the database for the current comments in the blog entry 15 and
write them in the response body.

Note this protocol is merely conventional. You can use whatever protocol you want to ask
for subscriptions and return them later.

2.5 Acquiring subscriptions

In order to acquire the subscriptions in the browser clients and handle the updates,
Snorky.js provides a DataSync connector.

2.5.1 Basic usage

The DataSync service usage is very simple, just tell Snorky() that you need a
Snorky.DataSync() service.

var snorky = new Snorky(WebSocket, "ws://localhost:8001/ws", {
"datasync": Snorky.DataSync

});

class Snorky.DataSync()
DataSync service connector.

Events

deltaReceived
Event raised when a delta arrives.

The event is dispatched with the delta as argument, being it a dictionary with
the following fields:

2.5. Acquiring subscriptions 27



Snorky Documentation, Release 0.1.0-a1

model
The model class over the change occurred.

type
The type of the delta. Will be either "insert", "update" or "delete".

data
The element added or removed. Only in insert and delete deltas.

oldData
The element before the update. Only in update deltas.

newData
The element after the update. Only in update deltas.

You can bind the deltaReceived event and process the deltas as required by your appli-
cation.

snorky.services.datasync.deltaReceived.add(
function (delta) {

if (delta.type == "insert") {
/* code for insertions */

} else if (delta.type == "update") {
/* code for updates */

} else if (delta.type == "delete") {
/* code for deletions */

}
});

2.6 Updating collections

Often an integral part of the delta processing is modifying a collection stored in JS, e.g.
in an array. This is specially true if you use a MV* framework like AngularJS.

For example, you may store the initially received elements in an array and later modify it
as deltas come from Snorky.

In order to leverage this pattern there is the Snorky.DataSync.CollectionDeltaProcessor()
class.

class Snorky.DataSync.CollectionDeltaProcessor(collections, options)
Updates one or more collections with deltas received from Snorky.

Arguments

• collections (Object ) – A dictionary where each key is a model class
name and each value is a collection.

• options (Object ) – An optional dictionary with additional options.

itemsAreEqual
Provides a custom item comparison (see below).

itemsAreEqual(item, other, delta)
If return true, two items from a collection will be considered the same. This
function is used for processing update and deletion deltas.

28 Chapter 2. The DataSync service



Snorky Documentation, Release 0.1.0-a1

The updated or deleted element will be the one that makes this function returns
true when compared with the element in the delta.

By default compares the id field in both item and other and returns true if they
are equal.

processDelta(delta)
Checks if the delta is associated with any registered collection. If it is, updates
the collection adding, updating or removing the matching element.

2.6.1 Collections

A collection, as understood by Snorky.DataSync.CollectionDeltaProcessor() is a class
which allows inserting methods and getting an iterator with update and delete capabili-
ties.

class Snorky.DataSync.Collection()
An abstract interface for a collection.

insert(value)
Inserts a new element in the collection.

getIterator()
Returns an iterator to the collection.

class Snorky.DataSync.Iterator()
An abstract interface for an iterator.

next()
Advances the iterator to the next element and returns it.

This method should also be called to retrieve the first element in the collection.

hasNext()
True if there are elements in the collection which the iterator has not explored.

remove()
Remove the last element returned by next() from the collection.

update(newValue)
Replace the last element returned by next() with the value provided as argu-
ment.

2.6.2 Array collection

The most common collection is the one that is backend by a JavaScript array.

class Snorky.DataSync.ArrayCollection(array, options)

Arguments

• array (Array ) – An array, to which this class will expose a collection
interface.

• options (Object ) – An optional dictionary of options:

2.6. Updating collections 29



Snorky Documentation, Release 0.1.0-a1

transformItem
When an element is inserted or updated, this function will be
called with the element to insert or update, and the object re-
turned will be inserted or updated instead.

This is often used when you use fat models, that is, you extend the
JSON objects that you receive from the server in order to provide
helper methods that calculate additional data or perform special
operations.

This function gives you the opportunity to add additional methods
or perform transformations in the models received from Snorky.

2.6.3 Single item collection

Sometimes the data you synchronize with Snorky is not a list but a single element.
Snorky.DataSync.SingleItemCollection() allows you to update it by providing an update
callback.

class Snorky.DataSync.SingleItemCollection(readHandler, updateHandler, remove-
Handler)

Virtual collection of a single item.

Arguments

• readHandler (function ) – Called to get the current item value.

• updateHandler (function ) – Called to update the item value.

• removeHandler (function ) – Optional, called when the item is
deleted.

2.6.4 Example usage

The following code would update the array comments with the deltas received from Snorky.

var collectionProcessor = new Snorky.DataSync.CollectionDeltaProcessor({
"Comment": new Snorky.DataSync.ArrayCollection(comments)

});

// Delegate delta processing to the collection processor
snorky.services.datasync.deltaReceived.add(function(delta) {

collectionProcessor.processDelta(delta);
});

2.7 Using Snorky with AngularJS

If you use AngularJS you can benefit from Angular Snorky. If you don’t, you can skip
this.

Angular Snorky is a small library which modifies Snorky to use $q promises instead of
ES6 promises and automatically triggers $digest cycles on event dispatching.

30 Chapter 2. The DataSync service



Snorky Documentation, Release 0.1.0-a1

2.7.1 Using Angular Snorky

In order to use Angular Snorky you need to include angular-snorky.js after both
angular.js and snorky.js.

Then, you need to add it to the dependencies of your application.

angular.module("my-app", [
/* other dependencies */
"Snorky"

])

After that, the usage of Snorky is exactly the same, you keep on using the Snorky object
exported in the global object.

2.8 Using Snorky with Django

Snorky comes with a Django connector which can prove useful if you develop the server
side of your application using Django.

2.8.1 Subscribable models

Adding the snorky.backend.django.subscribable() decorator to a model class will auto-
matically take care of sending notifications to Snorky with each change.

You only need to provide a jsonify() method in the model which returns the representa-
tion of the model in a format which can be transformed into JSON.

Example

from django.db import models
from snorky.backend.django import subscribable

@subscribable
class Task(models.Model):

title = models.CharField(max_length=100)
completed = models.BooleanField(default=False)

def jsonify(self):
return {

"title": self.title,
"completed": self.completed,

}

2.8.2 Subscribable REST views

If you use Django REST Framework24 for offering a REST API, you can also use the
ListSubscribeModelMixin which extends ListModelMixin to provide Snorky subscription
support.

24 http://www.django-rest-framework.org/

2.8. Using Snorky with Django 31

http://www.django-rest-framework.org/


Snorky Documentation, Release 0.1.0-a1

class snorky.backend.django.rest_framework.ListSubscribeModelMixin
Provides a list() method which understands the X-Snorky header.

get_subscription_items()
Returns a list of dictionaries of dealer and queries which will be sent to Snorky
to authorize a subscription.

By default it returns a list of only one item, with get_dealer() as dealer and
get_dealer_query() as query.

get_dealer()
Returns the dealer this model is associated with.

By default it returns the value of the property dealer , if any.

get_dealer_query()
Returns the query which will be sent to the dealer.

By default it returns the value of the property dealer_query .

dealer
The dealer name to whom subscription will be bound, if get_dealer() is not
redefined.

dealer_query
The query which will be sent to the dealer, if get_dealer_query() is not rede-
fined.

Example

from rest_framework import viewsets
import snorky.backend.django.rest_framework as snorky

class TaskViewSet(snorky.ListSubscribeModelMixin,
viewsets.ModelViewSet):

model = models.Task
dealer = "AllTasks"
dealer_query = None

32 Chapter 2. The DataSync service



CHAPTER 3

Release notes

3.1 What’s new in Snorky 0.1.0-a5

3.1.1 March 28, 2016

@Alternhuman25 contributed several features and bug fixes:

• Fixed bug #326 that affected Django 1.8+ integration.

• Added a new React.js demo.

On top of that:

• Both ToDo demo applications have been updated to Django 1.9 and Django REST
Framework 3.3.

This also has allowed them to work in Python 3.5, which is incompatible with older
Django versions.

3.2 What’s new in Snorky 0.1.0-a4

3.2.1 Jan 30, 2016

Bugfix release, which handles a bytes vs str issue in the ping pong feature introduced in
0.1.0-a3 when running in Python 3.

3.3 What’s new in Snorky 0.1.0-a3

3.3.1 Apr 14, 2015

Here is a new release with new features.
25 https://github.com/Alternhuman
26 https://github.com/ntrrgc/snorky/issues/3

33

https://github.com/Alternhuman
https://github.com/ntrrgc/snorky/issues/3


Snorky Documentation, Release 0.1.0-a1

• compare_digest, a function that provides constant-time string comparison in Python
2.7.7+ and Python 3.3+ has been replaced with streql27, a third party module that
performs the same task, but it is compatible with older Python versions.

This is required to use Snorky in CentOS 7 with Python 2 without building the
interpreter from source.

• Added a SNORKY_JSON_ENCODER setting in the Django connector, allowing to change
the JSON encoder class (as if cls parameter of json.dumps() was specified).

• Added debug logging to the Python backend connector. The logging channel is
‘snorky’. If the logging level is DEBUG it will emit a line for each message sent or
received between the client and Snorky.

• When DataSyncBackend does not receive a field now it will include its name in the
error message (before only Missing field was returned).

• Now SnorkyWebSocketHandler pings clients each 90 seconds by default. This is
needed in order to not let NAT routers drop long lived otherwise inactive connec-
tions.

The interval can be customized with the ping_pong_interval option of
SnorkyWebSocketHandler. For example, in order to ping the clients with a frequency
of 3 minutes (180 seconds) you could use this code:

app_frontend = Application([
SnorkyWebSocketHandler.get_route(frontend, "/ws",

ping_pong_interval=180),
])

3.4 What’s new in Snorky 0.1.0-a2

3.4.1 Apr 12, 2015

Updated and finally published in the open!

• MPL 2.0 license has been added.

• This project is now in GitHub.

• Added bundled and minified builds for the JavaScript client-side connector.

• A bug fix in PubSub connector.

• Trivial API change: @subscriptable decorator renamed to @subscribable.

3.5 First release: Snorky 0.1.0-a1

3.5.1 Sep 4, 2014

First version, released as a final year project for the University of Salamanca.

27 https://pypi.python.org/pypi/streql/3.0.2

34 Chapter 3. Release notes

https://pypi.python.org/pypi/streql/3.0.2


Snorky Documentation, Release 0.1.0-a1

This version establishes the main components of the framework:

• Basic service architecture.

• Data synchronization with databases using DataSyncService.

• JavaScript client-side connector.

– With additional support for AngularJS framework.

• Python server-side connector:

– With additional support for Django and Django REST Framework.

3.5. First release: Snorky 0.1.0-a1 35


	User's guide
	Installation
	Running the examples
	Overview of Snorky
	Writing services
	Connecting to services
	Wiring a backend

	The DataSync service
	Introduction
	Sending change notifications
	Choosing dealers
	Authorizing subscriptions
	Acquiring subscriptions
	Updating collections
	Using Snorky with AngularJS
	Using Snorky with Django

	Release notes
	What's new in Snorky 0.1.0-a5
	What's new in Snorky 0.1.0-a4
	What's new in Snorky 0.1.0-a3
	What's new in Snorky 0.1.0-a2
	First release: Snorky 0.1.0-a1


