

 Navigation

 	
 index

 	smsc stable documentation

SMSC - Scalable Smalltalk Short Message Center - User Manaul

	Author:	Holger Hans Peter Freyther <holger@moiji-mobile.com>

Introduction

The OsmoSMSC is a scalable Short Message Center implemented using the
Pharo Object Environment and MongoDB. Commercial support for deployment,
maintenance and extensions is available through
moiji-mobile [http://moiji-mobile.com]. Please contact
help@moiji-mobile.com.

The system consists out of four parts that handle different aspects of
the SMS processing. The first step is to configure links and routes on
the O&M component through the REST interface, the second is to insert
SMPP Deliver_SM, SMPP Submit_SM through SMPP links, the third is the
part that handles routing and delivery through SMPP and SS7 and the
fourth to expire old SMS and release SMS of failed delivery attempts.

	Inserter

	Provides ESME/MC SMPP links and will store SMPP SubmitSM and SMPP
DeliverSM in the database and schedule them for delivery.

	Delivery

	Will determine and route SMS through configured SMPP or SS7 links.

	O&M

	Provides a REST interface to configure SMPP links and SS7 links for
the inserter and delivery. Provides an interface to query about the
number of queued SMS, failed attempts and more.

	GC

	Expire old queued messages based on the expiration time. Help to
clean-up delivery of SMS that got stuck due programming errors on
delivery.

[image: images/overview.png]

Inserter

The inserter is responsible for receiving SMPP DeliverSM and SMPP
SubmitSM messages and storing them in the database. Right now no billing
is done but it would be done before inserting a message. The message
will be re-encoded and stored as such. Conversion will occur on
delivery.

Links

One SMPP inserter link can be configured to have a role (ESME or MC) and
if it should be a listener or a client connection. The handling of role
is not fully implemented at this point in time.

The links will be activated when the inserter application is started,
there is no monitoring of changes of the link configuration. For client
connections they will be connected and re-connected. If a DNS name is
used the hostname will be resolved in a blocking manner. For servers
multiple connections for the same systemId are allowed. The SMPP
Submit_SM/Deliver_SM response will be sent on the link that initiated
the message.

Lifetime

The lifetime of a SMS will be hardcoded to 10 days. The time inside the
SMPP message will be ignored. The first delivery will be set to now.

Scaling

Scaling can occur by configuring multiple SMPP links. This way a SMPP
message can be decoded while another process is currently waiting for a
response of the database. The other approach is to run multiple inserter
processes.

Different instances would use the same SMSC Database but a dedicated O&M
database to allow the configuration of different links.

Delivery

The task of the delivery is to deliver (or submit) a message. This can
be done either by using SMPP or using the GSM Mobile Application Part
(MAP). The delivery will attempt to deliver all SMS that are stored in
the database.

The deliver functionality will select the SMS that is scheduled next and
then will try to find more SMS going to the same destination and will
attempt to lock them.

For each SMS a routing decision needs to be made. The routing can be
based on the link (the systemId) the SMS arrived, the source address and
the destination. Each route can have a list of destinations (e.g. MAPv3,
MAPv2, SMPP).

Links

SMPP links can be configured as with the inserter. In addition SS7 links
to the osmo-stp can be configured.

Lifetime

The SMS entry in the database contains various fields that control the
lifetime. The first is when to expire the SMS and give up. This field
will be set by the inserter on insert. The next field is the time the
SMS should be delivered. The SMS will be attempted to be
submitted/delivered around that time and in the success case will be
removed from the database. In the failure case the system will:

	Increase the attempts counter.

	Set a new deliveryTime. Currently this is 30 minutes from now. There
is no increasing penalty.

Scaling

Scaling occurs by setting the number of worker threads that determine
how many SMS will be tried to submitted/delivered at the same time and
by starting multiple instances of the delivery system. The database
access is modeled to have only one system to submit/deliver to a given
destination at the same time. This will be enforced by a locking scheme
in the database and will work with multiple delivery processes.

Routing

The system has two kind of routes. One of them is a default route and
the other is a specific route. Each specific route must have a
destinationAddressPrefix and can have a sourceAddressPrefix and a
systemId. The minimum length for the destinationAddressPrefix is two and
if the sourceAddressPrefix is present it must be at least two digits
long as well.

To determine a route a database query will be used. The result is sorted
by the length of the destinationAddressPrefix, length of the
sourceAddressPrefix, the systemId (alphabetically) and if it is a
default. The first entry of the result will be picked.

This means the system will not pick a route where most fields match the
most but the route that has the longest destinationAddressPrefix and
from routes the system with the longest sourceAddressPrefix and if that
is the same the system with the matching systemId. The default route
will be sorted last.

Route selection examples

In case the following four routes are configured we will look at the
route selection of the system with some specific examples.

Route configuration

	Default route

	{ “routeName” : “default”, “default”: true }

	Matching destination

	{ “routeName” : “destRoute1”, “destinationAddressPrefix” : “49177” }

	Matching destination

	{ “routeName” : “destRoute2”, “destinationAddressPrefix” : “491772”
}

	Matching source and destination

	{ “routeName” : “sourceDestRoute”, “sourceAddressPrefix”: “49166”,
“destinationAddressPrefix: “49177” }

	Matching systemId, source and destination

	{ “routeName” : “systemIdRoute”, “systemId”: “aSystemId”,
“sourceAddressPrefix” : “49166”, “destinationAddressPrefix” :
“49177”}

Route selection

	Destination 32342435343

	There is no match of the destinationAddressPrefix and the route
called “default” will be used.

	Destination 4917723435 from 49303424324 on link example

	There are two routes that match these are “destRoute1” and
“destRoute2”. The route with the longest matching prefix will be
chosen and this is “destRoute2”

	Destination 4917723435 from 49166233213 on line example

	In this case the sourceAddressPrefix of “sourceDestRoute” will match
in addition to the destinationAddressPrefix.

	Destination 4917723435 from 49166233213 on line aSystemId

	In this case we have three rules that match the destination and two
rules that match the source but only one rule that is matching the
systemId. This means the “systemIdRoute” rule will be used.

Expiring messages and Cleaning up

SMS might not succeed to be delivered. Either because the subscriber is
not reachable anymore or the delivery might have been interrupted.
Either by an administrator restarting the system or a software issue.

Expiring messages

When inserting a SMS the expiration time will be set. The GC application
will make a DB query to remove expired SMS atomically. There will be no
log statement about which SMS got removed.

Cleaning up

A destination might end-up in a locked state. This can be due a software
glitch on delivery or administrator restart. If a destination is locked
for more than 30 minutes it will be released.

REST Interface

The inserter, management and the delivery nodes have a dedicated REST
interface that is using the GET, PUT and DELETE verbs. The creation of
links and routes are idempotent which means creating the same resource
will replace the old one. All O&M changes made via the REST interface
require a restart of the specific node.

In case more than one node is configured for a specific role one should
either use different databases or at least a different collection for
the configuration which will require running a different O&M manager as
well. Please see the chapter about the CLI arguments on how to do that.

SMPP Inserter Interface

One can configure the SMPPConnection (outgoing connection) and the
SMPPConnectionManager (waiting for one connection of a specific
systemId/password) through the REST interface. There are operations to
list all connections, to create a new one, to look at a specific one and
to remove one.

Listing all SMPP connections

$ curl -H "Content-Type: application/json" -XGET http://localhost:1700/v1/inserterSMPPLinks
[
 {
 "connectionType" : "client",
 "systemType" : "systemType",
 "password" : "password",
 "role" : null,
 "port" : 4444,
 "hostname" : "nameOfServer",
 "systemId" : "systemId",
 "connectionName" : "NAME"
 },
 {
 "connectionType" : "server",
 "systemType" : "systemType",
 "allowedRemotePort" : 6666,
 "allowedRemoteAddress" : "127.0.0.1",
 "password" : "password",
 "port" : 5555,
 "role" : null,
 "systemId" : "systemId",
 "connectionName" : "NAME2"
 }
]

	Result codes

	Under normal operation only 200 with an JSON array should be
returned.

Creating or updating a SMPP connection

The SMPPConnection of type “client” can specify the remote hostname and
port while the SMPPConnectionManager of type “server” allows to specify
the port to bind to and from which remote IPv4/port the connection
should arrive.

$ curl -H "Content-Type: application/json" -XPUT http://localhost:1700/v1/inserterSMPPLink/NAME \
-d '{
 "connectionType": "client",
 "hostname": "nameOfServer",
 "port": PortNumber,
 "systemId": "systemId",
 "systemType": "systemType",
 "password": "password"
}'
"OK"

$ curl -H "Content-Type: application/json" -XPUT http://localhost:1700/v1/inserterSMPPLink/NAME2 \
-d '{
 "connectionType": "server",
 "port": PortNumber,
 "systemId": "systemId",
 "systemType": "systemType",
 "password": "password",
 "allowedRemoteAddress": "127.0.0.1",
 "allowedRemotePort": aSourcePortNumber
}'
"OK"

	Result codes

	In case of invalid JSON a 5XX response will be returned, in case of
incomplete document a 5XX will be returned as well, in case no
connection can be created a 4XX will be returned

Inspect a SMPP connection

Show the settings of one configured SMPP link. This can either be a
client or server.

$ curl -H "Content-Type: application/json" -XGET http://localhost:1700/v1/inserterSMPPLink/NAME
{
 "connectionType" : "client",
 "systemType" : "systemType",
 "password" : "password",
 "role" : null,
 "port" : 4444,
 "hostname" : "nameOfServer",
 "systemId" : "systemId",
 "connectionName" : "NAME"
}

	Result codes

	In case no connection with than name exists a 404 will be returned,
otherwise a 200 with the JSON response response will be returned

Delete a SMPP connection

Remove the configuration of a SMPP link.

$ curl -H "Content-Type: application/json" -XDELETE http://localhost:1700/v1/inserterSMPPLink/NAME
"OK"

	Result codes

	In case no connection with name exists a 404 will be returned,
otherwise a 200 with an EMPTY return will be returned.

SMPP Delivery Interface

It is possible to make deliveries using SMPP. These links are configured
independly to the inserter interface but follow the same documents as
with the inserter, the only difference is the URL.

Instead of inserterSMPPLink it is deliverySMPPLink and instead of
inserterSMPPLinks it is deliverySMPPLinks.

— Parameters same as with the inserter $ curl -H “Content-Type:
application/json” -XGET http://localhost:1700/v1/deliverySMPPLinks $
curl -H “Content-Type: application/json” -XPUT
http://localhost:1700/v1/deliverSMPPLink/NAME $ curl -H “Content-Type:
application/json” -XGET http://localhost:1700/v1/deliverSMPPLink/NAME $
curl -H “Content-Type: application/json” -XDELETE
http://localhost:1700/v1/deliverSMPPLink/NAME …

SS7 Delivery Interface

The main function of the SMSC Delivery is to deliver using SS7. One
needs to configure one or multiple network connections to the osmo-stp
SCTP/TCP bridge. The configuration is very similar to the above routines
and supports the same verbs.

Listing all SS7 Network Services

$ curl -H "Content-Type: application/json" -XGET http://localhost:1700/v1/deliverySS7Links
[
 {
 "class" : "SCCPNetworkServiceOsmoDirect",
 "token" : "Token",
 "port" : 12345,
 "connectionName" : "NAME",
 "hostname" : "host"
 }
]

Creating a SS7 Network Service

$ curl -H "Content-Type: application/json" -XPUT http://localhost:1700/v1/deliverySS7Link/NAME \
-d '{
 "hostname": "host",
 "port": PortNumber,
 "token": "Token"
}'
"OK"

Inpect a SS7 Network Service

Show the settings of one configured SS7 delivery link.

— $ curl -H “Content-Type: application/json” -XGET
http://localhost:1700/v1/deliverySS7Link/NAME { “class” :
“SCCPNetworkServiceOsmoDirect”, “token” : “Token”, “port” : 12345,
“connectionName” : “NAME”, “hostname” : “host” } —

Delete a SS7 Network Service

Delete a configured SS7 delivery link.

$ curl -H "Content-Type: application/json" -XDELETE http://localhost:1700/v1/deliverySS7Link/NAME
"OK"

Routes for Delivery

A route is looked-up before the delivery of a SMS is attempted. The next
sections list commands to query and manipulate routes.

Listing all routes

$ curl -H "Content-Type: application/json" -XGET http://localhost:1700/v1/deliveryRoutes

[
 {
 "systemId" : "OptionalSystemdIdMatch",
 "default" : false,
 "destinationAddressPrefixLength" : 4,
 "priority" : 100,
 "destinationAddressPrefix" : "1234",
 "sourceAddressPrefix" : "4567",
 "methods" : [
 {
 "connectionName" : "NAME",
 "class" : "ShortMessageDeliveryMethodSMPP",
 "messageType" : "deliverSM"
 },
 {
 "class" : "ShortMessageDeliveryMethodSS7",
 "ssn" : 7,
 "globalTitle" : "49111111",
 "sendRoutingInfoTranslationType" : 2,
 "smscNumber" : "49111111",
 "forwardSMTranslationType" : 0,
 "connectionName" : "NAME",
 "mapVersion" : 2
 }
],
 "routeName" : "NAME",
 "sourceAddressPrefixLength" : 4
 }
]

	Result codes

	Under normal operation only 200 with an JSON array should be
returned.

Creating or updating a route

$ curl -H "Content-Type: application/json" -XPUT http://localhost:1700/v1/deliveryRoute/NAME \
-d '{
 "systemId": "OptionalSystemdIdMatch",
 "priority": OptionalNumberPriority,
 "default": OptionalBooleanDefault,
 "destinationAddressPrefix": "OptionalDestinationPrefix",
 "sourceAddressPrefix": "OptionalSourceAddressPrefix",
 "methods": [
 {
 "class": "ShortMessageDeliveryMethodSMPP",
 "connectionName": "aSMPPDeliveryLinkName",
 "messageType": "SMPPMessageTypeToUse"
 },
 {
 "class": "ShortMessageDeliveryMethodSS7",
 "connectionName": "aSS7DeliveryLinkName",
 "globalTitle": "CallingGT to use",
 "ssn": aCallingSsnNumber,
 "smscNumber": "aSMSCGTNumber",
 "sendRoutingInfoTranslationType": aGTTranslationType,
 "forwardSMTranslationType": aGTTtranslationType,
 "mapVersion": aVersionNumber
 }
]
}'
"OK"

	messageType

	Either deliverSM or submitSM are valid for class
ShortMessageDeliveryMethodSMPP.

	Result codes

	In case of invalid JSON a 5XX response will be returned, in case of
incomplete document a 5XX will be returned as well, in case no
connection can be created a 4XX will be returned

Inspect a route

Show the settings of one configured SMPP link. This can either be a
client or server.

$ curl -H "Content-Type: application/json" -XGET http://localhost:1700/v1/deliveryRoute/NAME
{
 "systemId" : "OptionalSystemdIdMatch",
 "default" : false,
 "destinationAddressPrefixLength" : 4,
 "priority" : 100,
 "destinationAddressPrefix" : "1234",
 "sourceAddressPrefix" : "4567",
 "methods" : [
 {
 "connectionName" : "NAME",
 "class" : "ShortMessageDeliveryMethodSMPP",
 "messageType" : "deliverSM"
 },
 {
 "class" : "ShortMessageDeliveryMethodSS7",
 "ssn" : 7,
 "globalTitle" : "49111111",
 "sendRoutingInfoTranslationType" : 2,
 "smscNumber" : "49111111",
 "forwardSMTranslationType" : 0,
 "connectionName" : "NAME",
 "mapVersion" : 2
 }
],
 "routeName" : "NAME",
 "sourceAddressPrefixLength" : 4
}

	Result codes

	In case no connection with than name exists a 404 will be returned,
otherwise a 200 with the JSON response response will be returned

Delete a route

$ curl -H "Content-Type: application/json" -XDELETE http://localhost:1700/v1/deliveryRoute/NAME
"OK"

	Result codes

	In case no connection with name exists a 404 will be returned,
otherwise a 200 with an EMPTY return will be returned.

Command Line Interface

The system installs templates that combined with the Pharo image-launch
allows to configure and start the images in the right configuration.

Common options

	
--db-host
	The hostname of the mongo database system

	
--db-port
	The port of the mongo database system

	
--statsd-host
	The hostname/IPv4 address to use for statsd.

	
--statsd-port
	Use if –statsd-host has been supplied and determines the target
address for the statsD server.

	
--smscdb-name
	The name of the SMSC database to use

	
--omdb-name
	The name of the O&M database to use

O&M image

	
--rest-port
	The port to use to expose the REST interface

Inserter image

No specific options.

Delivery image

	
--jobs
	The number of jobs that process and send SMS. This controls the
concurrency of the delivery.

GC image

TODO

 Copyright 2016, Holger Hans Peter Freyther.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	smsc stable documentation

Index

 Copyright 2016, Holger Hans Peter Freyther.
 Created using Sphinx 1.3.5.

 _static/comment-bright.png

_static/comment-close.png

_static/up-pressed.png

_static/file.png

_images/overview.png
[DeliverSM/SubmitSM

_static/plus.png

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/up.png

_static/minus.png

_static/ajax-loader.gif

