

SMPPRouter Design Document

	Author:	Holger Freyther holger@moiji-mobile.com

	Date:	September 2015

Introduction

The SMPPRouter was written by
moiji-mobile [https://www.moiji-mobile.com] to split traffic
depending on destination number and work-around limitiations of a
proprietary MC. It will route SubmitSM and DeliverSM messages based on a
configurable criteria between different links. It can be configured to
multiple incoming and outgoing connections (and act either as ESME or
MC) and each of them is associated with the SMPP systemId. For each
incoming message the outgoing path will be determined. Before forwarding
the message various parts of the message and header can be patched.

The extension to the SMPPRouter is the DIDManager that will look up the
destination number in a database and determine where to forward the
message.

Features

	SMPPv3.4 support

	SMPP Enquire Link is done locally

	Routing decision by destination number can be done using a database
look-up.

Current Limitations and Assumptions

	SMPP extensions in messages are not allowed.

	Each incoming connection is associated with a single systemId

	No load-balancing between links with the same systemId.

Requirements for deployment

A Debian 64-bit system should be used. For the DIDManager functionality
a Mongo database should run on the same system.

Please see best practices for deploying Mongo database systems in terms
of RAM, disk space and maintenance.

Implementation

Overview

The SMPPRouter can accept connections or make connections itself. It
does not follow the classic ESME/MC split but is happy to send and
receive messages on any link.

Data Model

The SMPPRouter is made up of different components. The core is a router,
connections and patchers. A route determines to which systemId a message
should be sent and then a matching connection will be found.

	SMPPSystemIdRouter

	Route DeliverSM/SubmitSM based on the systemId of the source link.

	SMPPSystemIdRoute

	A specific route that solely uses the systemId of the source link.

	SMPPSystemIdBodyRoute

	A specific route that is uses the systemId of the source link and
regular expressions for the source and destination number.

	SMPPNumberPatcher

	Remove a fixed prefix from the destination MSISDN in a DeliverSM
message.

	SMPP7BitPackingPatcher

	A SMPP message re-write element that will pack a message for a
configurable DCS to create the message of a GSM 7-bit encoded
message.

	SMPPConnection

	An outgoing connection to a remote SMPP system. The SMPPRouter would
send DeliverSM/SubmitSM on such a link ignoring the rules of
ESME/MC.

	SMPPConnectionManager

	Wait for an incoming system. The SMPPRouter would send
DeliverSM/SubmitSM on such a link ignoring the rules of ESME/MC.
Multiple incoming connections can be active at the same time.

Data Model DIDManager

	SMPPSystemIdMongoRouter

	Route based on the destination number

	SMPPMongoRoute

	A specific route that matches a destination number and defines the
system it should be sent to.

Performance

Provide benchmark results.

Load-sharing and Fail-over

One can create multiple connections with the same systemId. The
SMPPRouter will pick the first connection that is connected when
routing. The response will always be sent through the originating
connection. Right now there is no load-sharing but fail-over can be
achieved by creating several connections with the same systemId. If the
source connection fails during a pending DeliverSM/SubmitSM the result
will not be routed through an alternative.

Message and Error handling

This is the standard behavior for all SMPPRouters

	Nr.
	Condition
	Action

	PR01
	Message filtered
	No response

	PR02
	No route
	SMPP Command Status 8

	PR03
	Cancel
	SMPP Command Status 8

	PR04
	Error
	Forward error

	PR05
	Success
	Forward success

	PR06
	Timeout
	No response

DIDManager

These are the specific handling conditions for the DIDManager.

	Nr.
	Condition
	Action
	Reason

	PR02
	No route
	Send success
	Unrouted numbers
should not be
retried.

Routing

The SMPPSystemIdRouter will search rules in the order they were added.
So in case two rules match the rule that was added first will match. The
route selection will not check if the routed to systemId has a working
connection.

Patcher

The patchers can be used to manipulate DeliverSM/SubmitSM messages
before them being forwarded. This can be used for general routing
re-writing or catering for specific quirks of remote systems.

There can be one global patcher and a list of named patchers that will
activate depending on the route that was selected. In case a requested
patcher is not available no patching will occur and no error is
generated.

Each patcher can be assigned to have patcherName that will be used by
the patcher selection.

GSM 7-bit patcher

A 7-bit SMS will be transported using the DCS=0 and it will be unpacked.
This means that each septet will be stored in a single octet (leaving
one bit unused). Some equipment might not be able to deal with this.

The patcher can be configured to match a specific DCS and will then pack
the SMPP short_message field.

Configuration using Smalltalk

SMPPRouter with systemID routing

| router clientConnection1 clientConnection2 serverConnection1 serverConnection2 syslog statsd queuedStatsd |

syslog := LogTargetSyslog openlog: 'smppRouter' option: 0
 facility: LogTargetSyslog LOG_USER.
syslog prefix: ''.
LogManager default target: syslog.

clientConnection1 := SMPPConnection new
 hostname: '172.16.1.81';
 port: 2775;
 systemId: 'smscMC';
 password: 'PW1';
 systemType: 'GSM';
 yourself.
clientConnection2 := SMPPConnection new
 hostname: '127.0.0.1';
 port: 2776;
 systemId: 'homeMC';
 password: 'PW2';
 systemType: 'GSM';
 yourself.
serverConnection1 := SMPPConnectionManager new
 password: 'PW3';
 systemId: 'smscESME';
 systemType: 'GSM';
 yourself.
serverConnection2 := SMPPConnectionManager new
 password: 'PW4';
 systemId: 'homeESME';
 systemType: 'GSM';
 yourself.

"Select the kind of router to use. Add connections and routes"
router := SMPPSystemIdRouter new
 addConnection: clientConnection1;
 addConnection: clientConnection2;
 addConnection: serverConnection1;
 addConnection: serverConnection2;
 routeSystemId: 'smscMC' sourceAddress: '[0-9]*' asRegex
 destinationAddress: '[0-9]*' asRegex toSystemId: 'homeESME';
 routeSystemId: 'smscESME' sourceAddress: '49123[0-9]*' asRegex
 destinationAddress: '[0-9]*' asRegex toSystemId: 'homeMC';
 routeSystemId: 'homeMC' sourceAddress: '[0-9a-zA-Z]*' asRegex
 destinationAddress: '49456[0-9]*' asRegex toSystemId: 'smscESME';
 yourself.

"Optional statsD support"
statsd := UDPStatsDClient new.
statsd hostname: 'statsdserver'.
statsd port: 1234.
statsd start.

"Do not send each stat directly but queue it"
queuedStatsd := QueuedStatsDClient new.
queuedStatsd client: statsd.

"Now tell the SMPPRouter to use it"
router statsClient: queuedStatsd.

"Connect and wait for connections"
clientConnection1 start.
clientConnection2 start.
serverConnection1 start: 2775.
serverConnection2 start: 2770.

SMPPRouter as DIDManager

| database router clientConnection1 clientConnection2 serverConnection1 serverConnection2 syslog statsd queuedStatsd |

syslog := LogTargetSyslog openlog: 'smppRouter' option: 0
 facility: LogTargetSyslog LOG_USER.
syslog prefix: ''.
LogManager default target: syslog.

clientConnection1 := SMPPConnection new
 hostname: '172.16.1.81';
 port: 2775;
 systemId: 'smscMC';
 password: 'PW1';
 systemType: 'GSM';
 yourself.
clientConnection2 := SMPPConnection new
 hostname: '127.0.0.1';
 port: 2776;
 systemId: 'homeMC';
 password: 'PW2';
 systemType: 'GSM';
 yourself.
serverConnection1 := SMPPConnectionManager new
 password: 'PW3';
 systemId: 'smscESME';
 systemType: 'GSM';
 yourself.
serverConnection2 := SMPPConnectionManager new
 password: 'PW4';
 systemId: 'homeESME';
 systemType: 'GSM';
 yourself.

database := VOMongoRepository database: 'adbName'.

"Select the kind of router to use. Add connections and routes"
router := SMPPSystemIdMongoRouter new
 addConnection: clientConnection1;
 addConnection: clientConnection2;
 addConnection: serverConnection1;
 addConnection: serverConnection2;
 database: database;
 yourself.

"Optional statsD support"
statsd := UDPStatsDClient new.
statsd hostname: 'statsdserver'.
statsd port: 1234.
statsd start.

"Do not send each stat directly but queue it"
queuedStatsd := QueuedStatsDClient new.
queuedStatsd client: statsd.

"Now tell the SMPPRouter to use it"
router statsClient: queuedStatsd.

"Connect and wait for connections"
clientConnection1 start.
clientConnection2 start.
serverConnection1 start: 2775.
serverConnection2 start: 2770.

Configuring a patcher

This assumes that a router has already been created and a new patcher
will be created and registered with the system.

"Create a patcher"
patcher := SMPP7BitPackingPatcher new.
patcher dcs: 0.
patcher patcherName: 'PackBits'.

"Register the patcher"
router addNamedPatcher: patcher.

"In case the SMPPSystemIdRouter is used. The cascade to
add multiple rules need to be-rewritten to one rule per
line and then set the patches to apply."
route := router routeSystemId: 'homeMC'
 sourceAddress: '[0-9a-zA-Z]*' asRegex
 destinationAddress: '49456[0-9]*' asRegex toSystemId: 'smscESME'.
route patcherNames: #('PackBits' 'OtherPatch').

REST Interface

This will launch a REST service to manage the customer, sponsor and
mapping. The port can be modified and basic authentication can be
enabled for the server.

| database uriSpace server |
database := VOMongoRepository database: 'did-db'.
uriSpace := SMPPMongoRestUriSpace new.
uriSpace database: database.
server := ZnServer startOn: 1700.
server delegate:
 (ZnJSONRestServerDelegate new
 uriSpace: uriSpace;
 yourself); yourself.

Monitoring

There is no dedicated REST monitoring interface in this version of the
software. The database and syslog can be monitored at this point in
time. E.g. the number of allocated states could be checked, the node id
could be determined, the amount of the CS/PS IMSI mappings.

When the receiving SMPP process is busy/blocked the system recv queue
will grow and this can be monitored using the standard netstat command.

Statistics

The SMPPRouter is counting several events and is exporting them using

Management

Customer Management

Creating a customer entry

$ curl -H "Content-Type: application/json" -XPUT \
http://localhost:1700/v1/customer/Customer \
 -d '{ \
 "systemId": "SysId", \
 "sipProxyIP": "10.2.3.4", \
 "smppPatcherNames": ["PackBits"], \
 "sipProxyPort": 5060}'

Getting a customer entry

$ curl -H "Content-Type: application/json" -XGET \
http://localhost:1700/v1/customer/Customer
{
 "sipProxyPort" : 5060,
 "systemId" : "SysId",
 "customerName" : "Customer",
 "smppPatcherNames": ["PackBits"],
 "sipProxyIP" : "10.2.3.4"
}

MSISDN Mapping Management

Creating a mapping

$ curl -H "Content-Type: application/json" -XPUT \
http://localhost:1700/v1/routing/49123456 \
-d '{"customerName": "Customer"}'

Getting a mapping

$ curl -H "Content-Type: application/json" -XGET \
http://localhost:1700/v1/routing/49123456
{
 "customerName" : "Customer",
 "msisdn" : "49123456"
}

Deleting a mapping

$ curl -H "Content-Type: application/json" -XDELETE \
http://localhost:1700/v1/routing/49123456
OK

Index

 nav.xhtml

 Table of Contents

 		SMPPRouter Design Document

_static/up-pressed.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/ajax-loader.gif

_static/down.png

