

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	
 next |

 	Smolyak 0.0.1 documentation

Welcome to Smolyak’s documentation!

Contents:

	Mathematical Background
	Smolyak Grid

	Smolyak Basis Polynomials

Generated documentation:

	smolyak
	smolyak Package

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, EconForge.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	
 next |

 	
 previous |

 	Smolyak 0.0.1 documentation

Mathematical Background

This page is still a work in progress. I will try to provide a very basic description of each of the pieces that are necessary.

Smolyak Grid

One of the standard forms of building an approximation grid is to use a simple tensor-product. While this seems relatively trivial for low dimensions, but the number of points to evaluate quickly becomes intractable for larger dimensions. In Bellman (1961) this problem is referred to as the “curse of dimensionality.” Two years after Bellman’s paper, Sergey Smolyak introduced a numerical technique where the number of grid points needed to approximate grew polynomially instead of exponentially. As stated in Judd, Maliar, Maliar, Valero; the idea behind this technique was “that some elements produced by tensor-product rules are more important for representing multidimensional functions than the others.” The tensor-product typically takes as parameters the dimension of the grid and the number of points, \(n\) to be evaluated at in each dimension which produces a grid with \(n^d\) points (Note: There are other ways of doing this where the number of points is different in each dimension, but the resulting number of points is similar). The Smolyak grid takes an “accuracy” parameter \(\mu\) and the number of dimensions as parameters. The number of points in the grid is determined by the dimension and \(\mu\). The number of Smolyak grid points at \(\mu=1\) is \(1 + 2d\), at \(\mu=2\) it is \(1+4d+4d(d-1)\), etc... Notice that the number of grid points grows linearly at \(\mu=1\), and quadratically at \(\mu=2\).

The standard construction of a Smolyak grid uses nested sets of points. One typically uses the extrema of the Chebyshev Polynomials, which are known as the Chebyshev-Gauss-Lobatto points. We will continue our description using these points since the code is implemented using them. The nested sets require two conditions. First, that each set \(S_i\) has \(2^{i-1}\) points for \(i \geq 2\) and 1 if \(i=1\). Secondly, that the sets are nested. The first four nested sets are:

\[i=1 \text{ } : \text{ }S_1 = \{ 0 \}\]\[i=2 \text{ } : \text{ }S_2 = \{ -1, 0, 1 \}\]\[i=3 \text{ } : \text{ }S_3 = \{ -1, -\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}, 1 \}\]\[i=4 \text{ } : \text{ }S_4 = \{ -1, -\frac{\sqrt{2 + \sqrt{2}}}{2}, -\frac{1}{\sqrt{2}}, -\frac{\sqrt{2 - \sqrt{2}}}{2}, 0, \frac{\sqrt{2 - \sqrt{2}}}{2}, \frac{1}{\sqrt{2}}, \frac{\sqrt{2 + \sqrt{2}}}{2}, 1 \}\]

One then takes the tensor product of the unidimensional sets and then picks out the products that satisfy \(d \leq \sum_{j=1}^d i_j \leq d + \mu\) where \(i_j\) is the index of the unidimensional sets. For example if the parameters were \(d = 2, \mu = 2\) then you would build the first four nested sets of points (as shown above) and then take all of the tensor products that satisfied \(2 \leq i_1 + i_2 \leq 4\) which would give you \(S_1 \times S_1, S_1 \times S_2, S_2 \times S_1, S_2 \times S_2\). Then these would be your points. We will define the set of grid points to be \(\mathcal{H}^{d, \mu} := \bigcup_{d \leq |i^*| \leq d + \mu} \prod{i=1}^{d+\mu} S_i\) where \(i^* = \begin{bmatrix} i_1 & \dots i_d \end{bmatrix}\).

You can see how there would be repeated points and hence this method could be improved upon. This is one of the key results of the Judd, Maliar, Maliar, Valero (2013) paper. Instead of building nested sets, they build disjoint sets \(A_i\) such that \(A_1 = \{ 0 \}\) and \(A_i = S_i \backslash S_{i-1}\) for all \(i \geq 2\). Then the points are taken from the tensor-products of these sets in the same fashion as described above.

The following is a computationally efficient way of finding these grid points. The first step is to create the first \(\mu + 1\) unidimensional disjoint sets \(A_i\) as described above. Then one should create a vector of possible values i.e. \(\begin{bmatrix} 1, 2, \dots, \mu + 1 \end{bmatrix}\). It is important to note that these possible values only range from 1 to \(\mu + 1\) since the smallest possible index is 1 (To see this think of given \(d\) indexes. The smallest the first \(d-1\) of them can be is 1 which would sum to \(d-1\) hence the last index could only be valued up to \(\mu + 1\). We can then check all of the combinations (with replacement) of these to find the sets of indexes that would work. Once we have these we can permute them to capture all of the indexes that would work. Then you only take the tensor-products of these sets (Add reference to our code smol_inds and build_grid here).

Smolyak Basis Polynomials

 Copyright 2013, EconForge.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	
 next |

 	
 previous |

 	Smolyak 0.0.1 documentation

smolyak

	smolyak Package
	smolyak Package
	grid Module
	Authors

	References

	interp Module

	util Module

 Copyright 2013, EconForge.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	
 next |

 	
 previous |

 	Smolyak 0.0.1 documentation

 	smolyak

smolyak Package

smolyak Package

	grid Module
	Authors

	References

	interp Module

	util Module

 Copyright 2013, EconForge.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	
 previous |

 	Smolyak 0.0.1 documentation

 	smolyak

 	smolyak Package

grid Module

This file contains a class that builds a Smolyak Grid. The hope is that
it will eventually contain the interpolation routines necessary so that
the given some data, this class can build a grid and use the Chebychev
polynomials to interpolate and approximate the data.

Method based on Judd, Maliar, Maliar, Valero 2013 (W.P)

Authors

	Chase Coleman (ccoleman@stern.nyu.edu)

	Spencer Lyon (slyon@stern.nyu.edu)

References

	Judd, Kenneth L, Lilia Maliar, Serguei Maliar, and Rafael Valero. 2013.

	“Smolyak Method for Solving Dynamic Economic Models: Lagrange
Interpolation, Anisotropic Grid and Adaptive Domain”.

	Krueger, Dirk, and Felix Kubler. 2004. “Computing Equilibrium in OLG

	Models with Stochastic Production.” Journal of Economic Dynamics and
Control 28 (7) (April): 1411-1436.

	
smolyak.grid.num_grid_points(d, mu)

	Checks the number of grid points for a given d, mu combination.

	Parameters:	d, mu : int

The parameters d and mu that specify the grid

	Returns:	num : int

The number of points that would be in a grid with params d, mu

Notes

This function is only defined for mu = 1, 2, or 3

	
smolyak.grid.m_i(i)

	Compute one plus the “total degree of the interpolating
polynoimals” (Kruger & Kubler, 2004). This shows up many times in
Smolyak’s algorithm. It is defined as:

\[\begin{split}m_i = \begin{cases}
1 \quad & \text{if } i = 1 \\
2^{i-1} + 1 \quad & \text{if } i \geq 2
\end{cases}\end{split}\]

	Parameters:	i : int

The integer i which the total degree should be evaluated

	Returns:	num : int

Return the value given by the expression above

	
smolyak.grid.cheby2n(x, n, kind=1.0)

	Computes the first \(n+1\) Chebychev polynomials of the first
kind evaluated at each point in \(x\) .

	Parameters:	x : float or array(float)

A single point (float) or an array of points where each
polynomial should be evaluated

n : int

The integer specifying which Chebychev polynomial is the last
to be computed

kind : float, optional(default=1.0)

The “kind” of Chebychev polynomial to compute. Only accepts
values 1 for first kind or 2 for second kind

	Returns:	results : array (float, ndim=x.ndim+1)

The results of computation. This will be an \((n+1 \times
dim \dots)\) where \((dim \dots)\) is the shape of x. Each
slice along the first dimension represents a new Chebychev
polynomial. This dimension has length \(n+1\) because it
includes \(\phi_0\) which is equal to 1 \(\forall x\)

	
smolyak.grid.s_n(n)

	Finds the set \(S_n\) , which is the \(n\) th Smolyak set of
Chebychev extrema

	Parameters:	n : int

The index \(n\) specifying which Smolyak set to compute

	Returns:	s_n : array (float, ndim=1)

An array containing all the Chebychev extrema in the set
\(S_n\)

	
smolyak.grid.a_chain(n)

	Finds all of the unidimensional disjoint sets of Chebychev extrema
that are used to construct the grid. It improves on past algorithms
by noting that \(A_{n} = S_{n}\) [evens] except for \(A_1
= \{0\}\) and \(A_2 = \{-1, 1\}\) . Additionally, \(A_{n} =
A_{n+1}\) [odds] This prevents the calculation of these nodes
repeatedly. Thus we only need to calculate biggest of the S_n’s to
build the sequence of \(A_n\) ‘s

	Parameters:	n : int

This is the number of disjoint sets from Sn that this should make

	Returns:	A_chain : dict (int -> list)

This is a dictionary of the disjoint sets that are made. They are
indexed by the integer corresponding

	
smolyak.grid.phi_chain(n)

	For each number in 1 to n, compute the Smolyak indices for the
corresponding basis functions. This is the \(n\) in
\(\phi_n\)

	Parameters:	n : int

The last Smolyak index \(n\) for which the basis polynomial
indices should be found

	Returns:	aphi_chain : dict (int -> list)

A dictionary whose keys are the Smolyak index \(n\) and
values are lists containing all basis polynomial subscripts for
that Smolyak index

	
smolyak.grid.smol_inds(d, mu)

	Finds all of the indices that satisfy the requirement that
\(d \leq \sum_{i=1}^d \leq d + \mu\).

	Parameters:	d : int

The number of dimensions in the grid

mu : int or array (int, ndim=1)

The parameter mu defining the density of the grid. If an array,
there must be d elements and an anisotropic grid is formed

	Returns:	true_inds : array

A 1-d Any array containing all d element arrays satisfying the
constraint

Notes

This function is used directly by build_grid and poly_inds

	
smolyak.grid.build_grid(d, mu, inds=None)

	Use disjoint Smolyak sets to construct Smolyak grid of degree d and
density parameter \(mu\)

The return value is an \(n \times d\) Array, where \(n\)
is the number of points in the grid

	Parameters:	d : int

The number of dimensions in the grid

mu : int

The density parameter for the grid

inds : list (list (int)), optional (default=None)

The Smolyak indices for parameters d and mu. Should be computed
by calling smol_inds(d, mu). If None is given, the indices
are computed using this function call

	Returns:	grid : array (float, ndim=2)

The Smolyak grid for the given d, \(mu\)

	
smolyak.grid.build_B(d, mu, pts, b_inds=None, deriv=False)

	Compute the matrix B from equation 22 in JMMV 2013
Translation of dolo.numeric.interpolation.smolyak.SmolyakBasic

	Parameters:	d : int

The number of dimensions on the grid

mu : int or array (int, ndim=1, legnth=d)

The mu parameter used to define grid

pts : array (float, dims=2)

Arbitrary d-dimensional points. Each row is assumed to be a new
point. Often this is the smolyak grid returned by calling
build_grid(d, mu)

b_inds : array (int, ndim=2)

The polynomial indices for parameters a given grid. These should
be computed by calling poly_inds(d, mu).

deriv : bool

Whether or not to compute the values needed for the derivative matrix
B_prime.

	Returns:	B : array (float, ndim=2)

The matrix B that represents the Smolyak polynomial
corresponding to grid

B_Prime : array (float, ndim=3), optional (default=false)

This will be the 3 dimensional array representing the gradient of the
Smolyak polynomial at each of the points. It is only returned when
deriv=True

	
class smolyak.grid.SmolyakGrid(d, mu, lb=None, ub=None)

	Bases: object

This class currently takes a dimension and a degree of polynomial
and builds the Smolyak Sparse grid. We base this on the work by
Judd, Maliar, Maliar, and Valero (2013).

	Parameters:	d : int

The number of dimensions in the grid

mu : int or array(int, ndim=1, length=d)

The “density” parameter for the grid

Examples

>>> s = SmolyakGrid(3, 2)
>>> s
Smolyak Grid:
 d: 3
 mu: 2
 npoints: 25
 B: 0.65% non-zero
>>> ag = SmolyakGrid(3, [1, 2, 3])
>>> ag
Anisotropic Smolyak Grid:
 d: 3
 mu: 1 x 2 x 3
 npoints: 51
 B: 0.68% non-zero

Attributes

	d
	int
	This is the dimension of grid that you are building

	mu
	int
	mu is a parameter that defines the fineness of grid that we
want to build

	lb
	array (float, ndim=2)
	This is an array of the lower bounds for each dimension

	ub
	array (float, ndim=2)
	This is an array of the upper bounds for each dimension

	cube_grid
	array (float, ndim=2)
	The Smolyak sparse grid on the domain \([-1, 1]^d\)

	grid:
	array (float, ndim=2)
	The sparse grid, transformed to the user-specified bounds for
the domain

	inds
	list (list (int))
	This is a lists of lists that contains all of the indices

	B
	array (float, ndim=2)
	This is the B matrix that is used to do lagrange interpolation

	B_L
	array (float, ndim=2)
	Lower triangle matrix of the decomposition of B

	B_U
	array (float, ndim=2)
	Upper triangle matrix of the decomposition of B

Methods

	cube2dom(pts)
	Takes a point(s) and transforms it(them) from domain [-1, 1]^d

	dom2cube(pts)
	Takes a point(s) and transforms it(them) into the [-1, 1]^d domain

	plot_grid()
	Beautifully plots the grid for the 2d and 3d cases

	
cube2dom(pts)

	Takes a point(s) and transforms it(them) from domain [-1, 1]^d
back into the desired domain

	
dom2cube(pts)

	Takes a point(s) and transforms it(them) into the [-1, 1]^d domain

	
plot_grid()

	Beautifully plots the grid for the 2d and 3d cases

	Parameters:	None :

	Returns:	None :

 Copyright 2013, EconForge.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	Smolyak 0.0.1 documentation

 	smolyak

 	smolyak Package

interp Module

This file contains the interpolation routines for the grids that are
built using the grid.py file in the smolyak package... Write more doc
soon.

	
smolyak.interp.find_theta(sg, f_on_grid)

	Given a SmolyakGrid object and the value of the function on the
points of the grid, this function will return the coefficients theta

	
class smolyak.interp.SmolyakInterp(sg, f_on_grid)

	Bases: object

This class is going to take several inputs. It will need a
SmolyakGrid object to be passed in and the values of the function
evaluated at the grid points

Methods

	interpolate(pts[,interp,deriv,deriv_th,...])
	Basic Lagrange interpolation, with optional first derivatives

	update_theta(f_on_grid)
	

	
interpolate(pts, interp=True, deriv=False, deriv_th=False, deriv_X=False)

	Basic Lagrange interpolation, with optional first derivatives
(gradient)

	Parameters:	pts : array (float, ndim=2)

A 2d array of points on which to evaluate the function. Each
row is assumed to be a new d-dimensional point. Therefore, pts
must have the same number of columns as si.SGrid.d

interp : bool, optional(default=false)

Whether or not to compute the actual interpolation values at pts

deriv : bool, optional(default=false)

Whether or not to compute the gradient of the function at each
of the points. This will have the same dimensions as pts, where
each column represents the partial derivative with respect to
a new dimension.

deriv_th : bool, optional(default=false)

Whether or not to compute the ???? derivative with respect to the
Smolyak polynomial coefficients (maybe?)

deriv_X : bool, optional(default=false)

Whether or not to compute the ???? derivative with respect to grid
points

	Returns:	rets : list (array(float))

A list of arrays containing the objects asked for. There are 4
possible objects that can be computed in this function. They will,
if they are called for, always be in the following order:

	Interpolation values at pts

	Gradient at pts

	???? at pts

	???? at pts

If the user only asks for one of these objects, it is returned
directly as an array and not in a list.

Notes

This is a stripped down port of dolo.SmolyakBasic.interpolate

TODO: There may be a better way to do this

TODO: finish the docstring for the 2nd and 3rd type of derivatives

	
update_theta(f_on_grid)

	

 Copyright 2013, EconForge.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	Smolyak 0.0.1 documentation

 	smolyak

 	smolyak Package

util Module

	
smolyak.util.permute(a)

	Creates all unique combinations of a list a that is passed in.
Function is based off of a function written by John Lettman:
TCHS Computer Information Systems. My thanks to him.

 Copyright 2013, EconForge.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	Smolyak 0.0.1 documentation

 Python Module Index

 s

 			

 		
 s	

 	[image: -]
 	
 smolyak	

 	
 	
 smolyak.grid	

 	
 	
 smolyak.interp	

 	
 	
 smolyak.util	

 Copyright 2013, EconForge.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	Smolyak 0.0.1 documentation

 Python Module Index

 s

 			

 		
 s	

 	[image: -]
 	
 smolyak	

 	
 	
 smolyak.grid	

 	
 	
 smolyak.interp	

 	
 	
 smolyak.util	

 Copyright 2013, EconForge.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	Smolyak 0.0.1 documentation

Index

 A
 | B
 | C
 | D
 | F
 | I
 | M
 | N
 | P
 | S
 | U

A

 	

 	a_chain() (in module smolyak.grid)

B

 	

 	build_B() (in module smolyak.grid)

 	

 	build_grid() (in module smolyak.grid)

C

 	

 	cheby2n() (in module smolyak.grid)

 	

 	cube2dom() (smolyak.grid.SmolyakGrid method)

D

 	

 	dom2cube() (smolyak.grid.SmolyakGrid method)

F

 	

 	find_theta() (in module smolyak.interp)

I

 	

 	interpolate() (smolyak.interp.SmolyakInterp method)

M

 	

 	m_i() (in module smolyak.grid)

N

 	

 	num_grid_points() (in module smolyak.grid)

P

 	

 	permute() (in module smolyak.util)

 	phi_chain() (in module smolyak.grid)

 	

 	plot_grid() (smolyak.grid.SmolyakGrid method)

S

 	

 	s_n() (in module smolyak.grid)

 	smol_inds() (in module smolyak.grid)

 	smolyak.grid (module)

 	smolyak.interp (module)

 	

 	smolyak.util (module)

 	SmolyakGrid (class in smolyak.grid)

 	SmolyakInterp (class in smolyak.interp)

U

 	

 	update_theta() (smolyak.interp.SmolyakInterp method)

 Copyright 2013, EconForge.
 Created using Sphinx 1.3.5.

 _static/up-pressed.png

_static/comment-bright.png

_static/minus.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/ajax-loader.gif

_static/down.png

search.html

 Navigation

 		
 index

 		
 modules |

 		
 modules |

 		Smolyak 0.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, EconForge.
 Created using Sphinx 1.3.5.

_static/plus.png

_static/down-pressed.png

_static/comment.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		
 modules |

 		Smolyak 0.0.1 documentation »

 All modules for which code is available

		smolyak.grid

		smolyak.interp

		smolyak.util

 © Copyright 2013, EconForge.
 Created using Sphinx 1.3.5.

